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1 Overview

The enormous growth of information available in database systems has led to a
significant development of techniques for knowledge discovery. At the heart of the
knowledge discovery process is the application of data mining algorithms in charge
of extracting hidden relationships among pieces of stored information. Information
thus extracted fromdatabases havewidespread use in greatmany application domains
and contexts.

In this paper, we focus on traditional, structured databases as data sources. In this
realm information is available at two different levels, that of the database instance
(known as extensional level) and that of the database schema (often called intensional
level). For both of them, it is interesting to devise methods that automatically extract
useful information to be used, for instance, in re-engineering applications. Also, it is
sometimes useful to search databases for hidden regularities or, viceversa, to look for
exceptional data bunches. These two dichotomies sketch, in a nutshell, the structure
of this paper in which we summarize our long-term contributions in the area of data
mining and data integration.
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To illustrate, in the first part of this paper, we deal with discovering regularities
and exceptions in data. Searching for regularities in data instances is, actually, at the
heart of many data mining tasks, including classification, regression, clustering and
rule discovery. This latter is the specific subject we shall focus on first, by considering
two forms of it, namely, associative rules induction and metaquerying. After that,
we shall discuss the problem of looking for exceptions, aka outliers in database
instances. In this respect, it must be noted that searching regularities and exceptions
does not complement one another, and specific and often unrelated techniques are
needed in order to look for them.We shall discuss about outlier detection in ordinary
data instances and in data streams and about the related problems of constructing
explanations justifying for data bunches to be considered as exceptional.

Finally, we tackle the context of extracting regularities and exceptions in data
schemas and we illustrate their exploitation to the problem of data integration and,
ultimately, of information system cooperation.

2 Extensional Data Mining

2.1 Dependency Discovery

This task aims at revealing types of correlations holding among pieces of information
stored in a database, which can be somehow expressed in the form of logical-like
rules. For instance, with boolean association rules, one describes co-occurrences of
items within databases of itemsets.

Not all rules induced froma database are, however, interesting: thiswill be the case
only if it describes a relationship that is “mostly valid”. To state such a validity, indices
are used, that is, functions with values usually in [0, 1]. Support and confidence are
classical indices employed in the data mining field. Intuitively, when a rule scores a
high support, it is worth to further consider it, since there exist a significant fraction
of the database tuples that satisfy the conjunction of the atoms in the rule.Confidence
shows to what extent a given rule is true within the database at hand. Just for the
way of example, a confidence value of 0.7, associated to the boolean association
rule of the form I1, I2, . . . , In → I, tells that 70 percent of the stored itemsets where
I1, I2, . . . , In are true (that is, occur) also have I true.

2.1.1 Association Rules Induction

Above we have made reference to the simplest form of an association rule, that is, the
boolean one. In several application domains, though, they are not enough to encode
interesting data dependencies.

Quantitative association rules use conditions of the form: (i) A = c; (i i) A �= c;
(i i i) A ∈ [l, u]; (iv) A /∈ [l, u]; where A is an attribute, l and u are values and [l, u]
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denotes the set of numbers x s.t. l ≤ x ≤ u. In either forms, inducing association rules
is a quite widely used data mining technique. Despite their widespread utilization, a
thorough analysis of the complexity of the associated tasks was not been developed
when we begun working on the subject.

We define a form of association rules that generalizes over the quantitative, cat-
egorical and the boolean attributes. We allow the null values (indicated by ε) to
occur in the database, denoting the absence of information, for which it is forbid-
den to specify conditions. We capture [13, 15] the formal framework of boolean
rules by calling boolean a database defined on a set of attributes taking value
over {c, ε}, where c is an arbitrary constant. In this setting, an association rule
(B1 = c) ∧ . . . ∧ (Bp = c) ⇒ (H1 = c) ∧ . . . ∧ (Hq = c) will encode the boolean
association rule B1, . . . , Bp ⇒ H1, . . . , Hq .

Given a database T , support and confidence for association rule B ⇒ H are:

• the support of B ⇒ H in T , written sup(B ⇒ H, T ), is |TB∧H |/|T |, and
• the confidence of B ⇒ H in T , written cn f (B ⇒ H, T ), is |TB∧H |/|TB |,
where TC denotes the set of tuples of T which satisfy the condition C . In our investi-
gation, we considered two additional indexes, namely gain and laplace, that we shall
not discuss further here.
Association rule induction problem: Let I be a set of attributes, let T be a database
on I , let k, 1 ≤ k ≤ |I |, be a natural number, and let s, 0 < s ≤ 1, be a rational
number. Furthermore, let ρ be an index. The association rule induction problem
〈I, T, ρ, k, s〉 is as follows: Is there a non-trivial association rule R such that |R| ≥ k
and ρ(R, T ) ≥ s?

Complexity results are summarized in Table1. Before commenting on those, we
recall that problems belonging to classes as AC0, TC0, L, and LOGCFL are very
efficiently parallelizable (indeedAC0 ⊆ TC0 ⊆ NC1 ⊆ L ⊆ LOGCFL ⊆ NC2 ⊆ P;
the reader is referred to [24] for basics on complexity classes), so that the algorithm
design effort could be addressed accordingly:

Table 1 Complexity results for the Association rule induction problem

Index Database type Constraints Complexity

1 sup, gain, laplace No nulls No NP-complete

2 cnf No nulls No TC0

3 All With nulls No NP-complete

4 All Sparse No L

5 All Any |I | fixed L

6 sup With nulls s fixed NP-complete

7 sup Boolean s|T | or k fixed TC0

8 sup Boolean s|T | and k fixed AC0
2
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• All the problems are NP-complete in the presence of null values (row 3 of Table1);
therefore, dealingwith nullsmakes “per se” the task of rule induction very demand-
ing;

• The problem 〈I, T, cn f, k, s〉 becomes tractable when databases without nulls are
considered (row2),while the other problems remain intractable (row1); thismeans
that generating rules with high-confidence is easier than the case of other indices;

• In the presence of a bound on the length of the tuples (row 4) or of a bound on the
number of attributes (row 5), then all the problems become highly parallelizable;
this result can be understood if one considers that, when such bounds are imposed,
the number of candidate rules is polynomial and different rules can be generated
independently from one another.

2.1.2 Metaquerying

Metaquerying is a task aiming at extracting first order logical rules from a relational
and a deductive database. This is a semi-supervised task in that the metaquery serve
as the description of a class of patterns that the user is willing to discover. Differently
from canonic association rules induction, patterns discovered using metaqueries can
link information from several tables in databases. To illustrate, a metaquery MQ
has the form T ← L1, . . . , Lm where T and Li are literal schemes Q(Y1, . . . ,Yn),
and Q is either an ordinary predicate name or a predicate variable. In the latter
case, Q(Y1, . . . ,Yn) can be instantiated to an atom with a predicate name denoting
a relation in the database.

Answering a metaquery MQ on a database instance DB amounts to finding all
substitutions σ, also called instantiations, of relational patterns appearing inMQ by
atoms having as predicate names relations in DB, such that the Horn rule σ(MQ)

holds in DB with a certain degree of plausibility, defined in terms of indices such as
support and confidence.

We worked in the context outlined above with the two-sided aim of defining a
clear and well-defined semantics and of studying the complexity of the underlying
computational problems [11, 12, 14].
Metaquery semantics: Let MQ be a metaquery, DB a database, and σ an instantia-
tion. According to the type of the instantiation (namely, 0, 1, or 2), for any relational
pattern L and atom A, σ(L) = A implies the following:

• type–0: L and A have the same list of arguments;
• type–1: the arguments of A are obtained from those of L by permutation.
• type–2: the arguments of A are a superset of those of L , and the ones not appearing
in L do not occur elsewhere in the instantiated rule.

Metaquery induction problem: Let T ∈ {0, 1, 2} be an instantiation type and let
I be a plausibility index. Let DB denote a database instance, MQ a metaquery,
and k a threshold, 0 ≤ k < 1. Then, the combined (data, resp.) complexity of
〈DB,MQ, I, k, T 〉 is the complexity, measured in the size of DB, MQ and k (DB,
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Table 2 Complexity results for theMetaquery induction problem

Complexity
measure

Problem type Instantiation
type

Indices Threshold Complexity

1 Comb. Compl. General 0, 1, 2 I k = 0 NP-complete

2 Comb. Compl. General 0, 1, 2 cvr , sup 0 ≤ k < 1 NP-complete

3 Comb. Compl. General 0, 1, 2 cn f 0 ≤ k < 1 NPPP-
complete

4 Comb. Compl. Acyclic 0 I k = 0 LOGCFL-
complete

5 Comb. Compl. Acyclic 1, 2 I k = 0 NP-complete

6 Comb. Compl. Acyclic 1, 2 cvr , sup 0 ≤ k < 1 NP-complete

7 Comb. Compl. Semi-acyclic 0, 1, 2 I k = 0 NP-complete

8 Data Compl. General 0, 1, 2 I k = 0 AC0

9 Data Compl. General 0, 1, 2 I 0 ≤ k < 1 TC0

resp.), of deciding if there exists a type-T instantiation σ such that I (σ(MQ)) > k,
where DB has variable schema (fixed schema, resp.).

Complexity results are summarized in Table2, where it can be read that:

• The combined complexity of: (1) 〈DB,MQ, I, 0, T 〉 is NP-complete for any
instantiation type T ; (2) 〈DB,MQ, I, k, T 〉 is NP-hard for any index I ; (3)
〈DB,MQ, I, k, T 〉 is in NP for 0 ≤ k < 1, any T , and I ∈ {cvr, sup}.

• Instantiating metaqueries complying with a given bound on the confidence value
turns out to be more complex than for other indices. This is due to the need
of computing the exact count of tuples satisfying the body of an instantiation,
whereas for other indices this is not required. In fact, this problem is related to
the #P-complete problem #SAT, where the question concerns counting the exact
number of solutions of a given boolean formula. The class #P employed as an
oracle is equivalent to another class related to counting, namely PP. Specifically,
the combined complexity of 〈DB,MQ, cn f, k, T 〉 turns out to be NPPP-complete,
a class “close” to PSPACE. Interestingly enough, the above result states the first
natural problem known for the complexity class NPPP.

• In order to single out tractable cases in the context of the combined complexity
analysis, we individuate the classes of (semi–)acyclic metaqueries on the basis
of the acyclicity of the (semi–)hypergraph associated with a metaquery: nodes
are associated to both predicate and ordinary (only ordinary, in the case of the
semi-hypergraph) variables occurring in the metaquery, while edges ecompass
all variables appearing together in a certain relational pattern. Interestingly, the
combined complexity of 〈DB,MQ, I, 0, 0〉 for acyclic metaqueries is LOGCFL-
complete, hence, highly parallelizable. However, acyclicity is not sufficient to
guarantee tractability in general.

• As for the data complexity, depending on the threshold k, its membership ranges
from AC0 (k = 0) to TC0 (0 ≤ k < 1), hence, highly parallelizable.
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2.2 Mining Exceptions

Outlier mining approaches tackle the knowledge discovery problem from a perspec-
tive which is reversed with respect to that of regularity mining ones. Specifically,
the goal of outlier detection techniques is to isolate a few individuals deemed as
exceptional, also referred to as outliers.

While inmany contexts outliers are considered as noise thatmust be eliminated, as
pointed out elsewhere “one persons noise could be another persons signal”, and thus
outliers themselves can represent the knowledge of interest in many applications, as
in medical analysis, intrusion detection, surveillance systems, data cleaning, to cite
a few.

Actually, exception mining techniques can be grouped in two main categories,
that are outlier detection and outlier explanation.

2.2.1 Outlier Detection

Outlier identification has its roots in statistics: “An outlier is an observation that
deviates somuch fromother observations as to arouse suspicions that it was generated
by a different mechanism”. According to most statistical approaches, outliers are
those points that satisfy a discordancy test, that is, that are significantly far from
what would be their expected position given the hypothesized distribution [1].

Approaches to outlier detection pertaining to the datamining field can be classified
in supervised, semi-supervised, and unsupervised.
Unsupervised outlier detection. Unsupervised methods search for outliers in an unla-
belled data set by assigning to each object a score which reflects its degree of abnor-
mality. Most of the unsupervised approaches proposed in the data mining literature
can be classified as deviation-based, distance-based, density-based, isolation-based,
and others [1].

Among the unsupervised outlier detection methods, distance-based outlier ones
occupy a prominent position. Distance-based outlier detection has been introduced
by [26] to overcome the limitations of model-based statistical methods, that are the
methods requiring that the data fits an hypothesized distribution. According to the
original definition, an object obj is a distance-based outlier in a dataset with respect
to parameters k and R if less than k objects in the data set lie within distance R
from obj . Subsequently, some variants of the basic distance-definition have been
introduced in the literature that have become popular during the years. Specifically,
in order to provide a ranking of the outliers and with the aim of taking into account
the whole neighborhood of the objects, [9] proposed to rank objects on the basis of
the sum of the distances ωk(·) (or, equivalently, the average distance) from their k
nearest neighbors, a measure called weight and also referred to as aKNN score (for
average KNN).

The first two algorithms for mining distance-based outliers in large data sets were
presented in [26]. However, none of these methods scales well for both large and



A Tour from Regularities to Exceptions 313

high-dimensional data, and this originates efforts for developing scalable algorithms
that are scalable in both the size and the dimensionality of the data.
HilOut algorithm.Within this scenario [9, 10] proposed an algorithm, calledHilOut,
for detecting the top-n distance-based outliers according to the weight score. The
major contributions of this research have been a novel distance-based outlier def-
inition and the first distance-based outlier algorithm guaranteeing an approximate
solution within a deterministic factor in time linear with respect to the dataset size.

The algorithm relies on the definition of approximate set {a1, . . . , an} of outliers:
elements ai of this set have a weight greater than the weight of the true outliers within
a pre-defined factor ε ≥ 1 (that is εωk(ai ) ≥ ωk(oi ), where oi denotes the true i-th
top outlier, i = 1, . . . , n).

Let n and d be the dataset size and dimensionality, respectively. The algorithm
consists of two phases. The first provides an approximate solution, within a rough
deterministic factor, after executing at most d + 1 sorts and scans of the data set,
with temporal cost O(d2nk) and spatial cost O(nd),

Specifically, the algorithm avoids the distance computation between each pair
of points by making use of the space-filling curves (and, specifically, the Hilbert
curve), that are mappings of an hypercube D = [0, 1]d into the interval I = [0, 1],
to linearize the dataset. The mapping assures that if two points are close in I , they
are close in D too, although the reverse in not always true.

During the first phase the algorithm calculates a lower and an upper bound to the
weight of each point by exploitingHilbert curves, and determines the points candidate
to belong to the solution set, or candidate outliers. If the number of candidates n∗
is n, then the algorithm stops reporting the exact solution. Otherwise, the second
phase is needed, which calculates the exact solution with a final scan of temporal
costO(n∗nd). Experimental results highlighted that in practice the algorithm always
stops, reporting the exact solution, during the first phase after much less than d + 1
steps.
DOLPHINalgorithm.TheDOLPHINalgorithm [6, 7] detects distance-basedoutliers
according to the definition of [26]. The algorithm, designed to work on disk-resident
datasets,maintains an in-memory data structure, called INDEX.DOLPHINperforms
two sequential scans of the dataset file. During the first scan INDEX is employed to
maintain a summary of the portion of the dataset already examined. In particular, for
each incoming dataset object obj , the objects stored in INDEX are exploited in order
to determine if obj is an inlier. The object obj will be inserted into INDEX if it is not
recognized as an inlier. By adopting this strategy it is guaranteed that INDEX contains
all the outliers occurring in the portion of the dataset already scanned.Moreover, some
of the objects stored in INDEX, called proved inliers, can be recognized as inliers on
the basis of the objects read after them. When the first dataset scan finishes, INDEX
contains a superset of the dataset outliers. During the second scan, the candidate
outliers stored in INDEX are compared with all the dataset objects and at the end of
the scan, INDEX contains all and only the outliers of the dataset.

It is proved that the size of INDEX is O(k/p), where p denotes the probability that
two randomly picked objects, one from INDEX and the other from the dataset, are
neighbors. As for the value of k/p, for meaningful combinations of the parameters
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k and R, that are those associated with a pre-determined fraction α (usually of the
order of 1%) of objects to be recognized as outliers, provably corresponds to a small
fraction (of the order of 1%) of the dataset size. Importantly, probably approximately
correct values for k and R associated with a given α can be quickly determined by
means of a fixed-size sampling procedure.

Summarizing, the spatial cost is O(k/p), the temporal cost is O(nk/p), which
for k fixed is linear in the dataset size, and the I/O cost is linear, since it corresponds
to the cost of sequentially reading the input dataset file twice. DOLPHIN has been
compared with state of the art distance-based outlier detection algorithms showing
that it is much more efficient.
Outliers in data streams. In many emerging applications, such as fraud detection,
network flow monitoring, telecommunications, data management and others, data
arrive continuously and it is either unnecessary or impractical to store all incoming
objects. In this context, a challenge is to find the most exceptional objects among
the flow of incoming data, also called a data stream. Data mining on data streams is
often performed based on certain time intervals, called windows.

Finding outliers in data streams is a relatively novel and challenging research
area [25]. The method proposed in [8], called STORM (for STream OutlieR Miner),
introduces a novel concept of querying for outliers. Specifically, previous work deals
with continuous queries, that are evaluated as objects arrive. Conversely, one-time
queries are evaluated once over a point-in-time. The underlying intuition is that, due
to evolution, stream characteristics can change over time and, hence, by classifying
single objects when a data analysis is required, the concept drift, a challenging
characteristics of data streams, can be captured.
Semi-supervised outlier detection. Semi-supervised methods assume that only nor-
mal examples are given. The goal is to find a description of the data, that is a rule
partitioning the object space into an accepting region, containing the normal objects,
and a rejecting region, containing all the other objects. These methods are also called
one-class classifiers or domain description techniques.

In [16] the concept of outlier detection solving set is defined, a subset of the input
data set representing a model that can be used to predict distance-based outliers
according to the weight score. The computational complexity of computing a mini-
mum cardinality solving set is analyzed, showing that it is in general an intractable
problem. An algorithm, called Solving Set, that computes with sub-quadratic time
requirements a solving set and the top-n outliers is described, and experimental evi-
dence that the solving set is a fraction of the overall data set and that the false positive
rate obtained using it is negligible is given.

Parallel/distributed and GPU based strategies for solving set computation are
described in [19, 21]. Other compressed representation for novelty detection based
on distance-based definitions are introduced in [4, 5] and compared with well-
established one-class classification methods.

Outlier Explanation. In many real situations, one is given a data population char-
acterized by a certain number of attributes, and information are provided that one
of the individuals in that data population is abnormal, but no reason whatsoever is
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given as to why this particular individual is to be considered abnormal. The problem
we deal with next is precisely to single out such reasons.

This problem has many practical applications. For instance, in analyzing health
parameters of a sick patient it is relevant to single out parameters mostly differenti-
ating them from those of the healthy population. As another example, a data history
associated with an athlete that has established an exceptional performance can be
analyzed to detect characteristics determining that performance.

Despite its wider applicability, a limited attention has been paid to the subject at
the time we started working on it. We tackled the problem under several directions,
since, due to its peculiarities, it needed the designing of specific techniques on the
basis of one or more outliers in input and on the basis of the presence of numerical
or categorical attributes. The following table reports the techniques we develop for
the different contexts, together with the referred work.

categorical data numerical data
one outlier FOP [17, 18] OPD [23]
more outlier EXPREX [20] EXPREX [20]

In order to illustrate the scenario, we refer to the first case, namely a categorical
dataset and one outlier provided in input. Nevertheless, the underlying ideas are
shared by the different scenarios.

Consider the example consisting in a portion of the Zoo dataset (Fig. 1a). This
database consists of 15 boolean-valued and two numerical attributes representing
animal features. The table reports some of the attributes collected for some animals.
It is known that the platypus is an exceptional animal being it a mammal, but laying
eggs. This intuitive notion can be formally illustrated on the database by noticing
that among dataset objects having value “y” for the attribute eggs, the platypus is the
only animal having value “y” for the attribute milk. Obviously the value “y” for the

name eggs milk legs

.

.

.
.
.
.

.

.

.
.
.
.

flea y n 6
gnat y n 6
gull y n 2
octopus y n 8
ostrich y n 2
parakeet y n 2
penguin y n 2
platypus y y 4
polecat n y 4
pony n y 4
wasp y n 6

.

.

.
.
.
.

.

.

.
.
.
.

(a)

legs freq f

〈2〉 4
〈4〉 3
〈6〉 3
〈8〉 1

(b)

f ff cum ff

1 1 1
3 6 7
4 4 11

(c)

1

7/11

1/11

111/411/1 11/3

4/11

3/11

3/11

(d)

Fig. 1 Illustration of the outlier explanation problem
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attributemilk is not an exceptional feature “per se”, but it is surprising when attention
is restricted to the animals which lay eggs. This is a case where a local property is
individuated, where the attribute eggs plays the role of explanation for the outlying
property, milk, of the platypus.

The intuitionunderlyingour definitionof exceptionality is that a set of attributes, or
property, makes an object exceptional if the frequency of the combination of values
assumed by that object on those attributes is rare if compared to the frequencies
associated with the other combinations of values assumed on the same attributes by
the other objects of the database.

Indeed, considering frequency values may lead to incorrect conclusions. As an
example, consider a key-attribute. Obviously, the value assumed by the outlier object
on that attribute occurs just once on the dataset, but this cannot be considered excep-
tional since all the values occur once.

Our approaches, then, try to capture this intuition in the various scenarios where
we search for property-explanation pairs.
One outlier – Categorical data. The technique we propose to deal with the case of
one user-provided outlier in a categorical dataset is based on (1) the construction of
the histogram of frequency values (Fig. 1b), (2) the construction of the cumulated
histogram of the frequency of frequencies (Fig. 1b) and, (3) the quantification of the
“degree of unbalanceness” between the frequency of the object o under consideration
and the frequencies of the rest of the database (Fig. 1b). This latter step is performed
by measuring the area above the cumulated frequency of frequencies histogram of
the database w.r.t. the set of attributes of interest, starting from the frequency of o.
Indeed, the larger this area is, the smaller the frequency of o is w.r.t. the frequencies
associated with the other data set objects. To illustrate, Fig. 1 reports the computation
of the outlierness of the property legs for the platypus.
One outlier – Numerical data. When dealing with numerical attributes, in order to
extend the previously stated intuition, a key aspect is being able to efficiently esti-
mate both the cumulated density frequency (cdf) and the related probability density
frequency (pdf), as well as to exploit them to measure the associated imbalance. This
is in fact our main contribution in this scenario.

The Outlying Property Factor (OPF) of a numerical attribute a in o w.r.t. the
dataset is defined as follows:

OPFa(o) = Ω

(∫ sup( fa)

fa(o[a])
(1 − Ga( f ))d f −

∫ fa(o[a])

0
Ga( f )d f

)
. (1)

where, Ω denotes a function from the set of real numbers to [0, 1], and

Ga(ϕ) = Pr(X f
a ≤ ϕ) =

∫ ϕ

0
Pr(X f

a = v)dv, (2)

with X f
a denoting the random variable whose pdf represents the relative likelihood

for the pdf fa , representing the density of the active domain of a, to assume a certain
value. Thus, Ga(ϕ) measures the probability to observe in a a density value not
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exceeding ϕ. To maintain the analogy with the previous definition, the first integral
in OPF measures the area above the cdf Ga( f ) for f > fa(o[a]), while the second
integral in OPF measures the area below the cdf Ga for f ≤ fa(o[a]).

Two problems are related to the applicability above definition: (1) to estimate the
empirical pdfs from dataset values, and (2) to determine the “natural” intervals of
homogeneous values to be employed to form explanations. The strategies we have
designed to solve these two problems exploit a common framework, which is based
on Kernel Density Estimation (KDE).
More outliers. The work [20] extends the perspective of previously described
approaches in order to be able to deal with groups, or sub-populations, of anom-
alous individuals. As an example, consider a restrict group of longevous individuals;
it would be very useful to single out properties, namely genetic traits, differentiating
them as a whole from normal individuals.

We designed exceptionality scores well-tailored for comparing a rare population
with a large one, which exploit the notion of randomization test based on the Pear-
son chi-square criterion, for categorical properties, and on the Cramér-von-Mises
criterion, for numerical properties. These criteria evaluate the badness of fit of a
probability distribution F compared to a sample set. In particular, we employ as
reference distribution F the empirical distribution function associated with the pop-
ulation of inliers and, as the sample set, the population of outliers.

3 Intensional Data Mining

Analogously to what happens for the extensional level [36], also for the intensional
one it is possible to define regularities and exceptions. In particular, both of them, as
a whole, form the so-called interschema properties [29, 32].

These can be partitioned into nominal properties [30], which involve lexicon, and
structural properties [37], which involve the structure of sources to integrate.

Nominal properties, in turn, can be divided in synonymies, homonymies and
hyponymies. A synonymy between two concepts C1, belonging to a schema S1, and
C2, belonging to a schema S2, indicates that they have the samemeaning but different
names. A homonymy between C1 ∈ S1 and C2 ∈ S2 denotes that they have the same
name but different meaning [29, 32]. A concept C1 ∈ S1 is a hyponym of a concept
C2 ∈ S2 (which, in turn, is the hypernym of C1) if C1 has a more specific meaning
than C2 [31]. Synonymies and homonymies are examples of regularities, whereas
homonymies represent a case of exceptions.

The main structural properties [40] are type conflicts, subschema similarities
and complex knowledge patterns. A type conflict denotes that the same concept is
represented by means of different schema structures in the involved databases (for
instance, by means of an attribute in S1 and an entity in S2). A sub-schema similarity
indicates that a subschema of S1 and another of S2 could represent the same con-
cept although they seem to have a different structure. A complex knowledge pattern
represents a (generally complex) relationship involving several concepts possibly
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belonging to several different schemas [28, 35]. Also for structural properties we
can recognize regularities (in this case, subschema similarities) and exceptions (in
this case, type conflicts). Interestingly, complex knowledge patterns can encompass
both regularities and exceptions. In the literature, different techniques for the extrac-
tion of interschema properties have been proposed. The interested reader can find a
survey in [38].

In this chapter, we shall illustrate one of them based on the assumption that two
concepts are similar if the concepts belonging to their neighborhoods are similar.
Now, the question is: given a concept C , which are its neighbors? To answer this
question, it is necessary to define a metric aiming at detecting the semantic relation-
ship degree between two concepts. Thanks to this metric, it is possible first to detect
the closest neighbors of C , then to determine the neighbors of the closest neighbors,
and so forth, until to a certain neighbor distance has been covered. Clearly, in the
definition of the semantics of C , the contribution of its closest neighbors must be
higher than the one of its farthest neighbors. In other words, as this process moves
away from C , the weight of neighbors in determining the semantics of C decreases.

To define the metric of our interest, some support information is needed. To
determine this information, it is necessary to associate some suitable graphs (called
SemanticDistanceGraphs - SDGraphs)with the involved E/R schemas. Specifically,
given an E/R schema S, the corresponding SD-Graph can be represented as G(S) =
〈N (S), D(S)〉, where N (S) indicates the set of the nodes of G(S), whereas A(S)

denotes the set of its arcs. There is a node in G(S) for each entity, relationship or
attribute of S. A(S) consists of two subsets, namely: (i) SA(S), i.e., the set of solid
arcs, denoting a strong relationship between two concepts; (i i) DA(S), i.e., the set
of dashed arcs, indicating a weak relationship between two concepts.

There is a solid arc: (i) from an entity or a relationship to each of its attributes;
(i i) from a relationship to each of the entities linked by it; (i i i) from a key attribute
to the corresponding entity; (iv) from the “child” entity to the “father” one of an isa
relationship.

There is a dashed arc: (i) from a non-key attribute to the corresponding entity or
relationship; (i i) from an entity to each of the relationships it participates to; (i i i)
from a “father” entity to each of its “children entities” of an isa relationship.

The more the shortest path connecting two nodes encompasses dashed arcs, the
more they must be considered semantically distinct. We define D-pathn in G(S) a
path with n dashed arcs and any number of solid arcs. Given two nodes x and y in
G(S), the D-shortest path from x to y, denoted by 〈x, y〉, is the path from x to y
characterized by the minimum number of D-arcs.

Given a node x , the neighborhood, or context of level i ≥ 0 of x is defined as:
cnt (x, i) = {y | y ∈ N (S), y �= x, 〈x, y〉is a D − pathi in G(S)}.

The A_cnt of level i (i ≥ 0) of a node x is defined as as the set of the attributes
belonging to cnt (x, i). The E_cnt of level i (i ≥ 0) of a node x encompasses all the
entities belonging to all the contexts of level j (0 ≤ j ≤ i) of x .

In order to determine if two concepts, belonging to two different schemas, are
similar, it is necessary to first examine their contexts of level 0, then the ones of level
1, and so forth.
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Let x ∈ G(S1) and y ∈ G(S2) be two nodes. In order to compute the similarity
degree of their A_cnts, a full bipartite graph is constructed. In this graph, there is
a node for each attribute of x and y. Each edge has associated a weight on the
basis of the similarity degree of the corresponding attributes. Given two attributes
A1 of x and A2 of y, the weight of the edges linking them is computed by means
of the following formula: γ(A1, A2) = wl × L(A1, A2) + wd × D(A1, A2) + wk ×
K (A1, A2), wherewn ,wd andwk are weighting factors whose sum is equal to 1, and
L(A1, A2), D(A1, A2) and K (A1, A2) consider the lexicographic, domain and “key
characterization” similarities of A1 and A2, respectively. After the bipartite graph
has been constructed, the computation of the similarity degree of the two A_cnts is
performed by computing a suitable objective function associated with the maximum
weightmatching related to this bipartite graph. This objective function is given by the
sum of the weights of the selected arcs multiplied by 2 and divided by the number of
the nodes of the bipartite graph. The corresponding value belongs to the real interval
[0, 1]. In an analogous way, it is possible to compute the similarity degree of two
E_cnts. Finally, the similarity degree c − sim(x, y, i) of two contexts cnt (x, i) and
cnt (y, i) is a weightedmean of the similarity degree of their A_cnts and their E_cnts.

To compute the similarity sim(x, y) between x and y, it is necessary to apply
an iterative procedure. First c − sim(x, y, 0) is computed. Then, c − sim(x, y, 1)
is determined and exploited to refine the previously computed value. This way of
proceeding is performed until to a user predefined level n is reached, or until to the
value of sim(x, y) reaches a fixed point, with farthest levels influencing the computed
value less than closer ones. For this latter purpose, we exploit a quadratic decrease
function.

Once the similarity coefficients of all the objects of two schemas S1 and S2 have
been determined, it is possible to compute interschema properties:

• There exists a synonymy between two objects C1 ∈ S1 and C2 ∈ S2 if they have
the same type (i.e., both of them are entities or relationships or attributes) and their
similarity coefficient sim(C1,C2) is higher than a certain threshold th.

• There exists a homonymy between two objects C1 ∈ S1 and C2 ∈ S2 if they have
the same name and the same type but their similarity coefficient is lower than
(1-th).

• There exists a type conflict between two objects C1 ∈ S1 and C2 ∈ S2 if they have
different types but their coefficient is higher than a threshold th.

The interested reader can find all details about this approach in [32].
In order to compute subschema similarities, a very similar approach can be

adopted. In fact, the neighborhood of a subschema is nothing more than the union
of the neighborhoods of the objects forming the subschema [40]. The approach to
computing hyponymies is very similar to the one described above [31]. Finally, in
order to determine complex knowledge patterns, a variant of description logics can
be exploited [28]. As previously pointed out, interschema properties play a key role
in schema integration and, ultimately, in the construction of Cooperative Information
Systems and Data Warehouses [39].
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The interested reader can find the description of a system performing interschema
property computation by means of the approach described above, as well as schema
integration for the construction of a Cooperative Information Systems or a Data
Warehouse in [33, 34].

4 Future Trends

As current trends, a renewed interest is witnessed for the field of metaquerying due
to the success of the semantic web and to its strict relationship with ontological, that
carries in the spotlight the need of querying classes and concepts [27]. Furthermore,
notable research directions pertaining outliers are devoted to the needs of certain
applications, e.g., in terms of interpretability or capability to describe the reasons
underlying unusual behaviours of users, to provide user interfaces to navigate within
data and to visualize outliers, and towards tailoring the discovery process on users’
goals rather than on some pre-defined notion of abnormality [3].

As another interesting challenge for researchers, it is worth to emphasize the
relevance of designing techniques able to work in domain so complex to necessarily
require new and specialized methodologies. Among these, relevant contributions
could be provided to fields like physics or biology because of the huge amount of
data already produced in these areas characterized by high variability and uncertainty.

Moreover, of particular interest is the analysis of networks and of their dynamics
related to the formidable popularity of online social networks and availability of
huge amount of user-generated content. This has lead to a significant increase in the
number of studies about social network in the area of the social sciences network
modeling and analysis in the area of machine learning and data mining. All that is
aimed to extract knowledge about relations and diffusion processes in order to shed
lights on social behaviors and interactions among individuals or discover anomalous,
malicious individuals who attempt to perform illegal activities and cause harm to
other users [2, 22].
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