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Abstract. The parameter setting in Multi-Objective Evolutionary
Algorithms (MOEA) often affects the performance of optimization.
Besides, the optimal values of parameters often depend on each optimiza-
tion problem. However, it is difficult to decide the appropriate parameter
setting for each problem in advance. In this study, the effect of parameter
difference of the major crossover operators: Simulated Binary crossover
(SBX), Differentioal Evolution operator (DE), Simplex crossover (SPX),
Parent Centric crossover (PCX), and Unimodal Normal Distribution
crossover (UNDX), is investigated by using 10 benchmark problems.
DTLZ, WFG, and ZDT benchmark problems were considered. Non-
dominated sorting genetic algorithm-II (NSGA-II) were used as a Pareto-
based MOEA. The number of objectives was set to three. The experi-
mental results on benchmark problems show that the effect of parameter
variation is relatively small for SBX and SPX. On the other hand, there
are optimum parameters in each benchmark problem as other crossover
operators. This indicates that the choice of the crossover operator is
significantly important in MOEA for achieving the good performance.

Keywords: Crossover operator · NSGA-II · SBX · DE · SPX · PCX ·
UNDX

1 Introduction

Multi-objective optimization problems (MOP) exist in various real-world appli-
cations such as engineering, financial, and scientific applications. In MOP, each
objective function is often in a trade-off relationship, and in such a case, it is
impossible to obtain one optimal solution. Therefore, the purpose of MOP is to
get a set of solutions called Pareto-optimal (or non-dominated) solutions. Multi-
objective optimization requires not only convergence but also the diversity of
solutions. In recent years, many kinds of multi-objective evolutionary algorithms
(MOEA) have been proposed and shown to demonstrate good performance in
real-world optimization problems.

In MOEA, it is known that the performance is changed in different crossover
operators. Each crossover operator has some parameters. For example, Simu-
lated Binary crossover(SBX) [1] has a parameter η, and Parent Centric crossover
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(PCX) [10] has two parameters η and ζ. When we run MOEA, we have to prop-
erly determine the values of these parameters in advance. However, in most
cases, we use the default values set in each MOEA as they are. Table 1 shows
the default crossover operator and the default value of the crossover operator in
some major MOEA. The default crossover operator as shown in Table 1 is almost
SBX, and η is set to between 15 and 30. It is known that the optimal parameter
value is changed by the optimization problem [7,15]. In [7], the effect of Differ-
ential Evolution(DE) operator [13] is investigated with 4 benchmark problems.
However, the effect of various crossover operators has not yet been investigated.

In this study, we consider 5 crossover operators such as SBX, DE, simplex
crossover (SPX) [14], PCX, and unimodal normal distribution crossover (UNDX)
[8] as well as 10 benchmark problems to widely investigate the effects of crossover
operators. For the number of parameters in each crossover operator, there is one
in SBX and SPX, and two in DE, PCX, and UNDX. The objective of this study
is to investigate the effect of changing parameters of each crossover operator.
NSGA-II is used as a MOEA. DTLZ2,3,4 [3], WFG1,2,6,8,9 [9] and ZDT1,4 [17]
were used as benchmark problems.

Table 1. Default values of crossover operator in MOEA

MOEA Crossover method Parameter value

NSGA-II [2] SBX η = 20

ε-MOEA [12] SBX η = 15

NSGA-III [11] SBX η = 30

MOEA/D SBX η = 20

MOEA/D-DE [16] DE [cr, F ] = [1.0, 0.5]

IBEA [5] SBX η = 20

SPEA2 [4] SBX η = 20

2 Background

2.1 Related Work

Yuan et al. compared the performance when changing parameter values in the
DE operator using several test problems. In Yuan’s paper, cr is fixed to 0.1, and
the performance is compared when F is varied. The performance of F is good
at about 0.5 [15]. Besides, F is fixed to 0.5, and the performance is compared
when cr is varied. The performance of cr is good at about 0.1. Hadka et al.
examined the correlation of various parameters in the Borg MOEA, which has
adaptive operator selection (AOS). However, in Hadka’s paper, performance on
each parameter value of crossover operator has not been reported [6].

Thus, a comparison of performance when fixing one of the parameter values in
DE and a comparison of correlation with various parameters in AOS has already
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been done. However, the case of not fixing one of the parameter values and the
case of changing to various parameter values in crossover operators excluding
DE has not been compared yet.

In this study, we compare the performance when various parameter values
are changed variously in SBX, DE, SPX, PCX, and UNDX. Although DE, PCX,
and UNDX each have 2 parameters, in this study, we examine the performance
without fixing one of these parameters. In addition, to gain insight into the
parameters of each operator for each property of the problem, we used 10 kinds
of benchmark problems with different features.

2.2 Crossover Operator

In MOEA, offspring solutions are generated from parent solutions by crossover
and mutation in each generation. Crossover and mutation operators are different
depending on whether the design variables are handled as binary or real numbers.
In this research, we focus on cases where design variables are treated as real
numbers. Five crossover operators are used in this research.

SBX imitates one point crossover of a binary number with a real number.
The algorithm of SBX is shown below.

β(u) =

{
(2u)

1
η , if u(0, 1) ≤ 0.5
1

2(1−u)
1

η+1
, else (1)

y(1) =
1
2
{(1 − β)x(1) + (1 + β)x(2)}. (2)

y(2) =
1
2
{(1 + β)x(1) + (1 − β)x(2)}. (3)

where x(1), x(2) denote parent solutions, and y(1), y(2) denote offspring solutions.
β denotes a distribution function, and η denotes a SBX parameter.

DE is a crossover operator featuring stochastic linear search. DE randomly
selects 3 solutions from the parent population and calculates a vector from the
first 2 solutions. It then generates an offspring solution from at last a parent
solution to the vector direction. The algorithm of DE is shown below.

x′
i = xp1 + F (xp2 − xp3). (4)

yi,j =
{

x′
j,i , if u(0, 1) ≤ cr

xj,i , else
(5)

Here, {xp1, xp2, xp3} denote parent solutions, y denotes offspring solution,
and j denotes a design variable. Terms cr and F denote DE parameters.

SPX is a crossover operator that generates a child solution from the part
that extends past the range surrounded by the centroid. These are parent indi-
viduals of multiple parent solutions. The SPX algorithm wich three parents is
shown below.

O =
1
3

3∑
i=1

x(i). (6)
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ri = u
1
i , i = 1, 2, 3. (7)

v(i) = O + ε(x(i) − O). (8)

c(i) =
{

0, i = 1
ri−1(y(i−1) − v(i) + c(i−1)), i = 2

(9)

y = v(3) + c(3). (10)

Here, {xi, i = 1, 2, 3} denotes parent solutions, y denotes offspring solutions,
and O denotes centroid parent solutions. Term ε denotes the SPX parameter.

PCX is a crossover operator that generates offspring solutions around the
parent solution via the centroid of multiple parent solutions. The algorithm of
PCX with three parents is shown below.

O =
1
3

3∑
i=1

x(i). (11)

d(p) = x(p) − O p = 1, 2 or 3. (12)

D =
1
2

3∑
i=1,i �=p

√
d(x(i))
||d|| . (13)

y = x(p) + ωζ |d(p)| +
3∑

i=1,i �=p

ωηDe(i). (14)

Here, {xi, i = 1, 2, 3} denotes parent solutions, y denotes offspring solution,
and O denotes the centroid of the parent solutions. Term e(i) is the orthogonal
basis vector defined by d(p), and D denotes the distance of the perpendicular
vectors of the remaining 2 individuals and the d(p). Terms η and ζ are para-
meters of PCX. Term ωη denotes a random number generated from a Gaussian
distribution with mean 0, and variance σ2

η. Term ωζ denotes a random number
generated from a Gaussian distribution with mean 0 and variance σ2

ζ .
UNDX is a crossover operator creating a centroid from parent solutions. It

generates offspring solutions using a normal distribution around the centroid.
The algorithm of UNDX with three parents is shown below.

O =
2∑

i=1

x(i). (15)

d = x(2) − x(1). (16)

D =

√
|x(3) − x(1)|2 − [d(|x(3) − x(1))]2

|d|2 . (17)

y = O + σζd + D

n−1∑
i=1

σηi
ei. (18)

σζ ∼ N(0, ζ2), ση ∼ N(0, η2). (19)
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Here, {xi, i = 1, 2, 3} denotes parent solutions, y denotes offspring solutions,
and O denotes centroid of 2 parent solutions. Term e(i) is the orthogonal basis
vector defined by d. Terms η and ζ denote parameters of UNDX.

3 Computational Condition

In this study, we use NSGA-II as MOEA. The crossover operator in NSGA-II is
calculated for each of the 5 operators described above. We also use polynomial
mutation for mutation operator. Table 2 shows the parameter values of each
crossover operator in this study.

Table 2. Parameter values of crossover operators

Crossover Parameter Range of parameter values

SBX η {5, 15, 25, 35, 45}
DE cr {0.1, 0.3, 0.5, 0.7, 0.9}

F {0.1, 0.3, 0.5, 0.7, 0.9}
SPX ε {1, 3, 5, 7, 9}
PCX η {0.1, 0.3, 0.5, 0.7, 0.9}

ζ {0.1, 0.3, 0.5, 0.7, 0.9}
UNDX η {0.1, 0.3, 0.5, 0.7, 0.9}

ζ {0.1, 0.3, 0.5, 0.7, 0.9}

Therefore, we adopt 10 benchmark problems with different properties
(DTLZ2, 3, 4, WFG1, 2, 6, 8, 9, and ZDT1, 4). DTLZ and WFG problems
can be scaled with any number of objectives and design variables. Here, we con-
sider that the number of objectives in DTLZ and WFG is 3. The number of
the objective functions in ZDT problems is set to 2. For DTLZ and WFG prob-
lems, the number of design variables is 12. In the ZDT1 problem, the number of
design variables is 30, and in the ZDT4 problem, the number of design variables
is 10. Therefore, none of the benchmark problems have a constraint function.
Table 3 summarizes the properties of the benchmark problems from the view of
separability of design variables, modality, shape of Pareto front, and whether
each problem has bias or not. In all problems, both the population size and the
number of generations are set to 100. Furthermore, the number of trials is 10.

To evaluate the performance in each pattern, the hypervolume (HV) [18] is
used as the performance metric. The HV can measure both convergence and
diversity of a optimal solution set and a higher value means better performance.
The calculation formula of HV is shown below.

HV (P ) = volume(
⋃
y∈S

[y1, y∗
1 ] × ..... × [ym, y∗

m]). (20)
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Table 3. Summary of the problems of the test problems

Problem Separability Modality Bias Shape

DTLZ2 S U × concave

DTLZ3 S M × concave

DTLZ4 S U ◦ concave

WFG1 S U ◦ convex

WFG2 N M × convex

WFG6 N U × concave

WFG8 N U ◦ concave

WFG9 N M ◦ concave

ZDT1 S U × convex

ZDT4 S M × convex

For separability, “S” denotes that design variables are
separable, and “N” indicates that the design vari-
ables are non-separable. For each modality, “U” indi-
cates that the problem is uni-modal, and “M” denotes
that the problem is multi-modal. For bias, we indicate
whether the problem has bias or not. Shape shows the
shape of the Pareto front.

Here, m denotes the number of objectives, and S denotes the Pareto set.
In this study, y∗ is set to 1.5 times the maximum value of each objective func-
tion value in the true Pareto front except for DTLZ3. In DTLZ3, y∗ is set
to {150, 150, 150}. Furthermore, to avoid changing the value for each problem,
divide by the volume surrounded by the origin point and y∗ to convert it to the
proportion of the HV value surrounded by the origin point and y∗. Pareto set in
all search solutions is used for calculation of HV.

4 Results and Discussion

In all parameters mentioned above in Table 2, the trials are run using different
10 random seeds. The HV calculates the average of 10 trials and compares it to
each parameter value. Figures 1, 2, 3, 4 and 5 show the average values of HV
wich 10 trials in each crossover operator. A bluer color is preferred. In Figs. 1, 2,
3, 4 and 5, the HV value is converted from 0 to 1 for each problem, and in that
range, each cell is colored in 50 hierarchies. The conversion formula is shown
below.

HVnew =
HVold − min(HVold)

max(HVold) − min(HVold)
. (21)

For each cell in Figs. 1, 2, 3, 4 and 5, each cell shows the proportion of the HV
value surrounded by the origin point and y∗.

Figure 1 shows the result of SBX - the number of parameters is only one.
From Fig. 1, it is clear when the value of η is large, each cell is bluer, but there
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Fig. 1. Result of SBX Fig. 2. Result of SPX

is little difference in the HV value for each parameter except DTLZ3 and ZDT4.
We think that η does not change the performance in most test problems. In the
case of DTLZ3 and ZDT4, there is a large difference in the η = 5 case and other
cases. Performance is not good with η = 5.

Figure 2 shows the result of SPX. The number of parameters is only one.
Figure 2 shows that the value of ε = 3, 5, 7, each cell is bluer. Thus, the perfor-
mance is considered good with ε = 3, 5, 7 except WFG9. With WFG9, there is
almost no difference in the HV value for each parameter, and the value of ε does
not change the performance in WFG9.

Figure 3 shows the result of DE - the number of parameters is two. In DE,
PCX, and UNDX, there are two parameters: the horizontal axis and the vertical
axis, and these are set as the respective parameters. The performance is com-
pared with each problem. Therefore, in DE, PCX, and UNDX, the performance
is compared to 10 figures. Thus, Fig. 3(a)–(j) show the result of DE in each test
problem. From Fig. 3, it is understood when the value of cr and F are small,
each cell is bluer in most test problems. However, for ZDT4, it is understood
that each cell is bluer when the value of cr and F are small. Thus, in most test
problems, the performance is good when the value of cr and F are small. For
ZDT4, the performance is good when the value of cr and F are large.

Figure 4 shows the result of PCX, and Fig. 4(a)–(j) show the results in each
problem. From Fig. 4, the color tone differs for each problem, and the optimal
parameter value may be different depending on the problem in PCX. Especially
for WFG2, 6, 8, 9, each cell is bluer when the value of η is large. A common
characteristic of WFG2, 6, 8, 9 is that design variables are non-separable. Thus
in PCX, if the design variables are non-separable, then the performance is good
when the value of η in PCX is large.

Figure 5 shows the result of UNDX, and Fig. 5(a)–(j) show the results in
each problem. Figure 5 shaws that when the value of η is large, each cell is bluer
in most test problems. Thus, the performance is good when the value of η is
large. However, in the case of DTLZ3 and WFG1, there is little difference in
the HV value for each parameter. Thus, the value of η likely does not change
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(a)DTLZ2 (b)DTLZ3

(c)DTLZ4 (d)WFG1

(e)WFG2 (f)WFG6

(g)WFG8 (h)WFG9

(i)ZDT1 (j)ZDT4

Fig. 3. Result of DE



A Parametric Study of Crossover Operators 11

(a)DTLZ2 (b)DTLZ3

(c)DTLZ4 (d)WFG1

(e)WFG2 (f)WFG6

(g)WFG8 (h)WFG9

(i)ZDT1 (j)ZDT4

Fig. 4. Result of PCX
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(a)DTLZ2 (b)DTLZ3

(c)DTLZ4 (d)WFG1

(e)WFG2 (f)WFG6

(g)WFG8 (h)WFG9

(i)ZDT1 (j)ZDT4

Fig. 5. Result of UNDX
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the performance in DTLZ3 and WFG1. On the other hand, in the case of ζ, it
becomes bluer from 0.3 to 0.5 in each problem. Thus, the performance is good
when ζ = 0.3, 0.5.roblem. Thus, the performance is good when ζ = 0.3, 0.5.

5 Conclusion

In this study, we consider five crossover operators such as SBX, DE, SPX, PCX,
and UNDX as well as 10 benchmark problems to widely investigate the effects
of crossover operators. For the number of parameters in each crossover opera-
tor, there is one in SBX and SPX, and there are two in DE, PCX, and UNDX.
The objective of this study is to investigate the effect of changing the parame-
ters in each crossover operator. NSGA-II is used as a MOEA. DTLZ2,3,4 [3],
WFG1,2,6,8,9 [9] and ZDT1,4 [17] is used as benchmark problems.

In SBX, a large value of η is preferred. In SPX, values of 3 to 7 are preferred
for ε. However, there is little difference in the performance for η and ε. These
results indicate that the effect of parameter variation is relatively small.

In DE, small values are preferred for both cr and F . In PCX, appropriate
values of η and ζ depend on the problem. When the design variable is non-
separable, a large value is preferred for η. In UNDX, a large value of η is preferred.
For ζ, values about 0.3 to 0.5 are preferred. These results indicate that as for DE,
PCX, and UNDX, there are optimum parameters in each benchmark problem.
This also indicates that the choice of crossover operator is significantly important
in MOEA for achieving good performance.

In future work, we will investigate not only the effect when the number of
objectives is more than four but also the effect when the different mutation is
considered. In addition, it is also necessary to consider other types of MOEA
such as MOEA/D and IBEA.
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