
Reformulation and Metaheuristic for the Team
Orienteering Arc Routing Problem

Liangjun Ke(B) and Weibo Yang

The State Key Laboratory for Manufacturing Systems Engineering,
Xian Jiaotong University, Xi’an 710049, China

keljxjtu@xjtu.edu.cn

Abstract. The team orienteering arc routing problem (TOARP) is a
relatively new vehicle routing problem. In this problem, a fleet of vehicles
are available to serve two sets of customers, each of which is associated
with an arc of a directed graph. The customers of the first set are required
to be served whereas the ones of the second set are potential and may be
not served. Each potential customer is associated with a profit, and the
profit can be gained at most once when it is served. The TOARP aims
to maximize the total profit gained by serving the customers while each
vehicle must start from and end at a depot within a permitted maxi-
mum traveling time. This paper shows that the TOARP can be trans-
formed into a team orienteering problem defined on a directed graph. To
solve the TOARP, an iterated local search based algorithm is presented.
The effectiveness of the proposed algorithm is studied on the benchmark
instances.

Keywords: Vehicle routing problem · Metaheuristic · Team orienteer-
ing problem · Arc routing problem · Iterated local search

1 Introduction

Routing problem is an essential problem in real world [7]. In this problem, a fleet
of vehicles are used to serve a set of customers distributed in a graph. It aims to
find optimal routes for the vehicles under some constraints, e.g., costs, demands,
and time windows. Under various objectives and constraints, a large number of
routing problems have been considered in the literature [11].

The team orienteering arc routing problem (TOARP) is a routing problem
which was first formulated in [3]. The TOARP is defined on a directed graph
G = (V,A). In this problem, there are two sets of customers. The first set AR

consists of the customers required to be served. The second one AP consists of
the potential customers which may be not served. Each customer is located at
an arc of the directed graph. For each arc, there is a time cost tij . For each
potential customer, a profit pij ≥ 0 is assigned to it. There are K vehicles. Each
vehicle must start from and end at the depot within the time limit Tmax. The
profit gained by serving each potential customer can be accumulated at most
once. The goal of the TOARP is to maximize the total profit collected.
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part II, LNCS 10386, pp. 494–501, 2017.
DOI: 10.1007/978-3-319-61833-3 52

Reformulation and Metaheuristic 495

The TOARP was first solved by a branch-and-cut [3]. Later, a matheuris-
tic was used to deal with the TOARP [1]. This algorithm uses tabu search to
explore the neighborhood of the current solution. The solution found during the
tabu search phase will be improved by an intensification phase according to the
integer linear programming models. The final step of the tabu search phase uses
a diversification mechanism with the aim of searching in a totally new sub-region
of the solution space.

In this paper, we show that the TOARP can be transformed into a routing
problem defined on a new graph, each node of which corresponds to a poten-
tial or required arc of the original problem. We notice that some efforts have
been devoted to transforming a (capacitated) arc routing problem into a node
routing problem [8]. Here we deduce the transformed problem according to the
feature of the TOARP. The transformed problem is defined on a new graph
where every node corresponds to every potential arc of primal problem. The
distance between two arcs is the minimal shortest path distance calculated by
Bellman-Ford algorithm. In addition, we propose an iterated local search based
algorithm to deal with the transformed problem. The comparison results on
the benchmark instances support the performance of the proposed algorithm is
competitive.

The remainder of this paper is organized as follows. Section 2 presents the
problem transformed from the TOARP. Our proposed algorithm is described in
Sect. 3. Section 4 presents the Simulation study. Section 5 concludes our work.

2 A New Formulation of the TOARP

As for the TOARP, we can define a new directed graph G′ = (V ′, E′) as follows:
(1) A dummy node 0: It corresponds to arc (0, 0) ∈ A.
(2) The set of nodes V ′: V ′ = {0, 1, · · · ,m} where m is the number of the

required and potential arcs. Each node except node 0 corresponds to a required or
potential arc of G. Suppose that node i ∈ V ′\{0} corresponds to arc (nis, nie) ∈
AP ∪ AR. We can assign a service time si and a profit qi to node i. The service
time si is defined as

si = tnis,nie
. (1)

The profit qi is defined as

qi =

{
pnis,nie

if (nis, nie) ∈ AP

M if (nis, nie) ∈ AR,
(2)

where M is a sufficient large positive number, say M =
∑

b∈AP
pb (that is, the

total profit of all potential arcs in AP). Accordingly, the nodes in G′ correspond-
ing to the required arcs are called the required nodes. Let A′

R be the set of the
required nodes.

(3) The set of arcs E′: Each arc connects every two nodes in V ′. Let us consider
two nodes i and j ∈ V ′. They correspond to (nis, nie) and (njs, nje) ∈ AP ∪ AR

496 L. Ke and W. Yang

respectively. Let P is the shortest path through a subset of arcs in A starting from
nie and ending at njs. The traveling time of arc (i, j) ∈ E′, denoted by dij , is
defined as the distance of the shortest path P. To calculate the distance of path
P, we implement a label based Bellman-Ford algorithm [5] which is a dynamic
programming approach.

In this way, we can define a new routing problem: Given a directed graph G′

mentioned above, the goal is to determine K routes, each of which is limited by
the time budget Tmax and starts from and ends at node 0 and visits nodes in V ′,
such that the total collected profit is maximized. It is assumed that the profit of
a visited node can be collected at most once. According to the definition of the
TOP, one can notice that the routing problem is a TOP defined on a directed
graph. In the following, the transformed problem is denoted as DG-TOP.

3 The Proposed Algorithm

In this paper, we present an iterated local search [9] based algorithm to solve
the DG-TOP. Iterated local search (ILS) is a singleton search technique, which
evolves an incumbent solution over time. Let sb and sc be the best-so-far and
incumbent solution respectively. ILS works as follows: At first, sc is initialized
and improved by local search, and let sb = sc. After that, four steps are repeated
until a termination condition is satisfied. At the first step, a new incumbent
solution sc is obtained by perturbation. At the second step, sc is improved by
local search. At the third step, the best-so-far solution sb will be replaced by sc

if F (sc) ≥ F (sb) (i.e., sc is better than sb) where F is the objective value. At the
fourth step, the incumbent solution sc will be updated according to the solution
acceptation criterion. The main procedure of ILS is described in Algorithm1.

Algorithm 1. The main procedure of ILS
Input: a DG-TOP instance to be solved
Output: the best-so-far solution sb
1: initialize the incumbent solution sc and improve it by local search
2: set sc to sb
3: while the stopping condition is not reached do
4: obtain a new solution s by performing a perturbation operator on sc
5: perform local search on s
6: replace sb by s if F (s) ≥ F (sb)
7: update sc according to the solution acceptation criterion
8: end while

3.1 Solution Initialization

The incumbent solution is initialized by two steps. The first step only considers
the required nodes. The second step tries to insert some non-required nodes.

Reformulation and Metaheuristic 497

The first step constructs a solution as follows: Each route starts from node 0.
Afterwards, they are probed in ascending order of their travel time. For a route,
suppose its last node is i, an unvisited node is said to be feasible if it obeys the
inequality T (i) + dij + dj0 ≤ Tmax where T (i) is the total travel time of the
partial route from node 0 to i. Let C be the set of the feasible required nodes.
If C is empty, then this route is finished and the next route is tried. Otherwise,
a node is chosen from C according to the following probability

P (j) =
1

dij∑
k∈C

1
dik

, ∀j ∈ C (3)

If there are still some unvisited required nodes after using the above pro-
cedure, the following procedure will be adopted. Firstly, γ required nodes are
removed from the routes generated by the above procedure. Then, all unvisited
required nodes are inserted based on regret value (that is, the nodes are inserted
one by one. At each step, the node with the largest regret value is inserted).
The concept of regret value has been adopted in [10]. This procedure is repeated
until all required nodes are visited.

The second step repeats the following procedure until no non-required node
can be inserted: Let Cnr be the set of the remaining non-required nodes which
is feasible to be inserted. For each node k ∈ Cnr, we define a preference value
as ϕk = qkδk where δk is the regret value of node k. That is, a node with larger
profit and regret value is more desirable. A node j ∈ Cnr is selected according
to the probability

P (j) =
ϕk∑

k∈Cnr
ϕk

, ∀j ∈ Cnr (4)

3.2 Perturbation

Perturbation aims to make the algorithm search in a new area of the solution
space. A remove-insert-based and exchange-based operators are used to disturb
the incumbent solution. The remove-insert-based removes γ1 nodes and inserts
the removed required back one by one based on regret value. The exchange-based
operator only works on the visited nodes. It repeats the following procedure
γ2 times: randomly choose two nodes from different routes and exchange their
positions. If the resulting solution is infeasible, some visited non-required nodes
will be removed based on preference value until the solution becomes feasible.

3.3 Local Search

Local search tries to find a better solution in the neighborhood of a starting
solution. However, searching in a larger neighborhood is usually time-consuming.
To accelerate local search, the mechanism of “do not look bits” [4] is adopted.

We use a so-called active list, denoted by AL, to record those active nodes.
The active list initially consists of all visited nodes. The active nodes are checked
in a random order. Given an active node i, suppose its candidate list is CL. For
a node j in CL, three possible cases may occur:

498 L. Ke and W. Yang

(1) both i and j belong to the same route: a 2-opt move will be used. The
resulting solution will be accepted once the total travel time is shortened.

(2) i and j belongs to two different routes: the best move between an exchange
move and a relocation move is used. The resulting solution will be accepted
once the total travel time is shortened.

(3) j is an unvisited node: at first, a relocation move is used, the resulting
solution will be accepted if it is feasible. In this case, the total profit will be
increased. Otherwise, i and j are tried to exchange. Let the forward node
and backward node of i be if and ib respectively, then the resulting solution
will be accepted if it is feasible and if pj

dif ,j+dj,ib
−dif ,ib

≥ pi

dif ,i+di,ib
−dif ,ib

.

If a better solution is found, node i, node j, and their forward and backward
nodes in their corresponding routes are added into an auxiliary list. If all active
nodes have been tried, the active node list is replaced by the auxiliary list. The
procedure is repeated until the auxiliary list is empty.

3.4 Solution Acceptation Criterion

A simulated annealing like criterion [9] is used. It permits some inferior solutions
to replace the old incumbent solution with a small probability, which is beneficial
to preserve diversity. Formally, let the new solution be s, then

sc =

⎧⎪⎨
⎪⎩
s if F (s) ≥ F (sb)
s if exp(F (s)−F (sb)

θF (sb)
) ≥ ε

sb otherwise
(5)

where ε is a random number generated from [0, 1]. θ is a parameter.

4 Simulation Study

To study the performance of the proposed algorithm (ILS), we implemented
it in C++ and tested it on a PC equipped with Pentium 4, 2.4 GHz CPU,
and 4 GB RAM. For each instance, ILS was stopped when one of the following
conditions is satisfied: (1) the number of iterations reaches 40000, (2) the running
time reaches 200 s. Parameters γ, γ1, and γ2 are an integer randomly sampled
from interval [5, 15] at each time. Parameter θ = 0.1. These parameters are
determined according to extensive test. We compare ILS with the matheuristic
algorithm proposed in [1], denoted by MAT. MAT was performed on a PC with
Athlon 64 X2 Dual Core Processor 5600 + 2.89 GHz CPU, and 3.37 GB RAM.
The stopping criterion of MAT was set to 30 min.

4.1 Test Instances

We used D36, D64, and D100 in [1] to test the algorithm. Parameter p deter-
mines the probability of an arc is declared required when generating instances of

Reformulation and Metaheuristic 499

the TOARP. For each instance of RPP in [6], nine TOARP instances were gener-
ated by taking p and K from {0, 0.25, 0.5} and {2, 3, 4}, respectively. In Table 1,
the fist four columns present the name of a set, the number of instances, the min-
imum and maximum number of vertices and arcs, respectively. From columns

Table 1. The information of class D

set #Inst |V | |A| p = 0 p = 0.25 p = 0.5

|AR| |AP | |AR| |AP | |AR| |AP |
D36 9 17–36 96–270 0 10–38 2–10 6–30 6–20 4–23

D64 9 37–62 264–482 0 27–75 4–21 22–54 11–38 15–37

D100 9 68–100 544–846 0 50–121 9–28 37–95 26–64 20–70

Table 2. Computational results obtained by MAT and ILS for class D

Instance MAT ILS

K p Set #Solved Opt Av.Gap Max.Gap Opt Av.Gap Max.Gap T ime(s)

2 0 D36 9 9 0.00 0.00 9 0.00 0.00 5.38

D64 9 5 0.48 1.79 7 0.10 0.54 42.28

D100 9 0 2.58 5.40 3 0.76 2.02 168.37

D36 9 9 0.00 0.00 9 0.00 0.00 4.88

0.25 D64 9 5 0.26 1.20 6 0.09 0.44 28.4

D100 9 1 2.92 10.68 4 0.57 2.08 1.58

D36 9 9 0.00 0.00 9 0.00 0.00 4.88

0.5 D64 9 4 1.10 5.12 6 0.25 1.20 34.8

D100 9 1 4.71 12.42 3 1.22 2.98 153.71

3 0 D36 9 9 0.00 0.00 8 0.02 0.14 2.57

D64 9 7 0.10 0.75 6 0.26 1.63 17.14

D100 4 2 3.31 12.50 1 1.97 5.89 92.44

D36 9 8 0.08 0.74 8 0.17 1.05 5.40

0.25 D64 9 6 0.42 1.64 6 0.48 2.89 41.04

D100 5 3 4.14 9.34 2 1.57 5.29 48.8

D36 9 9 0.00 0.00 9 0.00 0.00 3.04

0.5 D64 9 5 2.05 5.78 6 0.99 4.83 15.89

D100 7 1 20.45 20.07 4 1.87 8.02 70.75

4 0 D36 9 9 0.00 0.00 9 0.00 0.00 2.02

D64 5 4 1.42 4.05 4 1.30 3.89 13.4

D100 2 2 4.58 10.98 2 4.15 8.91 56.66

D36 9 9 0.00 0.00 9 0.00 0.00 2.14

0.25 D64 7 6 0.68 4.57 6 0.65 4.24 13.28

D100 4 3 3.02 9.27 4 2.32 6.47 69.13

D36 9 9 0.00 0.00 9 0.00 0.00 2.16

0.5 D64 7 6 1.21 5.36 5 1.25 5.22 12.68

D100 5 3 7.53 22.07 5 3.02 9.73 58.32

500 L. Ke and W. Yang

5 to 10, the minimum and maximum number of required arcs and potential arcs
are shown for different values of p.

4.2 Results

Table 2 reports the results obtained on class D. By varying K, p, and set, 27 com-
binations are obtained. The column ‘#solved’ reports the number of instances
which can be solved to optimality by the branch-and-cut algorithm in [2]. For
each algorithm, we report the following results:

– #opt: the number of instances of which an optimal solution can be found,
– Av.Gap and Max.Gap: the average and maximum percentage gap of the

solution found with respect to the upper bound found by the branch-and-cut
algorithm in [2].

Table 2 presents the results obtained on class D. When K = 2, ILS can find
better solutions for 6 out of 9 combinations. For the other three combinations,
ILS and MAT are even. When K = 3, in terms of #opt, MAT works better on 4
combinations and ILS works better on 2 other combinations. In terms of Av.Gap
and Max.Gap, both MAT and ILS work better on 4 different combinations.
When K = 4, in terms of #opt, MAT works better on 1 combination and ILS
works better on 2 other combinations. In terms of Av.Gap, ILS works better
on 5 combinations and MAT works better on only one combination. In terms
of Max.Gap, ILS works better on 6 combinations. Therefore, ILS works slightly
better than MAT on class D. The maximum time spent by ILS is less than 169 s.

5 Conclusion

The team orienteering arc routing problem aggregates some features of the team
orienteering problem and arc routing problem, which incurs extra requirements
to the current solution techniques. This paper first transforms the TOARP to a
node routing problem, called DG-TOP. The difference between DG-TOP and the
traditional TOP are analyzed. According to the characteristics of the DG-TOP,
an ILS-based algorithm is proposed to solve the DG-TOP. Special considerations
have been devoted to the required nodes. Moreover, the algorithm uses two
operators to perturb the incumbent solution. In addition, a fast local search is
presented. Based on the experimental results, the proposed algorithm can find
promising solutions for the tested instances within short time.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their insightful comments. This work was supported by National Natural Science Foun-
dation of China (No. 61573277, 71471158), the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No. PolyU 15201414), the Fun-
damental Research Funds for the Central Universities, the Open Research Fund of the
State Key Laboratory of Astronautic Dynamics under Grant 2015ADL-DW403, and
the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State

Reformulation and Metaheuristic 501

Education Ministry, Natural Science Basic Research Plan in Shaanxi Province of China
(No. 2015JM6316). The authors also would like to thank The Hong Kong Polytechnic
University Research Committee for financial and technical support.

References

1. Archetti, C., Corberán, Á., Plana, I., Sanchis, J.M., Speranza, M.G.: A matheuris-
tic for the team orienteering arc routing problem. Eur. J. Oper. Res. 245(2), 392–
401 (2015)

2. Archetti, C., Speranza, M.G.: Arc routing problems with profits. In: Arc Routing:
Problems, Methods, and Applications. MOS-SIAM Series on Optimization, pp.
257–284 (2013)

3. Archetti, C., Speranza, M.G., Corberán, Á., Sanchis, J.M., Plana, I.: The team
orienteering arc routing problem. Transp. Sci. 48(3), 442–457 (2013)

4. Bentley, J.J.: Fast algorithms for geometric traveling salesman problems. ORSA J.
Comput. 4(4), 387–411 (1992)

5. Goldberg, A.V., Radzik, T.: A heuristic improvement of the Bellman-Ford algo-
rithm. Appl. Math. Lett. 6(3), 3–6 (1993)

6. Hertz, A., Laporte, G., Hugo, P.N.: Improvement procedures for the undirected
rural postman problem. INFORMS J. Comput. 11(1), 53–62 (1999)

7. Laporte, G.: Fifty years of vehicle routing. Transp. Sci. 43(4), 408–416 (2009)
8. Longo, H., De Aragaao, M.P., Uchoa, E.: Solving capacitated arc routing problems

using a transformation to the CVRP. Comput. Oper. Res. 33(6), 1823–1837 (2006)
9. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and

applications. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics,
pp. 363–397. Springer, New York (2010)

10. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

11. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications, vol. 18.
SIAM, Philadelphia (2014)

	Reformulation and Metaheuristic for the Team Orienteering Arc Routing Problem
	1 Introduction
	2 A New Formulation of the TOARP
	3 The Proposed Algorithm
	3.1 Solution Initialization
	3.2 Perturbation
	3.3 Local Search
	3.4 Solution Acceptation Criterion

	4 Simulation Study
	4.1 Test Instances
	4.2 Results

	5 Conclusion
	References

