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Abstract. Most optimization problems in real-life have multiple con-
straints. Constrained optimization problems with more than one objec-
tive, with at least two objectives in conflict with one another, are referred
to as constrained multi-objective optimization problems (CMOPs). Two
main approaches to solve constrained problems are to add a penalty
to each objective function and then optimizing the new adapted objec-
tive function, or to adapt the Pareto-dominance principle that are
used to compare two solutions in such a way that constraint viola-
tions are taken into consideration. This paper investigates how these two
approaches affect the performance of the steady-state non-dominated
sorting genetic algorithm II (SNSGAII), the Pareto-archived evolution
strategy (PAES), the multi-objective evolutionary algorithm based on
decomposition (MOEA/D) and a cultural algorithm (CA) when solving
CMOPs. The results indicate that there is no statistical significant differ-
ence in performance between these two approaches. However, depending
on the multi-objective evolutionary algorithm (MOEA) one approach
does provide slightly better solutions than the other approach.

1 Introduction

Many optimization problems have more than one objective, with at least two
objectives in conflict with one another. Therefore, improving on one objective
leads to a weakening of another objective. This kind of problems are referred to as
multi-objective optimization problems (MOPs). Evolutionary algorithms (EAs)
are computational intelligence algorithms that are based on the natural model of
evolution and are commonly used to solve MOPs [3]. Constrained multi-objective
optimization problems CMOP refer to MOPs with inequality and/or equality
constraints, in addition to boundary constraints of unconstrained MOPs.

Constrained MOPs are more difficult to solve, since the constraints limit
the number of valid solutions in the search space, i.e. the feasible space. Two
approaches that are frequently used to solve CMOPs with a (MOEA) are:

– Adding a penalty term (function) to each objective function and then opti-
mizing the adapted objective functions [21]
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– Adapting the Pareto-dominance [8,16] equations to take into account the
violation of constraints [5]

The problem with the penalty appraoch is that you are changing the objec-
tive function by adding an additional term, the penalty term, to the objective
function. Since the various objective functions of the CMOP can have differ-
ent orders of magnitude, the order of magnitude of the penalty term should
also differ. However, the value selected for the penalty term will also influence
the quality of the solutions that are found, since the penalty term balances the
influence of constraint violation on the fitness of a specific solution. A too small
contribution by the penalty term to the fitness value may lead to a set of infea-
sible solutions being found. In contrast, a too high penalty term may lead to a
poor distribution of found solutions [5].

This paper investigates the influence of these two constraint-handling
approaches on the steady-state non-dominated sorting genetic algorithm II (SNS-
GAII), the Pareto-archived evolution strategy (PAES), the multi-objective evo-
lutionary algorithm based on decomposition (MOEA/D) and the cultural algo-
rithm (CA) when solving CMOPs with various characteristics.

The rest of the paper’s layout is as follows: Sect. 2 provides an overview of
CMOP, the algorithms and the constraint-handling approaches. The experimen-
tal setup is discussed in Sect. 3. Section 4 presents the results of the study and
conclusions are highlighted in Sect. 5.

2 Background

This section discusses CMOP, as well as the algorithms and constraint-handling
approaches that were used in the study.

2.1 Constrained Multi-objective Optimization

A CMOP can be defined as follows:

minimize : fk(x), k = 1, 2, . . . , nk

subject to : gm(x) ≥ 0, m = 1, . . . , ng

hm(x) = 0, m = ng + 1, . . . , ng + nh

xL
i ≤ xi ≥ xU

i , i = 1, 2, . . . , nx

(1)

where fk represents the k-th objective function, and gm and hm represent the m-th
inequality and equality constraint respectively. The i-th component of the upper
boundary value of x is indicated by xU

i and the lower boundary value by xL
i .

Due to the inequality and equality constraints in Eq. 1 not all solutions in the
search space will be feasible. Various approaches exist to deal with CMOP [5,
11,18] and to guide the search of the algorithm towards feasible solutions. Two
approaches that are simple to implement are the following:
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– Adding a penalty term to the objective function
– Modifying the Pareto-dominance equations to consider constraint violations

Assuming that you minimize all objective functions (a maximizing objective
function can be managed by converting it to a minimization function using
the duality principle), all constraints are first normalized before the constraint
violation is calculated. Let the normalized constraint functions be represented
by g∗

m(xi) ≥ 0 for m = 1, 2, . . . , ng. Then for each solution xi the constraint
violation is calculated as follows [5]:

ωm(xi) =

{
|g∗(xi)|, if g∗(xi) < 0
0, otherwise

All constraint violations are then added together:

Ω(xi) =
ng∑
j=1

ωm(xi)

The combined constrained violation value (Ω) is multiplied with a penalty
parameter (Pk) and this product is then added to each of the objective function
values as follows:

f∗
k (xi) = fk(xi) + PkΩ(xi) (2)

For a feasible solution the Ω term in Eq. (2) will be zero and f∗
k = fk.

The second approach is to keep the objective function (fk) unchanged, but
to modify the Pareto-dominance comparison of vectors. When solving a MOP
a single fitness value does not exit. Therefore, a new approach is required to
compare two solutions’ quality. Typically, Pareto-dominance is used:

Definition 1. Assuming minimization, a solution xi is better in quality than
another solution xj if:

f(xa
i ) < f(xa

j ) ∀a = 1, . . . , A (3)

∃ xb
i : f(xb

i ) ≤ f(xb
j) with b ∈ [1, nx] (4)

If xi is better than xj , xi dominates xj , written as xi ≺ xj . If not one of the
solutions are better in quality than the other, the solutions are non-dominated.
The set of non-dominated solutions in the objective space is referred to as the
Pareto-optimal front (POF).

Definition 1 does not take constraint violations into consideration. Therefore,
when comparing solutions of a CMOP Definition 1 has to be adapted as follows:

Definition 2. Assuming minimization, a solution xi constrain-dominates
another solution xj if:

1. xi is feasible and xj is infeasible
2. xi and xj are both infeasible, but xi has a smaller constraint violation
3. xi and xj are both feasible and xi ≺ xj according to Definition 1.
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2.2 Algorithms

The non-dominated sorting genetic algorithm II (NSGA-II) is a multi-objective
genetic algorithm (MOGA) modelled on genotypic behaviour and is still the
standard benchmark algorithm in multi-objective optimization (MOO) studies
[7,14]. The algorithm improves on the O(MN3) complexity of previous non-
dominated sorting genetic algorithm (GA) [21], as well as adds elitism whilst
removing the need for a sharing parameter [7].

PAES is a MOEA that uses an (1+1)-ES that uses only mutation on a single
parent to create a single offspring. Therefore, PAES is a local search strategy [13].
It uses an archive to store the non-dominated solutions found so far and it
maintains diversity through a crowding procedure that recursively divides the
objective space into a grid.

MOEA/D is an EA based on the concept of decomposition [22]. It decomposes
a MOP into a number of sub-problems and then optimizes the sub-problems
simultaneously. Each sub-problem is optimized using only information from its
neighbouring sub-problems. Each population contains the best solution for each
of the sub-problems.

EAs mainly focus on genetic concepts and natural selection. However, CAs
model cultural evolution and are based on theories in sociology and archeol-
ogy [19]. Individuals are described through behavioural traits and can generate
generalized descriptions of their experience. CA was extended to solve MOPs by
Coello and Becerra [4].

3 Experimental Setup

This section discusses the experimental setup used for this study. The algorithms
are discussed in Sect. 3.1. Sections 3.2 and 3.3 present the benchmarks and per-
formance measures that were used to evaluate the performance of the algorithms
on CMOPs. The statistical analyses conducted on the obtained results are dis-
cussed in Sect. 3.4.

3.1 Algorithms

The following algorithms were used in this study: SNSGA-II [7], PAES [13],
MOEA/D [22] and CA [4]. For each of these algorithms two configurations were
used in the study, namely one configuration that implemented the penalty func-
tion approach and one configuration that implemented the modified Pareto-
dominance approach (refer to Sect. 2.1).

Each algorithm was run 30 times for a maximum of 25 000 fitness evalua-
tions. Each algorithm had a population size of 100 and PAES used 3 bi-sections.
The crossover probability was set to 0.75 and the mutation probability to 0.1,
since these values promote a balance between exploration and exploitation of
the search space [9]. Simulated binary crossover (SBX) [6] and polynomial muta-
tion [5] were used to generate the offspring, where applicable. For MOEA/D, the
neighbour size was set to 20, the neigbour selection probability to 0.9 and the
maximum number of replaced solutions to 2.



Solving Constrained Multi-objective Optimization Problems 61

3.2 Benchmark Functions

The following benchmark functions were used to evaluate the performance of the
various algorithms:

– Binh2 with 2 decision variables and 2 inequality constraints [1], referred to
as f1

– Osyczka2 that has 6 decision variables and 6 inequality constraints [15],
referred to as f2

– Srinivas with 2 decision variables and 2 inequality constraints [21], referred
to as f3

– Two Bar Truss with 3 decision variables, 4 inequality constraints and a bound-
ary constraint [12], referred to as f4

– Welded Beam that has 4 decision variables and 4 constraints [17], referred to
as f5

3.3 Performance Measures

This section discusses the performance measures that were used to evaluate the
performance of the MOEAs.

Inverted Generational Distance (IGD). Inverted generational distance
(IGD) measures the distance between each solution in the optimal POF and
the closest solution in the approximated POF [20]. A small value indicates that
an algorithm performed well with regards to both convergence and diversity.

Hypervolume (HV). The hypervolume (HV) or S-metric measures how much
of the objective space is dominated by a non-dominated set [23,24]. The reference
vector or reference point that was used in the HV calculation was the vector that
consisted of the worst value for each objective of the union of all non-dominated
solutions of all approximated POFs that were compared against each other.
A high HV value indicates good performance.

ε Metric (εm). Zitzler et al. presented the ε-metric (εm) to compare approxi-
mated sets [25]. It measures the factor by which an approximation set is worse
than another approximation set with respect to all objectives, i.e. it provides
the factor ε where for any solution in set B there is at least one solution in set
A that is not worse by a factor of ε in all objectives. A small EP value indicates
good performance.

3.4 Statistical Analysis

For each performance measure a Friedmann Test was performed to determine
whether there was a statistical significant differences between the entire set of
results. If the Friedmann Test indicated a statistical significant difference, pair-
wise Mann-Whitney U tests were conducted between the various algorithm con-
figurations. If the Mann-Whitney U test indicated a statistical significant differ-
ence, the algorithm with the best average for the specific measure was awarded
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a win and the other algorithm a loss. All statistical tests were conducted with a
confidence level of 95%.

4 Results

This section discusses the results that were obtained from the experiments.

4.1 Inverted Generational Distance

This section discusses the IGD values that were obtained by the various algo-
rithms. The IGD mean and standard deviation values are presented in Table 1.
In Table 1 D refers to the modified Pareto-dominance approach and P refers to
the penalty function approach.

Table 1. IGD mean and standard deviation values

SSNSGA-II(D) SSNSGA-II(P) PAES(D) PAES(P)

f1 1.17E−04± 2.17E−06 1.18E−04± 1.68E−06 1.19E−02± 1.86E−03 1.16E−02± 1.93E−03

f2 4.09E−03± 1.19E−04 4.06E−03± 1.53E−04 2.63E−02± 1.91E−02 3.08E−02± 1.67E−02

f3 8.14E−04± 3.55E−06 7.02E−04± 3.74E−06 1.31E−02± 1.01E−02 1.77E−02± 8.08E−03

f4 7.05E−04± 6.20E−06 5.98E−04± 1.28E−05 1.48E−02 ± 7.02E−03 1.65E−02± 7.02E−03

f5 2.05E−03± 1.06E−06 2.03E−03± 3.47E−05 2.23E−02± 9.88E−03 1.85E−02± 1.06E−02

MOEA/D(D) MOAE/D(P) CA(D) CA(P)

f1 5.08E−04± 3.72E−06 5.18E−04± 7.91E−06 1.07E−02 ± 1.37E−03 1.19E−02± 1.79E−03

f2 4.84E−03± 3.41E−04 4.48E−03 ± 2.55E−04 5.40E−02± 2.79E−02 4.95E−02± 3.14E−02

f3 8.19E−04± 8.87E−07 7.20E−04± 1.85E−06 1.48E−02± 8.48E−03 2.00E−02± 7.86E−03

f4 1.02E−02± 1.72E−04 1.01E−02 ± 1.62E−04 1.28E−02± 3.56E−03 1.32E−02± 2.60E−03

f5 1.27E−02± 4.07E−04 1.10E−02 ± 2.93E−04 7.66E−02 ± 8.49E−02 2.65E−01± 4.79E−01

From Table 1 it can be seen that for SNSGA-II both constraint-dealing
approaches performed equally well. Not one of the approaches obtained a better
average and standard deviation value for any of the functions. For MOEA/D the
penalty function approach obtained the best IGD average and standard devia-
tion values for 3 of the functions (indicated in bold) and the modified Pareto-
dominance approach for none of the functions. In contrast, for the CA and
PAES, the modified Pareto-dominance approach obtained the best IGD average
and standard deviation values for 2 and 1 of the 5 functions respectively, and
the penalty function approach for none of the functions.

Applying a Friedman Test on the means of the IGD values revealed that the
null hypothesis had to be rejected, and hence, there was a statistical significant
difference in the performance of the algorithms. The results of the Mann-Whitney
U tests are presented in Table 2. In Table 2, < indicates that the left hand algo-
rithm performed statistical significantly better than the right hand algorithm, >
indicates that the left hand algorithm performed statistical significantly worse
than the right hand algorithm, and = indicates equivalent performance. The
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Table 2. Comparison of algorithms’ performance using Mann-Whitney U tests

SSNSGA-
II(D)

SSNSGA-
II(P)

PAES(D) PAES(P) MOEA/D(D) MOAE/D(P) CA(D) CA(P)

SSNSGA-II(D) N/A = < < = = < <

SSNSGA-II(P) = N/A < < = = < <

PAES(D) > > N/A = > > = =

PAES(P) > > = N/A = > = =

MOEA/D(D) = = < = N/A = < <

MOAE/D(P) = = < < = N/A < <

CA(D) > > = = > > N/A =

CA(P) > > = = > > = N/A

results indicate that for each of the MOEAs there was not a statistical signif-
icant difference in performance between the configurations that incorporated
the two constraint-dealing approaches. However, there was a statistical signifi-
cant difference in performance when the various MOEAs were compared against
one another. Both SNSGA-II configurations outperformed both configurations
of PAES and CA. MOEA/D using the penalty function also outperformed both
configurations of PAES and CA. The modified Pareto-dominance MOEA/D out-
performed both configurations of CA and only the modified Pareto-dominance
approach of PAES. The modified Pareto-dominance MOEA/D experienced no
statistical significant difference in performance with the penalty function configu-
ration of PAES. There was also no statistical significant difference in performance
between the SNSGA-II and MOEA/D configurations.

The percentage of wins obtained by each of these two constraint-dealing
approaches for IGD is presented in Table 3. The results indicate that the penalty
function approaches marginally outperformed the modified Pareto-dominance
approaches.

Table 3. Wins obtained by the two constraint-dealing approaches

D P

Win percentage 12.5% 19.64%

4.2 Hypervolume and ε-metric

Friedman Tests on the mean HV values and the mean εm values indicated that
there was no statistical significant difference in performance of the various algo-
rithms. The HV and εm values are presented in Tables 4 and 5.

The penalty-based SNSGA-II outperformed the modified Pareto-dominace
SNSGA-II by obtaining the better HV mean and deviation for 2 functions.
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Table 4. HV Mean and standard deviation values

SSNSGA-II(D) SSNSGA-II(P) PAES(D) PAES(P)

f1 8.12E−01± 2.76E−05 8.12E−01± 4.38E−05 4.52E−01± 7.61E−02 4.64E−01± 9.86E−02

f2 1.19E−01± 1.20E−03 1.20E−01± 1.75E−03 1.20E−01± 8.57E−02 1.63E−01± 7.88E−02

f3 3.92E−01± 1.93E−04 4.90E−01± 1.01E−04 2.10E−01± 1.13E−01 1.46E−01± 1.13E−01

f4 9.19E−01± 4.32E−04 9.09E−01± 2.42E−04 4.49E−01± 2.12E−01 4.98E−01± 2.41E−01

f5 9.46E−01± 1.74E−03 9.56E−01± 1.50E−03 7.90E−01± 2.84E−01 6.57E−01± 2.92E−01

MOEA/D(D) MOAE/D(P) CA(D) CA(P)

f1 8.08E−01± 2.70E−05 8.08E−01± 6.32E−05 4.53E−01± 7.85E−02 4.09E−01± 8.72E−02

f2 1.00E−01± 6.96E−03 9.76E−02± 6.60E−03 1.49E−02± 3.39E−02 1.87E−02± 3.22E−02

f3 3.91E−01± 1.09E−04 4.87E−01± 1.82E−04 1.28E−01± 8.13E−02 9.84E−02± 1.08E−01

f4 1.00E−01± 1.12E−02 1.08E−01± 1.10E−02 2.35E−01± 1.90E−01 4.41E−01± 1.99E−01

f5 9.48E−01± 7.17E−06 9.50E−01± 6.61E−04 2.49E−01± 2.86E−01 1.63E−01± 1.85E−01

Table 5. εm mean and standard deviation values

SSNSGA-II(D) SSNSGA-II(P) PAES(D) PAES(P)

f1 5.67E−03 ± 4.22E−04 5.90E−03± 9.40E−04 4.68E−01± 1.23E−01 4.43E−01± 1.38E−01

f2 8.62E−01 ± 2.99E−03 8.62E−01± 3.99E−03 8.08E−01± 1.59E−01 7.60E−01 ± 1.19E−01

f3 5.36E−01± 2.94E−04 3.69E−01 ± 1.96E−04 6.94E−01± 1.99E−01 8.08E−01± 1.81E−01

f4 7.20E−02± 4.66E−04 6.18E−02 ± 3.22E−04 5.47E−01± 2.15E−01 4.73E−01± 2.66E−01

f5 5.43E−02± 1.74E−03 4.16E−02 ± 1.55E−03 2.10E−01 ± 2.84E−01 3.39E−01± 2.95E−01

MOEA/D(D) MOAE/D(P) CA(D) CA(P)

f1 2.12E−02± 1.27E−04 2.12E−02 ± 1.15E−04 4.14E−01 ± 9.56E−02 5.07E−01± 1.25E−01

f2 8.53E−01± 9.22E−12 8.54E−01± 3.74E−12 1.20E+00 ± 3.35E−01 1.21E+00± 5.17E−01

f3 5.35E−01± 1.80E−14 3.69E−01± 7.32E−12 8.10E−01 ± 1.57E−01 9.91E−01± 2.84E−01

f4 9.00E−01± 1.12E−02 8.92E−01 ± 1.10E−02 8.18E−01± 3.09E−01 5.39E−01 ± 2.60E−01

f5 5.16E−02± 7.39E−06 4.07E−02± 1.27E−03 1.97E+00 ± 1.98E+00 6.01E+00± 1.04E+01

A similar trend was observed for MOEA/D. For the CA, the modified Pareto-
dominance approach outperformed the penalty-based approach on 3 of the 5
functions. However, both approaches performed equally well for PAES. A simi-
lar trend was observed for εm.

5 Conclusion

This study investigated the effect of two constraint-dealing approaches on the
performance of the steady-state non-dominated sorting genetic algorithm II
(SNSGA-II), the Pareto-archived evolution strategy (PAES), the multi-objective
evolutionary algorithm based on decomposition (MOEA/D) and a cultural algo-
rithm (CA). The two constraint-dealing approaches are: adding a penalty term
to each objective function; and using a modified Pareto-dominance approach
that incorporates constraint violations. Each multi-objective evolutionary algo-
rithm (MOEA) had two configurations, where each configuration incorporated
one of these approaches to deal with constraints.

The results indicated that there was no statistical significant difference
between the two constraint-dealing approaches. However, the penalty func-
tion approach did slightly outperform the modified Pareto-dominance approach
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based on the wins and losses. Furthermore, for the CA the modified Pareto-
dominance approach performed better on all performance measures. In contrast,
the penalty-based MOEA/D outperformed the modified Pareto-dominance ver-
sion on all performance measures. For PAES, both approaches performed equally
well, except on the inverted generational distance (IGD) measure where the
modified Pareto-dominance approach slightly outperformed the penalty function
approach. The penalty function SNSGA-II slightly outperformed the modified
Pareto-dominance SNSGA-II on the hypervolume (HV) and εm. However, both
approaches performed equally well on IGD.

A penalty function modifies the objective space and can lead to changes
in the optima. The modified Pareto-dominance approach does not change the
objective functions. Since there was not a huge statistical significant difference
in performance between these two approaches, it is simpler to rather use the
modified Pareto-dominance approach than to add a penalty function where the
ideal penalty parameter values, that are problem dependent, should be found.

Future work will include extending the study to incorporate additional multi-
objective optimization constrained problems [2], as well as adaptive penalty
approaches [10].
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