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Abstract. Rough Sets theory is widely used as a method for estimating
and/or inducing the knowledge structure of if-then rules from a deci-
sion table after a reduct of the table. The concept of a reduct is that
of constructing a decision table by necessary and sufficient condition
attributes to induce the rules. This paper retests the reduct by the con-
ventional methods by the use of simulation datasets after summarizing
the reduct briefly and points out several problems of their methods.
Then, a new reduct method based on a statistical viewpoint is proposed
and confirmed to be valid by applying it to the simulation datasets. The
new reduct method is incorporated into STRIM (Statistical Test Rule
Induction Method), and plays an effective role for the rule induction. The
STRIM including the reduct method is also applied for a UCI dataset
and shows to be very useful and effective for estimating if-then rules
hidden behind the decision table of interest.

1 Introduction

Rough Sets theory was introduced by Pawlak [1] and used for inducing if-then
rules from a dataset called the decision table. The induced if-then rules simply
and clearly express the structure of rating and/or knowledge hiding behind the
decision table. Such rule induction methods are needed for disease diagnosis
systems, discrimination problems, decision problems and other aspects. The first
step for the rule induction is to find the condition attributes which do not have
any relationships with the decision attribute, to remove them and finally to
reduce the table. Those processes to obtain the reduced table are useful for
efficiently inducing rules and called a reduct. The conventional Rough Sets theory
to induce if-then rules is based on the indiscernibility of the samples of the table.
The reduct by the conventional method also uses the same concept and various
types of indiscernibility, methods to find their indiscernibility and algorithms for
the reducts are proposed to date [2–7].

This paper retests the conventional reduct methods through the use of a
simulation dataset and points out their problems after summarizing the conven-
tional rough sets and reduct methods. Then a new reduct method is proposed
to overcome their problems from a statistical point of view. Specifically, the
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Table 1. An example of a decision table.

U (C(1)C(2)C(3)C(4)C(5)C(6)) D

1 563242 3

2 256124 6

3 116226 1

4 416646 6

... ...... ...

N − 1 151252 2

N 513135 4

new method recognizes each sample data in the decision table as the outcomes
of random variables of the tuple of the condition attributes and the decision
attribute, since the dataset is obtained from their population of interest. Accord-
ingly, the reduct problem can be replaced by the problem of finding the condition
attributes which are statistically independent of the decision attribute and/or
its values. The statistical independence can be easily tested, for example, by
a Chi-square test using the dataset. The validity of the new reduct method is
confirmed by applying it to the simulation dataset. The experiment also gives
an idea of improving STRIM (Statistical Test Rule Induction Method [8–11])
to include the reduct function and to induce if-then rules more efficiently. The
usefulness of the reduct method and the improved STIRM are also confirmed by
applying them to a UCI dataset [12] prepared for machine learning.

2 Conventional Rough Sets and Reduct Method

Rough Sets theory is used for inducing if-then rules from a decision table S.
S is conventionally denoted S = (U,A = C ∪ {D}, V, ρ). Here, U = {u(i)|i =
1, ..., |U | = N} is a sample set, A is an attribute set, C = {C(j)|j = 1, ..., |C|} is
a condition attribute set, C(j) is a member of C and a condition attribute and
D is a decision attribute. V is a set of attribute values denoted by V = ∪a∈AVa

and is characterized by an information function ρ: U × A → V . Table 1 shows
an example where |C| = 6, |Va=C(j)| = MC(j) = 6, |Va=D| = MD = 6, ρ(x =
u(1), a = C(1)) = 5, ρ(x = u(2), a = C(2)) = 5, and so on.

Rough Sets theory focuses on the following equivalence relation and equiva-
lence set of indiscernibility:

IC = {(u(i), u(j)) ∈ U2|ρ(u(i), a) = ρ(u(j), a),∀a ∈ C}.

IC derives the quotient set U/IC = {[ui]C |i = 1, 2, ...}. Here, [ui]C = {u(j) ∈
U |(u(j), ui) ∈ IC , ui ∈ U}. [ui]C is an equivalence set with the representative
element ui and is called an element set of C in Rough Sets theory [2]. Let be
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Line No. Algorithm to compute a single global covering
1 (input: the set A of all attributes, partition {d}∗ on U ; output: a single global

covering R);
2 Begin
3 compute partition A∗;
4 P := A;
5 R := ∅;
6 if A∗ ≤ {d}∗

7 Then
8 Begin
9 for each attribute a in A do
10 Begin
11 Q := P − {a};
12 compute partition Q∗;
13 if Q∗ ≤ {d}∗ then P := Q
14 end {for}
15 R := P
16 end {then}
17 end {algorithm}

Fig. 1. An example of LEM1 algorithm.

∀X ⊆ U then X can be approximated like C∗(X) ⊆ X ⊆ C∗(X) by use of the
element set. Here,

C∗(X) = {ui ∈ U |[ui]C ⊆ X}, (1)
C∗(X) = {ui ∈ U |[ui]C ∩ X �= ∅}, (2)

C∗(X) and C∗(X) are called the lower and upper approximations of X by C
respectively. The pair of (C∗(X), C∗(X)) is usually called a rough set of X by
C. Specifically, let X = Dd = {u(i)|(ρ(u(i),D) = d} called concept D = d then
C∗(X) is surely a set satisfying D = d since C∗(X) ⊆ X and it derives if-then
rules of D = d with necessity.

The conventional Rough Sets theory seeks a minimal subset of C denoted
with B(⊆ C) satisfying the following two conditions:

(i) B∗(Dd) = C∗(Dd), d = 1, 2, ...,MD.
(ii) a(∈ B) satisfying (B − {a})∗(Dd) = C∗(Dd) (d = 1, 2, ...,MD) does not

exist.

B(⊆ C) is called a relative reduct of {Dd|d = 1, ...,MD} preserving the lower
approximation and is useful for finding if-then rules since redundant condition
attributes have been already removed from C.

LEM1 algorithm [2] and the discernibility matrix method (DMM) [3] are well
known as representative ways to perform reducts. Figure 1 shows an example of
LEM1, and A and {d}∗ at Line 1 of the figure respectively correspond to C
and {Dd|d = 1, ...,MD} in this paper. LEM1 from Line 6 to 16 in the figure in
principle checks and executes (i) and (ii) for all the combinations of the condition
attributes.

DMM [3] at first forms a symmetric N ×N matrix having the following (i, j)
element δij :
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δij = {a ∈ C|ρ(u(i), a) �= ρ(u(j), a)}; ∃d ∈ D, ρ(u(i), d) �= ρ(u(j), d) and
{u(i), u(j)} ∩ Pos(D) �= ∅, = ∗; otherwise.

Here, Pos(D) = ∪MD

d=1C∗(Dd) and ∗ denotes “don’t care”. Then, a relative reduct
preserving the lower approximation can be obtained by the following expression:

F reduct =
∧

i,j:i<j

∨
δij . (3)

3 Retests of the Conventional Reduct Method

Here we retest the ability of the reducts obtained through LEM1 and DMM
by use of a simulation dataset. Figure 2 [8–11] shows a way of how to generate
simulation datasets. Specifically let (a) generate the condition attribute values
of u(i), that is, uC(i) = (vC(1)(i), vC(2)(i), ..., vC(|C|)(i)) by the use of random
numbers with a uniform distribution and (b) determine the decision attribute
value of u(i) without NoiseC and NoiseD for a plain experiment, that is uD(i) by
use of if-then rules specified in advance and the hypotheses shown in Table 2 and
repeat the (a) and (b) processes by N times. Table 1 shows an example dataset
generated by the use of those procedures with the following if-then rule R(d)
specified in advance:

R(d) : if Rd then D = d (d = 1, ...,MD = 6), (4)

where Rd = (C(1) = d) ∧ (C(2) = d) ∨ (C(3) = d) ∧ (C(4) = d).

Rule Box &
Hypothesis

Input:

u (i)

Output:

u (i)C D

Observer
NoiseC NoiseD

Fig. 2. A data generation model for a decision table contaminated with noise.

Table 2. Hypotheses with regard to the decision attribute value.

Hypothesis 1 uC(i) coincides with R(k) and uD(i) is uniquely determined
as D = d(k) (uniquely determined data)

Hypothesis 2 uC(i) does not coincide with any R(d) and uD(i) can only
be determined randomly (indifferent data)

Hypothesis 3 uC(i) coincides with several R(d) (d = d1, d2, ...) and their
outputs of uC(i) conflict with each other. Accordingly, the
output of uC(i) must be randomly determined from the
conflicted outputs (conflicted data)
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The results of retesting both methods using the N = 10, 000 dataset showed
F reduct
LEM1 = F reduct

DMM = C(1)∧C(2)∧C(3)∧C(4)∧C(5)∧C(6) while the results were
expected to be F reduct = C(1) ∧ C(2) ∧ C(3) ∧ C(4) from the rules (4) specified
in advance. The retest experiment was repeated three times by changing the
generated dataset and obtained the same results.

These results are clearly derived from the indiscernibility and/or discernibil-
ity caused by the element set which could not distinguish the differences between
samples by the if-then rules (see Hypothesis 1 in Table 2) or those obtained by
chance (see Hypothesis 2 and 3 in Table 2).

4 Proposal of Statistical Reduct Method

As mentioned in Sect. 3, the conventional reduct methods are unable to repro-
duce the forms of reducts specified in advance from the decision table due to
a lack of abilities adaptive to the indifferent and conflicted samples in datasets
despite the fact that real-world datasets will have such samples. This paper
studies this problem with reducts from the view of STRIM (Statistical Test
Rule Induction Method) [8–11]. STRIM regards the decision table as a sample
set obtained from the population of interest based on the input-output system
as shown in Fig. 2. According to a statistical model, u(i) = (uC(i), uD(i) =
(vC(1)(i), vC(2)(i), ..., vC(|C|)(i), uD(i)) is an outcome of the random variables of
A = (C,D) = (C(1), C(2), ..., C(|C|),D) (hereafter, the names of the attributes
are used as the random variables). Then, the following probability model will be
specified: For any j, P (C(j) = vC(j)(k)) = p(j, k),

∑MC(j)

k=1 p(j, k) = 1. For any
j1 �= j2, C(j1) and C(j2) are independent of each other for simplicity. According
to the rules specified in (4), if C = (1, 1, 2, 3, 4, 5) (hereafter (112345) briefly),
for example, then P (D = 1|C = (112345)) = 1.0 by use of Hypothesis 1 in
Table 2. If C = (123456) then P (D = 1|C = (123456)) = 1/MD = 1/6 by use
of Hypothesis 2. If C = (112256) then P (D = 1|C = (112256)) = 1/2 by use
of Hypothesis 3. Generally, the outcome of random variable D is determined by
the outcome of C, if-then rules (generally unknown) and the hypothesis shown
in Table 2. Consequently, the following expression is obtained:

P (D = l, C = uC(i)) = P (D = l|C = uC(i))P (C = uC(i)). (5)

Here, P (D = l|C = uC(i) is the conditional probability of D = l by C = uC(i)
and very dependent on the if-then rules to be induced.

In the special case, if C(j) does not exist in the condition part of the if-
then rules of D = l, then the event D = l is independent of C(j), that is
P (D = l, C(j)) = P (D = l|C(j))P (C(j)) = P (D = l)P (C(j)). This indepen-
dence between D = l and C(j) can be used for a reduct of the decision table
for the concept D = l. The problem of whether they are independent or not
can be easily dealt with using a statistical test of hypotheses by the use of
{u(i) = (vC(1)(i), vC(2)(i), ..., vC(|C|)(i), uD(i))|i = 1, ..., N}. Specifically, specifi-
cations and testing of the following null hypothesis H0(j, l) and its alternative
hypothesis H1(j, l) (j = 1, ..., |C|, l = 1, ...MD) were implemented:



Proposal for a New Reduct Method for Decision Tables 371

Table 3. Example of contingency table by a statistical reduct (N = 3000, df = 5).

D = 1 |U(D = 1)| = 503 C

1 2 3 4 5 6

1 158 150 135 118 68 89

2 69 76 88 74 79 76

3 63 63 57 81 94 96

4 69 77 74 71 93 71

5 76 67 72 78 84 84

6 68 70 77 81 85 87

χ2 74.00 78.92 45.84 28.22 4.00 4.83

p-values 1.51E−14 1.41E−15 9.34E−9 3.30E−05 0.550 0.437

H0(j, l): C(j) and D = l are independent of each other.
H1(j, l): C(j) and D = l are not independent of each other.

This paper adopts a Chi-square test since it is a standard method for testing
the independence of two categorical variables by use of the contingency table
MC(j) × 1. The test statistic χ2 of C(j) vs. D = l is

χ2 =
MC(j)∑

k=1

(fkl − ekl)2

ekl
, (6)

where, fkl = |U(C(j) = k)∩U(D = l)|, U(C(j) = k) = {u(i)|ρ(u(i), C(j)) = k},
U(D = l) = {u(i)|uD(i) = l}, ekl = np̂(j, k)p̂(D, l), n =

∑MC(j)

k=1

∑MD

l=1 fkl,
p̂(j, k) = fk

n , p̂(D, l) = f l

n , fk =
∑MD

l=1 fkl, f l =
∑MC(j)

k=1 fkl. χ2 obeys a Chi-
square distribution with degrees of freedom df = (MC(j) − 1) under H0(j, l)
and testing condition [13]: np̂(j, k)p̂(D, l) ≥ 5. This paper proposes a reduct
method to adopt only the C(j)s of H0(j, l) that were rejected and to construct
a decision table for D = l composed by them, since the test of the hypotheses
cannot control type II errors, but only type I errors by a significance level.
This paper names the proposed method the statistical reduct method (SRM) to
distinguish it from the conventional methods.

A simulation experiment was conducted to confirm the validity of the pro-
posed method using the decision table of the samples of N = 10, 000 used in
Sect. 2, and the following procedures:

Step 1: Randomly select samples by NB = 3000 from the decision table (N =
10, 000), and form a new decision table.

Step 2: Apply SRM to the new table, and calculate χ2 every C(j) by D = l.

Table 3 shows an example of the contingency table for the case of D = 1
vs. C(j) (j = 1, ..., 6) and the results of a Chi-square test of them with df =
(MC(j) − 1), and suggests the following knowledge:
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(1) The p-values of C(5) and C(6) are quite high compared with the other
condition attributes and indicate that C(5) and C(6) are independent of D =
1, that is, they are redundant and should be removed from the viewpoint of
reduct.

(2) The frequencies fkl=1 of C(1) = 1, C(2) = 1, C(3) = 1 and C(4) = 1 are
relatively high compared with those of the rest of the same C(j) (j = 1, ..., 4).
Accordingly, the combinations of C(j) = 1 (j = 1, ..., 4) will most likely
construct the rules of D = 1, which coincides with the rules specified in (4).

The above knowledge of (1) and (2) was also confirmed for the case of D = l
(l = 2, ..., 6) and coincided with the specifications of Rules (4), and thus through
them the validity and usefulness of SRM have been confirmed.

5 Proposal of Improved STRIM

STRIM has been proposed as a method to induce if-then rules from decision
tables by use of two stages [8–11]. The first stage is that of searching rule can-
didates by the following procedures:

Step 1: Specify a proper condition part of trying if-then rules:

CP (k) =
∧

j

(C(jk) = vk). (7)

Step 2: Test the condition part on the null hypothesis (H0) that CP (k) is not
a rule candidate and its alternative hypothesis (H1) specifying a proper sig-
nificance level. Specifically, use a test statistic z = (nd+0.5−npd)√

npd(1−pd)
which obeys

the normal distribution N(0, 12) on H0, if npd ≥ 5, n(1 − pd) ≥ 5 (testing
condition [14]). Here, pd = 1

|MD| , nd = max(n1, n2, ..., nMD
), n =

∑MD

m=1 nm,
nm = |U(CP (k)) ∩ U(D = m)|, U(CP (k)) = {u(i)|uC(i) satisfies CP (k)},
U(D = m) = {u(i)| uD=m(i)}.

Step 3: If H0 is rejected then add the trying rule to the rule candidates.
Step 4: Repeat from Step 1 to Step 3 changing the trying rule systematically

until the patterns of it are exhausted.

The basic notion of STRIM is that the rule makes a bias in the distrib-
ution of decision attribute values (n1, n2, ..., nMD

). It should be noted that
P (D|CP (k)) = P ( if CP (k) then D) corresponding to (5), and can be estimated
by (n1, n2, ..., nMD

)/n using the sample set.
The second stage is that of arranging the rule candidates having an inclusion

relationship by representing them with CP (k) of the maximum bias.
However, the conventional STRIM [8–11] did not have such a reduct function

studied in Sect. 4 so that it had to search CP (k)s in (7) including even C(j) to be
reducted and induced many kinds of rule candidates to burden the second stage.
The knowledge from (1) and (2) studied in Sect. 4 can drastically squeeze the
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Line No. Algorithm to induce if-then rules by STRIM with a reduct function
1 int main(void) {
2 int rdct max[|CV|] = {0, ... ,0}; //initialize maximum value of C(j)
3 int rdct[|CV|] = {0, ..., 0}; //initialize reduct results by D = l
4 int rule[|C|] = {0, ..., 0}; //initialize trying rules
5 int tail = -1; //initial vale set
6 input data; // set decision table
7 for (di = 1; di<= |D|; di++) { // induce rule candidates every D = l
8 attribute reduct(rdct max)
9 set rdct[ck] ; // if (rdct max[ck]==0) {rdct[ck] = 0;} else {rdct[ck] = 1;}
10 rule check(rcdct, redct max, tail, rule); // the first stage process
11 }// end of di
12 arrange rule candidates // the second stage
13 }// end of main
14 int attribute reduct(int rdct max[]) {
15 make contingency table for D = l vs. C(j)
16 Test H0(j,l);
17 if H0(j,l) is rejexted then set rdct max[j,l] = jmax else rdct max[j,l] = 0; //

jmax:the attribute vale of the maximum frequency
18 }// end of attribute reduct
19 int rule check(int rdct[], int rdct max[], int tail,int rule[]) { // the first stage

process
20 for (ci = tail+1; cj<|C|; ci++) {
21 for (cj = 1; cj <= rdct[ci]; cj++) {
22 rule[ci] = rdct max[cj]; // a trying rule sets for test
23 count frequency of the trying rule; // count n1, n2, ...
24 if (frequency>= N0) { //sufficient frequency ?
25 if (|z|>3.0) { //sufficient evidence ?
26 add the trying rule as a rule candidate
27 }// end of if |z|
28 rule check(ci,rule)
29 }// end of if frequency
30 }// end of for cj
31 rule[ci] = 0; // trying rules reset
32 }// end of for ci
33 }// end of rule check

Fig. 3. An algorithm for STRIM including a reduct function.

search space without idle C(j)s and/or its values. Figure 3 shows an algorithm
for the improved STRIM described in a C language style including the reduct
function “attribute reduct()” (Line 14–18) studied in Sect. 4. The first stage
(Line 7–11) is executed every D = l in a function “rule check()” (Line 19–33)
after operating the reduct (Line 8). The algorithm develops the patterns of trying
rules implemented by the dimension “rule[]” (Line 4), for example, for D = 1
as (100000) → (110000) → (111000) → (111100) → (110100) → (101100) →
(10010) → (010000) ... → (001100) → (000100) by the operation of “rule[ci] =
rdct max[cj]” (Line 22) and the recursive call of “rule check(ci,rule)” (Line 28)
since “rdct max[] = [1, 1, 1, 1, 0, 0]” and “rdct[] = [1, 1, 1, 1, 0, 0]” at Line 9 have
been obtained (see Table 3). Accordingly, the number of trying rule patterns
for R(d) specified in (4) is (24 − 1) × 6 = 90. If the function of reduct is not
implemented, the number is (66 − 1) × 6 = 279, 930, which burdens the second
stage with a heavy load. From here, the effectiveness of the improved STRIM
can be seen.
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Table 4. An example of rule candidates.

Trying CP (k) C(1)C(2)C(3)C(4)C(5)C(6) f = (n1, n2, n3, n4, n5, n6) z

1 004400 (2, 1, 1, 101, 2, 1) 21.45

2 002200 (0, 91, 0, 2, 0, 0) 21.43

... ... ... ...

5 005500 (1, 0, 1, 2, 78, 2) 19.07

6 440000 (2, 0, 0, 76, 2, 1) 18.70

... ... ... ...

12 001100 (63, 2, 0, 0, 2, 2) 16.7

13 000400 (71, 62, 68, 168, 74, 73) 9.63

14 004000 (74, 67, 79, 170, 72, 73) 9.32

15 303000 (5, 4, 39, 5, 7, 6) 9.26

16 400000 (69, 74, 61, 154, 65, 61) 8.90

17 404000 (13, 6, 13, 45, 4, 6) 8.86

... ... ... ...

20 400400 (14, 8, 7, 48, 11, 11) 8.57

... ... ... ...

Table 4 shows examples of the rule candidates arranged in descending order
from z value obtained from the distribution of decision attribute values f =
(n1, n2, ..., nMD

) by applying the improved STRIM to the dataset shown in
Table 3. We can see the following from the table:

(1) The trying rule CP (k = 1) = 004400 makes bias of the distribution of D
like f = (2, 1, 1, 101, 2, 1) at D = 4 intensively. Accordingly, the candidate is
a rule for D = 4. The intensity of the bias can be measured by the z value
as mentioned in Step 2.

(2) There are inclusion relationships between rule candidates, for example,
U(CP (1) = 004400) ⊂ U(CP (14) = 004000), U(CP (17) = 404000) ⊂
U(CP (14) = 004000), while the z value of CP (1) > that of CP (14) and
the z value of CP (14) > that of CP (17).

The second stage at Line 12 in Fig. 3 arranges their candidates and represents
them with only CP (1), which happens to coincide with the specified rule in (4).
Table 5 shows the last results induced through the first and second stages with D,
f , p-value, accuracy and coverage besides CP (k). Here, accuracy and coverage
are defined as follows:

accuracy =
|U(CP (k)) ∩ U(D = d)|

|U(CP (k))| , coverage =
|U(CP (k)) ∩ U(D = d)|

|U(D = d)| ,

and they are often used for showing the indexes of the validity of the induced
rules in Rough Sets theory. The improved STRIM induced all of twelve rules
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Table 5. Estimated rules for the decision table in Table 3 by improved STRIM.

Trying
CP (k)

C(1)C(2)C(3)
C(4)C(5)C(6)

D f = (n1, n2, n3,
n4, n5, n6)

p-value(z) Accuracy Coverage

1 004400 4 (2, 1, 1, 101, 2, 1) 2.09E−102(21.45) 0.94 0.20

2 002200 2 (0, 91, 0, 2, 0, 0) 3.37E−102(21.43) 0.98 0.19

3 110000 1 (91, 3, 2, 1, 10) 6.57E−92(20.3) 0.93 0.18

4 330000 3 (1, 1, 89, 3, 0, 0) 6.33E−91(20.19) 0.95 0.17

5 005500 5 (1, 0, 1, 2, 78, 2) 2.15E−81(19.07) 0.93 0.16

6 440000 4 (2, 0, 0, 76, 2, 1) 2.92E−78(18.70) 0.94 0.15

7 003300 3 (1, 4, 77, 0, 0, 1) 6.70E−77(18.52) 0.93 0.15

8 550000 5 (1, 1, 2, 0, 75, 3) 9.15E−77(18.51) 0.91 0.15

9 660000 6 (0, 3, 1, 3, 0, 76) 5.32E−76(18.41) 0.91 0.15

10 006600 6 (3, 3, 3, 3, 0, 73) 8.69E−67(17.22) 0.86 0.15

11 220000 2 (0, 60, 1, 2, 0, 2) 2.46E−63(16.76) 0.92 0.12

12 001100 1 (63, 2, 0, 0, 2, 2) 3.63E−63(16.74) 0.93 0.13

13 303000 3 (5, 4, 39, 5, 7, 6) 9.56E−21(9.27) 0.59 0.076

Table 6. An arrangement of Car Evaluation dataset of UCI.

Unified
attribute value

C(1):
buying

C(2):
maint

C(3):
doors

C(4):
person

C(5):
lug boot

C(6):
safety

D:
class (freq.)

1 vhigh vhigh 2 2 small low unacc (1210)

2 high high 3 4 med med acc (383)

3 med med 4 more big high good (69)

4 low low 5more – – – vgood (65)

specified in advance from the decision table with N = 3, 000, and also one extra
rule. However, there are clear differences between them in the indexes of accuracy
and coverage.

6 An Example of Application for an Open Dataset

This paper applied SRM for the “Car Evaluation” dataset included in the litera-
ture [12]. Table 6 shows the summaries and specifications of the dataset: |C| = 6,
|C(1)| = 4,..., |{D}| = 4, N = |U | = |C(1)|×, ...,×|C(6)| = 1, 728 which consists
of every combination of condition attributes’ values and there were no conflicted
or identical samples. The frequencies of D extremely incline toward D = 1 as
shown in Table 6.

Table 7 shows the results obtained by SRM and suggests the following:

(1) Given 1.0E −5 as the critical p-value, C(3) is commonly redundant at D = l
(l = 1, ..., 4).

(2) With regard to the if-then rule of D = 1, C(5) is redundant besides C(3).
In the same way, so are C(2) and C(5) at D = 2, as well as C(5) at D = 3.
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Table 7. Results by SRM for Car Evaluation dataset.

C(1) C(2) C(3) C(4) C(5) C(6)

D = 1 χ2 22.94 19.24 2.58 111.00 8.81 118.81

p-value 4.16E−05 2.44E−04 4.62E−01 7.88E−25 1.22E−02 1.59E−26

D = 2 χ2 11.77 10.77 3.19 192.56 6.52 194.25

p-value 8.21E−03 1.30E−02 3.64E−01 1.53E−42 3.85E−02 6.59E−43

D = 3 χ2 84.33 84.33 0.39 34.70 0.26 36.26

p-value 3.61E−18 3.61E−18 9.42E−01 2.92E−08 8.78E−01 1.34E−08

D = 4 χ2 70.20 28.60 4.23 33.08 37.69 130.00

p-value 3.87E−15 2.72E−06 2.38E−01 6.57E−08 6.53E−09 5.90E−29

Table 8. Examples of contingency table and χ2 test by SRM ((a): D = 1 vs. C(j),
(b): D = 4 vs. C(j) (j = 1, ..., 6)).

(a) D = 1

VC(i) C(1) C(2) C(3) C(4) C(5) C(6)

1 360 360 326 576 450 576

2 324 314 300 312 392 357

3 268 268 292 322 368 277

4 258 268 292 – – –

χ2 22.94 19.24 2.58 111.00 8.81 118.81

p-value 4.16E−05 2.44E−04 4.62E−01 7.88E−25 1.22E−02 1.59E−26

(b) D = 4

VC(i) C(1) C(2) C(3) C(4) C(5) C(6)

1 – – 10 – – –

2 – 13 15 30 25 –

3 26 26 20 35 40 65

4 39 26 20 – – –

χ2 70.20 28.60 4.23 33.08 37.69 130.00

p-value 3.87E−15 2.72E−06 2.38E−01 6.57E−08 6.53E−09 5.90E−29

Table 8 shows examples of the contingency tables of D = 1 (a) and D = 4
(b), and their χ2 by SRM, and suggests the following knowledge:

(1) With regard to the if-then rules of D = 1, (a) the frequencies of C(1) = 1,
C(2) = 1, C(4) = 1 and C(6) = 1 are distinctively high. Accordingly, the
if-then rules of D = 1 are supposed to be constructed by the combinations
of them as shown in the knowledge (2) studied in Sect. 4.

(2) In the same way, the if-then rules of D = 4 are constructed by the combi-
nations of C(1) = 4, C(2) = 4, C(5) = 3 and C(6) = 3.
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Table 9. Estimated rules of D = 1 (a) and D = 4 (b) for Table 6

(a) D = 1

Trying
CP (k)

C(1)C(2)C(3)
C(4)C(5)C(6)

D f = (n1, n2,
n3, n4)

p-value(z) Accuracy Coverage

1 000100 1 (576, 0, 0, 0) 3.51E−56(15.75) 1.00 0.476

2 000001 1 (576, 0, 0, 0) 3.58E−56(15.75) 1.00 0.476

3 110000 1 (108, 0, 0, 0) 2.52E−12(6.90) 1.00 0.089

(b) D = 4

Trying
CP (k)

C(1)C(2)C(3)
C(4)C(5)C(6)

D f = (n1, n2,
n3, n4)

p-value(z) Accuracy Coverage

1 400003 4 (52, 33, 20, 39) 1.08E−50(14.93) 0.271 0.600

2 000033 4 (88, 64, 0, 40) 7.93E−37(12.62) 0.208 0.615

3 000303 4 (49, 96, 12, 35) 3.84E−37(10.73) 0.182 0.538

Corresponding to Tables 8, 9 shows estimated rules of D = 1 (a) and D = 6
(b). With regard to rules of D = 1, the improved STRIM clearly induces their
rules. To express those rules by use of the original notation in Table 6, if person
= “2” ∨ safety = “low” ∨ buying = “vhigh” ∧ maint = “vhigh” then class =
“unacc” is obtained with accuracy = 1.0 and coverage = 1, 008/1, 210 ≈ 0.833.
In the same way, three examples of the trying rule of D = 4 satisfying the testing
condition np̂(j, k) ≥ 5 (for D = 4, n ≥ 5

0.04 = 125) are shown in Table 9 (b)
although their nd = max(n1, n2, ..., nMD

) is not satisfied at D = 4 (in the table
D = 4 is forcibly entered). The first rule that if buying = “low” ∧ safety =
“high” then class = “vgood” is thought to be proper since the p-value is the
best and the indexes of accuracy and coverage are moderate among the trying
rules for D = 4. Both estimated rules for D = 1 and 4 coincide with our common
sense.

7 Conclusions

The Rough Sets theory has been used for inducing if-then rules from the deci-
sion table. The first step in inducing the rules is to find reducts of the condition
attributes. This paper retested the conventional reduct methods LEM1 [2] and
DMM [3] by a simulation experiment after summarizing the conventional Rough
Sets theory and pointed out their problems. Then, this paper proposed a new
statistical reduct method (SRM) to overcome the problems of the conventional
method from the view of STRIM [8–11]. STRIM including SRM was devel-
oped and its validity and usefulness were confirmed by a simulation experiment
and application to an open dataset of UCI for machine learning. The improved
STRIM should be recognized to be particularly useful for not only reducts of
condition attributes but also inducing if-then rules.
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