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Abstract. This study proposes a modeling framework based on few
radio frequency (RF) tracking devices, such as smartphones or beacon.
The proposed framework aims to estimate crowd density continuously
where vision analysis is unreliable and the relation between pedestrian
speed and density can be at least specified. The crowd density estimated
through the modelling framework can not only be used for evacuation
commanding at emergency times, but also can be used for commercial
usage at a normal time and building/facility layout improvement dur-
ing design time. In the proposed framework, the application level maps
input data spaces into feature spaces. The model level applies multiple
data models to increase the accuracy of the estimated states. Moreover,
the abstract level fuses the heterogeneous parameters estimated from
the model level. The models we included in the framework are cellular
automata models, ferromagnetic models, social force models, and com-
plexity models. The model parameters are estimated by Markov Chain
Monte Carlo (MCMC) and particle swarm optimization (PSO) methods.
The fusion algorithm factory instantiates a data assimilation approach
and a continuous receiver operating characteristic (ROC) estimator.

Keywords: Pedestrian density distribution · RF tracking device ·
Parsimony of sensor · Markov Chain Monte Carlo · Data assimilation ·
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1 Introduction

Crowd or pedestrian density represents important information for assessing
crowd situations in certain critical environments. Computerized crowd density
information can be estimated through surveillance cameras. However, visual
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devices frequently suffer from problems on scalability and reliability. Fortu-
nately, mobile devices, such as smartphones or beacons, have become increasingly
viable as alternative estimation agents to complement the drawbacks of visual
devices [1]. The major problem for such media is the need for people’s voluntary
willingness to be tracked. Another problem is that the number of racketeers is
far less than the total number of people in a crowd [11]. These problems are
challenging in many aspects. This study is the first attempt to propose a mod-
elling framework that continuously estimates the crowd density distribution on
the basis of only few RF tracking devices.

Our principle of sensor parsimony is useful for many pervasive applications.
Visual approaches suffer from various limitations in spite of the maturity of
image processing technology in crowd distribution analysis. Video devices are
normally used on a small scale because digital cameras and dedicated support-
ing infrastructure are expensive and requiring massive deployment to cover a
surveillance area. Reliability could also be a problem for visual-based devices
in certain critical situation. Surveillance cameras may not function properly in
emergency situations, such as escaping from fire, evacuating from earth quake,
human safety monitoring, traffic control, and smart guiding in public. For exam-
ple, the light condition may be insufficient to capture a clear image. The massive
data transmission between cameras and servers may also overload the limited
communication capacity at emergency time. The recorded image is also unavail-
able for calculating crowd density for non-emergency usage, because consumers’
personal information is protected by law. Voluntary tracking could be one of the
few available choices under privacy law restriction. An alternative approach to
acquiring crowd information is through the ever-popular radio-frequency (RF)
devices. Smartphones have almost become a must-have for all individuals. The
RF devices could be reliable and scalable tracking device if the position infor-
mation of every pedestrian in target space could be obtained [3].

The major challenge in applying RF tracking devices is on how to pursue indi-
viduals to reveal their private information. Wireless users only share their private
information on a voluntary basis. Only a small fraction of pedestrians willingly
reveal their location information. Estimate that only under a hundred devices reg-
istering their locations in a particular space among thousands of people is achiev-
able. We tackle the challenging problem by superimposing multiple dynamical
models. If people in a space do not move, most non-tracked individual’s locations
are difficult to know from few tracked devices and, in such situation, may need
to resort to other auxiliary methods, such as acoustic Doppler waves, if neces-
sary. However, the more they move the more information we have and the density
estimation becomes more accurate [5–7]. The two upper pictures in Fig. 1, show
scant possibilities in obtaining density information through few persons with RF
devices in a highly sparse or crowded situation. However, in the two lower pictures
in Fig. 1, the persons wearing RF tracking devices are represented by circles and
the relative movement can help to estimate the crowd density.

The model we first included in the framework are cellular automata (CA)
models, ferromagnetic models, social force models, and complexity models. We
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Fig. 1. Relations among speed, density, and tracking devices. Individual tracking
devices are shown in circles and the number of devices is far less than the total number
of pedestrians.

apply Markov Chain Monte Carlo (MCMC) and particle swarm optimization
(PSO) for state parameter estimation. The parameters estimated from multiple
models are fused by data assimilation (DA) and a continuous ROC estimator,
which robustly relaxes the maximum a posteriori alue in the optimization algo-
rithm. This study proposes a modelling framework that can connect real-world
situations to mathematical models. The scenario simulation provided by the
framework can also increase the specificity of modelling process.

2 Modelling Framework

To address the complicated modelling problem for the real-world pedestrian
behavior, we provide a new and efficient means and fill the gap between real-
world and theoretical problems.

2.1 General Concept

We propose a three-level framework that performs computations on an abstract-
model level over a unified space, collects estimations on a model level over an
algorithmic space, and converts real-world signals to an application levels over
a feature space.

Applications at the top level manifest a property of variety in appearance,
which make the underlying algorithms non-reusable across different kinds of
real-world situations. The framework exploits a conversion that maps versatile
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application domains to a standard feature space using suitable kernel functions.
The process of feature extraction pertains to a mapping Φ : RN �→ F from the
space of input data R

N to the space of feature F. For example, a typical sound
signal contains ten thousands of samples in a second, and directly performing an
algorithm on this high-dimension is difficult. We use Fourier kernels to decom-
pose this signal from a time domain into a frequency domain. We then assign a
set of significant frequency components to a vector in a low-dimension feature
space. In the application of pedestrian flow, some algorithms directly take pedes-
trians’ sampled positions and velocities as input while some algorithms need to
transform the detailed information into an aggregate quantity, such as average
speed or oscillation frequency. Functions in this level mainly provide common
input data in case the algorithms entail the same information.

2.2 Framework in Model Level

We attempt to extend the estimation by superimposing or fusing as many known
relations as possible to tackle the ill-posed problem in crowd density estimation
from limited observations [4]. Figure 2 shows our attempt to incorporate multi-
ple relations in this model level. Each model embodies the relationship of inter-
nal states to observations. To isolate changing applications, we do not specify
the states and observations. We may later assign them to density distribution
ρ(x, y, t) and velocity field v(x, y, t) for coordinates (x, y) at time t.

parameters
model i

hidden
states

obv

State-Model-Observation relation

Fig. 2. Models superpositioning in our fused assimilation framework

Given a model with known states and observations, the model parameters
still possess a large degree of freedom. Each set of model parameters forms a sub-
space. Figure 2 shows that smaller intersection of such subspaces result in higher
likelihood that a unique parameters set could be determined. We apply MCMC
and PSO to determine the unknown parameters. The states can be estimated
accurately if another set of observations can be acquired through alternate means
(Fig. 3). For example, pedestrian velocity can be obtained through RF devices,
surveillance cameras, or Doppler microwaves. The probability of obtaining a
unique solution thus increases.
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Fig. 3. Fusion through distinct observations

Various crowd models can be instantiated in this level. Several main assump-
tions distinguish the models [9,12]. The major difference among crowd models
is at the modeling scale. In the microscopic scale, approaches involve CA, agent-
based method (ABM), and Markov random field (MRF). In the macroscopic
scale, fundamental diagram, social force, fluid dynamics, and game theory exist.
Some models assume homogeneous behaviors among pedestrians, whereas others
allow heterogeneous behaviors. Models can also build on discrete or continuous
space and time. In terms of psychological response, normal or emergency situa-
tions account for another important modelling attribute. Models of pedestrian
dynamics can build on normal and emergency situations, and their moving pat-
terns can flow through various topological spaces.

Each pedestrian in MRF models is considered as a cell on a grid. These
models mainly use means of probability and statistics to study crowd behavior.
Ferromagnetic models are a kind of MRF and originated from the quantum
mechanical spinning of electrons. A small magnetic dipole moment is associated
with the spin. Thus, the spin can be represented by 1 when pointing upward and
−1 when pointing downward. A highly popular ferromagnetic model is the Ising
model.

Let Λ = {j ∈ Z : |j| ≤ N} be a symmetric finite hypercube on integer
set Z. The configuration space is the set ΩΛ of all sequence ω = {ωj}j∈Λ, i.e.,
ΩΛ = {−1, 1}Λ. We denote the set of Borel σ-field by B(ΩΛ). Let ρ be the
measure 1

2δ−1 + 1
2δ1 and πΛμρ be the product measure on B(ΩΛ) with identical

one-dimensional marginal ρ. The ρ satisfies πΛμρ{F} = μρ{π−1
Λ F} for all F ∈

B(ΩΛ). For each ω ∈ ΩΛ, πΛμρ{ω} = 2−|Λ|, where |Λ| = 2N +1 for this Z case.
The coordinate mappings on ΩΛ, defined by Yj(ω) = ωj , are called the

spin random variables at the site j. The Hamiltonian or interaction energy of a
spin configuration ω ∈ ΩΛ is defined as HΛ,h(ω) = − 1

2

∑
i,j∈Λ Φ({i, j})ωiωj −

h
∑

j∈Λ ωj . We call Φ a ferromagnetic interaction potential and assume that Φ
is a non-negative function on Z which is symmetric and translation invariant.
The corresponding potential V (·) =

∑
Λ Φ(·). The parameter h is a real number

that gives the strength of an external magnetic field that acts at each site in Λ.
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Let β = 1/T > 0 be the inverse absolute temperature. The ferromagnetic
model is defined by the probability measure μΛ,β,h on B(ΩΛ) as follows:

μΛ,β,h{ω} = exp [−βHΛ,h(ω)] πΛμρ{ω} · 1
Z(Λ, β, h)

, (1)

where the partition function is defined as Z(Λ, β, h) =
∫

ΩΛ
exp[−βHΛ,h(ω)]πΛμρ

dω =
∑

ω∈ΩΛ
exp[−βHΛ,h(ω)] 1

2|Λ| . The measure μΛ,β,h is called a finite-volume
Gibbs state on Λ.

A probability measure μ is defined on ΩΛ with strictly positive values
for finite cylinder sets. The conditional probabilities of the form μ[ω(x) =
1| ω(·) on Λ\x] depend only on the values of ω at the neighbors of x and are
invariant under graph isomorphism. The set of all MRF’s is denoted by G. An
MRF is an infinite Gibbs state with a homogeneous nearest neighbor pair poten-
tial Φ and vice versa [8]. Let 0 < p < 1, and 0 < q < 1. We consider the matrix

M =
[

p 1 − p
1 − q q

]

as the transition matrix of the Markov chain with two states.

Let π = {π(−1), π(1)} be the unique stationary distribution (i.e., πM = π).
In order to predict the crowd density inside a topology Λ, i.e., a corridor, we

need to determine two parameters from the Ising ferromagnetic model: temper-
ature T and external intensity h. Assume that the time dependent temperature
distribution over the corridor is given in the sense of average. The crowd density
can be modeled as a stochastic process, where each random variable depends on
its vicinity. The probability measure of crowd density is obtained at a certain
point and time if a finite number of equilibrium states exist. We can then evalu-
ate the density distribution and provide an index for the cost of minimum cost
algorithm Based on the temperature information.

We need the conditional probability of each spot for the calculation of the
nearest neighbor pair potential. Obtaining the pedestrian count with infinitely
high resolution is impossible in the real world application. We can only esti-
mate the nearest neighbor pair potential from the boundary condition, i.e., RF
tracking devices or smartphone apps installed on few volunteers.

The macroscopic crowd analysis can roughly start from a relationship
between density and speed. We refer to density as an overall average scalar
and speed as a non-directional quantity in terms of the entire flock of crowd to
achieve a loose and simple analysis. We will also discuss models that facilitate
vector velocities and density distribution for the x-y positions and time course.

Fundamental diagram basically characterizes a speed-density relation [2].
Pedestrian speed decreases as the density increases When crowd density falls
within a certain range. The relation is achieved because neighboring pedestri-
ans may influence each other on the moving velocity [7]. Free motion should be
maintained without interference when the density is sufficiently low at a normal
situation. The relation is as follows:

v(ρ) = ρ0

{

1 − exp
[

−γ

(
1
ρ

− 1
ρmax

)]}

, (2)
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where v0 = 1.34 m/s is about the free walking speed at flow density, ρmax is the
maximal crowd density that completely blocks human movement, and γ is the
scaling constant. The relation is also suitable to fit into empirical data because
of the simplicity of relation.

Crowd density is an influencing factor of pedestrian speed and can be
uniquely derived from speed only under certain special conditions. In general
case, crowd flocking patterns, obstacles, walking conditions, as well as demo-
graphics and cultural aspects significantly affect the fundamental diagram.

The social force model is a macro-level model in which pedestrians follow a
rule of social force to perform the interaction. The model mimics the force field in
the physical world. The model also assumes that the acceleration of pedestrian
depends on the superimposition of personal (pers), social (soc), and physical
(phys) force fields. That is, F(pers), F(soc), and F(phys) [10,13]. For a pedestrian
of mass mj with velocity vj , the basic equation of motion is given as

dvj

dt
= f (pers)

j + f (soc)
j + f (phys)

j , (3)

where f (·)j = 1
mj

F(·)
j is the specific force. The force pertaining to social interaction

is defined as f (soc)
j =

∑
l �=j f

(·)
jl , which represents the specific forces due to other

pedestrians. There is another force f (pers)
j keeping pedestrian j moving on its own

preferred velocity vj(0) and is defined as f (pers)
j = vj(0)−vj

τj
for an acceleration

time τj .
The social force analogizes the territorial effect on the private sphere. In psy-

chology, people feel uncomfortable when strangers enter their private spheres.
Thus, a repulsive force emerges to separate people. An exponential form is
assumed for easy quantification of the forces. The force between person j and l
is given as

f (soc)
jl = Aj exp

[
Rjl − Δrjl

ξj

]

njl, (4)

where pedestrians possess disks of radius Rjl and distance rjl. The normal vector
njl is a vector that points from j to l, representing the direction of f (soc)

jl . The
quantity Aj is a scaling factor, and ξj is the range of the interactions.

3 Conclusions

On the basis of few RF tracking devices, this study proposes a modelling frame-
work to continuously estimate crowd density distributions, provided that vision
analysis is unavailable and the speed-density relation specified by the fundamen-
tal diagram is at least maintained. The designated events to drive the flock move-
ment include tour walking (shopping or museum), spontaneous walking (subway
or bus station), and ordered/unordered evacuation (drill/fire). The crowd flow
forming patterns included in the modelling framework were jamming on the
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bottleneck, congestion, or stairs, shock wave, oscillation, lane formation, inter-
sections, competition, and various irrational phenomena (panic, herding, and
stampede).

The applications of this framework are suitable for the situations where
the principle of sensor parsimony is prominent. The estimated crowd density
obtained by the modelling framework can be used for commercial usage at normal
times, for evacuation commanding at emergency times, and for building/facility
layout improvement during design times.

This study proposes a modelling framework that can connect real-world situ-
ations to mathematical models. The scenario simulation provided by the frame-
work can also make the modelling process precise. On our next paper, detailed
parameter calibration algorithms will be presented. Pedestrian behaviors will be
investigated empirically on the next stage.
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