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Abstract. This paper investigates the stability and stabilization analy-
sis problem of nonlinear systems with distributed time-delay. The T-S
fuzzy model is employed to describe the nonlinear plant. When design-
ing fuzzy controller, the novel imperfect premise matching method is
adopted, which allows the fuzzy model and the fuzzy controller to use
different premise membership functions and different number of rules.
As a result, greater design flexibility can be obtained. By applying a new
tighter integral inequality which involves information about the double
integral of the system states, and introducing the information of mem-
bership functions, less conservative stability and stabilization conditions
are derived. Finally, a numerical example is provided to clarify the effec-
tiveness of the proposed approach.
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1 Introduction

Time-delay is a common phenomenon in practical control systems, which can
deteriorate the system performance and cause instability. Therefore, the research
for control systems with time-delay is crucial and has received considerable atten-
tion [1,2]. When analyzing the stability conditions of control systems with time-
delay, a Lyapunov-Krasovskii functional (LKF) approach [3] is usually applied,
which can denote the conditions in terms of linear matrix inequalities (LMIs).
Though the LKF approach can handle the stability analysis problem for time-
delay systems, the criteria derived from LKF method are conservative. To reduce
conservatism, much research has been done: the free-weighting matrix [4] tech-
nique was introduced to obtain more tighter bound of the derivative of Lyapunov
function; the wirtinger-based integral inequality [5] was developed to deal with
integral term

∫ t

t−h
ẋT (s)Rẋ(s); especially, a new tighter integral inequality was

proposed in [6], which yields less conservative stability conditions.
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Besides, the Takagi-Sugeno (T-S) fuzzy model [8] is normally used to describe
fuzzy control systems. It can represent the dynamics of a complex nonlinear
system as a weighted sum of some local linear models, which will facilitate the
stability analysis. When the fuzzy controller is also denoted as a weighted sum of
some linear sub-controllers, and is connected with the T-S fuzzy model in a closed
loop, a Takagi-Sugeno fuzzy-model-based (TSFMB) control system is formed.
When dealing with the stabilization analysis problem for TSFMB system, an
efficient technique named parallel distribution compensation (PDC) [9] is usually
adopted, which requires the fuzzy controller and the T-S fuzzy model have the
same premise membership functions and the same number of rules. Such design
can make the stabilization analysis easier. However, PDC method also bears
some inevitable drawbacks such as limiting the design flexibility of the fuzzy
controller and complicating the fuzzy controller structure unnecessarily in some
cases. For the sake of solving these problems, some non-PDC design techniques
were developed [7,8]. Among them, an effective methodology called imperfect
premise matching method [8], which allows the fuzzy controller and the fuzzy
model use different premise membership functions and different number of rules.
Hence, this approach can avoid the limitations of PDC method.

Currently, the research of stability and stabilization analysis for TSFMB
systems with time-delay has yet been thorough enough. First, most of literature
applied PDC method to conduct stabilization analysis which would limit the
design flexibility of fuzzy controller. Second, the existing stability and stabiliza-
tion conditions can be further relaxed. This is because the bound of integral
term

∫ t

t−h
ẋT (s)Rẋ(s) can be estimated more accurate, and the information of

the membership functions has not been applied fully. Therefore, in this paper, we
aim to investigate the improved stability and stabilization conditions for TSFMB
systems with time-delay.

To achieve our goal, we will apply the imperfect premise matching method
to design stable fuzzy controller. In order to relax the results, we will employ
the novel integral inequality technique in the stability analysis, and take the
information of the membership functions into account. The analyses results will
be presented as theorems in terms of LMIs. Finally, a numerical example will be
given to illustrate the advantages and superiority of the proposed approach.

2 Preliminaries

A TSFMB nonlinear control system with distributed time delay is considered.

Fuzzy Model: Construct a p-rule polynomial fuzzy model to represent the
nonlinear system with time-delay:

ẋ(t) =
p∑

i=1

ωi(x(t))
(
Aix(t) + A1ix(t − h) + A2i

∫ t

t−h

x(s)ds + Biu(t)
)
, (1)

where x(t) ∈ R
n×1 denotes the vector of the system state; Ai ∈ R

n×n,A1i ∈
R

n×n,A2i ∈ R
n×n and Bi ∈ R

n×m represent the system matrices and the
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system input matrices; u(t) ∈ R
m×1 is system input; the time-delay h is a

constant satisfying h ∈ [hmin, hmax]; ωi(x(t)) stands for the normalized grade of
membership, and satisfying: ωi(x(t)) ≥ 0 for all i, and

∑p
i=1 ωi(x(t)) = 1.

Fuzzy Controller: Motivated by the imperfect premise matching method [8],
we consider a c-rule polynomial fuzzy controller in this paper:

u(t) =
c∑

j=1

mj(x(t))Kjx(t), (2)

where Kj ∈ R
m×n represents the feedback gain of jth rule; mj(x(t)) stands for

the normalized grade of membership, and satisfying: mj(x(t)) ≥ 0 for all i, and∑c
j=1 mj(x(t)) = 1.
According to (1) and (2), the closed-loop fuzzy control system can be easily

acquired:

ẋ(t) =
p∑

i=1

c∑

j=1

ωi(x(t))mj(x(t))
(
Gijx(t) + A1ix(t − h) + A2i

∫ t

t−h

x(s)ds

+ Biu(t)
)
,

(3)

where Gij = Ai + BiKj , i = 1, 2, ..., p, j = 1, 2, ..., c.
Lemma 1 is given to facilitate the proof of the main results in the following

sections.

Lemma 1 [6]. It is assumed that x(t) is a differentiable function: [α, β] → R
n.

For N1,N2,N3 ∈ R
4n×n, and R ∈ R

n×n > 0, the following inequality holds:

−
∫ β

α

ẋT (s)Rẋ(s)ds ≤ ξT Ωξ, (4)

where

Ω = τΦ2 + Φ3, Φ2 = N1R−1NT
1 +

1
3
N2R−1NT

2 +
1
5
N3R

−1NT
3 ,

Φ3 = Sym{N1Δ1 + N2Δ2 + N3Δ3}, ek = [0n×(k−1)n In 0n×(4−k)n],
k = 1, 2, 3, 4,Δ1 = e1 − e2,Δ2 = e1 + e2 − 2e3,Δ3 = e1 − e2 − 6e3 + 6e4,

ξ = [xT (β) xT (α)
1
τ

∫ β

α

xT (s)ds
2
τ2

∫ β

α

∫ s

α

xT (u)duds]T , τ = β − α.

In addition, to simplify the computational complexity, ωi(x(t)) and mj(x(t))
will be denoted has ωi and mj , respectively in the following sections.

3 Stability Analysis

Firstly, the stability condition of TSFMB autonomous system, i.e., the system
(1) with u(t) = 0, will be investigated, which can be described by

ẋ(t) =
p∑

i=1

ωi(Aix(t) + A1ix(t − h) + A2i

∫ t

t−h

x(s)ds). (5)
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The inferred stability analysis results are summarized in the following theo-
rems.

Theorem 1. For TSFMB autonomous system (1) and a prescribed constant
h ∈ [hmin, hmax], if there exist positive definite matrices P = PT ∈ R

3n×3n,R =
RT ∈ R

n×n, Q = QT ∈ R
n×n, such that LMIs (6) are satisfied, then the system

(1) is asymptotically stable.
⎡

⎢
⎢
⎣

Φ1i + Φ3 + Φ4i

√
hN1

√
hN2

√
hN3

∗ −R 0 0
∗ ∗ −3R 0
∗ ∗ ∗ −5R

⎤

⎥
⎥
⎦ < 0, (6)

where

Φ1i = Sym{ΔT
4 PΔ5i} + eT

1 Qe1 − eT
2 Qe2 + hΓT

i RΓi,Δ4 =
[
eT
1 heT

3
h2

2 eT
4

]T

,

P =

⎡

⎣
P11 P12 P13

∗ P22 P23

∗ ∗ P33

⎤

⎦ ,Δ5i =
[
ΓT

i eT
1 − eT

2 heT
3 − heT

2

]T
,Γi = [Ai A1i hA2i 0]

Φ4i = Ti − Fi +
p∑

r=1

h̄rFr −
p∑

k=1

hkTk, i = 1, 2, ..., p,

and Δ1,Δ2,Δ3 are defined in Lemma 1. Besides, in order to decrease the compu-
tational complexity, we will eliminate the free matrices N1,N2,N3 by assuming
N1 = 1

h

[−R R 0 0
]T

, N2 = 3
h

[−R −R 2R 0
]T

, N3 = 5
h

[−R R 6R −6R
]T

.

Proof. To investigate the stability of the TSFMB autonomous system (1), the
following Lyapunov-Krasovskii functional candidate is considered.

V (t) = [xT (t) ηT
1 (t) ηT

2 (t)]P[xT (t) ηT
1 (t) ηT

2 (t)]T

+
∫ t

t−h

xT (s)Qx(s)ds +
∫ 0

−h

∫ t

t+θ

ẋT (s)Rẋ(s)dsdθ,
(7)

where η1(t) =
∫ t

t−h
x(s)ds, η2(t) =

∫ t

t−h

∫ s

t−h
x(u)duds.

Therefore, the derivative of V (t) can be presented as

V̇ (t) =
p∑

i=1

ωi

(
ζT (t)Φ1iζ(t) −

∫ t

t−h

ẋT (s)Rẋ(s)ds
)
, (8)

where ζ(t) =
[
xT (t) xT (t − h) 1

hηT
1 (t) 2

h2 ηT
2 (t)

]T , and Φ1i is defined in (6).
Moreover, according to Lemma 1, we can obtain

−
∫ t

t−h

ẋT (s)Rẋ(s)ds ≤ ζT (t) (Φ2 + Φ3) ζ(t), (9)
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where Φ2, Φ3 are defined in (4). So we have

V̇ (t) ≤
p∑

i=1

ωiζ
T (t)(Φ1i + Φ2 + Φ3)ζ(t) =

p∑

i=1

ωiζ
T (t)Φiζ(t) (10)

After some algebraic manipulations, we get

V̇ (t) =

p∑

i=1

ωiζ
T (t)Φiζ(t) ≤

p∑

i=1

ωiζ
T (t)Φiζ(t) +

p∑

i=1

(ω̄i − ωi)ζ
T (t)Fiζ(t) +

p∑

i=1

(ωi − ωi)ζ
T (t)Tiζ(t) =

p∑

i=1

ωiζ
T (t)(Φi − Fi + Ti +

p∑

r=1

w̄rFr −
p∑

k=1

ωkTk)ζ(t),

(11)

where ωi is the lower bound of ωi, and ω̄i is the upper bound of ωi, Fi and Ti

are positive semi-definite matrics. Hence, if

Φi − Fi + Ti +
p∑

r=1

w̄rFr −
p∑

k=1

ωkTk < 0, (12)

then V̇ (t) < 0. By using Schur Complement theorem, the condition (12) is
equivalent to condition (6). In other words, if condition (6) holds, the system (1)
is asymptotically stable. Thus, the proof of Theorem 1 is accomplished.

Remark 1. It can be seen from the proof that a novel integral inequality (9) is
adopted to deal with integral term − ∫ t

t−h
ẋT (s)Rẋ(s)ds. The advantage of this

integral inequality is that it is tighter than other similar integral inequalities,
which can relax the results. Additionally, since the stability condition derived
from it has a simpler structure, the implementation costs could be lowered.

4 Stabilization Analysis

Based on Theorem 1, we will mainly investigate how to design a fuzzy controller
(2) to stabilize TSFMB control system (3) in this section.

Theorem 2. For TSFMB control system (3) and the given constants σ, ti, i =
2, 3, .., 6, h ∈ [hmin, hmax], if there exist positive definite matrices P̄ = P̄T ∈
R

3n×3n, R̄ = R̄T ∈ R
n×n, Q̄ = Q̄T ∈ R

n×n, and positive semi-definite matrices
F̄i = F̄T

i ∈ R
4n×4n, T̄i = T̄T

i ∈ R
4n×4n, such that LMIs (13) are satisfied, then

the system (3) is asymptotically stable.
⎡

⎢
⎢
⎢
⎢
⎣

Π1

√
hN̄1

√
hN̄2

√
hN̄3

√
hΓ̄T

ij

∗ −R̄ 0 0 0
∗ ∗ −3R̄ 0 0
∗ ∗ ∗ −5R̄ 0
∗ ∗ ∗ ∗ 1

σ2 R̄ − 2
σX

⎤

⎥
⎥
⎥
⎥
⎦

< 0, (13)



522 Q. Ma et al.

where

Π1 = Φ̄1ij + Φ̄3 + Φ̄4ij , Φ̄1ij = Sym{ΔT
4 P̄Δ̄5ij} + eT

1 Q̄ie1 − eT
2 Q̄ie2, Φ̄2 =

hN̄1R̄−1N̄T
1 +

h

3
N̄2R̄−1N̄T

2 +
h

5
N̄3R̄−1N̄T

3 , Φ̄3 = Sym{N̄1Δ1 + N̄2Δ2

+ N̄3Δ3}, Φ̄4ij = −F̄ij + T̄ij +
p∑

r=1

c∑

s=1

h̄rsF̄rs −
p∑

k=1

c∑

l=1

hklTkl.

And the state feedback gain can be denoted as Kj = K̄jX−1. i = 1, 2, ..., p, j =
1, 2, ..., c.

Proof. Substitute Ai for Gij = Ai + BiKj , and by following the same line of
analysis of Theorem 1, we can obtain

V̇ (t) =
p∑

i=1

c∑

j=1

ωimj

(
ζT (t)Φ1ijζ(t) −

∫ t

t−h

ẋT (s)Rẋ(s)ds
)
. (14)

Applying Lemma 1, we have

V̇ (t) ≤
p∑

i=1

c∑

j=1

ωimjζ
T (t)(Φ1ij + Φ2 + Φ3)ζ(t). (15)

Since

ζT (t)Φ1ijζ(t) = ζT (t)Sym{M1ij}ζ(t) + ζT (t)Sym{M2}ζ(t) + ζT (t)Sym{
M3ij}ζ(t), ζT (t)(Φ2 + Φ3)ζ(t) = ζT (t)M4ζ(t) + ζT (t)M5ζ(t) + ζT (t)M6ζ(t),

(16)
where

M1ij =

⎡

⎢
⎢
⎣

P11Gij + P12 Π2 hP11A2i + P13h 0
0 0 0 0

hPT
12Gij + hP22 Π3 h2PT

12A2i + h2P23 0
h2

2 PT
13Gij + h2

2 PT
23 Π4

h2

2 PT
13A2i + h2

2 P33 0

⎤

⎥
⎥
⎦ ,M2 =

⎡

⎢
⎢
⎣

Q 0 0 0
0 Q 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ ,

M3ij =

⎡

⎢
⎢
⎣

GT
ijRGij GT

ijRA1i GT
ijR(hA2i) 0

AT
1iRGij AT

1iRA1i AT
1iR(hA2i) 0

(hAT
2i)RGij (hAT

2i)RA1i (hAT
2i)R(hA2i) 0

0 0 0 0

⎤

⎥
⎥
⎦ ,M4 =

1
h

⎡

⎢
⎢
⎣

−R R 0 0
R −R 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

M5 =
3
h

⎡

⎢
⎢
⎣

−R −R 2R 0
−R −R 2R 0
2R 2R −4R 0
0 0 0 0

⎤

⎥
⎥
⎦ ,M6 =

5
h

⎡

⎢
⎢
⎣

−R R 6R −6R
R −R −6R 6R
6R −6R −36R 36R

−6R 6R 36R −36R

⎤

⎥
⎥
⎦ .

Π2 = P11A1i − P12 − hP13,Π3 = hPT
12A1i − hP22 − h2P23,

Π4 =
h2

2
PT

13A1i − h2

2
PT

23 − h3

2
P33,
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So we have ζT (t)(Φ1ij +Φ2 +Φ3)ζ(t) = ζT (t)(M1ij +M2 +M3ij +M4 +M5 +
M6)ζ(t). Therefore, if

M1ij + M2 + M3ij + M4 + M5 + M6 < 0, (17)

we can obtain V̇ (t) < 0.
Define some new variables as

P12 = t2P11, P13 = t3P11, P22 = t4P11, P23 = t5P11, P33 = t6P11,

X = P−1
11 , R̄ = XRX, Q̄ = XQX, K̄j = KjX, Ḡij = AiX + BiK̄j ,

Ā1i = A1iX, Ā2i = A2iX, B̄i = BiX, N̄1 =
1
h

[−R̄ R̄ 0 0
]T

,

N̄2 =
3
h

[−R̄ −R̄ 2R̄ 0
]T

, N̄3 =
5
h

[−R̄ R̄ 6R̄ −6R̄
]T

,

Γ̄ij = [Ḡij Ā1i hĀ2i 0], Δ̄5ij =
[
Γ̄T

ij X(eT
1 − eT

2 ) X(heT
3 − heT

2 )
]T

.
(18)

Let Eq. (17) be pre-multiplied and post-multiplied by diag
[
X X X X

]
and

its transpose, then we can obtain

Sym{ΔT
4 P̄Δ̄5ij} + eT

1 Q̄ie1 − eT
2 Q̄ie2 + hN̄1R̄−1N̄T

1 +
h

3
N̄2R̄−1N̄T

2

+
h

5
N̄3R̄−1N̄T

3 + Sym{N̄1Δ1 + N̄2Δ2 + N̄3Δ3} + hΓT
ijRΓij < 0.

(19)

So we have

V̇ (t) ≤
p∑

i=1

c∑

j=1

ζT (t)ωimjΦ̄ijζ(t)

=
p∑

i=1

c∑

j=1

ωimjζ
T (t)

(
Φ̄1ij + Φ̄2 + Φ̄3 + hΓT

ijRΓij

)
ζ(t) < 0,

(20)

where Φ̄1ij , Φ̄2, Φ̄3, i = 1, 2, ..., p, j = 1, 2, ..., c are defined in (13).
By denoting ωimj as hij , i = 1, 2, ..., p, j = 1, 2, ...c, and using similar alge-

braic manipulations as in the proof of Theorem1, we can get

V̇ (t) ≤
p∑

i=1

c∑

j=1

hijζ
T (t)Φ̄ijζ(t)

≤
p∑

i=1

c∑

j=1

hijζ
T (t)(Φ̄ij − F̄ij + T̄ij +

p∑

r=1

c∑

s=1

h̄rsF̄rs −
p∑

k=1

c∑

l=1

hklTkl)ζ(t),

(21)

where h̄ij ≥ hij is the upper bound of hij , hij ≤ hij is the lower bound of hij ,
F̄ij = F̄T

ij ≥ 0, and T̄ij = T̄T
ij ≥ 0.
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So if

Φ̄ij − F̄ij + T̄ij +
p∑

r=1

c∑

s=1

h̄rsF̄rs −
p∑

k=1

c∑

l=1

hklTkl < 0, (22)

we can obtain V̇ (t) < 0, which means the closed-loop TSFMB control system
(3) is asymptotically stable.

Applying Schur Complement theorem, inequality (22) can be denoted as
⎡

⎢
⎢
⎢
⎢
⎣

Π1

√
hN̄1

√
hN̄2

√
hN̄3

√
hΓ̄T

ij

∗ −R̄ 0 0 0
∗ ∗ −3R̄ 0 0
∗ ∗ ∗ −5R̄ 0
∗ ∗ ∗ ∗ −R−1

⎤

⎥
⎥
⎥
⎥
⎦

< 0, (23)

where Π1 = Φ̄1ij + Φ̄3 + Φ̄4ij , i = 1, 2, ..., p, j = 1, 2, ..., c.
Moreover, as R is symmetric and positive definite matrix, for any scalar σ,

the following inequality holds:
(
σR−1 − X

)
R

(
σR−1 − X

)
> 0. (24)

Then we have
− R−1 < − 2

σ
X +

1
σ2

R̄, (25)

which means inequalities (23) is true, if LMIs (13) holds. Thus, the proof of
Theorem 2 is completed.

5 Numerical Examples

In this section, a numerical example is given to demonstrate the effectiveness of
the proposed methods.

Example 1. Consider a TSFMB autonomous system in the form of (1) with

A1 =
[−2.1 0.1
−0.2 −0.9

]

,A2 =
[−1.9 0
−0.2 −1.1

]

,A11 =
[−1.1 0.1
−0.8 0.9

]

,

A12 =
[−0.9 0
−1.1 −1.2

]

,A21 =
[
0 0
0 0

]

,A22 =
[
0 0
0 0

]

,

ω1(x1(t)) = 1 − 0.5
1 + e−3−x1(t)

, ω2(x1(t)) = 1 − ω1(x1(t)).

Using the stability conditions introduced in literature [1–3,9,10] and Theorem 1
of this paper, respectively to calculate the maximum allowable time-delays. The
results are presented in the following table.

From Table 1, we can see that Theorem 1 of this paper can yield larger max-
imum allowable time-delays h than literature [1–3,9,10], which means the pro-
posed method in this paper is less conservative than the ones in [1–3,9,10].
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Table 1. The maximum allowable time-delays h for Example 1

Method [3] [1] [2] [9] [10] Theorem 2

h 3.37 4.28 4.61 4.64 5.58 7.62

Remark 2. There are two reasons for the less conservative results in Example 1.
First, the introduction of the new integral inequality (4), which is tighter than
other existing integral inequalities. Second, Theorem1 of this paper takes the
information of membership functions into consideration while the methods in
other literature are membership functions independent.

6 Conclusion

This paper concerns the stability and stabilization analysis issue of TSFMB
control systems with distributed time-delay. The imperfect premise matching
methodology has been employed to design fuzzy controller, which allows the
fuzzy controller to use different premise membership functions and different
number of rules from the fuzzy model. Hence, greater design flexibility can be
achieved. Besides, a tighter integral inequality has been applied, and the infor-
mation of the membership functions has been introduced in the criteria as well.
As a consequence, less conservative stability conditions and stabilization cri-
teria have been developed. Finally, a numerical example has been provided to
illustrate the effectiveness of the proposed approach.
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