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Abstract. We consider an approach to automatic knowledge acquisition through
machine learning based on integration of two basic paradigms of reasoning – case-
based and rule-based reasoning. Case-based reasoning allows to use high-
performance database technology for storing and accumulating cases, while rule-
based reasoning is the most developed technology for creating declarative knowl‐
edge on the basis of strong logical inference. We also propose an improvement
of classification algorithm through extraction of fuzzy rules from cases. We have
obtained higher classification accuracy for various membership functions and for
sequentially reducing amount of training sample by application of special strat‐
egies for expanding the scope of fuzzy rules in the control sample classification.
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1 Introduction

An important stage in building knowledge-based systems (KBS) is the choice of knowl‐
edge representation model for creating knowledge base. The first KBS appeared in 1970-
s were based on rules. When implementing rule-based KBS, developers faced many
challenges. The major one is the problem of knowledge elicitation and formulating it in
the form of a set of rules. Most often, the experts intuitively make decisions based on
their vast experience, without hesitation, what rules they apply in this or that case. Parti‐
tioning a specific behavior of an expert into separate building blocks such as rules is a
very complicated problem requiring high skilled specialists. Thus, acquisition of knowl‐
edge is the key problem of rule-based reasoning (RBR) systems.

However, since 1980s an alternative reasoning paradigm has increasingly attracted
more and more attention. Case-based reasoning (CBR) solves new problems by adapting
previously successful solutions to similar problems, just as a human does it. The paper
[1] of Shank is widely cited to be the origins of CBR. In this work it has been proposed
to generalize knowledge about previous situations and store them in the form of scripts
that can be used to make conclusions under similar conditions. Later Shank continued
to explore the role that dynamic memory about previous situations (cases), represented
as a knowledge container, plays both in the process of decision making and in the process
of learning [2]. The model of dynamic memory became a basis for the creation of a
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number of other systems: MEDIATOR [3], CHEF [4], PERSUADER [5], CASEY [6]
and JULIA [7].

CBR allowed to overcome a number of restrictions inherent to the rule-based systems
[8]. The acquisition of knowledge in CBR is reduced to identification of essential
features and accumulation of decision making stories (cases) described by the features,
that is much easier task than building an explicit knowledge model of the application
domain. There are different ways of presenting and storing cases – from simple (linear)
to complex hierarchical ones.

At the same time there are two essential shortcomings of traditional CBR. The first
one is that description of the cases does not usually take into account the deeper knowl‐
edge of the application domain. The second one reveals itself when the number of cases
accumulated in the knowledge base becomes great. The large case base results in reduced
system performance. Very often the search dictionaries and algorithms for determining
similarity are needed to debug manually. These shortcomings could neutralize the bene‐
fits of case-based approach.

In order to overcome these disadvantages CBR has been widely integrated with other
methods in various application domains [9, 10]. Some systems (ADIOP, CADRE,
CADSYN, CHARADE, COMPOSER, IDIOM, JULIA) integrated CBR with constraint
satisfaction problem (CSP). Some systems (ANAPRON, AUGUSTE, CAMPER,
CABARET, GREBE, GYMEL and SAXEX) combined CBR with RBR. It is worth to
note that the first prototype of the system, integrating CBR with RBR was CABARET
[11]. In [12] it is proposed possible connection of CBR with RBR and its application to
the financial domain implemented in the MARS prototype system.

In present paper, an original approach is proposed in which it is possible the dynamic
interaction of both CBR and RBR models of knowledge representation and its applica‐
tion to the task of cases classification. Section 2 provides a hybrid model of dynamic
interaction of CBR and RBR. In Sect. 3 we give the method of transformation of a set
of cases into the system of fuzzy classification rules and discuss its improvement.
Section 4 contains some experimental results and their explanation.

2 Dynamic Integration of CBR and RBR

The interaction between the employees of the organization on solving the important
tasks generates creation of new knowledge. In the process of knowledge transformation
both its forms are used: non-formalized and formalized knowledge. While creating new
knowledge the formalized (explicit) knowledge and non-formalized (tacit) knowledge
interact in four ways: socialization, externalization, combination, internalization
according to SECI model (Socialization, Externalization, Combination, Internalization
[13]. Sequential alternation of four processes - socialization, externalization, combina‐
tion, internalization - creates a spiral of knowledge. The process is developing by spiral
consistently through these four stages.

In the previous section we described two basic approaches to knowledge represen‐
tation - case-based and rule-based approaches. Both models have their advantages and
disadvantages. Therefore, in practice it would be reasonable to join advantages of both
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approaches. The combination of these approaches could be represented as cyclic knowl‐
edge transformation from case-based form to the rule-based and vice versa, as shown
in Fig. 1, by the analogy with Nonaka-and-Takeuchi spiral [13].

Fig. 1. Transformation of knowledge between case base and rule base

At the initial stages of the KBS life cycle, when there is no insight into the application
domain, it is advisable to use a case-based model in which the knowledge is represented
by relevant precedents (cases) of decision making (stage I). To create a precedent it is
necessary to determine a set of features that uniquely determine the situation and the
specific solution made in this situation. A simple linear form of the case can be presented
as (n + 1) - dimensional tuple

CASE = (x1, x2, x3,… , xn, s), (1)

where x1, x2, x3,… , xn are the features identifying the situation, s is a solution to the
problem defined in the case. Subsequently, with the deepening into the problem domain,
possible complication of the case structure is possible, through, for example, the intro‐
duction of hierarchy and other relationships between the features.

Already at the earliest stages of the KBS development it is possible to extract, adapt
and apply cases in solving the current problems. After applying the case from the
knowledge base to the current situation, a new precedent is recorded to the case base for
future use. Note that in terms of Nonaka-and-Takeuchi cycle, we do not carry out the
formalization of knowledge here. Moreover, we do not try to analyze why the solution
is made (i.e. we do not try to transform tacit knowledge into the formal representation),
but we simply fix the fact of tacit knowledge in a particular case.

As soon as we accumulate sufficient volume of decision-making cases and deepen
our knowledge on the basis of analyzing the case base, it is possible to carry out the
formalization of knowledge, contributing to the transformation of tacit knowledge into
the explicit one (stage II). Machine learning offers a variety of approaches to extract
knowledge from data (simple cases). In this article we consider the problem of obtaining
a set of formal rules for classification of cases. Classification allows, on the one hand,
to arrange a space of cases in order to improve the retrieving performance. On the other
hand, classifying rules are formal knowledge of higher level than simple cases. They
can be meaningfully analyzed by an expert who can get possibly new information for
decision-making in the future.
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If we have simple cases of the form (1), we could apply, for example, decision tree
method [14] to this sample of cases, in which the intermediate nodes of the tree corre‐
spond to the features x1, x2, x3,… , xn, and terminal nodes are the classes to which solu‐
tions belong. Another method of forming a set of fuzzy rules for cases classification is
given in the next section and based on the original papers [15–17].

The transition to a rule-based model means that we obtain the explicit (formalized)
form of knowledge, able to explain the cause-and-effect relationships in the application
domain. Such reasoning could be presented to experts for analysis and interpretation
(stage III of knowledge transformation cycle). The important point at this stage is the
resolution of conflicts arising in a system of rules (conflicting rules lead to different
conclusions for the same premises).

At the stage IV the accumulation of new cases takes place using the received version
of a decision support system. New cases can be obtained from application of logical
inference methods to the knowledge base consisting of rules and facts (cases), and also
as a result of CBR-cycle, adapting old cases from the knowledge base to new problems.
Getting new cases means the use of formal (explicit) knowledge and turning them into
the implicit (tacit) form.

The considered cycle of knowledge transformation is repeated further on the next
level. As soon as our knowledge about application domain deepen it is possible to make
the structure of cases more complex by transition from the linear parametric form to the
hierarchical or more complex logical form. At each stage of the proposed cycle, the
conversion is made of the implicit knowledge into the explicit form, or vice versa, and
each new turn of the spiral brings additional new aspects and dimensions to the knowl‐
edge of the application domain.

3 Method of Cases Classification Through Fuzzy Rules

Here we consider the method of obtaining fuzzy rules from cases in application to the
problem of cases classification. The idea of the method is as follows. Consider arbitrary
case of the form (1), where the features x1 ∈ X1, x2 ∈ X2, x3 ∈ X3,… , xn ∈ Xn, and the
solution variable s belongs to a certain set of classes D = {d1, .d2,… , dm}. Without loss
of generality we assume that the features are numerical and sets X1, X2, X3,… , Xn are
continuous numerical intervals.

Define linguistic variables Vi corresponding to the features xi, i = 1, n. Let each vari‐
able Vi has J term-values A(j)

i
 that are fuzzy sets determined by membership functions

𝜇A
(j)

i

, on the universal sets Xi, j = 1, J. Then the rule Rule corresponding to the case (1),
is formulated as follows:

Rule: IF V1 = F(x1)&…&Vn = F(xn) THEN R = d (2)

where R is the classifying variable, d ∈ D, F(xi) is a fuzzy term-value which the linguistic
variable Vi accepts as a result of fuzzification of the feature xi:
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F(xi) = A
(j∗)

i
, where j∗ = arg max

j=1,J
𝜇A

(j)

i

(xi). (3)

Then, knowledge base consisting of a set of rules from the initial case base is formed
in accordance with the following algorithm.

An algorithm of obtaining fuzzy classification rules from case base

Step 1. Define the number and the type of membership functions and universal sets Xi

for each linguistic variable Vi corresponding to the feature xi.
Step 2. Determine fuzzy rule Rule, of the form (2) for each case of the form (1).
Step 3. Assign truth degree TD(Rule) to each rule. The simplest way to do this is to

compute minimum of all 𝜇A
(j∗)

i

(xi) for every xi and fuzzy sets A(j∗)

i
 defined by the

formula (3) as a result of fuzzification for each rule Rule of the form (2). The
result is obtained in the following way

TD(Rule) = min
i=1,n

𝜇A
(j∗)

i

(xi) = min
i=1,n

max
j=1,J

𝜇A
(j)

i

(xi). (4)

Step 4. Resolve conflicts between the rules. After the step 2 we obtain a set of rules
uniquely corresponding to the set of cases. But this set can contain subsets of
the rules with the same premises. These rules can have the same or different
conclusions (solutions d ∈ D). If for all rules in such subset we have the same
conclusion we simply remove all duplicate rules from the set except one. For
the rules with conflicting conclusions, we propose two different strategies for
classification problem. In each case we leave only one rule in the subset with
conflicted conclusions in the rule base. Let we have a subset of rules Rule1,…,
Rulem with the same premise. Divide the set of indexes I = {1, 2,… , m} into
K subsets I1,I2,…,IK corresponding to the classes of solutions d1, d2,…, dK in the

conclusions of the rules (3), dim Ik = mk, 
K∑

k=1
mk = m.

The first strategy of resolving conflicts is to obtain the optimal rule

l∗ = arg max
l∈I

TD(Rulel), (5)

and then to choose a solution d corresponding to the conclusion of this optimal rule. The
second strategy of resolving conflicts is a bit more complex. The optimal solution dk∗

that is assigned to the conflicting set of rules could be obtained as follows

k∗ = arg max
k
(
∑

i∈Ik

TD(Rulei)). (6)
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4 Experimental Results

In this section we investigate the proposed approach with the data set Iris (available at
http://archive.ics.uci.edu/ml/) with 150 cases, characterized by 4 features (n = 4), which
are classified into 3 classes (K = 3) through classifying attribute.

In the first experimentation, we randomly selected training sample of given size (120
cases) from Iris set, while the rest of the data (30 cases) was used as a control sample.
Then, for each feature, minimum and maximum values were determined from the
training sample. The obtained intervals were used as the universal sets for corresponding
linguistic variables. Then we divided each universal set Xi into equal intervals for three
variants of choosing the number of term-values A(j)

i
, j = 1, J: J = 3,5 and 7 (Jdoes not

depend on i) for membership functions (3MF, 5MF and 7MF). We also considered two
classes of MF – linear (class T) and quadratic (class S).

Then a set of fuzzy classifying rules obtained as a result of machine learning algo‐
rithm was applied to control sample to compute an accuracy of classification as a ratio
of correctly classified cases to the general volume of the control sample. In Table 1 we
presented the results of classification accuracy for two strategies of control sample
classification with linear membership functions (3MF, 5MF and 7MF).

Table 1. Classification accuracy for two strategies of control sample classification with linear
membership functions (3MF, 5MF and 7MF)

Control accuracy for strategy 1 Control accuracy for strategy 2
Number of trial 3 MF 5 MF 7 MF 3 MF 5 MF 7 MF

1 0,90 0,83 0,83 0,97 0,88 0,88
2 0,87 0,80 0,63 0,93 0,92 0,78
3 0,97 0,77 0,73 0,95 0,83 0,83
4 0,80 0,63 0,63 0,97 0,83 0,83
5 0,83 0,73 0,57 0,95 0,88 0,77
6 0,87 0,83 0,60 0,95 0,90 0,82
7 0,80 0,70 0,63 0,97 0,88 0,83
8 0,90 0,77 0,70 0,95 0,85 0,78
9 0,93 0,83 0,73 0,93 0,85 0,83

10 0,87 0,67 0,80 0,97 0,87 0,83
Average 0,88 0,76 0,69 0,95 0,87 0,82

From Table 1 we can see that the best results were obtained for 3MF. Reducing in
the accuracy for 5MF and 7MF could be explained by the fact that the number of possible
combinations of preconditions in the rules increases significantly, so classification on
the control sample fails because of the lack of appropriate rule for the classified case.
Therefore we compare two types of control cases classification. For the first strategy we
apply each rule only to exactly corresponding control cases. If there are no appropriate
rules, incorrect classification is registered. For the second strategy, if there is no appro‐
priate rule to classify the control case, we exclude one feature and try to find classifying
rule for reduced number of features (Here we assume that the excluded feature is not
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important for classification). The first appropriate rule is applied for classification of the
corresponding case. The second strategy permits to improve the results of cases classi‐
fication. The experiments were performed ten times, each time having arbitrary set of
cases for training.

In Table 2 we give classification accuracy for linear and quadratic membership
functions (class T and S for 3MF). Here we can see that for smoother membership
functions (class S) the classification accuracy is better.

Table 2. Classification accuracy for two strategies of control sample classification with linear
and quadratic membership functions (class T and S for 3MF)

Control accuracy for strategy 1 Control accuracy for strategy 2
Number of trial Class T Class S Class T Class S

1 0,90 0,97 0,97 0,98
2 0,87 0,97 0,95 0,97
3 0,93 0,93 0,98 0,95
4 0,87 0,97 1,00 0,93
5 0,87 0,83 0,98 0,95
6 0,85 0,92 0,95 1,00
7 0,87 0,88 0,95 0,93
8 0,82 0,90 0,95 0,92
9 0,87 0,87 0,98 0,98

10 0,85 0,90 0,97 0,95
Average 0,87 0,91 0,97 0,96

Figure 2 gives visual illustration of comparison between the three classes of linear
membership functions (3MF, 5MF and 7MF) for sequentially reducing volume of
training sample. Here we can observe that the classification accuracy for sequentially
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Fig. 2. Classification accuracy for sequentially reducing volume of training sample for linear
membership function (T) for 3MF, 5MF and 7 MF
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reducing volume of training sample (from 90 cases to 30) remains quite high. The results
could be explained by the fact that the number of rules obtained from the initial training
sample of 150 cases was not more than 17 in all the experiments. If we randomly choose
less amount of cases for training, the information content (or representativeness) of the
sample remains still high.

Thus, we have proposed rather simple method of generating classification rules from
case base that can be used in the cycle of knowledge transformation in the KBS. Despite
the simplicity we have achieved quite high accuracy of classification even for sequen‐
tially reducing volume of training samples. We believe that accuracy of classification
can be improved further through the extension of the rule structure (2) by introducing
disjunctions into a conjunctive premises as well as considering the possibility of
reducing the number of the rule premises by leaving the most informative ones, that is
the subject of further research.
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