
Structural Decomposition Methods: Key
Notions and Database Applications

G. Greco, N. Leone, F. Scarcello and G. Terracina

Abstract Many difficult problems that are tractable when restricted to acyclic
instances are good candidates to be solved efficiently whenever their structure is
not precisely acyclic, but not far from that. This is the case for fundamental database
problems such as answering conjunctive queries or counting the number of answers
(without actually computing them). The chapter describes structural decomposition
methods that guarantee tractability for all such problem instances whose associated
hypergraphs have a small degree of cyclicity, called width. In particular, it focuses
on the notion of hypertree width, by describing its properties and its applications to
the database field, and covering queries with aggregate operators and some recent
parallel and distributed implementations.

1 Introduction

Answering conjunctive queries to relational databases is a basic problem in database
theory, and it is equivalent to many other fundamental problems, such as conjunctive
query containment and constraint satisfaction. Recall that conjunctive queries are
defined through conjunctions of atoms (without negation), and are known to be
equivalent to Select-Project-Join queries. The problem of evaluating such queries
is NP-hard in general, but it is feasible in polynomial time on the class of acyclic
queries, which was the subject of many seminal research works since the early
ages of database theory. This class contains all queries Q whose associated query
hypergraphHQ is acyclic, where the hypergraphHQ associated to Q has as vertices

G. Greco (B) · N. Leone · F. Scarcello · G. Terracina
University of Calabria, 87036 Rende, Italy
e-mail: ggreco@mat.unical.it

N. Leone
e-mail: leone@mat.unical.it

F. Scarcello
e-mail: scarcello@dimes.unical.it

G. Terracina
e-mail: terracina@mat.unical.it

© Springer International Publishing AG 2018
S. Flesca et al. (eds.), A Comprehensive Guide Through the Italian Database Research
Over the Last 25 Years, Studies in Big Data 31, DOI 10.1007/978-3-319-61893-7_15

253

254 G. Greco et al.

Fig. 1 Hypegraph
associated with the query in
Example 1

its variables and has, for each query atom, a hyperedge consisting of the set of all
variables appearing in that atom.

Example 1 Consider the following conjunctive query Q, adapted from a benchmark
SQL query taken from the TPC-H specifications (see [21]):

customer(CustKey,NationKey) ∧ orders(OrdKey,NationKey)
∧ lineitem(SuppKey,OrdKey,ExtendedPrice,Discount)
∧supplier(SuppKey,NationKey) ∧ region(RegionKey)
∧nation(Name,NationKey,RegionKey),

The query consists of the conjunction of 6 atoms and its associated hypergraph
H(Q) is the one shown in Fig. 1. �

To be precise, there are several notions of hypergraph acyclicity, amongwhich this
chapter focuses on the most liberal one, known as α-acyclicity (cf. [18]). According
to this notion [7], a hypergraphH is acyclic if it has a join tree JT(H), that is a tree
whose vertices are the hyperedges of H and such that, whenever the same node X
occurs in two hyperedges h1 and h2 ofH, then X occurs in each vertex on the unique
path linking h1 and h2 in JT(H). Note that deciding whether a hypergraph is acyclic
is feasible in linear time [61], and also in deterministic logspace. This latter property
follows from the fact that hypergraph acyclicity belongs to symmetric logspace [30],
and that this class is equal to deterministic logspace [58].

It is well-known that Boolean acyclic conjunctive queries (ACQs) with m atoms,
where r is the size of the largest database relation relevant to the query, can be
answered in time O(m · r · log r), while non-Boolean ACQs in time O(m · N ·
log N)), where N is the size of the output plus r . This is achieved by processing the
query efficiently using a smart algorithm, such as Yannakakis’ algorithm [65], which
reduces the relevant database relations via semi-joins along the edges of the query
join tree in such a way that no remaining tuple is superfluous. Combining the fact that
acyclic queries can be efficiently answered with the fact that acyclicity is efficiently
recognizable, such queries identify a so-called (accessible) “island of tractability” for

Structural Decomposition Methods: Key Notions and Database Applications 255

the query answering problem [51]—and for equivalent problems, such as conjunctive
query containment, constraint satisfaction problems, and so on [30].

As a matter of fact, however, conjunctive queries arising in practical applica-
tions are not properly acyclic, in many cases. For instance, the query introduced in
Example 1 is not acyclic, as it can be checked easily by looking at its hypergraph
in Fig. 1. Therefore, significant efforts have been made since the nineties to define
appropriate notions of “quasi-acyclicity”, leading to identify classes of conjunctive
queries over which efficient evaluation algorithms can still be singled out. In this
context, the degree of cyclicity of a hypergraph (or of a corresponding query) is
usually referred to as its width and, for each fixed width k ≥ 1, one seeks notions
enjoying the following fundamental three conditions:

(i) Generalization of Acyclicity: Queries of width k include the acyclic ones.
(ii) TractableRecognizability: Queries ofwidth k can be recognized in polynomial

time.
(iii) Tractable Query-Answering: Queries of width k can be answered in input–

output polynomial time (that is, with respect to the size of the input and the out-
put). Moreover, tractability holds even by considering the so-called combined
complexity, where both the query and the database are taken into account, and
nothing is assumed to be fixed (or small).

The rest of the chapter is devoted to illustrate structural decomposition methods
proposed in the literature to generalize acyclic queries, in particular, by focusing
on tree decompositions and hypertree decompositions. Moreover, applications in the
database area are discussed, and some recent advances and directions for future work
are illustrated.

2 Tree Decompositions

The notion of tree decomposition [59] represents a significant success story in Com-
puter Science (see, e.g., [25]). The associated notion of treewidth was meant to
provide a measure of the degree of cyclicity in graphs and hypergraphs.1

Formally, a tree decomposition [59] of a hypergraph H, where nodes(H) and
edges(H) denotes its set of nodes and of edges, respectively, is a pair 〈T,χ〉, where
T = (V, F) is a tree, andχ is a labeling function assigning to each vertex p ∈ V a set
of vertices χ(p) ⊆ nodes(H), such that the following three conditions are satisfied:
(1) for each node b ofH, there exists p ∈ V such that b ∈ χ(p); (2) for each hyper-
edge h ∈ edges(H), there exists p ∈ V such that h ⊆ χ(p); and (3) for each node
b in nodes(H), the set {p ∈ V | b ∈ χ(p)} induces a connected subtree of T . The
width of 〈T,χ〉 is the number maxp∈V (|χ(p)| − 1). The treewidth of the hypergraph
H, denoted by tw(H), is the minimum width over all its tree decompositions.

1Some notions strongly related to the treewidth appeared even before the 80’s in the literature. For
a detailed story, we refer to [16].

256 G. Greco et al.

The notion of treewidth enjoys some desirable properties. First, it is efficiently
recognizable (cf. condition (ii) in the Introduction). Indeed, for any constant k, deter-
mining whether a hypergraph has treewidth k is feasible in linear time [8]. Moreover,
condition (iii) is satisfied, too. In particular, Boolean conjunctive queries (whose asso-
ciated hypergraphs are) of treewidth k can be answered in time O(m ′ · Dk+1 · log D),
wherem ′ is the number of vertices of the decomposition tree T , and D is the number
of distinct values occurring in the given database.

However, treewidth is not a proper generalization of hypergraph acyclicity, that is,
the notion does not satisfy condition (i). Indeed, the notion of treewidth is essentially
aimed at characterizing nearly-acyclic graphs, rather than hypergraphs. In fact, it is
easy to check that a graph is acyclic if, and only if, it has treewidth 1. More in detail,
note that the treewidth of a hypergraphH coincides with the treewidth of its primal
graph, which is defined over the same set nodes(H) of nodes of H and contains an
edge for each pair of nodes included in some hyperedge of edges(H). So, the tree
decomposition method obscures, in many cases, the actual degree of cyclicity of the
query hypergraph. For instance, by looking at the primal graph of H, there is no
way to understand whether a given clique over three variables comes from one atom
having arity 3 in the original query or, instead, it comes from the interaction of three
binary atoms.

3 Hypertree Decompositions

The notion of hypertree decomposition has been proposed in the literature as a
generalization of the tree decomposition method, specifically designed to deal with
query hypergraphs [32, 33]. The idea is to use the power of hyperedges, which may
involvemany variables at once, contrastedwith tree decompositions, which are based
just on single variables.

3.1 Basic Notions

In order to define hypertree decompositions, a more general related notion is first
introduced.

A generalized hypertree decomposition [32] of a hypergraph H is a triple HD =
〈T,χ,λ〉, called a hypertree forH, where 〈T,χ〉 is a tree decomposition ofH, and λ
is a function labeling the vertices of T by sets of hyperedges ofH such that, for each
vertex p of T , χ(p) ⊆ ⋃

h∈λ(v) h. That is, all nodes in the χ labeling are covered by
hyperedges in the λ labeling.

The width of 〈T,χ,λ〉 is the number maxp∈V (|λ(p)|). The generalized hypertree
width of H, denoted by ghw(H), is the minimum width over all its generalized
hypertree decompositions.A class of hypergraphs has bounded generalized hypertree

Structural Decomposition Methods: Key Notions and Database Applications 257

Fig. 2 A hypertree decomposition of H(Q)

width if every hypergraph in the class has generalized hypertree width at most k, for
some (finite) natural number k.

Example 2 Consider again the query Q in Example 1 and the generalized hypertree
decomposition that is depicted in Fig. 2. We use an intuitive graphical notation: for
each vertex p of the decomposition, the figure reports the atoms corresponding to
the hyperedges in λ(p). It can be checked that this is indeed a generalized hypertree
decomposition and its width is 2.

In the example, χ(p) = ⋃
h∈λ(v) h, that is, each variable of any atom occurring in

p is included in χ(p), too. If this is not true, an anonymous variable “__” is used in
place of any variable occurring in some atom in λ(p), but not occurring in the set of
relevant variables χ(p). For instance, an alternative decomposition may be obtained
by replacingcustomer(CustKey,NationKey)withcustomer(__,NationKey) in the
vertex covering the atoms lineitem and customer. �

The notion of generalized hypertree width is a true generalization of acyclicity, as
the acyclic hypergraphs are precisely those hypergraphs having generalized hypertree
width 1 [33]. Hence, condition (i) is satisfied. Moreover, given a query Q and a
width-k generalized hypertree decomposition of its hypergraph, Q can be answered
in polynomial time [32]. In particular, if Q is Boolean than it can be answered in
time O(v · rk · log r), where r is the size of the largest database relation mentioned
by the query. In the general case of queries with output variables (whose results
may consist of exponentially many tuples), the input–output polynomial time bound
is O(v · (rk + s) · log(r + s)), where s is the number of output tuples. Note that
the exponent of the polynomial in the upper bound involves k as a factor, so that in
practice the method can be used only for small degrees of cyclicity. With this respect,
it is worthwhile noting that the factor k in the exponent cannot be avoided, unless
some unlikely collapse occurs in parameterized complexity theory.

However, condition (ii) is not satisfied by this method, since it is NP-hard to
decide whether a given query has generalized hypertree width bounded by a fixed
constant k, even for k = 2 [19]. In fact, an additional restriction has to be added in the
definition of generalized hypertree decomposition, in order to get a tractable notion.

258 G. Greco et al.

A hypertree decomposition [32] of a hypergraph H is a generalized hypertree
decomposition ofH that satisfies the following additional condition: for each vertex
p of T and for each hyperedge h ∈ λ(p), it holds that h ∩ χ(Tp) ⊆ χ(p), where Tp

denotes the subtree of T rooted at p, and χ(Tp) is the set of all variables occurring
in the χ labeling of this subtree. Then, the hypertree width ofH, denoted by hw(H),
is naturally defined as the minimum width over all its hypertree decompositions.

Intuitively, the above technical condition forces variables to be included in a χ
label the first time (looking top-down) some atom where they occur is used in the
decomposition. A very important property of this notion is that it is not very far
apart from the notion of generalized hypertree width. Indeed, for each hypergraph
H, ghw(H) ≤ hw(H) ≤ 3 · ghw(H) + 1 [3]. In particular, this entails that a class
of queries has bounded generalized hypertree width if, and only if, it has bounded
hypertree width.

Example 3 Sinceχ(p) = ⋃
h∈λ(v) h holds for each vertex p in the generalized hyper-

tree decomposition of Fig. 2, we trivially derive that this also a hypertree decompo-
sition of the (hypergraph associated with the) query in Example 1. �

3.2 Desirable Properties of Hypertree Decompositions

Since their introduction, hypertree decompositions have received considerable atten-
tion in the literature, due to the fact that they satisfy the fundamental conditions stated
in the Introduction (see also, [23, 39]):

(i) Hypertree width properly generalizes hypergraph acyclicity. In particular, a
hypergraph H is acyclic if, and only if, hw(H) = 1 [32].

(ii) For a fixed constant k, it can be checked in polynomial time whether (the hyper-
graph associatedwith) a conjunctive query Q has hypertree width k ′ ≤ k. More-
over, if so, a hypertree decomposition ofwidth k ′ can be computed in polynomial
time, more precisely in O(m2kv2), where m and v are the number of atoms and
the number of variables in Q, respectively [29]. The decision and computation
problems are, moreover, at a very low level of computational complexity and
are highly parallelizable, as they belong to LOGCFL (see Sect. 4.2 for some
properties of this class). Again, it is deemed very unlikely that we can get rid
of the factor k in the exponent, because deciding whether a query has hypertree
width k is fixed-parameter intractable [26].

(iii) Queries having bounded hypertree width can be answered in input–output poly-
nomial time. This follows immediately from the same property of generalized
hypertree width, however in this case it is not necessary that the decomposi-
tion is provided in input with the query, because it can be computed easily, by
property (ii).

Structural Decomposition Methods: Key Notions and Database Applications 259

4 Applications of Hypertree Decompositions

In this section, we overview a number of database applications where the notion of
hypertree decomposition has been used profitably.

4.1 Hypertree-Based Plans for Multiway Joins

Recent works have shown that traditional query optimizers are provably suboptimal
on large classes of queries, and worst-case optimal algorithms have been devel-
oped [56, 64]. Such algorithms, based on a multiway join approach that may look at
all atoms at once, have been implemented, e.g., in the LogicBlox system [5] and in
the EmptyHeaded relational engine [1, 2]. Unfortunately, these algorithms are not
able to recover the polynomial-time worst-case bounds for queries having bounded
hypertree width. For instance, they may require exponential time for acyclic queries
with an empty output (as long as, in principle, such queries could have an exponential
number of answers). To deal with this issue, EmptyHeaded additionally features a
query compiler based on hypertrees: it searches for a generalized hypertree decom-
position having theminimumpossible estimated size for the intermediate results, and
then uses this information to determine the order of attributes to be used in the mul-
tiway joins. Such an order is also exploited for the multi-level data structures, called
tries, used to store input and output relations, and to perform the joins efficiently.

We also mention a different approach designed for the Leapfrog Trie Join algo-
rithm [64], where (hyper)tree decompositions are used to guide a flexible caching
of intermediate results [44]. The algorithm described in [47] considers also possible
functional dependencies, by using the coloring number bound of [27].

Further algorithms based on multiway joins have been defined in order to guaran-
tee the worst-case upper bound that can be obtained by using generalized hypertree
decompositions of the given query, without using a dynamic programming approach
á la Yannakakis. This is the approach described in [48], where a notion of geometric
resolution is defined to support different kinds of indices and even multiple indices
per table. By performing such resolutions, the proposed algorithm covers the whole
multidimensional (tuple) space by distinguishing the output tuples (if any) and the
other infeasible (non-matching) tuples. As opposed to the standard bottom-up com-
putation, this method can be viewed as a backtracking algorithm with memoization.

4.2 Parallel and Distributed Evaluation

From a computational complexity viewpoint, evaluating Boolean queries having
bounded hypertree-width is LOGCFL-complete (even for binary acyclic
queries) [30]. Combining the result with the techniques discussed by [31], it can

260 G. Greco et al.

be seen easily that the corresponding computation problem (output an answer) is in
(functional) LOGCFL. It is known that this class contains highly parallelizable prob-
lems: Any problem in LOGCFL is solvable in logarithmic time by a concurrent-read
concurrent-write parallel random access machine (CRCW PRAM) with a polyno-
mial number of processors, or in log2-time by an exclusive-read exclusive-write
(EREW) PRAM with a polynomial number of processors.

Several efforts have been spent in the literature to translate the above theoretical
results into practical implementation of algorithms for parallel (and distributed) query
evaluation. In particular, a parallel algorithm, called DB-SHUNT, has been defined
in [30] for answering Boolean acyclic queries—an extension, called ACQ, which
is able to deal with acyclic queries with output variables is discussed in [28]. This
algorithm is well-suited for bounded hypertree-width queries after a suitable pre-
processing step where they are transformed in acyclic queries. In this step, for each
vertex p in the decomposition tree T , a fresh atom is computed such that its set of
variables is χ(p), and its relation is obtained by projecting on χ(p) the join of all
relations associated with the query atoms whose sets of variables are the hyperedges
inλ(p). After that, because theχ labeling encodes a tree decomposition, it can be seen
that the conjunction of these fresh atoms forms an acyclic conjunctive query. Then,
having the (equivalent) acyclic query at hand, DB-SHUNT (and ACQ) uses a special
shunt operation based on relational algebra for contracting a join tree, akin the well-
known shunt operation used for the parallel evaluation of arithmetic expressions [45].
This way, any tree can be contracted to a single node by a logarithmic number of
parallel steps, independently of the shape of the tree (e.g., even if the tree is a highly
unbalanced chain).

More in detail, the decomposition tree T is preliminary made strictly binary, and
its leaves are numbered from left to right. At each iteration, the shunt operation is
applied in parallel to all odd numbered leaves of T . To avoid concurrent changes on
the same relation, left and right leaves are processed in two distinct steps. Thus, after
each iteration, the number of leaves is halved, and the tree-contraction ends within
2 logm parallel steps by using O(m) processors and O(m) intermediate relations
having size at most O(r2), where r is the size of the largest relation of the database
instance and m is the number of vertices of T . It can be shown that having a fixed
number of processors c < m/2, the number of parallel shunt operations becomes
2(�log c� + 2�m/(4c)�). Here, transformations of query atoms and input other than
relations are considered costless as long as they are polynomial. Moreover, the above
cost refers to the first bottom-up processing of the decomposition tree, which is
enough for the evaluation of a Boolean query. For computing the answers of a non-
Boolean query, two further processing of the tree are needed, with the same cost (but
for the space consumption of the final ascending phase, where we have to consider
an additional cost that is linear in the output size).

An implementation of the above strategy has been recently described in [4] for the
Valiant’s bulk synchronous parallel (BSP) computational model [63], which can sim-
ulate thePRAMmodel. In thismodel, there are a set of connectedmachines that donot
share any memory. The computation consists in general in a series of rounds, where
machines perform some local computation in parallel and communicate messages

Structural Decomposition Methods: Key Notions and Database Applications 261

over the network. Moreover, the same authors use generalized hypertree decomposi-
tions for parallel query answering in their GYM algorithm [4], which is a distributed
and generalized version of Yannakakis’ algorithm specifically designed for MapRe-
duce [15] (as well as for other BSP-based frameworks). In fact, especially after the
introduction of Google MapReduce, the problem of evaluating joins efficiently in
distributed environments has been attracting much attention in the literature. In a
BSP distributed environment, algorithms should mainly deal with the communica-
tion costs between the machines, and the number of global synchronizations that are
needed to take place between the machines, in particular, the number of rounds of
MapReduce jobs to be executed.

4.3 Counting Query Answers

So far, the chapter focused on the use of hypertree decompositions for evaluating
conjunctive queries, that is, Select-Project-Join queries. Themethod, however, found
applications also in the evaluation of further kinds of queries involvingmore complex
constructs. A noticeable example is the use of hypertree decompositions to deal with
“COUNT” aggregates (see, e.g., [9, 10]).

In this context, the query evaluation problem can be abstractly reformulated as
counting the number of answers of a given conjunctive query. The challenge is then
to compute the right number in polynomial time without actually computing the
(possibly exponentially-many) query answers. In particular, it is crucial, both in
theory and in practice, to deal with queries where output variables can be specified,
so that we are only interested in counting the answers projected on them. Technically,
such distinguished variables are free, while all the other variables are existentially
quantified. As a matter of fact, in almost all practical applications, there are many
of such “auxiliary” (existentially quantified) variables whose instantiations must not
be counted.

Whenever all variables are free, having bounded generalized hypertree width is a
sufficient condition for the tractability of the counting problem [57]. Moreover, on
fixed-arity queries, this condition is also necessary (under widely believed assump-
tions in parameterized complexity) [14]. However, in presence of projections, clas-
sical decomposition methods are not helpful. Indeed, even for acyclic queries [57],
counting answers is #P-hard in this case. An algorithm counting the answers of an
acyclic query Q in O(m · r2 · 4r), with r being the size of the largest database relation
and m the number of atoms, has been exhibited in [57]. Therefore, the evaluation is
tractable over acyclic instances w.r.t. query complexity (where the database is fixed
and not part of the input). The technique can be extended easily to queries having
generalized hypertree width at most k, for some fixed number k (cf. [37]). Thus,
to get more powerful structural results, we should distinguish the hypergraph nodes
associated with free and existentially quantified variables. A sufficient condition for
tractability is the existence of a homomorphically equivalent subquery Q′ of Q that
includes all free variables, and such that there is a width-k generalized hypertree

262 G. Greco et al.

decomposition for Q′ which covers all frontiers of the free variables with the exis-
tential variables (see [37] for more information). Interestingly, it turns out that for
fixed-arity queries this structural condition precisely characterizes the queries where
the counting problem is tractable [12].

4.4 Further Aggregations

When evaluating queries, database management systems list answers according to
some arbitrary order, which reflects the algorithms internally used for optimization
purposes. However, this is often unsatisfactory, so that users often write ORDER
BY clauses to force answers to be listed according to their preferences. For instance,
interactive queries are typically ORDER BY queries, where users are interested in a
fewbest answers (to be returned very fast). In this context, a crucial observation is that
answering ORDER BY queries is intimately related to the problem of computing the
best solution according to the given ordering, which is incidentally another important
aggregate operator (MAX) in SQL queries. This was first pointed out in the context
of ranking solutions to discrete optimization problems [52]. In particular, whenever
the MAX problem of computing an optimal solution is feasible in polynomial time,
then we can solve the problem of returning all solutions in the ranked order with
polynomial delay, as well as the more general problem of returning the best K -
ranked solutions over all solutions, i.e., the top-K query evaluation problem [41].

A number of structural tractability results for MAX (so, for top-K and ORDER
BY) queries are known in the literature (see, e.g., [24]). Formonotone functions built
on top of one binary aggregation operator (such as the standard + and ×), MAX is
feasible in polynomial time over queries that have bounded treewidth [17], and over
queries that haveboundedgeneralizedhypertreewidth [22, 50]. Structural tractability
results for extensions to certain non-monotone functions which manipulate “small”
(in fact, polynomially-bounded) values have been studied, too [24, 36].

An implementation of some aggregation operators based on hypertree decompo-
sitions is described in [20, 21]. It can be used with any system at a logical level.
For the sake of efficiency, a semi joinoperator that supports the execution of these
operators over decompositions is implemented in a prototypal extension of the open-
source DBMS PostgreSQL. Further operators are considered in [42] for the so-called
AJAR queries, that is, queries with annotated relations over which (possibly multi-
ple) aggregations can be used. Technically, aggregations are modeled by means of
semiring quantifiers that “sum over” or “marginalize out” values. It is argued that
such queries can be used to extend conjunctive queries with most SQL-like aggrega-
tion operators, as well as to capture data processing problems, such as probabilistic
inference via message passing on graphical models [46]. A crucial step with these
queries is finding a variable ordering that allows us to manage the aggregations by
using a suitable generalized hypertree decompositions (“compatible” with the order-
ing), together with standard join algorithms. The proposed algorithm can efficiently
be implemented in the parallel framework, by using GYM [4] and the degree-based

Structural Decomposition Methods: Key Notions and Database Applications 263

MapReduce algorithm in [43]. Answering AJAR queries is equivalent to answering
so-called Functional Aggregate Queries [49].

4.5 Parallel and Distributed Querying of Deductive
Databases

This overview of applications of hypertree decompositions closes by focusing on
problems related to querying distributed deductive databases, in particular, by con-
sidering a scenario where data natively resides on different autonomous sources, and
it is necessary to deal with reasoning tasks via logic programming. This scenario
has been considered in [6] and differs from the classic parallel evaluation of queries
(e.g., [28, 30]) in several aspects: (i) the focus is the optimized evaluation of (normal,
stratified) logic programs [55]; (ii) the input data are physically distributed over sev-
eral databases, and this distribution must be considered in the optimization process;
(iii) the integration of the reasoning engine responsible of orchestrating the querying
process with the distributed database management systems must be tight enough to
allow efficient interactions, but general enough to avoid limitations in the kind and
location of databases.

In this scenario, the notion of hypertree decomposition has been shown to provide
a powerful tool to address issue (ii), whereas the reasoning engine DLVDB presented
in [62] has been used to transparently evaluate logic programs directly on generic
database systems. In order to describe the optimization process discussed by [6], let
us first consider programs composed of one rule.

A single logic rule r can be seen as a conjunctive query (possibly with negation),
whose result must be stored in the head predicate. The optimized evaluation of r
starts from the computation of a hypertree decomposition HD for this query, which
is interpreted as a distributed query plan. To this end and, in particular, in order to
take into account data distribution, each node p of the hypertree HD is labelled with
the database where the partial data associated with it reside. Formally, let Site(p)
denote the site associated with the node p in HD and let net (Site(p), Site(p′)) be
the unitary data transfer cost from Site(p) to Site(p′). Let λ(p) be the set of atoms
referred by p, and χ(p) the variables covered by p. Then, Site(p) is chosen among
the databases where the relations in λ(p) reside by computing:

hm = arg minhi∈λ(p) {Σh j∈λ(p)|rel(h j)| × net (Site(h j), Site(hi))}.
Thus, Site(p) is chosen to be the sitewhere the databasewith hm is stored, and this

choice minimizes the cost of transferring all data required to evaluate the subproblem
associated with λ(p).

Eventually, in order to optimize the distribution of rule evaluation, the adopted
cost function is further refined in [6] by taking into account other aspects, such as the
estimated cardinality of join results. The query decomposition strategy, in addition,
includes options like moving data from one site to another, and changing the order
of joins based on data localization. Once the hypergraph Hr for r is obtained and

264 G. Greco et al.

the above cost function is defined, a hypertree decomposition HDr minimizing such
function is computed via the algorithm discussed in [60]. Then, a distributed plan for
r is composed accordingly. Intuitively, the plan is built in such a way that it evaluates
joins bottom-up, from the leaves to the root, by suitably transferring data if the sites
of a child node and its father are different. Independent sub-trees are executed in
parallel processes.

When the program is composed of several rules, three further kind of optimizations
can be applied: (i) rule unfolding optimization, (ii) inter-components optimization,
(iii) intra-component optimization. Since the rule optimization strategy is particu-
larly suited for rules having long bodies, in presence of filters (or queries) in the
program, an unfolding [55] optimization step is carried out to make rule bodies as
long as possible, and to reduce their number. In particular, the inter-components
optimization [11] is in charge of dividing the input (possibly unfolded) program P
into subprograms, according to the dependencies among the predicates occurring in
it, and by identifying which of them can be evaluated in parallel. This allows for
concurrently evaluating rules involved within the same component.

5 Further Methods and Conclusions

The chapter describes structural decomposition methods aimed at defining suit-
able generalizations of hypergraph acyclicity, by focusing in particular on hypertree
decompositions. The natural research question to be addressed is whether it is pos-
sible to go beyond this method, by defining more general notions the still retain the
desirable conditions pointed out in the Introduction.

Observe that in the λ labelling of hypertree decompositions one could use as
available resources all subsets of the hyperedges of a hypergraph H, instead of
using just the original hyperedges. This way, it is possible to recover the full power
of generalized hypertree decompositions, but with an exponential blow-up. If, on
the other hand, only polynomially many subsets are used, it is possible to obtain a
number of variants of hypertree decompositions that still fulfil conditions (i), (ii), and
(iii). This is precisely the idea of subset-based decompositions as defined in [34].
Specific subset-based decompositions are the component decompositions defined
in [34] and the spread-cut decompositions defined in [13], while an interesting way
of computing a subset-based decomposition dynamically provides the new notion of
greedy hypertree decomposition [35, 38].

A more radical approach to improve HDs, and even GHDs, was taken by Grohe
andMarx [40], who defined fractional hypertree decompositions (FHDs), giving rise
to the notion of fractional hypertree width fhw(H) of a hypergraphH (or of a query).
The fractional hypertree width width is more general than the generalized hypertree
width, and hence fhw(H) ≤ ghw(H). Moreover, there are classes of hypergraphs
having unbounded ghw, but bounded f hw. A problem with fractional hypertree
decompositions is that they are intractable [19]. However, an approximate decompo-
sition whose width is bounded by a cubic function of the fractional hypertree width

Structural Decomposition Methods: Key Notions and Database Applications 265

can be computed in polynomial time [53]. A yet more general width-concept is the
submodular width [54]. Unfortunately, recognizing queries of bounded submodular
width is not known to be tractable.Moreover, having bounded submodularwidth does
not guarantee a polynomial-time combined complexity as for hypertree width, but
just fixed-parameter tractability where the query hypergraph is used as a parameter.

Acknowledgements Theworkwas supported by project “Ba2Know (Business Analytics to Know)
Service Innovation - LAB”, No. PON03PE_00001_1 funded by the Italian Ministry of University
and Research (MIUR), and by project “Smarter Solutions in the Big DataWorld (S2BDW)”, funded
by the Italian Ministry for Economic Development (MISE) within the programme PON “Imprese
e competitivitá” 2014–2020.

References

1. C.R. Aberger, S. Tu, K. Olukotun, C. Ré, EmptyHeaded: A relational engine for graph process-
ing, in Proceedings of SIGMOD 2016 (2016)

2. C.R. Aberger, S. Tu, K. Olukotun, C. Ré, Old techniques for new join algorithms: A case study
in RDF processing, in CoRR, arXiv:abs/1602.03557 (2016)

3. I. Adler, G. Gottlob, M. Grohe, Hypertree width and related hypergraph invariants. Eur. J.
Comb. 28(8), 2167–2181 (2007)

4. F.N. Afrati, M. Joglekar, C. Ré, S. Salihoglu, J.D. Ullman, GYM: A multiround join algorithm
in mapreduce, in CoRR, arXiv:abs/1410.4156 (2014)

5. M. Aref, B. ten Cate, T.J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T.L. Veldhuizen, G.
Washburn, Design and implementation of the logicblox system, in Proceedings of SIGMOD
2015 (2015), pp. 1371–1382

6. R. Barilaro, F. Ricca, G. Terracina, Optimizing the distributed evaluation of stratified programs
via structural analysis, in Proceeding of 11th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2011), Vancouver, Canada, 2011, Lecture Notes in
Computer Science (Springer, Heidelberg, 2011), pp. 217–222

7. P.A. Bernstein, N. Goodman, Power of natural semijoins. SIAM J. Comput. 10(4), 751–771
(1981)

8. H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth,
in Proceeding of STOC 1993 (1993), pp. 226–234

9. A.A. Bulatov, The complexity of the counting constraint satisfaction problem. J. ACM 60(5),
34:1–34:41 (2013)

10. A.A.Bulatov,M.Dyer, L.A.Goldberg,M. Jerrum,C.Mcquillan, The expressibility of functions
on the boolean domain, with applications to counting CSPs. J. ACM 60(5), 32:1–32:36 (2013)

11. F. Calimeri, S. Perri, F. Ricca, Experimenting with parallelism for the instantiation of ASP
programs. J. Algorithms Cogn. Inf. Log. 63(1–3), 34–54 (2008)

12. H.Chen, S.Mengel, A trichotomy in the complexity of counting answers to conjunctive queries,
in Proceeding of ICDT 2015 (2015), pp. 110–126

13. D.A. Cohen, P. Jeavons, M. Gyssens, A unified theory of structural tractability for constraint
satisfaction problems. J. Comput. Syst. Sci. 74(5), 721–743 (2008)

14. V. Dalmau, P. Jonsson, The complexity of counting homomorphisms seen from the other side.
Theory Comput. Syst. 329(1–3), 315–323 (2004)

15. J. Dean, S. Ghemawat, Mapreduce: A flexible data processing tool. Commun. ACM 53(1),
72–77 (2010)

16. R. Dechter, Constraint Processing (Morgan Kaufmann Publishers Inc., 2003)
17. R. Dechter, N. Flerova, R. Marinescu, Search algorithms for M Best solutions for graphical

models, in Proceeding of AAAI 2012 (2012), pp. 1895–1901

http://arxiv.org/abs/abs/1602.03557
https://arxiv.org/abs/1602.03557
http://arxiv.org/abs/abs/1410.4156
https://arxiv.org/abs/1410.4156

266 G. Greco et al.

18. R. Fagin, Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM 30(3),
514–550 (1983)

19. W. Fischl, G. Gottlob, R. Pichler, General and fractional hypertree decompositions: Hard and
easy cases, in CoRR, arXiv:abs/1611.01090 (2016)

20. L. Ghionna, L. Granata, G. Greco, F. Scarcello, Hypertree decompositions for query optimiza-
tion, in Proceeding of ICDE 2007 (2007), pp. 36–45

21. L. Ghionna, G. Greco, F. Scarcello, H-DB: A hybrid quantitative-structural sql optimizer, in
Proceeding of CIKM 2011 (2011), pp. 2573–2576

22. G. Gottlob, G. Greco, Decomposing combinatorial auctions and set packing problems. J. ACM
60(4), 24:1–24:39 (2013)

23. G. Gottlob, N. Greco, N. Leone, F. Scarcello, Hypertree decompositions: Questions and
answers, in Proceeding of PODS 2016 (2016), pp. 57–74

24. G. Greco, F. Scarcello, Tractable optimization problems through hypergraph-based structural
restrictions, in Proceeding of ICALP 2009 (2009), pp. 16–30

25. G. Gottlob, G. Greco, F. Scarcello, Treewidth and hypertree width, in Tractability: Practical
Approaches to Hard Problems, ed. by L. Bordeaux, Y. Hamadi, P. Kohli (2012)

26. G. Gottlob,M.Grohe, N.Musliu,M. Samer, F. Scarcello, Hypertree decompositions: Structure,
algorithms, and applications, in Proceeding of WG 2005 (2005), pp. 1–15

27. G. Gottlob, S.T. Lee, G. Valiant, P. Valiant, Size and treewidth bounds for conjunctive queries.
J. ACM 59(3), 1–35 (2012)

28. G. Gottlob, N. Leone, F. Scarcello, Advanced parallel algorithms for acyclic conjunctive
queries. Technical Report DBAI-TR-98/18, Technical University of Vienna (1998)

29. G. Gottlob, N. Leone, F. Scarcello, On tractable queries and constraints, inProceeding of DEXA
1999 (1999), pp. 1–15

30. G. Gottlob, N. Leone, F. Scarcello, The complexity of acyclic conjunctive queries. J. ACM
48(3), 431–498 (2001)

31. G. Gottlob, N. Leone, F. Scarcello, Computing LOGCFL certificates. Theor. Comput. Sci.
270(1–2), 761–777 (2002)

32. G. Gottlob, N. Leone, F. Scarcello, Hypertree decompositions and tractable queries. J. Comput.
Syst. Sci. (Conference Version has Appeared in PODS 1999) 64(3), 579–627 (2002)

33. G. Gottlob, N. Leone, F. Scarcello, Robbers, marshals, and guards: Game theoretic and logical
characterizations of hypertree width. J. Comput. Syst. Sci. 66(4), 775–808 (2003)

34. G. Gottlob, Z. Miklós, T. Schwentick, Generalized hypertree decompositions: NP-hardness
and tractable variants. J. ACM 56(6), 30:1–30:32 (2009)

35. G. Greco, F. Scarcello, The power of tree projections: Local consistency, greedy algorithms,
and larger islands of tractability, in Proceeding of PODS 2010 (2010), pp. 327–338

36. G. Greco, F. Scarcello, Structural tractability of constraint optimization, in Proceeding of CP
2011 (2011), pp. 340–355

37. G. Greco, F. Scarcello, Counting solutions to conjunctive queries: Structural and hybrid
tractability, in Proceeding of PODS 2014 (2014), pp. 132–143

38. G. Greco, F. Scarcello, Greedy strategies and larger islands of tractability for conjunctive
queries and constraint satisfaction problems. Inf. Comput. 252, 201–220 (2017)

39. G. Greco, F. Scarcello, The power of local consistency in conjunctive queries and constraint
satisfaction problems. SIAM J. Comput. (2017)

40. M. Grohe, D. Marx, Constraint solving via fractional edge covers. ACM Trans. Algorithms
11(1), 4:1–4:20 (2014)

41. I.F. Ilyas, G. Beskales, M.A. Soliman, A survey of top-k query processing techniques in rela-
tional database systems. ACM Comput. Surv. 40(4), 11:1–11:58 (2008)

42. M. Joglekar, R. Puttagunta, C. Ré, Aggregations over generalized hypertree decompositions,
in Proceeding of PODS 2016 (2016)

43. M.R. Joglekar, C.M. Ré, It’s all a matter of degree: Using degree information to optimize
multiway joins, in Proceeding of ICDT 2016 (2016), pp. 11:1–11:17

44. O. Kalinsky, Y. Etsion, B. Kimelfeld, Flexible caching in trie joins, in CoRR,
arXiv:abs/1602.08721 (2016)

http://arxiv.org/abs/abs/1611.01090
https://arxiv.org/abs/1611.01090
http://arxiv.org/abs/abs/1602.08721
https://arxiv.org/abs/1602.08721

Structural Decomposition Methods: Key Notions and Database Applications 267

45. R.M. Karp, V. Ramachandran, Parallel algorithms for shared-memory machines, in Handbook
of Theoretical Computer Science, vol. A (MIT Press, 1990), pp. 869–941

46. K. Kask, R. Dechter, J. Larrosa, A. Dechter, Unifying tree decompositions for reasoning in
graphical models. Artif. Intell. 166(1–2), 165–193 (2005)

47. M.A. Khamis, H. Ngo, D. Suciu, Worst-case optimal algorithms for conjunctive queries with
functional dependencies, in Proceeding of PODS 2016 (2016)

48. M.A. Khamis, H.Q. Ngo, C. Ré, A. Rudra, Joins via geometric resolutions: Worst-case and
beyond, in Proceeding of PODS 2015 (2015), pp. 213–228

49. M.A. Khamis, H.Q. Ngo, A. Rudra. FAQ: Questions asked frequently, in Proceedings of PODS
2016 (2016)

50. B. Kimelfeld, Y. Sagiv, Incrementally computing ordered answers of acyclic conjunctive
queries, in Proceedings of NGITS 2006 (2006), pp. 141–152

51. P.G.Kolaitis,Constraint satisfaction, databases, and logic, inProceedings of IJCAI 2003 (2003),
pp. 1587–1595

52. E.L. Lawler, A procedure for computing the k best solutions to discrete optimization problems
and its application to the shortest path problem. Manag. Sci. 18(7), 401–405 (1972)

53. D. Marx, Approximating fractional hypertree width. ACMTrans. Algorithms 6(2), 29:1–29:17
(2010)

54. D. Marx, Tractable hypergraph properties for constraint satisfaction and conjunctive queries.
J. ACM 60(6), 42:1–42:51 (2013)

55. J. Minker (ed.), Foundations of Deductive Databases and Logic Programming (Morgan Kauf-
mann Publishers Inc., Washington DC, 1988)

56. H.Q. Ngo, C. Ré, A. Rudra, Skew strikes back: New developments in the theory of join algo-
rithms. SIGMOD Rec. 42(4), 5–16 (2013)

57. R. Pichler, S. Skritek, Tractable counting of the answers to conjunctive queries. J. Comput.
Syst. Sci. 79(6), 984–1001 (2013)

58. O. Reingold, Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24 (2008)
59. N. Robertson, P. Seymour, Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms

7(3), 309–322 (1986)
60. F. Scarcello, G. Greco, N. Leone,Weighted hypertree decompositions and optimal query plans.

J. Comput. Syst. Sci. 73(3), 475–506 (2007)
61. R.E. Tarjan, M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test

acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3),
566–579 (1984)

62. G. Terracina, N. Leone, V. Lio, C. Panetta, Experimenting with recursive queries in database
and logic programming systems. Theory Pract. Log. Program. (TPLP) 8(2), 129–165 (2008)

63. L.G. Valiant, A bridging model for parallel computation. Commun. ACM 33(8), 103–111
(1990)

64. T.L. Veldhuizen, Triejoin: A simple, worst-case optimal join algorithm, inProceedings of ICDT
2014 (2014), pp. 96–106

65. M. Yannakakis, Algorithms for acyclic database schemes, in Proceedings of VLDB 1981
(1981), pp. 82–94

	15 Structural Decomposition Methods: Key Notions and Database Applications
	1 Introduction
	2 Tree Decompositions
	3 Hypertree Decompositions
	3.1 Basic Notions
	3.2 Desirable Properties of Hypertree Decompositions

	4 Applications of Hypertree Decompositions
	4.1 Hypertree-Based Plans for Multiway Joins
	4.2 Parallel and Distributed Evaluation
	4.3 Counting Query Answers
	4.4 Further Aggregations
	4.5 Parallel and Distributed Querying of Deductive Databases

	5 Further Methods and Conclusions
	References

