
Application of Smell Detection Agent Based
Algorithm for Optimal Path Identification

by SDN Controllers

R. Ananthalakshmi Ammal1(&), P.C. Sajimon1,
and S.S. Vinodchandra2,3

1 Centre for Development of Advanced Computing, Thiruvananthapuram, India
{lakshmi,pcsaji}@cdac.in

2 Computer Centre, University of Kerala, Thiruvananthapuram, India
3 Department of Computational Biology, University of Kerala,

Thiruvananthapuram, India
vinod@keralauniversity.ac.in

Abstract. Software Defined Networking separates the control plane and data
plane with which the switches and routers become simply packet forwarding
devices. The decision related to the path to be taken by the packet from the
source to the destination is taken at the control plane. Thus the SDN controller
has to identify the optimal path for the packets. Many of the SDN controllers use
Dijkstra’s algorithm for computing the shortest path and subsequently update
the data plane devices. Many path computation algorithms including
bio-inspired algorithms are published and are in use today in computer net-
works. In this paper, a novel bio inspired algorithm namely Smell Detection
Agent based path computation algorithm is applied and studied for its perfor-
mance in comparison with Dijkstra’s algorithm, Extended Dijkstra’s algorithm
and the most commonly used bio inspired algorithm based on Ant Colony
Optimisation. The Smell Detection Agent based algorithm inspired from the
dog’s smell detection capability for tracing and reaching a destination is found
to be very useful and providing better results compared to the other algorithms.

Keywords: SDN � OpenFlow � Shortest path � Bio-inspired � Smell detection
algorithm

1 Introduction

Software Defined Networking (SDN) is becoming popular in computer networking
over the last few years and is presently a hot topic of research. In traditional networks,
both the control plane and data plane reside in the routers and switches. The control
plane in each device decides on the way the packets have to be forwarded. Whenever
changes happen in network state or traffic patterns, there is lack of flexibility in
accommodating those changes dynamically in the forwarding paths. With SDN, the
data plane and control plane are separated [1]. There is a logically centralised SDN
controller that configures the forwarding table in each data plane device, based on
which the packets are forwarded in a network. The SDN controller is also responsible

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part II, LNCS 10386, pp. 502–510, 2017.
DOI: 10.1007/978-3-319-61833-3_53

for network resource discovery and topology discovery. The controller gathers infor-
mation about the state of the network including availability status, performance status
including utilisation in a periodic manner. This enables the controller to identify the
optimal path for the packets from source to destination and update the forwarding
tables in the data plane devices in a dynamic manner. Thus SDN provides the required
flexibility for efficiently managing traffic.

OpenFlow is one of the widely used protocols for communication between the
controller and the data plane devices [2]. SDN controller uses OpenFlow Protocol for
setting up flows for the switches, i.e. building up flow tables in switches. Whenever a
new packet arrives at the switch port, resulting in a flow table miss, the switch can be
programmed to send the packet to the controller which in turn receives the packet-in
messages. The Controller intelligently sets the path to be traversed by the packet flows
in the network. A controller has to be aware of the topology of the switch network and
compute the packet traversal path. This gives rise to an optimisation challenge where
the controller has to compute the optimal packet flow traversal path. Currently many of
the SDN controllers use Dijkstra’s algorithm for computing the shortest path and does
not take into account the network link congestion, under-utilized state and network
latency.

The problem is to compute optimal path from source to destination by the SDN
Controller, given the network resource & topology discovery of the network are
completed and the current status of the network resources such as device and link
availability, bandwidth utilization are known to the Controller. To create path between
source and destination within a network, some of the operational challenges include
network link/resource failure condition, network link congestion condition, and net-
work link under utilised condition. Dynamically finding the optimal path in shortest
possible time based on network state changes, to reduce network latency is a major
challenge.

In this paper, the application of bio inspired Smell Detection Agent based path
computation algorithm [3] is applied and studied for optimal network path finding. The
performance is compared with that of Dijkstra’s [4] and Extended Dijkstra algorithms
[5] and a variant of the most commonly used bio inspired algorithm based on Ant
Colony Optimisation (ACO) [6].

2 Related Works

A few studies regarding the shortest or optimal path to be taken by the packet flows in
Software Defined Networks have been done. The implementation issues in the modi-
fied Dijkstra’s algorithm and the modified Floyd-Warshall shortest path algorithm in
OpenFlow have been studied by Rus et al. [7]. Jehn-Ruey Jiang et al. have simulated
the Extended Dijkstra’s algorithm for SDN in a Mininet environment under the Abilene
network topology [5]. Adnan Shahid et al. [8] have modified the SDN Controller to
find out the highest bandwidth path instead of the shortest path.

Bio inspired algorithms for optimal path computations are in use for quite some
time. The famous AntNet algorithm based on Ant Colony Optimisation [9] is used in
many telecommunication Networks for routing purposes. Other bio inspired algorithms

Application of Smell Detection Agent Based Algorithm 503

used for path computation include Bee Colony Optimisation, Genetic Algorithms etc.
Meta heuristics algorithms such as Particle Swarm Optimisation and its variants
[10–12] are also used to solve hard optimisation problems. In SDN, study of appli-
cation of bio-inspired algorithms is an emerging area. Ant Colony Optimisation
approach to Quality of Experience (QoE) based flow routing [13] in SDN has been
studied by Ognjen Dobrijevic et al. To the best of our knowledge, the application of
Smell Detection Agent based model for optimal path finding by SDN Controllers is the
first of its kind.

3 Smell Detection Agent (SDA) Based Algorithm

SDA based algorithm [3] is a novel bio inspired optimization algorithm based on the
trained behavior of dogs in detecting smell trails. The olfactory mechanism of dogs can
detect as well as memorize different smell signatures. Dogs also urinate in different
spots to mark their territory as occupied. These two properties of dogs have been used
to create the SDA to mark the path they undertake to reach the destination.

It is a known factor that different SDAs have varying olfactory capabilities and all
the points within a territory cannot be traversed. The selected points within a territory
are the smell spots which are visited by SDA. Each smell spot is characterized by two
values, one is the signature related to the visit of an SDA to the smell spot and the other
is the smell trail, which is value from destination. Each SDA is also characterized by
two values, one is their signature value to be marked in smell spots and the other is the
radius value indicating their olfactory capability. Thus the whole algorithm is based on
a source, destination, smell spots and the smell radius for SDA to traverse. At any
instance during the execution of the algorithm, the parameters related to the SDA
include the signature value of SDA, total length traversed by the SDA and the current
smell spot location of the SDA. Similarly for any smell spot, the parameters include the
smell value and the signature of the visited SDA.

Application of SDA Based Algorithm in SDN Environment for Optimal Path
Problem
The network domain under the control of the SDN Controller can be considered as the
territory, a surface with smell trails and the agents inspired from dogs can be used to
detect the optimal path. Each data plane device through which the packet flow has to
traverse is considered as a smell spot. The smell value of the smell spot is assigned
proportional to the number of interfaces available on the node. Thus the node having
the highest number of interfaces gets maximum smell value and least one gets the
minimal smell value. The SDAs start from the source node to the adjacent nodes and
the visited nodes are marked with the signature of the SDA. Each SDA thus seek the
path to the destination by traversing through the ‘not visited’ nodes. Since the visited
nodes are marked, each SDA seeks disjoint path. Thus the execution the algorithm
result in multiple possible paths to destination.

504 R. Ananthalakshmi Ammal et al.

The smell value of the nodes are decremented by the SDN Controller whenever
there is a link failure, interface failure or high bandwidth utilization of the link indi-
cating a possible congestion. The smell values are incremented when the interface
become available or bandwidth utilization is below the threshold value. The optimal
path has to be selected by comparing all the paths. To find the optimal path among the
multiple identified paths, link weight is taken into consideration, apart from smell value
of nodes. Each link in the network is assigned a link weight proportional to the
interface bandwidth capacity, highest bandwidth is assigned the minimum link weight
and the least bandwidth link is assigned the maximum link weight. The path with
lowest link weight is chosen as the optimal path.

4 Test Bed Simulation and Results

Mininet
Mininet is an open source network emulation orchestration system for prototyping a
large network on a single machine [14, 15]. It can create a network of virtual hosts,
switches, links and support SDN Controller and OpenFlow protocol. Mininet runs on
standard Linux system and uses virtualisation to emulate a complete network. The
Mininet virtual hosts, switches and routers behave like real hardware, though they are
created using software and we can send packets through Ethernet interfaces with
specified link speed and delay. The advantage is that the same binary code and
applications which we run on an actual network can be run in a Mininet network also.

Application of Smell Detection Agent Based Algorithm 505

As part of our study, Mininet has been used to create a network test bed for testing the
different algorithms with a basic set of parametrised topology, where a set of param-
eters are passed for a flexible topology.

Floodlight SDN Controller
Floodlight which is an Open Source Apache Licensed Java based SDN controller, is
used for the simulations [16]. Being a module loading system, Floodlight SDN con-
troller is easy to extend and enhance. We can consider Floodlight as a set of appli-
cations built over a Controller. Floodlight provides the core network services such as
Device Manager, Link discovery, Topology Manager and application services such as
forwarding, access control and firewall. By default, Floodlight SDN controller uses
Dijkstra’s algorithm to compute the path from source node to destination node. This
algorithm has been replaced by different algorithms and the performance is compared
to study the effectiveness of the bio inspired Smell Detection Agent based algorithm.

Test Bed Setup
Mininet is used to create a network topology for evaluation as shown in Fig. 1. The
network consists of one SDN controller C0 and 12 data plane devices from s1 to s12.
The source and destination nodes are two hosts h1 and h2 connected to data plane
devices s1 and s12 respectively. Each data plane device is connected to the
Controller. In the Floodlight SDN Controller the files related to topology such as
floodlightcontroller/topology/TopologyInstance.java, Topology Manager.java were
modified to incorporate the SDA based algorithm. The smell value of a node is
assigned based on the number of interfaces in the node and the highest interface count
of a node in network. The smell value ranges between 0 and 1. In the network topology
shown in Fig. 1, the node s4 has the highest number of interfaces on network, i.e. 5.
Then s4 has a smell value of 5/(1/5), equals to 1. Smell value of s1 is 3/(1/5), equals to
0.6. The agents pass through the “not visited” nodes and the number of hops to reach
the destination is an indicator of the distance to be traversed. In the present example
shown in Fig. 1, the agents start from the node s1 and seek the unmarked next hops
with the highest smell value and mark the smell spot as visited. This is iteratively done
till the destination node of s12 is reached. Thus from s1, three paths are chosen to the
destination:

Path 1: s1 $ s4 $ s6 $ s12 – Distance = 3 hops
Path 2: s1 $ s3 $ s5 $ s9 $ s12 – Distance = 4 hops
Path 3: s1 $ s2 $ s8 $ s11 $ s12 – Distance = 4 hops

To find the optimal path among the three identified paths, link weight is considered.
The assigned link weights in the test bed topology for each link are marked in Fig. 1.
Accordingly from the multiple paths that reach the destination, the one with the least
weight is selected as the optimal path. The added link weight for the identified paths are
21, 48 and 18 for Path1, Path2 and Path3 respectively and the optimal path selected in this
test bed is Path 3. This was verified by looking at the data plane devices flow table updates
by the Controller with the help of modules for routing such as floodlightcontroller/
routing/ForwardingBase.java. The smell value updates were done after getting the net-
work monitoring statistics with the help of modules floodlightcontroller/statistics/

506 R. Ananthalakshmi Ammal et al.

StatisticsCollector.java. These modules provide the performance statistics related to
bandwidth utilisation and port status.

5 Evaluation and Discussion

Benchmarks allow the evaluation of different algorithms for their performance. Three
algorithms were executed on the same test bed after modifying the Floodlight SDN
Controller. The algorithms include Dijkstra’s algorithm, Extended Dijkstra’s algorithm
and a variant of ACO algorithm, which is a bio inspired one.

Dijkstra’s Algorithm
The default algorithm for path computation in the Floodlight Controller is classical
Dijkstra’s Algorithm. In the original Dijkstra’s algorithm, neither the nodes nor the
links are associated with any weights. In other words, the algorithm does not take into
consideration, either the bandwidth capacity of the links or the number of interfaces in
the data plane node. Floodlight in SDN controller uses classical Dijkstra algorithm and
it considers unit cost on all edges. Dijkstra’s algorithm returns the shortest path from
host h1 to host h2, and is found to be s1 $ s4 $ s6 $ s12. The distance is 3 hops.

Extended Dijkstra’s Algorithm
In the Extended Dijkstra’s algorithm, both link weight and node weight are taken into
consideration. Here each link is assigned a weight proportional to the bandwidth
capacity, as shown in Fig. 1. Each node is assigned a node weight based on the number
of active interfaces among the total number of available interfaces. For the optimal path
identification, the sum of link weights from source to destination is also considered.
The link with the lowest weight is considered as the optimal path. Thus in the present
example, the path chosen is s1 $ s4 $ s3 $ s5 $ s9 $ s6 $ s12 with distance as
6 hops and the link weight as 17. The path chosen comprises the high bandwidth links
though the number of hops are high.

Fig. 1. Network topology for evaluation

Application of Smell Detection Agent Based Algorithm 507

Variant of ACO Algorithm
The ACO algorithm is modelled after ants which leave pheromone trails on their path
in search of destination and their way back to source. The path with a stronger pher-
omone trail is the chosen path. The pheromone evaporates over a period of time, but in
the chosen path the pheromone density will be strong as it is frequently traversed by
more ants. In the present model, multiple ants of the same type are sent to the desti-
nation from the source in search of optimal path. The number of ants sent are equal to
the number of connected interfaces in the source node. Each ant remembers the list of
the nodes it has already visited on its way to destination. In this implementation of
ACO algorithm, the links are assigned edge weights that is smell values, proportional
to the bandwidth. The link with maximum bandwidth gets the maximum smell value
and vice versa. The decay factor of smell is dependent on the distance from the
destination and the number of levels of the topology tree as discovered by the SDN
Controller. Thus as part of ACO algorithm implementation in SDN,

Initial smell of link¼ðWeight of link/Maximum link weight on networkÞ � 100 ð1Þ

Decay factor of smell¼ node distance � ð1=ðmaximum level of treeÞÞ ð2Þ

Updated smell of link¼ link smell þ ðlink smell � decay factor) ð3Þ

In the present example, smell values of edges are assigned between 0 and 100 based
on bandwidth of links. The smell is updated by considering decay factor on path. The
highest smell path selected as the optimal path. Thus from the source host h1 to
destination host h2, the multiple paths, their smell values and decay values in the
present example are given in Table 1. The path with highest smell value that is Path 2
is selected.

We used Iperf network bandwidth measurement tool to test the TCP bandwidth
performance. The testing time was set to 120 s. The four path finding algorithms were
executed one after the other in a Floodlight Controller with the hosts h1 and h2
switching as client and server. The Iperf tool provided the bandwidth usage in all the
four cases where the algorithms were executed by the Floodlight Controller. The results
are shown in Fig. 2.

The maximum throughput of 681 Mbps was found to be for SDA based algorithm,
followed by variant of ACO algorithm which was equal to 676 Mbps. The least

Table 1. Path computation using variant of ACO algorithm in SDN Controller

Path no: Path nodes Smell value Decay factor Total

Path 1 s1 $ s3 $ s5 $ s9 $ s12 150 72 78
Path 2 s1 $ s4 $ s2 $ s8 $ s11 $ s12 415 251 164
Path 3 s1 $ s4 $ s6 $ s12 195 78 117
Path 4 s1 $ s2 $ s8 $ s11 $ s12 310 166 144

508 R. Ananthalakshmi Ammal et al.

throughput of 99.4 Mbps was obtained for the unit weight classical Dijkstra’s algo-
rithm. The path selected by each of the algorithm for packet flows from h1 to h2 and
back during the Iperf execution in the test bed is as given in Table 2. It is seen that the
shortest path is selected by the unit weight Dijkstra’s algorithm. The SDA based
algorithm is the next shorter path with lesser number of hops compared to the other
algorithms. When we compare both, the path taken and throughput, it is evident that
SDA based algorithm performs better than all the other chosen algorithms.

6 Conclusions

The simulation results clearly demonstrate the effectiveness of SDA based algorithm in
finding the optimal path. Another point to be noted is that the bio inspired algorithms
have shown better performance compared to the conventional algorithms. One of the
limitations we faced in Mininet is that the experiments have to be conducted with
slower links of 10–100 Mb/s. Here the packets were forwarded through OpenVSwitch
rather than dedicated switching hardware. So the experiments have to be conducted
with SDN Enabled switching platforms with high speed links of Gb/sec. Moreover
realistic traffic load has also to be taken into consideration in the physical SDN test bed.
In the present example only two attributes were considered in computing the optimal
path which include the distance and the cost of edge in terms of link bandwidth. But in

Fig. 2. Iperf bandwidth usage results

Table 2. Details of selected paths

Sl No. Algorithm Path Flows

1 Dijkstra h1 �[h2 s1, s4, s6, s12
h2 �[h1 s12, s6, s4, s1

2 Extended Dijkstra h1 �[h2 s1, s4, s3, s5, s9, s6, s12
h2 �[h1 s12, s6, s9, s5, s3, s4, s1

3 ACO variant h1 �[h2 s1, s4, s2, s8, s11, s12
h2 �[h1 s12, s11, s8, s2, s4, s1

4 SDA h1 �[h2 s1, s2, s8, s11, s12
h2 �[h1 s12, s11, s8, s2, s1

Application of Smell Detection Agent Based Algorithm 509

practical network situations, other factors such as delay, reliability and packet loss have
to be considered. Our research findings will be useful for researchers who work on
SDN controller algorithms specifically for optimal path finding for packet flows.

References

1. Software-defined networking: the new norm for networks. In: Open Networking Foundation.
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-
sdn-newnorm.pdf. Accessed 2012

2. McKeown,N.,Anderson,T., Balakrishnan,H., Parulkar,G., Peterson, L., Rexford, J., Shenker,
S., Turner, J.: OpenFlow: enabling innovation in campus networks.ACMSIGCOMMComput.
Commun. Rev. 38, 69–74 (2008)

3. Vinod-Chandra, S.S.: Smell detection agent based optimization algorithm. J. Inst. Eng. India
Ser. B 97, 431–436 (2016)

4. Donald, J.: A note on Dijkstra’s shortest path algorithm. J. ACM 20(3), 385–388 (1973)
5. Jiang, J.R., Huang, H.-W., Liao, J.H., Chen, S.Y.: Extending Dijkstra’s shortest path

algorithm for software defined networking. In: Proceedings of the of IECiE APNOMS
(2014)

6. Dorigo, M., Blum, C..: Ant colony optimization theory: a survey (2007)
7. Furculita, M.: Implementation issues for modified Dijkstra’s and Floyd-Warshall algorithms

in OpenFlow. In: Proceedings of RoEduNet International Conference on Networking in
Education and Research (2013)

8. Shahid, A., Fiaidhi, J., Mohammed, S.: Implementing Innovative Routing Using Software
Defined Networking (SDN). Int. J. Multimedia Ubiquit. Eng. 11, 159–172 (2016)

9. Ducatelle, F., Di Caro, G.A., Gambardella, L.M.: Principles and applications of swarm
intelligence for adaptive routing in telecommunications networks. Swarm Intell. 4, 173–198
(2010)

10. Qin, Q., Cheng, S., Zhang, Q., Li, L., Shi, Y.: Particle swarm optimization with interswarm
interactive learning strategy. IEEE Trans. Cybern. 46, 2238–2251 (2016)

11. Zhang, J., Lina, N.I., Chen, X.I.E., Ying, T.A.N., Zheng, T.A.N.G.: AMT-PSO: an adaptive
magnification transformation based particle swarm optimizer. IEICE Trans. Inf. Syst. 94,
786–797 (2011)

12. Solos, I.P., Tassopoulos, I.X., Beligiannis, G.N.: Optimizing shift scheduling for tank trucks
using an effective stochastic variable neighbourhood approach. Int. J. Artif. Intell. 14, 1–26
(2016)

13. Dobrijevic, O., Santl, M., Matijasevic, M.: Ant colony optimization for QoE-centric flow
routing in software-defined networks. In: IFIP CNSM (2015)

14. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: Proceedings of ACM HotNets 2010 (2010)

15. Mininet. http://mininet.org
16. Floodlight controller. http://www.projectfloodlight.org/floodlight/

510 R. Ananthalakshmi Ammal et al.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://mininet.org
http://www.projectfloodlight.org/floodlight/

	Application of Smell Detection Agent Based Algorithm for Optimal Path Identification by SDN Controllers
	Abstract
	1 Introduction
	2 Related Works
	3 Smell Detection Agent (SDA) Based Algorithm
	4 Test Bed Simulation and Results
	5 Evaluation and Discussion
	6 Conclusions
	References

