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Abstract. Community detection, an effective tool to analyze and under-
stand network data, has been paid more and more attention in recent
years. One of the most popular methods of detecting community struc-
ture is to find the division with the maximal modularity. However, the
modularity maximization is an NP-complete problem. In the field of
swarm intelligence algorithm, particle swarm optimization (PSO) has
been widely used to solve such NP-complete problem. Nevertheless, pre-
mature convergence and lower accuracy limit its performance in com-
munity detection. In order to overcome these shortcomings, this paper
proposes a novel PSO called P-PSO for community detection through
combining the computational ability of Physarum, a kind of slime. The
proposed algorithm improves the efficiency of PSO by recognizing inter-
community edges based on Physarum-inspired network model (PNM).
Experiments in eight networks show that the proposed algorithm is effec-
tive and promising for community detection, compared with other algo-
rithms.
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1 Introduction

Complex networks have numerous characteristics, among which the community
structure is an important one. Community detection, a powerful tool to discover
community structures, has a wide application prospect, like predicting protein
functions [1] and analyzing the information dissemination [2].

In the past few decades, a large number of algorithms have been proposed
for community detection. They can be classified into optimization algorithm and
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heuristic algorithm. Meanwhile, a modularity measure Q [3] is proposed to eval-
uate the quality of community divisions, which has been widely used. It has
been proved that swarm intelligence optimization algorithms including particle
swarm optimization algorithm (PSO) [4] show their superiority in local learning
and global search. Recently, Cai et al. have successfully used greedy discrete
particle swarm optimization algorithm (GDPOS) [5] to detect the community
structures in a network. However, failing to make full use of prior knowledge
of network and generate high-quality initial population, this algorithm does not
lead to the good enough performance of global search and relatively high accu-
racy.

According to the latest reports, a large number of biological experiments have
demonstrated that a slime named Physarum has an intelligence of solving mazes
and constructing efficient and robust networks [6,9]. Meanwhile, the Physarum-
inspired Mathematical Model (PM) has been proposed by Tero et al. [7], which
has been used for optimizing the heuristic algorithms [8]. Thus, a Physarum-
inspired network model (PNM) is proposed for initializing the PSO based on the
PM model, which is utilized to distinguish inter-community edges from intra-
community edges. Furthermore, we attempt to optimize the phase of PSO’s
initialization for higher quality in community detection.

The remaining of this paper is organized as follows: Sect. 2 illustrates the
related background and introduces the particle swarm optimization algorithm for
community detection. Section 3 proposes the Physarum-inspired particle swarm
optimization algorithm. Section 4 reports the experiments in eight real-world net-
works and the comparisons with state of the art algorithms. Section 5 concludes
this paper.

2 Related Work

2.1 Community Detection

A network can be composed of nodes and edges, in which nodes usually stand for
members and edges represent relationships between members. Let G = (V,E)
denote a network, where V and E are the aggregations of nodes and edges,
respectively. Aiming at dividing the nodes in a network into different com-
munities, community detection results in that nodes across communities are
sparsely connected, while nodes within a community are relatively densely con-
nected. Under the premise that a community is a subset of V and nc is defined
as the number of communities, a community division is a set of communities,

Ci ⊂ G,C = {C1, C2, . . . , Cnc
}, where Ci �= ∅,

nc⋂

i=1

Ci = ∅,
nc⋃

i=1

Ci = G.

In this paper, the proposed fitness function is the widely used modularity
(normally denoted as Q) [3]. The Q function can be written as Eq. (1), where
|V | and |E| are the number of nodes and edges of a network, respectively; A is the
adjacency matrix of a network and Aij = 1 if there exists an edge between node
i and j; ki is the degree of node i, and δ(i, j) = 1 if the nodes i and j are in the
same group, otherwise δ(i, j) = 0. Without the loss of generality, we assume that
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the better division corresponds to the higher Q value. Therefore, the community
detection can be transformed into an optimization problem formulated as Eq. (2).

fit(·) = Q =
1

2|E|
|V |∑

i,j

(Aij − ki · kj
2|E| )δ(i, j) (1)

C∗ = arg max
C

Q(C,G) (2)

2.2 PSO for Community Detection

Derived from the social behavior seen in some animal populations, like fish school
and birds flock, PSO is a type of swarm intelligence algorithm proposed by Eber-
hart and Kennedy in 1995 [4]. The concise framework, simple principle and fast
convergence make PSO a popular algorithm for solving continuous optimization
problems. Each particle has a position and velocity vector. The position vec-
tor usually stimulates a candidate solution to the optimized problem, and the
velocity vector denotes the tendency of position updating. A particle updates
its status iteratively according to its own and the other particles’ experiences to
search for the optimal solution. Here, we take a typical PSO for network clus-
tering, termed GDPSO, as an example to introduce the basic parts of PSO for
community detection.

Particle representation: Considering that the community detection is a dis-
crete optimized problem, we have to redefine the particle positions. One position
vector represents a network division and the position vector of the particle i is
defined as Xi = {x1

i , x
2
i , . . . , x

n
i }, where xj

i ∈ [1, n] is an integer.
In such definition, xj

i is called a label identifier standing for the community
the node j belongs to. If xj

i = xk
i , then node j and k belong to the same com-

munity. Not only is this coding scheme easy to decode, but also it can determine
the number of the communities after division directly. As a result, the compu-
tational complexity will be reduced. The coding scheme of the particle is shown
in Fig. 1.
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Communtiy 1

Communtiy 2

Fig. 1. The coding scheme of the particle in GDPSO. Each particle is coded as a string
of integers, which represents the label identifier of the corresponding node.

Particle-status-updating rules: The operation of updating status must be
redefined under the discrete background in order to make GDPSO practicable
for community detection. The updating rules are put forward as follows:
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Vi = ωVi ⊕ (c1r1(Pbesti � Xi) + c2r2(Gbesti � Xi)) (3)

Xi = Xi ⊗ Vi (4)

In the above equations, the Pbesti = {pbest1i , pbest2i . . . , pbestDi } and
Gbesti = {gbesti, gbesti . . . , gbesti} are the ith particle’s best personal position
and the best global position of the swarm, respectively; the inertia weight ω, the
learning factors c1 and c2 are set typical values of 0.7298, 1.4961 and 1.4961; the
r1 and r1 are random numbers ranging from 0 to 1.

In Eq. (3), � is defined as an XOR operator. Provided with two velocity
vectors V1 = {v1

1 , v
2
1 , . . . , V

n
1 } and V2 = {v1

2 , v
2
2 , . . . , v

n
2 }, V1 ⊕ V2 = V3 =

{v1
3 , v

2
3 , . . . , v

n
3 } is a velocity vector with a detailed operation shown as follows:

⎧
⎪⎨

⎪⎩

vi
3 = 0, rand(0, 1) � 1

1 + e−(vi
1+vi

2)

vi
3 = 1, rand(0, 1) <

1
1 + e−(vi

1+vi
2)

(5)

In Eq. (4), given an old position Xold = {x1
old, x

2
old, . . . , x

n
old} and a velocity

V = {v1, v2, . . . , vn}, Xold ⊗ V = Xnew = {x1
new, x2

new, . . . , xn
new} is a position

vector whose element is defined as follows:
{

xi
new = xi

old, if vi = 0
xi
new = arg maxj ΔQ(xi

old, j|j ∈ Li), if vi = 1
(6)

where Li = {l1, l2, . . . , lk} is the set of label identifiers of node i′s neighbors. The
ΔQ is calcluated using the following equation:

ΔQ(xi
old, j|j ∈ Li) = fit(Xold|xi

old ← j) − fit(Xold) (7)

In general, each node chooses the community identifier which contributes to
the largest increase or the smallest decrease of Q value based on its neighbors.

Mutation: GDPSO implements the mutation operation so as to preserve diver-
sity and avoid falling into local optima. The procedure can be depicted as follows:
generating a random number between 0 and 1; for each node in a network, if the
random number is smaller than the mutation probability pm, assigning its label
identifier to all of its neighbors.

3 Physarum-inspired PSO for Community Detection

3.1 The Physarum-based network mathematical model

In this paper, PM model is modified into Physarum-based network model
(PNM) which could be used to recognize the intra-community edges in a net-
work. The key mechanism of PM model is the feedback system between the
fluxes and conductivities of tubes based on the Posieuille flow.
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First, let Qt
i,j , Dt

i,j , Li,j and pti stand for the flux, the conductivity, the
length of ei,j and the pressure of vi at time step t, respectively. The relationship
among these parameters can be represented as Eq. (8). Second, according to the
Kirchhoff’s law formulated in Eq. (9), the pressure and fluxes can be obtained by
solving such equations at each iteration step. Third, Qt

i,j feeds back to Dt
i,j based

on Eq. (10), and as iteration step t is completed, the iteration step t + 1 repeats
the above procedures on the basis of the data iteration step t returns. Finally,
as such positive feedback continues, a highly efficient network is generated [7].

Qt
i,j =

Qt
i,j

Li,j
|pti − ptj | (8)

∑

i

Qt−1
i,j =

⎧
⎪⎨

⎪⎩

I0, if vj is an inlet
−I0, if vj is an outlet
0, others

(9)

Dt
i,j =

(Qt
i,j + Dt−1

i,j )
k

(10)

PNM is based on the Physarum-inspired Mathematical Model (PM), whose
major modification is the scheme of choosing inlets/outlets in each iteration.
In such model, a vertice is chosen as an inlet, while the others are chosen as
outlets. Namely, Eq. (9) is modified as Eq. (11), where D and L are known.
Given a certain inlet and outlet, a set of equations based on Eq. (11) can be
obtained. By solving such equations, we get pi of node i, where i ranges from 1
to |V |. Besides, every vertice is chosen as the inlet once in each iteration step
of PNM. When vi is chosen as the inlet, a local conductivity matrix denoted
as Dt(i) is calculated based on the feedback system. Eventually, after all local
conductivity matrices are obtained, the global conductivity matrix is updated
by the average of Dt(i) based on Eq. (12).

∑

i

Qt−1(i)i,j
Li,j

|pti − ptj | =

⎧
⎨

⎩

−I0, if vj is an inlet
−I0

|V | − 1
, others

(11)

Dt =
1

|V |
|V |∑

i

Dt(i) (12)

3.2 Physarum-Inspired Network Model for Community Detection

Taking advantage of PNM, we roughly distinguish the inter-community edges
from intra-community through conductivities. Then, we adopt PNM optimize
initialization generating a high-quality initial solution and accelerating conver-
gence.

We can obtain a matrix D through PNM, and suppose that node i has a
neighbor set L(i) = {l1, l2, . . . , lk} and let label(i) be the community label which
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node i belongs to. First, for each node i, we initialize label(i) as i. In addition,
we assume that Ωi = {label(j)|j ∈ L(i) and Di,j < (1 − R%) ∗ Dmax} includes
the community labels of neighbors of node i. Namely, the top R% conductivities
Di,j denote that the edges between node i and j are inter-community edges.
Then, each node randomly selects an element from Ωi as its new label.

For the next step, the label propagation is utilized to optimize preliminary
initial solution further. Each node determines its community label based on
the labels of its neighbors. We assume that each node in the network chooses
to join the community with the largest number of its neighbors, which can be
represented as Eq. (13), where δ(i, j) is 1, if node i and j belong to the same
community, otherwise δ(i, j) is 0. This step is executed iters times where iters
is the number of propagation iteration. For a clear expression, with a prefix (i.e.,
P−) added to the original GDPSO algorithm for distinction, the novel algorithm
is denoted as P-PSO. The detailed process of P-PSO is shown in Algorithm1.

label(i) = arg max
r

∑

j∈L(i)

δ(label(j), r) (13)

Algorithm 1. The framework of P-PSO
Input: An adjacent matrix A and the label propagation iterations: iters
Output: The community division of a network
1. Calculating the conductivity matrix D;
2. Initializing the population that each node has unique label in each particle;
3. for each particle ∈ population do
4. for i = 1 : nodes do
5. label(i) ← choose a label randomly from Ωi;
6. for j = 1 : iters do
7. for j = 1 : nodes do
8. label(i) ← formula (13);
9. Evaluating the fitness of population and initializing the Gbest particle;
10. while not satisfy the terminal condition do
11. for each particle do
12. Updating particle status, see Sect. 2.2 for more information;
13. Operateing mutation on particle, see Sect. 2.2 for more information;
14. Evaluating the fitness of particle and updating the Pbest particle;
15. Evaluating the fitness of swarm and updating the Gbest particle;

4 Experiments and Results

All experiments are executed in the same environment to enable fair comparisons
between our algorithm and other algorithms including GDPSO [5], IACO-Net
[12] and PNGACD [13]. All results are averaged over 30 repeated runnings in
order to eliminate fluctuation. There are two popular metrics for evaluating the
performance of community detection: the modularity Q and normalized mutual
information (NMI) [10].
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4.1 Results on Benchmark Networks

Some experiments are carried out in the GN benchmark network proposed by
Lancichinetti et al. [11]. α denotes the mixing parameter which controlls the
proportion of links within and out of a community. We test all algorithms in
eleven computer-generated networks with the value of α ranging from 0 to 0.5.

As shown in Fig. 2, when the mixing parameter is no larger than 0.1, all
algorithms except PNGACD can discover the correct communities (NMI = 1).
With the mixing parameter increasing, the IACO-Net fails to detect the true
partitions. For α = 0.4, P-PSO and GDPSO still obtain NMI = 1. When α is
larger than 0.4, the NMI of GDPSO decreases more quickly than the proposed
P-PSO. The experiments in the GN benchmark networks prove that P-PSO is
feasible for community detection.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

The Mixing Parameter α in Benchmark Networks

N
M

I

P−PSO
GDPSO
IACO−Net
PNGACD

Fig. 2. The experimental results from the GN benchmark networks.

4.2 Results on Real-World Networks

Table 1 shows the structural characteristics of eight real-world networks used in
our experiments for evaluating the performance of our proposed method.

Figure 3 shows the results that some experiments are implemented to verify
the robustness of P-PSO in the four networks. It can be concluded that P-PSO
has a better stability than that of GDPSO. Table 2 reports the maximal and

Table 1. Networks used in this paper. Clusters stands for the number of communities
in standard divisions, in which “–” means that the standard division is non-existent.

Network Nodes Edges Clusters Network Nodes Edges Clusters

Karate 34 78 4 Dolphins 62 159 2

Polbooks 105 441 3 Football 115 613 12

Lesmis 77 254 – Adjnoun 112 425 –

SFI 118 200 – Celegans 297 1540 –
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Fig. 3. The average Q of the final iteration in four real-world networks. The upper and
lower ends of whiskers represent the maximum and minimum of Q, and the vertical
height of the box ranges from the first and the third quartiles. Besides, the small square
and band inside the box denote the average and median of Q, respectively. These
box charts demonstrate that P-PSO is inclined to a better robustness in community
detection.

Table 2. The test results for the Football, SFI and Celegans in terms of Qmax and Qavg

Network Football SFI Celegans

Qmax Qavg Qmax Qavg Qmax Qavg

P-PSO 0.6046 0.6046 0.7470 0.7389 0.4732 0.4717

GDPSO 0.6046 0.6046 0.7470 0.7370 0.4707 0.4685

IACO-Net 0.6032 0.5817 0.1940 0.1969 0.3733 0.3622

PNGACD 0.5973 0.5856 0.7457 0.7400 0.2914 0.2903

mean values of Q in other real-world networks. Results show that P-PSO is
substantially better than the compared algorithms.

Figure 4 reports the dynamic average modularity with the increment of itera-
tion. The optimized algorithm P-PSO has a higher growth rate than the original
GDPSO at the initial phase. The difference between them becomes smaller with
the increment of iteration, and yet P-PSO converges faster than GDPSO. Above
all, P-PSO shows a superiority in Q value during the whole iteration process.

Figure 5 shows the community divisions in Polbooks and Football. In
Fig. 5(a), the geometric figures denote the real communities and the colors denote
communities detected by P-PSO. Due to the context of books, some books are
connected more closely and form smaller communities, which disorganizes the
original divisions in the real world. In terms of the Football network, the posi-
tions are denoted as the real division and the colors mean five communities in
the division of P-PSO. Each node represents a football team in the real world,
and an edge stands for a game they have together. The marked circle emphasizes
the main difference between the detected communities by P-PSO and the real
communities.
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Fig. 4. The dynamic Q with the increment of iteration. The results show that the pro-
posed algorithm can accelerate the convergence, compared with GDPSO and IACO-Net.

(a) P-PSO in Polbooks (b) P-PSO in Football

Fig. 5. The visualizations of community divisions in two networks

5 Conclusion

The research about community detection is helpful for us to analyze the basic
characteristics of networks. Taking advantage of the Physarum network model
(PNM) and greedy discrete particle swarm optimization algorithm (GDPSO),
we propose a particle swarm optimization algorithm (P-PSO). The experimental
results in eight real-world networks demonstrate that P-PSO shows a better
ability in optimizing the initial solution and can obtain effective and promising
results than other state of the art algorithms.

Acknowledgments. Zhengpeng Chen and Fanzhen Liu contributed equally to this
work and should be considered as co-first authors. This work is supported by the
National Natural Science Foundation of China (Nos. 61402379, 61403315), Fundamen-
tal Research Funds for the Central Universities (No. XDJK2016A008, XDJK2016B029,
XDJK2016E074), CQ CSTC (cstc2015gjhz40002).



108 Z. Chen et al.

References

1. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
2. Weng, L., Menczer, F., Ahn, Y.Y.: Virality prediction and community structure in

social networks. Sci. Rep. 3, 2522 (2013)
3. Newman, M.E.: Modularity and community structure in networks. Proc. Natl.

Acad. Sci. 103, 8577–8582 (2006)
4. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995

IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Press,
New York (1995)

5. Cai, Q., Gong, M., Ma, L.: Greedy discrete particle swarm optimization for large-
scale social network clustering. Inf. Sci. 316, 503–516 (2015)

6. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K.,
Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network
design. Science 327, 439–442 (2010)

7. Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive trans-
port network in path finding by true slime mold. J. Theor. Biol. 224, 553–564
(2007)

8. Liu, Y., Gao, C., Zhang, Z., Lu, Y., Chen, S., Liang, M., Tao, L.: Solving np-hard
problems with physarum-based ant colony system. IEEE/ACM Trans. Comput.
Biol. Bioinf. 14, 108–120 (2017)
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