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Abstract. In this paper, we propose an algorithm for the registration
of the GPS sensor and the stereo camera for vehicle localization within
3D dense point clouds. We adopt the particle swarm optimization algo-
rithm to perform the sensor registration and the vehicle localization. The
registration of the GPS sensor and the stereo camera is performed to
increase the robustness of the vehicle localization algorithm. In the stan-
dard GPS-based vehicle localization, the algorithm is affected by noisy
GPS signals in certain environmental conditions. We can address this
problem through the sensor fusion or registration of the GPS and stereo
camera. The sensors are registered by estimating the coordinate trans-
formation matrix. Given the registration of the two sensors, we perform
the point cloud-based vehicle localization. The vision-based localization
is formulated as an optimization problem, where the “optimal” trans-
formation matrix and corresponding virtual point cloud depth image is
estimated. The transformation matrix, which is optimized, corresponds
to the coordinate transformation between the stereo and point cloud
coordinate systems. We validate the proposed algorithm with acquired
datasets, and show that the algorithm robustly localizes the vehicle.

1 Introduction

Vehicle localization in the surrounding environment, such as dense 3D point
clouds, is an important research problem for ADAS applications. In the standard
localization algorithm, the GPS sensor is used. However, the GPS is error prone
in environments, where satellite reception is limited, resulting in localization
errors [2]. Researchers address this problem by performing sensor fusion with
additional sensors such as camera, LIDAR, and Inertial Navigation Systems
(INS) [13]. Since precise INS and LIDAR sensors are expensive, vision and GPS-
based vehicle localization is increasingly receiving attention from the research
community [13].
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In this work, we propose to perform the sensor fusion of the stereo cam-
era and GPS for depth-based vehicle localization within 3D dense point cloud
using the particle swarm optimization algorithm. In the proposed algorithm, we
first register the stereo and GPS coordinate systems in an offline phase. Given
the estimated stereo-GPS transformation matrix, we subsequently localize the
vehicle in the dense point cloud using depth information, in an online phase,
using the particle swarm optimization algorithm. In this phase, stereo vision-
based depth information is used within an optimization framework to perform
the localization within the dense 3-D point clouds. Given the registered GPS and
stereo camera, the localization is performed by estimating the optimal transfor-
mation matrix between the stereo and the point cloud coordinate system. The
optimal world-stereo transformation matrix along with the GPS-stereo trans-
formation matrix generates an optimal virtual depth map from the point cloud
data. The transformation matrices are optimised by measuring the similarity
between the corresponding virtual depth maps and the stereo depth maps. To
efficiently measure the similarity, we prune the depth map using v-disparity [7]
and restrict the similarity measurement to the unpruned regions. The proposed
algorithm is validated with an acquired dataset, where we show the robustness
of the proposed algorithm.

The rest of this paper is structured as follows. In Sect. 2, we present a lit-
erature review of the state-of-the-art. Details of the proposed algorithm are
described in Sect. 3. The experimental results are presented in Sect. 4. Finally,
we present our observations and directions for future work in Sect. 5.

2 Literature Review

The research problem of vehicle localization, typically, uses the GPS sensor.
However, the GPS-based navigation systems suffer from low accuracy and inter-
mittent missing signals under certain conditions [2]. The signal outages or local-
ization errors, typically, occur when the vehicles moves through tunnels and
roads surrounded by tall building. Additionally, the GPS errors are also intro-
duced when the satellites are not widely positioned [2]. Researchers addressed
this issue by incorporating inertial navigation systems (INS) [5] and visual odom-
etry (VO) [8]. However these methods, inspite of improving the localization, are
affected by drift errors.

To address the issue of divergence, researchers have proposed to use envi-
ronmental maps, in the form of satellite images and dense point clouds, for the
vehicle localization [10,11]. Typically, monocular cameras are used for the vehi-
cle localization. In the work by Noda et al. [11] the localization was performed
by matching the speeded-up robust features (SURF) observed from the on-board
camera with the ones from satellite images. Similarly in [10], detected image lanes
were matched with lanes in digital maps using GPS and INS information to per-
form localization. To enhance the accuracy of localization, Yoneda et al. [13]
utilized the LIDAR sensor to perform vehicle localization in dense 3D point
clouds, and achieved good localization accuracy. However, the main drawback
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and limitation of the LIDAR sensor is its high cost. Thus, it is more feasible to use
cheaper sensors, like stereo camera, to perform the matching in dense 3D point
clouds. In spite of the recent advancements in vehicle localisation techniques, it
can be seen that the problem is still not solved. In this paper, we propose to use
stereo vision and GPS sensors to localize the vehicle in dense point clouds.

3 Depth-Based Vehicle Localization in Point Cloud Maps

We propose the sensor fusion of stereo and GPS sensor for vehicle localization
in point cloud maps using depth information. The point cloud maps are gener-
ated as a representation of the vehicle’s environment [1]. The 3D point clouds,
P, contain latitude, longitude and altitude information, where the latitude and
longitude are represented in the 2D Universal Transverse Mercator (UTM) sys-
tem. To perform localization, we estimate the transformation matrices between
the world, vehicle and stereo coordinates. The different coordinate systems are
defined as follows. Firstly, the world coordinate system is defined at the origin of
point cloud map’s UTM system. Secondly, the vehicle coordinate system corre-
sponds to the GPS location in the vehicle. Finally, the stereo coordinate system
is defined at the location of the left camera of the stereo pair. An illustration of
the different coordinate systems are provided in Fig. 1-a.

The localization is achieved by generating virtual depth maps Mv from the
point cloud P, and measuring their similarity with the stereo depth map Ms

within a particle swarm optimization (PSO). While, Ms is generated by the
MPV algorithm [9], Mv are generated using a set of transformation matrices.
This set of matrices correspond to the transformation between the world, vehicle
and stereo coordinate systems. Apart from these transformation matrices, the
stereo’s intrinsic calibration parameters are also needed for Mv generation. The
transformation between the vehicle and stereo coordinate (T s

v ) is fixed and cor-
responds to the sensor fusion of the GPS and stereo camera. The transformation
between the word and vehicle (T v

w) varies as the vehicle moves. PSO localizes
the vehicle in two phases, an off-line and online phase. The intrinsic calibration
T i
s and fixed transformation T s

v are estimated in the offline phase. In the online

Fig. 1. (a) An illustration of the different coordinate system. (b) The intelligent vehicle
used for the localization in our experiment.
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phase, the varying T v
w are estimated within an PSO-based tracker. The online

tracker is initialized using the GPS-INS information. We propose a computa-
tionally effective PSO cost function, where the depth map is pruned using the
u-v disparity.

3.1 Algorithm Components

Multipath Viterbi Algorithm. The MPV algorithm is a stereo matching algo-
rithm based on the dynamic programming-based Viterbi algorithm. The struc-
tural similarity (SSIM) is used to measure the matching cost or pixel difference
between the stereo images on the epipolar lines. A total variation constraint
is incorporated within the Viterbi algorithm. To estimate the disparity maps,
which are considered as hidden states, the Viterbi process is performed in 4 bi-
directional paths. A hierarchical structure is used to merge the multiple Viterbi
search paths. Additionally, an automatic rectification process is also adopted to
increase the robustness of the algorithm. We refer the authors to Long et al. [9]
for details of the algorithm (Fig. 2).

Depth Map Pruning. Given the estimated depth map, we perform the pruning
to remove the dynamic objects in the image using the real-time curb detection
algorithm proposed by Long et al. [9]. To perform the pruning, we first estimate
the histogram of disparity in horizontal and vertical direction or the U-disparity
(Hy) and V-disparity (Hx). Given, the U and V-disparity maps, we first detect
the road surface using the V-disparity. Subsequently, we detect the curbs in
the depth map. After detecting the curbs and the road, the vertical foreground
objects, such as car or pedestrians, are pruned from the depth map. Examples
of the pruned depth map are shown in Fig. 3. The pruned depth map reduces
the computational complexity during the PSO evaluation.

Fig. 2. A detailed overview of the (a) offline and (b) online phase of our proposed
algorithm.
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Fig. 3. An illustration of the depth pruning with (left) right stereo image, (middle)
depth image and (right) pruned depth map.

Particle Swarm Optimization. In this paper, we use the varying inertia-based
PSO proposed by Shi and Eberhart [12], which functions as global-to-local opti-
mizer. Given a N -dimensional search space, PSO is used to identify the optimal
solution using a swarm of M particles. Each particle in the PSO swarm is an
N -dimensional vector (xm = {xn

m}Nn=1) representing a position. Additionally,
each particle has an associated N -dimensional velocity vector, vm = {vn

m}Nn=1,
to facilitate the search. The best position of each particle and its fitness function
value is given by pm = {pnm}Nn=1 and λm. The best particle in the swarm and its
corresponding fitness function value is denoted by pg = {png }Nn=1 and correspond-
ing fitness function is stored as g respectively. The inertia weight parameter w
defines the exploration of the search space. The social and cognition components
of the swarm are defined by the parameters ρ1 = c1rand() and ρ2 = c2rand().
In this algorithm, we used 5 PSO particles with c1 and c2 set at 2. A was set
to 0.5 and C was set to 100 PSO iterations. A pre-defined search limits derived
from the maximum possible inter-frame velocity was used.

3.2 Algorithm: Sensor Fusion

In the offline or sensor fusion phase, we first calibrate the cameras using the
checkerboard. Subsequently, we estimate the fixed T s

v using the PSO. To perform
the estimation, we first acquire a dataset with our experimental vehicle known
as the vehicle-stereo dataset. The vehicle-stereo dataset contains a set of stereo
depth images Ms along with GPS-INS information. The GPS-INS information
is used to generate the T v

w, or world-vehicle transformation matrix. To eliminate
GPS errors, the vehicle-stereo dataset is acquired in an area without any tall
buildings. Given, the acquired T v

w and the T i
s (intrinsic), we estimate the T s

v by
generating and matching candidate virtual depth maps with the stereo depth
map using the PSO. The candidate depth maps are generated from the Aisan-
based point cloud data [1].

Cost Function. PSO generates the candidate matrix T s
v or PSO particle

x = xs
v

′. The candidate virtual depth map and the corresponding depth map
are evaluated by the PSO-based cost function at the unpruned depth indices,
given as,

f(x′) = dist(Ms,Mv(x′)) (1)
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where x′ is the PSO particle which represents the vector representation of the
candidate transformation matrix. x′ = [ex, ey, ez, θ, tx, ty, tz], where ex, ey, ez, θ
represents the axis-angle representation of the rotation matrix and tx, ty, tz rep-
resents the translation parameters.

3.3 Algorithm: Online Phase

Given the estimated T s
v and T i

s , we localize the vehicle by estimating T v
w at

each time instant t using a PSO-based tracker. Similar to the offline phase, the
unknown transformation matrix is optimized by generating and matching virtual
point cloud depth images with the stereo depth image. The PSO-based tracker
has two phases, an automatic initialization phase and estimation phase.

Automatic Initialization. The online PSO tracker is initialized at time instant
t = 1 using the parameters of the T v

w matrix or xv
w(t) obtained from the GPS-

INS. Please note that, following initialization, the PSO tracker estimates the
xv
w(t) for the remaining frames t > 1 without the GPS information.

PSO Estimation. Candidate parameters generated by the PSO algorithm,
along with the previously estimated fixed transformation matrices, are used
to generate the candidate virtual point cloud depth image. By measuring the
similarity between the candidate and stereo depth images, the optimal xv

w(t)
transformation parameters are estimated and the vehicle is localized. The ini-
tialized PSO tracker estimates the optimal candidate for a given frame t, using
the cost function Eq. 1, where x = xv

w(t).

Propagation. Once the transformation matrix is estimated for a given frame
t, the PSO swarm at every subsequent frame t + 1 is initialized by sampling
from a zero-mean Gaussian distribution centered around the previous frame’s
estimate ˆxv

w(t). The zero mean Gaussian distribution is represented by a diago-
nal covariance matrix with covariance value 0.01. By iteratively estimating the
optimal transformation matrix and propagating the optimal candidate, the PSO
tracker performs online tracking. Examples of the localization results are shown
in Fig. 4.

4 Experimental Results

A comparative analysis with baseline algorithms is performed for the offline
and the online phase. The Euclidean distance-based error measure between the
estimated parameters and the ground truth parameters are reported. The ground
truth parameter for xs

v in the offline phase is calculated directly from the distance
and orientation between the GPS and stereo camera on the experimental vehicle.
The ground truth parameter for the online phase corresponds to the parameters
obtained from the GPS. We implement the algorithm using Matlab and Windows
(3.5 GHz Intel i7).

Dataset and Algorithm Parameters. The experimental vehicle was used
to acquire multiple datasets with multiple sequences for the online phase.
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Fig. 4. Localization results. The left column is the left stereo image, the middle column
is the disparity. The right column is the optimal virtual depth map.

The online phase was evaluated with three datasets. The first dataset contains
4 sequences with total of 300 frames. The second dataset contains 5 sequences
with total of 1200 frames, while the third dataset contains 3 sequences with a
total of 1200 frames. The dataset for the offline phase contains 15 stereo depth
maps and corresponding T v

w parameters derived from the GPS sensor.

4.1 Offline Phase

We validate the offline phase by performing a comparative analysis with baseline
optimization algorithms, the genetic algorithm (GA) and the simulated anneal-
ing algorithm (SA) [6]. The number of generations and populations in GA along
with the number of iterations in SA was kept similar to the total number of PSO
evaluations. Similarly, the search limits were uniform across the algorithms. The
results as shown in Table 1, show that the PSO algorithm is better than the
baseline algorithm.

Table 1. Error mean and variance over 3
trials on the offline dataset.

Algorithms PSO GA SA

Error 0.62 ± 0.08 1.52±0.6 1.32 ± 0.5

Time taken (min) 35 37.25 69.75

Table 2. Error mean and variance for
the localization experiment

Dataset PSO PF APF

1 0.63± 0.17 0.89± 0.27 1.57± 0.7

2 0.69± 0.10 1.3± 0.53 2.04± 1.0

3 0.89± 0.06 1.1± 0.3 2.3± 1.6
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4.2 Online Phase

In this section, we validate the PSO tracker by performing a comparative analysis
with the widely used particle filter [3] and the APF [4]. The number of particles
and iterations of both the particle filter (PF) and APF were kept the same as the
PSO. The PF contains 250 particles, while the APF contains 125 particles and
2 layers. In the experiment, the GPS was used only for the initialization, and
subsequent localization is only stereo-based. The results tabulated in Table 2,
show that the performance of the PSO is better than the baseline algorithms.
The low accuracy of the PF can be attributed to the divergence error.

5 Conclusion and Future Works

In this paper, we proposed a sensor fusion and vehicle localization algorithm
using particle swarm optimization. To perform the localization, we matched
the stereo depth map with virtual point cloud depth maps within a particle
swarm optimization framework. Virtual depth maps are generated using a series
of transformation matrices. The fixed transformation matrix between the GPS
and calibrated stereo camera is estimated in an offline phase. Subsequently, the
vehicle is localized in the online phase using a particle swarm optimization based
tracking algorithm. We increase the computational efficiency by pruning the
depth map for the evaluation. We performed a comparative evaluation with
state-of-the-art techniques. Based on our results, we demonstrated the improved
performance of the proposed algorithm. In the future work, we will implement
the tracker phase on the GPU to achieve real-time performance.
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