
Ying Tan
Hideyuki Takagi
Yuhui Shi (Eds.)

 123

LN
CS

 1
03

85

8th International Conference, ICSI 2017
Fukuoka, Japan, July 27 – August 1, 2017
Proceedings, Part I

Advances
in Swarm Intelligence

Lecture Notes in Computer Science 10385

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Ying Tan • Hideyuki Takagi
Yuhui Shi (Eds.)

Advances
in Swarm Intelligence
8th International Conference, ICSI 2017
Fukuoka, Japan, July 27 – August 1, 2017
Proceedings, Part I

123

Editors
Ying Tan
Peking University
Beijing
China

Hideyuki Takagi
Kyushu University
Fukuoka
Japan

Yuhui Shi
Southern University of Science
and Technology

Shenzhen
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-61823-4 ISBN 978-3-319-61824-1 (eBook)
DOI 10.1007/978-3-319-61824-1

Library of Congress Control Number: 2017944216

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book and its companion volumes, LNCS vols. 10385 and 10386, constitute the
proceedings of the 8th International Conference on Swarm Intelligence (ICSI 2017)
held from July 27 to August 1, 2017, in Fukuoka, Japan.

The theme of ICSI 2017 was “Serving Life with Intelligence and Data Science.”
ICSI 2017 provided an excellent opportunity and/or an academic forum for academics
and practitioners to present and discuss the latest scientific results and methods,
innovative ideas, and advantages in theories, technologies, and applications in swarm
intelligence. The technical program covered all aspects of swarm intelligence and
related areas.

ICSI 2017 was the eighth international gathering in the world for researchers
working on all aspects of swarm intelligence, following successful events in Bali (ICSI
2016), Beijing (ICSI-CCI 2015), Hefei (ICSI 2014), Harbin (ICSI 2013), Shenzhen
(ICSI 2012), Chongqing (ICSI 2011), and Beijing (ICSI 2010), which provided a
high-level academic forum for participants to disseminate their new research findings
and discuss emerging areas of research. It also created a stimulating environment for
participants to interact and exchange information on future challenges and opportu-
nities in the field of swarm intelligence research. ICSI 2017 was held in conjunction
with the Second International Conference on Data Mining and Big Data (DMBD 2017)
at Fukuoka, Japan, to share common mutual ideas, promote transverse fusion, and
stimulate innovation.

ICSI 2017 was held in the center of the Fukuoka City. Fukuoka is the fifth largest
city in Japan with 1.55 million inhabitants and is the seventh most liveable city in the
world according to the 2016 Quality of Life Survey by Monocle. Fukuoka is in the
northern end of the Kyushu Island and is the economic and cultural center of Kyushu
Island. Because of its closeness to the Asian mainland, Fukuoka has been an important
harbor city for many centuries. Today’s Fukuoka is the product of the fusion of two
cities in the year 1889, when the port city of Hakata and the former castle town of
Fukuoka were united into one city called Fukuoka. The participants of ICSI 2017
enjoyed traditional Japanese dances, the local cuisine, beautiful landscapes, and the
hospitality of the Japanese people in modern Fukuoka, whose sites are part of
UNESCO’s World Heritage.

ICSI 2017 received 267 submissions from about 512 authors in 35 countries and
regions (Algeria, Australia, Austria, Brazil, Brunei Darussalam, Canada, China,
Colombia, Germany, Hong Kong SAR China, India, Indonesia, Iran, Italy, Japan,
Lebanon, Malaysia, Mexico, New Zealand, Nigeria, Norway, Romania, Russia, Serbia,
Singapore, South Africa, South Korea, Spain, Sweden, Chinese Taiwan, Thailand,
Tunisia, Turkey, UK, USA) across six continents (Asia, Europe, North America, South
America, Africa, and Oceania). Each submission was reviewed by at least two, and on
average 2.9 reviewers. Based on rigorous reviews by the Program Committee members
and reviewers, 133 high-quality papers were selected for publication in this

proceedings volume, with an acceptance rate of 49.81%. The papers are organized in
24 cohesive sections covering all major topics of swarm intelligence and computational
intelligence research and development.

On behalf of the Organizing Committee of ICSI 2017, we would like to express our
sincere thanks to the Research Center for Applied Perceptual Science of Kyushu
University and the Computational Intelligence Laboratory of Peking University for
their sponsorship, to the IEEE Computational Intelligence Society for its technical
sponsorship, to a Japan Chapter of IEEE Systems, Man and Cybernetics Society for its
technical cosponsorship, as well as to our supporters the International Neural Network
Society, World Federation on Soft Computing, IEEE Beijing Section, and Beijing
Xinghui Hi-Tech Co. and Springer. We would also like to thank the members of the
Advisory Committee for their guidance, the members of the international Program
Committee and additional reviewers for reviewing the papers, and the members of the
Publications Committee for checking the accepted papers in a short period of time. We
are particularly grateful to Springer for publishing the proceedings in the prestigious
series Lecture Notes in Computer Science. Moreover, we wish to express our heartfelt
appreciation to the plenary speakers, session chairs, and student helpers. In addition,
there are still many more colleagues, associates, friends, and supporters who helped us
in immeasurable ways; we express our sincere gratitude to them all. Last but not the
least, we would like to thank all the speakers, authors, and participants for their great
contributions that made ICSI 2017 successful and all the hard work worthwhile.

May 2017 Ying Tan
Hideyuki Takagi

Yuhui Shi

VI Preface

Organization

General Co-chairs

Ying Tan Peking University, China
Hideyuki Takagi Kyushu University, Japan

Program Committee Chair

Yuhui Shi Southern University of Science and Technology, China

Advisory Committee Co-chairs

Russell C. Eberhart IUPUI, USA
Gary G. Yen Oklahoma State University, USA
Hisao Ishibuchi Osaka Prefecture University, Japan

Technical Committee Co-chairs

Kay Chen Tan National University of Singapore, Singapore
Xiaodong Li RMIT University, Australia
Nikola Kasabov Auckland University of Technology, New Zealand
Ponnuthurai N. Suganthan Nanyang Technological University, Singapore

Plenary Session Co-chairs

Mengjie Zhang Victoria University of Wellington, New Zealand
Andreas Engelbrecht University of Pretoria, South Africa

Invited Session Co-chairs

Yan Pei University of Aizu, Japan
Chaomin Luo University of Detroit Mercy, USA

Special Sessions Co-chairs

Shangce Gao University of Toyama, Japan
Ben Niu Shenzhen University, China
Qirong Tang Tongji University, China

Tutorial Co-chairs

Milan Tuba John Naisbitt University, Serbia
Andreas Janecek University of Vienna, Austria

Publications Co-chairs

Swagatam Das Indian Statistical Institute, India
Xinshe Yang Middlesex University, UK

Publicity Co-chairs

Yew-Soon Ong Nanyang Technological University, Singapore
Carlos Coello CINVESTAV-IPN, Mexico
Yaochu Jin University of Surrey, UK
Shi Cheng Shanxi Normal University, China
Bin Xue Victoria University of Wellington, New Zealand

Finance and Registration Chairs

Chao Deng Peking University, China
Suicheng Gu Google Corporation, USA

Local Arrangements Chair

Ryohei Funaki Kyushu University, Japan

Conference Secretariat

Jie Lee Peking University, China

International Program Committee

Mohd Helmy Abd Wahab Universiti Tun Hussein Onn Malaysia, Malaysia
Harshavardhan Achrekar University of Massachusetts Lowell, USA
Miltos Alamaniotis Purdue University, USA
Peter Andras Keele University, UK
Esther Andrés INTA, Spain
Helio Barbosa Laboratório Nacional de Computação Científica, Brazil
Carmelo J.A. Bastos Filho University of Pernambuco, Brazil
David Camacho Universidad Autonoma de Madrid, Spain
Bin Cao Tsinghua University, China
Jinde Cao Southeast University, China
Kit Yan Chan DEBII, Australia
Shi Cheng Shaanxi Normal University, China
Manuel Chica European Centre for Soft Computing, Spain

VIII Organization

Carlos Coello Coello CINVESTAV-IPN, Mexico
Jose Alfredo Ferreira Costa Federal University, Brazil
Prithviraj Dasgupta University of Nebraska, USA
Mingcong Deng Tokyo University of Agriculture and Technology,

Japan
Ke Ding Tencent Corporation, China
Yongsheng Dong Xi’an Institute of Optics and Precision Mechanics

of CAS, China
Mark Embrechts RPI, USA
Andries Engelbrecht University of Pretoria, South Africa
Jianwu Fang Xi’an Institute of Optics and Precision Mechanics

of CAS, China
Shangce Gao University of Toyama, Japan
Beatriz Aurora Garro Licon IIMAS-UNAM, Mexico
Maoguo Gong Xidian University, China
Yinan Guo China University of Mining and Technology, China
J. Michael Herrmann University of Edinburgh, UK
Lu Hongtao Shanghai Jiao Tong University, China
Andreas Janecek University of Vienna, Austria
Yunyi Jia Clemson University, USA
Changan Jiang Ritsumeikan University, Japan
Mingyan Jiang Shandong University, China
Chen Junfeng Hohai University, China
Liangjun Ke Xian Jiaotong University, China
Thanatchai

Kulworawanichpong
Suranaree University of Technology, Thailand

Rajesh Kumar MNIT, India
Hung La University of Nevada, USA
Germano Lambert-Torres PS Solutions, Brazil
Xiujuan Lei Shanxi Normal University, China
Bin Li University of Science and Technology of China
Xiaodong Li RMIT University, Australia
Xuelong Li Chinese Academy of Sciences, China
Andrei Lihu Politehnica University of Timisoara, Romania
Fernando B. De Lima Neto University of Pernambuco, Brazil
Ju Liu Shandong University, China
Qun Liu Chongqing University of Posts and Communications,

China
Wenlian Lu Fudan University, China
Wenjian Luo University of Science and Technology of China
Mohamed Arezki Mellal M’Hamed Bougara University, Algeria
Sanaz Mostaghim Institute IWS, Germany
Ben Niu Arizona State University, USA
Quan-Ke Pan Huazhong University of Science and Technology,

China
Shahram Payandeh Simon Fraser University, Canada

Organization IX

Yan Pei The University of Aizu, Japan
Somnuk Phon-Amnuaisuk Universiti Teknologi, Brunei
Radu-Emil Precup Politehnica University of Timisoara, Romania
Kai Qin RMIT University, Australia
Quande Qin Shenzhen University, China
Boyang Qu Zhongyuan University of Technology, China
Robert Reynolds Wayne State University, USA
Luneque Silva Junior Federal University of Rio de Janeiro, Brazil
Pramod Kumar Singh ABV-IIITM Gwalior, India
Ponnuthurai Suganthan Nanyang Technological University, Singapore
Hideyuki Takagi Kyushu University, Japan
Ying Tan Peking University, China
Qian Tang Xidian University, China
Qirong Tang Tongji University, China
Milan Tuba John Naisbitt University, Serbia
Mario Ventresca Purdue University, USA
Gai-Ge Wang Jiangsu Normal University, China
Guoyin Wang Chongqing University of Posts and

Telecommunications, China
Lei Wang Tongji University, China
Ka-Chun Wong City University of Hong Kong, SAR China
Shunren Xia Zhejiang University, China
Bo Xing University of Johannesburg, South Africa
Benlian Xu Changshu Institute of Technology, China
Yingjie Yang De Montfort University, UK
Wei-Chang Yeh National Tsing Hua University, Taiwan
Kiwon Yeom NASA Ames Research Center, USA
Peng-Yeng Yin National Chi Nan University, Taiwan
Zhuhong You Shenzhen University, China
Zhigang Zeng Huazhong University of Science and Technology,

China
Zhi-Hui Zhan Sun Yat-sen University, China
Jie Zhang Newcastle University, UK
Jun Zhang Waseda University, Japan
Junqi Zhang Tongji University, China
Lifeng Zhang Renmin University of China
Mengjie Zhang Victoria University of Wellington, New Zealand
Qieshi Zhang Shaanxi Normal University, China
Qiangfu Zhao The University of Aizu, Japan
Yujun Zheng Zhejiang University of Technology, China
Cui Zhihua Complex System and Computational Intelligence

Laboratory, China
Guokang Zhu Shanghai University of Electric Power, China
Xingquan Zuo Beijing University of Posts and Telecommunications,

China

X Organization

Additional Reviewers

Abdul Rahman, Shuzlina
Ambar, Radzi
Chen, Zonggan
Farias, Felipe
Feng, Jinwang
Figueiredo, Elliackin
Haji Mohd, Mohd Norzali
Huang, Yu-An
Jiao, Yuechao
Joyce, Thomas
Joyce, Thomes
Junyi, Chen
Li, Liping
Li, Xiangtao
Liu, Xiaofang
Liu, Zhenbao
Lu, Quanmao
Lyu, Yueming
Mohamad Mohsin, Mohamad Farhan
Oliveira, Marcos

Qiujie, Wu
Saharan, Sabariah
Shang, Ke
Siqueira, Hugo
Vázquez Espinoza De Los Monteros,

Roberto Antonio
Wang, Lei
Wang, Lingyu
Wang, Tianyu
Wang, Yanbin
Wang, Zi-Jia
Yahya, Zainor Ridzuan
Yan, Shankai
Yang, Le
Yu, Jun
Zhang, Hao
Zhang, Jianhua
Zhang, Jiao
Zhang, Qinchuan
Zheng, Lintao

Organization XI

Contents – Part I

Theories and Models of Swarm Intelligence

Comparative Analysis of Swarm-Based Metaheuristic Algorithms
on Benchmark Functions . 3

Kashif Hussain, Mohd Najib Mohd Salleh, Shi Cheng, and Yuhui Shi

A Mathematical Model of Information Theory: The Superiority
of Collective Knowledge and Intelligence. 12

Pedro G. Guillén

Modelling and Verification Analysis of the Predator-Prey System
via a First Order Logic Approach . 22

Zvi Retchkiman Konigsberg

Flock Diameter Control in a Collision-Avoiding Cucker-Smale
Flocking Model . 31

Jing Ma and Edmund M-K Lai

Building a Simulation Model for Distributed Human-Based
Evolutionary Computation . 40

Kei Ohnishi, Junya Okano, and Mario Koeppen

Model of Interruptions in Swarm Unit . 50
Eugene Larkin, Alexey Ivutin, and Anna Troshina

Novel Swarm-Based Optimization Algorithms

Dolphin Pod Optimization . 63
Andrea Serani and Matteo Diez

Teaching-Learning-Feedback-Based Optimization . 71
Xiang Li, Kang Li, and Zhile Yang

Magnetotactic Bacteria Optimization Algorithm Based on Moment
Interaction Energy . 80

Lifang Xu, Hongwei Mo, Jiao Zhao, Chaomin Luo, and Zhenzhong Chu

A Guide Sign Optimization Problem for an Added Road Based on Bird
Mating Optimizer . 88

Fang Liu, Min Huang, Teng Zhang, and Feng Mao

http://dx.doi.org/10.1007/978-3-319-61824-1_1
http://dx.doi.org/10.1007/978-3-319-61824-1_1
http://dx.doi.org/10.1007/978-3-319-61824-1_2
http://dx.doi.org/10.1007/978-3-319-61824-1_2
http://dx.doi.org/10.1007/978-3-319-61824-1_3
http://dx.doi.org/10.1007/978-3-319-61824-1_3
http://dx.doi.org/10.1007/978-3-319-61824-1_4
http://dx.doi.org/10.1007/978-3-319-61824-1_4
http://dx.doi.org/10.1007/978-3-319-61824-1_5
http://dx.doi.org/10.1007/978-3-319-61824-1_5
http://dx.doi.org/10.1007/978-3-319-61824-1_6
http://dx.doi.org/10.1007/978-3-319-61824-1_7
http://dx.doi.org/10.1007/978-3-319-61824-1_8
http://dx.doi.org/10.1007/978-3-319-61824-1_9
http://dx.doi.org/10.1007/978-3-319-61824-1_9
http://dx.doi.org/10.1007/978-3-319-61824-1_10
http://dx.doi.org/10.1007/978-3-319-61824-1_10

LGWO: An Improved Grey Wolf Optimization for Function Optimization . . . 99
Jie Luo, Huiling Chen, Kejie Wang, Changfei Tong, Jun Li,
and Zhennao Cai

An Improved Monarch Butterfly Optimization with Equal Partition
and F/T Mutation . 106

Gai-Ge Wang, Guo-Sheng Hao, Shi Cheng, and Zhihua Cui

Particle Swarm Optimization

A Scalability Analysis of Particle Swarm Optimization Roaming Behaviour . . . 119
Jacomine Grobler and Andries P. Engelbrecht

The Analysis of Strategy for the Boundary Restriction in Particle Swarm
Optimization Algorithm . 131

Qianlin Zhou, Hui Lu, Jinhua Shi, Kefei Mao, and Xiaonan Ji

Particle Swarm Optimization with Ensemble of Inertia Weight Strategies 140
Muhammad Zeeshan Shirazi, Trinadh Pamulapati,
Rammohan Mallipeddi, and Kalyana Chakravarthy Veluvolu

Hybrid Comprehensive Learning Particle Swarm Optimizer with Adaptive
Starting Local Search. 148

Yulian Cao, Wenfeng Li, and W. Art Chaovalitwongse

A Bare Bones Particle Swarm Optimization Algorithm with Dynamic
Local Search . 158

Jia Guo and Yuji Sato

Improving Multi-layer Particle Swarm Optimization Using Powell Method. . . 166
Fengyang Sun, Lin Wang, Bo Yang, Zhenxiang Chen, Jin Zhou,
Kun Tang, and Jinyan Wu

On the Improvement of PSO Scripts for Slope Stability Analysis 174
Zhe-Ping Shen and Walter Chen

A High-Dimensional Particle Swarm Optimization Based
on Similarity Measurement. 180

Jiqiang Feng, Guixiang Lai, Shi Cheng, Feng Zhang, and Yifei Sun

A Center Multi-swarm Cooperative Particle Swarm Optimization
with Ratio and Proportion Learning. 189

Xuemin Liu, Lili, and Jiaoju Ge

Applications of Particle Swarm Optimization

A Discrete Particle Swarm Algorithm for Combinatorial Auctions. 201
Fu-Shiung Hsieh

XIV Contents – Part I

http://dx.doi.org/10.1007/978-3-319-61824-1_11
http://dx.doi.org/10.1007/978-3-319-61824-1_12
http://dx.doi.org/10.1007/978-3-319-61824-1_12
http://dx.doi.org/10.1007/978-3-319-61824-1_13
http://dx.doi.org/10.1007/978-3-319-61824-1_14
http://dx.doi.org/10.1007/978-3-319-61824-1_14
http://dx.doi.org/10.1007/978-3-319-61824-1_15
http://dx.doi.org/10.1007/978-3-319-61824-1_16
http://dx.doi.org/10.1007/978-3-319-61824-1_16
http://dx.doi.org/10.1007/978-3-319-61824-1_17
http://dx.doi.org/10.1007/978-3-319-61824-1_17
http://dx.doi.org/10.1007/978-3-319-61824-1_18
http://dx.doi.org/10.1007/978-3-319-61824-1_19
http://dx.doi.org/10.1007/978-3-319-61824-1_20
http://dx.doi.org/10.1007/978-3-319-61824-1_20
http://dx.doi.org/10.1007/978-3-319-61824-1_21
http://dx.doi.org/10.1007/978-3-319-61824-1_21
http://dx.doi.org/10.1007/978-3-319-61824-1_22

Registration of GPS and Stereo Vision for Point Cloud Localization
in Intelligent Vehicles Using Particle Swarm Optimization 209

Vijay John, Yuquan Xu, Seiichi Mita, Qian Long, and Zheng Liu

Immersed Tunnel Element Translation Control Under Current Flow
Based on Particle Swarm Optimization . 218

Li Jun-jun, Xu Bo-wei, and Fan Qin-Qin

Solving Inverse Kinematics with Vector Evaluated Particle
Swarm Optimization . 225

Zühnja Riekert and Mardé Helbig

Particle Swarm Optimization for the Machine Repair Problem
with Working Breakdowns . 238

Kuo-Hsiung Wang and Cheng-Dar Liou

Intelligent Behavioral Design of Non-player Characters in a FPS
Video Game Through PSO. 246

Guillermo Díaz and Andrés Iglesias

Ant Colony Optimization

An Improved Ant Colony Optimization with Subpath-Based
Pheromone Modification Strategy . 257

Xiangyang Deng, Limin Zhang, and Jiawen Feng

Decentralized Congestion Control in Random Ant Interaction Networks. 266
Andreas Kasprzok, Beshah Ayalew, and Chad Lau

An Energy-Saving Routing Strategy Based on Ant Colony Optimization
in Wireless Sensor Networks . 277

Wei Qu and Xiaowei Wang

Pheromone Inspired Morphogenic Distributed Control for Self-organization
of Autonomous Aerial Robots . 285

Kiwon Yeom

Solving the Selective Pickup and Delivery Problem Using Max-Min
Ant System . 293

Rung-Tzuo Liaw, Yu-Wei Chang, and Chuan-Kang Ting

An Improved Ant-Driven Approach to Navigation and Map Building 301
Chaomin Luo, Furao Shen, Hongwei Mo, and Zhenzhong Chu

Contents – Part I XV

http://dx.doi.org/10.1007/978-3-319-61824-1_23
http://dx.doi.org/10.1007/978-3-319-61824-1_23
http://dx.doi.org/10.1007/978-3-319-61824-1_24
http://dx.doi.org/10.1007/978-3-319-61824-1_24
http://dx.doi.org/10.1007/978-3-319-61824-1_25
http://dx.doi.org/10.1007/978-3-319-61824-1_25
http://dx.doi.org/10.1007/978-3-319-61824-1_26
http://dx.doi.org/10.1007/978-3-319-61824-1_26
http://dx.doi.org/10.1007/978-3-319-61824-1_27
http://dx.doi.org/10.1007/978-3-319-61824-1_27
http://dx.doi.org/10.1007/978-3-319-61824-1_28
http://dx.doi.org/10.1007/978-3-319-61824-1_28
http://dx.doi.org/10.1007/978-3-319-61824-1_29
http://dx.doi.org/10.1007/978-3-319-61824-1_30
http://dx.doi.org/10.1007/978-3-319-61824-1_30
http://dx.doi.org/10.1007/978-3-319-61824-1_31
http://dx.doi.org/10.1007/978-3-319-61824-1_31
http://dx.doi.org/10.1007/978-3-319-61824-1_32
http://dx.doi.org/10.1007/978-3-319-61824-1_32
http://dx.doi.org/10.1007/978-3-319-61824-1_33

Artificial Bee Colony Algorithms

A Multi-cores Parallel Artificial Bee Colony Optimization Algorithm
Based on Fork/Join Framework. 313

Jiuyuan Huo and Liqun Liu

Identification of Common Structural Motifs in RNA Sequences
Using Artificial Bee Colony Algorithm for Optimization 320

L.S. Suma and S.S. Vinod Chandra

A Mixed Artificial Bee Colony Algorithm for the Time-of-Use
Pricing Optimization . 328

Huiyan Yang, Xianneng Li, and Guangfei Yang

Optimization of Office-Space Allocation Problem Using Artificial
Bee Colony Algorithm. 337

Asaju La’aro Bolaji, Ikechi Michael, and Peter Bamidele Shola

Genetic Algorithms

Enhancing Exploration and Exploitation of NSGA-II with GP and PDL. 349
Peter David Shannon, Chrystopher L. Nehaniv,
and Somnuk Phon-Amnuaisuk

A Novel Strategy to Control Population Diversity and Convergence
for Genetic Algorithm . 362

Dongyang Li, Weian Guo, Yanfen Mao, Lei Wang, and Qidi Wu

Consecutive Meals Planning by Using Permutation GA: Evaluation
Function Proposal for Measuring Appearance Order of Meal’s
Characteristics . 370

Tomoko Kashima, Yukiko Orito, and Hiroshi Someya

Improving Jaccard Index Using Genetic Algorithms
for Collaborative Filtering . 378

Soojung Lee

Optimizing Least-Cost Steiner Tree in Graphs via an Encoding-Free
Genetic Algorithm. 386

Qing Liu, Rongjun Tang, Jingyan Kang, Junliang Yao, Wenqing Wang,
and Yali Wu

An Energy Minimized Solution for Solving Redundancy of Underwater
Vehicle-Manipulator System Based on Genetic Algorithm 394

Qirong Tang, Le Liang, Yinghao Li, Zhenqiang Deng, Yinan Guo,
and Hai Huang

XVI Contents – Part I

http://dx.doi.org/10.1007/978-3-319-61824-1_34
http://dx.doi.org/10.1007/978-3-319-61824-1_34
http://dx.doi.org/10.1007/978-3-319-61824-1_35
http://dx.doi.org/10.1007/978-3-319-61824-1_35
http://dx.doi.org/10.1007/978-3-319-61824-1_36
http://dx.doi.org/10.1007/978-3-319-61824-1_36
http://dx.doi.org/10.1007/978-3-319-61824-1_37
http://dx.doi.org/10.1007/978-3-319-61824-1_37
http://dx.doi.org/10.1007/978-3-319-61824-1_38
http://dx.doi.org/10.1007/978-3-319-61824-1_39
http://dx.doi.org/10.1007/978-3-319-61824-1_39
http://dx.doi.org/10.1007/978-3-319-61824-1_40
http://dx.doi.org/10.1007/978-3-319-61824-1_40
http://dx.doi.org/10.1007/978-3-319-61824-1_40
http://dx.doi.org/10.1007/978-3-319-61824-1_41
http://dx.doi.org/10.1007/978-3-319-61824-1_41
http://dx.doi.org/10.1007/978-3-319-61824-1_42
http://dx.doi.org/10.1007/978-3-319-61824-1_42
http://dx.doi.org/10.1007/978-3-319-61824-1_43
http://dx.doi.org/10.1007/978-3-319-61824-1_43

Study of an Improved Genetic Algorithm for Multiple Paths Automatic
Software Test Case Generation . 402

Erzhou Zhu, Chenglong Yao, Zhujuan Ma, and Feng Liu

Differential Evolution

An Adaptive Differential Evolution with Learning Parameters According
to Groups Defined by the Rank of Objective Values 411

Tetsuyuki Takahama and Setsuko Sakai

Comparison of Differential Evolution Algorithms on the Mapping
Between Problems and Penalty Parameters . 420

Chengyong Si, Jianqiang Shen, Xuan Zou, and Lei Wang

Cooperation Coevolution Differential Evolution with Gradient
Descent Strategy for Large Scale. 429

Chen Yating

Chebyshev Inequality Based Approach to Chance Constrained
Optimization Problems Using Differential Evolution 440

Kiyoharu Tagawa and Shohei Fujita

Solving the Distributed Two Machine Flow-Shop Scheduling Problem
Using Differential Evolution . 449

Paul Dempster, Penghao Li, and John H. Drake

A Multi-objective Differential Evolution for QoS Multicast Routing 458
Wenhong Wei, Zhaoquan Cai, Yong Qin, Ming Tao, and Lan Li

Energy-Saving Variable Bias Current Optimization for Magnetic
Bearing Using Adaptive Differential Evolution . 466

Syuan-Yi Chen and Min-Han Song

Fireworks Algorithm

Acceleration for Fireworks Algorithm Based on Amplitude Reduction
Strategy and Local Optima-Based Selection Strategy 477

Jun Yu and Hideyuki Takagi

From Resampling to Non-resampling: A Fireworks Algorithm-Based
Framework for Solving Noisy Optimization Problems 485

JunQi Zhang, ShanWen Zhu, and MengChu Zhou

Elite-Leading Fireworks Algorithm . 493
Xinchao Zhao, Rui Li, Xingquan Zuo, and Ying Tan

Contents – Part I XVII

http://dx.doi.org/10.1007/978-3-319-61824-1_44
http://dx.doi.org/10.1007/978-3-319-61824-1_44
http://dx.doi.org/10.1007/978-3-319-61824-1_45
http://dx.doi.org/10.1007/978-3-319-61824-1_45
http://dx.doi.org/10.1007/978-3-319-61824-1_46
http://dx.doi.org/10.1007/978-3-319-61824-1_46
http://dx.doi.org/10.1007/978-3-319-61824-1_47
http://dx.doi.org/10.1007/978-3-319-61824-1_47
http://dx.doi.org/10.1007/978-3-319-61824-1_48
http://dx.doi.org/10.1007/978-3-319-61824-1_48
http://dx.doi.org/10.1007/978-3-319-61824-1_49
http://dx.doi.org/10.1007/978-3-319-61824-1_49
http://dx.doi.org/10.1007/978-3-319-61824-1_50
http://dx.doi.org/10.1007/978-3-319-61824-1_51
http://dx.doi.org/10.1007/978-3-319-61824-1_51
http://dx.doi.org/10.1007/978-3-319-61824-1_52
http://dx.doi.org/10.1007/978-3-319-61824-1_52
http://dx.doi.org/10.1007/978-3-319-61824-1_53
http://dx.doi.org/10.1007/978-3-319-61824-1_53
http://dx.doi.org/10.1007/978-3-319-61824-1_54

Guided Fireworks Algorithm Applied to the Maximal Covering
Location Problem . 501

Eva Tuba, Edin Dolicanin, and Milan Tuba

Brain Storm Optimization Algorithm

An Improved Brain Storm Optimization with Learning Strategy 511
Hong Wang, Jia Liu, Wenjie Yi, Ben Niu, and Jaejong Baek

Difference Brain Storm Optimization for Combined Heat and Power
Economic Dispatch . 519

Yali Wu, Xinrui Wang, Yulong Fu, and Yingruo Xu

Cuckoo Search

Multiple Chaotic Cuckoo Search Algorithm . 531
Shi Wang, Shuangyu Song, Yang Yu, Zhe Xu, Hanaki Yachi,
and Shangce Gao

Cuckoo Search Algorithm Approach for the IFS Inverse Problem
of 2D Binary Fractal Images . 543

Javier Quirce, Andrés Iglesias, and Akemi Gálvez

Solving the Graph Coloring Problem Using Cuckoo Search 552
Claus Aranha, Keita Toda, and Hitoshi Kanoh

A Deep Learning-Cuckoo Search Method for Missing Data Estimation
in High-Dimensional Datasets. 561

Collins Leke, Alain Richard Ndjiongue, Bhekisipho Twala,
and Tshilidzi Marwala

Strategies to Improve Cuckoo Search Toward Adapting Randomly
Changing Environment . 573

Yuta Umenai, Fumito Uwano, Hiroyuki Sato, and Keiki Takadama

Firefly Algorithm

Firefly Algorithm Optimized Particle Filter for Relative Navigation
of Non-cooperative Target . 585

Dali Zhang, Chao Zhong, Changhong Wang, Haowei Guan,
and Hongwei Xia

An Improved Discrete Firefly Algorithm Used for Traveling
Salesman Problem. 593

Liu Jie, Lin Teng, and Shoulin Yin

XVIII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-61824-1_55
http://dx.doi.org/10.1007/978-3-319-61824-1_55
http://dx.doi.org/10.1007/978-3-319-61824-1_56
http://dx.doi.org/10.1007/978-3-319-61824-1_57
http://dx.doi.org/10.1007/978-3-319-61824-1_57
http://dx.doi.org/10.1007/978-3-319-61824-1_58
http://dx.doi.org/10.1007/978-3-319-61824-1_59
http://dx.doi.org/10.1007/978-3-319-61824-1_59
http://dx.doi.org/10.1007/978-3-319-61824-1_60
http://dx.doi.org/10.1007/978-3-319-61824-1_61
http://dx.doi.org/10.1007/978-3-319-61824-1_61
http://dx.doi.org/10.1007/978-3-319-61824-1_62
http://dx.doi.org/10.1007/978-3-319-61824-1_62
http://dx.doi.org/10.1007/978-3-319-61824-1_63
http://dx.doi.org/10.1007/978-3-319-61824-1_63
http://dx.doi.org/10.1007/978-3-319-61824-1_64
http://dx.doi.org/10.1007/978-3-319-61824-1_64

Firefly Clustering Method for Mining Protein Complexes. 601
Yuchen Zhang, Xiujuan Lei, and Ying Tan

Improved Two-Dimensional Otsu Based on Firefly Optimization
for Low Signal-to-Noise Ratio Images . 611

Li Li, Jianwei Liu, Mingxiang Ling, Yuanyuan Wang, and Hongwei Xia

3D-FOAdis: An Improved Fruit Fly Optimization
for Function Optimization . 618

Kejie Wang, Huiling Chen, Qiang Li, Junjie Zhu, Shubiao Wu,
and Hui Huang

Author Index . 627

Contents – Part I XIX

http://dx.doi.org/10.1007/978-3-319-61824-1_65
http://dx.doi.org/10.1007/978-3-319-61824-1_66
http://dx.doi.org/10.1007/978-3-319-61824-1_66
http://dx.doi.org/10.1007/978-3-319-61824-1_67
http://dx.doi.org/10.1007/978-3-319-61824-1_67

Contents – Part II

Multi-objective Optimization

A Parametric Study of Crossover Operators in Pareto-Based Multiobjective
Evolutionary Algorithm . 3

Shohei Maruyama and Tomoaki Tatsukawa

Non-dominated Sorting and Crowding Distance Based
Multi-objective Chaotic Evolution . 15

Yan Pei and Jia Hao

On Performance Improvement Based on Restart Meta-Heuristic
Implementation for Solving Multi-objective Optimization Problems 23

Christina Brester, Ivan Ryzhikov, and Eugene Semenkin

Using Multi-objective Evolutionary Algorithm to Solve Dynamic
Environment and Economic Dispatch with EVs . 31

Boyang Qu, Baihao Qiao, Yongsheng Zhu, Yuechao Jiao, Junming Xiao,
and Xiaolei Wang

Improved Interval Multi-objective Evolutionary Optimization Algorithm
Based on Directed Graph . 40

Xiaoyan Sun, Pengfei Zhang, Yang Chen, and Yong Zhang

A Novel Linear Time Invariant Systems Order Reduction Approach
Based on a Cooperative Multi-objective Genetic Algorithm 49

Ivan Ryzhikov, Christina Brester, and Eugene Semenkin

Solving Constrained Multi-objective Optimization Problems
with Evolutionary Algorithms . 57

Frikkie Snyman and Mardé Helbig

Portfolio Optimization

Multi-objective Comprehensive Learning Bacterial Foraging Optimization
for Portfolio Problem. 69

Ben Niu, Wenjie Yi, Lijing Tan, Jia Liu, Ya Li, and Hong Wang

Metaheuristics for Portfolio Optimization . 77
Sarah El-Bizri and Nashat Mansour

http://dx.doi.org/10.1007/978-3-319-61833-3_1
http://dx.doi.org/10.1007/978-3-319-61833-3_1
http://dx.doi.org/10.1007/978-3-319-61833-3_2
http://dx.doi.org/10.1007/978-3-319-61833-3_2
http://dx.doi.org/10.1007/978-3-319-61833-3_3
http://dx.doi.org/10.1007/978-3-319-61833-3_3
http://dx.doi.org/10.1007/978-3-319-61833-3_4
http://dx.doi.org/10.1007/978-3-319-61833-3_4
http://dx.doi.org/10.1007/978-3-319-61833-3_5
http://dx.doi.org/10.1007/978-3-319-61833-3_5
http://dx.doi.org/10.1007/978-3-319-61833-3_6
http://dx.doi.org/10.1007/978-3-319-61833-3_6
http://dx.doi.org/10.1007/978-3-319-61833-3_7
http://dx.doi.org/10.1007/978-3-319-61833-3_7
http://dx.doi.org/10.1007/978-3-319-61833-3_8
http://dx.doi.org/10.1007/978-3-319-61833-3_8
http://dx.doi.org/10.1007/978-3-319-61833-3_9

Community Detection

Community Detection Under Exponential Random Graph Model:
A Metaheuristic Approach . 87

Tai-Chi Wang and Frederick Kin Hing Phoa

An Enhanced Particle Swarm Optimization Based on Physarum Model
for Community Detection. 99

Zhengpeng Chen, Fanzhen Liu, Chao Gao, Xianghua Li, and Zili Zhang

The Design and Development of the Virtual Learning Community
for Teaching Resources Personalized Recommendation 109

Bo Song, Haihui Wu, Xiaomei Li, Liyan Guo, and Chang Liu

Effects of Event Sentiment on Product Recommendations
in a Microblog Platform. 119

Ping-Yu Hsu, Ming-Chia Hsu, Tien-Hao Wei, Yao-Chung Lo,
Chin-Chun Lo, Ming Shien Cheng, and Hong Tsuen Lei

Multi-agent Systems and Swarm Robotics

Solar Irradiance Forecasting Based on the Multi-agent Adaptive
Fuzzy Neuronet . 135

Ekaterina A. Engel and Igor V. Kovalev

Passive Field Dynamics Method: An Advanced Physics-Based Approach
for Formation Control of Robot Swarm . 141

Zhu Weixu and Yuan Zhiyong

Adaptive Potential Fields Model for Solving Distributed Area Coverage
Problem in Swarm Robotics . 149

Xiangyu Liu and Ying Tan

Swarm-Based Spreading Points . 158
Xiangyang Huang, LiGuo Huang, Shudong Zhang, and Lijuan Zhou

A Survivability Enhanced Swarm Robotic Searching System
Using Multi-objective Particle Swarm Optimization 167

Cheuk Ho Yuen and Kam Tim Woo

Autonomous Coordinated Navigation of Virtual Swarm Bots
in Dynamic Indoor Environments by Bat Algorithm 176

Patricia Suárez, Akemi Gálvez, and Andrés Iglesias

Building Fractals with a Robot Swarm. 185
Yu Zhou and Ron Goldman

XXII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-61833-3_10
http://dx.doi.org/10.1007/978-3-319-61833-3_10
http://dx.doi.org/10.1007/978-3-319-61833-3_11
http://dx.doi.org/10.1007/978-3-319-61833-3_11
http://dx.doi.org/10.1007/978-3-319-61833-3_12
http://dx.doi.org/10.1007/978-3-319-61833-3_12
http://dx.doi.org/10.1007/978-3-319-61833-3_13
http://dx.doi.org/10.1007/978-3-319-61833-3_13
http://dx.doi.org/10.1007/978-3-319-61833-3_14
http://dx.doi.org/10.1007/978-3-319-61833-3_14
http://dx.doi.org/10.1007/978-3-319-61833-3_15
http://dx.doi.org/10.1007/978-3-319-61833-3_15
http://dx.doi.org/10.1007/978-3-319-61833-3_16
http://dx.doi.org/10.1007/978-3-319-61833-3_16
http://dx.doi.org/10.1007/978-3-319-61833-3_17
http://dx.doi.org/10.1007/978-3-319-61833-3_18
http://dx.doi.org/10.1007/978-3-319-61833-3_18
http://dx.doi.org/10.1007/978-3-319-61833-3_19
http://dx.doi.org/10.1007/978-3-319-61833-3_19
http://dx.doi.org/10.1007/978-3-319-61833-3_20

A Stigmergy Based Search Method for Swarm Robots 199
Qirong Tang, Fangchao Yu, Yuan Zhang, Lu Ding, and Peter Eberhard

Cooperative Control of Multi-robot System Using Mobile Agent
for Multiple Source Localization . 210

Naoya Ishiwatari, Yasunobu Sumikawa, Munehiro Takimoto,
and Yasushi Kambayashi

Hybrid Optimization Algorithms and Applications

Evolutionary Fuzzy Control of Three Robots Cooperatively Carrying
an Object for Wall Following Through the Fusion of Continuous ACO
and PSO . 225

Min-Ge Lai, Chia-Feng Juang, and I-Fang Chung

Optimal Operational Planning of Energy Plants by Multi-population
Differential Evolutionary Particle Swarm Optimization. 233

Norihiro Nishimura, Yoshikazu Fukuyama, and Tetsuro Matsui

A Review on Hybridization of Particle Swarm Optimization
with Artificial Bee Colony . 242

Bin Xin, Yipeng Wang, Lu Chen, Tao Cai, and Wenjie Chen

A Study on Greedy Search to Improve Simulated Annealing
for Large-Scale Traveling Salesman Problem . 250

Xiuli Wu and Dongliang Gao

A Hybrid Swarm Composition for Chinese Music . 258
Xiaomei Zheng, Weian Guo, Dongyang Li, Lei Wang, and Yushan Wang

Fuzzy and Swarm Approach

Fuzzy Logic Controller Design for Tuning the Cooperation
of Biology-Inspired Algorithms. 269

Shakhnaz Akhmedova, Eugene Semenkin, Vladimir Stanovov,
and Sophia Vishnevskaya

Making Capital Budgeting Decisions for Project Abandonment
by Fuzzy Approach . 277

Yu-Hong Liu, I-Ming Jiang, and Meng-I Tsai

An Imputation for Missing Data Features Based on Fuzzy Swarm Approach
in Heart Disease Classification . 285

Mohd Najib Mohd Salleh and Nurul Ashikin Samat

Contents – Part II XXIII

http://dx.doi.org/10.1007/978-3-319-61833-3_21
http://dx.doi.org/10.1007/978-3-319-61833-3_22
http://dx.doi.org/10.1007/978-3-319-61833-3_22
http://dx.doi.org/10.1007/978-3-319-61833-3_23
http://dx.doi.org/10.1007/978-3-319-61833-3_23
http://dx.doi.org/10.1007/978-3-319-61833-3_23
http://dx.doi.org/10.1007/978-3-319-61833-3_24
http://dx.doi.org/10.1007/978-3-319-61833-3_24
http://dx.doi.org/10.1007/978-3-319-61833-3_25
http://dx.doi.org/10.1007/978-3-319-61833-3_25
http://dx.doi.org/10.1007/978-3-319-61833-3_26
http://dx.doi.org/10.1007/978-3-319-61833-3_26
http://dx.doi.org/10.1007/978-3-319-61833-3_27
http://dx.doi.org/10.1007/978-3-319-61833-3_28
http://dx.doi.org/10.1007/978-3-319-61833-3_28
http://dx.doi.org/10.1007/978-3-319-61833-3_29
http://dx.doi.org/10.1007/978-3-319-61833-3_29
http://dx.doi.org/10.1007/978-3-319-61833-3_30
http://dx.doi.org/10.1007/978-3-319-61833-3_30

Clustering and Forecast

Total Optimization of Smart City Using Initial Searching Points
Generation Based on k-means Algorithm . 295

Mayuko Sato and Yoshikazu Fukuyama

Clustering Analysis of ECG Data Streams . 304
Yue Zhang and Yushuai Liu

A Novel Multi-cell Multi-Bernoulli Tracking Method Using Local
Fractal Feature Estimation . 312

Jihong Zhu, Benlian Xu, Mingli Lu, Jian Shi, and Peiyi Zhu

An Improved Locality Preserving Projection Method for Dimensionality
Reduction with Hyperspectral Image . 321

Juan Xiong, Sheng Ding, and Bo Li

Applying a Classification Model for Selecting Postgraduate Programs 330
Waraporn Jirapanthong, Winyu Niranatlamphong,
and Karuna Yampray

University Restaurant Sales Forecast Based on BP Neural
Network – In Shanghai Jiao Tong University Case 338

Liu Xinliang and Sun Dandan

Classification and Detection

Swarm ANN/SVR-Based Modeling Method for Warfarin Dose
Prediction in Chinese. 351

Yanyun Tao, Dan Xiang, Yuzhen Zhang, and Bin Jiang

A Novel HPSOSA for Kernel Function Type and Parameter Optimization
of SVR in Rainfall Forecasting . 359

Jiansheng Wu

An Improved Weighted ELM with Krill Herd Algorithm
for Imbalanced Learning . 371

Yi-nan Guo, Pei Zhang, Jian Cheng, Yong Zhang, Lingkai Yang,
Xiaoning Shen, and Wei Fang

Fast Pseudo Random Forest Using Discrimination Hyperspace 379
Tojiro Kaneko, Hidehisa Akiyma, and Shigeto Aramaki

A Fast Video Vehicle Detection Approach Based on Improved
Adaboost Classifier . 387

Tao Jiang, Mingdai Cai, Yuan Zhang, and Xiaodong Zhao

XXIV Contents – Part II

http://dx.doi.org/10.1007/978-3-319-61833-3_31
http://dx.doi.org/10.1007/978-3-319-61833-3_31
http://dx.doi.org/10.1007/978-3-319-61833-3_32
http://dx.doi.org/10.1007/978-3-319-61833-3_33
http://dx.doi.org/10.1007/978-3-319-61833-3_33
http://dx.doi.org/10.1007/978-3-319-61833-3_34
http://dx.doi.org/10.1007/978-3-319-61833-3_34
http://dx.doi.org/10.1007/978-3-319-61833-3_35
http://dx.doi.org/10.1007/978-3-319-61833-3_36
http://dx.doi.org/10.1007/978-3-319-61833-3_36
http://dx.doi.org/10.1007/978-3-319-61833-3_37
http://dx.doi.org/10.1007/978-3-319-61833-3_37
http://dx.doi.org/10.1007/978-3-319-61833-3_38
http://dx.doi.org/10.1007/978-3-319-61833-3_38
http://dx.doi.org/10.1007/978-3-319-61833-3_39
http://dx.doi.org/10.1007/978-3-319-61833-3_39
http://dx.doi.org/10.1007/978-3-319-61833-3_40
http://dx.doi.org/10.1007/978-3-319-61833-3_41
http://dx.doi.org/10.1007/978-3-319-61833-3_41

Detection of Repetitive Forex Chart Patterns . 395
Yoke Leng Yong, David C.L. Ngo, and Yunli Lee

Damage Estimation from Cues of Image Change . 403
Hang Pan, Yi Ning, Jinlong Chen, Xianjun Chen, Yongsong Zhan,
and Minghao Yang

Identifying Deceptive Review Comments with Rumor and Lie Theories. 412
Chia Hsun Lin, Ping Yu Hsu, Ming Shien Cheng, Hong Tsuen Lei,
and Ming Chia Hsu

Identifying Fake Review Comments for Hostel Industry. 421
Mei Yu Lin, Ping Yu Hsu, Ming Shien Cheng, Hong Tsuen Lei,
and Ming Chia Hsu

Planning and Routing Problems

Multi-UAV Cooperative Path Planning for Sensor Placement Using
Cooperative Coevolving Genetic Strategy. 433

Jon-Vegard Sørli, Olaf Hallan Graven, and Jan Dyre Bjerknes

Optimal Micro-siting Planning Considering Long-Term Electricity Demand . . . 445
Peng-Yeng Yin, Ching-Hui Chao, Tsai-Hung Wu, and Ping-Yi Hsu

A Hyper-Heuristic Method for UAV Search Planning 454
Yue Wang, Min-Xia Zhang, and Yu-Jun Zheng

An Efficient MVMO-SH Method for Optimal Capacitor Allocation
in Electric Power Distribution Systems . 465

Hiroyuki Mori and Hiromitsu Ikegami

A Capacity Aware-Based Method of Accurately Accepting Tasks
for New Workers . 475

Dunwei Gong and Chao Peng

A Genetic Mission Planner for Solving Temporal Multi-agent
Problems with Concurrent Tasks . 481

Branko Miloradović, Baran Çürüklü, and Mikael Ekström

Reformulation and Metaheuristic for the Team Orienteering
Arc Routing Problem. 494

Liangjun Ke and Weibo Yang

Application of Smell Detection Agent Based Algorithm for Optimal
Path Identification by SDN Controllers . 502

R. Ananthalakshmi Ammal, P.C. Sajimon, and S.S. Vinodchandra

Contents – Part II XXV

http://dx.doi.org/10.1007/978-3-319-61833-3_42
http://dx.doi.org/10.1007/978-3-319-61833-3_43
http://dx.doi.org/10.1007/978-3-319-61833-3_44
http://dx.doi.org/10.1007/978-3-319-61833-3_45
http://dx.doi.org/10.1007/978-3-319-61833-3_46
http://dx.doi.org/10.1007/978-3-319-61833-3_46
http://dx.doi.org/10.1007/978-3-319-61833-3_47
http://dx.doi.org/10.1007/978-3-319-61833-3_48
http://dx.doi.org/10.1007/978-3-319-61833-3_49
http://dx.doi.org/10.1007/978-3-319-61833-3_49
http://dx.doi.org/10.1007/978-3-319-61833-3_50
http://dx.doi.org/10.1007/978-3-319-61833-3_50
http://dx.doi.org/10.1007/978-3-319-61833-3_51
http://dx.doi.org/10.1007/978-3-319-61833-3_51
http://dx.doi.org/10.1007/978-3-319-61833-3_52
http://dx.doi.org/10.1007/978-3-319-61833-3_52
http://dx.doi.org/10.1007/978-3-319-61833-3_53
http://dx.doi.org/10.1007/978-3-319-61833-3_53

A Comparison of Heuristic Algorithms for Bus Dispatch 511
Hong Wang, Lulu Zuo, Jia Liu, Chen Yang, Ya Li, and Jaejong Baek

Simulation and Application of Algorithms CVRP to Optimize the Transport
of Minerals Metallic and Nonmetallic by Rail for Export 519

Lourdes Margain, Edna Cruz, Alberto Ochoa, Alberto Hernández,
and Jacqueline Ramos Landeros

Dialog System Applications

User Intention Classification in an Entities Missed In-vehicle
Dialog System . 529

Ke Zhang, Qingjie Zhu, Naiqian Zhang, Zhixin Shi, and Yongsong Zhan

An Exploratory Study of Factors Affecting Number of Fans on Facebook
Based on Dialogic Theory . 538

Hui Chi Chen, Ping Yu Hsu, Ming Shien Cheng, Hong Tsuen Lei,
and Ching Fen Wu

Assembling Chinese-Mongolian Speech Corpus via Crowdsourcing. 547
Rihai Su, Shumin Shi, Meng Zhao, and Heyan Huang

Robotic Control

Developing Robot Drumming Skill with Listening-Playing Loop 559
Xingfang Wu, Tianlin Liu, Yian Deng, Xihong Wu, and Dingsheng Luo

Evaluation of Parameters of Transactions When Remote Robot Control 567
Eugene Larkin, Vladislav Kotov, Alexander Privalov, and Alexey Ivutin

Desktop Gestures Recognition for Human Computer Interaction 578
Qingjie Zhu, Hang Pan, Minghao Yang, and Yongsong Zhan

Approach to the Diagnosis and Configuration of Servo Drives
in Heterogeneous Machine Control Systems . 586

Georgi M. Martinov, Sergey V. Sokolov, Lilija I. Martinova,
Anton S. Grigoryev, and Petr A. Nikishechkin

Other Applications

Gravitational Search Algorithm in Recommendation Systems 597
Vedant Choudhary, Dhruv Mullick, and Sushama Nagpal

A Driver Model Based on Emotion . 608
Qiong Xiao, Changzhen Hu, and Gangyi Ding

XXVI Contents – Part II

http://dx.doi.org/10.1007/978-3-319-61833-3_54
http://dx.doi.org/10.1007/978-3-319-61833-3_55
http://dx.doi.org/10.1007/978-3-319-61833-3_55
http://dx.doi.org/10.1007/978-3-319-61833-3_56
http://dx.doi.org/10.1007/978-3-319-61833-3_56
http://dx.doi.org/10.1007/978-3-319-61833-3_57
http://dx.doi.org/10.1007/978-3-319-61833-3_57
http://dx.doi.org/10.1007/978-3-319-61833-3_58
http://dx.doi.org/10.1007/978-3-319-61833-3_59
http://dx.doi.org/10.1007/978-3-319-61833-3_60
http://dx.doi.org/10.1007/978-3-319-61833-3_61
http://dx.doi.org/10.1007/978-3-319-61833-3_62
http://dx.doi.org/10.1007/978-3-319-61833-3_62
http://dx.doi.org/10.1007/978-3-319-61833-3_63
http://dx.doi.org/10.1007/978-3-319-61833-3_64

A Binaural Signal Synthesis Approach for Fast Rendering
of Moving Sound . 615

Hui Zhou, Yi Ning, Jinlong Chen, Bin Liu, Yongsong Zhan,
and Minghao Yang

Semantic Evolutionary Visualization . 624
Marwa Keshk

Author Index . 637

Contents – Part II XXVII

http://dx.doi.org/10.1007/978-3-319-61833-3_65
http://dx.doi.org/10.1007/978-3-319-61833-3_65
http://dx.doi.org/10.1007/978-3-319-61833-3_66

Theories and Models of Swarm
Intelligence

Comparative Analysis of Swarm-Based
Metaheuristic Algorithms on Benchmark

Functions

Kashif Hussain1, Mohd Najib Mohd Salleh1(B), Shi Cheng2, and Yuhui Shi3

1 Universiti Tun Hussein Onn Malaysia, Batu Pahat, Malaysia
najib@uthm.edu.my

2 School of Computer Science, Shaanxi Normal University, Xian, China
3 Department of Computer Science and Engineering,

Southern University of Science and Technology, Shenzhen, China

Abstract. Swarm-based metaheuristic algorithms inspired from swarm
systems in nature have produced remarkable results while solving com-
plex optimization problems. This is due to their capability of decentral-
ized control of search agents able to explore search environment more
effectively. The large number of metaheuristics sometimes puzzle begin-
ners and practitioners where to start with. This experimental study cov-
ers 10 swarm-based metaheuristic algorithms introduced in last decade
to be investigated on their performances on 12 test functions of high
dimensions with diverse features of modality, scalability, and valley land-
scape. Based on simulations, it can be concluded that firefly algorithm
outperformed rest of the algorithms while tested unimodal functions. On
multimodal functions, animal migration algorithm produced outstanding
results as compared to rest of the methods. In future, further investiga-
tion can be conducted on relating benchmark functions to real-world
optimization problem so that metaheuristic algorithms can be grouped
according to suitability of problem characteristics.

Keywords: Swarm-intelligence · Swarm-based algorithms · Meta-
heuristic · Benchmark functions

1 Introduction

It has been an established fact and has been proved in wide spectrum of experi-
mental research that metaheuristics are able to solve difficult optimization prob-
lems effectively. Problems in science, engineering, transportation, and business
have been solved with optimum results. Moreover, loosely speaking, the inge-
nuity of inventors of these methods has not spared any source of inspiration
from nature to be metaphorized into an efficient tool. Among these tools are
swarm-based metaheuristic algorithms employing collective intelligence for pro-
ducing optimum results. This collective intelligence of a group of agents in the
form of swarm is deemed as a mechanism of generating optimal solutions fast.
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 3–11, 2017.
DOI: 10.1007/978-3-319-61824-1 1

4 K. Hussain et al.

Each swarm individual (bird, fish, or bee etc.) interacts with others for sharing
information in order to make collective decision in subsequent moves with the
help of some operators depending on the information (fitness value) with swarm
individuals which is featuring a solution to the problem in hand.

Despite of differentiating strategies, one common property of all the swarm-
based algorithms is moving towards better solution with collaborative effort. A
high level description of swarm-based metaheuristics is given in Algorithm 1.

Algorithm 1. Swarm-based Metaheuristic Algorithm

Initialize algorithm parameters and swarm individuals;
while stop condition satisfies do

Evaluate fitness of all the swarm individuals;
Find swam individual with best fitness value in the swarm,
(global best individual);
Update position of swarm individuals based on collective
intelligence;

end while
Return global best swarm individual;

Following the steps defined in Algorithm 1 and approaches taken from swarm
behaviors in nature, metaheuristics are designed on ant [3], wolf [6], elephant
[9], crow [2], etc. Because of extensive availability of the algorithms, it creates
problem for practitioners to choose the best for their problem. Hence, this exper-
imental study was conducted with a motivation to provide a starting platform
for readers to have a glance on the latest swarm-based metaheuristics and their
performances on various test functions. Since a careful review of literature shows
that researchers used many benchmark functions to analyze the performances
of their algorithms, therefore, this study provides an analysis of metaheuristic
performances on a set of well-known numerical test functions.

The next section gives an overview of the selected metaeheuristics to merely
highlight the main features; while, the reader is encouraged to refer to the
related literature for further knowledge. Section 3 conducts experiments followed
by Sect. 4 of results analysis. This study is duly concluded in Sect. 5.

2 Swarm-Based Metaheuristic Algorithms

This study selected some of the swarm-based metaheuristics introduced a decade
ago. These algorithms are: Firefly Algorithm (FA) [10], Bat Algorithm (BA) [11],
Brain Storm Optimization (BSO) [7], Biogeography-Based Optimization (BBO)
[8], Animal Migration Optimization (AMO) [4], Elephant Herding Optimiza-
tion (EHO) [9], Gray Wolf Optimizer (GWO) [6], Chicken Swarm Optimization
(CSO) [5], Crow Search Algorithm (CSA) [2]. This section briefs about these
algorithm, while the greater detail of the algorithms can be found in the litera-
ture cited herewith.

Comparative Analysis of Swarm-Based Metaheuristic Algorithms 5

In FA, the swarm of fireflies socially interacts using flashing light for attrac-
tion. The FA begins by initializing fireflies with random light intensity. During
iterations, FA updates light intensity based on light absorption concept. Fire-
flies attract other fireflies with light intensity, this attraction decreases with the
increase of distance from other fireflies. The firefly with highest intensity of light
is considered as the best solution. FA applies the light absorption mechanism
to decrease flashing light of fireflies so that an element of exploration of search
space can be implemented in the algorithm.

BA is based on the echolocation system of bats. The bats in the swarm
communicate with each other via sound waves which allow them to determine
the location or distance from other bats and food. These bats fly with certain
velocity at certain position, frequency with varying pulse rate, and loudness. BA
starts with random initialization of position, velocity, frequency, and loudness
for each bat. As the BA proceeds with its iterations, it varies the frequency and
loudness in order to implement dynamic behavior of bats.

BSO imitates how the humans sit together and do brainstorming for generat-
ing ideas collectively, usually with the assistance of a facilitator. The facilitator
starts with grouping the participants (swarm individuals) of the brainstorming
session into some clusters; for generating maximum possible scenarios (ideas)
for the solution of the problem in hand. These individuals generate ideas while
the facilitator weighs and chooses the best idea (having high probability to be
chosen) from each cluster. The selected ideas and the remaining ideas (clues)
are used to generate better ideas. For introducing diversity in thought process,
BSO chooses any cluster(s) with random probability to generate completely new
ideas. This process carries until the best solution is found.

In BBO, a swarm individual is a habitat with certain habitat suitability index
(HSI) referring to its fitness of a solution. The greater the HSI, the greater is the
number of species staying in the habitat, and resultantly, the better is fitness of a
solution candidate. BBO starts with the initialization of habitats followed by the
HSI evaluation (fitness value). After obtaining HSI for each habitat, it is mapped
with the number of species in each habitat, immigration rate and emigration rate.
Immigration and emigration rates are now used to modify habitats which later
on are mutated based probability of species count in each habitat. This process
continues until stop condition is satisfied.

AMO mimics the process of migration of animals from one place to another
for survival. During this process, these animals have social interaction and as a
result some animals leave the group while others join this seasonal movement
led by a leader animal (with best fitness value). AMO starts with initialization
of population of animal swarm. After being initiated, the animals have to first
migrate from one place to another in the forms of small subgroups called neigh-
borhoods. One of the neighborhood is selected randomly to update the position
of an animal accordingly. Whereas, the next process is population update where
some of the animals have to leave the herd and new animals join in.

A swarm-based metaheuristic EHO designed on the social animal elephant.
The female elephants and calves live in herds consisting of several clans led of a

6 K. Hussain et al.

matriarch (usually an old elephant). The male elephants when grown up leave
the group. In EHO, the position of each elephant depicts problem solution. The
elephants change their positions in accordance with their respected clan leader
(with best fitness value) in each iteration. To implement diversification in search
process, the worst elephants are replaced with new ones.

Another metaheuristic following the herding behavior of animals is KHA.
This algorithm is designed by following the herding behavior of small crustaceans
in ocean, called Krill. After attack from predators, the main objective for krill
is to get closer to food and create dense herd. Keeping in view this strategy
of krill, KHA generates new position of a swarm individual which is influenced
by movement from other krill individuals, foraging, and scattering randomly.
In order to improve performance, KHA introduces diversification using genetic
operator: crossover and mutation.

The GWO employs the analogy of gray wolf while hunting prey. This intelli-
gent prey hunting works in four tier leadership as alpha, beta, delta, and omega
wolves with three step strategy: prey searching, prey surrounding, and attacking
the prey. Among four groups, alpha, beta, and delta wolves are the top per-
formers who guide other omega wolves to best positions for attacking. Each wolf
updates its position based on interaction with the three top wolves.

The swarm intelligence of a group of chicken families, each having one rooster
(the family head), several hens, and plenty of chicks, has been metaphorized in
CSO. The fittest rooster in the group leads its family to a much better food
source as compared to other weaker roosters. Whereas, the stronger hens have
better chances of stealing food from others share as compared to weaker hens.
The chickens update their position based on competition between chicken groups
of earning more and more food. During the course of iterations, CSO ranks all
the chickens in the swarm and assigns top N chickens as roosters, M worst ones
as chicks, and rest are determined as hens.

Crows live in flocks and follow each other in search of food and then stock
it in a hidden place so that it can be consumed when needed. This metaphor
of intelligent behavior of crows is simulated in CSA. Here, the flying position of
a crow represents a solution. Each crow also maintains memory of the hidden
place for food storage. Because crows follow other crows randomly to discover
better food source, they generate new position and evaluate the feasibility before
moving that direction. After this, the crows update their memory. This process
carries in iterations.

3 Experiments

This experimental study employed several of the test functions for testing the
performances of swarm-based metaheuristic algorithms. Different evaluation
metrics are used such as mean of best values and standard deviation of best
solutions found over 30 runs, and also ranks.

Since different test functions imitate different levels of difficulties in opti-
mization problems, these functions help reveal true robustness of an algorithm.

Comparative Analysis of Swarm-Based Metaheuristic Algorithms 7

The test functions used in [12] are selected for this paper. Table 1 lists these
functions along with their features. Functions from f1 to f7 are unimodal with
single global optimum, and from f8 to f12 are multimodal functions with multi-
ple local minima that exponentially increase with dimensions. The prior group
of functions is suitable for testing exploitation component of metaheuristic algo-
rithms. On the other hand, later ones are helpful in analyzing the explorative
component and how the algorithm is able to get rid of local minima [12].

Table 1. Benchmark test function. U-Unimodal, M-Multimodal, S-Separable,
N-Nonseparable, C-Continuous, D-Discrete with Dimension = 30 and Global
minimum = 0

ID Function Class Range ID Function Class Range

f1 Sphere UCS [−100, 100] f7 Quartic noise UCS [−1.28, 1.28]

f2 Schwefel’s 2.22 UCN [−10, 10] f8 Rastrigin MCS [−5.12, 5.12]

f3 Schwefel’s 1.20 UCN [−100, 100] f9 Ackley MCN [−32, 32]

f5 Schwefel’s 2.21 UCS [−100, 100] f10 Griewank MCN [−600, 600]

f6 Rosenbrock UCN [−30, 30] f11 Penalized MCN [−50, 50]

f7 Step UDS [−100, 100] f12 Generalized penalized MCN [−50, 50]

In this experimental study, some of the common parameters; maximum num-
ber of iterations, upper and lower bounds (according to function) of search
space were same in all the metaheuristics. Whereas, the distinguishing para-
meters related to each specific metaheuristic were set to the values suggested in
related literature; FA [12], BA [11], BSO [7], BBO [8], AMO [4], EHO [9], KHA
[1], GWO [6], CSO [5], CSA [2]. Stopping criteria was maximum number of
iterations, which was 2000 iterations. Since, metaheuristics vary in performing
number of objective function evaluations per iteration, it is better to evalu-
ate this criteria as total number of function evaluations in all iterations. Thus,
in 2000 iterations, the selected metaheuristics performed the number of func-
tion evaluations as: FA= 4871036, BA = 200100, BSO = 200100, BBO = 200100,
AMO = 200050, EHO = 200100, KHA = 202100, GWO = 200000, CSO = 100050,
and CSA = 100050 function evaluations.

4 Results Analysis

In order to observe two main cornerstones of the selected algorithm: exploration
and exploitation, the benchmark functions are grouped into unimodal (f1–f7)
for testing exploitative capability of the algorithms; on the other hand, multi-
modal group of functions (f8–f12) for observing the explorative capability. As
mentioned earlier, these algorithms are run 30 times with 30 dimensions of each
test function. The mean of best values found in all runs and standard devia-
tion are taken into observations. For analyzing the robustness of the selected
algorithms on each test function, the mean values are ranked from smallest to

8 K. Hussain et al.

Table 2. Performance of metaheuristic algorithms on unimodal functions. M = Mean,
SD = Standard deviation, R = Rank, A.R = Average rank, O.R = Overall rank

f1 f2 f3 f4 f5 f6 f7 A.R O.R

FA M 4.24E−36 2.61E−18 2.61E−18 9.60E−18 14.6282 0 0.0003 2.86 1

SD 4.73E−37 1.65E−19 1.65E−19 6.56E−19 2.3731 0 0.0001

R 5 4 2 2 3 1 3

BA M 1.11E−05 0.0151 321.2773 0.0014 0.8739 1.03E−05 0.0044 5.71 6

SD 5.20E−07 0.0049 844.9859 0.0001 0.7707 1.40E−06 0.0050

R 8 8 8 6 1 4 5

BSO M 1.07E−42 0.0005 0.8353 0.0715 28.2020 3.80E−33 0.0106 5.57 5

SD 1.76E−43 0.0015 0.5508 0.0418 0.7104 7.31E−33 0.0047

R 4 7 5 7 7 3 6

BBO M 0.3180 0.2726 1206.5509 13.2955 52.4394 37.1817 0.1271 9.86 10

SD 0.0198 0.0523 297.1841 1.7200 29.3771 13.6204 0.0403

R 10 9 10 10 10 10 10

AMO M 9.76E−69 1.27E−36 0.0116 6.75E−17 14.4019 0 0.0024 3 3

SD 1.13E−68 9.72E−37 0.0095 1.21E−16 0.7659 0 0.0006

R 3 3 4 3 2 2 4

EHO M 2.73E−12 1.34E−05 6.38E−09 0.0001 28.7371 3.0372 4.84E−06 5.43 4

SD 5.32E−13 3.50E−06 1.53E−09 4.50E−05 0.0086 0.1147 4.37E−06

R 7 5 3 4 9 9 1

KHA M 1.96E−14 7.07E−05 78.7188 0.0013 27.9238 0.0058 0.0130 6 7

SD 3.76E−14 6.15E−05 37.0537 0.0012 0.8590 0.0035 0.0053

R 6 6 7 5 6 5 7

GWO M 2.08E−176 5.45E−100 3.22E−56 3.06E−44 25.8277 0.1327 9.10E−05 2.43 1

SD 0 1.58E−99 1.75E−55 5.99E−44 0.7499 0.1703 5.11E−05

R 1 1 1 1 4 7 2

CSO M 3.68E−97 4.06E−81 714.6842 3.9250 27.0649 2.9674 0.0153 6.14 8

SD 1.77E−96 1.70E−80 472.6959 7.2895 0.7068 0.4553 0.0304

R 2 2 9 9 5 8 8

CSA M 0.0002 0.2990 8.9868 1.6162 28.2465 0.0937 0.0209 8 9

SD 9.68E−05 0.1590 3.5145 0.5219 0.4931 0.0349 0.0061

R 9 10 6 8 8 6 9

largest. These ranks are averaged to observe the performance of each method on
each group of functions. This average rank is ranked to obtain overall rank.

The results obtained in unimodal function series are reported in Table 2. From
the bird-eye-view, the overall rank shows that top three performers are GWO,
FA, and AMO, consecutively. On the other hand, the least performers include
CSO, SA, and BBO, respectively. The mediocre results were obtained from EHO,
BSO, BA, and KHA. It is evident that the latest swarm-based algorithms have
potential to be better optimizers while applied on wide variety of problems with
some modification.

As per function-wise performance comparison, GWO achieved first in the
rank by obtaining the best optimum values consistently on majority of the func-
tions from f1 to f4. This proves that GWO has consistent convergence and it is
a stable algorithm among others. On the other hand, BBO stood last performer
among other nine algorithms in most of the cases such as f1, f3, f4, f5, and
f6. The most inconsistent metaheuristic in these experiments were EHO which

Comparative Analysis of Swarm-Based Metaheuristic Algorithms 9

Table 3. Performance of metaheuristic algorithms on multimodal functions. M = Mean,
SD= Standard deviation, R= Rank, A.R = Average rank, O.R = Overall rank

f8 f9 f10 f11 f12 A.R O.R

FA M 52.5005 1.60E−14 0.0015 0.0085 1.35E−32 4.6 3

SD 18.7885 4.54E−15 0.0056 0.0325 5.57E−48

R 10 5 5 2 1

BA M 20.9631 0.0026 0.0130 0.0900 0.0468 7.4 8

SD 35.8047 0.0004 0.0156 0.1973 0.1385

R 8 8 7 4 10

BSO M 35.3542 1.12E-14 0.0106 5.5028 0.0029 6.6 7

SD 8.1199 4.23E−15 0.0083 1.6604 0.0056

R 9 4 6 10 4

BBO M 1.9646 0.1801 1.2862 0.9405 3.5477 8.2 10

SD 0.5580 0.0302 0.0806 0.3018 1.2342

R 5 9 10 7 10

AMO M 6.03E−09 2.66E−15 0.0004 1.57E−32 1.35E−32 2.4 1

SD 2.21E−08 4.01E−31 0.0022 1.11E−47 5.57E−48

R 4 1 4 1 2

EHO M 7.58E−10 1.20E−06 2.37E−10 0.2266 2.9470 5.6 6

SD 8.87E−11 1.20E−07 4.09E−11 0.0383 0.0745

R 3 7 3 6 9

KHA M 8.4610 2.76E−08 0.0141 0.0428 6.55E−05 5.2 5

SD 3.2298 2.77E−08 0.0135 0.1075 4.51E−05

R 6 6 8 3 3

GWO M 0 6.21E−15 0 0.0911 0.1365 4.2 2

SD 0 2.41E−30 0 0.0262 0.1147

R 1 3 1 5 11

CSO M 0 3.61E−15 0 2.4553 1.6307 4.6 3

SD 0 1.60E−15 0 8.6231 0.3227

R 2 2 2 9 8

CSA M 20.2545 0.7341 0.2530 1.7276 0.0314 7.8 9

SD 7.5420 0.7674 0.0645 1.0978 0.0159

R 7 10 9 8 5

performed the best in f7, better in f3 and f4, insignificant in f1 and f2, and
significantly inefficient in f5 and f6. Hence, it determines that EHO maintained
irregular convergence rate throughout iterations in all the unimodal series of
functions.

For the multimodal test functions f8–f12, Table 3 presents the experimental
results. It is obvious from the overall rank that AMO topped among others on

10 K. Hussain et al.

its explorative capability followed by GWO. Additionally, FA, CSO, and KHA
also achieved significant global optimum values. Whereas, EHO, BSO, BA, CSA,
and BBO were among the bottom performers in descending order due to being
trapped in several of local minima in multimodal functions.

GWO and CSO obtained accurate results in f8 and f10. However, CSO was
more consistent than GWO as it performed repeatedly better in most of the
functions in this series. Apparently, EHO seems to be less consistent in this
regard.

5 Conclusion

In this paper, we performed experimental study of the latest ten swarm-based
metaheuristic algorithms on twelve well-known benchmark test functions with
diverse characteristics. Based on the simulated results, it can be concluded that
FA, GWO, and AMO are highly potential metaheuristic algorithms that can be
used for solving complex unimodal and multimodal optimization problems. The
analysis shows that these algorithms have balanced exploration and exploitation
capability. Other than these algorithms, BA, KHA, BSO, and CSO also produced
promising solutions in series of functions. For future work, further investigations
can be carried out to comprehend differences in strategies adopted by these algo-
rithms. Moreover, further statistical analysis such as significance of correlations
among these metaheuristics will help group these methods according to different
types of problems. On the benchmark test functions, a comprehensive research
can be conducted to relate these benchmark test functions with real-world prob-
lems with the help of identification of some of the common characteristics.

Acknowledgments. The authors would like to thank Universiti Tun Hussein Onn
Malaysia (UTHM), Malaysia for supporting this research under Postgraduate Incentive
Research Grant, Vote No. U560.

References

1. Amudhavel, J., Kumarakrishnan, S., Anantharaj, B., Padmashree, D., Harinee,
S., Kumar, K.P.: A novel bio-inspired krill herd optimization in wireless ad-hoc
network (WANET) for effective routing. In: Proceedings of the 2015 International
Conference on Advanced Research in Computer Science Engineering & Technology
(ICARCSET 2015), p. 28. ACM (2015)

2. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering
optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

3. Karaboga, D.: An idea based on honey bee swarm for numerical optimization.
Report, Technical report-tr06, Erciyes University, Engineering Faculty, Computer
Engineering Department (2005)

4. Li, X., Zhang, J., Yin, M.: Animal migration optimization: an optimization algo-
rithm inspired by animal migration behavior. Neural Comput. Appl. 24(7–8),
1867–1877 (2014)

Comparative Analysis of Swarm-Based Metaheuristic Algorithms 11

5. Meng, X., Liu, Y., Gao, X., Zhang, H.: A new bio-inspired algorithm: chicken
swarm optimization. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds.) ICSI 2014. LNCS,
vol. 8794, pp. 86–94. Springer, Cham (2014). doi:10.1007/978-3-319-11857-4 10

6. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69,
46–61 (2014)

7. Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang,
G. (eds.) ICSI 2011. LNCS, vol. 6728, pp. 303–309. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21515-5 36

8. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6),
702–713 (2008)

9. Wang, G.G., Deb, S., dos Coelho, L.S.: Elephant herding optimization. In: 2015
3rd International Symposium on Computational and Business Intelligence (ISCBI),
pp. 1–5. IEEE (2015)

10. Yang, X.S.: Firefly algorithm. In: Nature-Inspired Metaheuristic Algorithms, vol.
20, pp. 79–90 (2008)

11. Yang, X.S.: A New Metaheuristic Bat-Inspired Algorithm, pp. 65–74. Springer,
Heidelberg (2010)

12. Zhang, L., Liu, L., Yang, X.S., Dai, Y.: A novel hybrid firefly algorithm for global
optimization. PLoS ONE 11(9), e0163230 (2016)

http://dx.doi.org/10.1007/978-3-319-11857-4_10
http://dx.doi.org/10.1007/978-3-642-21515-5_36

A Mathematical Model of Information Theory:
The Superiority of Collective Knowledge

and Intelligence

Pedro G. Guillén(&)

Knowdle Foundation & Research Institute, Málaga, Spain
pedrogguillen@gmail.com

Abstract. The mathematical model described here is an evolution of the one
constructed within the studies [1–3] by De Santos and Villa, among others. This
paper aims to formalize the concept of knowledge and its properties as a basis
for creating generalized economic value functions [4], focusing on the business
models of the current technological sector as the application environment. The
main conclusions reached are focused on the improvement of the value of
information and knowledge under the assumption of collective cooperation
amongst information system agents, as well as the properties of the knowledge
space derived from the model.

Keywords: Knowledge � Collective � Intelligence � Wisdom � Structure �
Value � Economy � Swarm � Topology

1 Algebraic Structure of Knowledge

Definition 1: Let L be a natural language. The Universe of data (also called Universal
Library) is defined as all possible combinations of characters of L of arbitrary length
that have meaning, that is to say, whose Boolean function of L is not null [2]. In the
future, this set will be denoted by D, and a subset d�D will be called data. It will be
assumed that the universe of data is dense, and any combination of elements of the
universe of data is an element of the universe of data.

Definition 2: The set of Universe of Contexts or Universal Context is defined as a
graph with global structure of thesaurus, and locally orientable. The set will be denoted
by C, and a subset c�C will be called context.

Proposition 1: Whatever the L language on which the previous structures D and C are
defined, and whatever the structure of C, we have C � D.

Proof: Trivial.

Then the r-algebras of the respective sets D and C are defined, and they will be
called D and C. The choice of r-algebra is arbitrary; However, due to the structure of
natural language and the results described in [1, 2], we can assume the choice of a
“reasonable” non-trivial algebra.

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 12–21, 2017.
DOI: 10.1007/978-3-319-61824-1_2

http://orcid.org/0000-0001-5842-5405

Definition 3: The following set is defined as the Universe of Knowledge of the natural
language L:

X :¼ D� C ¼ ðd; cÞ : d 2 D; c 2 Cf g

A compact subset D�X will be called knowledge domain or simply domain, and an
element x 2 X of the set will be called contextualized data.

In the model, we will call the subsets that are unions of path-connected components
natural knowledge or simply knowledge. The motivation to conjecture this structure for
natural knowledge comes from studies on cognitive structure and brain processes [5, 6],
as well as studies of the Mathematical Theory of Information [7–9]. These studies
present the natural structure in which an agent of an information system processes all
the knowledge it acquires. Knowledge will be the basis for the topology of the X space.

Proposition 2: If any knowledge domain D�X is defined, there is always an
embedding function between the domain and the set that does not depend on the
structure that is given to the space.

Proof: Is immediate, since having D�X, it is verified that the restriction is always
defined and is always an embedding. Note that C � D.

Once the spaces (D, D) and (C, C) are defined, it is possible to define in the set X
the inherited r-algebra N ¼ DxC. Because of its algebraic properties, the fact that D, C
have a structure of r-algebra implies that N has a structure of r-algebra. The reason for
presenting these sets by means of this algebraic structure is that a large number of
useful operators can be built on it, as is defined below.

2 The Dynamic System

We define the continuous variable t 2 ½0;1� which will be called time, and which must
be given a starting point, t0, in the model. Without loss of generality, we will assign
t0 ¼ 0.

Analogously to the initial hypotheses, the sets of the Knowledge Universe are
defined as functions of time:

D tð Þ;C tð Þ

That enables the definition of a dynamic system in the r-algebra of this universe,
the Cartesian product:

XðtÞ :¼ DðtÞ � CðtÞ ¼ ðdðtÞ; cðtÞÞ : dðtÞ 2 DðtÞ; cðtÞ 2 CðtÞf g

AðXÞðtÞ ¼ AðtÞ

A Mathematical Model of Information Theory 13

Regarding the model associated with the dynamic system that has been constructed,
some additional assumptions must be made, because as the time variable takes a range
of values or others, the set changes in a certain way.

Now the value function can be defined, which in the previous section was a vector
associated with an element of r-algebra. In the resulting dynamic system, the value
function is a vector of n functions that depend of t.

Vt : AðtÞ ! KnðtÞ

VtðAðtÞÞ :¼ ðm1ðAðtÞÞ;m2ðAðtÞÞ; . . .;mnðAðtÞÞÞ

Or simplifying:

Vt : AðtÞ ! KnðtÞ

VtðtÞ :¼ ðm1ðtÞ;m2ðtÞ; . . .;mnðtÞÞ

3 The Value of Knowledge

Once the universe of knowledge is defined, the next step is to construct a function that
associates each element of our r-algebra with a numerical value. To this end the
following results are introduced.

Definition 4: Any function of the form:

f ðtÞ : AðXÞðtÞ ! K

that is a finite and bounded measure, and that it is dependent on a law of supply and
demand, is defined as a value function.

Proposition 3: The value function is continuous.

Proof: Demonstration is trivial by construction, since an open set of the topology in
the image space is the union of elementary images of the function, and its inverse
image is precisely the union of basic openings of the topology of XðtÞ. Therefore, the
function is continuous.

Lemma 1: ðXðtÞ; TðAÞÞ is a Hausdorff topological space.

Proof: Take two elements of the space. There are two possible cases: that the points
are in different components by paths or that they are in the same. In the first case, we
have already found two open disjoints sets of the topology that contain both points and
we are finished. In case of both points are in the sameset connected by paths, we
consider all the possible paths that join both points. As the whole of the universe of
data is dense, given two elements we can always find one that is in the middle, and
therefore we can separate each path into two open disjoint paths, being the union of the
halves the disjoint open sets containing each of the two starting points.

14 P.G. Guillén

Lemma 2: Let Ai be a family of knowledge and f a function of value on XðtÞ. Then it
verifies that a j 2 N exists such that, if i[j:

@f \Aið Þ
@t

����
����\0

Proof: By Definition 4 we have that if f is a value function then it is dependent on a
law of supply and demand. As by Definition 3 knowledge are sets belonging to agents
of the information system, we then have the greater the number of agents possessing a
certain knowledge (the intersection of all Ai) the greater the supply, and therefore the
value of that set tends to go down in time for a sufficiently large index.

Corollary 1: A direct consequence of the previous lemma is that the temporary
derivative of sufficiently infrequent knowledge value is inversely proportional to the
temporal derivative of frequent knowledge. Thus, for a sufficiently large index under
the hypotheses of Lemma 2:

@f ð \AiÞ
@t

����
���� ¼ �k

@f ðXn \AiÞ
@t

����
����

is verified for some k[0.

Proof: Analogous to the previous case.

In general, the intention is not to establish a numerical value for each element of the
r-algebra, but a vector with n coordinates. For this, we have only to define n different
measures on the given r-algebra that gives to each set a value from the desired point of
view, defining a value function as the composition of a finite set of measures defined on
the universe of knowledge.

4 Collective Knowledge

One of the fundamental results of the model that has been described is the benefit of
collective versus individual knowledge. Intuitively, we can think of profit as a positive
difference of value, defined in the model by the homonymous function.

In the model, the differential is the derivative of the value function regarding the
time variable, that is, in the growth of the functions

A : t ! AðtÞ

ft : AðtÞ ! R
nðtÞ

Theorem 1: Let Ai (t) be a family of knowledge and let f be a function of value. Then,
for a sufficiently large index i:

A Mathematical Model of Information Theory 15

@f [Aið Þ
@t

����
�����

Xi

j¼1

@f ðAjÞ
@t

����
����

Proof: The problem will be reduced to the case of two sets of knowledge. The general
case is completely analogous. We know that any value function is a measure. To
demonstrate the statement, we take two of the fundamental properties of our
n-dimensional measure, namely

8A;B 2 AjA�B ! f ðAÞ	 f ðBÞ

f ðA [BÞ ¼ f ðAÞþ f ðBÞ � f ðA \BÞ

Taking these properties into account, together with the linearity properties of the
derivative:

@VtðA1 [A2Þ
@t

����
����� @VðA1Þ

@t

����
����þ @VðA2Þ

@t

����
����� @VtðA1 \A2Þ

@t

����
����

is verified.
However, we had by Lemma 1 that for a large enough family of knowledge (we

suppose the result true for i ¼ 2)

@ð \AiÞ
@t

����
����\ 0

Therefore, it is verified that

@VtðA1 [A2Þ
@t

����
����� @VðA1Þ

@t

����
����þ @VðA2Þ

@t

����
����� @VtðA1 \A2Þ

@t

����
�����

@VðA1Þ
@t

����
����þ @VðA2Þ

@t

����
����

That proves the result. Basically, the interpretation of this theorem is that the
knowledge which agents bring exclusively to others who do not possess it, generates
more valuable knowledge than that is common to all agents.

5 Maximal Knowledge: The Hypersurface

Proposition 4: The image ofXðtÞ by k value functions is a hypersurface of dimension k.

Proof: By hypothesis, XðtÞ is a union of sets connected by paths. Thus, locally it is a
set connected by paths. Applying Lemma 1, we have that the space ðXðtÞ; TðAÞÞ is a

16 P.G. Guillén

Hausdorff space, and because it is locally connected by paths it is also locally
arc-connected. Therefore, by taking a point in space x 2 XðtÞ, and an open one
containing it, there are I�R paths that are homeomorphic to R, and whose union builds
a local homeomorphism between a subspace of Rm and XðtÞ. Therefore, XðtÞ is a
hypersurface and since the k value functions are continuous, and it has to bethat m ¼ k.

Hereinafter, the notation f ðXðtÞÞ ¼ HðtÞ will be used.

Proposition 5: Value functions form a vector space of dimension n > k.

Proof: Amongst the properties of measures is that the sum of measures is a measure
that preserves algebraic properties, and the same thing happens with the product of
scalars. Therefore, any function dependent on a law of supply and demand continues to
be such after an operation with another function or with a scalar.

Corollary 2: H (t) is contained in a vector space of infinite dimension.

Proof: The result is immediate, since the product of measurable functions is mea-
surable and gives rise to a higher degree function that is not expressible as an element
of the starting vector space. By repeating the process indefinitely, we obtain a vector
space of infinite dimension containing HðtÞ.

From now on, this space will be called parameterization space.

Proposition 6: Once a domain of knowledge is established, there is knowledge that
has extreme values (maximum or minimum).

Proof: By definition, the constraint of HðtÞ to a domain is a compact set, since the
domains are compact and the value function is continuous. Applying the Weierstrass
theorem, a continuous function defined in a compact has at least one extreme value, and
the result is concluded.

6 Through Knowledge: Intelligence

Once the existence ofmaximal knowledge in ther-algebra/parametrization/hypersurface
structure is guaranteed, it is logical to ask what structure has the maximal knowledge set
or if the value of knowledge can be treated as knowledge in itself to generalize in a higher
abstraction the concept of value function.

Definition 5: An intelligence function is defined as a function dependent on t of the
form:

IðtÞ ¼ Z
HðtÞFðxÞdx

Being F a vector field function, such that the nature of the intelligence function is
equivalent to the concept of divergence in fluid mechanics [10], i.e., that F would be a
function that would represent the velocity field of a fluid and the function of

A Mathematical Model of Information Theory 17

Intelligence measures how intelligence flows and expands through the hypersurface of
knowledge.

Being a primitive of a function, it is evident that functions of intelligence are
differentiable. Assuming the conditions in the previous section, and applying the fact
that in this case H (t) is a compact set, both the hypersurface and differential maximal
curves at the points of the hypersurface border can be calculated.

In this case the maximal curves should represent the optimal curves of knowledge
through a given local domain, and provide, through the differential of the hypersurface
itself (which is differentiable) the most valuable knowledge in the future, under a
Domain and given time series. The formalization of the calculation would be given by
the formula:

IcðtÞ ¼
Z
HðtÞ

FðcðxÞÞ � c0ðxÞj jdx

The usefulness of frontier points is given by how they will relate knowledge of a
given domain with other knowledge outside. Therefore, we must analyze intelligence
functions from a temporal perspective, obtaining a formula dependent on the parameter
selected for the auxiliary function:

IðxÞ ¼
Z
HðtÞ

FðxÞdt

That is why the definition and choice of the auxiliary function is so important when
modeling these behaviors in a dynamic system.

7 Collective Intelligence

Definition 7: For each agent i of the information system, an intelligence function with
an auxiliary function is defined as:

IiðtÞ ¼
Z
HðtÞ

FiðxÞdx

Proposition 7: Any agent of the system can know all the intelligence functions of all
the other agents setting a sufficiently restricted domain.

Proof: Since any function of intelligence is obviously differentiable (since it is a
primitive) and locally bijective, we can apply the inverse function theorem to obtain,
given the starting hypersurface and results in a local domain, a local inverse, and with it
an explicit local equation of IiðtÞ. Thus, the result is concluded.

It now makes sense to define the concept of Collective Intelligence.

18 P.G. Guillén

Definition 8: In the above conditions, the function:

Ic tð Þ ¼ sup
Z
H tð Þ

Fi xð Þf gj jdx

x defined as Collective Intelligence. The reason for taking the absolute value of the
auxiliary function is that the positive and negative values of the field integral cancel
out, and it is necessary to consider the global flow through the hypersurface, regardless
of its sign.

That is, the function of intelligence that has as auxiliary function the supreme
function of all the intelligence functions of the system agents. The most important
property that Cognitive Intelligence verifies is the following inequality:

Theorem 2: For any set of agents, with any set of intelligence functions and any
domain:

IiðtÞj j 	 IcðtÞj j

is verified.

Proof: Because of the supreme function’s properties, the following has to be

IiðtÞj j ¼
Z
HðtÞ

FiðxÞdx
�����

�����	 sup IiðtÞj j

And now, applying a measure theory result [15]:

sup IiðtÞj j ¼ sup
Z
HðtÞ

FiðxÞdx
�����

�����	 sup
Z
HðtÞ

fFiðxÞgj jdx ¼ IcðtÞj j

thus proving our own result.

The interpretation of the previous theorem is: Collective Intelligence always obtains
superior performance of the knowledge processed through value criteria than any
function of intelligence of a single agent (or of a restricted part of the set of agents).

8 Extending Intelligence: Wisdom

The last level of cognitive inference of the mathematical model is a result that applies
to the functions of intelligence to obtain a generalization of the model into
non-parameterized places, even places of the parameterization space that are not an
image of any element of the r-algebra.

Theorem 3: Every intelligence function defined in a domain, in particular Collective
Intelligence, supports a continuous extension to all the parameterization space con-
taining H(t).

A Mathematical Model of Information Theory 19

Proof: To begin with, an intelligence function is a linear form with respect to its
auxiliary function, since in the space of all the continuous functions defined on a
compact set (the fixed domain), the integral defined in that compact is a linear form.

In these conditions, it makes sense to apply the Hahn-Banach Theorem [11], which
states that a linear form defined in a vector subspace on a field and bounded by a
sublinear function (which it fulfills, since the functions are bounded by construction)
then there exists a linear extension Î : P ! R from I to the whole space P, i.e. there is a
linear function Î such that:

ÎðxÞ ¼ IðxÞ8x 2 P

This concludes the result.

Corollary 3: It is possible to know properties and values associated with knowledge
or elements of space XðtÞ that do not yet exist.

Proof: In the case that FðxÞ is the identity function and x ¼ t, the function to be
extended by Theorem 3 would be the hypersurface itself as a function of time, since

IðxÞ ¼ IðtÞ ¼
Z
HðtÞ

1:dt ¼ HðtÞ

Therefore, cognitive and intelligence factors of elements of (t) that do not yet exist
could be known.

Definition 9: A wisdom function is defined as the Hahn - Banach extension of an
intelligence function.

9 Conclusions

Given the results of the model described, it makes sense to establish some conjectures
that arise.

Conjecture 1: Is it possible to define an explicit method to obtain a function of
wisdom from a given intelligence function?

It must be said that in the proof of Hahn Banach’s Theorem the extension Î in
general is not unique and the proof, which uses the Zorn lemma, gives no method to
find it. In fact, even if it were possible to find explicitly a function of wisdom from a
given intelligence function, it would be highly improbable to find a general method.

Conjecture 2: Is it possible to obtain values of non-measurable sets?

This conjecture corresponds to a vacuum in model theory, related to non-measurable
sets. For any non-trivial measure there are sets within the r-algebra that can not be
measured under any measure construction. These sets, such as those described in

20 P.G. Guillén

Vitali’s Theorem [12, 13], can generate distortions in the valuation of certain trans-
formations, as with Banach-Tarski Paradox. Fortunately, these situations only occur
when the elements of r-algebra are not explicitly constructed, which in our model does
not occur, since a set of Vitalican not be constructed explicitly. However, it makes sense
to wonder if these sets can receive values by a function of wisdom that extends the
hypersurface of values to non-measurable sets.

Conjecture 3: In an environment of a massive amount of system agents, can Col-
lective Intelligence be subject to indetermination?

The motivation of this conjecture comes from the existence of artificial agents.
Thus, an agent that is not limited to making changes per second in intelligence func-
tions can lead the formulation of Collective Intelligence to include two different
expressions of the same intelligence function, and even two simultaneous expressions
of Collective Intelligence, which could have unpredictable consequences for the model
in a hypothetical practical implementation [14].

References

1. Guillén, P.G.: Topological proof of the computability of the algorithm based on the
morphosyntactic distance. In: Conference Series of the 9th Annual International Conference
on Computer Science and Information Systems, COM2013-0595 (2013)

2. Serradilla, F., Villa, E., De Santos, A., Guillén, P.G.: Semantic construction of an univocal
language. ITHEA: Inf. Theor. Appl. 19(3), 211 (2012)

3. De Santos, A., Villa, E., Serradilla, F., Guillén, P.G.: Construction of morphosyntactic
distance on semantic structures. ITHEA: Inf. Theor. Appl. 19(4), 336 (2012)

4. Menger, C.: Principles of Economics. Ludwig von Mises Institute, Auburn (1976). 120 p.
5. Frankland, P.W., Bontempi, B.: The organization of recent and remote memories. Nat. Rev.

Neurosci. 6(2), 119–130 (2005)
6. Rugg, M., Yonelinas, A.P.: Human recognition memory: a cognitive neuroscience

perspective. Trends Cogn. Sci. 7(7), 313–319 (2003)
7. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of

Illinois Press, Urbana (1964). 125 p.
8. Moreiro González, J.A.: Aplicaciones al análisis automático del contenido provenientes de la

teoría matemática de la información. Anales de documentación 5, 273–286 (2002)
9. Chung, F.: Graph theory in the information age. Not. AMS 57(6), 726–732 (2010)
10. Bourbaki, N.: Integration I. Chap. III–IV. Springer, Heidelberg (2004)
11. Narici, L., Beckenstein, E.: The Hahn-Banach theorem: the life and times. Topol. Appl. 77,

193–211 (1997)
12. Foreman, M., Wehrung, F.: The Hahn-Banach theorem implies the existence of a

non-Lebesgue measurable set. Fundamenta Mathematicae 138, 13–19 (1991)
13. Herrlich, H.: Axiom of Choice. Springer, Heidelberg (2006). 120 p.
14. Bosyk, G.M.: Más allá de Heisenberg. Relaciones de incerteza tipo Landau-Pollak y tipo

entrópicas (2014). 113 p.
15. Hawkins, T.: The Lebesgue’s Theory of Integration. University of Wisconsin Press, Madison

(1970)

A Mathematical Model of Information Theory 21

Modelling and Verification Analysis
of the Predator-Prey System via a First Order

Logic Approach

Zvi Retchkiman Konigsberg(B)

Centro de Investigacion en Computacion, Instituto Politecnico Nacional,
Mexico, CDMX, Mexico

mzvi@cic.ipn.mx

Abstract. Consider the interaction of populations, in which there are
exactly two species, one of which the predators eat the preys thereby
affecting each other. In the study of this interaction Lotka-Volterra mod-
els have been used. This paper proposes a formal modelling and verifica-
tion analysis methodology, which consists in representing the interaction
behavior by means of a formula of the first order logic. Then, using the
concept of logic implication, and transforming this logical implication
relation into a set of clauses, called Skolem standard form, qualitative
methods for verification (satisfiability) as well as performance issues, for
some queries, are applied.

Keywords: Predator-prey system · First order logic · Model · Verifica-
tion · Unsatisfiability · Refutation methods

1 Introduction

Consider the interaction of populations, in which there are exactly two species,
one of which the predators eat the preys thereby affecting each other. Such pairs
exist throughout nature: fish and sharks, lions and gazelles, birds and insects,
to mention some. In the study of this interaction Lotka-Volterra models have
been used [1]. This paper proposes a well defined syntax modeling and veri-
fication analysis methodology which consists in representing the predator-prey
interaction system as a formula of the first order logic, (where the quantifiers are
chosen according to a video showing how a group of lions attack a zebra). Then,
using the concept of logic implication, and transforming this logical implication
relation into a set of clauses, called Skolem standard form, qualitative methods
for verification (satisfiability) as well as performance issues, for some queries, are
addressed. The method of Putnam-Davis based on Herbrand theorem for testing
the unsatisfiability of a set of ground clauses as well as the resolution principle
due to Robinson, which can be applied directly to any set of clauses (not neces-
sarily ground clauses), are invoked. The paper is organized as follows. In Sect. 2, a
first order background summary is given. In Sect. 3, the Putnam-Davis rules and
the resolution principle for unsatisfiability, are recalled. In Sect. 4, the predator-
prey problem is addressed. Finally, the paper ends with some conclusions.
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 22–30, 2017.
DOI: 10.1007/978-3-319-61824-1 3

Modelling and Verification Analysis of the Predator-Prey System 23

2 First Order Logic Background

This section presents a summary of the first order logic theory. The reader inter-
ested in more details is encouraged to see [2,3].

Definition 1. A first-order language L is an infinite collection of distinct sym-
bols, no one of which is properly contained in another, separated into the follow-
ing categories: parentheses, connectives, quantifiers, variables, equality symbol,
constant symbols, function symbols and predicate symbols.

Definition 2. Terms are defined recursively as follows: (i) A constant is a
term, (ii) A variable is a term. (iii) If f is an nth-place function symbol, and
t1, t2, . . . , tn are terms, then f(t1, t2, . . . , tn) is a term. (iv) All terms are gener-
ated by applying the above rules.

Definition 3. If P is an nth-place predicate symbol, and t1, t2, . . . , tn are terms,
then p(t1, t2, . . . , tn) is an atom. No other expressions can be atoms.

Definition 4. An occurrence of a variable in a formula is bound if and only if
the occurrence is within the scope of a quantifier employing the variable, or is
the occurrence in that quantifier. An occurrence of a variable in a formula is free
if and only if this occurrence of the variable is not bound.

Definition 5. A variable is free in a formula if at least one occurrence of it is
free in the formula. A variable is bound in a formula if at least one occurrence
of it is bound.

Definition 6. Well-formed formulas, or formulas for short, in the first-order
logic are defined recursively as follows: (i) An atom is a formula. (ii) If F and
G are formulas then, ∼ (F), (F ∨G), (F ∧G), and (F ↔ G) are formulas.(iii) If
F is a formula and x is a free variable in F , then (∀x)F and (∃x)F are formulas.
(iv) Formulas are generated only by a finite number of applications of (i), (ii),
and (iii).

Definition 7. An interpretation I of a formula F in the first-order logic consists
of a nonempty domain D, and an assignment of “values” to each constant,
function symbol, and predicate symbol occurring in F as follows: (1) To each
constant, we assign an element in D, (2) To each nth-place function symbol, we
assign a mapping from Dn to D, (3) To each nth-place predicate symbol, we
assign a mapping from Dn to T, F , where T means true and F means false.

Remark 1. Sometimes to emphasize the domain D, we speak of an interpretation
of the formula over D. When we evaluate the truth value of a formula in an
interpretation over the domain D, (∀x) will be interpreted as “for all elements
in D,” and (∃x) as “there is an element in D. For every interpretation of a
formula over a domain D, the formula can be evaluated to T or F according to
the following rules: (1) If the truth values of formulas G and H are evaluated,
then the truth values of the formulas ∼ (F), (F ∨ G), (F ∧ G), (F → G), and

24 Z. Retchkiman Konigsberg

(F ↔ G) are evaluated according to the well known formulas of propositional
calculus, (2) (∀x)G is evaluated to T if the truth value of G is evaluated to T
for every d ∈ D; otherwise, it is evaluated to F , (3) (∃x)G is evaluated to T if
the truth value of G is T for at least one d ∈ D; otherwise, it is evaluated to F .
We note that any formula containing free variables cannot be evaluated.

Definition 8. A formula G is consistent (satisfiable) if and only if there exists
an interpretation I such that G is evaluated to T in I. If a formula G is T in
an interpretation I, we say that I is a model of G and I satisfies G.

Definition 9. A formula G is inconsistent (unsatisfiable) if and only if there-
exists no interpretation I that satisfies G.

Definition 10. A formula G is valid if and only if every interpretation of G
satisfies it.

Definition 11. A formula G is a logical implication of formulas F1, F2, . . . , Fn

if and only if for every interpretation I, if F1, F2, . . . , Fn is true in I,G is also
true in I.

The following characterization of logical implication plays a very important
role as will be shown in the rest of the paper.

Theorem 1. Given formulas F1, F2, . . . , Fn and a formula G, G is a logical
implication of F1, F2, . . . , Fn if and only if the formula ((F1∧F2∧. . . ,∧Fn) → G)
is valid if and only if the formula (F1 ∧ F2 ∧ . . . ∧ Fn∧ ∼ (G)) is inconsistent.

Definition 12. A formula F in the first-order logic is said to be in a prenex
normal if and only if is in the form of (Q1x1)(Q2x2) . . . (Qnxn)(M) where every
Qixi, i = 1, 2, . . . , n is either ∀xi or ∃xi, and M is a formula containing no quan-
tifiers. (Q1x1)(Q2x2) . . . (Qnxn) is called the prefix and M is called the matrix
of the formula F .

Next, Given a formula F , the following procedure transforms F into a prenex
normal form. (1) Eliminate → and ↔, (2) Move ∼, (3) Rename variables and
(4) Pull quantifiers. (details are provided in [3].)

Let a formula F be already in a prenex normal form i.e., (Q1x1) . . . (Qnxn)(M),
where M is in a conjunctive normal form CNF (a finite conjunction of clauses,
see next definition). Suppose Qi is an existential quantifier in the prefix. If no
universal quantifier appears before Qi, we choose a new constant c different
from other constants occurring in M , replace all xi appearing in M by c and
delete Qixi from the prefix. If (Q1x1)(Q2x2) . . . (Qkxk) (1 ≤ k < i) are all the
universal quantifiers appearing before Qixi, we choose a new k-place function
symbol f different from other function symbols in M , replace all xi in M by
f(x1, x2, . . . , xk) delete Qixi from the prefix. After the above process is applied
to all the existential quantifiers in the prefix, the last formula we obtain is called
a universal form, or Skolem standard form, of the formula F . The constants and
functions used to replace the existential variables are called Skolem functions.

Modelling and Verification Analysis of the Predator-Prey System 25

Remark 2. It is important to point out that universal forms are not unique.

Definition 13. A clause is a finite disjunction of zero or more literals (atoms
or negation of atoms).

When it is convenient, we shall regard a set of literals as synonymous with a
clause. A clause consisting of r literals is called an r-literal clause. A one-literal
clause is called a unit clause. When a clause contains no literal, we call it the
empty clause, denoted by �. Since the empty clause has no literal that can be
satisfied by an interpretation, the empty clause is always false. The importance
of transforming a formula F in to its universal form results evident, thanks to
the next result.

Theorem 2. Let S be a set of clauses that represents a universal form of a
formula F . Then F is inconsistent if and only if S is inconsistent.

By definition, a set S of clauses is unsatisfiable if and only if it is false under
all interpretations over all domains. Since it is inconvenient and impossible to
consider all interpretations over all domains, it would be nice if we could fix on
one special domain H such that S is unsatisfiable if and only if S is false under
all the interpretations over this domain. Fortunately, there does exist such a
domain, which is called the Herbrand universe of S, defined as follows.

Definition 14. Let H0 be the set of constants appearing in S. If no constant
appears then, H0 is to consist of a single constant, say H0 = a. For i = 0, 1, 2, . . .
let Hi+1 be the union of Hi, and the set of all terms of the form f(t1, t2, . . . , tn)
for all n-place functions f occurring in S, where tj = 1, 2, . . . n are members of
the set Hi. Then each Hi is called the i-level constant set of S, and H∞, is called
the Herbrand universe of S.

Definition 15. Let S be a set of clauses. The set of ground atoms of the form
P (t1, t2, . . . , tn) for all n-place predicates P occurring in S, where t1, t2, . . . , tn
are elements of the Herbrand universe of S, is called the atom set, or the
Herbrand base of S. A ground instance of a clause C of a set S of clauses is a
clause obtained by replacing variables in C by members of the Herbrand universe
of S.

We have seen that the problem of logical implication is reducible to the prob-
lem of satisfiability, which in turn is reducible to the problem of satisfiability of
universal sentences. Next, Herbrand’s theorem is presented, which states that to
test whether a set S of clauses is unsatisfiable, we need consider only interpreta-
tions over the Herbrand universe of S. This can be used together with algorithms
for unsatisfiability (Davis Putnam rules discussed in Sect. 3) to develop proce-
dures for this purpose.

Theorem 3. Let a formula F be already in a prenex normal form i.e., (Q1x1)
(Q2x2) . . . (Qnxn)(M), where M is in a conjunctive normal form CNF and con-
tains no quantifiers, i.e., is universal. Let H∞ be the Herbrand universe of S
(with S the set of clauses that represents the universal form of F). Then F is
unsatisfiable if and only there is a finite unsatisfiable set Ś of ground instances
of clauses of S.

26 Z. Retchkiman Konigsberg

Remark 3. Herbrand’s theorem suggests a refutation procedure: that is, given
an unsatisfiable set S of clauses to prove, if there is a mechanical procedure
that can successively generate sub-sets S1, S2 . . . of ground instances of clauses
in S and can successively test S1, S2 . . . for unsatisfiability, then, as guaranteed
by Herbrand’s theorem, this procedure can detect a finite n such that Sn is
unsatisfiable, otherwise it will continue forever i.e., it is undecidable.

3 Unsatisfiability Methods

3.1 Davis and Putnam Rules

Davis and Putnam introduced a method for testing the unsatisfiability of a
set of ground clauses, therefore it is immediately applicable to a set of clauses S
considering interpretations over the Herbrand universe. Their method consists of
the following rules: (1) Delete all the ground clauses from S that are tautologies.
The remaining set Ś is unsatisfiable if and only if S is, (2) If there is a unit
ground clause L in S, obtain Ś from S by deleting those ground clauses in S

containing L. If Ś is empty then, S is satisfiable, otherwise obtain a set ´́
S by

deleting ∼ (L) from Ś. ´́
S is unsatisfiable if and only if S is, (3) A literal L in a

ground clause of S is said to be pure in S if and only if the literal ∼ (L) does
not appear in any ground clause in S. If a literal L is pure in S, delete all the
ground clauses containing L. The remaining set Ś is unsatisfiable if and only if
S is, (4) If the set S can be written as: (A1 ∨L)∧ (A2 ∨L) . . . (Am ∨L)∧ (B1∨ ∼
L) ∧ (B2∨ ∼ L) . . . (Bm∨ ∼ L) ∧ R where Ai, Bi and R are free of L and ∼ L
then, obtain the sets S1 = A1 ∧ A2 . . . Am ∧ R and S2 = B1 ∧ B2 . . . Bm ∧ R. S
is unsatisfiable if and only if both, S1 ∪ S2 are.

3.2 The Resolution Principle

The procedure introduced by Davis and Putnam relies on Herbrand’s theorem
which has one major drawback: It requires the generation of sets S1, S2 . . . of
ground instances of clauses. For most cases, this sequence grows exponentially.
We shall next introduce the resolution principle due to Robinson, a more efficient
method than Davis and Putnam procedure. It can be applied directly to any set
S of clauses (not necessarily ground clauses) to test the unsatisfiability of S.
Resolution is a sound and complete algorithm i.e., a formula in clausal form is
unsatisfiable if and only if the algorithm reports that it is unsatisfiable. Therefore
it provides a consistent methodology free of contradictions. However, it is not a
decision procedure because the algorithm may not terminate.

Definition 16. A substitution is a finite set of the form {t1/v1, t2/v2, . . . ,
tn/vn}, where every vi is a variable, every ti, is a term different from vi. When
the ti are ground terms, the substitution is called a ground substitution. The
substitution that consists of no elements is called the empty substitution and is
denoted by ε.

Modelling and Verification Analysis of the Predator-Prey System 27

Definition 17. Let θ = {t1/x1, . . . , tn/xn} and λ = {u1/y1, . . . , um/ym} be two
substitutions. Then the composition of θ and λ is the substitution, denoted by
θ ◦ λ, that is obtained from the set {t1λ/x1, . . . , tnλ/xn, u1/y1, . . . , um/ym} by
deleting any element tjλ/xj for which tjλ = xj, and any element ui/yi such that
yi is among x1, x2, . . . , xn.

Definition 18. A substitution θ is called a unifier for a set E1, E2, . . . , En if
and only if E1θ = E2θ = . . . , Enθ The set {E1, E2, . . . , En} is said to be unifiable
if there is a unifier for it.

Definition 19. A unifier σ for a set E1, E2, . . . , En of expressions is a most
general unifier if and only if for each unifier θ for the set there is a substitution
λ such that θ = σ ◦ λ.

Definition 20. If two or more literals (with the same sign) of a clause C have
a most general unifier σ, then Cσ is called a factor of the clause C. If Cσ is a
unit clause, it is called a unit factor of C.

Definition 21. Let C1 and C2 be two clauses (called parent clauses) with no
variables in common. Let L1 and L2 be two literals in C1 and C2, respectively.
If L1 and ∼ (L2) have a most general unifier σ, then the clause (C1σ − L1σ) ∪
(C2σ − L2σ) is called a binary resolvent of C1 and C2. The literals L1 and L2

are called the literals resolved upon.

Definition 22. A resolvent of (parent) clauses C1 and C2 is one of the following
binary resolvents: (1) a binary resolvent of C1 and C2, (2) a binary resolvent of
C1 and a factor of C2, (3) a binary resolvent of a factor of C1 and C2, (4) a
binary resolvent of a factor of C1 and a factor of C2.

Definition 23. Given a set S of clauses, a deduction of C from S is a finite
sequence of clauses C1, C2, . . . , Cn such that each Ci, either is a clause in S or
a resolvent of clauses preceding Ci,, and Ck = C. A deduction of � from S is
called a refutation, or a proof of S.

The following result, called lifting lemma, plays a key role in the proof of the
soundness and completeness theorem for the resolution procedure.

Lemma 1. If Ć1 and Ć2 are instances of C1 and C2, respectively, and if Ć is
a resolvent of Ć1 and Ć2 then there is a resolvent C of C1 and C2 such that Ć
is an instance of C.

The main result of this subsection, the soundness and completeness theorem
for the resolution procedure, is next presented.

Theorem 4. A set S of clauses is unsatisfiable if and only if there is a deduction
of the empty clause � from S.

Theorem 5. The set of unsatisfiable sentences is undecidable.

28 Z. Retchkiman Konigsberg

4 Predator-Prey System

Consider the interaction of populations, in which there are exactly two species,
one of which the predators eats the other the preys thereby affecting each other’s
growth rates. Such pairs exist throughout nature: fish and sharks, lions and
gazelles, birds and insects, to mention some. It is assumed that, the predator
species is totally dependent on a single prey species as its only food supply, the
prey has unlimited food supply, and that there is no threat to the pray other
than the specific predator. The predator-prey system behavior is described as
follows: (1) States: S: preys are safe, D: the preys are in danger, B: the preys
are being eaten, I: the predators are idle, L: the predators are in search for a
prey, CL: the predators continue searching for a prey, A: the predators attack
the preys, F : the predator has finished eating the prey, P : the predator dies; (2)
Rules of Inference: (a) if S and L then CL, (b) if S and CL then P , (c) if D and
(L or CL) then A, (d) if A then B, (e) if B then F (f) if F then I, (g) if I then
L. Therefore, by associating variables to the states, we can define the following
predicates: S(x): x is a safe prey, D(x): the prey x is in danger, B(x, y): the
prey x is being eaten by predator y, I(x): the predator x is idle, L(x, y): the
predator y is in search for a prey x,CL(x, y): the predator y continues searching
for a prey x,A(x, y): the predator ya attacks prey x, F (x, y): the predator y has
finished eating prey x, P (x): the predator x passed away.

Remark 4. The main idea consists of: the predator-prey behavior is expressed
by a formula of the first order logic, (where the quantifiers are chosen according
to a video showing how a group of lions attack a zebra), some query is expressed
as an additional formula. The query is assumed to be a logical implication of
the predator-prey formula (see Theorem 13). Then, transforming this logical
implication relation into a set of clauses by using the techniques given in Sect. 2,
its validity can be checked. Even more using the resolution principle, unifications
done during the procedure provide answers to some specific queries. The domain
D of the interpretation will be considered to be formed by a set of predators and
a set of preys.

The formula that models the predator-prey behavior turns out to be:

[(∀x)(∀y)(S(x) ∧ L(x.y) → CL(x, y))] ∧ [(∀x)(∀y)(S(x) ∧ CL(x.y) → P (y))] ∧
[(∃x)(∀y)(D(x) ∧ (L(x, y) ∨ CL(x, y))) → A(x, y))] ∧ [(∃x)(∀y)(A(x, y) →

B(x, y))] ∧ [(∃x)(∀y)(B(x, y) → F (x, y))] ∧ [(∃x)(∀y)(F (x, y) → I(y))] ∧
[(∃x)(∀y)(I(y) → L(x, y))] (1)

We are interested in verifying, the following statements:

(S1) Claim: If D and (L or CL) then B. Specifically, we want to know if
there is prey p such that the following formula is a logical implication of Eq. 1:
(∃p)(∀q)(D(p) ∧ (L(p, q) ∨ CL(p, q))) → B(p, q)). The set of clauses for this case
is given by:

Modelling and Verification Analysis of the Predator-Prey System 29

S = {(∼ S(x)∨ ∼ L(x.y) ∨ CL(x.y)), (∼ S(x)∨ ∼ CL(x, y) ∨ P (y)),
(∼ D(c1)∨ ∼ L(c1, z)∨A(c1, z), (∼ D(c2)∨ ∼ CL(c2, w)∨A(c2, w)), (∼ A(c3, u)∨
B(c3, u)), (∼ B(c4, v) ∨ F (c4, v)), (∼ F (c5, r) ∨ I(r)), (∼ I(s) ∨ L(c6, s)), (D(p)),
(L(p, f(p)) ∨ CL(p, f(p)), (∼ B(p, f(p)))}.

Then a resolution refutation proof, with its required substitutions, is as
follows:

(a) p = c1, (∼ L(c1, z) ∨ A(c1, z)) → z = u, c3 = c1, (∼ L(c1, z) ∨ B(c1, z)) →
p = c1, z = f(p), (∼ L(c1, f(p))) → p = c1, (CL(c1, f(p))).

(b) p = c2, (∼ CL(c2, w) ∨ A(c2, w)) → w = u, c2 = c3, (∼ CL(c2, w)) ∨
B(c2, w)) → p = c2, z = f(p), (∼ CL(c2, f(p)))). Now, from the last two
equations of (a) and (b), setting c2 = c1, we get a proof of S i.e., �. There-
fore we can conclude that: we not only have proved that the claim is true,
but we have computed a value for p, p = c1 = c2 = c3. Which tell us that
the same prey that has been attacked, it has to be the same that is being
eaten, and not another one, otherwise, the refutation procedure fails. This
result is consistent with reality.

(S2) Claim: if D and (L or CL) then I. Specifically, we want to know if
there is prey p such that the following formula is a logical implication of Eq. 1:
(∃p)(∀q)(D(p) ∧ (L(p, q) ∨ CL(p, q))) → I(q)). The set of clauses for this case is
given by:

S = {(∼ S(x)∨ ∼ L(x.y) ∨ CL(x.y)), (∼ S(x)∨ ∼ CL(x, y) ∨ P (y)),
(∼ D(c1)∨ ∼ L(c1, z)∨A(c1, z), (∼ D(c2)∨ ∼ CL(c2, w)∨A(c2, w)), (∼ A(c3, u)∨
B(c3, u)), (∼ B(c4, v) ∨ F (c4, v)), (∼ F (c5, r) ∨ I(r)), (∼ I(s) ∨ L(c6, s)), (D(p)),
L(p, f(p)) ∨ CL(p, f(p)), (∼ I(q))}.

Then a resolution refutation proof, with its required substitutions, is as
follows:

(a) r = q, (∼ F (c5, q)) → c5 = c4, q = v, (∼ B(c4, v)) from (a) of (S1) we know
(∼ L(c1, z) ∨ B(c1, z)) therefore c1 = c4, v = z, (∼ L(c1, z)) → p = c1, z =
f(p), (CL(c1, f(p))).

(b) r = q, (∼ F (c5, q)) → c5 = c4, q = v, (∼ B(c4, v)) from (b) of (S2) we know
(∼ CL(c2, w))∨B(c2, w)) therefore c2 = c4, v = w, (∼ CL(c2, w)). Now, from
the last two equations of (a) and (b), setting c2 = c1, w = f(p), we get a
proof of S i.e., �. Therefore, the claim holds for p = c1 = c2 = c3 = c4 = c5,
and the same conclusion given in (S1) extrapolates for this case.

5 Conclusions

The main contribution of the paper consists in the study of the predator-pray
system by means of a formal reasoning deductive methodology based on first
order logic theory. The results obtained are consistent with how the predator-
prey system behaves in real life.

30 Z. Retchkiman Konigsberg

References

1. Haberman, R.: Mathematical Models in Mechanical Vibrations, Population Dynam-
ics, and Traffic Flow. Prentice Hall, Upper Saddle River (1977)

2. Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving. Aca-
demic Press, Cambridge (1973)

3. Davis, M., Sigal, R., Weyuker, E.: Computability, Complexity, and Languages, Fun-
damentals of Theoretical Computer Science. Academic Press, Cambridge (1983)

Flock Diameter Control in a Collision-Avoiding
Cucker-Smale Flocking Model

Jing Ma(B) and Edmund M-K Lai

Department of Information Technology and Software Engineering,
Auckland University of Technology, Auckland, New Zealand

jing.ma@aut.ac.nz

Abstract. Both the original Cucker-Smale flocking model and a more
recent version with collision avoidance do not have any control over how
tightly the system of agents flock, which is measured by the flock diam-
eter. In this paper, a cohesive force is introduced to potentially reduce
the flock diameter. This cohesive force is similar to the repelling force
used for collision avoidance. Simulation results show that this cohesive
force can reduce or control the flock diameter. Furthermore, we show
that for any set of model parameters, the cohesive force coefficient is
the single determining factor of this diameter. The ability of this modi-
fied collision-avoiding Cucker-Smale model to provide control of the flock
diameter could have significance when applied to robotic flocks.

Keywords: Flock diameter control · Flocking · Cucker-Smale model ·
Collision avoidance

1 Introduction

Swarm Intelligence is inspired by biological swarms with emergent behaviours
that evolve to collectively solve a problem. It has found applications in a diver-
sity of areas [4,7,10]. One of these collective behaviours is flocking which is a
phenomenon where individual autonomous agents use only limited information
to self-organize into a state of motion consensus, starting from a disordered ini-
tial state [15]. In [11], three simple rules — separation, alignment and cohesion,
are used to simulate flocking behaviour. The separation rule keeps the agents
from colliding. The alignment rule helps them to reach a common speed and
direction, while the cohesion rule keeps the flock together spatially. They have
been used successfully for computer animation of flocks of birds, etc. However,
this model is not amenable to mathematical analyses.

The first mathematical flocking model was proposed by Vicsek [14]. With
this model, a group of self-propelled particles moves at the same speed but
initially at random directions. Each particle updates its direction by averaging
those of its neighbours within a certain radius. Based on the Vicsek’s model,

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 31–39, 2017.
DOI: 10.1007/978-3-319-61824-1 4

32 J. Ma and E.M.-K. Lai

Cucker and Smale [3] later proposed a flocking model governed by the following
equations: ⎧

⎪⎨

⎪⎩

ṗi = vi

v̇i = 1
N

N∑

j=1

ψ (‖pj − pi‖) (vj − vi)
(1)

for N agents where 1 ≤ i ≤ N and the position and velocity of the i-th agent are
denoted by pi and vi respectively. The communication rate function ψ quantifies
the influence between i-th and j-th agents. It is a positive decreasing function
of the Euclidean distance between the agents. With

ψ(‖pj − pi‖) =
1

(1 + ‖pj − pi‖2)β
, (2)

it has been mathematically proven that when β < 1/2 flocking will emerge
unconditionally, while for β ≥ 1/2 flocking could only be guaranteed under some
conditions on the initial positions and velocities of particles [3]. More recently, a
generalization to the Cucker-Smale model has been proposed to ensure that the
agents do not collide [1,2]. This is achieved by adding a repelling force function
f such that the model equations become

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṗi = vi

v̇i = 1
N

N∑

j=1

ψ(‖pj − pi‖)(vj − vi)

+
∑

j �=i

f(‖pj − pi‖2)(pj − pi)

(3)

This is a more realistic model in practice.
The remaining issue is related to the flock diameter. This is defined the

maximum distance between any two agents in the flock [6]. In previous studies
such as [5,8,13], flocking is assumed to be achieved when the velocity is aligned
and this diameter attains any finite value, no matter how large. Intuitively, we
only use the term flocking to a group of agents that are moving reasonably close
to each other. However, with the Cucker-Smale system, there is no control over
the final flock diameter. In practice, for example, in the deployment of a group
of autonomous robots, we often want to be able to exert some control over the
flock diameter. The main aim of this paper is to propose a modified model based
on (3) that will allow us more control over the flock diameter. Inspired by the
idea of the repelling force for collision avoidance, we introduce a cohesive force
in order to achieve this. The effectiveness of this modified model is demonstrated
through computer simulation and the relationship between flock diameter and
the cohesive force parameter is obtained.

The rest of this paper is organized as follows. A definition of flocking and a
description of the repelling force function of collision-avoiding Cucker-Smale sys-
tem are presented in Sect. 2. In Sect. 3.1, our proposed introduction of a general
cohesive force function to the collision-avoiding Cucker-Smale model is discussed.

Flock Diameter Control 33

The effects of this model on the flock diameter are studied through computer
simulation and the results are presented in Sect. 4. Finally, Sect. 5 concludes the
paper and discuss the future work by using nonlinear control methods.

2 Preliminaries

2.1 Definition of Flocking

Flocking is said to be achieved for a group of N agents if the following two
conditions are satisfied:

1. The velocity of every agent is virtually the same, i.e. for an arbitrarily small
δ > 0,

|vi − vj | ≤ δ (4)

for all i, j ∈ [1, N], i �= j.
An equivalent measure for velocity alignment is the average normalized veloc-
ity va which is defined by

va =

∣
∣
∣
∑N

i=1 vi

∣
∣
∣

∑N
i=1 |vi|

(5)

Using this measure, the criterion (4) can alternatively be stated as |1−va| < δ′

for some arbitrarily small δ′ > 0.
2. The distance between any two agents is bounded by ε. That is,

sup
1≤i,j≤N

‖pi − pj‖ < ε (6)

ε is the upper bound on the distance between two agents that are furthest
apart. It will be referred to as the flock diameter in this paper.

2.2 Collision Avoidance

Let d0 > 0 be the minimum distance between any two particles. If ‖pj −pi‖ < d0,
then collision is said to have occurred. Collisions could occur between agents in
the Cucker-Smale flocking system (1).

In [2], a repelling force is introduced to separate two agents that are too close
to each other. It is suggested that this repelling force function f : (d0,∞] →
[0,∞) should have the following properties for d1 > d0:

1.
∫ d1

d0
f(r)dr = ∞, and

2.
∫ ∞

d1
f(r)dr < ∞.

Incorporating this function into (1) results in (3) introduced earlier. A sim-
ple function such as f(r) = (r − d0)−θ suggested by [2] will have the required
properties.

34 J. Ma and E.M.-K. Lai

3 Flock Diameter Control

3.1 Cohesive Force

The Cucker-Smale models given by (1) and (3) do not provide any control over
the final flock diameter which is the largest distance between any two agents
when flocking condition 1 of Sect. 2.1 is satisfied. Inspired by the way collision
avoidance was introduced to (1) through a repelling force, flock diameter could
potentially be reduced or controlled by introducing a cohesive force.

This cohesive force function φ must be Lipschitz continuous, so that the
existence theorems and equations for Cucker-Smale model can apply. Given that
a repelling force is asserted when an agent moves within a radius of d1 of another
agent, the cohesive force should operate between agents that are at least at a
distance of d1 apart. So, φ(r) = 0 when r ≤ d1. For r > d1, φ(r) should be a
monotonically non-decreasing function of r.

An example of cohesive force function is given by:

φ(r) =

{
0 r ≤ d1

k ∗ 1
1+e−r r > d1

(7)

where 1/(1 + e−r) is a sigmoid function and is Lipschitz continuous.

3.2 Modified Cucker-Smale System

Introducing this cohesive force into (3), the modified Cucker-Smale system
becomes ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗi = vi

v̇i = 1
N

N∑

j=1

ψ(‖pj − pi‖)(vj − vi)

+
∑

j �=i

f(‖pj − pi‖2)(pj − pi)

+
∑

j �=i

φ(‖pj − pi‖2)(pj − pi)

(8)

for 1 ≤ i ≤ N where φ is the cohesive force function.
The second and third terms for v̇i in (8) could be combined since they essen-

tially have the same form. Hence we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṗi = vi

v̇i = 1
N

N∑

j=1

ψ(‖pj − pi‖)(vj − vi)

+
∑

j �=i

H(‖pj − pi‖2)(pj − pi)

(9)

When the distance between any two particles r = ‖pj − pi‖ is less than collision
avoidance distance d1, then H acts like the repelling force function f . Otherwise,
it acts like the cohesive force function φ.

Using the examples for the repelling and cohesive forces from Sects. 2.2 and
3.1 respectively, a possible function H is shown in Fig. 1. Here, a positive value
denotes an attractive force while negative values denote repulsion.

Flock Diameter Control 35

Fig. 1. Force function H(r) in (9).

4 Simulation Results

The characteristics of the modified collision-avoiding Cucker-Smale system (8)
given in Sect. 3.2 will now be studied using computer simulation. The aim is to
evaluate how various parameters of the system affects the flock diameter. These
parameters include the cohesive force coefficient k in (7), the initial field size
and the collision distance d1.

The agents are free to move in an infinitely large two-dimensional space. Thus
they will not encounter any boundaries. Without loss of generality, we shall not
assign units to both the distance and time. Every agent will move with the same
speed of 0.5 per unit time with a uniformly random initial direction in [0, 2π).
The initial position of each agent will be randomly chosen within a circle of l
units in diameter which will be referred to as the initial field size. The value of β
in (2) is fixed at 1/4 to ensure flocking occurs. The collision avoidance distance
d1 is set at 0.2. The value of d0 is 0.01. The value of parameter θ of the repelling
function is 2. The system is considered to be in a flocking state when the average
velocity va ≥ 0.99. In every scenario for each set of parameters, the value shown
is the average over 20 independent simulation runs.

4.1 Effect of Cohesive Force Coefficient

First, we shall consider the effect of the cohesive force coefficient k in (7) on the
flock diameter when flocking is achieved. We examine values of k between 0 and
3 with k = 0 indicating that cohesive force is not used. The size N of the flock
ranges from 10 to 50 with increments of 10. The initial field size is 4.

Figure 2 shows that increasing the cohesive force coefficient leads to a sub-
stantial reduction in the flock diameter for all different values of N . Compar-
ing between no cohesive force and k = 3 reveals the largest reduction in flock

36 J. Ma and E.M.-K. Lai

0 0.5 1 1.5 2 2.5 3

k

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fl
oc

k
Di

am
et

er

N=10
N=20
N=30
N=40
N=50

Fig. 2. Flock diameter for different cohesive force coefficients

diameter is for N = 10 at 29.8%. For N from 20 to 50, percentage reduction in
flock diameter are 12.3%, 15.1%, 14.9% and 14.5% respectively. This shows that
the cohesive force can be used to obtain a tighter group of flocking agents.

4.2 Effect of Initial Field Size

The initial field size, which reflects how closely placed the agents initially are,
may have a substantial effect on the final flock diameter. In this set of simu-
lations, we vary the intial field size while keeping other system parameters the
same. Figure 3 shows that increasing the initial separation of the agents does

4 6 8 10 12 14 16 18 20

Initial Field Size

1

1.5

2

2.5

3

3.5

4

Fl
oc

k
Di

am
et

er

N=10
N=20
N=30
N=40
N=50

Fig. 3. Flock diameter for different initial field size without cohesive force.

Flock Diameter Control 37

4 6 8 10 12 14 16 18 20

Initial Field Size

1

1.5

2

2.5

3

3.5

Fl
oc

k
Di

am
et

er

N=10
N=20
N=30
N=40
N=50

Fig. 4. Flock diameter for different initial field size with cohesive force coefficient k = 1.

Table 1. Flock diameter by cohesive force coefficients (k)

Initial field
size

N = 10 N = 20 N = 30 N = 40 N = 50

k = 0 k = 1 k = 0 k = 1 k = 0 k = 1 k = 0 k = 1 k = 0 k = 1

4 1.0570 0.8634 1.2835 1.1080 1.4864 1.2703 1.5771 1.3513 1.6877 1.4280

8 1.5185 1.3644 1.7080 1.6742 1.8716 1.8059 2.0552 1.9180 2.2818 1.9707

12 2.2013 1.7812 2.4258 1.9644 2.6490 2.3418 2.7641 2.4214 2.8702 2.2588

16 2.8674 2.2808 3.0995 2.3925 3.1646 2.4683 3.2858 2.6104 3.3848 2.7377

20 3.0775 2.6609 3.2935 2.8801 3.3419 2.9797 3.4430 3.0980 3.5366 3.1976

have a substantial effect on the final flock diameter. For N = 10, when the ini-
tial field size is increased from 4 to 20, the flock diameter is increased almost 3
times. As N increases, the percentage increase in flock diameter is smaller. But
for N = 50, the increase is still more than twice.

The same simulations are repeated with a cohesive force coefficient k set to
1. The results can be found in Fig. 4. The numerical values for Figs. 3 and 4 are
listed in Table 1 for ease of comparison. It is interesting to note that the percent-
age increase in flock diameter with cohesive force is more or less the same that
without cohesive force. This is true for all values of N . Thus the effect of initial
field size on the final flock diameter is essentially the same for both systems.

4.3 Effect of Collision Distance

The remaining factor that could have a substantial influence on the flock diame-
ter is the collision distance d1. Simulation results with k = 1 and varying values
of d1 are shown in Fig. 5. Other parameters are the same as the previous sim-
ulations. The lowest curve shows that collision distance in 1 has approximately

38 J. Ma and E.M.-K. Lai

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Collision Distance d
1

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Fl
oc

k
Di

am
et

er

N=10
N=20
N=30
N=40
N=50

Fig. 5. Flock diameter in different collision distances

2 times impact on flock diameter when collision avoidance is 0.2 for N = 10.
Figure 5 displays a similar tendency in the different number of groups. Consider
the collision distance d1 = 0.2 as the reference. When d1 is doubled, the flock
diameter increases by 130% for all values of N . For instance, with N = 50, the
flock diameter is 1.8755 in d1 = 0.4 that is 1.3 times in comparison with 1.4280
of d1 = 0.2. Based on the results from Sect. 4.1, if d1 is increased, the only way
to reduce the flock diameter is by increasing the cohesive force.

5 Conclusions and Future Work

In this paper, we introduced a cohesive force into the collision-avoiding Cucker-
Smale flocking model. The main purpose is to provide a way to control the
diameter of the flock. Simulation results show that this cohesive force is able to
reduce this diameter, and the cohesive force is obvious a nonlinear control for
flocking diameter. Other factors such as the initial field size and collision distance
have the same effect on the system with and without cohesive force. Thus the
only significant factor in controlling the flock diameter is the cohesive force
coefficient. The ability of this modified collision-avoiding Cucker-Smale model
to provide control of the flock diameter could have significance when applied to
robotic flocks. In the future, we are exploring ideas like [9,12] using nonlinear
control for flocking diameters.

References

1. Cucker, F., Dong, J.G.: Avoiding collisions in flocks. IEEE Trans. Autom. Control
55(5), 1238–1243 (2010)

2. Cucker, F., Dong, J.G.: A general collision-avoiding flocking framework. IEEE
Trans. Autom. Control 56(5), 1124–1129 (2011)

Flock Diameter Control 39

3. Cucker, F., Smale, S.: Emergent behaviour in flocks. IEEE Trans. Autom. Control
52(5), 852–862 (2007)

4. Elkawkagy, M.: Improving the performance of hybrid planning. Int. J. Artif. Intell.
14(2), 98–116 (2016)

5. Ha, S.Y., Liu, J.G., et al.: A simple proof of the cucker-smale flocking dynamics
and mean-field limit. Commun. Math. Sci. 7(2), 297–325 (2009)

6. Ha, S.Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of
flocking. Kinet. Relat. Models 1(3), 415–435 (2008)

7. Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and
herds. Adv. Biophys. 22, 1–94 (1986)

8. Park, J., Kim, H.J., Ha, S.Y.: Cucker-Smale flocking with inter-particle bonding
forces. IEEE Trans. Autom. Control 55(11), 2617–2623 (2010)

9. Precup, R.E., Angelov, P., Costa, B.S.J., Sayed-Mouchaweh, M.: An overview on
fault diagnosis and nature-inspired optimal control of industrial process applica-
tions. Comput. Ind. 74, 75–94 (2015)

10. Qin, Q., Cheng, S., Zhang, Q., Li, L., Shi, Y.: Biomimicry of parasitic behavior
in a coevolutionary particle swarm optimization algorithm for global optimization.
Appl. Soft Comput. 32, 224–240 (2015)

11. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioural model. SIG-
GRAPH Comput. Graph. 21(4), 25–34 (1987)

12. Tan, Y., Dai, H.H., Huang, D., Xu, J.X.: Unified iterative learning control schemes
for nonlinear dynamic systems with nonlinear input uncertainties. Automatica
48(12), 3173–3182 (2012)

13. Ton, T.V., Linh, N.T.H., Yagi, A.: Flocking and non-flocking behavior in a sto-
chastic Cucker-Smale system. Anal. Appl. 12(01), 63–73 (2014)

14. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase
transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)

15. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3), 71–140 (2012)

Building a Simulation Model for Distributed
Human-Based Evolutionary Computation

Kei Ohnishi(B), Junya Okano, and Mario Koeppen

Graduate School of Computer Science and System Engineering,
Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan

ohnishi@cse.kyuyech.ac.jp, okano@evocomp.cse.kyuyech.ac.jp,

mkoppen@ci.kyuyech.ac.jp

http://evocomp.cse.kyutech.ac.jp/

Abstract. Evolutionary computation (EC) is called “human-based EC”
especially when its all main operators, which are selection, crossover, and
mutation, are executed by humans. One type of human-based EC is dis-
tributed human-based EC, in which humans independently manage their
solution candidates and share them by direct communication between the
humans. It is expected that the EC solves problems in human organiza-
tions. However, it is not easy to conduct real experiments to investigate
the effect of human behaviors on the performance of the EC because such
experiments needs many cooperative people. In the paper, we, therefore,
first model human behaviors and then build a simulation model including
the model. The model of human behaviors focuses on physical movement
and free will to decide a time of interactions with others. Furthermore,
we attempt to understand the EC though simulations using the built
simulation model.

Keywords: Human-based evolutionary computation · Human behav-
iors · Simulation model

1 Introduction

Evolutionary computation (EC) as optimization methods that is inspired by
biological genetics and evolution has attracted great attentions. In case that
selection, crossover, and mutation operators as main operators of EC are con-
ducted by humans, such EC is called human-based EC [7]. There are two types of
human-based EC. One is centralized human-based EC, which manages solution
candidates in a centralized way such as a Web server. The other is distributed
human-based EC, which forces humans to manage solution candidates by them-
selves and allow them to share solution candidates only through direct commu-
nication among them. We can expect that those two types of human-based EC
solve problems in human organizations. However, in order to investigate how
human behaviors influence the performance of human-based EC, we need great
cooperations of many people to conduct human subjective experiments for the
investigation.
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 40–49, 2017.
DOI: 10.1007/978-3-319-61824-1 5

Building a Simulation Model for Distributed Human-Based EC 41

Therefore, in the present paper, we make a model of human behaviors in
the distributed human-based EC and build a simulation model including the
model of human behaviors for simulation studies. Specifically, we model free
determination of timings by humans at which they interact with others and
physical movement of humans. Moreover, we attempt to understand the distrib-
uted human-based EC using the built simulation model.

The remainder of the paper is organized as follows. Section 2 describes the
simulation model for the distributed human-based EC. In Sect. 3, we show and
discuss the simulation results. We run the simulations using a variety of parame-
ters values of the simulation model. Section 4 describes the related work. Finally,
conclusions and future work are presented in Sect. 5.

2 Simulation Model

We assume that moving people form a mobile ad-hoc network (MANET) [1]
with wireless communication devices to implement human-based EC and share
solution candidates on the MANET. When using MANET as a place for shar-
ing solution candidates in distributed human-based EC, it is basically hard to
decide behaviors of humans who execute evolutionary operators such as selec-
tion, crossover, and mutation in advance. Humans have their own will. Con-
cretely, it is hard to decide humans’ fitness functions, evolutionary operators
executed by humans, movement of humans, and timings at which humans create
solution candidates in advance. The only one thing that an operator of distrib-
uted human-based EC can control is how to share information among humans
by means of their communication devices.

However, when building a simulation model of distributed human-based EC,
we have to embed the details of both what we can decide in the practical use and
what we cannot decide into the simulation model. From the following section,
we explain the details embedded into the simulation model.

2.1 Fitness Function and Evolutionary Operators of Humans

In the simulation model built herein, we assume that the distributed human-
based EC conducts function optimization, which is real parameters optimization,
and solution candidates take a form of real-valued vector. In addition, we assume
that all humans who participate in the execution of the distributed human-based
EC have the same fitness function. As crossover and mutation operators that all
humans conduct, BLX-0.36 [3] and the uniform mutation that changes a value
of parameter by a uniform random number generator are used.

However, in reality, optimization problems that humans solve are often
described in a natural language and their solution candidates as well. In addi-
tion, humans would not have the same fitness function but have their own fitness
functions.

42 K. Ohnishi et al.

2.2 Information Sharing Method Using Identifiers Representing
Human Interests

Humans who participate in the distributed human-based EC share their cre-
ated solution candidates among them. As a method for the sharing, we use the
information sharing method with identifiers representing human interests that
we previously proposed in [5].

The information sharing method sends a solution candidate that a human
newly created to the surroundings by broadcasting, in which a communication
device sends data to all devices within its communicable range. In addition, the
method forces the communication device as a receiver to decide if it actually
receives the solution candidate, and if it decides to receive it, then it again sends
it to the surroundings by broadcasting. The details of this sending is described
in our previous work [5].

As mentioned above, we have assumed in the simulation model that the dis-
tributed human-based EC conducts function optimization and the search space
is a real-valued space. In addition, we assume that the space of human interests
is the same as the search space and also that the solution candidate of each
human is used as the identifier of the human representing the interests of the
human. As mentioned later, a human holds the solution candidate with the best
fitness value among those that the human created so far, so that the identifier
of each human is equivalent to the best solution candidate for the human.

2.3 Human Movement

In our previous study [5], we considered that each human randomly moves to a
position within a 1×1 square area centered on his/her current position once per
unit of time. However, in the simulation model built herein, we consider that
each human has a destination and go straight to the destination at a constant
speed.

2.4 Timing of Human to Create a Solution Candidate

In our previous study [9], we focused on the timing of sharing a solution candidate
by a human who joins the distributed human-based EC. At the timing, a human
meets others and not only share his/her solution candidate with others but also
create a new solution candidate by mixing his/her solution candidate and those
received from others. Only when a human meets others, the human creates a
new solution candidate.

Meanwhile, in the simulation model built herein, we do not use the same
model used in our previous study [9] to decide a timing to share a solution
candidate. Humans simply publish and forward their solution candidates to their
surroundings by broadcasting right after they created them. However, we herein
newly introduce a model that gives each human a timing to create a new solution
candidate (in other wards, to update his/her solution candidate). We assume
that humans create their solution candidates at every given cycle time. So, the

Building a Simulation Model for Distributed Human-Based EC 43

simulation model built herein assigns a cycle time of creating a solution candidate
to each human. The simulation model considers discrete time represented as an
integer and the cycle time is determined as an integer within [1, C] (C ≥ 1).

The cycle time of creating a solution candidate for each human is probabilis-
tically determined. As the probability with which it becomes c for a human, p(c),
we use two types. One is represented by Eq. (1), which all possible cycle times
appear with equal probability. The other is represented by Eq. (2).

p(c) = 1/C. (1)

p(c) =
exp(−α × c/100)

∑C
k=1 exp(−α × k/100)

. (2)

In addition, in the simulation model, a human receives a solution candidate
from other human in his/her surroundings at a time (time a) and will further
forward the solution candidate to his/her surroundings at the next time (time
a + 1). Each human creates a solution candidate by applying BLX-0.36 between
his/her solution candidate and each of solution candidates that he/she received
during the time period from the previous time of creating a solution candidate to
the present time and also by applying the uniform mutation to each new solution
candidate created by BLX-0.36. Each new solution candidate is then evaluated
with a fitness function of each human. Each human holds the solution candidate
with the best fitness among all solution candidate created by him/her so far as
his/her current solution candidate.

3 Simulation

3.1 Simulation Scenario

We consider a public space such as the large-spaced station precincts as the
field of executing the distributed human-based EC. Concretely, we consider the
rectangle area with the size of 20 × 80 shown in Fig. 1. The entrance and exit
gates of the space are represented by the bold segment line with the length of
10 in Fig. 1 and there are six entrance and exit gates.

We assume two kinds of number of humans who execute the human-based
EC in the field, 100 and 150. The people form MANET in the field.

All humans move by the distance of 4/3 during every unit time. Each human
is given a start entrance and exit gate randomly and then given a start point
on the start entrance and exit gate randomly, and then, goes straight to the
end point on the end entrance and exit gate, which are also given randomly.
However, the start and end entrance and exit gates are not identical. Once a
human reached the end entrance and exit gate, he/she does not keep being in
the field, and a new human with a randomly created solution candidate appears
at a randomly given point on a randomly given entrance and exit gate.

We use several values in between 3.5 and 6.5 as a communicable range of
a human. A human can communicate with others who exist within a circle of
radius of his/her given communicable range.

44 K. Ohnishi et al.

80

20 10

5

5 10

10

10

10

10

15

15 20

20

25

25

5

5

entrance and exit gate

Fig. 1. The field of executing the distributed human-based EC.

We use three fitness functions represented by Eqs. (3), (4), (5). In the simu-
lations, we set n in the three functions to be 20. The distributed human-based
EC attempts to minimize the function.

f(x) = 10n +
n∑

i=1

{x2
i − 10 cos(2πxi)} (−5.12 ≤ xi ≤ 5.12). (3)

f(x) = 418.9829n +
n∑

i=1

{−xi sin(
√

|xi|)} (−512 ≤ xi ≤ 512). (4)

f(x) =
n−1∑

i=1

{100(xi+1 − x2
i)

2 + (xi − 1)2} (−2.408 ≤ xi ≤ 2.408). (5)

We use three values, 10, 20, 30 for the parameter of d [5], which decides the
probability of receiving a solution candidate that was published and forwarded by
someone. The maximum value of cycle time at which a human creates a solution
candidate, C, is set to be 10. In addition, we use three kinds of values of the
parameter of Eq. (2), α, which are 1, 10, 15. Eq. (2) determines the probability
of assigning the specific cycle time, c, to a human. The crossover and mutation
rates are 1.0 and 0.01, respectively. The maximum number of solution candidates
that a human can receive from others during every unit time is 60. That is to
say, a human can create new 60 solution candidates at most by the application
of the crossover and mutation during a unit time.

3.2 Simulation Results

Figure 2 shows the time-variations of the best fitness value when several values
were used as the communicable ranges and Eq. (2) was used for determining the
cycle time of creating a solution candidate. The number of humans was 100 and
d = 10. Figure 3 shows the time-variations of the best fitness value when several
values were used as the number of humans in the field of executing the distributed
human-based EC and Eq. (2) was used for determining the cycle time of creating
a solution candidate. The communicable range was 5 and d = 10. Figure 4 shows
the time-variations of the best fitness value when several values were used as the
parameter α of Eq. (2) for the determination of the cycle time. The number of

Building a Simulation Model for Distributed Human-Based EC 45

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 100000 200000 300000 400000

fit
ne

ss

the number of function evaluations

communication range 3.5
communication range 5

communication range 6.5

(a) Equation (3).

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 100000 200000 300000 400000

fit
ne

ss

the number of function evaluations

communication range 3.5
communication range 5

communication range 6.5

(b) Equation (4).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 100000 200000 300000 400000

fit
ne

ss

the number of function evaluations

communication range 3.5
communication range 5

communication range 6.5

(c) Equation (5).

Fig. 2. The time-variation of the best fitness value when the communicable range is
changed. The horizontal axis represents the number of function evaluations. The value
of α is set to be 10.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 100000 200000 300000 400000

fit
ne

ss

the number of function evaluations

population 100
population 150

(a) Equation (3).

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 100000 200000 300000 400000

fit
ne

ss

the number of function evaluations

population 100
population 150

(b) Equation (4).

 10

 100

 1000

 10000

 100000

 1e+06

 0 100000 200000 300000 400000

fit
ne

ss

the number of function evaluations

population 100
population 150

(c) Equation (5).

Fig. 3. The time-variation of the best fitness value when the number of humans is
changed. The horizontal axis represents the number of function evaluations. The value
of α is set to be 10.

humans was 150 and the communicable range was 5 and d = 10. Figure 5 shows
the time-variations of the best fitness value when several values were used as
the parameter d that decides the probability of receiving a solution candidate
forwarded by others. The number of humans was 150 and the communicable
range was 5 and α = 10. All result graphs mentioned above are drawn by setting
the horizontal axis to be the number of function evaluations. Also, all results
mentioned above are the average over 100 independent runs.

When the communicable range is small, the number of solution candidates
that a human receives from others becomes small. Then, the number of times of
creating and evaluating a solution candidate by a human at his/her cycle time
of creating a solution candidate becomes small. That indicates that the load of
a human becomes small and at the same time indicates that opportunities in
which a human holding better solution candidate shares his/her better one with
others become few. We can observe from Fig. 2 that a larger communicable range
results in better search performance.

When the number of humans in the field is small, the number of solution
candidates that a human receives from others becomes small. Similar to the
case of the small communicable range, we can observe from Fig. 3 that a larger
number of humans in the field results in better search performance.

As mentioned above, in case of the small communicable range or in case
of the small number of humans in the field, it can happen that better created
solution candidates are not shared among humans in the field. A mechanism

46 K. Ohnishi et al.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 100000 200000 300000 400000

fit
ne

ss

the number of function evaluations

random
alpha = 1

alpha = 10
alpha = 15

(a) Equation (3).

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 100000 200000 300000 400000

fit
ne

ss

the number of function evaluations

random
alpha = 1

alpha = 10
alpha = 15

(b) Equation (4).

 10

 100

 1000

 10000

 100000

 1e+06

 0 100000 200000 300000 400000

fit
ne

ss

the number of function evaluations

random
alpha = 1

alpha = 10
alpha = 15

(c) Equation (5).

Fig. 4. The time-variation of the best fitness value when the value of the parameter
α is changed. The horizontal axis represents the number of function evaluations. The
label of “random” represents the result when using Eq. (1).

 0.1

 1

 10

 100

 0 100000 200000 300000 400000

fit
ne

ss

the number of function evaluations

d=10
d=20
d=30

(a) Equation (3).

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 100000 200000 300000 400000

fit
ne

ss

the number of function evaluations

d=10
d=20
d=30

(b) Equation (4).

 1

 10

 100

 1000

 10000

 100000

 0 100000 200000 300000 400000

fit
ne

ss

the number of function evaluations

d=10
d=20
d=30

(c) Equation (5).

Fig. 5. The time-variation of the best fitness value when the value of the parameter d
is changed. The horizontal axis represents the number of function evaluations.

that avoids the disappearance of better solution candidates due to non-sharing
of them among humans in the field is needed. A simple solution for the problem
is to place a storage to save better solution candidates in the filed and provide
them from the storage at need. However, we have to decide a policy for selecting
solution candidates to be saved.

The larger the value of the parameter α in Eq. (2), which represents the
probability to decide the cycle time of creating a solution candidate, is, the larger
the number of humans with a short cycle of time of creating a solution candidate
is. As a result, the number of humans who create a solution candidate at a time
increases. That indicates that the number of solution candidates forwarded to
the surroundings increases, and as a result, the number of times of creating and
evaluating a solution candidate by a human increases. For a human, creating and
evaluating a solution candidate many times would be burden, but by doing so,
local search in the search space can be sufficiently conducted. Furthermore, since
humans with a randomly created solution candidate constantly appear in the
field, the diversity of existing solution candidates in the field can be maintained
to some extent. We can observe from Fig. 4(a), (b) that a larger value of α results
in better search performance.

When the value of the parameter d [5] for determining the probability of
receiving a solution candidate is large, only humans who have similar solution
candidates in the search space, which are equivalent to similar identifiers rep-
resenting interests, can share their solution candidates among them. That is to
say, when the value of the parameter d is large, the number of times of creating

Building a Simulation Model for Distributed Human-Based EC 47

 10

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time

communication range 3.5
communication range 5

communication range 6.5

(a) The communicable
range is chnaged.

 10

 100

 0 1000 2000 3000 4000
time

population 100
population 150

(b) The number of hu-
mans is changed.

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 1000 2000 3000 4000

time

random
alpha = 1

alpha = 10
alpha = 15

(c) The value of the pa-
rameter d is changed.

Fig. 6. The time-variation of the best fitness value when using Eq. (3) as a fitness
function. The horizontal axis represents time.

and evaluating a solution candidate decreases and only local search is mainly
conducted. That results in loosing the diversity of solution candidates in the
field. We can observe from Fig. 5(a)–(c) that too large value of d results in worse
search performance.

In the above-mentioned result graphs, we set the horizontal axis to be the
number of times of evaluating a solution candidate. Here we examine the char-
acteristics of the searching by setting the horizontal axis to be time. We used
Eq. (3) as a fitness function. Figure 6(a)–(c) shows the results when varying the
communicable range, the number of humans in the field, and the value of the
parameter d for determining the cycle time of creating a solution candidate,
respectively. In those figures, the best fitness value at each time in the field is
plotted. The reason why the end time of the graph depends on the parameter
settings is that the number of times of creating and evaluating a solution candi-
date during the unit time varies depending on the parameter settings under the
fixed number of total evaluations.

We can observe from Fig. 6(a)–(c) that good results are obtained when the
number of evaluations during the unit time is large. On the other hand, when
the number of evaluations during the unit time is small, good results are not
obtained. That would be because many good solution candidates disappear with-
out being shared among humans in the field, as mentioned above.

We can observe from Fig. 6(a) that the best fitness value in the field does not
change much when the communicable range is small. That is because the number
of evaluations during a unit time is small and good solution candidates are
frequently lost without being shared. On the other hand, when the communicable
range is large, the improvement of the best fitness value is observed over the
entire simulation time though the fitness value fluctuates. Similar to this, we can
observe from Fig. 6(b) that the improvement of the best fitness value is observed
when the number of humans is large. In addition, we can also observe that
basically when the value of α becomes large, we can observe the improvement
of the best fitness value.

In summary, we can say that facilitating solution candidates sharing even
among humans who do not have very close identifiers and increasing the number
of times of creating and evaluating a solution candidate during a unit time in the

48 K. Ohnishi et al.

situation that humans with a randomly created solution candidate constantly
come to the field results in that good solution candidates keep staying in the
field, and consequently, better search performance is achieved. However, that
forces humans to create more solution candidates during a short period of time,
and it is likely that humans have heavy load. Therefore, as mentioned above, we
need to consider a mechanism that selectively saves solution candidates created
by humans in the field and utilizes them.

4 Related Work

The human-based genetic algorithm (human-based GA) [7], which is one type of
human-based EC, was first applied to problems that are described in a natural
language and require to describe solution candidates in natural language [6,7].
In this first application, the human-based GA took a centralized approach to
managing communication between humans, and it used a message board on a
web forum. However, as mentioned in [2], the areas of application of the human-
based GA are not limited to those that involve a natural language, and in that
study, an interactive GA and a human-based GA were compared in terms of their
ability to solve problems that are not described in a natural language. It was
shown that crossover and mutation performed by humans are useful for solving
such problems.

The framework of GAs has been utilized in human organizations for solving
problems and for enhancing creativity [6,8]. In [6], the components and proce-
dures in human organizations are regarded as the fundamental genetic compo-
nents (such as genes, individuals, and population) and genetic procedures (such
as crossover and mutation). In [8], a new human-based genetic algorithm was
proposed for solving problems of human organizations.

We proposed the use of centralized human-based EC for determining how to
utilize various data available on the Internet [4]. We also proposed a method for
sharing solution candidates among participants in distributed human-based EC
[5], which is used in the simulation model built in this paper. In another study
of ours [9], we examined the search characteristics of the particular distributed
human-based EC in which a human shares his/her solution candidate with others
at his/her cycle time.

5 Concluding Remarks

In the present paper we have built the realistic simulation model of the distrib-
uted human-based EC that models human behaviors. Then, we have attempted
to understand the distributed human-based EC through simulations using the
built model. We have observed from the simulation results that more number
of times of creating (evaluating) a solution candidate during a unit time results
in better search performance. If we consider creating and evaluating a solution
candidate to be the load of human, the obtained result is interpreted as that the

Building a Simulation Model for Distributed Human-Based EC 49

higher load a humans take, the better solutions humans obtain. So, if we exe-
cute the distributed human-based EC in the real world like in the simulation, we
should introduce a mechanism that achieves better performance while relieving
the human load.

In future work, we will consider such a mechanism mentioned above. In addi-
tion, we will realize the simulation model considering the situation that humans
have their own fitness functions and then attempt to understand the distributed
human-based EC more through simulations using the realized model.

References

1. Basagni, S., Conti, M., Giordano, S., Stojmenovic, I.: Mobile Ad Hoc Networking.
Wiley-IEEE Press, New York (2004)

2. Cheng, C.D., Kosorukoff, A.: Interactive one-max problem allows to compare the
performance of interactive and human-based genetic algorithms. In: Deb, K. (ed.)
GECCO 2004. LNCS, vol. 3102, pp. 983–993. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-24854-5 98

3. Eshelman, L.J., Shaffer, D.J.: Real-coded genetic algorithms and interval-schemata.
Found. Genet. Algorithms 2, 187–202 (1993)

4. Hasebe, R., Kouda, R., Ohnishi, K., Munetomo, M.: Human-based genetic algo-
rithm for facilitating practical use of data in the internet. In: Joint 7th International
Conference on Soft Computing and Intelligent Systems and 15th International Sym-
posium on Advanced Intelligent Systems (SCIS&ISIS2014), pp. 1327–1332 (2014)

5. Hasebe, R., Ohnishi, K., Koeppen, M.: Distributed human-based genetic algorithm
utilizing a mobile ad hoc network. In: 2013 IEEE International Conference on Cyber-
netics (CYBCONF 2013), pp. 174–179 (2013)

6. Kosoruko, A., Goldberg, D.E.: Evolutionary computation as a form of organization.
In: Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 965–972
(2002)

7. Kosorukoff, A.: Human based genetic algorithm. In: 2001 IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC 2001), pp. 3464–3469 (2001)

8. Llorà, X., Ohnishi, K., Chen, Y., Goldberg, D.E., Welge, M.E.: Enhanced innova-
tion: a fusion of chance discovery and evolutionary computation to foster creative
processes and decision making. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103,
pp. 1314–1315. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24855-2 143

9. Okano, J., Hamano, K., Ohnishi, K., Koeppen, M.: Particular fine-grained parallel
GA for simulation study of distributed human-based GA. In: 2014 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC 2014), pp. 3523–3528
(2014)

http://dx.doi.org/10.1007/978-3-540-24854-5_98
http://dx.doi.org/10.1007/978-3-540-24854-5_98
http://dx.doi.org/10.1007/978-3-540-24855-2_143

Model of Interruptions in Swarm Unit

Eugene Larkin(B), Alexey Ivutin, and Anna Troshina

Tula State University, Tula 300012, Russia
{elarkin,atroshina}@mail.ru, alexey.ivutin@gmail.com

Abstract. Time characteristics of algorithm interpretation by Von-Neu-
mann computers are investigated. With use of semi-Markov process fun-
damental apparatus the analytical model of program runtime evaluation
is worked out. It is shown that external interruptions are the result of
functioning of independent random process, which develops in parallel
with algorithm interpretation. For description of interaction of main pro-
gram, interruption generator and interruption handler apparatus of Petri-
Markov nets is used. Basic structural-parametric model of computer func-
tioning in the presence of interruptions is worked out. It is shown that in
common case Petri-Markov model is an infinite one. The recursive proce-
dure of wandering through Petri-Markov net for case under investigation
is worked out. It is shown that process of wandering through the net is not
quite semi-Markov one. The method of transformation of Petri-Markov
model onto strictly semi-Markov process is proposed.

Keywords: Von-Neumann computer · Interruption · Runtime · Semi-
Markov process · Petri-Markov model · Wandering

1 Introduction

Interruption operational mode is of widely used in Von-Neumann comput-
ers [3,12]. In accordance with such regime, CPU switches from interpreta-
tion of main algorithm to interpretation of interruption processing algorithm
when interruption signal comes. After completion of interruption handling, CPU
returns to main algorithm. In practice, there are interruptions of two types: soft-
ware ones and hardware ones. Software interruptions lead to common brunching
of algorithms [1], so its influence on time of interpretation of common algorithm
is rather routine engineering task. Hardware interruptions are generated with
external computer independent unit. Due to the fact in such system, the parallel
process takes place: on the one hand there is the CPU, while on the other hand,
the interruption generator.

As with any parallel process in the system under investigation occurs com-
petition for use of computer resources, in particular, a CPU time [2,5,14]. “Com-
petition” increases time of interpretation of main algorithm. An increment of
time depends on interruptions flow density, and time characteristics of interrup-
tion processing algorithm. Proper approach to evaluation of time increment in
case under consideration reduced is the analysis of the “competition” between
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 50–59, 2017.
DOI: 10.1007/978-3-319-61824-1 6

Model of Interruptions in Swarm Unit 51

current algorithm and interruption generator. A model, which allows perform
such analysis, does not currently exist, which explains the necessity and urgency
of the paper.

2 Time Characteristics Interruption-Free Algorithm

The process of interpretation of algorithm comes down to sequential interpre-
tation of its operators, which unfolds in time. Natural model of the algorithm
interpretation is the semi-Markov process [6,7,10] as follows

μ = {B,hhh(t)} , (1)

where t – is the time; B = {β1, . . . , βj , . . . , βJ , βJ+1, . . . , βM} – is subset of
states; hhh(t) = �hj,m(t)� – semi-Markov matrix of size M × M .

States of semi-Markov process have the next physical meaning: β1 – is the
starting state; B ⊃ E = {βJ+1, . . . , βm, . . . , βM} – is the subset of absorbing
states. Structure of semi-Markov process is such, that for any state βj /∈ E, j �= 1,
there is at least one way β1 → βj and at least one way βj → E. Due to the fact
in the semi-Markov matrix hhh(t):

– first column includes zero elements only;
– rows from (J + 1)-th till M -th includes zero elements only;
– for other rows

M∑

m=1

∞∫

0

hjm(t)dt = 1, 1 ≤ j ≤ J. (2)

Thus all possible ways β1 → E make a complete group of incompatible events.
For such a case density of time of attainment the subset E from the state β1 is
as follows

f(t) = L−1

[
rIII1

∞∑

k=1

{L [hhh(t)]}k cIIIE

]
, (3)

where L and L−1 – are direct and inverse Laplace transforms correspondingly;
rIII – row victor first element of which is equal to one, and other elements are
zeros; cIIIE – column vector, elements from the first till J-th of which are zeros,
and other elements are equal to one.

Semi-Markov process after reduction is shown on the Fig. 1a. External inter-
ruption generator is shown on the Fig. 1b. Semi-Markov process of interruption
handler is shown on the Fig. 1c. As it follows from the structure in the system
it takes a couple of two-parallel processes.

Fig. 1. Structure of simplified semi-Markov process (a), interruption generator (b) and
interruption handler (c)

52 E. Larkin et al.

3 Model of Algorithm Interpretation at the Presence
of Interruptions

Semi-Markov process of algorithm interpretation at the presence of interruptions
is as follows

μ̃ =
{

{βg, βf , βv, βEf , βEv} , h̃hh(t)
}

, (4)

where βg, βf , βv – is the set of states; βg – is the state, which simulates the gen-
eration of one interruption; βf – is the state, which simulates algorithm inter-
pretation; βv – is the state, which simulates the interruption handler; βEf , βEv –
are absorbing states;

h̃hh(t) =

⎡

⎢⎢⎢

hhhg(t) 00012 00013
00021 hhhf (t) 00023
00031 00032 hhhv(t)

⎤

⎥⎥⎥
(5)

hhhg(t) = [g(t)]; hhhf (t) =
[
0 f(t)
0 0

]
; hhhv(t) =

[
0 v(t)
0 0

]
;

00012 = 00013 =
(
0 0
)
; 00021 = 00031 =

(
0
0

)
; 00023 = 00032 =

(
0 0
0 0

)
. (6)

All elementary processes of (4) interact between themselves. Rules of inter-
action are the next. Processes hhhf (t) and hhhg(t) begin “compete” between them-
selves [8,9,11]. If “wins” hhhf (t), interpretation of algorithm ends, otherwise starts
process hhhv(t), which “compete” with the process hhhg(t). If in the case “wins” hhhg(t),
then starts hhhv(t) again, otherwise process return to “competition” of hhhf (t) and
hhhg(t). hhhf (t) starts from the state, on which it was interrupted.

Classical theory of semi-Markov process does not permit describe interaction,
so for modeling Petri-Markov net (PMN) [8,9,11] apparatus was used. PMN,
which describes interpretation of algorithm under interruptions, is as follows:

Π = {A,Z, ϕ(t),ΛΛΛ} , (7)

where A =
{
0a2,

1 A, . . . ,k Ak, . . .
}
– is set of places, including 0a2, which sim-

ulates start of the process, and subsets kA =
{
ka1,

k a2,
k a3

}
, k = 1, 2, . . . of

places, which simulate processes under “competition” of k-th level; ka1 – is the
place, which simulates current (main, or interruption handler); ka2 – is the place,
which simulates functioning of interruption generator, ka3 – is the place, which
simulates return on the previous level; Z = {z1, . . . , zk, . . . } – is the set of transi-
tions, which define level of interruptions handler; ϕ(t) – is the matrix of densities;
ΛΛΛ – is the matrix of logical conditions of execution of switching from transitions.

The structure of PMN describes multilevel pair “competition” of three sub-
jects: main algorithm Sf , interruption generator Sg and interruption handler Sv.

“Competition” first level is submitted with subset from the place 0a2 nil
places 1a3,

2 a3 i.e.
Π = {A1, Z1, ϕ1(t),ΛΛΛ1} , (8)

where A1 =
{
0a2,

1 a1,
1 a2,

1 a3,
2 a1,

2 a2,
2 a3

}
– is the subset of places; Z1 =

{z1, z2, z3} – is the subset of transitions; ϕ1(t) – is the 7 × 3 matrix of densities

Model of Interruptions in Swarm Unit 53

determining time characteristics; ΛΛΛ1 =
⌊
1λij

⌋
– is the 7 × 3 matrix of logical

conditions of switching from transitions.

ϕ1(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ(t) 0 0
0 1ϕ1(t) 0
0 1ϕ2(t) 0
0 0 0
0 0 2ϕ1(t)
0 0 2ϕ2(t)

δ(t) 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (9)

1λ11 =1 λ14 =1 λ16 =1 λ17 =1 λ21 =1 λ22 =1 λ23 =1 λ27 =1 λ31 =1 λ32 =
1λ33 =1 λ34 =1 λ35 =1 λ36 = 0;

1λ12 =1 λ13 =
(
0a2, z2

) ∨ (2a3, z1
)
;1 λ15 =

(
1a2, z2

)
;

1λ24 =1 λ25 =
(
1a2, z2

) ∨ (3a3, z3
)
;1 λ26 =

(
1a1, z2

)
;1 λ37 =

(
2a1, z2

)
.
(10)

Recursive procedure of the first level is realized with the next mode. After
switching

(
0a2, z1

)
logical conditions became equal to λ12 = 1;λ13 = 1. In

accordance with (10), switching
(
z1,

1 a1

)
and

(
z1,

1 a2

)
is allowed. After switching

processes Sf and Sg, begin “compete”. On the first step of the recursion
1ϕ1(t) = f(t); 1ϕ2(t) = g(t). (11)

Weighed densities of time of switching
(
1a1, z2

)
/
(
1a2, z2

)
the first, are as

follows: {
1η1(t) =1 ϕ1(t)

⌊
1 −1 Φ2(t)

⌋
,

1η2(t) =1 ϕ2(t)
[
1 −1 Φ1(t)

]
.

(12)

where ...Φ... =
t∫
0

...ϕ...(τ)dτ .

Probabilities and pure densities of switching
(
1a1, z2

)
and

(
1a2, z2

)
the first

are as follows

1π1 =

∞∫

0

1η1(t)dt, 1π2 =

∞∫

0

1η2(t)dt.

1ψ1(t) =
1η1(t)
1π1

, 1ψ2(t) =
1η2(t)
1π2

(13)

In the case of switching
(
1a1, z2

)
the first, PMN switches to place 1a3, which

is the analogue of absorbing state, and interpretation of main algorithm ends.
In the case of switching (

1a2, z2
)

the first, PMN switches to places 2a1,
2 a2, and on formula [9]

1ϕ1(t) =
1(t)

∞∫
0

1ϕ2(τ)1ϕ1(t + τ)dτ

∞∫
0

1Φ2(t)d1Φ1(t)
, (14)

54 E. Larkin et al.

time till completion of residence in place 1a1 (1(t) – is the Heaviside function).
Time (14) is substituted to the process Sf .

After switching for the first time
(
z2,

2 a1

)
and

(
z2,

2 a2

)
, in the places 2a2,

begins “competition” of the interruption handling process and interruption gen-
erator, which starts newly

(
2ϕ2(t) = g(t)

)
. “Competition” starts for the first

time, thus 2ϕ1(t) = v(t). Weighed time densities of switching
(
2a1, z3

)
and(

2a2, z3
)
the first, probabilities and pure densities are as follows:

{
2η1(t) =2 ϕ1(t)

⌊
1 −2 Φ2(t)

⌋
,

2η2(t) =2 ϕ2(t)
[
1 −2 Φ1(t)

]
,

2π1 =

∞∫

0

2η1(t)dt, 2π2 =

∞∫

0

2η2(t)dt,

2ψ1(t) =
2η1(t)
2π1

, 2ψ2(t) =
2η2(t)
2π2

(15)

If in “competition” “wins” switching
(
2a1, z3

)
, then

(a) accomplishes the substitution

2ϕ2(t) =
1(t)

∞∫
0

2ϕ1(τ)2ϕ2(t + τ)dτ

∞∫
0

2Φ1(t)d2Φ2(t)
, (16)

(b) accomplish switches, at first
(
z3,

2 a3

)
, then

(
2a3, z1

)
;

(c) accomplish pair of switches
(
z1,

1 a1

)
and

(
z1,

1 a2

)
and starts the “competi-

tion” in places 1a1,
1 a2 with new densities 1ϕ1(t),1 ϕ2(t).

If in “competition” “wins” switching
(
2a2, z3

)
, then

(a) accomplishes the substitution

2ϕ1(t) =
1(t)

∞∫
0

2ϕ2(τ)2ϕ1(t + τ)dτ

∞∫
0

2Φ2(t)d2Φ1(t)
, (17)

(b) PMN switches onto the next level.

k-th level is simulated with subset from the place k−1a2 till ka3,
k+1 a3 i.e.

Πk = {Ak, Zk, ϕk(t),ΛΛΛk} , (18)

where Ak =
{
k−1a2,

k1 a1,
k a2,

k a3,
k+1 a1,

k+1 a2,
k+1 a3

}
– is the subset of places;

Zk = {zk, zk+1, zk+2} – is the subset of transitions; ϕk(t) =
⌊
kϕij(t)

⌋
– is the

7× 3 matrix of densities; ΛΛΛk =
⌊
kλji

⌋
– is the 3× 7 matrix of logical conditions;

Model of Interruptions in Swarm Unit 55

ϕk(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

k−1η2(t) 0 0
0 kϕ1(t) 0
0 kϕ2(t) 0
0 0 0
0 0 k+1ϕ1(t)
0 0 k+1ϕ2(t)

δ(t) 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (19)

kλ11 =k λ14 =k λ16 =k λ17 =k λ21 =k λ22 =k λ23 =k λ27 =k λ31 =k λ32 =
kλ33 =k λ34 =k λ35 =k λ36 = 0;

kλ12 =k λ13 =
(
k−1a2, zk

) ∨ (k+1a3, zk
)
;k λ15 =

(
ka2, zk+1

)
;

kλ24 =k λ25 =
(
ka2, zk+1

) ∨ (k+2a3, zk+1

)
;

kλ26 =
(
ka1, zk+1

)
;k λ37 =

(
k+1a1, zk+1

)
.
(20)

Recursive procedure on the k-th level is as follows. After switching
(
k−1a2, zk

)

logical conditions became λ12 = 1, λ13 = 1. In accordance with (20) switching(
zk,

k a1

)
and

(
zk,

k a2

)
may be done. After switching processes Sf and Sg begin

“compete”. Density kϕ1(t) is the result of previous upstream and downstream
switching. If upstream switching on the k-th level take place for the first time,
then

kϕ1(t) = f(t); 2ϕ2(t) = g(t). (21)

Otherwise kϕ1(t) is the result of previous switching; 2ϕ2(t) = g(t).
Weighed time densities of switching

(
ka1, zk+1

)
and

(
ka2, zk+1

)
the first,

probabilities and pure densities are as follows:
{

kη1(t) =k ϕ1(t)
⌊
1 −k Φ2(t)

⌋
,

kη2(t) =k ϕ2(t)
[
1 −k Φ1(t)

]
,

(22)

kπ1 =

∞∫

0

kη1(t)dt, kπ2 =

∞∫

0

kη2(t)dt,

kψ1(t) =
kη1(t)
kπ1

, kψ2(t) =
kη2(t)
kπ2

(23)

In the case of switching
(
ka1, zk+1

)
the first, PMN returnable switches to

place ka3, and then switches to
(
ka3, zk−1

)
.

In the case of switching
(
ka2, zk+1

)
the first, PMN switches to places

k+1a1,
k+1 a2. On formula [9]

kϕ1(t) =
1(t)

∞∫
0

kϕ2(τ)kϕ1(t + τ)dτ

∞∫
0

kΦ2(t)dkΦ1(t)
, (24)

56 E. Larkin et al.

time till completion of residence in place ka1 is evaluated and substituted to
process Sf .

After switching
(
zk+1,

k+1 a1

)
and

(
zk+1,

k+1 a2

)
at places k+1a1,

k+1 a2 begins
“competition” of the processes Sv and Sg. Interruption generator restarts again
k+1ϕ2(t) = g(t). Process of interruption handling, if such level was passed on
previous stages, may continue, thus

kϕ1(t) =

{
v(t), when step

(
zk,

k a1

)
is executer for the first time;

kϕ1(t), depending of pre-history in all other cases.
(25)

Weighed time densities of switching
(
k+1a1, zk+2

)
and

(
k+1a2, zk+2

)
the first,

probabilities and pure densities are as follows:
{

k+1η1(t) =k+1 ϕ1(t)
⌊
1 −k+1 Φ2(t)

⌋
,

k+1η2(t) =k+1 ϕ2(t)
[
1 −k+1 Φ1(t)

]
,

k+1π1 =

∞∫

0

k+1η1(t)dt, k+1π2 =

∞∫

0

k+1η2(t)dt,

k+1ψ1(t) =
k+1η1(t)
k+1π1

, k+1ψ2(t) =
k+1η2(t)
k+1π2

.

(26)

If in “competition” “wins” switching
(
K=1a1, zk+2

)
, then

(a) accomplishes the substitution

k+1ϕ2(t) =
1(t)

∞∫
0

k+1ϕ1(τ)k+1ϕ2(t + τ)dτ

∞∫
0

k+1Φ1(t)dk+1Φ2(t)
, (27)

(b) accomplish switches, at first
(
zk+2,

k+1 a3

)
, then

(
k+1a3, zk

)
;

(c) accomplish pair of switches
(
zk,

k a1

)
and

(
zk,

k a2

)
and starts the “compe-

tition” in places ka1,
k a2 with new densities kϕ1(t),k ϕ2(t).

If in “competition” “wins” switching
(
k+1a2, zk+2

)
, then

(a) accomplishes the substitution

k+1ϕ1(t) =
1(t)

∞∫
0

k+1ϕ2(τ)k+1ϕ1(t + τ)dτ

∞∫
0

k+1Φ2(t)dk+1Φ1(t)
, (28)

(b) PMN switches onto the next level.

Similarly recursion may be spread onto subsequent interruption levels.

Model of Interruptions in Swarm Unit 57

4 Interruption Model as Semi-Markov Process

Described process have the next properties:

– it is the infinite one on quantity, both the interruption levels, and returns to
the same level;

– strictly, it is not quite semi-Markov, due to substitutions (14), (15), (16),
(17), (24), (27), (28).

For analyses of time and stochastic characteristics PMN under investigation
should be transformed to ordinary strictly semi-Markov process, with use the
next method.

1. From PMN one should to extract subnet as follows

ΠΠΠc
k =

{{
k−1a2,

k a1,
k a2

}
, {zk, zk+1} ,ϕϕϕc

k,ΛΛΛ
c
k

}
, k = 1, 2, . . . , (29)

where ϕϕϕc
k,ΛΛΛ

c
k – are sub-matrices of current densities and logical conditions of

switching.
2. One should to develop sub-graph, represented part of binary tree, as follows

μc
k = {Bc

k,hhh
c
k(t)}

=

⎧
⎨

⎩

{
βc
k−1,1(2), β

c
k,1, β

c
k,2

}
,

⎡

⎣
0 kη1(t) kη2(t)
0 0 0
0 0 0

⎤

⎦

⎫
⎬

⎭ , k = 1, 2, . . . , (30)

where
{

βc
k−1,1(2), β

c
k,1, β

c
k,2

}
– are the states of semi-Markov process, describ-

ing “winning” in the “competition” interrupt handler (or main algorithm) or
interrupt generator; kη1(t) and kη2(t) – densities calculated by (22).

Form of tree is shown on Fig. 2, where node 0a2 of graph simulates the only
starting state of semi-Markov process. Shaded nodes of graph simulate infinite
quantity of absorbing states.

Due to the fact, that all prehistory was taken into account when there was
recursive procedure of evaluation kη1(t) and kη2(t), Process is strictly semi-
Markov one. For evaluation of time of reaching the subset of absorbing states
from the starting state may be used any known method.

Fig. 2. Binary tree of semi-Markov process

58 E. Larkin et al.

5 Conclusion

The resulting model, based on fundamental mathematical apparatus of PMN
describes classical and simplest case of the computer system with interruption.
It is obviously, that in such a system both runtime, and number of interruption
levels may increase till infinity. Nevertheless, model and proposed method eval-
uation of time intervals are the productive ones and allows estimate runtime in
more complicated cases, for example, when there is a dispatching possibility in
operational system [4,13]. Besides with use of proposed approach there can be
solved the optimization problem, using as a criterion the time factor.

The research was carried out within the state assignment of The Ministry of
Education and Science of Russian Federation (No. 2.3121.2017/PCH).

References

1. Bouchhima, A., Yoo, S., Jeraya, A.: Fast and accurate timed execution of high level
embedded software using HW/SW interface simulation model. In: Proceedings of
the 2004 Asia and South Pacific Design Automation Conference, pp. 469–474. IEEE
Press (2004)

2. Cleaveland, R., Smolka, S.A.: Strategic directions in concurrency research. ACM
Comput. Surv. (CSUR) 28(4), 607–625 (1996)

3. Czerwinski, M., Cutrell, E., Horvitz, E.: Instant messaging and interruption: influ-
ence of task type on performance. In: OZCHI 2000 Conference Proceedings, vol.
356, pp. 361–367 (2000)

4. Duda, K.J., Cheriton, D.R.: Borrowed-Virtual-Time (BVT) scheduling: supporting
latency-sensitive threads in a general-purpose scheduler. ACM SIGOPS Oper. Syst.
Rev. 33(5), 261–276 (1999)

5. Heymann, M.: Concurrency and discrete event control. IEEE Control Syst. Mag.
10(4), 103–112 (1990)

6. Ivutin, A., Larkin, E.: Estimation of latency in embedded real-time systems. In:
2014 3rd Mediterranean Conference on Embedded Computing (MECO), pp. 236–
239. IEEE (2014)

7. Ivutin, A., Larkin, E., Lutskov, Y.: Evaluation of program controlled objects states.
In: 2015 4th Mediterranean Conference on Embedded Computing (MECO), pp.
250–253. IEEE (2015)

8. Ivutin, A.N., Larkin, E.V., Lutskov, Y.I., Novikov, A.S.: Simulation of concurrent
process with Petri-Markov nets. Life Sci. J. 11(11), 506–511 (2014)

9. Ivutin, A., Larkin, E.: Simulation of concurrent games. Bulletin of the South Ural
state university, series: mathematical modelling. Prog. Comput. Softw. 8(2), 43–54
(2015)

10. Korolyuk, V., Swishchuk, A.: Semi-Markov Random Evolutions, pp. 59–91.
Springer, Heidelberg (1995)

11. Larkin, E.V., Kotov, V.V., Ivutin, A.N., Privalov, A.N.: Simulation of relay-races.
Bull. South Ural State Univ. Ser.: Math. Model. Program. Comput. Softw. 9(4),
117–128 (2016)

12. Regehr, J., Duongsaa, U.: Preventing interrupt overload. In: ACM SIGPLAN
Notices, vol. 40, pp. 50–58. ACM (2005)

Model of Interruptions in Swarm Unit 59

13. Squillante, M.S.: Stochastic analysis and optimization of multiserver systems. In:
Ardagna, D., Zhang, L. (eds.) Run-time Models for Self-managing Systems and
Applications. Autonomic Systems, pp. 1–24. Springer, Heidelberg (2010). doi:10.
1007/978-3-0346-0433-8 1

14. Valk, R.: Concurrency in communicating object petri nets. In: Agha, G.A., Cin-
dio, F., Rozenberg, G. (eds.) Concurrent Object-Oriented Programming and Petri
Nets. LNCS, vol. 2001, pp. 164–195. Springer, Heidelberg (2001). doi:10.1007/
3-540-45397-0 5

http://dx.doi.org/10.1007/978-3-0346-0433-8_1
http://dx.doi.org/10.1007/978-3-0346-0433-8_1
http://dx.doi.org/10.1007/3-540-45397-0_5
http://dx.doi.org/10.1007/3-540-45397-0_5

Novel Swarm-Based Optimization
Algorithms

Dolphin Pod Optimization

Andrea Serani(B) and Matteo Diez

CNR-INSEAN, National Research Council-Marine Technology Research Institute,
Rome, Italy

andrea.serani@insean.cnr.it, matteo.diez@cnr.it

Abstract. A novel nature-inspired deterministic derivative-free global
optimization method, namely the dolphin pod optimization (DPO),
is presented for solving simulation-based design optimization problems
with costly objective functions. DPO implements, using a deterministic
approach, the global search ability provided by a cetacean intelligence
metaphor. The method is intended for unconstrained single-objective
minimization and is based on a simplified social model of a dolphin pod
in search for food. A parametric analysis is conducted to identify the
most promising DPO setup, using 100 analytical benchmark functions
and three performance criteria, varying the algorithm parameters. The
most promising setup is compared with a deterministic particle swarm
optimization and a DIviding RECTangles algorithm, and applied to two
hull-form optimization problems, showing a very promising performance.

Keywords: Dolphin pod optimization · Deterministic optimization ·
Global optimization · Derivative-free optimization

1 Introduction

Fig. 1. Pod model

Global optimization metaheuristics, such as par-
ticle swarm optimization (PSO) [1], have been
deeply investigated in the last decades, while sev-
eral new metaheuristic methods were introduced,
such as firefly (FA) [2], cuckoo search (CS) [3],
and bat (BA) [4] algorithms. This kind of methods
are usually stochastic implying that statistically
significant results can be obtained only through
extensive numerical campaigns. Such an approach
could be too expensive in simulation-based design
optimization (SBDO) for industrial applications,
especially when CPU-time expensive computer simulations are used directly as
analysis tools. For this reason, efficient deterministic global optimization algo-
rithms are sought-after in SBDO.

The objective of the present work is to introduce and assess a novel determin-
istic derivative-free global optimization algorithm, based on a simplified social
model of a dolphin pod in search for food: the dolphin pod optimization (DPO).
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 63–70, 2017.
DOI: 10.1007/978-3-319-61824-1 7

64 A. Serani and M. Diez

DPO is intended for unconstrained single-objective minimization of SBDO
problems with costly objective functions and is a deterministic swarm-
intelligence algorithm. To the authors’ knowledge, this is a little explored field,
where the global search ability of swarm-intelligence systems is implemented in
a deterministic way. DPO is formulated considering the essential elements of the
cetacean intelligence: congregation, self-awareness, communication, and mem-
ory. Each dolphin is subject to a pod attraction force (congregation) and an
external force related to the food distribution (representing the objective func-
tion) known to each dolphin (self-awareness) and the pod (communication and
memory). Based on these forces, the pod is modelled as a spring-mass system.

DPO has common features to other swarm-intelligence methods, such as
PSO, central force optimization (CFO, [5]), and gravitational search algorithm
(GSA, [6]), where the agent state is described by the particle system dynamics.
Nonetheless, compared to PSO, CFO, and GSA, DPO presents significant dif-
ferences: it is the only algorithm that is at the same time deterministic, based
on agent position and directly on objective function values (absolute fitness),
memory based, fully informed, and formulated by a rigorous integration of the
agent dynamics, which allows to determine a set of parameters ensuring the sys-
tem stability. Moreover, differently from FA, CS, and BA, DPO is based on a
deterministic concept and the system state depends not only on the agent posi-
tions and comparative fitness, but also directly on the absolute fitness, though
the food attraction force.

The effectiveness and efficiency of DPO depend on four main parameters: the
number of dolphins interacting during the optimization, the initialization of the
pod in terms of initial position and velocity, the set of coefficients controlling
the pod dynamics, and finally the method to handle the box constraints. The
approach for the analysis includes a parametric study using 100 analytical bench-
mark functions [7], with dimensionality from 2 to 50, characterized by different
degrees of non-linearities and number of local minima, with full-factorial combi-
nation of: number of dolphins, initialization of the pod, 81 different coefficient
sets, and the method to handle the box constraints. Three metrics are used to
evaluate the algorithm performances, based on the distance between DPO-found
and analytical optima. The most significant parameters for DPO are identified,
based on the associated relative variability of the results [8], and the perfor-
mances of the best performing (on average) DPO setup are compared with a
deterministic particle swarm optimization algorithm (DPSO) [7] and the DIvid-
ing RECTangles (DIRECT) algorithm [9]. Finally, DPO is applied to two SBDO
problems, pertaining to the hull-form optimization of a USS Arleigh Burke-class
destroyer, namely the DTMB 5415 model, in calm water and waves. The SBDO
results are finally compared to DPSO and DIRECT.

2 Dolphin Pod Optimization Algorithm

Consider an optimization problem of the type

Minimize f(x)
subject to l ≤ x ≤ u,

(1)

Dolphin Pod Optimization 65

where f(x) is the objective function, x ∈ R
N is the variable vector with N ∈ N

+

the number of variables, and l and u are the lower and the upper bounds for x,
respectively.

Now consider a foraging pod of dolphins xj , exploring the variable space
with the aim of finding an approximate solution for problem in Eq. 1. The pod
is modelled as a dynamical system where the dynamics of the j-th individual
depends on a pod attraction force δj (congregation), a food attraction force
ϕj (self-awareness, communication, and memory), as well as the hydrodynamic
drag, proportional to ẋj (Fig. 1)

ẍj + ξẋj + kδj = hϕj , (2)

where

δj =
Nd∑

i=1

(xj − xi) and ϕj =
Nd∑

i=1

2F (xj ,bi)
1 + ‖xj − bi‖α

e(bi,xj), (3)

with

F (xj ,bi) =
f(xj) − f(bi)

ρ
, e =

bi − xj

‖bi − xj‖ . (4)

In the above equations, ξ, k and h ∈ R
+ define the pod dynamics; Nd ∈ N

+

is the pod size; α ∈ R
+ tunes the food attraction force; xj ∈ R

N is the
vector-valued position of the j-th individual; f(x) ∈ R is the objective func-
tion (representing the food distribution); bi is the best position ever visited
by the i-th individual; ρ = f(w) − f(b) is a dynamic normalization term for
f , where b = argmin{f(bj)} is the best position ever visited by the pod and
w = argmax{f(xj)} the worst position occupied by the pod individuals at the
current time instance.

Using the explicit Euler integration scheme, the DPO iteration becomes

vn+1
j − vn

j

Δt
= −ξ vn

j − kδj + hϕj , (5)

which finally yields
⎧
⎨

⎩
vn+1

j = (1 − ξΔt)vn
j + Δt(−kδj + hϕj)

xn+1
j = xn

j + vn+1
j Δt

(6)

where xn
j and vn

j represent the j-th dolphin position and velocity at the n-th
iteration, respectively. Equation 6 represents a fully informed formulation, where
each individual knows the story of the whole pod.

The integration step Δt (see Eq. 6) must guarantee the stability of the explicit
Euler scheme, at least for the free dynamics. To this aim, consider the free
dynamics of the k-th component of x (k-th variable), say a. Consider the dynam-
ics of a for the j-th dolphin

äj + ξȧj + kδj = 0, (7)

66 A. Serani and M. Diez

and finally for the entire pod
{
ȧ
ċ

}
=

[
0 I

−K −G

]{
a
c

}
= A

{
a
c

}
, (8)

where

K = −k

⎡

⎢⎢⎢⎣

Nd − 1 −1 · · · −1
−1 Nd − 1 · · · −1
...

...
. . .

...
−1 · · · −1 Nd − 1

⎤

⎥⎥⎥⎦ (9)

and G = ξI, with I the [Nd ×Nd] identity matrix. The solution of Eq. 8 is stable
if Re(λ) ≤ 0 where λ = −γ ± iω are eigenvalues of A. This yields

Δt ≤ 2γ

γ2 + ω2

∣∣∣∣
min

= Δtmax. (10)

3 DPO Setting Parameters

The DPO parameters used in the current analysis are defined in the following.
Their full-factorial combination is considered for the assessment of the algorithm
performance, resulting in a total of 1458 different setups.

The number of dolphins used (Nd) is defined as Nd = 2rN , with r ∈ N [2, 4]
therefore ranging from 4N to 16N .

The initialization of dolphins’ location and velocity is performed using a
deterministic and homogeneous distribution, following the Hammersley sequence
sampling, applied to three different sub-domains, defined as: (A) domain, (B)
domain bounds, and (C) domain and bounds [7]. A non-null initial velocity is
used (see Eq. 15 in [7]).

Provided that all the design variables are normalized such that the domain
is confined in a unit hypercube U (i.e. −0.5 ≤ x ≤ 0.5), the following positions
are used for the coefficients controlling the pod dynamics: k = h = q/Nd; Δt =
Δtmax/p; ξΔt < 1 where q defines the weight for the attraction forces (δj and
ϕj), and p defines the integration time step. Three values are used for each
parameters: ξ = {0.01; 0.10; 1.00}, q = {0.10; 1.00; 10.0}, p = {2.00; 4.00; 8.00},
and α = {0.50; 1.00; 2.00}.

The dolphins are confined within U using an inelastic (IW) and an elastic
(EW) wall-type approach. Specifically, in the IW approach, if a dolphin is found
to violate one of the bounds in the transition from two consecutive iterations,
it is placed on that bound setting to zero the associated velocity component,
whereas, in the EW approach, the associated velocity component is reversed.

Finally, the number of function evaluations or evaluation budget (Nmax) is
assumed as Nmax = 2cN , where c ∈ N [7, 12] and therefore ranges from 128N to
4096N .

Dolphin Pod Optimization 67

4 Performance Metrics

Three performance metrics are used to assess the algorithm performances and
defined as follows [7]:

Δx =

√√√√ 1
N

N∑

k=1

(
xk,min − x�

k,min

Rk

)2

, Δf =
fmin − f�

min

f�
max − f�

min

, Δt =

√
Δ2

x + Δ2
f

2
.

(11)
Δx is a normalized Euclidean distance between the minimum position found
by the algorithm (xmin) and the analytical minimum position (x�

min), where
Rk = |uk − lk| is the range of the k-th variable. Δf is the associated normalized
distance in the function space, fmin is the minimum found by the algorithm,
f�
min is the analytical minimum, and f�

max is the analytical maximum of the
function f(x) in the search domain. Δt is a combination of Δx and Δf and used
for an overall assessment. Additionally, the relative variability (σ2

r,s) for the
performance metrics [8] is used to assess the impact of each tuning parameter
s on the algorithm performance. For the numerical implementation and further
details the readers is referred to [8].

5 Numerical Results

5.1 Analytical Benchmark Functions

Hundred analytical benchmark functions are used, including a wide variety of
problems, such as continuous and discontinuous, differentiable and non differ-
entiable, separable and non-separable, scalable and non-scalable, unimodal and
multimodal, with 2 ≤ N ≤ 50 (see Table A.10 and A.11 in [7]). The study is
conducted, setting a part functions with less and more than ten variables. For
sake of simplicity the results are shown in terms of Δt only. Figure 2a and b show
the relative variability σ2

r,s based on Δt, associated to the DPO tuning parame-
ters for N < 10 and N ≥ 10 respectively. The pod initialization is the most
significant parameters overall. The coefficient p (time step factor) increase its
importance with the increasing of function evaluations till reach the same vari-
ability of the pod initialization, for problems with N ≥ 10. The food attraction
force coefficient (α) is the less important overall.

 0

 25

 50

128 256 512 1024 2048 4096

σ r2 (Δ
t)

[%
]

Nmax/N [-]

Nd Init ξ q p α Wall

(a) N < 10

 0

 25

 50

 75

128 256 512 1024 2048 4096

σ r2 (Δ
t)

[%
]

Nmax/N [-]

Nd Init ξ q p α Wall

(b) N ≥ 10

Fig. 2. DPO setting parameters relative variability σ2
r% based on Δt

68 A. Serani and M. Diez

Average values of Δt are used to identify the best performing DPO setup,
which corresponds to: Ns = 4N , pod initialization on domain (A), ξ = 1.00,
q = 1.00, p = 8.00, α = 0.50, and elastic wall-type for problems with N < 10;
Ns = 4N , pod initialization on domain bounds (B) , ξ = 0.10, q = 0.10, p = 8.00,
α = 0.50, and elastic wall-type for problems with N ≥ 10. Figure 3a and b
show a comparison between the best DPO, DPSO, and DIRECT, for N < 10
and N ≥ 10, respectively; DPO outperforms DPSO and DIRECT, on average,
specially for problems with a high number of variables.

 0

 0.1

 0.2

0001001

Δ t
 [

-]

Nmax/N [-]

DPO
DPSO

DIRECT

(a) N < 10

 0

 0.1

 0.2

 0.3

0001001

Δ t
 [

-]

Nmax/N [-]

DPO
DPSO

DIRECT

(b) N ≥ 10

Fig. 3. Best DPO vs DPSO and DIRECT, based on average performance metrics

Finally three illustrative examples of algorithm convergence are shown in
Fig. 4 for (a) Griewank, (b) Rastrigin, and (c) Ackley functions. For these exam-
ples, DPO convergence shows a better effectiveness and efficiency than DPSO
and DIRECT.

Fig. 4. Algorithms convergence comparison on illustrative benchmark functions

5.2 Hull-Form SBDO Problems

The optimization aims at improving separately (I) calm-water and (II) seakeep-
ing performances. For problem I, the objective function (f) is the total resistance
(normalized with the displacement) in calm water at 18 kn, whereas for problem
II f is a seakeeping merit factor based on the root mean square of the bridge

Dolphin Pod Optimization 69

vertical acceleration at 30 kn in head waves (0 deg) and on the roll angle at 18 kn
in stern long-crested waves (150 deg) [10]. Modification of the parent hull are
performed using orthogonal functions, defined over a surface-body patches, and
90%-confidence dimensionality reduction based on Karhunen-Loève expansion
[11]. A N = 6 design space is used and shape modification are produced directly
on the computational grid. Details of the geometry modification can be found
in [12,13]. Problem I is solved using the code WARP [14], whereas problem II
is solved using the code SMP [15]. Details on the computational domain for the
free-surface and the hull grid, numerical solvers and their validation can be found
in [10]. For each problem, a budget of 4800 function evaluations is used.

DPO achieves an objective function reduction close 13% and 32%, for prob-
lem I and II respectively. Specifically, DPO, DPSO, and DIRECT have a similar
objective function reduction for problem I, even if DPSO and DIRECT show
a faster convergence to the global minimum than DPO (Fig. 5a). Problem II
shows a greater objective function reduction by DPO, compared with DPSO
and especially DIRECT (Fig. 5b), probably trapped in a local minimum.

Fig. 5. Hull-form optimization, convergence history

6 Conclusions

A novel deterministic algorithm for global derivative-free optimization (dolphin
pod optimization, DPO) has been presented and assessed using 100 analytical
benchmark functions. All combinations of DPO parameters led to 1458 opti-
mization runs for each benchmark function.

The coefficient q and the pod initialization are the most significant parame-
ters for low budget of function evaluations and a number of variables N < 10,
while for N ≥ 10 the pod initialization is found always the most significant
parameter. The best performing DPO setup has been identified based on aver-
age results and has been found slightly better than DPSO and DIRECT for
benchmark functions with N < 10 (especially for low budget) and remarkably
better for N ≥ 10. The best performing DPO has been applied to two hull-
form SBDO problems with N = 6. Comparable results of DPO, DPSO and
DIRECT were achieved for problem I (calm-water resistance), whereas problem
II (seakeeping) revealed a greater effectiveness of DPO, compared to DPSO and
DIRECT.

70 A. Serani and M. Diez

Acknowledgements. The present research is supported by the US Office of Naval
Research Global, NICOP grant N62909-15-1-2016, administered by Dr Woei-Min Lin,
and by the Italian Flagship Project RITMARE. The DIRECT algorithm was taken
from the DFL, Derivative-Free Library (https://www.dis.uniroma1.it/∼lucidi/DFL/)
administered by Dr Giampaolo Liuzzi.

References

1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
Fourth IEEE Conference on Neural Networks, Piscataway, pp. 1942–1948 (1995)

2. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol
(2008)

3. Yang, X.S., Deb, S.: Cuckoo search via levy flights. In: Proceedings of World
Congress on Nature and Biologically Inspired Computing (NaBic 2009), Coimbatore,
India, pp. 210–214 (2009)

4. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Gonzlez, J., Pelta, D.,
Cruz, C., Terrazas, G., Krasnogor, N. (eds.) (NICSO 2010). Studies in Computa-
tional Intelligence, vol. 284, pp. 65–74. Springer, Berlin Heidelberg (2010)

5. Formato, R.A.: Central force optimization: a new metaheuristic with applications
in applied electromagnetics. Prog. Electromagn. Res. 77, 425–491 (2007)

6. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algo-
rithm. Inf. Sci. 179(13), 2232–2248 (2009). Special Section on High Order Fuzzy
Sets

7. Serani, A., Leotardi, C., Iemma, U., Campana, E.F., Fasano, G., Diez, M.: Parame-
ter selection in synchronous and asynchronous deterministic particle swarm opti-
mization for ship hydrodynamics problems. Appl. Soft Comput. 49, 313–334 (2016)

8. Campana, E.F., Diez, M., Iemma, U., Liuzzi, G., Lucidi, S., Rinaldi, F., Serani, A.:
Derivative-free global ship design optimization using global/local hybridization of
the DIRECT algorithm. Optim. Eng. 17(1), 127–156 (2015)

9. Jones, D., Perttunen, C., Stuckman, B.: Lipschitzian optimization without the
Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

10. Diez, M., et al.: Multi-objective hydrodynamic optimization of the DTMB 5415
for resistance and seakeeping. In: Proceedings of the 13th International Conference
on Fast Sea Transportation, FAST 2015, Washington, D.C., USA (2015)

11. Diez, M., Campana, E.F., Stern, F.: Design-space dimensionality reduction in
shape optimization by Karhunen-Loève expansion. Comput. Methods Appl. Mech.
Eng. 283, 1525–1544 (2015)

12. Diez, M., Serani, A., Campana, E.F., Volpi, S., Stern, F.: Design space dimen-
sionality reduction for single- and multi-disciplinary shape optimization. In:
AIAA/ISSMO Multidisciplinary Analysis and Optimization (MA&O), AVIATION
2016, Washington D.C., USA, 13–17 June 2016

13. Serani, A., Fasano, G., Liuzzi, G., Lucidi, S., Iemma, U., Campana, E.F., Stern, F.,
Diez, M.: Ship hydrodynamic optimization by local hybridization of deterministic
derivative-free global algorithms. Appl. Ocean Res. 59, 115–128 (2016)

14. Bassanini, P., Bulgarelli, U., Campana, E.F., Lalli, F.: The wave resistance problem
in a boundary integral formulation. Surv. Math. Indus. 4, 151–194 (1994)

15. Meyers, W.G., Baitis, A.E.: SMP84: improvements to capability and prediction
accuracy of the standard ship motion program SMP81. Technical report SPD-
0936-04, David Taylor Naval Ship Research and Development Center, September
1985

https://www.dis.uniroma1.it/~lucidi/DFL/

Teaching-Learning-Feedback-Based Optimization

Xiang Li, Kang Li(B), and Zhile Yang

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast BT9 5AH, UK

{xli25,k.li,zyang07}@qub.ac.uk

Abstract. Teaching-learning-based Optimization (TLBO) is a popular
meta-heuristic optimisation method that has been used in solving a num-
ber of scientific and engineering problems. In this paper, a new vari-
ant, namely Teaching-learning-feedback-based Optimization (TLFBO)
is proposed. In addition to the two phases in the canonical TLBO, an
additional feedback learning phase is employed to further speed up the
convergence. The teacher in the previous generation is recorded and com-
municates with the current teacher to provide combined feedbacks to the
learners and supervise the learning direction to avoid wasting computa-
tional efforts incurred in the previous generations. Numerical experi-
ments on 10 well-known benchmark functions are conducted to evaluate
the performance of the TLFBO, and experimental results show that the
proposed TLFBO has a superior and competitive capability in solving
continuous optimisation problems.

Keywords: Teaching-learning-based Optimization (TLBO) · Feed-
back · Global optimization · Heuristic method

1 Introduction

Engineering optimization problems involving numerous design variables are often
highly non-linear, non-convex, and the objective functions may be transformed
to non-differentiable and discontinuous ones, which call for powerful global opti-
mization approaches [1]. The nature-inspired heuristic optimization approaches
have been intensively researched in the past decade and widely used in solving
engineering problems.

Genetic Algorithms (GA) [6] was inspired from Darwin’s theory of natural
selection, is one of the earliest and most important population based optimiza-
tion technologies. Whereas particle swarm optimization (PSO) [7] was inspired
from the foraging behaviours of birds or fishes and adopts the inertia weights,
social and cognitive parameters in forming a new generation. Other counter-
parts such as the artificial bee colony (ABC) [5] and ant colony optimization
(ACO) [4] mimics the characteristics of bees and ants to maximize the like-
lihood in effectively and efficiently obtaining the value of the global optima.
From the state-of-the-art literature reviews, the approaches can be grouped into

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 71–79, 2017.
DOI: 10.1007/978-3-319-61824-1 8

72 X. Li et al.

two categories [15], namely, evolutionary protocol and particle swarm intelli-
gence [7], enlightened from different social phenomena and natural observations
respectively.

Teaching-learning-based Optimization (TLBO) method is a promising vari-
ant of the population based method, which focuses on addressing the global
optimization problems of continuous non-linear functions [11,12]. The TLBO
method stems from the knowledge propagation among teachers and students.
Two drawbacks of the TLBO were identified as follows. Firstly, the performance
highly depends on the initial value and the initialization boundaries. Besides, the
speed of the convergence is slower than other counterpart algorithms, e.g. PSO.
Furthermore, for the majority of nature inspired algorithms, the stochastically
evolved generations may suffer from the loss of the evolution clue of previous
generations and the links with the past optima would be broken, which leads to
a highly time consuming process to achieve the global best.

To tackle this drawback, a phase namely the feedback learning phase is inte-
grated into the original TLBO method. Herein, the previous and current teachers
form a judging panel to evaluate the learning behaviour after each iteration, give
the feedback and supervise the learning of students. The core contribution of this
paper is to accelerate the convergence by introducing the memory in relation with
the historical generations. Furthermore, the paper represents a pilot research of
improving the TLBO algorithm performance by considering the effects of the
past optimum values as the genes embedded in future generation evolution.

The remainders of this paper is organised as follows. Section 2 is a brief
tutorial on the TLBO algorithm. The preliminary concept of the TLFBO method
is introduced in Sect. 3, which also gives an intuitive overview of the advantages
intuitively. The efficiency of the proposed algorithm is evaluated on 10 well-
adopted benchmark functions and the results are presented in Sect. 4, which
demonstrates the effectiveness of the proposed method. Finally, Sect. 5 concludes
this paper.

2 Standard TLBO Algorithm

The protocol of the TLBO method was first proposed in 2011 [11]. It involves
two phases, namely the teacher and learner phases respectively. All the learners
in the classroom form one population and have two chances to be trained. In the
teacher phase, the most knowledgeable person in each generation is considered as
the teacher, who will disseminate its optimum performance with others and affect
the outcome of the learners. The output items are analogous to the scores/grades
of the students. In the leaner phase, students learn from each other to further
improve their personal scores/grades.

2.1 Teacher Phase

A teacher is deemed to circulate his/her knowledge to help the learners
and the average grades of the class toward to his/her own level. Each stu-
dent accomplishes the study upon acquiring the discrepancy between teacher

Teaching-Learning-Feedback-Based Optimization 73

and mean solution among the peers. The updating process is formulated as
followings [16].

DMi = rand1(0, 1) ∗ (Teacheri − TF ∗ Mi). (1)

Where Mi is the mean value of each course in the class, and Teacheri denotes
the most knowledgeable one as the teacher. Herein, due to, in the real class, the
average grades can only be increased in some extent depending on the variable
learning capabilities of students in the class, which is named as teaching factor
TF expressed as 1 or 2 and decides the changeable value of mean.

TF = round(1 + rand2(0, 1)) (2)

Nurturing throughout the efforts of teacher, the scores or grades of the learn-
ers are improved as

Stnewi = Stcurrenti + DMi (3)

where the Stnewi is the generated new population after the knowledge exchange
among the teacher and the students. As before, the person, who is highly edu-
cated, will be voted as the new teacher for the next heuristic step.

2.2 Learner Phase

The second phase is based on learning mutually to enhance the exploitation
capabilities. Students learn from the others through the group discussion, pre-
sentation as well as formal communication, etc. [11]. Each person holds one
chance to share his/her knowledge with his/her peers randomly. A better per-
formance of the class results from this phase to avoid falling into the local optima
simultaneously. The modification processes will be expressed as follows.

Stnewk =
{
Stcurrentk + rand3(0, 1)(Stk − Stj) if f(Stk < Stj)
Stcurrentk + rand3(0, 1)(Stj − Stk) if f(Stj < Stk)

}
(4)

where following the teaching phase, on the basis of the fitness function or objec-
tive function, the grades of students Stk and Stj are compared randomly.

3 A Novel TLBO with Feedback Learning Phase
(TLFBO) Algorithm

Analysis of the behaviours of the original TLBO method reveals two issues that
emerge as the Achillest heel to restrict its performance. One is the initialization
and the other is the convergence speed. Contradictory to the behaviours of the
well-known PSO method, TLBO is a tardy and precise approach to search for
the global optima. Though the performance is improved generation by genera-
tion during the evolution process, there exists no distinguished direction for the
convergence and exploration, which is different from the PSO method. Thereby,
TLBO can not maintain a persistent performance and the final results vary with
different initialization values.

74 X. Li et al.

Inspired by the supervised learning, a Feedback phase is designed follow-
ing the learning phase, which is dedicated to increase the converging speed. In
this modification, the last global optima as the previous teacher works together
with the newly selected teacher denoted as the current teacher to evaluate the
learning results. The differences between these two teachers are recorded as the
judging panel to supervise everyone in the class. This feedback learning phase is
formulated as follows.

Stnewi = Stcurrenti + l1 ∗ w ∗ Dlast + l2 ∗ w ∗ Dcurrent (5)

Dlast = Trlasti − Stcurrenti (6)

Dcurrent = Trcurrenti − Stcurrenti (7)

w = (Gtotal − Gcurrent/Gtotal) (8)

Where the value of w is the mutation weight. Its value will be decreased
gradually to constrain the searching scope. l1, l2 are denoted as the feedback
weights for the two selected teacher, and they are predefined numbers between
0 and 1, and l1 + l2 = 1. These coefficients will adjust the extent of learning to
follow the best one (current teacher). Gtotal is the predefined total generations;
Gcurrent is the current generation number. The differences Dlast,Dcurrent com-
paring the individuals in the whole class with the two teachers are used to update
the grades of the whole class.

There are two remarkable advantages of this TLFBO method. Firstly, the
students are taught by accessing the information of both the past and current
generations. The historical performances are recorded as the memory to help
with the future evolution process. With these memories, the learning efficiency
can be increased significantly as shown in the experimental section. Furthermore,
it is easy to be implemented. To reflect the aforementioned memory concept,
in this paper, the last optimum is utilised to help the current teacher rather
than being discarded during the evolution process. This designed feedback phase
help to guide the learning direction to follow the historic trajectory along the
evolution process. The complete TLFBO algorithm is depicted in Fig. 1.

4 Experiments and Test Results

The performance of the TLFBO algorithm is assessed on 10 well-known bench-
mark functions encompassing 30 dimensions [17]. Besides, comparative study is
conducted in comparison with several TLBO variants e.g. original TLBO [11],
elite TLBO, [10] a modified TLBO [13], Self-learning TLBO [18] as well as several
popular swarm algorithms including weighted PSO [14], PSO-CF [2], classical
DE/rand//bin [3] and others emerging algorithms enumerating as GWO [9], and
MFO [8].

Teaching-Learning-Feedback-Based Optimization 75

Fig. 1. Overall framework of the proposed TLFBO algorithm

4.1 Benchmark Functions

Ten benchmark functions are taken from [17] and presented as follows with the
information of dimensions and boundaries.

Spherefunction(f1) dimension = 30, [−100, 100]
Schwefel′sproblem1.2(f2) dimension = 30, [−100, 100]]
Rosenbrockfunction(f3) dimension = 30, [−30, 30]
Ackley′sfunction(f4) dimension = 30, [−32, 32]
Griewankfunction(f5) dimension = 30, [−600, 600]
Rastriginfunction(f6) dimension = 30, [−5.12, 5.12]
Stepfunction(f7) dimension = 30, [−100, 100]
Schwefel′sproblem2.21(f8) dimension = 30, [−100, 100]]
Schwefel′sproblem2.26(f9) dimension = 30, [−500, 500]
Quarticfunction(f10) dimension = 30, [−1.28, 1.28]

76 X. Li et al.

4.2 Parameters Determination

According to the rule of thumb for the parameters setting of the aforementioned
algorithms, the population number is set as 30. Further details are outlined as
following.

wPSO phase c1 = 1, c2 = 3, wmax = 0.9, wmin = 0.4
PSO − CF phase c1 = c2 = 2.05, K = 0.729
classical DE phase F = 0.7, CR = 0.5
elite TLBO phase elite number = 5
self − learning TLBOphase weighting factor = 3
TLFBO phase feedback wrighting l1 = 0.3, l2 = 0.7

4.3 Results and Discussion

Herein, the proposed novel TLBFO algorithm was compared with other coun-
terparts. Table 1 compares the performances in terms of the mean values and
standard deviations in relation with the above 10 algorithms on the 10 remark-
able benchmark functions (f1 to f10).

Fig. 2. Convergent tendencies of 10 algorithms for f3 and f4

It is shown that the value of the objective function of the proposed TLFBO
algorithm is equal or better than the peers with the exception of f4 and f8. The
proposed algorithm is further shown to converge faster for the majority of the
scenarios (excepting f9). In the cases of f4, all the algorithms show relatively
slow convergence speed, while the TLFBO performs better as shown in Fig. 2.
Furthermore, for f2, f5, f6, the performances were quite similar for all TLBO
variants. This reveals that TLBO and its couterparts have a superior capability
to find the global optima and could produce a similar performance with a less
numbers of generations.

Teaching-Learning-Feedback-Based Optimization 77

T
a
b
le

1
.
B

en
ch

m
a
rk

te
st

s
re

su
lt

s
fo

r
d
iff

er
en

t
a
lg

o
ri

th
m

s

S
p
h
er
e

S
ch

w
ef
el
s
p
ro
b
le
m

1
.2

R
o
se
n
b
ro
ck

A
ck

le
y

G
ri
ew

a
n
k

f1
f2

f3
f4

f5

w
P
S
O

8
.1
3
4
e0

2
±

1
.5
3
5
e0

3
2
.1
2
2
e−

0
1
±

2
.2
6
7

9
.3
4
0
e0

6
±

3
.5
5
8
e0

7
2
.0
4
4
e0

1
±

8
.9
4
3
e0

0
1
.1
8
8
e0

0
±

3
.3
4
5
e−

0
1

P
S
O
-C

F
1
.8
3
3
e0

3
±

5
.0
4
6
e0

3
2
.5
3
4
e−

0
2
±

3
.8
7
9
e−

0
1

4
.6
4
9
e0

7
±

2
.3
0
4
e0

8
1
.9
7
2
e0

1
±

1
.1
5
7
e0

1
1
.4
2
7
e0

0
±

9
.3
2
1
e−

0
1

D
E

7
.6
5
0
e0

1
±

1
.5
6
8
e0

2
6
.0
0
2
e−

0
1
±

1
.0
0
2
e0

1
9
.5
4
1
e0

5
±

4
.6
0
5
e0

6
2
.0
0
1
e0

1
±

3
.9
2
1
e−

0
1

9
.9
7
8
e−

0
1
±

2
.7
7
5
e−

0
1

T
L
B
O

5
.6
0
e−

4
5
±

7
.7
5
5
−4

4
0
.0
0
0
e
0
0
±

0
.0
0
0
e
0
0

2
.8
9
2
e0

1
±

1
.8
9
7
e−

0
1

7
.7
5
1
e−

0
9
±

2
.2
9
5
e−

0
7

0
.0
0
0
e
0
0
±

0
.0
0
0
e
0
0

eT
L
B
O

6
.7
5
e−

7
6
±

9
.5
1
e−

7
5

4
.1
8
0
e−

3
2
±

8
.7
6
0
e−

3
1

2
.8
9
4
e0

1
±

1
.3
2
5
e−

0
1

1
.4
8
0
e−

1
5
±

7
.2
5
0
e−

1
5

0
.0
0
0
e
0
0
±

0
.0
0
0
e
0
0

m
T
L
B
O

6
.4
5
e−

9
1
±

8
.2
7
r−

9
0

1
.6
4
0
e−

3
3
±

4
.8
5
0
−3

2
2
.8
9
3
e0

1
±

2
.0
7
3
e−

0
1

1
.0
5
7
e0

1
±

5
.6
7
8
e0

1
0
.0
0
0
e
0
0
±

0
.0
0
0
e
0
0

S
L
-T

L
B
O

3
.9
8
e−

1
1
5
±

8
.7
1
e−

1
1
4

0
.0
0
0
e
0
0
±

0
.0
0
0
e
0
0

2
.8
9
9
e0

1
±

1
.9
7
6
e−

0
1

8
.8
8
0
e
−1

6
±

0
.0
0
0
e
0
0

0
.0
0
0
e
0
0
±

0
.0
0
0
e
0
0

M
F
O

1
.8
1
2
e0

1
±

1
.5
6
3
e0

2
5
.1
5
0
e−

2
7
±

4
.8
8
0
e−

2
6

1
.3
9
3
e0

5
±

1
.8
3
5
e0

6
2
.0
0
1
e0

1
±

1
.7
5
7
e−

0
1

3
.3
3
3
4
e−

0
1
±

1
.1
7
4
e0

0

G
W

O
1
.9
1
e−

2
1
±

2
.0
8
e−

2
0

9
.6
2
8
e−

0
4
±

1
.1
1
8
3
e−

0
2

2
.7
9
4
e
0
1
±

5
.0
1
7
e
0
0

7
.0
1
2
e0

0
±

5
.4
3
2
e0

1
4
.7
6
0
e−

0
3
±

4
.4
6
3
e−

0
2

T
L
F
B
O

3
.7
6
e
−1

1
8
±

5
.7
8
e
−1

1
7

0
.0
0
0
e
0
0
±

0
.0
0
0
e
0
0

2
.8
7
4
e0

1
±

1
.6
7
0
e−

0
1

1
.1
9
e−

0
9
±

3
.5
2
e−

0
8

0
.0
0
0
e
0
0
±

0
.0
0
0
e
0
0

R
a
st
ri
g
in

S
te
p

S
ch

w
ef
el
s
p
ro
b
le
m

2
.2
1

S
ch

w
ef
el
s
p
ro
b
le
m

2
.2
6

Q
u
a
rt
ic

f6
f7

f8
f9

f1
0

w
P
S
O

1
.2
8
7
e0

3
±

1
.6
6
7
e0

3
7
.1
4
3
e0

2
±

2
.0
4
5
e0

3
1
.8
3
7
e0

1
±

2
.0
2
9
e0

1
−4

.3
2
1
e0

3
±

2
.6
8
0
e0

2
1
.4
5
2
e0

6
±

7
.0
9
9
e0

6

P
S
O
-C

F
2
.4
4
8
e0

3
±

4
.9
8
7
e0

3
1
.6
6
4
e0

3
±

3
.8
5
4
e0

3
2
.1
8
9
e0

1
±

3
.1
7
3
e0

1
−5

.2
2
3
e0

3
±

2
.4
4
9
e0

2
7
.7
6
6
e0

6
±

3
.4
2
6
e0

7

D
E

3
.8
7
6
e0

2
±

3
.6
9
7
e0

2
7
.9
9
2
e0

1
±

1
.8
3
5
e0

2
1
.9
7
0
e0

1
±

2
.1
8
3
e0

1
−5

.8
9
8
e0

3
±

1
.7
5
2
e0

3
7
.4
2
9
e0

4
±

2
.7
0
2
e0

5

T
L
B
O

0
.0
0
0
e
0
0
±

0
.0
0
0
e
0
0

5
.7
8
4
e0

0
±

3
.4
9
8
e0

0
1
.7
7
0
e−

2
2
±

7
.6
2
3
e−

2
2

−6
.0
8
3
e0

3
±

2
.3
1
9
e0

3
9
.4
6
5
e0

0
±

2
.2
5
6
e0

0

eT
L
B
O

0
.0
0
0
e
0
0
±

0
.0
0
0
e
0
0

6
.5
4
6
e0

0
±

3
.8
9
7
e0

0
4
.4
0
0
e−

3
8
±

4
.5
0
0
e−

3
7

−5
.6
6
7
e0

3
±

2
.3
3
9
e0

3
9
.3
2
3
e0

0
±

2
.6
0
1
e0

0

m
T
L
B
O

0
.0
0
0
e
0
0
±

0
.0
0
0
e
0
0

5
.8
7
8
e0

0
±

3
.7
9
8
e0

0
2
.2
0
1
e−

4
5
±

3
.9
6
0
e−

4
4

−6
.3
8
2
e0

3
±

1
.7
3
3
e0

3
9
.4
2
9
e0

0
±

1
.4
8
8
e0

0

S
L
-T

L
B
O

0
.0
0
0
e
0
0
±

0
.0
0
0
e
0
0

5
.1
9
4
e0

0
±

4
.2
2
5
e0

0
8
.6
8
0
e
−5

9
±

1
.2
4
7
e
−5

7
−6

.3
0
2
e0

3
±

2
.5
8
8
e0

3
9
.5
4
9
e0

0
±

2
.7
4
7
e0

0

M
F
O

2
.7
3
2
e0

2
±

1
.2
1
1
e0

3
9
.3
1
6
e0

0
±

2
.8
5
9
e0

1
4
.4
7
3
e0

1
±

4
.6
8
3
e0

1
−1

.7
0
3
e0

3
±

3
.7
5
1
e0

2
7
.9
8
0
e0

3
±

4
.7
1
4
e0

4

G
W

O
6
.3
2
5
e0

0
±

2
.1
9
4
e0

1
7
.8
9
4
e−

0
1
±

1
.9
1
8
e0

1
1
.4
9
0
e−

0
5
±

5
.7
7
0
e−

0
5

−1
.0
8
5
e0

3
±

6
.0
7
0
e0

2
9
.4
5
8
e0

0
±

3
.5
7
9
e0

0

T
L
F
B
O

0
.0
0
0
e
0
0
±

0
.0
0
0
e
0
0

5
.1
7
1
e
0
0
±

4
.0
1
3
7
e
0
0

2
.0
2
3
e−

4
7
±

1
.4
7
e−

4
6

−7
.6
1
3
e
0
2
±

4
.3
7
4
e
0
2

9
.3
0
4
e
0
0
±

2
.1
3
7
e
0
0

78 X. Li et al.

5 Conclusion

A novel optimization variant TLFBO was proposed in this paper. The historical
global best value was recorded (previous teacher) in the optimization processes to
help supervise the learners in the new generation in cooperation with the current
global best value (current teacher), which is defined as the feedback learning.
The performance of the new TLFBO algorithm was tested on 10 well-known
benchmark functions. The numerical results demonstrate that the new TLFBO
heuristic algorithm dramatically outperforms other counterparts in terms of con-
vergence speed and solution accuracy.

Acknowledgment. This paper was partially funded by the EPSRC under grant
EP/P004636/1 and partially supported by NSFC under 61673256, and Shanghai Sci-
ence Technology Commission under grant No. 14ZR1414800.

References

1. Chowdhury, P.R., Singh, Y.P., Chansarkar, R.A.: Hybridization of gradient descent
algorithms with dynamic tunneling methods for global optimization. IEEE Trans.
Syst. Man Cybern. - Part A: Syst. Hum. 30(3), 384–390 (2000)

2. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in
a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

3. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art.
IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

4. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput.
Intell. Mag. 1(4), 28–39 (2006)

5. Gao, W.F., Huang, L.L., Liu, S.Y., Dai, C.: Artificial bee colony algorithm based
on information learning. IEEE Trans. Cybern. 45(12), 2827–2839 (2015)

6. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948,
November 1995

8. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic
paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

9. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69,
46–61 (2014)

10. Rao, R., Patel, V.: Comparative performance of an elitist teaching-learning-based
optimization algorithm for solving unconstrained optimization problems. Int. J.
Ind. Eng. Comput. 4(1), 29–50 (2013)

11. Rao, R.V., Savsani, V.J., Vakharia, D.: Teaching-learning-based optimization: a
novel method for constrained mechanical design optimization problems. Comput.-
Aided Des. 43(3), 303–315 (2011)

12. Rao, R., Savsani, V.J., Vakharia, D.: Teaching-learning-based optimization: an
optimization method for continuous non-linear large scale problems. Inf. Sci.
183(1), 1–15 (2012)

Teaching-Learning-Feedback-Based Optimization 79

13. Satapathy, S.C., Naik, A.: Modified teaching-learning-based optimization algo-
rithm for global numerical optimizationa comparative study. Swarm Evol. Comput.
16, 28–37 (2014)

14. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In:
Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol.
1447, pp. 591–600. Springer, Heidelberg (1998). doi:10.1007/BFb0040810

15. Wang, Z., Lu, R., Chen, D., Zou, F.: An experience information teaching-learning-
based optimization for global optimization. IEEE Trans. Syst. Man Cybern.: Syst.
46(9), 1202–1214 (2016)

16. Yang, Z., Li, K., Foley, A., Zhang, C.: A new self-learning TLBO algorithm for
RBF neural modelling of batteries in electric vehicles. In: 2014 IEEE Congress on
Evolutionary Computation (CEC), pp. 2685–2691 (2014)

17. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans.
Evol. Comput. 3(2), 82–102 (1999)

18. Zhile, Y., Kang, L., Qun, N., Yusheng, X., Foley, A.: A self-learning tlbo based
dynamic economic/environmental dispatch considering multiple plug-in electric
vehicle loads. J. Mod. Power Syst. Clean Energy 2(4), 298–307 (2014)

http://dx.doi.org/10.1007/BFb0040810

Magnetotactic Bacteria Optimization
Algorithm Based on Moment Interaction

Energy

Lifang Xu1, Hongwei Mo2(&), Jiao Zhao2, Chaomin Luo3,
and Zhenzhong Chu4

1 Engineering Training Center, Harbin Engineering University, Harbin,
Heilongjiang 150001, China

2 Automation College, Harbin Engineering University,
Harbin, Heilongjiang 150001, China

honwei2004@126.com
3 Department of Electrical and Computer Engineering,

University of Detroit Mercy, Detroit, MI, USA
4 College of Information Engineering, Shanghai Maritime University,

Pudong, China

Abstract. In this paper, an improved magnetotactic bacteria optimization
algorithm (IMBOA) is proposed to solve unconstrained optimization problems.
IMBOA uses an archive to keep some better solutions in order to guide the
moving of the whole population in each generation. And it uses a kind of
efficient interaction energy to enhance diversity of the population for encour-
aging broader exploration. The proposed algorithm is compared with some
relative optimization algorithms on the CEC 2013 real-parameter optimization
benchmark functions. Experimental results show that the proposed algorithm
IMBOA has better performance than the compared algorithms on most of the
benchmark problems.

Keywords: Magnetotactic bacteria optimization algorithm � Efficient
interaction energy � Diversity � Archive

1 Introduction

Swarm intelligence is a new algorithm for finding the global optimal solution, which
has been widely used in various fields, and achieved good results. It is based on social
organisms from insects to human. Some popular swarm intelligence algorithms, such as
Particle Swarm Optimization (PSO) [1], Artificial Bee Colony (ABC) [2], Bacterial
Foraging Optimization Algorithm (BFOA) [3], Firefly Algorithm [4] and Cuckoo
Algorithm [5] etc. were developed based on different inspiration sources which can be
seen from their names.

Magnetotactic bacteria optimization algorithm (MBOA) is also a swarm intelli-
gence algorithm which proposed by Mo in 2012 [6]. It emulates the process of mag-
netotactic bacteria swimming along geomagnetic field lines of the earth to minimize

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 80–87, 2017.
DOI: 10.1007/978-3-319-61824-1_9

their magnetostatic energy [7]. In recent years, several improved MBOA have been
proposed to improve the performance of MBOA [8–10].

This paper is proposed based on MBOA-BR and is organized as follows. Section 2
introduces the MBOA-BR. Section 3 describes the IMBOA. Section 4 presents the test
functions and the experimental setting for each algorithm. Section 4 presents the
experiment results and analysis. Conclusions are given in Sect. 5.

2 The Magnetotactic Bacteria Optimization Algorithm

Magnetotactic Bacteria Optimization Algorithm is a new optimization algorithm
inspired by the biology characteristics of magnetotactic bacteria in nature. It obtains the
optimal solution by regulating the moments of cells continually by the process of MTS
generation, MTS regulation and MTS replacement. Assume that the cell population
size is N and search space is D dimension. Then the i th cell is represented by
Xi ¼ ðxi1; xi2; . . .; xiDÞ. Before the operators of MTS generation, MTS regulation and
MTS replacement, we first calculate the interaction energy.

• Interaction energy calculation
Randomly select a cell Xr in the population. The distance Di ¼ di1; di2; . . .; diDð Þ
between two cells Xt

i and Xt
r is calculated using (1).

Di ¼ Xi � Xr: ð1Þ

The interaction energy Ei ¼ ei1; ei2; . . .; eiDð Þ is calculated as follows:

eij tð Þ ¼ dij tð Þ
1þ c1 � norm Di tð Þð Þþ c2 � dpq tð Þ

� �3

: ð2Þ

In (2), c1, c2 are constants and p 2 1;N½ �, q 2 ½1;D� are randomly chosen integer
indices. norm Di tð Þð Þ is the Euclidean distance between cells Xt

i and Xr.
• MTS generation

The MTS are produced as follows:

vij tð Þ ¼ xij tð Þþ r1 � mpq tð Þ: ð3Þ

Mi tð Þ ¼ Ei tð Þ
B

: ð4Þ

where mpq are randomly selected from matrix

M ¼ M1; � � �MNð Þ ¼
m11 m21 � � � mN1

m12 m22 � � � mN2

..

. ..
. � � � ..

.

m1D m2D � � � mND

2
6664

3
7775, and r1 is a random number

between 0 and 1. B is a constant named magnetic field strength.

Magnetotactic Bacteria Optimization Algorithm 81

• MTS regulation
The MTS moment of cell is regulated as follows:
If rand[0:5

uij tð Þ ¼ vcbestj tð Þþ r2 � vcbestj tð Þ � vkj tð Þ
� �

: ð5Þ

Otherwise

uij tð Þ ¼ vkj tð Þþ r2 � vcbestj tð Þ � vkj tð Þ
� �

: ð6Þ

In (5) and (6), vcbestj stands for the j th dimension of current best cell Vcbest in the
current generation. vkj stands for the j th dimension of a cell Vk selected from current
population. r2 is a random number between 0 and 1.

• MTS replacement
After the moment regulation, the population is evaluated according to cells’ fitness.
The last fifth of the cells will be replaced based on (7). mab is randomly chosen from
matrix M ¼ M1; � � �MNð Þ. rand 1; nð Þ is a random vector with n dimensions, and
each dimension is a random number between 0 and 1.

Xi tð Þ ¼ mab tð Þ � rand 1; nð Þ � 1ð Þ � rand 1; nð Þð Þ: ð7Þ

Other cells will not change, thus we can get (8).

Xi tþ 1ð Þ ¼ Ui tð Þ: ð8Þ

3 An Improved Magnetotactic Bacteria Optimization
Algorithm

• External archive
In IMBOA, we set an external archive to guide the search direction of solutions.
The archive will store 2 best cells in each generation. At the end of each generation,
the external archive will be updated if the new solutions are better than those in the
archive. archivei denotes the ith cell stored in the external archive.

• Efficient interaction energy
In MBOA, interaction energy affects the diversity of the whole cell population
severely. By designing new interaction energy we can improve its performance.
New interaction energy defined as (10):

dij tð Þ ¼ xij tð Þ � xrj tð Þ
�� ��: ð9Þ

eij tð Þ ¼ c�
ffi
R tð Þh� dij tð Þ

� �hh
q

: ð10Þ

R tð Þ ¼ Rmax � Rmax=Maxgenerationð Þ � t: ð11Þ

82 L. Xu et al.

Rmax ¼ xmaxj � xminj: ð12Þ

xmaxj, xminj are the upper and lower bounds for the dimension j respectively, and

c ¼ þ 1 xij tð Þ� 0
�1 xij tð Þ\0

�
.

If the values of some dij tð Þ are out of the range 0;R tð Þ½ � in each generation, they will
be mapped to random values in the range 0;R tð Þ½ �.

• MTS generation
In the proposed algorithm parameter r1 is not a random value between 0 and 1, but
is set as (13).

r1 ¼ 2rand � 1þ t=MaxGenerationð Þ2: ð13Þ

• MTS regulation
In the proposed algorithm, we first compare the best solution Vcbest tþ 1ð Þ generated
by MTS generation operation with the best one Xbest tð Þ generated in the last gen-
eration. Then we determine whether the archive is used to guide solutions moving
or not. Pseudo code of this operation is as follows.

uij tð Þ ¼ vij tð Þþ rand � vcbest tð Þ � vij tð Þ
� �

: ð14Þ

uij tð Þ ¼ vij tð Þþ rand � vcbest tð Þ � vij tð Þ
� �þ r2 � �xj � vij tð Þ

� �
: ð15Þ

�xj ¼
Xk
i¼1

archiveij
	
k: ð16Þ

According to above description, Table 1 gives the pseudo code of the improved
algorithm.

4 Experimental Setting and Results Analysis

Twenty benchmark functions from the IEEE CEC 2013 [15] are used to test the
optimization performance of the IMBOA algorithm. These functions are more complex
and can be used to compare the performance of different algorithms in a more sys-
tematic manner. The dimensions of benchmark functions are D ¼ 30 and the popu-
lation size is set as 100. The maximum number of function evaluations is 10000� D.
In this paper, 51 times independent experiments are conducted.

In this paper, we compare four state-of-the-art algorithms which are CoDE [16],
GL-25 [17], ALC-PSO [18] and EPSDE [19]. The results of all experiments are shown
in the next section.

Table 2 presents the results for all the 20 benchmark functions on 30 dimention.

Magnetotactic Bacteria Optimization Algorithm 83

As shown in the table, in the five unimodal functions (f1 to f5), we can see that
IMBOA outperforms the other four algorithms on 2 functions (f3 and f4) according to
the mean preformence. CoDE performs better than IMBOA for function f2. And the
performance of GL25, ALC-PSO and EPSDE are better than IMBOA for function f5.
For function f1, all the algorithms attain the best performance value of zero except
CoDE based on the mean values error, but the performance of all the five algorithms
are identical by the Wilcoxon rank-sun text. It may be noted that IMBOA preforms
better on most of the five functions particularly on the function f3. The mean values

Table 1. Algorithm 1

For each solution

If () ()1best cbestX t V t> +
MTS regulation operation is conducted according to (14)

Else
MTS regulation operation is conducted according to (15)

End
End

Table 2. The proposed algorithm (IMBOA)

Line Pseudo code of IMBOA

1 Initialization:

2 Set cell population size N , and randomly generate the initial population in the search space.

3 Set external archive

4 The IMBOA loop:

5 While t MaxGeneration≤ do

6 Keep the current best solution ()bestX t , determinate radius ()R t and magnetic

field ()B t
7 Calculate interaction distances according to (9)

8 Calculate interaction energy according to (10)

9 Obtain moments according to (4)

10 For 1i = to N do

11 MTS generation according to (3) and (13)

12 End for

13 Evaluate the current population according to fitness and find the best solution

14 MTS regulation according to algorithm 1

15 Evaluate the current population according to fitness and update the external archive

16 Memorize the best solution achieved so far

17 End while

84 L. Xu et al.

Table 3. Experimental results on 30-dimensions of CEC2013 benchmark function.

Function IMBOA CoDE GL_25 ALC-PSO EPSDE

f1 Mean 0.0000e+00 4.0904e−08 � 0.0000e+00 � 0.0000e+00 � 0.0000e+00 �
Std. 0.0000e+00 1.7380e−08 0.0000e+00 0.0000e+00 0.0000e+00

f2 Mean 4.1687e+05 1.6199e+05 − 3.5860e+06 + 1.3790e+07 + 6.1113e+05 +

Std. 2.9704e+05 2.0672e+05 1.7720e+06 8.8582e+06 2.9014e+06
f3 Mean 2.2058e+04 2.9085e+07 + 2.6280e+06 + 3.4824e+08 + 5.5938e+07 +

Std. 8.1071e+04 1.3402e+07 2.4208e+06 5.5136e+08 1.8370e+08

f4 Mean 1.0532e+01 1.8638e+01 + 1.0107e+03 + 4.7917e+03+ 7.8170e+03 +
Std. 1.0204e+01 1.2412e+01 5.5342e+02 1.8108e+03 1.6863e+04

f5 Mean 7.3357e−06 1.5390e−05 + 0.0000e+00 − 0.0000e+00 − 0.0000e+00 −

Std. 5.0185e−06 4.4395e−06 0.0000e+00 0.0000e+00 0.0000e+00
f6 Mean 2.7105e+01 1.3373e+01 − 2.5852e+01 − 8.1710e+01 + 3.5673e−01 −

Std. 2.4484e+00 1.9511e+00 2.0038e+01 4.1600e+01 3.7086e−01
f7 Mean 1.2340e−01 4.0179e+01 + 1.2966e+01 + 8.5105e+01 + 2.5287e+01 +

Std. 2.1268e−01 6.5980e+00 3.6632e+00 3.3072e+01 2.5118e+01
f8 Mean 2.0948e+01 2.0955e+01 � 2.0962e+01 � 2.0931e+01 � 2.0935e+01 �

Std. 4.2099e−02 3.9983e−02 4.5752e−02 5.9860e−02 5.7660e−02

f9 Mean 7.7397e+00 3.2548e+01 + 2.3505e+01 + 2.5734e+01 + 3.4578e+01 +
Std. 2.3345e+00 1.6915e+00 2.9739e+00 4.1924e+00 2.3407e+00

f10 Mean 5.7958e−03 2.2562e−01 + 1.6612e−01 + 1.7775e−01 + 4.8870e−02 +
Std. 8.1205e−03 1.7583e−01 1.9755e−01 1.1746e−01 2.3342e−02

f11 Mean 2.1655e+01 2.5250e+01 + 2.4767e+01 + 2.4386e+01 + 0.0000e+00 −

Std. 5.5382e+00 2.4168e+00 7.4443e+00 6.3782e+00 0.0000e+00
f12 Mean 3.3321e+01 1.6345e+02 + 1.3729e+02 + 9.7632e+01 + 5.8921e+01 +

Std. 8.3205e+00 1.3672e+01 6.5880e+01 2.2826e+01 1.1242e+01
f13 Mean 5.6574e+01 1.7888e+02 + 1.5941e+02 + 1.5740e+02 + 7.6820e+01 +

Std. 2.2987e+01 1.4105e+01 3.7587e+01 3.7713e+01 1.3086e+01
f14 Mean 5.4660e+02 1.4166e+03 + 3.0633e+03 + 9.8269e+02 + 6.7618e+01 −

Std. 2.2835e+02 1.8431e+02 2.0263e+03 3.0638e+02 9.7077e+01
f15 Mean 1.8469e+03 6.9528e+03 + 7.0457e+03 + 4.1709e+03 + 6.7747e+03 +

Std. 5.2295e+02 2.6879e+02 2.9018e+02 9.9453e+02 4.0411e+02
f16 Mean 3.9978e−01 2.4424e+00 + 2.5962e+00 + 2.2073e+00 + 2.4681e+00 +

Std. 3.0323e−01 3.0804e−01 2.7101e−01 3.5923e−01 2.9840e−01
f17 Mean 5.1277e+01 6.4747e+01 + 9.8616e+01 + 6.5842e+01 + 3.0434e+01 −

Std. 5.2967e+00 2.8797e+00 5.9337e+01 1.6186e+01 1.5878e−04
f18 Mean 5.9629e+01 2.2866e+02 + 2.0386e+02 + 1.5253e+02 + 1.6218e+02 +

Std. 7.4254e+00 1.0892e+01 1.0162e+01 5.0815e+01 1.2225e+01

f19 Mean 2.9531e+00 8.2616e+00 + 6.6007e+00 + 3.9574e+00 + 2.4837e+00 −

Std. 5.5836e−01 8.2459e−01 4.9562e+00 1.3254e+00 1.9235e−01
f20 Mean 9.7703e+00 1.2602e+01 + 1.1720e+01 + 1.4369e+01 + 1.3133e+01 +

Std. 1.3857e+00 2.2579e−01 3.6441e−01 9.9967e−01 6.0075e−01
+ 16 16 17 12

− 2 2 1 6
� 2 2 2 2

Magnetotactic Bacteria Optimization Algorithm 85

error of IMBOA is the order of 104, whereas other algorithms are in the range of 106

and 108. For function f4, IMBOA provides the best mean performance and it outper-
forms GL25, ALC-PSO and EPSDE by a significant margin. According to above
observations, it is inferred that IMBOA provides better solutions for unimodal function.

In the fifteen basic multimodal functions (f6–f20), IMBOA does not performs
worse than CoDE and GL25 for all basic multimodal functions except f6. IMBOA
outperforms EPSDE on 9 functions (f7, f9, f10, f12, f13, f15, f16, f18 and f20).
However, the performance of IMBOA is better than (or equal to) ALC-PSO for all
basic multimodal functions. It is worth to note that IMBOA almost attains the best
performance value of zero based on the mean value error on functions f7 and f10, and
the performance of all the five algorithms are identical on function f8. EPSDE finds the
best solution on function f11.

As shown in the bottom three rows of Table 3 counting the number of +, −, and �
results, the proposed IMBOA has the best overall performance on these benchmark
functions.

5 Conclusions

In this paper, an improved magnetotactic bacteria optimization algorithm (IMBOA) is
presented. It utilizes efficient interaction energy to enhance the diversity of cell pop-
ulation in search process. And it uses an archive to keep better solutions to direct the
whole population in each generation. We also test the performance of the proposed
algorithm on 20 benchmark functions provided for CEC2013 special session on
real-parameter single objective optimization. Experiment results demonstrate that
IMBOA performs better compared with the other algorithms for most benchmark
functions.

Acknowledgements. This work is partially supported by the National Natural Science Foun-
dation of China under Grant No. 61075113, the Excellent Youth Foundation of Heilongjiang
Province of China under Grant No. JC201212.

References

1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference
on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

2. Tereshko, V.: Reaction-diffusion model of a honeybee colony’s foraging behaviour. In:
Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-
P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 807–816. Springer, Heidelberg (2000). doi:10.
1007/3-540-45356-3_79

3. Müeller, S., Marchetto, J., Airaghi, S., Koumoutsakos, P.: Optimization based on bacterial
chemotaxis. IEEE Trans. Evol. Comput. 6, 16–29 (2002)

4. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T.
(eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04944-6_14

86 L. Xu et al.

http://dx.doi.org/10.1007/3-540-45356-3_79
http://dx.doi.org/10.1007/3-540-45356-3_79
http://dx.doi.org/10.1007/978-3-642-04944-6_14
http://dx.doi.org/10.1007/978-3-642-04944-6_14

5. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceedings of World Congress on
Nature & Biologically Inspired Computing (NaBic 2009), USA, pp. 210–214. IEEE
Publications (2009)

6. Mo, H.W.: Research on magnetotactic bacteria optimization algorithm. In: The Fifth
International Conference on Advanced Computational Intelligence, pp. 423–428 (2012)

7. Faivre, D., Schuler, D.: Magnetotactic bacteria and magnetosomes. Chem. Rev. 108, 4875–
4898 (2008)

8. Mo, H.W., Liu, L.L., Xu, L.F., Zhao, Y.Y.: Research on magnetotactic bacteria optimization
algorithm based on the best individual. In: The Sixth International Conference on
Bio-inspired Computing, Wuhan, China, pp. 318–322 (2014)

9. Mo, H.W., Liu, L.L., Xu, L.F.: A power spectrum optimization algorithm inspired by
magnetotactic bacteria. Neural Comput. Appl. 25(7), 1823–1844 (2014)

10. Mo, H.W., Liu, L.L., Zhao, J.: A new magnetotactic bacteria optimization algorithm based
on moment migration. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(1), 15–26 (2017)

11. Liang, J., Qu, B.Y., Suganthan, P., Hernández-Díaz, A.: Problem definitions and evaluation
criteria for the CEC 2013 special session and competition on real-parameter optimization.
Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and
Technical report, Nanyang Technological University, Singapore, Technical report (2013)

12. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation
strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)

13. Garcia-Martinez, C., Lozano, M., Herrera, F., Molina, D., Sanchez, A.M.: Global and local
real-coded genetic algorithms based on parent-centric crossover operators. Eur. J. Oper. Res.
185(3), 1088–1113 (2008)

14. Chen, W.N., et al.: Particle swarm optimization with an aging leader and challengers. IEEE
Trans. Evol. Comput. 17(2), 241–258 (2013)

15. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution
algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2),
1679–1696 (2011)

16. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe
better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

Magnetotactic Bacteria Optimization Algorithm 87

A Guide Sign Optimization Problem
for an Added Road Based on Bird Mating

Optimizer

Fang Liu, Min Huang(&), Teng Zhang, and Feng Mao

Guangdong Provincial Key Laboratory of Intelligent Transportation System,
Sun Yat-sen University, Guangzhou 510006, Guangdong, China

huangm7@mail.sysu.edu.cn

Abstract. As new roads constructed frequently, it is necessary to optimize the
current guide sign system. To solve the problem scientifically and systemati-
cally, this paper proposes an optimization model for current guide sign system in
the situation of adding a road, which is solved by Bird Mating Optimizer
(BMO). The optimization model first selects several important entrances as
optimized starting nodes. Next the set of guiding routes with the best costs from
these starting nodes to the targeted road are solved by BMO. The costs consider
travel time costs, usage costs for vehicles and reconstruction costs for the guide
signs. Then deploy guide signs in the guiding routes considering driving habits.
In addition, perfect the optimized project by deploying several necessary
directly-guiding items in other entrances of the targeted road. Finally, the model
is applied in Huacheng Avenue in Guangzhou for comparison with current
deployment. Guiding accessibility to Huacheng Avenue improves from 77.9%
to 88.9%.

Keywords: Guide sign optimization � Bird mating optimizer � Guide
accessibility

1 Introduction

As information technology developed, ITS (Intelligent transportation System) has
become the future trend of transportation. It is investigated that 76.9% of travellers
thought guide signs play an important roles in the way to their destinations [1].
Researches on intelligentizing guide signs have great significance on the improvement
of traffic operation efficiency, reduction of the emission of pollutants and intelligent
management of transportation infrastructures. Granular data model for guide signs
achieved the first step of intelligentizing guide signs [2]. Then some scholars resear-
ched on guide sign deploying models for a new district, which achieve the intelligent
deployment of guide signs [3]. Evaluation methods are established in the simulation
platform to analyze the guide signs’ effectiveness scientifically [4]. In the aspect of
guide sign optimization, the definition of guiding accessibility is put forward and
maximize guiding accessibility to improve the guide sign system [5]. New roads have
close bond with guide sign system, which are always ignored by traffic managers. As a
result, there are some problems in the current guide sign system such as laggard

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 88–98, 2017.
DOI: 10.1007/978-3-319-61824-1_10

updating, inaccurate or promiscuous guide information. Guide signs without timely
update confuse drivers and increase the probability of traffic accidents. Motivated by
above, this study proposes an optimization model for guide signs in the situation of an
added road.

Bird Mating Optimizer (BMO), proposed by Askarzadeh, is one of meta-heuristic
optimization approaches which imitates the bird mating behavior of different species
[6]. This algorithm combines the idea of classification from swarm algorithms with the
operation of mutation and mating from Evolution Algorithm (EA) and is able to
provide good balance between exploration and exploitation. BMO has been proved to
represent a competitive performance in comparison with other optimization algorithms
in many engineering optimization problems [7, 8]. In this study, BMO is applied to
solve a discrete optimization problem and verify the potential of BMO in discrete
problems.

This paper is arranged in five sections; Sect. 2 describes a mathematic model of the
guide sign optimization for an added road; Sect. 3 presents BMO algorithm to deal
with the discrete problems which proposed in Sect. 2; the case study of Huacheng
Avenue is shown in Sect. 4; finally, conclusions are stated in Sect. 5.

2 Problem Description

For the purpose of solving the guide sign optimization problem for an added road by
mathematical optimization algorithm, a mathematical model of this optimization
problem should be established, which consists of mathematical model of guide signs
and the guide sign optimization problem.

2.1 Mathematical Model of Guide Signs

The guide sign model includes two parts: road-network model and guide sign data
model. Road-network G adopts a classical Node-Arc topology road-network model [9]
formulated by G = (V, A). V is a set of nodes where M is the number of nodes and A is
a set of arcs where ak is an arc connected with node vi and node vj.

V ¼ fviji ¼ 0; 1; 2. . .Mg ð1Þ

A ¼ fak ¼ vi; vj
� ���vi; vj 2 Vg ð1� aÞ

A guide sign system (RS) is a set of guide sign items formulated by Eq. 2 where T is
the number of guide sign items. One of guide sign items includes one guide information
and is the minimum unit of guide signs [10]. According to topological relationship
between the located arc and the guided arc in a guide sign item, we categorize the items
into two types: connectivity items(type = c), which means the located arc and the guided
one are directly connected in road-network G, and directivity items(type = d), which
means the located arc and the guided one are not directly connected in road-network

A Guide Sign Optimization Problem for an Added Road 89

G. Every guide sign item’s information is recorded including its type(type), its located
arc(larc), its guided node(innode), its next arc in the guiding direction(narc) and its
guiding arc(garc).

RS ¼ frstjt ¼ 1; 2; . . .Tg ð2Þ

rst ¼ ftype; larc; innode; narc; garcg ð2� aÞ

type 2 fc, dg; larc; narc; garc 2 A; innode 2 V ð2� bÞ

For example, the attributes of guide sign item rs1 in Fig. 1 are shown as follows:
rs1 = {rs1.type = c, rs1.larc = a01, rs1.innode = v1, rs1.narc = a12, rs1.garc = a12}.

2.2 Modeling of Guide Sign Optimization Problem for an Added Road

According to the road network model, the added road F is regarded as a feature
consisted of R arcs and (R + 1) nodes.

F ¼ ffr ¼ \Dr;Drþ 1 [fr 2 A;Dr;Drþ 1 2 V ; r\R; r 2 N�j g ð3Þ

At first, the optimization model should determine the optimized area(Area), opti-
mized starting node set({Sp}). The optimized area is determined by guiding level of the
targeted road F. The guiding level is an attribute to describe the importance of a feature
in guide sign system. We select starting nodes in the boundary of optimized area.
Generally four uniformly distributed nodes in arterial roads are selected. Terminal
nodes are set as the node set of the targeted road({Dr}). The illustrations of optimized
area, optimized starting nodes and terminal nodes are shown in Fig. 2.

The second step is to find out the optimal guiding routes(ORp) from feasible
solution sets {frp}, where frp represents a feasible route from the start node Sp to the
target road. The quality of a route focuses on both the length and convenience of the

H
uasuiR

d.

H
uaxia

R
d.

Jinsui Rd.

Huaqiang Rd.

X
iancun

R
d.

v1

Huangpu Ave.G
uangzhou

A
ve.

Huangpu Ave.

Huaxia Rd.

Xiancun Rd.

Huaqiang Rd.

Jinsui Rd.

Guangzhou Ave.

rs1

v2

v0

a01

a12

Fig. 1. Example of guide sign model

90 F. Liu et al.

guiding route for travellers and economic effectiveness of deploying guide signs for
traffic managers. To unify dimensions of each term, we transfer all optimal object into
economic costs. So, the objective function(f) is formulated as follows:

min f ¼
Xp
i¼1

ða� Cp
T þ b� Cp

U þCp
RÞ

¼
Xp
i¼1

ða� Vot �
X
k

X
s

LekðfrpÞ � lsk
vs

þ b

�
P

C
M

�
X
k

LekðfrpÞþwT � ItemðfrpÞþwD � SignðfrpÞÞ ð4Þ

Where:

a: number of attracted people travelled to the target road F
Cp
T : the travel time cost of each road user in the route frp

b: attracted traffic volume
Cp
U : the use cost for one vehicle in the route frp

Cp
R: the cost of optimizing guide signs in the route frp

Vot: time value per hour
Lek(frp): length of arc ak in the route frp

lsk ¼
1; guiding level of ak is s
0; otherwise

�

vs: median designed speed in a road of guiding level s
RC: cost for vehicles, such as cost of acquisition, annual inspection
M: annual vehicle kilometers travelled
wT: cost of deploying one guide sign item
wD: cost of deploying one guide sign
Item(frp): number of deploying guide sign items in the route frp
Sign(frp): number of deploying guide signs in the route frp

In the objective function, a� Cp
T represents the travel time cost of travellers whose

destination is the target road F. Travel time cost of a traveller is calculated by the
method of time value unit, which is proved better than the method of salary pricing
[11]. b� Cp

T represents the usage cost for vehicles driven towards the target road F,
which covers the cost of acquisition, annual inspection, maintenance and so on [12]. Cp

R
represents the cost of optimizing guide signs.

After solving the optimal guiding route set({ORp}), guide signs are deployed in the
optimal routes({rstr}). It is unnecessary to deploy guide signs on all intersections of the
optimal routes. Considering the driving habits in route finding [13], some deploying
rules are designed. The following rules are applied in this optimization problem:

A Guide Sign Optimization Problem for an Added Road 91

I. A guide sign for guiding the target road should be deployed in the first arc of the
route.

II. A guide sign should be deployed before left or right turn or U-turn.
III. A guide sign should be deployed after driving straight through three intersec-

tions without guiding information for the target road.

rstr rstr:larc 2 ORp

�� ; rstr:type ¼ d
� � ð5Þ

frsta rsta:innode ¼ Drj g ð5� aÞ

The last step is to deploy guide signs in all terminal nodes({rsta}). The flowchart of
the optimization is shown in Fig. 3. The result of the guide sign optimization problem
for the targeted road F is a guide sign optimization set{rstr, rsta}.

3 Solution Based on BMO

Bird Mating Optimizer (BMO) is one of Evolutionary algorithms (EAs), which is
inspired by mating strategies of bird species to breed broods with superior genes. The
population of BMO algorithm is called society and each member in society is called a
bird, representing a feasible solution in an optimization problem. All the feasible
solutions are divided into female birds and male birds according to the value of
objective function. The females are categorized into two groups so that the better ones
are parthenogenesis and the others are polyandrous. The males with better genes are
selected as monogamous and the others are chosen as polygynous. The birds with the
worst genes, namely promiscuous, are removed from society and new ones are

S1

S2

S3

S4

Dr

Dr+1

A
 Optimized area
 Starting node
 Terminal node

Fig. 2. Some definitions in optimization

Start

Determine terminal
nodes {Dr}

p=0

p=p+1

Obtain the optimal
route Rpr from Sp to Dr

Determine optimized area A
and starting node set {Sp}

r=0, f(ORp)=

r=r+1

r>R

p>4

Deploy guide signs {rstr}

Deploy guide signs in all
terminal nodes{rsta}

End

f(Rpr)<f(ORp)

ORp=Rpr

Y

Y

Y

N

N

N

1

1

Fig. 3. Flowchart of the optimization problem

92 F. Liu et al.

generated using a random way. And then each bird breeds brood by mutating or
mating, which is detailed in Sects. 3.3 and 3.4. After breeding, each bird evaluates the
quality of its brood and if the brood’s genes are better than its parent bird’s, the brood
will stay in the society instead of its parent. Otherwise, the brood will be abandoned
from the society. Repeat breeding until the predefined number of generation is met. The
flowchart is shown in Fig. 4.

BMO has a great performance for solving many continuous optimization problems.
The optimization problem of solving the optimal guiding routes in this study is a
discrete problem. So, it is necessary to recode the feasible solution and redefine the
mating and mutation modes for the discrete optimization problem.

3.1 Coding for Feasible Solution

Inspired by the definition of chromosome in GA, a sequence of nodes and their loci in
the route are recorded as codes of feasible solutions in this optimization problem. For
example, the guiding route in Fig. 5 can be coded as a two-dimensional array{(0, Sp),
(1, v14), (2, v10)…(6, Dr)}.

3.2 Objective Function

As is discussed in Sect. 2.2, the objective function is defined as Eq. 4. The value of
objective function is related to the length of arcs and numbers of optimized guide signs
in the feasible routes. In this guide sign optimization problem, the smaller value of the
objective function means less cost on guide sign optimization for the target road.

Start

Set algorithm parameters

Initialize the society

Calculate the quality of each bird

Specify five species

Remove the worst birds and
generate new promiscuous birds

Mate for every species bird

Perform replacement stage

End

Is the predefined
generation met?

Y

N

Fig. 4. The flowchart of BMO

locus

Dr

nodes

v1 v2 v3

v5 v6 v7 v8

v9 v10 v11 v12

v14 v15 v16
Sp

Sp

0
v14

1
v10

2
v11

3
v7

4
v8

5
Dr

6

Fig. 5. Example of coding a solution

A Guide Sign Optimization Problem for an Added Road 93

3.3 Mating Mode of BMO

Considering the discontinuity of optimization problem and inspired by the idea of
crossover in GA [14], we redefine the candidate mated set and mating mode. The birds
which have at least one same node and different gender as the selected bird in society
are able to be joined the candidate mated set for choosing. Mating mode in BMO has
two patterns due to different bird species: two-parent mating and multi-parent mating.

Two-parent mating is that the two selected parents mate with each other and breed a
brood. Firstly, roulette wheel approach [15] is resorted to choose a mated bird from the
candidate mated set for the selected bird by Eq. 7. In this approach, the bird with better
quality has a larger probability to be chosen. Next randomly choose a common node of
the selected bird and the mated bird as a mating point (that is v10 in Fig. 6). At last the
nodes of the selected bird before the mating point and the nodes of the mated bird after
the mating point are recombined to generate the brood.

PT ¼ 1=f ð x!Þ
Pmt
u¼0

1=f ðxu!Þ
ð7Þ

locus

Dr

nodes

v1 v2 v3

v5 v6 v7 v8

v9 v10 v11 v12

v14 v15 v16
Sp

Sp

0
v14

1
v10

2
v11

3
v7

4
v8

5
Dr

6

locus

Dr

nodes

v1 v2 v3

v5 v6 v7 v8

v9 v10 v11 v12

v14 v15 v16
Sp

Sp

0
v9

1
v10

2
v11

3
v12

4
v8

5
Dr

6

The selected bird

The mated bird

locus

Dr

nodes

v1 v2 v3

v5 v6 v7 v8

v9 v10 v11 v12

v14 v15 v16
Sp

Sp

0
v14

1
v10

2
v11

3
v7

4
v8

5
Dr

6

 mating point

Brood bird

Fig. 6. Example of two-parent mating

94 F. Liu et al.

Where: PT is the probability of the candidate bird selection, mt is the number of
birds in the candidate mated set.

Multi-parent mating is that the selected parent mate with at least two birds to breed
a brood. So the brood’s genes are influenced by at least three birds in society. In
multi-parent mating, mated birds are chosen by an annealing function in Eq. 8. The
birds with more similar quality have a larger probability to be chosen. Multi-parent
mating can be regarded as a multi-step two-parent mating. Choose a bird as the first
mated bird from the candidate mated set and make two-parent mating with the selected
bird to generate an intermediate bird. Then the intermediate bird makes two-parent
mating with other chosen birds to generate a new brood.

PM ¼ expð�Df
T

Þ ð8Þ

Where: PM is the probability of the candidate bird selection, Df is the absolute
difference between the selected bird and the candidate bird. T is an adjustable parameter.

3.4 Mutation Mode of BMO

Mutation mode refers to the mutation of chromosome in GA [16]. In order to enhance
diversity of the local search, two patterns of mutation are adopted: one-point mutation
and two-point mutation. One-point mutation is to select a random locus as a mutation
point (that is v10 in Fig. 7). Keep the route from the optimized starting node(Sp) to the
selected mutation point and regenerate a new route from the mutation point to the
destination(Dr). Two-point mutation is to select two random loci as mutation points
(that is v10, v7 in Fig. 8). Regenerate a new route between these two mutation points to
replace the segment in the original route.

locus

Dr

nodes

v1 v2 v3

v5 v6 v7 v8

v9 v10 v11 v12

v14 v15 v16
Sp

Sp

0
v14

1
v10

2
v11

3
v7

4
v8

5
Dr

6

locus

nodes Sp

0
v14

1
v10

2
Dr

6
v3

5
v2

4
v6

3
After One-point mutation

Fig. 7. Example of one-point mutation

locus

Dr

nodes

v1 v2 v3

v5 v6 v7 v8

v9 v10 v11 v12

v14 v15 v16
Sp

Sp

0
v14

1
v10

2
v11

3
v7

4
v8

5
Dr

6

locus

nodes Sp

0
v14

1
v10

2
Dr

6
v6

3
After Two-point mutation

v8

5
v7

4

Fig. 8. Example of two-point mutation

A Guide Sign Optimization Problem for an Added Road 95

4 Case Study

The guide sign optimization model is applied to improve the guide sign system of
Huacheng Avenue in Tianhe District, Guangzhou.

A reasonable parameters setting has ability to get great balance between better
result and less computing time. We have made some preliminary experiments to
determine appropriate society size and number of generation for the guide sign opti-
mization problem. The society size is set as 20 while the number of generation is set as
20. The other adjustable parameters, referred to the literature of BMO algorithm is set
as follows: the number of parthenogenesis, polyandrous, monogamous, polygynous
and promiscuous is respectively set at 5%, 5%, 50%, 30% and 10% of the society. The
static mutation control factor is set at 0.9 while the dynamic one is set as an increasing
linear function changing from 0.1 to 0.9. It is sufficient that two birds mate with
polyandrous and polygynous birds [6].

As is shown in Fig. 9, the optimal routes from each starting node to the target road
are worked out, whose best value of objective function are presented in Table 1, and
the visualization of optimized guide signs is presented in Fig. 9. As the convergence
curves of optimal routes shows in Fig. 10, convergence optimal solutions are obtained
in all the four routes. And the convergence speeds up as the values of objective
function decrease except that Route 3 obtains a best solution from the initial solutions.
That proved that BMO algorithm can solve the discrete guide sign optimization
successfully.

Guiding accessibility is a quantified index which is used to evaluate if the guide
signs is able to lead drivers to their destination [17]. It is a ratio of numbers of
accessibility signs and total signs guiding for the target feature. Compared with the
current guide sign system, the guiding accessibility of the optimized guide signs
observably improved from 77.9% to 88.9%, which is shown in Table 2. It is proved
that the optimization model has ability to solve the guide sign optimization problem in
the situation of adding a road.

Fig. 9. Result of optimization by BMO

96 F. Liu et al.

5 Conclusion

In this study, an optimization model is proposed to solve the guide sign optimization
problem in the situation of adding a road. At first, the model of guide signs and the guide
sign optimization model for an added road are established. Then the coding and mating
strategies in the Bird Mating Optimizer algorithm are redefined for the discrete opti-
mization. At last, the model is applied to solve the guide sign optimization of Huacheng
Avenue, Guangzhou. Compared with the current guide sign system, the guiding
accessibility improves from 77.9% to 88.9%, which is proved the validity of the model.

Fig. 10. Objective function value during the optimization by BMO

Table 1. Objective function values of the optimal routes (unit: thousand yuan)

Route Travel time
cost

Cost for
vehicles

Cost of optimizing guide
signs

Objective function
values

1 1193.1 572.0 150.0 1915.1
2 522.1 250.3 5.0 777.4
3 215.8 103.5 50.0 369.3
4 377.4 180.9 100.0 658.3

Table 2. Comparison of optimization result and current situation

Total of guide
signs

Number of accessibility
signs

Guiding
accessibility

Current situation 68 53 77.9%
Optimization
result

135 120 88.9%

A Guide Sign Optimization Problem for an Added Road 97

Acknowledgement. This research described in this paper was supported by Science and Tech-
nology Project of Guangdong province (Nos. 2016A02022300, 2016B090918038, 2015B010110005,
2014B010118002), Science and Technology Project of Guangzhou city (201510010247).

References

1. Wang, D.M., Hu, M., Ge, L.Z., Li, Y.J.: User requirements analysis of information elements
on urban road guide sign. Chin. J. Ergon. 21(2), 26–30 (2015)

2. Huang, M., Wu, H.B., Rao, M.L., et al.: Urban road guide signs data model design and
applied resreach. J. Geomat. Sci. Technol. 28(6), 454–457 (2011)

3. Li, M., Huang, M., Niu, Z.M., et al.: Application of data model for guidance system in
deploying guide signs. Appl. Res. Comput. 31(2), 457–460 (2014)

4. Qin, L.Y., Jiang, H., Zhu, Z.L.: Analysis and simulation evaluation for traffic guide sign
system of Hongqiao transport hub. Trans. Stand. 238, 23–27 (2011)

5. Zheng, J., Huang, M., Liu, F., et al.: Artificial bee colony algorithm for guiding the
accessibility optimization problem of a guide sign system. In: CICTP 2016, Shanghai,
pp. 26–39 (2016)

6. Askarzadeh, A.: Bird mating optimizer: an optimization algorithm inspired by bird mating
strategies. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1213–1228 (2014)

7. Li, H., Liu, J.K., Lu, Z.R.: Bird mating optimizer in structural damage identification. In:
Advances in Swarm and Computational Intelligence, Beijing, pp. 49–56 (2015)

8. Huang, S.J., Tai, T.Y., Liu, X.Z., et al.: Application of bird-mating optimization to phase
adjustment of open-wye/open-delta transformers in a power grid. In: IEEE International
Conference on Industrial Technology (2015)

9. Song, Y., Shi, J.J., Xu, G.H.: Dynamic road-network model based on route planning system.
Comput. Commun. 22(5), 28–31 (2004)

10. Li, M.N., Huang, M., Niu, Z.M., et al.: Deployment model for urban guide signs based on
road network topology. Procedia – Soci. Behav. Sci. 96, 1631–1639 (2013)

11. Hu, Y.J.: Research of the quantifying method for determining the resident trip cost in city.
J. Trans. Eng. Inf. 7(1), 5–10 (2009)

12. Fan, X.T., Jin, W.Z.: Trip cost quantification model of urban private car. Comput. Commun.
29(4), 24–27 (2011)

13. Li, M., Huang, M., Li, E.D.: Analytical research on influences of urban direction sign
guidance system on driver behaviors. Technol. Highw. Transp. 4, 151–155 (2015)

14. Ji, G.L.: Survey on genetic algorithm. Comput. Appl. Softw. 21(2), 69–73 (2013)
15. Alireza, A., Alireza, R.: A new heuristic optimization algorithm for modeling of proton

exchange membrane fuel cell: bird mating optimizer. Int. J. Energy Res. 37(10), 1196–1204
(2013)

16. Xu, Q.Z., Ke, X.Z.: Genetic algorithm analysis for shortest path. Comput. Eng. Des. 29(6),
1507–1509 (2008)

17. Li, M., Huang, M., Niu, Z.M., et al.: Analysis and evaluation for guiding accessibility
considering connection signs. Trans. Syst. Eng. Inf. Technol. 14(2), 226–231 (2014)

98 F. Liu et al.

LGWO: An Improved Grey Wolf Optimization
for Function Optimization

Jie Luo, Huiling Chen(&), Kejie Wang, Changfei Tong, Jun Li,
and Zhennao Cai

College of Physics and Electronic Information,
Wenzhou University, Wenzhou, China
chenhuiling.jlu@gmail.com

Abstract. Grey wolf optimization (GWO) algorithm is a novel nature-inspired
heuristic paradigm. GWO was inspired by grey wolves, which mimics the
leadership hierarchy and hunting mechanism of grey wolves in nature. It has
exhibited promising performance in many fields. However, GWO algorithm has
the drawback of slow convergence and low precision. In order to overcome
this drawback, we propose an improved version of GWO enhanced by the Lévy-
flight strategy, termed as LGWO. Lévy-flight strategy was introduced into the
GWO to find better solutions when the grey wolves fall into the local optimums.
The effectiveness of LGWO has been rigorously evaluated against ten bench-
mark functions. The experimental results demonstrate that the proposed
approach outperforms the other three counterparts.

Keywords: Grey wolf optimization � Function optimization � Lévy-flight

1 Introduction

In recent years, meta-heuristic optimization algorithms have become more and more
popular in optimization techniques. Some of them such as Genetic Algorithm (GA) [1],
Ant Colony Optimization (ACO) [2], and Particle Swarm Optimization (PSO) [3] are
well-known among scientists from different fields. These optimization techniques have
been applied in various fields of study. As a new member of the swarm intelligence
algorithms, grey wolf optimization (GWO) [4] algorithm has been applied to many fields,
such as optimal reactive power dispatch problem [5], medical diagnosis [6] and so on.

GWO algorithm is a new meta-heuristic optimization method through imitating the
hunting mechanism of grey wolves in nature. In this algorithm, four types of grey
wolves such as alpha, beta, delta, and omega are employed for simulating the lead-
ership hierarchy. The fittest solution is considered to be alpha, the second and third best
solutions are named as beta and delta respectively. The rest of the candidate solutions
are assumed to be omega. In GWO algorithm the hunting (optimization) is guided by
alpha, beta, and delta. The omega wolves follow these three wolves. The location of
omega (Xi) can be calculated according the location of alpha (Xa), beta (Xb), and delta
(Xd). The inventor of this algorithm, Seyedali Mirjalili, has proved that the GWO
algorithm is able to provide very competitive results compared with other state-of-
the-art meta-heuristic optimization algorithms.

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 99–105, 2017.
DOI: 10.1007/978-3-319-61824-1_11

Lévy-flight was originally introduced by the French mathematician in 1937 named
Paul Lévy. Lévy-flight is a statistical description of motion that extends beyond the
more traditional Brownian motion discovered over one hundred years earlier. A diverse
range of both natural and artificial phenomena are now being described in terms of
Lévy statistics [7]. In previous works, Lévy-flight strategy has been applied in many
optimization algorithms such as PSO [8], shuffled frog-leaping algorithm [9] and
dragonfly algorithm [10]. Inspired from the above works, we introduce the Lévy-flight
strategy into the GWO to improve the randomness, stochastic behavior, and exploration
of grey wolves, and propose a Lévy-flight enhanced grey wolf optimization (LGWO)
algorithm. To the best of our knowledge, it is the first time to propose to employ the
Lévy-flight strategy to improve the performance of GWO algorithm. The proposed
algorithm takes advantage of Lévy-flight’s ability of strengthening global search and
overcoming the problem of being trapped in local minima, so the proposed algorithm
can lead to a faster and more robust method.

The remainder of this paper is structured as follows. In Sect. 2 the detailed
implementation of the Lévy-flight grey wolf optimization algorithm is presented.
Section 3 describes the experimental results. Finally, conclusions are summarized in
Sect. 4.

2 Lévy-Flight Grey Wolf Optimization (LGWO)

To increase the diversity of population against premature convergence and accelerate
the convergence speed as well, we propose an improved GWO algorithm, LGWO.
Lévy-flight has the prominent properties to increase the diversity of population,
sequentially, which can make the algorithm effectively jump out of the local optimum.
We let each grey wolf perform once Lévy-flight after the position updating, which is
formulated as follows.

Xtþ 1 ¼ Xt þL�evy dð Þ � Xt ð1Þ

where t is the current iteration, and d is the dimension of the position vectors.
The LGWO can be divided into several steps as follows.

Step 1. Population initialization.
Give the random location Xi of an individual grey wolf, where i represents the
population size.
Step 2. Calculate fitness.
Calculate the fitness of grey wolves according to the object function.
Step 3. Find the alpha, beta, delta grey wolves.
Sort grey wolves according to their fitness, determine the alpha, beta and delta with
the three fittest grey wolves and the corresponding location among the grey wolves.
Step 4. Update the location of all search agents.
All the moving of grey wolves are guided by alpha, beta and delta, calculate new
location of each grey wolf with Eq. Xi ¼ ðXa þXb þXdÞ=3.

100 J. Luo et al.

Step 5. Perform once Lévy-flight.
After search agents update their position based on the location of the alpha, beta,
and delta, they will perform Lévy-flight. New position can calculated with Eq. (1).
Step 6. Iterative optimization.
Enter the iterative optimization to repeat the implementation of step 2 to 5. The
circulation stops when the iterative number reaches the maximal iterative number.

The pseudo code of the LGWO is as follows.

Initialize the grey wolf population Xi (i=1,2,…,n)
Calculate the fitness of each search agent
Xα=the best search agent
Xβ=the second best search agent
Xδ=the third best search agent

while(t<Max number of iterations)
for each search agent

Update the position of the current search agent
end for
for each search agent

Update the position of the current search agent using Lévy-flight by
equation (1)

end for
Calculate the fitness of all search agents
Update Xα, Xβ, Xδ
t=t+1

end while
return Xα

3 Experimental Results and Discussions

In the experiments, the number of grey wolves was set to 30. Four models including
original GWO, Lévy-flight Grey Wolf Optimization (LGWO), Particle Swarm Opti-
mization (PSO), and Firefly Algorithm (FA) [11] were built in MATLAB R2014b. The
experiments are done on Windows 10 Operation System withi5-5200U Dual-Core
CPU (2.7GHZ) and 4 GB RAM.

In order to verify the effectiveness of the proposed algorithm, four methods were
employed to compare against ten commonly used multidimensional functions as shown
in Table 1, of which f1–f6 are unimodal benchmark functions and f7–f10 are the mul-
timodal benchmark functions. We test each function for 50 times, and calculated the
average (Ave) and standard deviation (Std) respectively.

Table 2 shows the average and standard deviation of ten benchmark functions over
different iterations. The ten benchmark functions are divided the two groups: unimodal

LGWO: An Improved Grey Wolf Optimization for Function Optimization 101

(f1–f6) and multi-modal (f7–f10) functions. As their names suggest, unimodal bench-
mark functions have single optimum, so they can benchmark the exploitation and
convergence of an algorithm. In contrast, multi-modal test functions have more than
one optimum. From the table we can see that the proposed LGWO not only performs
better on unimodal functions than GWO, PSO and FA, but also obtains better exper-
imental results when it is aimed at multimodal functions. It can be seen from Table 2
that the LGWO are better able to find the minimum value than the original GWO when
the iterations is large. When the iterations of the benchmark function are increased, the
LGWO will be more likely to go beyond the original GWO. Moreover, Table 2 also
shows that the LGWO has better stability than the GWO, indicating that its probability
of finding a better solution is bigger than the GWO. The superiority results suggest that
the Lévy-flight strategy can make the GWO more likely to jump out of the local
optimum.

Limited to the space, the example is taken only in the dimension of 10 to describe
the convergence of the involved functions. Figure 1 records the convergence curve of
each function for above four methods. The LGWO algorithm proposed in this paper
has much higher convergence speed than GWO as these graphs shown. It can be seen
from the Fig. 1 that the GWO could find better solution than the PSO and FA.
However, the GWO converges so quickly that it couldn’t discover good value any
more. LGWO is different from the original GWO. Although the curve of the LGWO
tends to be stable, it still shakes sometimes and found better value again, and gradually
goes to convergence. The LGWO inherits the characteristic of the GWO to find the
optimal value quickly, and it also avoids the situation of falling into a local optimum
and never comes out.

Table 1. Benchmark functions

Function Range Minimum

f1ðxÞ ¼
P n

i¼1x
2
i [−100, 100] 0

f2ðxÞ ¼
P n

i¼1jxij þ
Qn

i¼1 jxij [−10, 10] 0

f3ðxÞ ¼
P n

i¼1ð
P i

j�1xjÞ2 [−100, 100] 0

f4ðxÞ ¼ maxifjxij; 1� i� ng [−100, 100] 0

f5ðxÞ ¼
P n�1

i¼1 ½100ðxiþ 1 � x2i Þ2 þðxi � 1Þ2� [−30, 30] 0

f6ðxÞ ¼
P n

i¼1ð½xi þ 0:5�Þ2 [−100, 100] 0

f7ðxÞ ¼
P n

i¼1 � xi sinð
ffiffiffiffiffiffijxij

p Þ [−500, 500] −418.9829*5

f8ðxÞ ¼
P n

i¼1½x2i � 10 cosð2pxiÞþ 10� [−5.12, 5.12] 0

f9ðxÞ ¼ �20 expð�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
n
i¼1x

2
i

q
Þ

� expð1n
P n

i¼1x
2
i cosð2pxiÞÞþ 20þ e

[−32, 32] 0

f10ðxÞ ¼ 1
4000

P n
i¼1x

2
i �

Qn
i¼1 cosð xiffiip Þþ 1 [−600, 600] 0

102 J. Luo et al.

Table 2. Results of testing benchmark functions

Functions Iterations LGWO GWO PSO FA

Ave Std Ave Std Ave Std Ave Std

f1 200 5.49e−41 1.85e−41 1.33e−40 3.83e−40 10.3218 3.0415 115.5736 30.3075

400 1.83e−85 9.57e−85 6.71e−81 2.41e−80 9.0246 2.5405 3.2053 0.7857

600 1.4e−106 8.3e−106 4.4e−102 2.2e−101 8.3400 2.2393 0.0699 0.0174

800 2.4e−117 1.5e−117 8.4e−113 3.7e−112 7.8747 2.1498 0.0035 0.0012

1000 1.2e−120 7.3e−119 4.0e−116 1.8e−115 7.6112 2.1725 8.6e−05 3.4e−05

f2 200 2.49e−24 4.34e−24 1.40e−23 1.38e−23 8.0192 1.3209 2.6830 0.3733

400 2.19e−48 3.80e−48 1.73e−47 3.51e−47 7.3198 1.0921 0.4782 0.0543

600 1.30e−60 2.82e−60 1.15e−59 2.52e−59 7.1030 1.0170 0.0984 0.0203

800 4.36e−66 1.00e−66 3.36e−65 6.59e−65 6.9876 0.9414 0.0163 0.0043

1000 8.84e−68 2.02e−68 6.98e−67 1.36e−66 6.7634 0.8999 0.0027 6.47e−04

f3 200 2.18e−17 1.36e−17 1.25e−14 5.99e−14 17.3898 4.5296 210.4943 72.1206

400 7.17e−38 3.46e−38 3.46e−31 1.44e−29 13.4786 3.7466 5.2665 1.6820

600 1.31e−51 8.20e−51 1.55e−41 8.03e−41 12.4173 3.3408 0.1125 0.0370

800 1.36e−59 8.25e−59 1.50e−48 8.00e−48 11.4855 2.9942 0.0080 0.0040

1000 3.98e−62 2.50e−61 3.08e−51 1.68e−50 10.4933 2.6142 3.08e−04 1.35e−04

f4 200 9.05e−15 2.13e−14 4.67e−15 7.65e−15 1.8764 0.2566 6.0516 0.8163

400 1.08e−28 3.18e−28 4.76e−27 6.79e−27 1.7202 0.2525 0.9721 0.1277

600 5.37e−35 1.21e−35 3.74e−33 6.18e−33 1.6362 0.2036 0.1482 0.0179

800 3.63e−38 8.26e−38 2.22e−36 3.47e−36 1.5722 0.2012 0.0393 0.0076

1000 3.41e−39 7.69e−39 2.09e−37 3.25e−37 1.5403 0.2157 0.0061 0.0013

f5 200 6.9512 0.3782 6.8907 0.4102 2.83e + 03 1.48e + 03 3.00e + 03 1.91e + 03

400 6.6556 0.5042 6.7009 0.5567 2.16e + 03 1.06e + 03 59.7347 75.8749

600 6.5200 0.5420 6.6300 0.5790 1.87e + 03 918.5846 29.7589 59.8659

800 6.4459 0.5836 6.5184 0.5875 1.58e + 03 761.0960 24.7992 56.8106

1000 6.3606 0.6087 6.4253 0.6564 1.46e + 03 672.2368 23.4208 56.2300

f6 200 0.0579 0.0665 0.0497 0.0551 10.2588 2.7969 120.3125 35.1500

400 0.0290 0.0493 0.0236 0.0355 9.4074 2.4384 3.0748 0.7166

600 0.0093 0.0122 0.0130 0.0351 8.5023 2.5372 0.0646 0.0196

800 0.0025 0.0017 0.0073 0.0354 7.7028 2.4274 0.0035 0.0013

1000 2.11e-05 3.31e-05 0.0050 0.0354 7.2818 2.1844 9.45e-05 3.78e-05

f7 200 −2.0e + 03 202.7682 −2.0e + 03 199.7866 −2.4e + 03 392.3186 −2.4e + 03 253.3992

400 −2.2e + 03 220.6800 −2.2e + 03 202.7934 −2.5e + 03 414.0335 −2.8e + 03 271.9065

600 −2.4e + 03 241.9892 −2.4e + 03 270.8392 −2.5e + 03 413.8999 −2.8e + 03 272.3528

800 −2.7e + 03 295.8849 −2.6e + 03 291.3653 −2.5e + 03 414.0291 −2.8e + 03 272.3546

1000 −2.8e + 03 306.5871 −2.7e + 03 321.8249 −2.5e + 03 413.9706 −2.8e + 03 272.3546

f8 200 1.4873 4.8465 0.5348 1.6122 73.1296 8.5777 33.9514 5.2415

400 0.9383 3.4937 0.1421 0.7044 69.4196 8.3337 10.1710 3.8351

600 0.6034 2.0852 0.1322 0.6544 66.5019 8.2603 7.7521 3.6072

800 0.5266 1.8176 0.1285 0.6357 63.8435 8.3588 7.6832 3.6072

1000 0.4692 1.6174 0.1252 0.6194 62.4198 8.0957 7.6811 3.6073

f9 200 0.1985 1.8703 0.1770 1.2398 71.6533 8.8169 34.2501 6.1371

400 0.1092 0.7639 0.1386 0.9802 67.8814 9.9679 9.3912 2.9315

600 0.0580 0.1351 0.1075 0.7600 65.3662 10.4020 6.9800 2.8497

800 0.0179 0.0351 0.0994 0.7029 62.2983 8.9925 6.9069 2.8456

1000 0.0039 0.0137 0.0885 0.6259 60.8011 8.9990 6.9051 2.8457

f10 200 0.0410 0.0795 0.0617 0.1769 0.6932 0.1238 2.0713 0.2557

400 0.0195 0.0496 0.0451 0.0750 0.6201 0.1100 0.8524 0.0914

600 0.0170 0.0392 0.0231 0.0694 0.5782 0.1091 0.4286 0.1249

800 0.0144 0.0301 0.0203 0.0575 0.5582 0.1109 0.0303 0.0339

1000 0.0131 0.0248 0.0197 0.0461 0.5438 0.1012 0.0228 0.0337

LGWO: An Improved Grey Wolf Optimization for Function Optimization 103

4 Conclusions

This work has proposed an improved GWO, LGWO for function optimization. The
main novelty of this paper lies in the proposed LGWO approach, which aims at
obtaining the better solution quality and converging at a faster speed. In order to

Fig. 1. Convergence curves of ten benchmark functions for four methods when Dimension = 10

104 J. Luo et al.

achieve this purpose, we have introduced Lévy-flight strategy into the original GWO.
The empirical experiments on a set of multidimensional functions have demonstrated
the superiority of the proposed method over the other three counterparts. In future
works, we plan to apply the proposed method to optimize the parameters of machine
learning methods such as support vector machines and kernel extreme learning
machine.

Acknowledgements. This research is supported by the National Natural Science Foundation of
China (NSFC) (61303113, 61402337). This research is also funded by the Zhejiang Provincial
Natural Science Foundation of China (LY17F020012, LQ13G010007, LQ13F020011 and
LY14F020035), the Science and Technology Plan Project of Wenzhou, China (G20140048,
H20110003).

References

1. Holland, J.H.: Genetic algorithms. Sci. Am. 267, 66–72 (1992)
2. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization artificial ants as a

computational intelligence technique. IEEE Comput. Intell. Mag. 1, 28–39 (2006)
3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE

International Conference on Neural Networks. IEEE, vol. 4, pp. 1942–1948. IEEE Press,
Piscataway (1995)

4. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61
(2014)

5. Sulaiman, M.H., Mustaffa, Z., Mohamed, M.R., Aliman, O.: Using the gray wolf optimizer
for solving optimal reactive power dispatch problem. Appl. Soft Comput. J. 32, 286–292
(2015)

6. Li, Q., Chen, H., Huang, H., Zhao, X., Cai, Z., Tong, C., Liu, W., Tian, X.: An enhanced
grey wolf optimization based feature selection wrapped kernel extreme learning machine for
medical diagnosis. Comput. Math. Methods Med. 2017 (2017)

7. Kamaruzaman, A.F., Zain, A.M., Yusuf, S.M., Udin, A.: Lévy flight algorithm for
optimization problems—a literature review. Appl. Mech. Mater. 421, 496–501 (2013)

8. Jensi, R., Jiji, G.W.: An enhanced particle swarm optimization with levy flight for global
optimization. Appl. Soft Comput. 43, 248–261 (2016)

9. Tang, D., Yang, J., Dong, S., Liu, Z.: A lévy flight-based shuffled frog-leaping algorithm and
its applications for continuous optimization problems. Appl. Soft Comput. 49, 641–662
(2016)

10. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27, 1053–
1073 (2016)

11. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T.
(eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04944-6_14

LGWO: An Improved Grey Wolf Optimization for Function Optimization 105

http://dx.doi.org/10.1007/978-3-642-04944-6_14
http://dx.doi.org/10.1007/978-3-642-04944-6_14

An Improved Monarch Butterfly Optimization
with Equal Partition and F/T Mutation

Gai-Ge Wang1(&), Guo-Sheng Hao1, Shi Cheng2, and Zhihua Cui3

1 School of Computer Science and Technology,
Jiangsu Normal University, Xuzhou, Jiangsu, China

gaigewang@gmail.com, gaigewang@163.com,

guoshenghaoxz@tom.com,
2 School of Computer Science, Shaanxi Normal University, Xi’an, China

cheng@snnu.edu.cn
3 Complex System and Computational Intelligence Laboratory,

Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi, China
zhihua.cui@hotmail.com

Abstract. In general, the population of most metaheuristic algorithms is ran-
domly initialized at the start of search. Monarch Butterfly Optimization
(MBO) with a randomly initialized population, as a kind of metaheuristic
algorithm, is recently proposed by Wang et al. In this paper, a new population
initialization strategy is proposed with the aim of improving the performance of
MBO. Firstly, the whole search space is equally divided into NP (population
size) parts at each dimension. And then, in order to add the diversity of the
initialized population, two random distributions (T and F distribution) are used
to mutate the equally divided population. Accordingly, five variants of MBOs
are proposed with new initialization strategy. By comparing five variants of
MBOs with the basic MBO algorithm, the experimental results presented clearly
demonstrate five variants of MBOs have much better performance than the basic
MBO algorithm.

Keywords: Benchmark � Monarch butterfly optimization � Equal partition �
F mutation � T mutation

1 Introduction

In computer science, decision making, and mathematics, optimization is to
minimize/maximize a function. In general, most optimization algorithms can loosely be
divided into two categories: traditional mathematical programming methods and
modern metaheuristic algorithms. The traditional mathematical programming methods
will get the same results with the same initial conditions, but they are hard to solve
modern complicated engineering problems. While, the later, modern metaheuristic
algorithms can solve modern complicated problems well, though they will get different
results even if they are implemented under the same conditions. Due to their excellent
performance, more and more scholars pay attention to the research of metaheuristic
algorithms.

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 106–115, 2017.
DOI: 10.1007/978-3-319-61824-1_12

In the past decades, many state-of-the-art metaheuristic algorithms have been
proposed, such as differential evolution (DE) [1, 2], cuckoo search (CS) [3–8], particle
swarm optimization (PSO) [9–12], biogeography-based optimization (BBO) [13–15],
harmony search (HS) [16, 17], gravitational search algorithm (GSA) [18, 19], fireworks
algorithm (FWA) [20], brain storm optimization (BSO) [21, 22], earthworm opti-
mization algorithm (EWA) [23], elephant herding optimization (EHO) [24, 25], water
wave optimization [26], ant lion optimizer (ALO) [27], multi-verse optimizer
(MVO) [28], firefly algorithm (FA) [29, 30], ant colony optimization (ACO) [31],
bat algorithm (BA) [32–35], grey wolf optimizer (GWO) [36], and krill herd
(KH) [37–43]. For most metaheuristic algorithms, their population are initialized in a
random way. In the many different random distributions, uniform is one of the most
used ones.

In this paper, we will take MBO algorithm [44–46] as an example to show a new
initialization strategy for metaheuristic algorithms. Firstly, the whole search space is
equally divided into NP (population size) parts at each dimension. And then, in order to
add the diversity of the initialized population, two random distributions (T and F dis-
tribution) are used to mutate the equally divided population. Accordingly, five variants
of MBOs are proposed with new initialization strategy. By comparing them with the
basic MBO algorithm, the experimental results presented clearly demonstrate five
variants of MBOs have much better performance than the basic MBO algorithm.

The organization of this paper is outlined here. Section 2 provides the mainframe of
the basic MBO algorithm. Subsequently, the improved MBO with new initialization
strategy is presented in Sect. 3, and is followed by several simulation results, com-
paring five variants of with the basic MBO algorithm for benchmark optimization as
presented in Sect. 4. Section 5 concludes our work.

2 Related Work

Though Monarch Butterfly Optimization algorithm [44] has been proposed, many
scholars have worked on MBO algorithm. In this section, some of the most repre-
sentative work regarding MBO are summarized and reviewed.

Ghetas et al. proposed an innovation method called MBHS to tackle the opti-
mization problem [47]. In MBHS, the harmony search (HS) adds mutation operators to
the process of adjusting operator to enhance the exploitation, exploration ability, and
speed up the convergence rate of MBO. For the purpose to validate the performance of
MBHS, 14 benchmark functions are used, and the performance is compared with
well-known search algorithms.

Feng et al. presented a novel binary monarch butterfly optimization (BMBO)
method, intended for addressing the 0–1 knapsack problem (0–1 KP) [46]. Two tuples,
consisting of real-valued vectors and binary vectors, are used to represent the monarch
butterfly individuals in BMBO. Three kinds of individual allocation schemes are tested
in order to achieve better performance. Toward revising the infeasible solutions and
optimizing the feasible ones, a novel repair operator, is employed. The comparative
study of the BMBO with four algorithms clearly points toward the superiority of the
former in terms of convergent capability and stability in solving the 0–1 KP.

An Improved Monarch Butterfly Optimization 107

In order to overcome this, Wang et al. a new version of the MBO algorithm [45,
48], by incorporating crossover operator. A variant of the original MBO, the proposed
one is essentially a self-adaptive crossover (SAC) operator. A kind of greedy strategy is
also utilized. The proposed methodology is essentially a new version of the original
MBO, supplemented with Greedy strategy and self-adaptive Crossover operator
(GCMBO). The proposed GCMBO method is benchmarked by twenty-five standard
functions.

Feng et al. proposed a novel chaotic MBO algorithm (CMBO) [49], in which chaos
theory is introduced in order to enhance its global optimization ability. In CMBO, 12
one-dimensional classical chaotic maps are used to tune two main migration processes
of monarch butterflies. Meanwhile, applying Gaussian mutation operator to some worst
individuals can effectively prevent premature convergence of the optimization process.

Ghanem and Jantan combined artificial bee colony (ABC) with elements from the
MBO algorithm [50]. The combined method introduces a new hybrid approach by
modifying the butterfly adjusting operator in MBO algorithm and uses that as a
mutation operator to replace employee phase of the ABC algorithm. The new algorithm
is called Hybrid ABC/MBO (HAM). The proposed algorithm was evaluated using 13
benchmark functions and compared with the nine metaheuristic methods.

Wang et al. proposed a discrete MBO (DMBO) [51], and firstly used to solve
Chinese TSP (CTSP). Furthermore, the parametric study for one of the most parameter,
butterfly adjusting rate (BAR), is also provided. The best-selected BAR is inserted into
the DMBO method and then solve CTSP problem.

Feng et al. proposed a novel multi-strategy monarch butterfly optimization
(MMBO) algorithm for the discounted 0–1 knapsack problem (DKP) [52]. In MMBO,
two effective strategies, neighborhood mutation with crowding and Gaussian pertur-
bation, are introduced into MMBO. Experimental analyses show that the first strategy
can enhance the global search ability, while the second strategy can strengthen local
search ability and prevent premature convergence during the evolution process.
Accordingly, MBO is combined with each strategy, denoted as NCMBO and
GMMBO, respectively. The experimental results on three types of large-scale DKP
instances show that NCMBO, GMMBO and MMBO are all suitable for solving DKP.

3 Monarch Butterfly Optimization

By idealizing the migration behaviour of monarch butterflies, Wang et al. proposed a
new swarm intelligence algorithm, called MBO [44].

In MBO, the number of monarch butterflies in Land 1 and Land 2 is NP1 and NP2.
NP is population size; p is the ratio of monarch butterflies in Land 1. Subpopulation 1
and Subpopulation 2 are composed of monarch butterflies in Land 1 and Land 2,
respectively. Accordingly, migration operator can be given as

xtþ 1
i;k ¼ xtr1;k; ð1Þ

where xtþ 1
i;k indicates the kth element of xi at generation t + 1. Similarly, xtr1;k indicates

the kth element of xr1 . t is the current generation number. Butterfly r1 is randomly

108 G.-G. Wang et al.

selected from Subpopulation 1. When r� p, xtþ 1
i;k is generated by Eq. (1). On the

contrast, if r[p, xtþ 1
i;k is updated as follows:

xtþ 1
i;k ¼ xtr2;k; ð2Þ

where xtr2;k indicates the kth element of xr2 [44].
For all the elements in butterfly j, if rand � p, it can be updated as

xtþ 1
j;k ¼ xtbest;k; ð3Þ

where xtþ 1
j;k indicates the kth element of xj at generation t + 1. Similarly, xtbest;k indicates

the kth element of xbest with the fittest solution in butterfly population. On the contrast,
if rand > p, it can be updated as

xtþ 1
j;k ¼ xtr3;k; ð4Þ

where xtr3;k indicates the kth element of xr3 . More MBO can be found in [44].

4 Improving MBO with Equal Partition and F/T Mutation

For most metaheuristic algorithms, their individuals in initial population are randomly
located in the whole search space. In this paper, we propose an enhanced initialization
strategy for metaheuristic algorithms. This proposed initialization strategy is then
incorporated into the basic MBO algorithm with the aim of improving the performance
of MBO. The enhanced initialization strategy involves two aspects: equal partition and
mutation. The main idea of the proposed initialization strategy can be given as follows.

4.1 Equal Partition

In order to fully explore the information of the whole search space, the whole search
space is equally divided. In this way, all the individuals can be located in the whole
search space. We will take the dth dimensional as an example to show how to partition
the search space.

Suppose xid is the dth element of the ith individual for population P, and its upper
and lower bound are Ld and Ud (Ud > Ld), respectively. Accordingly, we get a line
segment AB. In fact, points A and B are respectively Ld and Ud, as shown in Fig. 1.

A, C1 B, CNPC2 C3

UdLd

CNP-1CNP-2... Cj Cj+1 ...

Fig. 1. Initializing population with equal partition

An Improved Monarch Butterfly Optimization 109

Suppose C1, C2, ���, Cj, Cj+1, ���, CNP are equal partition points at line segment AB,
and their corresponding coordinates are Y1, Y2, ���, Yj, Yj+1, ���, YNP, respectively.
Clearly, C1 and CNP are essentially C1 and CNP, and Y1 = Ld, YNP = Ud. Because
Cj (j = 1, ���, NP) is equal partition point at line segment AB, its coordinate Yj can be
given as follows:

Yj¼Ld þðj� 1Þ � Ud � Ld
NP� 1

; j ¼ 1; � � � ;NP ð5Þ

Next, an integer k is randomly gotten between 1 and NP. So, we get xid = Yk. In
order to fully explore the information of the whole search space, an integer sequence
R = {R1, R2, ���, Rk, Rk+1, ���, RNP} are generated. Accordingly, the dth element of the
ith individual xik can be given below.

xik ¼ YRk ð6Þ

Until now, the dth element in xi (xid) for population P have been initialized. All the
other elements in xi for population P can be initialized like xid. Accordingly, all the
other individuals in population P will be initialized as xi. After equal partition, we get
initial population P1.

4.2 Mutation

As mentioned before, population P1 is generated by equal partition. In order to add the
diversity of the population, randomness can be introduced into the generated popula-
tion, and this introduced randomness can be considered as mutation operator for
individuals. For xid, its responding mutation value x

0
id can be given as

x
0
id ¼ MuðxidÞ ð7Þ

Function Mu(xid) can be any random distribution. In this paper, we use T and F
distribution to mutate the population. Through the mutation operator, as shown in
Eq. (7), we get a new population P2.

Up to now, we get two initial populations P1 and P2. Therefore, three choices for
initial population can be provided: P1, P2, and {P1[P2}. Accordingly, for MBO, three
improved MBO algorithms can be generated. We will take T distribution as an example.
Three generated MBO algorithms can be given as MBOEP, MBOTM, MBOEPTM.
In MBOEP, the population P1 generated by equal partition is considered as the initial
population; in MBOTM, the mutation population P2 generated by mutation operator as
shown in Eq. (7) is considered as the initial population; while in MBOEPTM, the NP
best individuals are selected from {P1[P2} and considered as the initial population. In
short, we can use EP, TM, and EPTM short for MBOEP, MBOTM, and MBOEPTM,
respectively. Similarly, function Mu is generated by F distribution, we can get another
three improved MBO algorithms, which are MBOEP (EP), MBOFM (FM), and
MBOEPFM (EPFM). Variants of MBOs will be verified in the next section.

110 G.-G. Wang et al.

5 Simulation Results

In this section, variants of MBOs (MBO, MBOEP, MBOFM, MBOEPFM, MBOTM,
and MBOEPTM), are verified by twelve benchmarks, as shown in Table 1. Both
maximum generation and population size are set to 200, and the dimension of twelve
benchmarks are set to 100. For other parameters, they are set as follows: butterfly
adjusting rate = 5/12. In order to obtain fair results, all the implementations are con-
ducted under the same conditions as shown in [53].

In this paper, in order to get the most representative results, fifty independent runs
are implemented, and the results are recorded in Table 2. From Table 2, we can see,
five variants of MBOs performs better than the basic MBO on most benchmarks.
Especially, MBOEPTM has the best performance for the mean function value, while
MBOTM has the smallest Std values. This indicates the function values obtained by
MBOTM will fall into the smallest range of the search space. Comprehensively con-
sidering all the algorithms, MBOTM and MBOEPTM have the similar performance
which perform much better than other four MBOs (MBO, MBOEP, MBOFM,
MBOEPFM) Ggg.

Furthermore, the convergence history of F05 and F12 are also provided, as shown
in Figs. 2 and 3.

From Fig. 2, clearly, MBOEPTM and MBOTM (especially MBOEPTM) have
much better function values than other four MBO methods (MBO, MBOEP, MBOFM,
MBOEPFM). MBOEPTM has a fastest convergence speed, even it can get the best
results within twenty generations.

From Fig. 3, similar to Fig. 2, MBOEPTM is well capable of finding the minimum
with the fastest speed. MBOEPTM has the second best performance, which is only
inferior to MBOEPTM. This indicates that our proposed initialization strategy can
significantly improve the performance of the basic MBO algorithm.

Table 1. Benchmark functions.

No. Name No. Name

F01 Ackley F07 Levy
F02 Alpine F08 Pathological function
F03 Brown F09 Penalty #1
F04 Csendes F10 Penalty #2
F05 Griewank F11 Powell
F06 Holzman 2 function F12 Schwefel 2.21

An Improved Monarch Butterfly Optimization 111

6 Discussion and Conclusions

In this paper, a new initialization strategy is proposed in order to improve the per-
formance of the metaheuristic algorithms. The newly proposed initialization strategy
includes two parts: equal partition and mutation. MBO has been taken as an example to
verify our proposed population initialization strategy. In this initialization population
strategy, firstly, the whole search space is equally divided into NP (population size)
parts at each dimension. And then, in order to add the diversity of the initialized
population, two random distributions (T and F distribution) are used to mutate the
equally divided population. Accordingly, five variants of MBOs are proposed with new
initialization. By comparing with the basic MBO algorithm on twelve benchmark
functions, the experimental results presented clearly demonstrate five variants of MBOs
have much better performance than the basic MBO algorithm.

Fig. 2. Convergent process of six variants
of MBOs on F05 Griewank with D = 100.

Fig. 3. Convergent process of six variants of
MBOs on F12 Schwefel 2.21 with D = 100.

Table 2. Optimization results obtained by four methods with different population size and
maximum generations.

MBO MBOEP MBOFM MBOEPFM MBOTM MBOEPTM

F01 17.83 ± 1.57 17.01 ± 3.70 12.30 ± 6.36 17.67 ± 2.71 19.62 ± 0.34 15.05 ± 5.95

F02 138.36 ± 85.90 120.49 ± 123.53 100.20 ± 89.97 172.79 ± 71.46 103.24 ± 40.83 74.80 ± 56.49

F03 5.8E9 ± 1.4E10 3.4E12 ± 5.2E12 7.8E10 ± 1.8E11 3.9E8 ± 7.0E8 180.26 ± 365.43 63.41 ± 43.90

F04 48.08 ± 38.52 7.30 ± 8.15 7.70 ± 9.38 8.45 ± 6.72 5.81 ± 5.45 0.15 ± 0.24

F05 731.40 ± 777.32 1.4E3 ± 1.2E3 948.03 ± 597.68 1.8E3 ± 680.46 391.60 ± 526.35 239.86 ± 393.65

F06 3.1E6 ± 3.4E6 5.3E6 ± 2.6E6 3.2E6 ± 3.6E6 3.0E6 ± 2.7E6 1.3E6 ± 1.6E6 1.2E6 ± 1.4E6

F07 324.14 ± 389.35 777.65 ± 335.73 722.26 ± 379.74 466.92 ± 382.39 237.32 ± 191.90 258.34 ± 255.94

F08 32.47 ± 4.95 27.94 ± 5.52 25.24 ± 10.18 18.84 ± 9.21 30.13 ± 2.85 25.83 ± 7.92

F09 5.9E8 ± 1.1E9 1.5E9 ± 1.5E9 2.0E9 ± 1.5E9 4.7E8 ± 1.0E9 2.3E8 ± 3.4E8 2.8E8 ± 4.6E8

F10 9.4E8 ± 2.2E9 2.1E9 ± 2.6E9 1.5E9 ± 2.4E9 1.4E9 ± 1.9E9 5.7E8 ± 1.4E9 1.1E9 ± 1.7E9

F11 4.0E4 ± 2.7E4 2.4E4 ± 1.8E4 1.9E4 ± 2.9E4 1.9E4 ± 3.2E4 6.2E3 ± 8.3E3 1.2E4 ± 1.01E4

F12 45.68 ± 27.09 49.43 ± 22.02 56.54 ± 35.90 37.01 ± 28.34 64.47 ± 33.70 22.19 ± 29.42

112 G.-G. Wang et al.

Acknowledgements. This work was supported by the Natural Science Foundation of Jiangsu
Province (No. BK20150239) and National Natural Science Foundation of China (No. 61503165
and No. 61673196).

References

1. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

2. Wang, G.-G., Gandomi, A.H., Alavi, A.H., Hao, G.-S.: Hybrid krill herd algorithm with
differential evolution for global numerical optimization. Neural Comput. Appl. 25, 297–308
(2014)

3. Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In: Proceeding of World Congress on
Nature & Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publications
(2009)

4. Li, X., Yin, M.: Modified cuckoo search algorithm with self adaptive parameter method. Inf.
Sci. 298, 80–97 (2015)

5. Wang, G.-G., Deb, S., Gandomi, A.H., Zhang, Z., Alavi, A.H.: Chaotic cuckoo search. Soft.
Comput. 20, 3349–3362 (2016)

6. Wang, G.-G., Gandomi, A.H., Yang, X.-S., Alavi, A.H.: A new hybrid method based on krill
herd and cuckoo search for global optimization tasks. Int. J. Bio-Inspired Comput. 8, 286–
299 (2016)

7. Wang, G.-G., Gandomi, A.H., Zhao, X., Chu, H.E.: Hybridizing harmony search algorithm
with cuckoo search for global numerical optimization. Soft. Comput. 20, 273–285 (2016)

8. Wang, G., Guo, L., Duan, H., Liu, L., Wang, H., Wang, J.: A hybrid meta-heuristic DE/CS
algorithm for UCAV path planning. J. Inform. Comput. Sci. 9, 4811–4818 (2012)

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceeding of the IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE, Perth (1995)

10. Shieh, H.-L., Kuo, C.-C., Chiang, C.-M.: Modified particle swarm optimization algorithm
with simulated annealing behavior and its numerical verification. Appl. Math. Comput.
218, 4365–4383 (2011)

11. Mirjalili, S., Lewis, A.: S-shaped versus V-shaped transfer functions for binary particle
swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013)

12. Wang, G.-G., Gandomi, A.H., Yang, X.-S., Alavi, A.H.: A novel improved accelerated
particle swarm optimization algorithm for global numerical optimization. Eng. Comput.
31, 1198–1220 (2014)

13. Simon, D.: Biogeography-based optimization. IEEE Trans. Evolut. Comput. 12, 702–713
(2008)

14. Zheng, Y.-J., Ling, H.-F., Xue, J.-Y.: Ecogeography-based optimization: enhancing
biogeography-based optimization with ecogeographic barriers and differentiations. Comput.
Oper. Res. 50, 115–127 (2014)

15. Duan, H., Zhao, W., Wang, G., Feng, X.: Test-sheet composition using analytic hierarchy
process and hybrid metaheuristic algorithm TS/BBO. Math. Probl. Eng. 2012, 1–22 (2012)

16. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm:
harmony search. Simulation 76, 60–68 (2001)

17. Wang, G., Guo, L., Duan, H., Wang, H., Liu, L., Shao, M.: Hybridizing harmony search
with biogeography based optimization for global numerical optimization. J. Comput. Theor.
Nanos. 10, 2318–2328 (2013)

An Improved Monarch Butterfly Optimization 113

18. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf.
Sci. 179, 2232–2248 (2009)

19. Yin, M., Hu, Y., Yang, F., Li, X., Gu, W.: A novel hybrid K-harmonic means and
gravitational search algorithm approach for clustering. Expert Syst. Appl. 38, 9319–9324
(2011)

20. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K. (eds.)
Advances in Swarm Intelligence, vol. 6145, pp. 355–364. Springer, Heidelberg (2010)

21. Shi, Y.: An optimization algorithm based on brainstorming process. Int. J. Swarm Intell. Res.
2, 35–62 (2011)

22. Shi, Y., Xue, J., Wu, Y.: Multi-objective optimization based on brain storm optimization
algorithm. Int. J. Swarm Intell. Res. 4, 1–21 (2013)

23. Wang, G.-G., Deb, S., Coelho, L.D.S.: Earthworm optimization algorithm: a bio-inspired
metaheuristic algorithm for global optimization problems. Int. J. Bio-Inspired Comput.
(2015)

24. Wang, G.-G., Deb, S., Coelho, L.D.S.: Elephant herding optimization. In: 2015 3rd
International Symposium on Computational and Business Intelligence (ISCBI 2015), pp. 1–5.
IEEE (2015)

25. Wang, G.-G., Deb, S., Gao, X.-Z., Coelho, L.D.S.: A new metaheuristic optimization
algorithm motivated by elephant herding behavior. Int. J. Bio-Inspired Comput. 8, 394–409
(2016)

26. Zheng, Y.-J.: Water wave optimization: a new nature-inspired metaheuristic. Comput. Oper.
Res. 55, 1–11 (2015)

27. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)
28. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired

algorithm for global optimization. Neural Comput. Appl. 27, 495–513 (2016)
29. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int.

J. Bio-Inspired Comput. 2, 78–84 (2010)
30. Guo, L., Wang, G.-G., Wang, H., Wang, D.: An effective hybrid firefly algorithm with

harmony search for global numerical optimization. Sci. World J. 2013, 1–10 (2013)
31. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating

agents. IEEE Trans. Syst. Man Cybern. B Cybern. 26, 29–41 (1996)
32. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome (2010)
33. Wang, G., Guo, L.: A novel hybrid bat algorithm with harmony search for global numerical

optimization. J. Appl. Math. 2013, 1–21 (2013)
34. Wang, G.-G., Chu, H.E., Mirjalili, S.: Three-dimensional path planning for UCAV using an

improved bat algorithm. Aerosp. Sci. Technol. 49, 231–238 (2016)
35. Xue, F., Cai, Y., Cao, Y., Cui, Z., Li, F.: Optimal parameter settings for bat algorithm. Int.

J. Bio-Inspired Comput. 7, 125–128 (2015)
36. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61

(2014)
37. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm.

Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)
38. Wang, G.-G., Gandomi, A.H., Alavi, A.H.: Stud krill herd algorithm. Neurocomputing 128,

363–370 (2014)
39. Wang, G.-G., Gandomi, A.H., Alavi, A.H.: An effective krill herd algorithm with migration

operator in biogeography-based optimization. Appl. Math. Model. 38, 2454–2462 (2014)
40. Wang, G.-G., Gandomi, A.H., Alavi, A.H., Deb, S.: A hybrid method based on krill herd and

quantum-behaved particle swarm optimization. Neural Comput. Appl. 27, 989–1006 (2016)
41. Wang, G.-G., Deb, S., Gandomi, A.H., Alavi, A.H.: Opposition-based krill herd algorithm

with Cauchy mutation and position clamping. Neurocomputing 177, 147–157 (2016)

114 G.-G. Wang et al.

42. Wang, G.-G., Gandomi, A.H., Alavi, A.H., Deb, S.: A multi-stage krill herd algorithm for
global numerical optimization. Int. J. Artif. Intell. Tools 25, 1550030 (2016)

43. Wang, G.-G., Gandomi, A.H., Alavi, A.H., Gong, D.: A comprehensive review of krill herd
algorithm: variants, hybrids and applications. Artif. Intell. Rev. (2017)

44. Wang, G.-G., Deb, S., Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl.
(2015)

45. Wang, G.-G., Zhao, X., Deb, S.: A novel monarch butterfly optimization with greedy
strategy and self-adaptive crossover operator. In: 2015 2nd International Conference on Soft
Computing & Machine Intelligence (ISCMI 2015), pp. 45–50. IEEE (2015)

46. Feng, Y., Wang, G.-G., Deb, S., Lu, M., Zhao, X.: Solving 0–1 knapsack problem by a novel
binary monarch butterfly optimization. Neural Comput. Appl. (2015)

47. Ghetas, M., Yong, C.H., Sumari, P.: Harmony-based monarch butterfly optimization
algorithm. In: 2015 IEEE International Conference on Control System, Computing and
Engineering (ICCSCE), pp. 156–161. IEEE (2015)

48. Wang, G.-G., Deb, S., Zhao, X., Cui, Z.: A new monarch butterfly optimization with an
improved crossover operator. Oper. Res.: Int. J. (2016)

49. Feng, Y., Yang, J., Wu, C., Lu, M., Zhao, X.-J.: Solving 0–1 knapsack problems by chaotic
monarch butterfly optimization algorithm. Memetic Comput. (2016)

50. Ghanem, W.A.H.M., Jantan, A.: Hybridizing artificial bee colony with monarch butterfly
optimization for numerical optimization problems. Neural Comput. Appl. (2016)

51. Wang, G.-G., Hao, G.-S., Cheng, S., Qin, Q.: A discrete monarch butterfly optimization for
Chinese TSP problem. In: Tan, Y., Shi, Y., Niu, B. (eds.) Advances in Swarm Intelligence:
7th International Conference, ICSI 2016, Bali, Indonesia, June 25-30, 2016, Proceedings,
Part I, vol. 9712, pp. 165–173. Springer International Publishing, Cham (2016)

52. Feng, Y., Wang, G.-G., Li, W., Li, N.: Multi-strategy monarch butterfly optimization
algorithm for discounted {0–1} knapsack problem. Neural Comput. Appl. (2017)

53. Wang, G., Guo, L., Wang, H., Duan, H., Liu, L., Li, J.: Incorporating mutation scheme into
krill herd algorithm for global numerical optimization. Neural Comput. Appl. 24, 853–871
(2014)

An Improved Monarch Butterfly Optimization 115

Particle Swarm Optimization

A Scalability Analysis of Particle Swarm
Optimization Roaming Behaviour

Jacomine Grobler1(B) and Andries P. Engelbrecht2

1 Department of Industrial and Systems Engineering, University of Pretoria,
Pretoria, South Africa

jacomine.grobler@gmail.com
2 Department of Computer Science, University of Pretoria,

Pretoria, South Africa
engel@cs.up.ac.za

Abstract. This paper investigates the effect of problem size on the
roaming behaviour of particles in the particle swarm optimization (PSO)
algorithm. Both the extent and impact of the roaming behaviour in the
absence of boundary constraints is investigated, as well as the PSO algo-
rithm’s ability to find good solutions outside of the area in which parti-
cles are initialized. Four basic PSO variations and a diverse set of real
parameter benchmark problems were used as basis for the investigation.
Problem size was found to have a significant impact on algorithm perfor-
mance and roaming behaviour. The larger the problem is that is being
considered, the more important it is to address roaming behaviour.

1 Introduction

The tendency of particles in a particle swarm optimization (PSO) algorithm to
roam beyond the boundary constraints of a search space has already been iden-
tified and analyzed [1,2]. Various strategies for constraining particles within the
feasible bounds of a search space have also been developed [3–5]. This roam-
ing behaviour can, however, be both disadvantageous, due to the computational
inefficiency of searching infeasible areas, but advantageous when the feasible
bounds of the problem are unknown and particles are initialized in an area not
containing the optimal solution.

This paper describes an investigation into the roaming behaviour of particles
in the PSO algorithm. The specific focus of the investigation is how this roam-
ing behaviour affects algorithm performance as problem size increases. Both
the extent of the roaming behaviour in the absence of boundary constraints is
investigated, as well as the PSO algorithm’s ability to find good solutions out-
side of the area in which particles are initialized. Four basic PSO variations,
namely the gbest PSO [6], the constriction PSO (CPSO) [7,8], the barebones
PSO (BBPSO) [10], and the guaranteed convergence PSO (GCPSO) [9], was
used as basis for the investigation. The roaming behaviour of these algorithms
were analyzed over a varied set of real parameter benchmark problems. A pos-
itive correlation was observed between the extent of roaming and problem size,
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 119–130, 2017.
DOI: 10.1007/978-3-319-61824-1 13

120 J. Grobler and A.P. Engelbrecht

which both negatively affects algorithm performance. This paper is considered
significant because, to the best of the authors’ knowledge, it documents the first
investigation into the effect of scalability on particle roaming behaviour in an
attempt to investigate why PSO scales badly as dimensions increase.

The rest of the paper is organized as follows: Sect. 2 provides background
information on the PSO algorithms utilized in this study. Section 3 describes
the experimental setup and results obtained. Finally, the paper is concluded in
Sect. 4.

2 Particle Swarm Optimization Algorithms

The four PSO algorithms used as basis for this study were selected due to their
popularity in the PSO community and to maintain continuity between this paper
and the previous work of Engelbrecht [1,2]. The gbest PSO, CPSO, BBPSO and
the GCPSO are summarized throughout the rest of this section.

2.1 The Gbest PSO Algorithm

The gbest [6] model calculates the velocity of particle i in dimension j at time
t + 1 using

vij(t + 1) = wvij(t) + c1r1j(t)[x̂ij(t) − xij(t)] + c2r2j(t)[x∗
j (t) − xij(t)] (1)

where vij(t) represents the velocity of particle i in dimension j at time t, c1 and
c2 are the cognitive and social acceleration constants, x̂ij(t) and xij(t) respec-
tively denotes the personal best position (pbest) and the position of particle i in
dimension j at time t. x∗

j (t) denotes the global best position (gbest) in dimen-
sion j, w refers to the inertia weight, and r1j(t) and r2j(t) are sampled from a
uniform random distribution, U(0, 1). The displacement of particle i at time t is
simply derived from the calculation of vij(t + 1) in Eq. (1) and is given as

xij(t + 1) = xij(t) + vij(t + 1) (2)

2.2 The Constriction PSO Algorithm

The CPSO algorithm was developed by Clerc [7,8] as an alternative approach
to balancing the exploration-exploitation trade-off of the PSO algorithm. The
velocity of particle i is calculated as

vij(t + 1) = χ[vij(t) + φ1(x̂ij(t) − xij(t)) + φ2(x∗
j (t) − xij(t))] (3)

where χ is defined as

χ =
2κ

|2 − φ − √
φ(φ − 4)| (4)

and φ = φ1 + φ2, φ1 = c1r1, φ2 = c2r2, φ ≥ 4 and κ ∈ [0, 1].

A Scalability Analysis of Particle Swarm Optimization Roaming Behaviour 121

2.3 The Barebones PSO Algorithm

In the BBPSO algorithm [10], the velocity of particle i is sampled from a
Gaussian distribution as follows:

vij(t + 1) ∼ N(
x̂ij(t) + x∗

j (t)
2

, σ), (5)

where σ = |x̂ij(t) − x∗
j (t)| and xij(t + 1) = vij(t + 1).

2.4 The Guaranteed Convergence PSO Algorithm

Unfortunately, it has been shown that the basic PSO swarm can stagnate on a
solution which is not necessarily a local optimum [9]. The GCPSO algorithm [9]
has been shown to address this PSO issue and requires that different velocity
and displacement updates, defined as

vτj(t + 1) = −xτj(t) + x∗
j (t) + wvτj(t) + ρ(t)(1 − 2rj(t)) (6)

and
xτj(t + 1) = x∗

j (t) + wvτj(t) + ρ(t)(1 − 2rj(t)), (7)

are applied to the global best particle, where ρ(t) is a time-dependent scaling
factor, rj(t) is sampled from a uniform random distribution, U(0, 1), and all
other particles are updated by means of Eqs. (1) and (2).

3 Empirical Evaluation of PSO Roaming Behaviour

The roaming behaviour of the four basic PSO variations were evaluated on the
2015 IEEE Congress of Evolutionary Computation benchmark problem set [11]
in 10, 30, 50 and 100 dimensions. Initial algorithm control parameters were
selected as specified in [2]. The number of particles in a swarm, ns, was set to
30, the maximum number of iterations, Imax, was 10000nx (as specified in the
benchmark problem set definition [11]), where nx denotes the number of dimen-
sions of each problem, w was set to 0.729844 and c1 and c2 was set to 1.49618
for the gbest PSO, BBPSO and GCPSO algorithms. In the CPSO algorithm, c1
and c2 were set to 2.05 and κ was set to 1 to be equivalent to the parameters of
the other three PSO algorithms.

Two sets of experiments were conducted and are described within the next
two subsections. The first experiment investigated the extent of particle roaming
outside of the feasible bounds of the problem, while the second focused on how
this behaviour could be beneficial for problems where the optimal solution lies
outside of the area in which the swarm is initialized.

3.1 Investigation of Particle Roaming Behaviour Outside
of the Feasible Search Space

To investigate the extent and effect of particle roaming, particles were initialized
randomly in the feasible search space. However, during the search no boundary

122 J. Grobler and A.P. Engelbrecht

constraint mechanism was applied and particles were allowed to roam outside
of the feasible search space. The performance of each algorithm on each bench-
mark problem-dimension combination was recorded over 30 independent simula-
tion runs. The solution quality (measured as the difference between the optimal
solution and the fitness function value obtained) and the population diversity of
each algorithm, were recorded at the end of each optimization run. Diversity is
calculated as

Diversity =
1
ns

ns∑

i=1

√√√√
nx∑

j=1

(xij(t) − xj(t))2 (8)

where xj(t) is the mean of the jth dimension of all particles in the swarm at
time t [12].

Finally, the percentage of time per optimization run that at least 90% of the
particle positions violate the boundary constraints, τ90, the percentage of time
at which at least 90% of the pbest positions violate the boundary constraints,
τPbest90, and the number of iterations at which the gbest position of the swarm
violates the boundary constraints, τGbest, were also recorded. A particle was
considered to have violated the boundary constraint if at least one of its dimen-
sions fell outside of the feasible space. The results of the roaming behaviour of the
four PSO algorithms are presented in Tables 1, 2, 3 and 4. The notation, μ and
σ, denote the mean and standard deviation associated with the corresponding
metric.

For each of the four PSO variations, each dimension-problem combination
was compared by means of statistical tests with every other dimension-problem
combination. For every comparison, a Mann-Whitney U test at 95% significance
was performed (using the two sets of 30 data points of the two dimension-problem
combinations under comparison) and if the first combination statistically signifi-
cantly outperformed the second combination, a win was recorded. If no statistical
difference could be observed a draw was recorded. If the second combination out-
performed the first combination, a loss was recorded for the first combination. As
an example, (38-52-0) in row 1 column 1, indicates that when the results of the
gbest PSO on the 10-dimensional problems were compared to the results obtained
by the PSO on all other dimensions, 38 of the comparisons showed that statisti-
cally significantly better performance was obtained by the PSO algorithm on the
10 dimension problems. The number of statistically similar comparisons are 52
and the 0 losses indicate that PSO never performed worse on a 10-dimensional
problem when compared to the other dimensions.

From the results it can be clearly seen that as the problem size increase,
solution quality deteriorates. This can be largely attributed to the fact that
the larger the problem, the larger the percentage of time that is spent by the
particles outside of the feasible search space. It was observed that as problem
size increases, τ90, τPbest90 and τGbest also increases. This conclusion is logical
since the more time is wasted in searching in infeasible areas of the search space,
the less effective an algorithm will be. Visual checks of the optimization runs
indicated that for most of the 10-dimensional problems the particles roam outside

A Scalability Analysis of Particle Swarm Optimization Roaming Behaviour 123

Table 1. PSO roaming behaviour on the CEC 2015 benchmark problem set.

ytisreviDrorrEnoisnemiDmelborP τ90 τP best90 τGbest

μ σ μ σ μ σ μ σ μ σ

1 10 17062 34094 33.09 24.68 37.88 37.05 37.02 37.42 40.32 36.19

30 4.2246e + 05 2.5631e + 05 165.69 74.2 89.91 25.67 89.9 25.67 89.96 25.53

50 1.3762e + 06 7.3448e + 05 159.54 68.58 99.99 0 99.99 0.01 99.99 0.01

100 4.4965e + 06 2.5712e + 06 184.34 42.33 100 0 99.99 0.01 100 0

2 10 9579.5 10693 0.2 0.13 3.37 18.18 3.31 18.11 3.43 18.22

30 8301 15174 0.11 0.11 13.57 34.31 13.45 34.3 13.62 34.35

50 15669 17224 0.17 0.14 13.74 34.26 13.7 34.28 13.79 34.31

100 56452 2.3234e + 05 0.07 0.08 20.55 40.1 20.54 40.09 20.57 40.11

3 10 20.12 0.14 163.82 104.14 88 30.22 86.76 29.84 93.02 25.29

30 20.65 0.26 921.92 2211 99.98 0.01 99.83 0.17 99.96 0.06

50 20.57 0.42 674.29 939.83 99.99 0 99.93 0.06 99.98 0.02

100 21.07 0.4 1584.6 1468.7 100 0 99.98 0.01 99.99 0.01

4 10 15.25 7.03 0.7 1.67 0.04 0.06 0 0 0.22 0.38

30 119.43 32.97 0 0 73.22 44.35 72.84 44.16 73.44 44.49

50 277.76 62.17 0 0 80.09 40.32 80.02 40.4 80.13 40.31

100 873.33 155.21 0 0 99.99 0.02 99.98 0.07 100 0.01

5 10 498.59 245.62 12.95 35.38 82.94 36.04 82.22 35.67 83.95 35.87

30 3243 637.71 31.77 51.77 96.64 18.16 96.44 18.22 96.6 18.19

50 6164.9 825.41 42.65 82.29 96.68 18.16 96.62 18.17 96.61 18.23

100 14787 1560.4 81.96 130.47 100 0 99.97 0.03 99.99 0.02

6 10 3845.5 5000.6 14.23 31.67 93.75 21.56 93.55 21.12 94.07 21.6

30 1.0839e + 05 66003 450.47 396.68 99.98 0.01 99.97 0.03 99.99 0.01

50 2.8431e + 05 1.5845e + 05 1747.6 1069.3 99.99 0 99.98 0.01 99.99 0.01

100 1.7075e + 06 8.7922e + 05 6457.3 2645.8 100 0 100 0 100 0

7 10 1.14 0.52 1.8013e + 06 9.8361e + 06 85.8 32.66 85.58 32.72 86.1 32.7

30 7.37 1.92 2.8552e + 40 1.5639e + 41 99.97 0.02 99.96 0.03 99.97 0.03

50 18.06 3.26 1.6288e + 73 8.9211e + 73 99.99 0 99.99 0.01 99.99 0

100 53.39 22.25 4.1647e + 115 2.253e + 116 100 0 100 0 100 0

8 10 2976.9 3058.9 6.935e + 09 3.2649e + 10 78.46 28.39 73.83 32.24 83.05 25.43

30 42001 38152 3.9474e + 41 1.7239e + 42 99.97 0.05 99.94 0.08 99.97 0.05

50 1.3486e + 05 84915 6.1947e + 60 3.393e + 61 99.99 0 99.98 0.01 99.99 0.01

100 6.7941e + 05 3.7091e + 05 1.4317e + 80 7.8416e + 80 100 0 99.99 0 100 0

9 10 100.34 0.28 3.65 2.83 28.41 43.77 28.2 43.77 30.36 46.05

30 141.03 86.54 1.09 1.07 17.06 37.57 17.03 37.57 17.13 37.65

50 150.08 135.75 1.27 1.4 17.73 37.39 17.72 37.35 17.83 37.39

100 331.75 445.99 0.54 0.61 93.32 24.98 93.3 24.98 93.41 24.99

10 10 1874.3 1740.8 23.7 70.46 42.11 43.29 41.43 43.63 46.64 41.63

30 45190 38342 1896.9 2489.3 99.98 0.01 99.96 0.03 99.98 0.02

50 3027.1 1567.9 7647.8 3040.7 99.99 0 99.98 0.02 99.99 0.01

100 22089 13354 8570.6 2990 100 0 99.99 0 100 0

11 10 311.15 79.5 10.22 10.32 91.57 20.71 90.27 21.18 92.92 20.39

30 869.84 173.42 34.59 152.94 99.98 0 99.98 0.02 99.99 0

50 1418.4 244.43 3.46 18.98 99.99 0 99.99 0.01 99.99 0.01

100 3176 166.26 0 0 100 0 100 0 100 0

12 10 102.7 0.96 2.76 2.03 0.07 0.1 0.01 0.03 0.22 0.34

30 141.96 44.93 51.1 104.68 73.73 43.4 72.92 44.36 76.8 42.68

50 197.03 16.29 287.91 786.72 99.99 0 99.99 0 99.99 0

100 200 0 203.36 309.63 100 0 100 0 100 0

13 10 0 0 37.98 62.97 99.94 0.01 99.94 0.01 99.97 0.01

30 0 0 87.63 135.42 99.99 0.01 99.98 0 99.99 0

50 0 0 59.52 89.61 99.99 0 99.99 0 99.99 0

100 0 0 115.99 173.98 100 0 100 0 100 0

14 10 1660.5 2573.8 29.7 40.28 99.86 0.24 99.8 0.29 99.91 0.2

30 14487 10839 642.04 869.64 99.98 0 99.98 0 99.99 0

50 32791 31840 698.38 780.03 99.99 0 99.99 0 99.99 0

100 29060 51386 3085.8 1662.7 100 0 100 0 100 0

15 10 100 0 0 0 0.05 0.05 0 0.01 0.25 0.22

30 100 0 0 0 0.75 0.48 0.54 0.51 0.88 0.47

50 108.53 3.48 1.68 0.95 17.2 34.1 17.2 34.52 17.63 34.6

100 135.01 6.39 0.45 0.39 59.3 47.84 59.27 47.82 59.51 47.8

124 J. Grobler and A.P. Engelbrecht

Table 2. CPSO roaming behaviour on the CEC 2015 benchmark problem set.

ytisreviDrorrEnoisnemiDmelborP τ90 τP best90 τGbest

μ σ μ σ μ σ μ σ μ σ

1 10 17669 23822 37.96 27.79 40.94 41.78 40.26 42.76 40.79

30 4.9832e + 05 4.1417e + 05 161.19 55.24 95.42 15.66 95.54 95.54 15.65

50 1.2455e + 06 7.5288e + 05 145.45 48.92 99.87 0.68 99.86 99.87 0.68

100 3.9156e + 06 1.8412e + 06 183.84 40.89 100 0 99.99 100 0

2 10 13511 14867 0.27 0.19 16.64 37.69 16.53 16.71 37.79

30 10677 13704 0.15 0.1 26.82 44.72 26.72 26.87 44.76

50 14509 16543 0.14 0.09 7.13 25.07 7.07 7.16 25.08

100 9061.5 13505 0.06 0.05 17.34 37.37 17.33 17.36 37.37

3 10 20.13 0.12 421.98 721.37 79.85 32.59 71.17 91.1 24.87

30 20.51 0.38 417.55 418.06 99.09 4.77 99.52 99.9 0.39

50 20.71 0.46 577.5 303.06 99.99 0 99.94 99.98 0.03

100 20.93 0.44 1091.7 808.3 100 0 99.98 99.99 0.03

4 10 14.33 6.57 0.15 0.61 8.9 25.73 8.31 9.66 26.35

30 129.38 36.07 0 0 66.79 47.62 66.59 66.82 47.64

50 305.25 68.52 0 0 93.25 25.3 93.14 93.28 25.31

100 892.17 121.01 0 0 100 0 99.99 100 0

5 10 411.4 220.09 14.92 16.48 85.05 34.04 83.9 85.78 34.2

30 3330.1 631.06 18.72 24.39 96.66 18.13 96.5 96.66 18.09

50 6422.5 809.44 22.07 40.04 99.99 0.01 99.93 99.97 0.04

100 15000 1458.8 55.77 102.26 100 0 99.97 99.99 0.03

6 10 2959 3614.5 10.69 15.9 92.94 23.52 92.32 93.36 23.34

30 91820 95278 536.13 442.93 99.98 0.01 99.97 99.99 0.01

50 3.5433e + 05 2.1517e + 05 1868.5 946.87 99.99 0 99.99 99.99 0.01

100 1.9347e + 06 9.7443e + 05 6235.9 1990.7 100 0 99.99 100 0

7 10 1.2 0.35 4.2757e + 14 2.3419e + 15 67.23 46.65 66.92 67.57 46.44

30 7.88 1.86 1.0194e + 45 5.5837e + 45 99.98 0.01 99.96 99.98 0.02

50 22.06 17.08 2.0865e + 73 1.1304e + 74 99.99 0 99.99 99.99 0

100 65.63 28.93 1.5733e + 121 8.4558e + 121 100 0 100 100 0

8 10 2224.7 2897.8 1.8593e + 10 9.1177e + 10 77.22 30.8 72.5 80.58 29.79

30 43409 44200 4.6417e + 50 2.5423e + 51 99.98 0.01 99.94 99.98 0.02

50 1.4159e + 05 86677 4.2033e + 58 1.5987e + 59 99.99 0 99.98 99.99 0.01

100 7.0798e + 05 2.9761e + 05 3.5087e + 81 1.9218e + 82 100 0 99.99 100 0

9 10 104.38 22.33 4.67 3.83 20.65 37.42 20.26 23.48 39.74

30 137.47 78.6 1.24 1.55 17.14 37.67 17.1 17.16 37.66

50 138.28 120.49 1.09 0.8 7.47 25.15 7.45 7.51 25.14

100 181.42 256.69 0.71 0.56 99.77 1.14 99.77 99.85 0.77

10 10 1917.5 1798.5 10.13 7.23 37.87 42.63 37.19 41.97 41.49

30 74317 90309 2039.7 2631.8 99.98 0.01 99.94 99.97 0.04

50 3899.9 3021.6 6328.4 2218.6 99.99 0 99.98 99.99 0.01

100 24407 17471 7437.1 3055.2 100 0 99.99 100 0

11 10 296.39 115.07 17.28 20.35 86.91 29.85 85.76 87.99 30.03

30 866.71 88.61 12.75 69.81 99.98 0 99.98 99.99 0

50 1463.5 125.86 7.93 43.41 99.99 0 99.99 99.99 0

100 3156.4 175.93 4.53 24.8 100 0 100 100 0

12 10 102.6 1.07 4.57 4.5 6.24 20.75 4.28 7.99 25.73

30 142.31 44.66 94.66 422.92 66.83 47.52 66.77 67.01 47.38

50 191.16 26.97 157.05 629.46 99.99 0.03 99.99 99.99 0

100 123.89 3.1 4.89 2.43 100 0 100 100 0

13 10 0 0 25.49 44.18 99.94 0 99.94 99.97 0.01

30 0 0 51.44 69.36 99.99 0.01 99.98 99.99 0

50 0 0 70.01 113.49 99.99 0 99.99 99.99 0

100 460.26 6.89 66.16 113.55 100 0 100 100 0

14 10 1556.7 2326.6 40.3 51.38 99.88 0.1 99.84 99.93 0.08

30 20154 8132.5 214.7 559.95 99.98 0.01 99.98 99.99 0

50 36369 31740 630 743.78 99.99 0 99.99 99.99 0

100 41637 58767 2563.4 1745.6 100 0 100 100 0

15 10 100 0 0 0 0.06 0.08 0.01 0.3 0.23

30 100 0 0 0 0.69 0.46 0.49 0.84 0.46

50 108.14 3.49 1.28 0.92 17.58 37.25 17.44 17.8 37.23

100 160.05 22.69 0.43 0.52 58.88 48.11 58.82 59.02 48.09

A Scalability Analysis of Particle Swarm Optimization Roaming Behaviour 125

Table 3. BBPSO roaming behaviour on the CEC 2015 benchmark problem set.

ytisreviDrorrEnoisnemiDmelborP τ90 τP best90 τGbest

μ σ μ σ μ σ μ σ μ σ

1 10 80950 1.0379e + 05 76.07 58.58 68.73 38 68.97 38.17 70.45 36.72

30 2.3797e + 06 2.0464e + 06 346.1 200.79 99.59 2.21 99.5 2.19 99.58 2.17

50 4.3121e + 06 1.9701e + 06 312.83 104.89 99.99 0 99.87 0.1 99.98 0.01

100 1.2729e + 07 4.347e + 06 439.83 100.25 100 0 99.34 0.65 99.96 0.02

2 10 14942 15580 0.12 0.11 23.28 42.76 23.15 42.65 23.38 42.83

30 13110 17475 0.06 0.05 30.38 46.17 30.13 46.17 30.39 46.2

50 15859 20248 0.04 0.02 10.99 30.06 10.58 30.03 10.96 30.07

100 10053 12839 0.01 0.01 21.57 39.86 20.72 39.84 21.44 39.84

3 10 20.34 0.09 2385.6 4490.1 99.86 0.24 99.5 0.63 99.88 0.2

30 20.96 0.03 6017 5918.4 99.99 0 99.89 0.07 99.9 0.26

50 21.13 0.03 10715 8898.7 99.99 0 99.95 0.03 99.97 0.04

100 21.32 0.03 29678 34575 100 0 99.97 0.04 99.99 0

4 10 15.22 8.32 3.14 5.87 10.81 30.13 10.12 29.78 11.29 30.25

30 130.04 38.43 0.05 0.26 83.31 37.49 82.83 37.56 83.4 37.4

50 297.59 88.83 0.07 0.4 93.42 24.9 92.93 24.88 93.35 24.9

100 1024.4 213.49 0 0 100 0 98.07 1.42 99.81 0.1

5 10 393.05 189.2 60.37 39.91 91.74 23.87 92.15 22.05 92.66 22.75

30 4019.3 1780.9 511.35 452.1 99.99 0 99.86 0.11 99.95 0.07

50 8203.5 2993.7 799.93 613.24 99.99 0.04 99.9 0.07 99.9 0.29

100 20882 8391.4 1611.8 1099.1 100 0 99.92 0.1 99.95 0.1

6 10 4380.7 7801.8 54.38 77.26 93.89 23.06 93.8 23.08 93.89 23.09

30 2.6208e + 05 2.9964e + 05 1450.8 903.88 99.99 0 99.94 0.02 99.98 0.02

50 1.0019e + 06 6.8224e + 05 5331.7 2750.8 99.99 0 99.81 0.65 99.98 0.01

100 4.9145e + 06 2.1017e + 06 32859 13435 100 0 99.95 0.04 99.99 0.01

7 10 1.52 0.22 9.0603e + 42 4.9625e + 43 99.92 0.07 99.82 0.07 99.93 0.05

30 19.01 17.74 Inf NaN 99.99 0 99.94 0.02 99.98 0.01

50 67.54 45.54 1.0303e + 10 3.8756e + 10 99.99 0 99.94 0.03 99.98 0.01

100 144.84 46.06 1.2941e + 17 6.6078e + 17 100 0 99.91 0.04 99.98 0.01

8 10 2910.9 3533.7 1.4246e + 22 7.7989e + 22 99.09 4.02 98.52 6.01 99.31 3.02

30 87787 68899 1.1637e + 113 6.3738e + 113 99.99 0 99.91 0.04 99.97 0.02

50 3.7305e + 05 2.7849e + 05 2.401e + 134 1.3151e + 135 99.99 0 99.89 0.08 99.98 0.02

100 1.9521e + 06 1.0707e + 06 Inf NaN 100 0 99.91 0.06 99.99 0.01

9 10 100.26 0.21 9.98 3.89 21.5 36.26 21.53 36.75 29.31 43.37

30 132.04 76.65 7.45 4.24 14.04 34.29 13.99 34.28 14.06 34.27

50 145.54 127.07 14.71 6.99 14.86 33.79 14.91 34 14.98 33.97

100 302.42 437.84 24.04 13.76 84.92 29.06 84.59 30.92 90.12 24.62

10 10 1839.2 1661.3 130.23 130.64 68.59 42.41 67.12 44.01 72.97 39.17

30 3.3715e + 05 3.8031e + 05 7368.1 2457.8 99.99 0 99.93 0.04 99.98 0.02

50 1.7784e + 05 1.6072e + 05 9924.6 1690.7 99.99 0 99.93 0.04 99.98 0.02

100 4.4356e + 05 1.4941e + 06 18177 1987.9 100 0 99.95 0.03 99.99 0.01

11 10 341.96 98.68 46.79 46.56 93.71 18.33 94.26 18.15 95.55 18.17

30 900.17 81.15 438.79 615.32 99.99 0 99.97 0.01 99.99 0

50 1445.1 183.82 1158.7 1339 99.99 0 99.98 0 99.99 0

100 3350.7 351.28 2978.5 2135.8 100 0 99.99 0 100 0

12 10 106.08 17.77 46.42 222.09 8.25 25.36 8.26 25.29 9.95 28.46

30 193.84 23.43 1178.6 822.56 96.68 18.05 96.66 18.05 96.69 18.05

50 200 0 2299.1 1310.3 99.99 0 99.99 0 99.99 0

100 200 0 4823.8 2094.3 100 0 100 0 100 0

13 10 0 0 232.28 218.44 99.95 0.02 99.94 0.01 99.97 0

30 0 0 867.22 550.97 99.99 0 99.98 0 99.99 0

50 0 0 1663.7 973.26 99.99 0 99.99 0 99.99 0

100 0 0 2540.3 1465.2 100 0 99.99 0 100 0

14 10 692.05 1236.8 233.17 168.19 99.87 0.25 99.72 0.39 99.87 0.25

30 9841.9 11611 1494.5 1181.3 99.99 0 99.99 0.01 99.99 0

50 26441 31411 923.5 785.71 99.99 0 99.99 0 99.99 0

100 45499 58057 3596.6 2652.6 100 0 100 0 100 0

15 10 100 0 0 0 0.16 0.21 0.03 0.1 0.32 0.31

30 100 0 0.42 2.28 1.29 0.66 0.77 0.71 1.44 0.68

50 100.94 0.86 10.32 10.91 2.71 1.1 1.73 1.25 2.86 1.06

100 114.81 4.38 76.38 46.02 17.82 32.55 16.21 32.44 18.16 32.57

126 J. Grobler and A.P. Engelbrecht

Table 4. GCPSO roaming behaviour on the CEC 2015 benchmark problem set.

ytisreviDrorrEnoisnemiDmelborP τ90 τP best90 τGbest

μ σ μ σ μ σ μ σ μ σ

1 10 16595 15953 15.12 11.44 45.04 43.76 44.47 43.47 46.42 43.65

30 4.0601e + 05 2.1156e + 05 116.96 34.34 89.99 26.11 89.99 26.07 90.01 26.05

50 1.1714e + 06 5.5314e + 05 129.03 49.78 99.99 0.03 99.99 0.01 99.99 0.01

100 2.398e + 06 5.9582e + 05 185.08 30.83 100 0 99.99 0.01 100 0.01

2 10 13471 18121 0.12 0.1 23.23 42.74 23.15 42.68 23.34 42.91

30 11436 14033 0.05 0.04 26.72 44.72 26.63 44.72 26.76 44.76

50 14812 23510 0.02 0.02 3.59 18.21 3.56 18.21 3.62 18.2

100 6956.4 7584.4 0 0 7.08 25.26 7.06 25.26 7.13 25.24

3 10 20 0 132.52 65.96 81.12 35.41 77.74 38.34 86.57 34.42

30 20 0 212.9 187.22 89.4 30.35 89.8 30.25 89.9 30.48

50 20 0 305.98 223.76 93.41 25.07 93.46 24.62 93.32 25.37

100 20.01 0.07 469.77 359.02 96.76 17.72 96.76 17.61 96.66 18.26

4 10 18.57 7.7 0.59 1.19 12.77 33.09 12.39 32.31 13.33 34.27

30 167.95 42.66 0 0 66.48 47.59 66.25 47.51 66.7 47.62

50 422.72 78.08 0 0 89.81 30.22 89.69 30.34 89.86 30.16

100 1084.2 146.29 0 0 93.34 25.22 93.33 25.22 93.35 25.21

5 10 510.52 198.91 7.53 9.88 55.56 49.38 54.62 48.78 55.9 49.66

30 3540.8 642.03 11.55 33.48 83.38 37.65 83.25 37.66 83.36 37.69

50 6637.3 766.5 11.34 23.11 93.34 25.28 93.28 25.3 93.29 25.36

100 15283 1276.2 14.64 21.02 99.99 0.04 99.96 0.05 99.96 0.1

6 10 3373.6 3156 4.58 7.34 88.33 30.34 88.19 30.15 89.71 30.24

30 54712 55002 447.46 456.72 99.96 0.1 99.95 0.11 99.97 0.1

50 1.2871e + 05 65643 898.11 575.13 99.99 0.01 99.98 0.01 99.99 0.02

100 5.2331e + 05 2.5866e + 05 1050.9 848.63 100 0 100 0 100 0

7 10 1.19 0.41 3.61 5.33 74.11 41.99 73.91 41.9 74.63 42.15

30 8.33 1.95 2.7435e + 26 1.0982e + 27 99.97 0.03 99.95 0.06 99.97 0.03

50 21.51 14.41 6.6735e + 33 3.6536e + 34 99.99 0 99.99 0.01 99.99 0.01

100 96.3 42.01 1.499e + 13 8.2104e + 13 100 0 100 0 100 0

8 10 2698.3 3494.3 2.8048e + 09 1.4755e + 10 69.16 38.59 66.98 39.19 71.76 38.14

30 27797 19340 2.1453e + 21 1.175e + 22 99.94 0.19 99.91 0.23 99.94 0.18

50 1.1006e + 05 94116 2.0351e + 06 1.0269e + 07 99.99 0.03 99.96 0.06 99.98 0.03

100 2.1423e + 05 89228 1212 950.85 100 0 99.99 0.02 100 0

9 10 100.35 0.27 4.46 4.93 28.24 43.39 27.19 43.56 31.07 44.57

30 150.06 106.36 1.01 0.84 17.01 37.73 16.98 37.72 17.05 37.72

50 173.34 175.75 1.54 2.55 17.16 37.58 17.14 37.55 17.2 37.62

100 440.81 616.86 1.39 1.47 96.48 18.07 96.48 18.08 96.61 18.08

10 10 2545.1 3899.8 10.56 19.89 42.92 44.75 42.89 44.4 44.59 44.36

30 31542 40952 388 1084 99.88 0.26 99.84 0.3 99.91 0.21

50 3222.6 4196.3 1936.1 1747.5 99.99 0.01 99.98 0.01 99.99 0.02

100 7641.6 6612.7 3566.9 2463.2 100 0 99.99 0 100 0

11 10 317.07 52.06 8.23 10.41 96.63 3.48 96.03 3.97 97.93 2.5

30 878 236.71 7.46 17.73 98.55 5.82 93.43 24.95 99.04 3.67

50 1507.4 139.07 0 0 99.99 0 99.99 0 99.99 0

100 3378.5 153.95 7.75 42.45 100 0 100 0 100 0

12 10 103.18 1.22 3.22 3.18 3.19 17.24 3.05 16.69 3.41 18.21

30 139.49 43.53 76.98 287.18 66.91 47.01 66.2 47.09 67.34 46.99

50 113.19 1.38 9.78 7.16 98.46 8.32 98.65 7.24 99.99 0.02

100 120.98 1.43 11.03 7.32 100 0 100 0 100 0

13 10 0 0 31.47 69.25 99.94 0.01 99.93 0.01 99.96 0.01

30 0 0 61.86 114.68 99.98 0 99.98 0 99.99 0

50 219.74 5.09 88.44 188.21 99.99 0 99.99 0 99.99 0

100 464.36 5.86 49.45 108.64 100 0 100 0 100 0

14 10 1812 2763 25.83 40.22 96.42 18.21 96.35 18.2 96.48 18.22

30 19435 9900.3 359.75 738.69 99.98 0.01 99.98 0 99.99 0

50 38080 30751 468.6 679.7 99.99 0 99.99 0 99.99 0

100 24358 47790 2712.6 1273.1 100 0 99.99 0 100 0

15 10 100 0 0 0 0.08 0.1 0 0.01 0.3 0.25

30 100 0 0 0 0.48 0.36 0.37 0.37 0.55 0.37

50 100.13 0.71 0 0 0.73 0.43 0.61 0.44 0.87 0.42

100 118.41 6.69 5.7 6.81 2.64 6.64 2.57 6.94 4.54 13.49

A Scalability Analysis of Particle Swarm Optimization Roaming Behaviour 127

0

5E+102

1E+103

1.5E+103

2E+103

1
18

53
37

05
55

57
74

09
92

61
11

11
3

12
96

5
14

81
7

16
66

9
18

52
1

20
37

3
22

22
5

24
07

7
25

92
9

27
78

1
29

63
3

31
48

5

Di
ve

rs
ity

Number of itera ons

F7_100

0
5

10
15
20
25
30
35

1
17

56
35

11
52

66
70

21
87

76
10

53
1

12
28

6
14

04
1

15
79

6
17

55
1

19
30

6
21

06
1

22
81

6
24

57
1

26
32

6
28

08
1

29
83

6
31

59
1N
um

be
r o

f i
nf

ea
sib

le

pa
r

cl
es

Number of itera ons

F7_100

0
5

10
15
20
25
30
35

1
17

56
35

11
52

66
70

21
87

76
10

53
1

12
28

6
14

04
1

15
79

6
17

55
1

19
30

6
21

06
1

22
81

6
24

57
1

26
32

6
28

08
1

29
83

6
31

59
1

N
um

be
r o

f i
nf

ea
sib

le

pa
r

cl
es

Number of itera ons

F4_100

0
5000

10000
15000
20000
25000
30000

1
17

56
35

11
52

66
70

21
87

76
10

53
1

12
28

6
14

04
1

15
79

6
17

55
1

19
30

6
21

06
1

22
81

6
24

57
1

26
32

6
28

08
1

29
83

6
31

59
1

Be
st

 fi
tn

es
s f

un
c

on
 v

al
ue

Number of itera ons

F7_100

0
100
200
300
400
500
600

1
17

56
35

11
52

66
70

21
87

76
10

53
1

12
28

6
14

04
1

15
79

6
17

55
1

19
30

6
21

06
1

22
81

6
24

57
1

26
32

6
28

08
1

29
83

6
31

59
1

Di
ve

rs
ity

Number of itera ons

F4_100

0
500

1000
1500
2000
2500
3000
3500

1
17

56
35

11
52

66
70

21
87

76
10

53
1

12
28

6
14

04
1

15
79

6
17

55
1

19
30

6
21

06
1

22
81

6
24

57
1

26
32

6
28

08
1

29
83

6
31

59
1

Be
st

 fi
tn

es
s f

un
c

on
 v

al
ue

Number of itera ons

F4_100

Fig. 1. Plots of key performance metrics for functions 4 and 7 in 100 dimen-
sions (F4 100 and F7 100).

Table 5. Hypotheses analysis of the effect of problem size on various performance
metrics.

Dimensions 10 30 50 100 10 30 50 100
Error Diversity

PSO 38-52-0 22-54-14 12-54-24 1-54-35 30-53-7 19-60-11 8-61-21 7-58-25
CPSO 39-51-0 22-54-14 13-52-25 2-51-37 25-52-13 18-64-8 10-63-17 7-61-22
BBPSO 38-52-0 22-56-12 11-55-24 0-55-35 35-49-6 25-50-15 15-51-24 7-46-37
GCPSO 36-54-0 21-54-15 14-54-22 2-52-36 22-58-10 16-61-13 11-62-17 10-61-19
TOTAL 151-209-0 87-218-55 50-165-95 5-212-143 112-212-36 78-235-47 44-177-79 22-226-103

τ90 τP best90
PSO 43-45-2 31-45-14 16-45-29 0-45-45 43-45-2 31-45-14 16-45-29 0-45-45
CPSO 42-45-3 28-46-16 18-46-26 1- 45-44 42-45-3 28-45-17 19-45-26 1-45-44
BBPSO 41-46-3 27-46-17 19-45-26 2-45-43 41-46-3 18-55-17 14-54-22 6-47-37
GCPSO 3-51-36 28-47-15 17-46-27 2-45-43 40-45-5 30-46-14 17-46-27 2-45-43
TOTAL 129-187-44 114-184-62 71-182-108 5-180-135 166-181-13 107-191-62 66-190-104 9-182-169

τGbest Error (Section 3.2)
PSO 43-47-0 30-46-14 15-46-29 0-45-45 43-47-0 24-49-17 12-54-24 1-50-39
CPSO 42-47-1 27-47-16 17-47-26 1-45-44 43-47-0 23-50-17 10-56-24 1-53-36
BBPSO 41-47-2 18-55-17 14-55-21 3-51-36 45-45-0 26-47-17 15-48-27 1-46-43
GCPSO 41-47-2 28-47-15 16-47-27 2-45-43 39-49-2 22-49-19 16-49-25 6-47-37
TOTAL 167-188-5 103-195-62 62-195-103 6-186-168 209-188-2 95-195-70 53-207-100 9-196-155

128 J. Grobler and A.P. Engelbrecht

Table 6. Algorithm comparison on the CEC 2015 benchmark problem set.

OSPCGOSPBBOSPCOSPnoisnemiDmelborP

μ σ μ σ μ σ μ σ

1 10 1.90E + 07 4.85E + 07 3.30E + 07 1.25E + 08 1.01E + 06 2.75E + 06 11917 7746.3

30 1.75E + 08 2.15E + 08 2.37E + 08 3.50E + 08 6.11E + 07 1.04E + 08 1.59E + 05 75939

50 4.82E + 08 7.60E + 08 4.58E + 08 6.67E + 08 1.35E + 08 1.67E + 08 9.84E + 05 4.33E + 05

100 5.24E + 08 5.61E + 08 5.15E + 08 5.53E + 08 7.91E + 08 5.09E + 08 3.13E + 06 6.33E + 05

2 10 3.99E + 09 7.64E + 09 4.89E + 09 1.28E + 10 2.41E + 08 5.86E + 08 20750 14026

30 2.38E + 10 1.64E + 10 2.58E + 10 1.75E + 10 1.06E + 10 1.04E + 10 11464 4911

50 5.09E + 10 2.60E + 10 5.97E + 10 3.88E + 10 2.64E + 10 1.34E + 10 24633 19052

100 1.27E + 11 4.86E + 10 1.27E + 11 4.93E + 10 1.16E + 11 2.92E + 10 7626.8 4671.4

3 10 20.01 0.02 20.01 0.03 20.15 0.13 20 0

30 20.04 0.07 20.05 0.07 20.59 0.32 20.02 0.04

50 20.05 0.09 20.09 0.23 21 0.28 20.01 0.02

100 20.15 0.3 20.13 0.29 21.2 0.32 20.02 0.02

4 10 62.97 35.06 72.25 30.76 25.22 14.12 59.01 26.82

30 237.64 71.09 299.23 85.51 158.39 37.04 306.23 79.24

50 635 135.52 693.86 116.26 378.9 88.27 723.42 139.66

100 1682.9 231.53 1680.5 228 1158.1 185.54 1837.5 288.63

5 10 783.71 252.87 778.43 258.23 586.31 185.93 830.18 256.41

30 3926.9 462.64 4146.3 592.58 3917.8 486.59 4260 703.33

50 6957.6 731.51 6787.4 923.93 6727.5 727.59 7535.9 766.15

100 16424 1241.6 16460 1308.4 16609 1869.8 16749 1082

6 10 1.13E + 06 5.96E + 06 1.49E + 05 3.66E + 05 7692.6 3294.4 6088.1 3018.8

30 2.03E + 06 5.16E + 06 4.16E + 06 7.73E + 06 2.35E + 06 5.48E + 06 90466 34628

50 1.20E + 07 1.76E + 07 3.46E + 07 5.18E + 07 7.54E + 06 8.86E + 06 1.64E + 05 90896

100 2.07E + 07 2.48E + 07 2.20E + 07 3.41E + 07 2.23E + 07 1.96E + 07 3.21E + 05 1.11E + 05

7 10 16.95 43.66 4.82 8.06 2.44 1.43 3.11 1.62

30 100.24 93.47 150.27 172.58 33.56 56.92 10.73 3.21

50 352.33 404.69 341.02 294.17 126.29 88 47.31 12.52

100 1823.4 1455.8 1792.2 1447.8 1077.4 566.27 135.55 32.27

8 10 3256.7 2208 2864.9 2004 2790.1 2061.8 2805.7 968.58

30 81713 88759 2.34E + 05 5.53E + 05 2.03E + 05 2.50E + 05 16297 8318.1

50 3.15E + 06 4.66E + 06 6.01E + 06 7.68E + 06 3.59E + 06 4.28E + 06 58562 30376

100 6.49E + 06 6.47E + 06 6.53E + 06 6.32E + 06 1.01E + 07 1.06E + 07 2.13E + 05 79213

9 10 103.69 9.48 104.9 8.69 100.47 0.61 100.34 0.22

30 268.16 95.3 226.18 82.04 141.74 32.04 103.36 0.43

50 367.6 126.91 473.21 143.23 232.22 75.05 105.81 0.64

100 1649.6 633.3 1640.6 636.54 944.31 502.76 1136.7 1126

10 10 1455.9 1483 1880.6 2042.9 3955.6 7556.5 2604.8 2263.8

30 8.43E + 05 1.79E + 06 1.98E + 06 6.64E + 06 1.88E + 06 2.91E + 06 29735 7986.5

50 4.67E + 06 7.40E + 06 3.95E + 06 5.12E + 06 5.10E + 06 5.65E + 06 3523.1 1005.9

100 3.02E + 08 3.48E + 08 2.93E + 08 3.42E + 08 1.50E + 08 1.87E + 08 6315.4 1252.5

11 10 300.87 1.27 300.97 1.29 300.8 0.54 300.2 0.13

30 529.78 373.32 492.5 325.63 538.08 322.37 363.71 237.3

50 475.26 277.15 464.61 329.44 447.73 301.8 417.99 435.54

100 1414.8 1460.3 1505 1569.6 2200.6 1262.6 1034 1472.2

12 10 110.56 13.78 114.32 15.94 103.86 1.46 104.84 2.64

30 197.68 10.21 198.18 11.5 194.25 23.58 197.43 17.02

50 201.07 3.72 196.03 11.79 196.88 13.73 176.48 40.29

100 204.02 2.05 204.04 2.05 200.76 0.21 201.41 0.73

13 10 1442 1697.3 1028.3 1524.6 0.05 0.12 1679 1639.5

30 8926.4 3310.5 8358.4 3613.4 815.48 2533 10548 2487.7

50 1219.3 3771.2 889.55 3374.2 0.21 0.18 3132.2 6150.2

100 2.05 1.84 2.01 1.82 0.17 0.07 0.41 0.38

14 10 3232.7 992.83 3013.6 264.91 2969.8 43.06 2954.8 20.36

30 47943 11495 46934 11531 36370 3804.1 32697 1923.6

50 1.09E + 05 14434 1.08E + 05 16146 89281 10152 71650 11005

100 2.85E + 05 38901 2.85E + 05 38899 1.89E + 05 23271 1.12E + 05 10945

15 10 2025.2 7016.5 175.66 136.09 104.16 10.14 100 0

30 17813 33628 4509 10919 295.26 501.69 100 0

50 40903 65381 57339 81774 5810.7 14819 103.98 2.76

100 80868 1.58E + 05 79145 1.48E + 05 62728 54958 115.52 2.76

A Scalability Analysis of Particle Swarm Optimization Roaming Behaviour 129

of the search space, but are eventually pulled back into the search space as better
solutions are found within the constrained area. However, as the problem size
increases, the fraction of runs where the particles are pulled back into the search
space dramatically decreases. Finally, diversity and roaming behaviour is highly
problem dependent. There is evidence of runs where the particles remain outside
of the feasible search space due to high levels of diversity still present at the end
of the optimization run and other runs where particles have converged to a local
optimum outside of the feasible search space. See Fig. 1 for two examples.

3.2 Investigation of Particle Roaming Behaviour to Find Feasible
Solutions Outside of the Initialization Space

This second investigation focused on how roaming behaviour could be beneficial
for problems where the optimal solution lies outside of the area in which the
swarm is initialized. The CEC 2015 problems and the four PSO variations were
again used for evaluation purposes. All particles were initialized in the range
[50, 100]nx , which translates to 25% of the problem domain and all particles
were bound in the range [−100, 100]nx (the problem domain) to ensure that
no iterations are wasted on searching infeasible areas of the search space. As
soon as a particle became infeasible, the position of the infeasible dimension
was set to the boundary constraint value and the associated dimension of the
particle velocity was set to zero. The purpose of the exercise was to determine the
influence of problem size on algorithm performance when the optimal solution
does not necessarily lie within the initialization space. The results are indicated
in Tables 5 and 6.

It is again evident that algorithm performance degrades as problem dimen-
sions increase. This was the case for 83% of the problems tested. This conclusion
is further supported by the 209 times that the PSO algorithms statistically sig-
nificantly outperformed the other dimension-algorithm combinations for the 10
dimensional case. Overall, the GCPSO algorithm was the best performing PSO
variation and BBPSO the second best. BBPSO performed especially well on
problems 4, 5, 12 and 13. In summary, the PSO algorithms were able to find
good solutions outside of the initialization ranges due to roaming, but became
less efficient as the dimensions increased.

4 Conclusion

This paper described an investigation into the roaming behaviour of particles
in the PSO algorithm and how this behaviour is influenced by different sized
problems. Both the extent of the roaming behaviour in the absence of boundary
constraints, as well as the PSO algorithm’s ability to find good solutions outside
of the initialization area, were investigated. Four basic PSO variations were used
as basis for the investigation. Problem size was found to have a major influence
on roaming behaviour and algorithm performance. As problem size increased,

130 J. Grobler and A.P. Engelbrecht

the extent of roaming also increased and the algorithm performance decreased.
Effectively addressing roaming behaviour thus becomes even more important
when larger problems need to be solved.

Future research opportunities exist in analysing the roaming behaviour of
other evolutionary algorithms such as differential evolution or genetic algorithms
and more in depth analysis of the drivers and consequences of roaming behaviour.

References

1. Engelbrecht, A.P.: Particle swarm optimization: velocity initialization. In: IEEE
Congress on Evolutionary Computation (2012)

2. Engelbrecht, A.P.: Roaming behavior of unconstrained particles. In: BRICS
Congress on Computational Intelligence (2014)

3. Cheng, S., Shi, Y., Qin, Q.: Experimental study on boundary constraints han-
dling in particle swarm optimization: from population diversity perspective. Int. J.
Swarm Intell. Res. 2(3), 29–43 (2011)

4. Chu, W., Gao, X., Sorooshian, S.: Handling boundary constraints for particle
swarm optimization in high-dimensional search space. Inform. Sci. 181(20), 4569–
4581 (2011)

5. Xie, X.F., Bi, D.C.: Handling boundary constraints for numerical optimization by
particle swarm flying in periodic search space. In: IEEE Congress on Evolutionary
Computation, pp. 2307–2311 (2004)

6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International
Confererence on Neural Networks, pp. 1942–1948 (1995)

7. Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle
swarm optimization. In: IEEE Congress on Evolutionary Computation, pp. 1951–
1957 (1999)

8. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability and convergence
in a multidimensional complex space. IEEE Trans. Evolut. Comput. 6(1), 58–73
(2002)

9. Van den Bergh, F., Engelbrecht, A.P.: A new locally convergent particle swarm
optimiser. In: IEEE International Conference on Systems, Man and Cybernetics,
pp. 6–12 (2002)

10. Kennedy, J.: Bare bones particle swarms. In: IEEE Swarm Intelligence Symposium,
pp. 80–87 (2002)

11. Liang, J.J., Qu, B.Y., Suganthan, P.N., Chen, Q.: Problem definitions and evalu-
ation criteria for the CEC 2015 competition on learning-based real-parameter sin-
gle objective optimization. Technical report 201411A, Computational Intelligence
Laboratory, Zhengzhou University, Zhengzhou China and Nanyang Technological
University, Singapore (2014)

12. Vesterstrom, J.S., Riget, J., Krink, T.: Division of labor in particle swarm optimi-
sation. In: Congress on Evolutionary Computation, pp. 1570–1575 (2002)

The Analysis of Strategy for the Boundary
Restriction in Particle Swarm Optimization

Algorithm

Qianlin Zhou, Hui Lu(&), Jinhua Shi, Kefei Mao, and Xiaonan Ji

School of Electronic and Information Engineering,
Beihang University, Beijing 100191, China

mluhui@vip.163.com

Abstract. Particle swarm optimization has been applied to solve many opti-
mization problems because of its simplicity and fast convergence performance.
In order to avoid precocious convergence and further improve the ability of
exploration and exploitation, many researchers modify the parameters and the
topological structure of the algorithm. However, the boundary restriction strat-
egy to prevent the particles from flying beyond the search space is rarely dis-
cussed. In this paper, we investigate the problems of the strategy that putting the
particles beyond the search space on the boundary. The strategy may cause PSO
to get stuck in the local optimal solutions and even the results cannot reflect the
real performance of PSO. In addition, we also compare the strategy with the
random updating strategy. The experiment results prove that the strategy that
putting the particles beyond the search space on the boundary is unreasonable,
and the random updating strategy is more effective.

Keywords: Particle swarm optimization (PSO) � Boundary restriction
strategy � Random updating strategy

1 Introduction

Particle swarm optimization [1] is one kind of popular intelligence algorithms. It
searches the optimal solution through the cooperation among particle swarm. Com-
pared with other swarm intelligent algorithms, PSO is simple, fast and easy to code.
Therefore, the algorithm has attracted extensive attention since it was put forward.

However, PSO is easy to get stuck in the local optimal solutions due to the lack of
variance mechanism of the particle. In addition, the lower degree of convergence is also
a disadvantage of PSO. In order to improve the performance of the exploration and the
exploitation, many researchers modify PSO in the algorithm parameters, the topolog-
ical structure and the algorithm mechanism.

For the improvement of the parameters, Shi and Eberhart introduced inertia weight
into the original particle swarm optimization [2]. They also proposed the linearly
decreasing inertia weight to improve the performance of PSO [3]. The nonlinear inertia
weight [4] proposed by Amitava and Patrick also has a good balance between
exploration and exploitation. Chen et al. [5] proposed IPSO with a self-adaptive
adjustment inertia-weighted strategy factor. In addition, Ratnaweera et al. [6] proposed

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 131–139, 2017.
DOI: 10.1007/978-3-319-61824-1_14

the time-varying acceleration coefficients PSO. For the topological structure of PSO,
Suganthan [7] introduced a variable neighborhood operator based on the research of the
local version of PSO. Mendes et al. [8] further investigated the information flow of the
particle swarm and proposed a series of topological structures. In addition, hybrid PSO
has also been widely studied. Lvbjerg et al. [9] proposed hybrid particle swarm opti-
mization algorithm through incorporating the reproduction of standard GA into the
PSO. Higashi and Iba [10] proposed PSO with Gaussian mutation combining the idea
of the particle swarm with concepts from evolutionary algorithms. Feng and Pan [11]
presented a modified PSO algorithm based on cache replacement algorithm.

However, the strategy to update particles beyond the search space in PSO is rarely
discussed. Many researches only put particles beyond the search space on the corre-
sponding boundary without detailed analysis. In fact, there are many problems caused
by this strategy in PSO. In this paper, we find the above strategy may cause PSO to get
stuck in the local optimal solutions, and even worse, it may make PSO lose its real
ability for some functions. In addition, we compare the performance of the strategy
with that of the random updating strategy, which means the updating position will be
randomly chosen from the whole search space for the particles beyond the search
space. Based on the experiment results, the random updating strategy can avoid the
problems existing in the former strategy significantly improve the performance of PSO.

The rest of the paper is organized as following. Section 2 illustrates a common
boundary restriction strategy to restrict particles’ position and problems caused by it in
PSO. In Sect. 3, we conduct detailed experiments to prove the problems and compare
the performance of the boundary restriction strategy introduced in Sect. 2 with that of
the random updating strategy. Finally, a short conclusion follows in Sect. 4.

2 The Boundary Restriction Strategy in PSO

We focus on the improved standard global PSO algorithm. The updating formulas for
particles are as following.

viðtþ 1Þ ¼ w� viðtÞþ c1 � p randðÞ � ðpbesti � xiÞþ c2 � g randðÞ � ðgbest � xiÞ:
ð1Þ

xiðtþ 1Þ ¼ xiðtÞþ viðtþ 1Þ: ð2Þ

The linearly decreasing inertia weight w is adopted and shown as the Eq. (3).

wðtÞ ¼ wmax � ðwmax � wminÞ � t=numiteration ðwmax ¼ 0:95;wmin ¼ 0:4Þ: ð3Þ

Along with iterations, particles may fly beyond their search space. Velocity
restriction [12] shown as following is an effective way to avoid velocity explosion.

If vijðtþ 1Þ[vmaxj ðvijðtþ 1Þ\� vmaxj Þ then vijðtþ 1Þ ¼ vmaxj ðvijðtþ 1Þ ¼ �vmaxj Þ:
ð4Þ

132 Q. Zhou et al.

Here, vmaxj is the maximum velocity of the j th dimension for all particles. vmaxj can
be obtained by the following formula in many researches.

vmaxj ¼kðxmaxj � xminj Þ
.
2 k 2 ð0; 1�: ð5Þ

Here, xmaxj and xminj are the j th dimensional upper bound and lower bound of the
search space respectively. k is a constant in the interval ð0; 1�.

However, particles may still fly beyond the feasible search space. The measure to
solve this problem in many researches is as following.

If xijðtþ 1Þ[xmaxj ðxijðtþ 1Þ\� xmaxj Þ then xijðtþ 1Þ ¼ xmaxj ðxijðtþ 1Þ ¼ �xmaxj Þ:
ð6Þ

From the Eq. (6), the particle will be put on the corresponding dimensional
boundary if the particle flies beyond the search space in some dimension.

However, the combination of above velocity restriction and position restriction will
cause some problems. Firstly, all particles are more likely to be on the boundary of the
search space. It is unfair for the whole candidate solutions. Secondly, if a particle has
enough updating velocity and flies beyond the search space in all dimensions, the
position of the particle will be the corresponding vertex of the search space. However,
if the current gbest is far away from the vertex, the velocity of this particle in the next
iteration will be likely more than vmax or less than �vmax for all dimensions. Therefore,
the velocity will be vmaxð�vmaxÞ and the position of this particle in the next iteration is
certain. If the optimal solution is in the neighborhood of this certain position, PSO will
converge quickly and obtain the optimal solution. For example, given that k is equal to
1 in the Eq. (5), the certain position where a particle at vertices will fly to in probability
is the center of the search space. In fact, many benchmark functions’ search space is
symmetric, and the optimal solution is exactly the center. It seems that PSO has great
performance to obtain the optimal solution. However, if we only move the optimal
solution to another place, the performance will significantly decrease. Therefore, the
performance of PSO with above boundary restriction strategy is unfaithful.

The random updating strategy for the particles beyond the search space can avoid
the problems caused by the above boundary restriction strategy. It means that once any
dimensional position exceeds its feasible interval, the updating position for the particle
in the current iteration will be randomly selected from all the candidate solutions. The
random updating strategy can make PSO have the balanced performance no matter
where the optimal solution is. In addition, it can also enhance the population diversity
and improve the possibility to obtain the optimal solution.

3 Experiment and Analysis

The benchmark functions that we used is shown in Table 1. The range of xi is ½�5; 5�
for f1ðXÞ � f3ðXÞ, ½�8; 8� for f4ðXÞ � f6ðXÞ, and ½�10; 10� for the others. All func-
tions have the same optimal solution maxðfiðXÞÞ ¼ fið0; � � � 0Þ ¼ 0 ð1� i� 10Þ, which

The Analysis of Strategy for the Boundary Restriction 133

is exactly the center of the search space. As a contrast, f
0
1ðXÞ � f

0
10ðXÞ are the same as

f1ðXÞ � f10ðXÞ except for the range of xi, which is ½�3; 5� for f 01ðXÞ � f
0
3ðXÞ, ½�6; 8�

for f
0
4ðXÞ � f

0
6ðXÞ, and ½�6; 10� for the others. The optimal position for these changed

functions is still ð0; 0Þ but no longer the center of the search space.

3.1 The Analysis of the Strategy that Putting the Particles Beyond
the Search Space on the Boundary

All the functions that we used are two dimensional in order to clearly show the
problems caused by the strategy that putting the particles beyond the search space on
the boundary. In addition, the more particles and iterations mean the greater possibility
for PSO to obtain the better degree of convergence. In order to avoid optimization
results so close to the global optimal solution that the program cannot distinguish and
lead to less obvious experiment results, we use 20 particles and 200 iterations. k is
equal to 1 in the Eq. (5). PSO is executed 100 times respectively for each case and the
results are shown as Table 2. The ratio means the percentage of obtaining the optimal
solution in the 100 runs and the threshold to decide whether PSO obtains the optimal
solution is 10�6. In addition, the late five columns of Table 2 are the distribution of the
difference between 0 and optimization solutions which obtain the optimal solution in
the 100 runs.

From Table 2, the ratio of obtaining the optimal solution decreases obviously for
f
0
1ðXÞ � f

0
4ðXÞ when compared with f1ðXÞ � f4ðXÞ. Moreover, the distribution of the

optimization solutions shows that the particles can almost obtain the accurate optimal
solution ð0; 0Þ for f1ðXÞ � f10ðXÞ, while for f 01ðXÞ � f

0
10ðXÞ the optimization solutions

are only close to ð0; 0Þ. We analyze all particles’ positions along with the iterations to
uncover the causes of the significant differences. Take f4ðXÞ as an example, the particle

Table 1. The benchmark functions.

Functions Functions

f1ðXÞ ¼ �Pn
i¼1

½x2i �10 cosð2pxiÞþ 10� f2ðXÞ ¼ 0:5� sin2
ffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
�0:5

½1þ 0:001ðx21 þ x22Þ�2
� 1

f3ðXÞ ¼ 1þ cosð12
ffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
Þ

0:5ðx21 þ x22Þþ 2 � 1 f4ðXÞ ¼ �½ 1
4000

Pn
i¼1

x2i �
Qn
i¼1

cosð xiffi
i

p Þþ 1�

f5ðXÞ ¼ �
Xn�1

i¼1

100½ðxiþ 1 þ 1Þ � ðxi þ 1Þ2�2 þ
n

½1� ðxi þ 1Þ�2
o

f6ðXÞ ¼ �½�20 expð�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

x2i =n

s
Þ�

expð
Xn
i¼1

cosð2pxiÞ=nÞþ 20þ e�

f7ðXÞ ¼ �Pn
i¼1

ðPi
j¼1

xjÞ2 f8ðXÞ ¼ �ðPn
i¼1

xij j þ Qn
i¼1

xij jÞ

f9ðXÞ ¼ � sin2½3pðx1 þ 1Þ�þ x21½1 + sin2
�

ð3px2 þ 3pÞ�þ x22½1 + sin2ð2px2 þ 2pÞ��
f10ðXÞ ¼ �½Pn

i¼1
x2i þðPn

i¼1
0:5ixiÞ2 þðPn

i¼1
0:5ixiÞ4�

134 Q. Zhou et al.

swarm obtain the optimal solution in the 29th iteration in one experiment. We give all
parameters of the first particle obtaining the optimal solution from the 25th to the 34th
iteration in Table 3 to show the process how it obtains the optimal solution.

From Table 3, the particle obtains the optimal position ð0; 0Þ accurately in the 30th
iteration when its position in the 29th iteration is ð8;�8Þ which is a vertex of the search
space. pbestð�0:3936; 0:69719Þ and gbestð3:07380;�4:52855Þ are relatively far away
from the current vertex ð8;�8Þ in the 29th iteration and the current velocity
ð0:81243;�1:60364Þ is relatively small. Therefore, the velocity in the next iteration
will be more than vmax (8) or less than �vmax (−8) when p randðÞ and g randðÞ take
the appropriate values. Based on the Eqs. (1) and (2), the velocity in the next iteration
will be ð8;�8Þ and the position will be ð0; 0Þ.

The above analysis provides the evidence that position restriction strategy makes
PSO accurately obtain ð0; 0Þ rather than close to ð0; 0Þ for f1ðXÞ � f10ðXÞ. However,

Table 2. The results of the contrast experiments.

Functions Ratio 0 (0, 10^
−15]

(10^−15,
10^−12]

(10^−12,
10^−9]

(10^−9,
10^−6]

f1ðXÞ=f 01ðXÞ 99%/94% 99/0 0/57 0/35 0/2 0/0

f2ðXÞ=f 02ðXÞ 94%/17% 91/0 0/10 2/6 1/0 0/1

f3ðXÞ=f 03ðXÞ 100%/82% 100/0 0/51 0/25 0/4 0/2

f4ðXÞ=f 04ðXÞ 94%/56% 93/0 1/43 0/9 0/2 0/2

f5ðXÞ=f 05ðXÞ 100%/100% 98/0 1/89 1/11 0/0 0/0

f6ðXÞ=f 06ðXÞ 100%/100% 98/0 0/0 0/0 2/47 0/53

f7ðXÞ=f 07ðXÞ 100%/100% 99/0 1/100 0/0 0/0 0/0

f8ðXÞ=f 08ðXÞ 100%/100% 99/0 0/0 0/0 0/67 1/33

f9ðXÞ=f 09ðXÞ 100%/100% 98/0 2/97 0/3 0/0 0/0

f10ðXÞ=f 010ðXÞ 100%/100% 99/0 1/100 0/0 0/0 0/0

Table 3. All parameters of the particle obtaining the optimal solution in the 25th–34th iteration.

No. Position Velocity pbest gbest p_rand() g_rand()

25 (5.98798, −7.92058) (3.97809, −7.69489) (−0.62541, 0.72835) (3.03260, −4.55764) 0.928459 0.187363

26 (−2.01203, 0.74742) (−8, 8) (−0.62541, 0.72835) (3.03260, −4.55764) 0.699531 0.662533

27 (−0.3936, 0.69719) (1.61842, −0.05023) (−0.3936, 0.69719) (3.03260, −4.55764) 0.876501 0.914099

28 (7.28305, −7.30281) (7.67665, −8) (−0.3936, 0.69719) (3.07380, −4.52855) 0.253488 0.234756

29 (8, −8) (0.81243, −1.60364) (−0.3936, 0.69719) (3.07380, −4.52855) 0.851735 0.085847

30 (0, 0) (−8, 8) (0, 0) (0, 0) 0.370618 0.762884

31 (−6.918, 6.918) (−6.918, 6.918) (0, 0) (0, 0) 0.468864 0.296021

32 (−2.29837, 2.29837) (4.61963, −4.61963) (0, 0) (0, 0) 0.229370 0.816503

33 (5.70163, −5.70163) (8, −8) (0, 0) (0, 0) 0.993911 0.172161

34 (−0.74339, 0.74339) (−6.44502, 6.44502) (0, 0) (0, 0) – –

The Analysis of Strategy for the Boundary Restriction 135

the center of the search space is no longer the optimal solution when we decrease the
search space. Therefore, the degree of convergence will degrade for f

0
1ðXÞ � f

0
10ðXÞ. In

addition, the ratio of obtaining the optimal solution is also increased due to the potential
possibility that the particles accurately fly to the optimal solution when they are located
in a vertex. Therefore, the ratios of f

0
1ðXÞ � f

0
4ðXÞ are significantly lower than that of

f1ðXÞ � f4ðXÞ. However, the optimal solution of f
0
5ðXÞ � f

0
10ðXÞ is more obvious and

easier to search in the search space for PSO compared with f
0
1ðXÞ � f

0
4ðXÞ. PSO can

still obtain the great performance without the position restrict strategy’s hole for
f
0
5ðXÞ � f

0
10ðXÞ. Therefore, the performance is similar just observing the ratio for

f5ðXÞ � f10ðXÞ and f
0
5ðXÞ � f

0
10ðXÞ. There are also some conclusions about the phe-

nomenon that the particle will fly to a certain position in probability when it is in a
vertex of the search space.

Firstly, the phenomenon that the particle at vertices flies to the center of the search
space in the next iteration is a matter of probability when k is equal to 1. p randðÞ and
g randðÞ are chosen randomly from 0 to 1. Their values may be too small to make the
velocity in the next iteration exceed the restriction of the velocity. In addition, the
positions of pbest and gbest also have the crucial influence on the velocity.

Secondly, any particle which flies to the center of the search space from a vertex will
not leave the diagonal of the search space in the later iterations. As shown in Table 3, the
particle will always move on the diagonal of the search space after the 30th iteration.
The reason is that pbest and gbest is ð0; 0Þ for this particle, and they will not change. In
addition, the velocity vector of the particle is parallel to the diagonal direction.

Thirdly, the phenomenon that a particle flies to the center from a vertex will be
likely occur in the early iterations. Based on the linearly decreasing inertia weight, the
particles have the larger velocity in the early iterations because of the larger w.
Therefore, the particle is also more likely to fly beyond the search space in the early
iterations. This characteristic may lead to the premature convergence and mislead our
assessment about the performance of PSO.

Fourthly, the particle will fly to other certain positions when k is not equal to 1. For
example, if k is equal to 0:5 when the search space is ð�8; 8Þ, the particle may fly to
one of ð�4;�4Þ, ð�4; 4Þ, ð4;�4Þ and ð4; 4Þ. If the position is exactly the optimal
solution, the particle will also just move on the diagonal of the search space in the later
iterations. In fact, the problem will always exist as long as the maximum velocity is a
constant and the measure to restrict particles’ position is shown as the Eq. (6) in PSO.

Finally, with the increasing of the functions’ dimension, the occurrence probability
of the problem is very low if the number of the particles and the iterations remain
unchanged, because the phenomenon only occurs when the velocities of all dimensions
are more than vmax or less than �vmax simultaneously. However, even if the velocities in
part dimensions are beyond ½�vmax; vmax� and the particle flies to the search space’s
center of the corresponding dimensions, the position may also be a good solution. For
example, a 10-dimensional particle may fly from P1ð8;�8; 8 � � � 8; x1; y1; z1Þ to
P2ð0; 0; 0 � � � 0; x2; y2; z2Þ when each dimension’s search space is ½�8; 8�. If P2 is
exactly a near-optimal solution, the particle swarm may be trapped in local optimal
solution. The particles may also find better solution, like ðD1;D2; � � �D7;
x2 þD8; y2 þD9; z2 þD10Þ(Dið1� i� 10Þ is a small constant), than P2 in the

136 Q. Zhou et al.

neighborhood of P2 along with the convergence of the particle swarm. Therefore, it
seems that the final output of PSO may be only a local optimal solution without any
problems. However, the PSO’s performance has been significantly influenced by the
boundary restriction strategy that putting the particles beyond the search space on the
boundary.

3.2 The Analysis of the Random Updating Strategy

f1ðXÞ � f10ðXÞ are still used as the benchmark functions. All parameters and measures
of PSO are the same as the above experiments except for the updating strategy for the
particles beyond the search space. The random updating strategy is used in the fol-
lowing experiments. The results of the contrast experiments are shown in Table 4.

From Table 4, the ratios do not decline as the experiment results shown in Table 2
for the first four functions when the center of the search space is no longer the optimal
solution. On the contrary, the ratios are improved for f

0
2ðXÞ � f

0
4ðXÞ compared with

f2ðXÞ � f4ðXÞ. Due to the smaller search space, the improved ratios meet expectations.
All optimization solutions are not the real global optimal solution exactly. They are
only the solutions close to the global optimal solution. In addition, the distribution of
the optimization solutions is similar for each pair of functions fiðXÞ and
f
0
i ðXÞð1� i� 10Þ. The differences are only caused by the randomness of PSO and the
reduced search space. Therefore, the random updating strategy can avoid the problem
that the particle fly to the center of the search space in probability when it is at a vertex.

Compared with the experiment results in Table 2, the ratios for f
0
1ðXÞ � f

0
4ðXÞ are

larger in Table 4. Dissymmetry search space will not make the particle fly to the global
optimal solution in probability. The results in Table 2 for f

0
1ðXÞ � f

0
10ðXÞ reflect the

Table 4. The results of the contrast experiments.

Functions Ratio 0 (0, 10^−15] (10^−15,
10^−12]

(10^−12,
10^−9]

(10^−9,
10^−6]

f1ðXÞ=f 01ðXÞ 96%/96% 0/0 63/57 29/37 4/1 0/1

f2ðXÞ=f 02ðXÞ 63%/77% 0/0 27/25 24/29 9/18 3/5

f3ðXÞ=f 03ðXÞ 82%/94% 0/0 58/66 16/21 8/6 0/1

f4ðXÞ=f 04ðXÞ 78%/93% 0/0 62/71 13/10 3/7 0/5

f5ðXÞ=f 05ðXÞ 100%/100% 0/0 84/85 16/15 0/0 0/0

f6ðXÞ=f 06ðXÞ 100%/100% 0/0 0/0 0/0 56/55 44/45

f7ðXÞ=f 07ðXÞ 100%/100% 0/0 100/100 0/0 0/0 0/0

f8ðXÞ=f 08ðXÞ 100%/100% 0/0 0/0 0/0 54/70 46/30

f9ðXÞ=f 09ðXÞ 100%/100% 0/0 97/97 3/3 0/0 0/0

f10ðXÞ=f 010ðXÞ 100%/100% 0/0 100/100 0/0 0/0 0/0

The Analysis of Strategy for the Boundary Restriction 137

real performance of PSO. However, the strategy that putting the particles beyond the
search space on the boundary will make a large number of particles locate in the
boundary in the early iterations. Moreover, if the center of the search space is exactly a
near-optimal solution, the strategy that putting the particles beyond the search space on
the boundary may cause PSO to get stuck in the near-optimal solution. Compared with
the above strategy, the random updating strategy makes full use of particles and
increases the diversity of particles. Taking f

0
4ðXÞ as an example, all particles’ traces

with the two strategies are shown in Fig. 1 (a) and (b) respectively.

3.3 Summary of the Experiments

If the boundary restriction strategy that putting the particles beyond the search space on
the boundary is adopted in PSO, the particle will fly to a different but certain position in
the search space in probability based on the different maximum velocity when it is
located at a vertex of the search space. When the certain position is exactly the global
optimal solution, the performance of PSO will be incredible, though it seems that PSO
has excellent performance most of the time. When the certain position is not the global
optimal solution, the performance of PSO is real, but it will decline sharply for the
functions with many near-optimal solutions which are close to the global optimal
solution. The random updating strategy can effectively avoid the above problems. It can
improve the diversity of the particles and increase the probability of obtaining the
global optimal solution in the same condition compared with the former boundary
restriction strategy. Therefore, we think the random updating strategy for the particles
beyond the search space is a better way, and it should be widely adopted in PSO,
especially for the reality optimization problems without prior knowledge of the global
optimal solution.

Fig. 1. The compared results of all particles’ traces in PSO with the two boundary restriction
strategies respectively

138 Q. Zhou et al.

4 Conclusion

This paper focuses on the analysis of the two different boundary restriction strategies in
PSO. Combined with the experiment results, we analyze the existing problems of the
strategy that putting the particles beyond the search space on the boundary and the
reasons for them. In addition, we also prove the advantages of the random updating
strategy. Therefore, the random updating strategy is recommended for the reality
optimization problems without prior knowledge of the global optimal solution.

The future work will focus on the more effective boundary restriction strategies. In
addition, the deeper analysis of the different boundary restriction strategies for the
different optimization problems is also deserving of research.

Acknowledgments. This research is supported by the National Natural Science Foundation of
China under Grant No. 61671041.

References

1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the Feedback
Mechanism IEEE International Conference on Neural Networks. IEEE Service Center,
Piscataway, NJ, pp. 1942–1948 (1995)

2. Shi, Y.H., Eberhart, R.C.: A modified particle swarm optimizer. In: 1998 IEEE International
Conference on Evolutionary Computation Proceedings. IEEE World Congress on Compu-
tational Intelligence, Anchorage, AK, pp. 69–73 (1998)

3. Shi, Y.H., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: 7th
International Conference, EP98 San Diego, California, USA, vol. 1447, pp. 591–600 (1998)

4. Amitava, C., Patrick, S.: Nonlinear inertia weight variation for dynamic adaptation in
particle swarm optimization. Comput. Oper. Res. 33(3), 859–871 (2006)

5. Chen H.H., Li G.Q., Liao H.l.: A self-adaptive improved particle swarm optimization
algorithm and its application in available transfer capability calculation. In: 2009 Fifth
International Conference on Natural Computation, Tianjin, pp. 200–205 (2009)

6. Ratnaweera, A., Halgamuge, S., Watson, H.C.: Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–
255 (2004)

7. Suganthan P.N.: Particle swarm optimiser with neighbourhood operator. In: Proceedings of
the 1999 Congress on Evolutionary Computation, CEC 99, Washington, DC, vol. 3, p. 1962
(1999)

8. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe
better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

9. Lvbjerg M., Rasmussen T.K., Krink T.: Hybrid particle swarm optimizer with breeding and
subpopulations. In: Proceedings of the Third Genetic and Evolutionary Computation
Conference, vol. 1, pp. 469–476 (2001)

10. Higashi N., Iba H.: Particle swarm optimization with Gaussian mutation. In: Proceedings of
the 2003 IEEE Swarm Intelligence Symposium, SIS 2003, pp. 72–79 (2003)

11. Feng M., Pan H.: A Modified PSO Algorithm Based on Cache Replacement Algorithm. In:
2014 Tenth International Conference on Computational Intelligence and Security (CIS),
Kunming, pp. 558–562 (2014)

12. Federico, M., Beata, W.: Particle swarm optimization (PSO) a tutorial. Chemometr. Intell.
Lab. Syst. 149, 153–165 (2015)

The Analysis of Strategy for the Boundary Restriction 139

Particle Swarm Optimization with Ensemble
of Inertia Weight Strategies

Muhammad Zeeshan Shirazi, Trinadh Pamulapati,
Rammohan Mallipeddi(&), and Kalyana Chakravarthy Veluvolu

School of Electronics Engineering, College of IT Engineering,
Kyungpook National University, Bukgu, Daegu 41566, Republic of Korea

zeeshanshirazi85@gmail.com,

trinadhpamulapati@gmail.com,

mallipeddi.ram@gmail.com, veluvolukc@gmail.com

Abstract. Particle swarm optimization (PSO) has gained significant attention
for solving numerical optimization problems in different applications. However,
the performance of PSO depends on the appropriate setting of inertia weight and
the optimal setting changes with generations during the evolution. Therefore,
different adaptive inertia weight strategies have been proposed. However, the
best inertia weight adaptive strategy depends on the nature of the optimization
problem. In this paper, different inertia weight strategies such as linear,
Gompertz, logarithmic and exponential decreasing inertia weights as well as
chaotic and oscillating inertia weight strategies are explored. Finally, PSO with
an adaptive ensemble of linear & Gompertz decreasing inertia weights is pro-
posed and compared with other strategies on a diverse set of benchmark opti-
mization problems with different dimensions. Additionally, the proposed
method is incorporated into heterogeneous comprehensive learning PSO
(HCLPSO) to demonstrate its effectiveness.

Keywords: Particle swarm optimization � Ensemble of inertia weight
strategies �Gompertz decreasing inertia weight � Linear decreasing inertia weight

1 Introduction

Optimization is the process of finding the best solution in a search space from all
possible solutions. In literature, a variety of population based derivate-free heuristic
optimization algorithms have been proposed. Among the different optimization algo-
rithms, Particle Swarm Optimization (PSO) is a computational method inspired by
behavioral models of fish schooling, bird flocking, etc. [1, 2].

PSO has been successfully applied to optimization problems in different engi-
neering application areas due to features such as; simplicity, ease of implementation,
robustness to control parameters and high computational efficiency. However, the
performance of PSO depends on the optimal setting of parameters such as inertia
weight and acceleration parameters. In literature, different inertia weight strategies are
adopted to improve the performance of PSO for optimization. In [3], a dynamic inertia
weight strategy was explored to improve the performance of PSO. The decreasing
inertia weight with linearly or Gompertz functions were also explored [4].

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 140–147, 2017.
DOI: 10.1007/978-3-319-61824-1_15

However, based on the observation that different inertia weight strategies suit dif-
ferent optimization problem depending on the nature of the problem, therefore we
proposed an ensemble of inertia weight strategies. In [5], PSO with comprehensive
learning referred to as comprehensive learning PSO (HCLPSO) was proposed.
In HCLPSO [5], the exploration and exploitation are balanced by dividing the popu-
lation into two subgroups and each subgroup employs linearly decreasing inertia weight
along with time varying acceleration coefficients. Therefore, the proposed ensemble of
inertia weight strategies is incorporated into HCLPSO to demonstrate its effectiveness.
The proposed algorithm keeps track of how successful each behavior has been over a
number of iterations and uses the information to select the next behavior of particle.
A new self- adaptive Heterogeneous particle swarm optimizers (HPSO) was proposed to
adaptively select the exploration/exploitation point of the search [6]. The particles are
allowed to change their behaviors during the search in dynamic HPSOs. In [7] compared
the behavior and performance of a selection of self-adaptive PSO algorithms to that of
time variant algorithms. To solve the issue of parameter tuning, self-adaptive PSO
algorithms proposed the adaptive nature of parameters over time [8]. In [9] proposed a
HPSO algorithm with particles to follow the different search behaviors selected from a
behavior pool and addressed the exploration – exploitation trade off problem. They
provided a preliminary empirical analysis that much can be gained by using heteroge-
neous swarms the sensitivity of the PSO algorithm to the control parameters by first
providing an overview of 18 inertia weight control strategies addressed in [10].

In the remainder of the paper, Sect. 2 briefly describes the working principle of
standard PSO algorithm and the different strategies proposed in the literature for inertia
weight adaptation. In Sect. 3, presents the proposed ensemble of inertial weight
strategies. In Sect. 4, we describe our experimental set up and simulation results to
highlight the effectiveness of the proposed algorithm on 11 benchmark functions.
Finally, Sect. 5 presents conclusions.

2 Literature Survey

2.1 Standard PSO

PSO is a stochastic optimization technique which starts with initial random positions and
velocities assigning to all the particles in the space. Themovement of particles depends on
their local and global best positions. The velocity and position of a particle can be updated
by using the following Eqs. (1) and (2). The standard PSO employs constant acceleration
coefficients (c1, c2) & inertia weight (w). The values of these parameters for optimal
convergence in generally are 1.419 for both c1, c2 and 0.7 for w. However, it has been
pointed out that an optimized inertia weight (w = 0.721) [11] provides a balance between
global and local exploration and improves the chances to find the optimum value. The
velocity update and position update equations in standard PSO are given as follows

~vi kþ 1ð Þ ¼ w~vi kð Þþ c1~ri kð Þ ~pi kð Þ �~xi kð Þð Þþ c2~ri kð Þ ~g kð Þ �~xi kð Þð Þ ð1Þ

~xi kþ 1ð Þ ¼~xi kð Þþ~vi kþ 1ð Þ ð2Þ

Particle Swarm Optimization with Ensemble of Inertia Weight Strategies 141

where w is the inertia weight and c1, c2 are the acceleration constants, i ranges from 1 to
number of particles, k indicates the iteration number. ~vi kð Þ and ~xi kð Þ represent the
velocity and position vectors, respectively at kth iteration. ~pi kð Þ denotes the personal
best result of i th particle, while ~gi kð Þ is the global best of the population. ~ri kð Þ is a
random number in the range of [0,1].

2.2 Different Inertia Weight Strategies

The performance of standard PSO is better owing to the presence of inertia weight and
acceleration constants c1 and c2. The effectiveness of standard PSO in solving a
numerical optimization problem depends on the appropriate values of inertia weight
and acceleration constants. Since the optimal value of inertia weight at different iter-
ations of the evolution process, a number of inertia weight adaptation strategies have
been proposed. Table 1 shows the different inertia weight strategies to improve the
performance of standard PSO. However, depending on the nature of the optimization
problem a particular adaptation strategy may be apt for the problem at hand.

3 Proposed Method

A new strategy to select dynamic inertia weight is proposed in PSO and we called it
ensemble of inertia weight strategies. In the proposed method, an ensemble of linearly
decreasing and Gompertz decreasing inertia weights is considered. Initially, each posi-
tion vector in the population is assigned with one of the two inertia weight strategies
which will be used (to update velocity and position of the particle) if the assigned strategy

Table 1. Different inertia weight strategies

S. No. Name of inertia weight Formula of inertia weight Reference

1 Linear decreasing
inertia weight

w kð Þ ¼ w1 þ w2 � w1ð Þ k
FE ð3Þ [12]

2 Gompertz decreasing
inertia weight

w kð Þ ¼ w1 þ w2 � w1ð Þe�0:05u nFE�kð Þ

u ¼ 10 log FE
Dð Þ�13ð Þ ð4Þ

[3]

3 Chaotic inertia weight w kð Þ ¼ w1 � w2ð Þ FE�k
FE þ 4w2z 1� zð Þ [13]

4 Oscillating inertia
weight

w kð Þ ¼ 0:5 w1 þw2ð Þþ w1 � w2ð Þcos 22:6p
FE

� �� �

5 Logarithm decreasing
inertia weight

w kð Þ ¼ w1 þ w2 � w1ð Þlog 1þ 10k
FE

� �

6 Exponent decreasing
inertia weight w kð Þ ¼ w1 � w2 � 0:175ð Þe

1
1þ 5k

FE

� �

where w(k) is inertia weight at kth iteration, w1 and w2 are inertia weights at the start and end of a
given run, respectively. Furthermore, u is the constant to adjust sharpness of the function, FE is
the maximum number of function evaluations in a run, D is the dimensionality of the problem,
and n is a constant to partition the Gompertz function.

142 M.Z. Shirazi et al.

results in a better position of the particle then the assigned strategy is retained. If not,
inertia weight strategy is changed. The above results in assigning a better inertia weight
strategy to each of the particle in the population depending on its current position and
velocity during each iteration. The acceleration constant c1 is linearly decreased while c2
linearly increased. The flowchart of the proposed ensemble method is as follows (Fig. 1).

4 Experimental Setup and Simulation Results

In this section, we demonstrate the performance of particle swarm optimization with
different strategies along with the static and dynamic inertia weight and acceleration
constants. Eleven benchmark functions (F1–F11) presented in Table 2 are used in this
study for testing the performance. In Table 2, x ¼ x1; x2; . . .:; xD½ � represents the
decisions variables and o ¼ o1; o2; . . .:; oD½ � is the shifted global optimum.

Table 3 shows the description and parameter settings of ten different instances
employed in this study. Four different parameter settings of acceleration constants c1
and c2 were tested with dynamically changing such that c1 = c2 increasing, c1 = c2
decreasing, c1 increasing and c2 decreasing, and vice versa. Based on the optimized
results, c1 decreasing and c2 increasing was used in optimization of benchmark

Start

Initialize c1 to linear decreasing function from 2 to 0.5 and c2 to a linearly
increasing function from 0.5 to 2, respectively.

Initialize particles with random position and velocity vectors

Obtain w, c1 and c2 using the respective functions

Assign one of the two inertia weight strategies (Table 1. equations (3) and (4)) to
each of the particles randomly.

Calculate fitness value for each particle and select the pbest

Select the best of pbest as gbest

The equations (1) and (2) are employed to update particles’ velocity and position.

If fitness is improved, keep
the same w else change

End

Fig. 1. Flow chart of the proposed algorithm.

Particle Swarm Optimization with Ensemble of Inertia Weight Strategies 143

functions. In cases 2 to 7, the acceleration constants are dynamically changing such that
c1 is decreasing from 2 to 0.5 and c2 is increasing from 0.5 to 2. The proposed
ensemble methods employs the linearly decreasing and Gompertz decreasing inertia
strategies because these are the two better performing strategies compared to the other
strategies on the benchmark problems presented in Table 2. To further demonstrate the
significance of the current work, proposed ensemble of inertia weight strategies is
incorporated into HCLPSO (case 9) and is referred to as AENHCLPSO (Case 10).

The maximum number of function evaluations is set to 100000 300000 for 10D,
30D problems respectively. All the experiments were run 30 times, independently on
each problem. The swarm size is taken as 30 in cases 1 to 8, while in cases 9 and 10,
swarm size of 20 and 40 is employed for 10D and 30D problems, respectively.

Tables 4 and 5 show the experimental results of cases 1–8 discussed above with
swarm size of 30 and problem dimensions of 10, 30, and 50, respectively. From the
results, it can be observed that out of first 8 cases, linear and Gompertz decreasing
inertia weight strategies perform better than exponent, logarithm, chaotic and

Table 2. Bench mark functions employed in this study

F# Function equation Bounds f bias
F1

f xð Þ ¼ PD
i¼l

z2i þ fbias; z ¼ x� o
�100; 100½ �D −450

F2 f xð Þ ¼ PD
i¼I

Pi
J¼l zj

� �Þþ fbias; z ¼ x� o �100; 100½ �D −450

F3
f xð Þ ¼ PD

i¼l
ð106Þ i�1

D�1z2i þ fbias; z ¼ x� o;
�100; 100½ �D −450

F4 f xð Þ ¼ PD
i¼1

Pi
J¼1 zj

� �2� �
� 1þ 0:4 N 0; 1ð Þj jð Þ þ fbias; z ¼ x� o �100; 100½ �D −450

F5 f xð Þ ¼max Aix� Bij jf gþ þ fbias; A ¼ D� D;Bi ¼ Ai � o
aij ¼ randomno:in the range �500; 500½ �

�100; 100½ �D −310

F6 f xð Þ ¼ PD�1
i¼1 100 ziþ 1 � z2i

� �2 þ zi � 1ð Þ2
� �

þ fbias; z ¼ x� o �100; 100½ �D 390

F7 f xð Þ ¼ PD�1
i¼1

z2i
4000

QD
i¼1 cos

ziffi
i

p
� �

þ 1þ fbias; z ¼ x� o 0; 600½ �D −180

F8
f xð Þ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

PD
i¼1 z

2
i

q� �
� exp 1

D

PD
i¼1 cos 2pzið Þ	

þ 20þ eþ fbias; z ¼ x� o

�32; 32½ �D −140

F9 f xð Þ ¼ PD
i¼1 z2i � 10 cos 2pzið Þþ 10

� �þ fbias; z ¼ x� o �5; 5½ �D −330

F10 f xð Þ ¼
XD

i¼1

Xkmax

k¼0
ak cos 2pbkðzi þ 0:5

� �Þ� �� �
�D

Pkmax
k¼0 ak cos 2pbk � 0:5� �� �þ fbias; z ¼ x� o

�0:5; 0:5½ �D 90

F11 f xð Þ ¼
XD�1

i¼1
Ai � Bi xð Þð Þ2 þ fbias

Ai ¼
XD
i¼I

aijsinaj þ bijcosaj
� �

;Bi xð Þ ¼
XD
i¼I

aijsinxj þ bijcosxj
� �

A&B ¼ D� D; aij ¼ randomno:in the range �100; 100½ �
aij ¼ randomno:in the range �p; p½ �

�p; p½ �D −460

144 M.Z. Shirazi et al.

oscillating inertia weight strategies. Based on this observation, the ensemble is formed
using linear and Gompertz decreasing inertia weights. In Tables 4 and 5, it can be
observed that the ensemble performs comparable to the best among the two constituent
inertia weight strategies and better than the worst performing inertia weight strategy.

The original HCLPSO employs a linearly decreasing inertia weight strategy only.
We incorporate the proposed ensemble of inertia weight strategies into original
HCLPSO and the results are depicted in Table 6. From the results it can be observed
that AENHCLPSO performs better or comparable to HCLPSO on most of the cases.

Table 3. Description of different cases utilized in this study.

Case Label Description

1 SPSO Standard PSO with acceleration constants c1, c2 = 1.496 and inertia
weight w = 0.721

2 LDIW PSO with linearly decreasing inertia weight from 0.9 to 0.4 values
3 GDIW PSO with Gompertz decreasing inertia weight from 0.9 to 0.4 values
4 CIW PSO with chaotic inertia weight in the interval of 0.4 and 0.9 values
5 OIW PSO with oscillating inertia weight in the interval of 0.4 and 0.9 values
6 LOGIW PSO with logarithmic decreasing inertia weight from 0.9 to 0.4 values
7 EXPIW PSO with exponent decreasing inertia weight from 0.9 to 0.4 values
8 EAIW Here, ensemble of cases 2 and 3 with adaptive inertia weight strategy is

utilized
9 HCLPSO PSO with w = 0.99–0.2, c1 = 2.5–0.5, c2 = 0.5–2.5, c = 3–1.5 with

linear decreasing
10 AENHCL

PSO
In AENHCLPSO case, ensemble of cases 2 and 3 with adaptive inertia
weight strategy is utilized

Table 4. Comparison between different inertia weight strategies on 10D problems size of 30

SPSO LDIW GDIW CIW OIW LOGIW EXPIW EAIW

MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD

F1 2.64E+01 7.54E+01 0.00E+00 0.00E+00 1.46E-03 7.98E-03 2.14E+01 1.17E+02 6.15E-03 1.56E-02 6.73E-30 3.69E-29 5.40E-13 2.78E-12 0.00E+00 0.00E+00

F2 1.12E+01 3.66E+01 6.02E-21 3.29E-20 2.07E-28 1.13E-28 3.62E-03 1.08E-02 1.29E+01 1.63E+01 2.70E-06 8.08E-06 1.81E-02 3.82E-02 2.65E-28 2.47E-28

F3 5.67E+04 2.06E+05 0.00E+00 0.00E+00 8.49E-01 2.99E+00 3.24E+02 1.69E+03 1.14E+05 2.47E+05 2.76E-01 1.51E+00 2.07E+02 4.89E+02 0.00E+00 0.00E+00

F4 2.83E+01 5.00E+01 3.56E-05 8.45E-05 1.10E-01 3.16E-01 5.73E+01 1.47E+02 3.54E+00 7.25E+00 2.77E-01 6.97E-01 1.75E+01 3.83E+01 4.55E-04 2.26E-03

F5 2.44E+02 1.34E+03 1.09E-07 5.98E-07 4.81E-06 2.63E-05 1.84E-01 9.65E-01 2.18E+01 2.44E+01 2.16E-04 5.91E-04 1.52E-01 5.31E-01 2.12E-10 8.79E-10

F6 1.04E+06 3.95E+06 1.38E+01 3.41E+01 3.20E+00 2.51E+00 1.14E+01 2.13E+01 3.36E+02 1.22E+03 4.32E+01 6.58E+01 1.88E+01 4.39E+01 3.02E+00 3.43E+00

F7 1.22E-01 7.40E-02 6.64E-02 3.74E-02 3.95E-02 2.44E-02 6.05E-02 4.46E-02 3.81E-02 3.13E-02 4.01E-02 2.50E-02 4.24E-02 2.98E-02 5.34E-02 3.61E-02

F8 4.86E+00 8.51E+00 6.66E-01 3.65E+00 8.63E-01 3.49E+00 4.18E-01 6.12E-01 2.02E+00 4.89E+00 1.05E-07 3.34E-07 2.18E+00 6.05E+00 1.40E+00 5.07E+00

F9 1.32E+01 7.66E+00 2.62E+00 1.49E+00 3.25E+00 1.50E+00 3.55E+00 2.02E+00 2.12E+00 1.13E+00 2.16E+00 1.20E+00 2.72E+00 1.73E+00 2.65E+00 1.57E+00

F10
1.08E+00 1.28E+00 2.05E-01 5.32E-01 2.17E-01 5.49E-01 4.31E-01 6.85E-01 3.63E-01 5.20E-01 1.53E-01 4.66E-01 1.83E-01 4.78E-01 2.03E-01 5.25E-01

F11
3.54E+03 7.66E+03 3.33E+02 6.04E+02 4.55E+02 7.52E+02 9.46E+02 1.81E+03 5.72E+02 6.46E+02 4.37E+02 6.10E+02 8.25E+02 1.28E+03 2.42E+02 5.11E+02

Particle Swarm Optimization with Ensemble of Inertia Weight Strategies 145

5 Conclusion

The performance of PSO depends on the proper selection of appropriate inertia weight
strategy. Depending on the nature of problem, a particular inertia weight strategy may
be apt for a given problem. Based on this observation, to effectively solve a set of
optimization problems we propose an ensemble of inertia weight strategies for PSO.
On most of the benchmark problem, the performance of the proposed ensemble of
inertia weight strategies is better than the worst of the constituent algorithms. In
addition, on most of the cases the performance of the proposed method is comparable
to the best performing strategy. We further included the proposed ensemble idea in
HCLPSO, an improved version of PSO algorithm to show that its effectiveness.

Table 5. Comparison between different inertia weight strategies on 30D problems size of 30

SPSO LDIW GDIW CIW OIW LOGIW EXPIW EAIW

MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD

F1 1.27E+03 2.89E+03 3.74E+01 2.05E+02 5.14E-28 1.52E-27 4.61E+02 4.01E+02 1.03E+02 2.67E+02 7.93E-05 1.37E-04 6.86E+01 3.09E+02 1.49E+01 8.16E+01

F2 7.78E+02 2.14E+03 1.72E+00 3.40E+00 3.63E-03 6.46E-03 2.33E+03 1.40E+03 5.76E+03 2.40E+03 1.94E+02 1.41E+02 1.42E+03 8.02E+02 5.01E-01 1.65E+00

F3 1.44E+07 3.70E+07 5.83E+02 3.19E+03 1.30E+02 4.96E+02 2.95E+06 2.11E+06 1.44E+06 1.87E+06 4.18E+04 1.18E+05 2.13E+05 3.22E+05 1.41E+02 7.39E+04

F4 4.96E+03 6.29E+03 1.18E+03 7.17E+02 6.37E+02 3.90E+02 1.38E+04 3.17E+03 6.37E+03 2.77E+03 4.62E+03 2.04E+03 1.19E+04 4.16E+03 8.73E+02 4.62E+02

F5 6.94E+03 2.12E+03 4.29E+03 9.72E+02 4.47E+03 1.14E+03 7.93E+03 2.18E+03 6.15E+03 1.84E+03 4.84E+03 1.13E+03 6.13E+03 1.15E+03 4.15E+03 1.46E+03

F6 2.39E+08 3.14E+08 9.57E+01 1.13E+02 8.62E+05 4.68E+06 2.00E+07 3.23E+07 1.14E+04 3.06E+04 2.45E+02 3.16E+02 2.82E+03 4.20E+03 4.41E+06 2.42E+07

F7 1.49E+01 2.26E+01 1.89E-01 4.77E-01 2.27E+00 1.16E+01 1.43E+01 1.43E+01 2.58E+00 3.43E+00 8.30E-01 1.77E+00 3.07E+00 9.46E+00 1.38E+00 5.07E+00

F8 1.87E+01 4.03E+00 1.94E+00 5.33E+00 5.97E+00 9.28E+00 1.14E+01 7.40E+00 8.23E+00 7.81E+00 6.97E+00 9.18E+00 9.38E+00 8.70E+00 2.66E+00 6.90E+00

F9 1.12E+02 3.86E+01 3.39E+01 8.72E+00 3.25E+01 8.18E+00 7.27E+01 1.84E+01 4.62E+01 8.71E+00 3.84E+01 8.01E+00 4.71E+01 1.29E+01 3.44E+01 7.27E+00

F10 1.26E+01 3.58E+00 3.28E+00 2.03E+00 2.97E+00 1.55E+00 1.16E+01 2.04E+00 7.51E+00 2.89E+00 3.89E+00 1.72E+00 6.08E+00 2.31E+00 2.71E+00 1.84E+00

F11 5.87E+04 5.59E+04 1.96E+04 2.25E+04 1.64E+04 1.26E+04 7.59E+04 3.67E+04 6.26E+04 3.75E+04 2.65E+04 1.75E+04 5.01E+04 2.85E+04 1.68E+04 1.14E+04

Table 6. Comparison between HCLPSO and AENHCLPSO on 10D and 30D problems

HCLPSO
Population size = 20,
D = 10

AENHCLPSO
Population size = 20,
D = 10

HCLPSO
Population size = 40,
D = 30

AENHCLPSO
Population size = 40,
D = 30

MEAN STD MEAN STD MEAN STD MEAN STD

F1 0 0 0 0 0.00E+00 0.00E+00 4.21E−31 2.30E−30
F2 7.65E−15 1.37E−14 5.91E−11 2.01E−10 6.14E−05 4.16E−05 7.94E−04 5.63E−04
F3 0.00E+00 0.00E+00 7.50E−26 4.04E−25 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F4 8.22E−05 2.52E−04 1.69E−05 4.87E−05 6.83E+02 3.47E+02 3.37E+02 1.26E+02
F5 3.58E−01 4.22E−01 0.00E+00 0.00E+00 2.99E+03 4.78E+02 2.14E+03 9.89E+02
F6 1.51E+00 2.12E+00 9.26E+00 1.84E+01 2.33E+00 2.55E+00 4.78E+01 6.05E+01
F7 2.07E+02 7.74E−14 2.07E+02 5.89E−03 1.19E+03 1.52E−13 1.19E+03 2.31E−13
F8 1.54E−15 2.22E−15 0.00E+00 0.00E+00 3.26E−14 7.11E−15 7.93E−15 2.59E−15
F9 3.32E−02 1.82E−01 3.32E−02 1.82E−01 3.32E−02 1.82E−01 6.34E−01 1.29E+00
F10 1.70E−01 2.31E−01 1.06E+00 4.88E−01 1.71E−01 3.18E−01 2.25E+00 1.21E+00
F11 2.67E+05 1.45E−10 2.67E+05 1.78E−10 9.66E+05 7.11E−10 9.66E+05 7.89E+01

146 M.Z. Shirazi et al.

Acknowledgment. This research was supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology under the Grant NRF- 2015R1C1A1A01055669.

References

1. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of
the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43
(1995)

2. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: 4th IEEE International
Conference on Neural Networks (1995)

3. Gao, Y., Duan, Y.: An adaptive particle swarm optimization algorithm with new random
inertia weight. In: International Conference on Intelligent Computing, pp. 342–350 (2007)

4. Xin, J., Chen, G., Hai, Y..: A particle swarm optimizer with multi-stage linearly-decreasing
inertia weight. In: International Joint Conference on Computational Sciences and
Optimization, pp. 505–508 (2009)

5. Lynn, N., Suganthan, P.N.: Heterogeneous comprehensive learning particle swarm
optimization with enhanced exploration and exploitation. Swarm Evol. Comput. 24,
11–24 (2015)

6. Nepomuceno, F.V., Engelbrecht, A.P.: A self-adaptive heterogeneous pso for real-parameter
optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 361–368 (2013)

7. van Zyl, E., Engelbrecht, A.: Comparison of self-adaptive particle swarm optimizers. In:
IEEE Symposium on Swarm Intelligence (SIS), pp. 1–9 (2014)

8. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: The sad state of self-adaptive
particle swarm optimizers. In: IEEE Congress on Evolutionary Computation (CEC),
pp. 431–439 (2016)

9. Engelbrecht, A.P.: Heterogeneous particle swarm optimization. In: Dorigo, M., et al. (eds.)
ANTS 2010. LNCS, vol. 6234, pp. 191–202. Springer, Heidelberg (2010). doi:10.1007/978-
3-642-15461-4_17

10. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Inertia weight control strategies
for particle swarm optimization. Swarm Intell. 10, 267–305 (2016)

11. Jiang, M., Luo, Y., Yang, S.: Stagnation analysis in particle swarm optimization. In:
Proceedings of the 2007 IEEE Swarm Intelligence Symposium (2007)

12. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE World Congress on
Computational Intelligence, pp. 69–73 (1998)

13. Bansal, J.C., Singh, P., Saraswat, M., Verma, A., Jadon, S.S., Abraham, A.: Inertia weight
strategies in particle swarm optimization. In: Third World Congress on Nature and
Biologically Inspired Computing (NaBIC), pp. 633–640 (2011)

Particle Swarm Optimization with Ensemble of Inertia Weight Strategies 147

http://dx.doi.org/10.1007/978-3-642-15461-4_17
http://dx.doi.org/10.1007/978-3-642-15461-4_17

Hybrid Comprehensive Learning Particle
Swarm Optimizer with Adaptive Starting

Local Search

Yulian Cao1, Wenfeng Li1(&), and W. Art Chaovalitwongse2

1 School of Logistics Engineering,
Wuhan University of Technology, Wuhan, China

{yulian,liwf}@whut.edu.cn
2 Department of Industrial Engineering, Institute for Advanced Data Analytics,

University of Arkansas, Fayetteville, AR, USA
artchao@uark.edu

Abstract. Particle Swarm Optimization (PSO) offers efficient simultaneous
global and local searches but is challenged with the problem of slow local
convergence. To address this issue, a hybrid comprehensive learning PSO
algorithm with adaptive starting local search (ALS-HCLPSO) is proposed.
Determining when to start local search is the main of ALS-HCLPSO. A quasi-
entropy index is innovatively utilized as the criterion of population diversity to
depict an aggregation degree of particles and to ascertain whether the global
optimum basin has been explored. This adaptive strategy ensures the proper
starting of local search. The test results on eight multimodal benchmark func-
tions demonstrate the performance superiority of ALS-HCLPSO. And com-
parison results on six advanced PSO variants further test the validity and
superiority of ALS-HCLPSO algorithm.

Keywords: Quasi-entropy � Adaptive strategy � Population diversity � Local
search

1 Introduction

Particle swarm optimization (PSO) algorithm is a population-based intelligent evolu-
tionary algorithm, which imitates the foraging behavior of bird flocks and was first
introduced by Eberhart and Kennedy [1]. PSO offers efficient simultaneous global and
local searches. Many improved PSO variants are proposed, such as using dynamic
clustering to maintain population diversity in [2]. As an excellent PSO algorithm,
comprehensive learning PSO (CLPSO) adopts dimensional learning strategy and offers
strong global search ability [3]. It takes the personal best (referred to as pbest) of all
particles as candidate learning object other than its own pbest only, which maintains the
population diversity without increasing computational complexity. Further research on
CLPSO has been conducted and its superiority is stressed [4, 5].

However, most studies focus on the improvement of the global search, and less
progress has been made to improve the local convergence rate. The traditional local
search (LS) methods, such as the steepest descent method and quasi-Newton method,

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 148–157, 2017.
DOI: 10.1007/978-3-319-61824-1_16

with fast local convergence [6], are expected to compensate for this deficiency. This
combination of population-based global search and individual-based local search,
which is called memetic algorithm [7], can be regarded as a mode. Memetic algorithm
offers an idea to enhance global and local searches simultaneously. Three major dif-
ficulties of using this hybrid mechanism should be addressed. Which particles are
chosen to do LS? When to start LS? How much calculation resource will be spent
for LS?

Several attempts have been made to apply the LS to PSO. The results show that the
LS plays a significant role in accelerating the local search phase [8, 9]. However, there
are obvious shortcomings in the existing approach. The switching strategy between the
PSO algorithm and LS lacks theoretical support. The LS starts with random given
number of iteration [8] and is conducted for all particles at each iteration [9]. Frequent
use of LS not only waste computation resource, but also increase the risk of being
trapped into a local minimum. In theory, only after the PSO performs a sufficient global
search could the optimal solution be found. In addition, it wastes resources if LS starts
too late. A more effective adaptive strategy is needed to convert from PSO iteration to
LS. However, scarce research on adaptive starting strategy of LS has been reported.

A hybrid CLPSO algorithm with adaptive starting LS (ALS-HCLPSO) is proposed
to further improve the CLPSO. The aggregation degree of selected particles is deter-
mined through a quasi-entropy index, which can be creatively employed to judge
whether the particle has reached the global optimum basin. Accordingly, the key issue
of adaptive starting LS is solved effectively.

The performance of ALS-HCLPSO algorithm is tested by eight multimodal func-
tions. Comparison results on six improved PSO algorithms, including two improved
CLPSO algorithms and one LS-based PSO algorithm, further verify the superiority of
ALS-HCLPSO algorithm.

2 The Proposed ALS-HCLPSO Algorithm

2.1 PSO Algorithm and Local Search Method

PSO is a population based meta-heuristic algorithm. The update equation of velocity is
illustrated in Eq. (1), including three parts. The first part depends on its own velocity,
which is also known as inertia. The second part is self-cognition based on its own
pbest. And the third one is social cognition, relating to the best solution of the whole
swarm (referred to as gbest).

vtþ 1
id ¼ vtid þ c1 � r1 � pbesttid � xtid

� �þ c2 � r2 � gbesttd � xtid
� � ð1Þ

Numerous improvements have been made to deal with the problem of premature in
PSO. In our research, the CLPSO algorithm that shows a very strong global opti-
mization ability is chosen to be further studied. It uses pbest from all particles to
maintain the population diversity, whose velocity update formula is Eq. (2). Although
its global ability is enhanced, the convergence speed of its later iterations is still slow

Hybrid Comprehensive Learning Particle Swarm Optimizer 149

because of the inherent stochastic search mechanism [3]. We are going to utilize the
traditional LS methods to speed up the local convergence of CLPSO.

vtþ 1
id ¼ xL � vtid þ c � rdi � ptfiðdÞd � xtid

� �
ð2Þ

Steepest descent method and quasi-Newton method are traditional LS approach.
Steepest descent works in spaces of any number of dimensions, even in
infinite-dimensional ones. Broyden-Fletch-Goldfarb-Shannon (BFGS) is a widely used
quasi-Newton method and has super-linear convergence rate [6]. Its gradient is
approximated by the finite difference method so it can be generalized to non-derivative
and discontinuous problems. In this study, the steepest descent method and BFGS
quasi-Newton method are introduced into CLPSO algorithm respectively.

2.2 Motivation of Adaptive Starting LS

A vital issue needs to be addressed for integrating LS into CLPSO, namely, when to
start LS. In theory, if the LS is conducted before sufficient CLPSO global search, it will
converge to a local minimum. Additionally, if the LS starts after CLPSO has done
numerous random local search, it would waste computing resources and the advantage
of the hybrid algorithm is not obvious. Therefore, it is necessary to start the LS
appropriately.

In experiment, BFGS quasi-Newton coupled with CLPSO (referred to as CLbfgs), a
hybrid algorithm with a fixed LS starting strategy, is applied to test the acceleration
effect of LS. The maximum number of function evaluations (referred to as Max_FEs)
and the number of function evaluation for LS (referred to as L_FEs) are given. LS will
be triggered when CLPSO runs to the value of function evaluation at Max_FEs -
L_FEs. The performance of CLbfgs with LS starting at different CLPSO iterations is
analyzed by testing the 10-dimensional problem of F4 and F5 respectively. Each
experiment runs 25 times independently. The convergence precision of CLbfgs and
CLPSO is recorded, and the multiple of precision improvement by CLbfgs is com-
puted. To intuitively get the difference of multiple in magnitude, the logarithmic
operation is made.

Improvement multiple curves show significant peaks, where the multiple ascend
first and then descend (Fig. 1). Therefore, the peak is the best opportunity to start the
LS, which can maximize the benefit of the hybrid algorithm. Moreover, it can also be
observed that the peak position is different for F4 and F5, and the width is not the same
as well. Here, optional interval of F4 is much larger than that of F5. Additionally,
because of the random initialization of PSO, even for the same function, the best time
to start LS is different at each independent run. This shows that the best time to start LS
is different. And it is difficult to set a fixed reasonable value for all tests in advance.
Therefore, adaptive strategy is required to start the LS at an appropriate time.

150 Y. Cao et al.

2.3 Adaptive Strategy Based on Quasi-Entropy

Only local optimum will be obtained if a particle for LS is not in the global optimum
basin. In this part, we focus on solving how to determine the proper opportunity of
starting LS. From the geometric sense, it is unable to judge whether a particle reaches
the single peak region of the global optimum solution by looking at a single particle.
However, if more than one top ranking particles gather together, it is believed that these
particles have entered the global optimum basin. This phenomenon also indicates the
end of CLPSO global search phase and the start of local search phase, and this is the
best time to start the LS.

How to judge the degree of aggregation of these particles is the key for learning
whether the global optimum basin is searched or not. The fitness of pbest (referred to as
fit_pbest) is used to define a Quasi-Entropy (QE) index, which can characterize the
population diversity. The Eq. (3) is the formula of QE at each iteration t.

QE tð Þ ¼ �
XN
i¼1

Pi tð Þ logPi tð Þ ð3Þ

where

Pi tð Þ ¼ f pbesti tð Þð Þ
PN
i¼1

f pbesti tð Þð Þ

The proportion of the selected top ranking particles (referred to as b) are regarded
as the set of Q. And Pi tð Þ represents the proportion of fit_pbest of each particle to the
sum of fit_pbest of all particles in set Q.

Taking the 10-dimensional Schwefel function (F4) for example, the performance of
QE and variance of fit_pbest are compared (Fig. 2). The population size is set to be 15.
The curve of QE is relatively stable first, and begins to decline at a point rapidly. The
point where the slope of variance increases suddenly matches the lowest point where
QE curve rapidly declines to. Common results can also be observed in other functions.

Fig. 1. Convergence precision improved by CLbfgs for F4 and F5 at different LS starting time

Hybrid Comprehensive Learning Particle Swarm Optimizer 151

It indicates that the sharp decline of QE means the loss of population diversity, where
global search has completed and the particles begin to do LS. This is the best time to
start the LS.

The proposed QE index can depict the population diversity, and is more effective
and timely to determine the change point compared with the variance. Therefore, we
introduce the following strategy to start LS adaptively. When QE value of iteration
t decreased to a certain proportion of the QE value of the initialized population, the LS
will be triggered. The judgment criterion is the formula (4), where a is the decrease
ratio.

QE tð Þ� a � QE 1ð Þ ð4Þ

2.4 Framework of ALS-HCLPSO Algorithm

The idea of ALS-HCLPSO is to combine the strong global ability of CLPSO and the
fast convergence of LS. The hybrid mode of CLPSO and LS is serial. And the LS
starting strategy is adaptive depending on the judgment of QE. The Fig. 3 illustrates the
framework of ALS-HCLPSO.

Based on the illustration of the adaptive strategy in Sect. 2.3, once the LS starting
criterion is satisfied, the hybrid algorithm will shift from CLPSO to LS. Since particles
in the same unimodal region will converge to the same solution, our strategy is that
only the gbest will perform LS when particles have located at the global optimum
solution. This is to ensure the convergence to the global optimal solution and to
maximize the optimization efficiency.

It should be noted that ALS-HCLPSO is a unified appellation. In this paper, two
kinds of LS methods are utilized. Specifically, Abfgs-HCLPSO is based on the BFGS
quasi-Newton method. Similarly, Asd-HCLPSO is based on the steepest descent
method.

Fig. 2. Curve of quasi-entropy and variance of F4

152 Y. Cao et al.

3 Numerical Experiments and Analysis

3.1 Benchmark Functions and Experimental Settings

Eight multimodal benchmark functions are selected to examine the performance of
ALS-HCLPSO algorithm. Table 1 shows the property of each function. Their mathe-
matical expression can be found in the literature [3]. Firstly, the performance of
Abfgs-HCLPSO and Asd-HCLPSO is examined compared to the CLPSO algorithm.
Secondly, comparison with other PSO variants is executed. The termination criterion is
reaching the given Max_FEs. Since the examined functions converge at different
iterations, it’s not wise to set the same Max_FEs for them. The Max_FEs for F1 to F8
are 5.5E4, 3.5E4, 4E4, 2E4, 5E4, 4E4, 2E4 and 5E4, respectively. The problem
dimension and population size are 10 and 40 respectively. Other parameter settings of
the PSO variants are the same as their reference literatures. All experiments are run on
matlab R2014a at a PC with windows10 operating system and 8 GB of memory. Each
experiment runs 25 times independently.

Fig. 3. Flowchart of ALS-HCLPSO algorithm

Table 1. The search range and global optimum solution of multimodal benchmark functions

Test functions Search range x� f x�ð Þ
F1: Griewanks �600; 600½ �D ½0; 0; . . .; 0� 0

F2: Rastrigin �5:12; 5:12½ �D ½0; 0; . . .; 0� 0

F3: Noncontinuous Rastrigin �5:12; 5:12½ �D ½0; 0; . . .; 0� 0

F4: Schwefel �500; 500½ �D ½420:96; 420:96; . . .; 420:96� 0

F5: Weierstrass �0:5; 0:5½ �D ½0; 0; . . .; 0� 0

F6: Shifted Noncontinuous Rastrigin �5:12; 5:12½ �D ½0; 0; . . .; 0� −330

F7: Shifted Schwefel �500; 500½ �D ½420:96; 420:96; . . .; 420:96� −450

F8: Composition function �500; 500½ �D ½0; 0; . . .; 0� 0

Hybrid Comprehensive Learning Particle Swarm Optimizer 153

3.2 Convergence Precision

Statistical results of convergence precision are shown in Table 2. The mean and
median values of ALS-HCLPSO are better than those of CLPSO for all tested func-
tions. Asd-HCLPSO and Abfgs-HCLPSO increase the mean accuracy by 13 and 11
orders of magnitude in F1. And they converge to the global optimum in F2 and F3,
whose convergence accuracy is much higher than the e−4 of CLPSO algorithm itself.
The two hybrid algorithms improve the mean accuracy by 10 orders of magnitude in
F4. Similar results can also be observed in F5 to F8. It can be concluded that
ALS-HCLPSO achieves several orders of magnitude higher convergence accuracy.
Furthermore, the standard variance of ALS-HCLPSO is smaller than that of CLPSO
algorithm (Table 1), which indicates that the performance of ALS-HCLPSO is more
robust than that of CLPSO. It should be noted that the total number of function
evaluation of ALS-HCLPSO algorithm is basically less than Max_FEs, because the LS
starts before the number of function evaluation at Max_FEs - L_FEs in most cases. In
short, the ALS-HCLPSO algorithm obtains a solution with higher precision by lower
computational cost, and its performance is more stable than CLPSO.

3.3 Comparison with Other PSO Variants

To further evaluate the performance of ALS-HCLPSO, six PSO variants, UPSO [10],
FDR-PSO [11], SRPSO [12], DNLPSO [4], HCLPSO [5] and DMS-L-PSO [8] are
selected to compare with. DNLPSO and HCLPSO are also improved based on CLPSO.
DMS-L-PSO is dynamic multi-swarm PSO with LS, whose LS starting strategy is
different from our adaptive strategy.

The mean and variance values of the six advanced PSO variants are presented
(Table 3). The results of ALS-HCLPSO and CLPSO are listed in Table 2 and not
repeated here. Taking F1 for example, Abfgs-HCLPSO and Asd-HCLPSO achieve
more than 10 orders of magnitudes higher accuracy compared to those of other PSO

Table 2. Statistical results of convergence precision

Algorithm Func. Median Mean Std. Func. Median Mean Std.

CLPSO F1 5.50E−05 2.01E−04 4.74E−04 F2 1.21E−04 2.01E−04 2.36E−04
Abfgs-HCLPSO 0.00E+00 5.33E−17 6.51E−17 0.00E+00 0.00E+00 0.00E+00

Asd-HCLPSO 6.66E−16 1.06E−15 1.06E−15 0.00E+00 0.00E+00 0.00E+00
CLPSO F3 1.43E−04 1.83E−04 1.39E−04 F4 5.95E−02 1.00E−01 1.06E−01
Abfgs-HCLPSO 0.00E+00 0.00E+00 0.00E+00 1.27E−11 1.24E−11 1.46E−12

Asd-HCLPSO 0.00E+00 0.00E+00 0.00E+00 1.46E−11 1.42E−11 2.01E−12
CLPSO F5 7.00E−08 9.27E−08 8.32E−08 F6 4.84E−05 1.07E−04 2.20E−04

Abfgs-HCLPSO 1.91E−11 3.55E−10 7.26E−10 5.81E−13 5.83E−13 1.48E−13
Asd-HCLPSO 4.28E−09 3.68E−08 1.07E−07 5.04E−13 5.33E−13 1.32E−13
CLPSO F7 5.34E−03 1.21E−02 1.93E−02 F8 2.23E−02 1.05E+00 4.03E+00

Abfgs-HCLPSO 5.46E−12 3.71E−11 1.43E−10 2.76E−13 3.51E−13 1.68E−13
Asd-HCLPSO 4.55E−12 1.20E−11 2.85E−11 8.52E−15 1.66E−13 2.05E−13

154 Y. Cao et al.

variants. Similar results can also be observed on the rest of tested functions. Our
proposed hybrid algorithm performs basically much better than the compared algo-
rithms. The standard deviation values are also listed. The data on Tables 1 and 2 show
that standard deviation of the two ALS-HCLPSO algorithms are consistently smaller
than that of PSO variants. It means that the performance of ALS-HCLPSO is more
robust.

Furthermore, the ranking analysis results based on the mean value of convergence
precision among PSO variants is presented to understand the comparison intuitively
(Table 4). Abfgs-HCLPSO and Asd-HCLPSO are both winners. They are superior to
other comparison PSO variants. HCLPSO and DMS-L-PSO are the ranking followed
algorithms, which are better than CLPSO but worse than the two ALS-HCLPSO
algorithms.

Table 3. Convergence precision of other PSO variants

Function Metrics UPSO FDR-PSO SRPSO DNLPSO HCLPSO DMS-L-PSO

F1 Mean 2.96E−02 6.01E−02 3.05E−02 4.13E−01 1.16E−02 7.69E−03
Std. (1.62E−02) (3.27E−02) (2.03E−02) (3.54E−01) (1.08E−02) (7.63E−03)

F2 Mean 8.68E+00 3.02E+00 2.07E+00 1.07E+01 3.98E−02 2.61E−14
Std. (3.84E+00) (1.42E+00) (1.11E+00) (7.18E+00) (1.99E−01) (4.28E−14)

F3 Mean 6.53E+00 4.44E+00 3.64E+00 1.00E+01 4.02E−02 3.30E−01
Std. (1.75E+00) (1.08E+00) (1.25E+00) (9.25E+00) (2.00E−01) (5.53E−01)

F4 Mean 4.36E+02 6.85E+02 7.13E+02 9.49E+02 2.50E+01 1.42E+02
Std. (1.81E+02) (2.87E+02) (2.54E+02) (5.44E+02) (4.82E+01) (1.13E+02)

F5 Mean 0.00E+00 0.00E+00 1.41E−07 9.17E−01 7.11E−16 0.00E+00
Std. (0.00E+00) (0.00E+00) (7.03E−07) (1.26E+00) (1.78E−15) (0.00E+00)

F6 Mean 5.69E+00 4.12E+00 5.68E+00 8.37E+00 2.40E−01 4.83E−01
Std. (1.46E+00) (1.62E+00) (2.50E+00) (3.90E+00) (4.36E−01) (7.12E−01)

F7 Mean 1.04E+02 4.61E+02 1.81E+02 3.94E+02 3.53E−03 4.74E+00
Std. (1.83E+02) (2.52E+02) (1.89E+02) (2.84E+02) (1.76E−02) (2.37E+01)

F8 Mean 4.00E+00 8.00E+01 1.04E+02 1.02E+02 1.23E−17 4.39E−14
Std. (2.00E+01) (9.57E+01) (1.21E+02) (9.37E+01) (6.13E−17) (2.19E−13)

Table 4. The ranking of PSO variants based on the mean value of convergence precision

Function UPSO FDR-PSO SRPSO DNLPSO HCLPSO DMS-L-PSO CLPSO Abfgs-HCLPSO Asd-HCLPSO

F1 6 8 7 9 5 4 3 1 2

F2 8 7 6 9 5 3 4 1 1

F3 8 7 6 9 4 5 3 1 1

F4 6 7 8 9 4 5 3 1 2

F5 1 1 8 9 4 1 7 5 6

F6 8 6 7 9 4 5 3 2 1

F7 6 9 7 8 3 5 4 2 1

F8 6 7 9 8 1 2 5 4 3

Ave.
Rank

6.125 6.5 7.25 8.75 3.75 3.75 4 2.125 2.125

Rank 6 7 8 9 3 3 5 1 1

Hybrid Comprehensive Learning Particle Swarm Optimizer 155

Because of the similarity of each function, the convergence curve of F1 is chosen to
show the optimization process over iterations intuitively (Fig. 4). DMS-L-PSO and
UPSO converges fast at the beginning, however, their convergence rate starts to be
slow shortly after that. Asd-HCLPSO and Abfgs-HCLPSO continue to converge to
better value and is superior to other compared PSO variants. Especially, they converge
to better results than CLPSO at the end of iteration.

4 Conclusions

This paper focuses on the adaptive strategy of the proposedALS-HCLPSO algorithm that
combines the advantage of fast local convergence of traditional LS with the strong global
search ability of CLPSO. The adaptive strategy of switching from the global search of
CLPSO to the LS effectively addresses the key issues of appropriate starting LS.

In this paper, two canonical LS methods are applied to ALS-HCLPSO algorithm.
Experiments on eight multimodal benchmark functions verify the performance of the
algorithm. The test results show that ALS-HCLPSO algorithm greatly improves
CLPSO. Comparative experiments with other state-of-the-art PSO variants further
validate the superiority of ALS-HCLPSO.

The proposed hybrid algorithm can be extended to other PSO algorithms with slight
modifications, which will be our future research.

Acknowledgements. This work is supported by National Natural Science Foundation of China
(Grants No. 61571336, No. 61603280 and No. 71672137).

References

1. Kenndy, J., Eberhart, R.C.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw.
4, 1942–1948 (1995)

Fig. 4. Convergence curve of different PSO algorithms

156 Y. Cao et al.

2. Liang, X., Li, W., Zhang, Y., et al.: An adaptive particle swarm optimization method based
on clustering. Soft. Comput. 19(2), 431–448 (2015)

3. Liang, J.J., Qin, A.K., Suganthan, P.N., et al.: Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3),
281–295 (2006)

4. Nasir, M., Das, S., Maity, D., et al.: A dynamic neighborhood learning based particle swarm
optimizer for global numerical optimization. Inform. Sci. 209, 16–36 (2012)

5. Lynn, N., Suganthan, P.N.: Heterogeneous comprehensive learning particle swarm
optimization with enhanced exploration and exploitation. Swarm Evol. Comput. 24, 11–24
(2015)

6. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 4th edn. Springer, New York
(2015)

7. Pablo, M.: On evolution, search, optimization, genetic algorithms and martial arts: towards
memetic algorithms. Technique report, Caltech Concurrent Computation Program, USA
(1989)

8. Zhao, S.Z., Liang, J.J., Suganthan, P.N., et al.: Dynamic multi-swarm particle swarm
optimizer with local search for large scale global optimization. In: 2008 IEEE Congress on
Evolutionary Computation, pp. 3845–3852 (2008)

9. Han, F., Liu, Q.: An improved hybrid PSO based on ARPSO and the Quasi-Newton Method.
In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI 2015.
LNCS, vol. 9140, pp. 460–467. Springer, Cham (2015). doi:10.1007/978-3-319-20466-6_48

10. Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization in dynamic
environments. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y.,
Machado, P., Marchiori, E., Romero, J., Smith, George D., Squillero, G. (eds.) EvoWorkshops
2005. LNCS, vol. 3449, pp. 590–599. Springer, Heidelberg (2005). doi:10.1007/978-3-540-
32003-6_62

11. Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-distance-ratio based particle swarm
optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 174–181
(2003)

12. Tanweer, M.R., Suresh, S., Sundararajan, N.: Self regulating particle swarm optimization
algorithm. Inform. Sci. 294, 182–202 (2015)

Hybrid Comprehensive Learning Particle Swarm Optimizer 157

http://dx.doi.org/10.1007/978-3-319-20466-6_48
http://dx.doi.org/10.1007/978-3-540-32003-6_62
http://dx.doi.org/10.1007/978-3-540-32003-6_62

A Bare Bones Particle Swarm Optimization
Algorithm with Dynamic Local Search

Jia Guo1(B) and Yuji Sato2

1 Graduate School of Computer and Information Science, Hosei University,
Tokyo, Japan

guojia@ieee.org
2 Faculty of Computer and Information Sciences, Hosei University,

Tokyo, Japan
yuji@hosei.ac.jp

Abstract. Swarm intelligence algorithms are wildly used in different
areas. The bare bones particle swarm optimization (BBPSO) is one
of them. In the BBPSO, the next position of a particle is chosen
from the Gaussian distribution. However, all particles learning from
the only global best particle may cause the premature convergence and
rapid diversity-losing. Thus, a BBPSO with dynamic local search (DLS-
BBPSO) is proposed to solve these problems. Also, because the blind
setting of local group may cause the time complexity an unpredictable
increase, a dynamic strategy is used in the process of local group cre-
ation to avoid this situation. Moreover, to confirm the searching ability
of the proposed algorithm, a set of well-known benchmark functions are
used in the experiments. Both unimodal and multimodal functions are
considered to enhance the persuasion of the test. Meanwhile, the BBPSO
and several other evolutionary algorithms are used as the control group.
At last, the results of the experiment confirm the searching ability of the
proposed algorithm in the test functions.

Keywords: Dynamic local search · Bare bones · Swarm intelligence ·
Diversity

1 Introduction

The swarm intelligence attracts plenty of researchers in recent years. The parti-
cle swarm optimization (PSO), proposed by Kennedy and Eberhard [1] in 1995,
is one of the most famous swarm algorithms. It is inspired by the team behavior
of bird flocking and fish schooling. Particles gain memories in the algorithm and
each particle can remember its personal best position can be remembered by
each particle. From this base, the swarm can remember the global best position.
Compared with other optimization algorithms, PSO is famous for fast conver-
gence and easy applying. However, the PSO is obsessed with the problem of the
premature convergence when dealing with complex multimodal functions. So in

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 158–165, 2017.
DOI: 10.1007/978-3-319-61824-1 17

A Bare Bones Particle Swarm Optimization Algorithm 159

order to enhance the search ability of the PSO, Clerc and Kennedy [2] made
some mathematical analysis through defining constriction coefficients.

In 2003, Kennedy [3] proposed the Bare Bones Particle Swarm Optimization
(BBPSO) which canceled the velocity formula. And he employed the Gaussian
distribution to choose the next position of a particle, in which, only the personal
and the global best positions are considered during the process. It is the feature
that makes the BBPSO faster and easier than the original PSO. In addition,
different with the PSO, BBPSO is a parameter-free algorithm, which means
it can be easily applied to various problems without human intervention. It
is a great advantage for real-world problems. For instance, Omran proposed
a clustering algorithm applying a bare bones method in unsupervised image
classification [4].

Although the BBPSO has been applied in different areas, its inherent defects
have not been solved. To solve these problems, the dynamic local search system
makes arduous efforts to increase the diversity on the premise of not adding
additional calculation into standard BBPSO. In conclusion, the rest of the paper
is organized as follows: in Sect. 2 we give a brief review about the PSO and
BBPSO; Sect. 3 gives an introduction about the proposed algorithm; Sect. 4 will
have a clear description about the experiment to verify the issue; Sect. 5 gives
the conclusion of this paper.

2 Related Work

The PSO algorithm is proposed by Kenedy and Eberhart [1]. In the PSO, each
particle learns from their self-best and the global best position. In addition, to
use the full information from other particles, a fully informed particle swarm
(FIPS) is proposed by Mendes et al. [5]. Particles in FIPS are affected by all
of their neighborhoods. After that the structure of the neighborhood group is
discussed by Kennedy and Mendes [6].

The Bare bones particle swarm optimization (BBPSO) is a simple version of
PSO. The next position of a particle is calculated by the Gaussian distribution.
Both personal best position and swarm global best position are used in the
calculation. Since the cancel of the velocity item, no parameters are needed in
the algorithm, which endows the algorithm with a wilder area of application.
Moreover, in order to speed up convergence, Kennedy [3] proposed a mutated
version of BBPSO in which particles iterate with the following equations:

μ =
pi + gbest

2
σ = |pi − gbest|
xi(t + 1) =

{
N(μ, σ) if(ε > 0.5)

pi else

(1)

where P = (p1, p2, . . . , pn) is the best position of each particle; X = (x1,
x2, . . . xi) is the particle swarm; gbest is the best position of the whole swarm; t
is the iteration time and xi(t) means the position of xi at t time iteration; ε is a

160 J. Guo and Y. Sato

random number from 0 to 1. The parameter ε makes the mutated version able
to save half of the time during the calculation. According to [3], the mutated
version gives better results than some other versions of PSO in some benchmark
functions.

Blackwell [7] proposed a dynamic update rule of the PSO as a second-
order stochastic difference equation. The relations are applied to three particular
particle swarm optimization implementations, the standard PSO of Clerc and
Kennedy, a PSO with discrete recombination, and the Bare Bones swarm. More-
over, a bare bones PSO with jumps (BBPSOwj) is proposed to escape from the
local minimum.

Campos et al. [8] proposed a bare bones particle swarm optimization with
scale matrix adaptation (SMA-BBPSO) algorithm. In the proposed algorithm,
the next position of a particle is selected from a multivariate t-distribution with
a rule for adaptation of its scale matrix. Also, the Gaussian distribution acts as a
particular case in the SMA-BBPSO. Furthermore, the SMA-BBPSO is explained
by a theoretical analysis. Finally, the experiments with a set of benchmark func-
tions confirm the ability of the SMA-BBPSO.

To sum up, most of the existing studies improve the performance by giving
some new judgment methods or introducing some parameters to the BBPSO.
Although these strategies promote some abilities of the original algorithm, the
sacrifice is additional computation and inestimable increases of calculation time.
Besides, in the standard BBPSO, all particles learn from the global best even
if the current position is far from the global optimum. Therefore, particles may
easily be trapped in local optimum if the search area includes plenty of local
solutions. Hence, to balance the searching ability and the calculating speed, a
simple and parameter free algorithm will be proposed in the next section.

3 Proposal of Bare Bones Particle Swarm Optimization
with Dynamic Local Search

In this section, the bare bones particle swarm optimization algorithm with
dynamic local search (DLS-BBPSO) will be presented. As it is introduced, the
DLS-BBPSO is a parameter free algorithm for single objective function. It means
that the proposed algorithm can adapt different functions without human inter-
vention and adjustment. Unlike other variations of BBPSO, the DLS-BBPSO
does no add extra calculation during the iteration process. In the following sub-
sections, each step of the DLS-BBPSO will be presented.

3.1 Initialization

Initialization is the first step of the DLS-BBPSO. As a parameter-free algorithm,
only the data connected to test functions are needed before an experiment. In
particular, necessary messages are: the number of particles N ; the dimension of
the problem D; the fitness function F ; the exploring area, R; the max iteration
times T .

A Bare Bones Particle Swarm Optimization Algorithm 161

After all information is inputted, all particles will be randomly spread in the
R. Then the first version of personal best positions, pbest, can be calculated
by F . Meanwhile, the global best position, gbest, can be obtained. It can be
found that no additional parameter is needed during the initialization process,
which means the DLS-BBPSO can be easily applied to different problems. This
is a great advantage when compared with parameter-needed algorithm in the
real-world problems.

3.2 Dynamic Local Search System

In order to increase the diversity of the swarm during the iteration process, a
dynamic local search (DLS) system is introduced to the standard BBPSO. In the
DLS, particles are classified into different groups. Each group has only one leader
and several teammates. Since all of the test functions are minimum problems,
a particle with smaller fitness value is set to have a better position. At the
beginning, the DLS will select a random particle to be the first “current leader”,
then it will select another random particle to compare with the “current leader”.
If the position of the selected particle is better than the “current leader”, the
selected particle will be a new “current leader”. Otherwise, it will be a teammate
of the “current leader”. The DLS system will keep doing this until all particles are
selected. It can be seen that the number of groups and the number of teammates
of each group is not static. The process of the grouping is all random and no
parameter is needed. This is the reason that the method named as “dynamic
local search”.

3.3 Evaluation

As a variation of standard bare bones particle swarm algorithm, DLS-BBPSO
inheres the Gaussian distribution from BBPSO. The selecting mode is used both
in and out groups. In particular, the next position of each leader will be selected
by Gaussian distribution with a mean (leader+gbest)/2 and a standard deviation
|leader − gbest|. More details are in the following equation:

u =
(pbest(leader) + gbest)

2
l = |pbest(leader) − gbest|
xt(i) = N(u, l)

(2)

where pbest(leader) is the personal best position best position of each leader;
gbest is the best position that all element has ever reached; N(u, l) is a Gaussian
distribution with a mean u and a standard deviation l. This equation is inherited
from standard BBPSO.

Conversely, teammates in groups will not move to the global best position
like the BBPSO. The next position of each teammate will be selected by the
Gaussian distribution with a mean (leader + teammate)/2 and a standard devi-
ation |leader − teammate|. More details are in the following equation:

162 J. Guo and Y. Sato

u =
(p(leader) + p(teammate))

2
l = |p(leader) − p(teammate)|
xt(i) = N(u, l)

(3)

where p(teammate) is the personal best position of a teammate particle and
p(leader) is the personal best position of the teammate’s corresponding leader.

Specifically, the comparison of the evolution pattern between the DLS-
BBPSO and the standard BBPSO is shown in Fig. 1. It can be observed that
all particles learn from the only global best particle in BBPSO while only the
leader of each group will learn from the global best in DLS-BBPSO. Besides, the
iteration pattern of the DLS-BBPSO is only one possible situation. To explain
the DLS-BBPSO more clearly, the pseudo-code is given in Fig. 2.

Fig. 1. The comparison of iteration pattern between the BBPSO and the DLS-BBPSO

Algorithm 1 DLS-BBPSO
Require: Max iteration time, T
Require: Fitness function, f
Require: Searching Range, R
Require: Dimension of the function, D
Require: Particle swarm X = x1, x2, ...xn

Require: Personal best position Pbest = p1, p2, ...pn
Require: Global best position Gbest
Ensure: All particles are in R
1: while t < T do
2: Select a random particle xk as the first “current leader”
3: while X �= ∅ do
4: Select a random particle xi from X
5: if p(xi) < p(current leader)) then
6: Choose a new position for “current leader” with equation (2)
7: Make p(xi) to be a new “current leader”
8: else
9: Make p(xi) to be a teammate of the “current leader”

10: Choose a new position for xi with equation (3)
11: end if
12: end while
13: Update Pbest
14: Update Gbest
15: t=t+1
16: end while

Fig. 2. The pseudo-code of DLS-BBPSO

A Bare Bones Particle Swarm Optimization Algorithm 163

4 Experiment

4.1 Experimental Method

To verify the search ability of DLS-BBPSO, a set of comprehensive benchmark
functions are chosen for the experiment. They are divided into two groups accord-
ing to their properties:

(1) f1–f2, unimodal functions with only one global optimum in the search area;
(2) f3–f6, complex multimodal functions with several local minimum in the

search area.

All of the 6 functions are minimum value problem. Also, the summarize of
all functions are shown in Table 1. Meanwhile, a control group is set to increase
the persuasive of the experiment. The setting of the group is considered in an
earlier research [8]. The population of each function is 30.

Table 1. Experiment functions

Function Search range Reference

f1 = Sphere function (100, 100) [8,9]
f2 = Rosenbrock function (−2.048, 2.048) [8,9]
f3 = Rastrigin function (−5.12, 5.12) [8,9]
f4 = Ackley function (−32.768, 32.768) [8,9]
f5 = Griewank function (−600, 600) [8,9]
f6 = Weierstrass function (−0.5, 0.5) [8,9]

4.2 Experimental Results and Discussion

In order to minimize accidental errors, the empirical error is calculated from
30 independent runs while each algorithm has 1500 iteration times. The empirical
error is defined as |gbest − Optimum|, where the gbest is the global best value
given by an algorithm after its last iteration, and the Optimum is the theoretical
optimal solution of the function. Experimental results are shown in Tables 2 and
3. In Tables 2 and 3, the experimental results are displayed, where “mean” stands
for the mean empirical error of 30 independent runs; “Std. Dev.” stands for the
standard deviation of the 30 results. And the best results of each team are shown
in boldface.

The statistical results in Tables 2 and 3 show that DLS-BBPSO has signifi-
cant performance on the chosen functions. In the unimodal function group, the
DLS-BBPSO wins a first rank and a second rank. Specifically speaking, the DLS-
BBPSO gives a mean empirical error 2.14E−41 on f1. Meanwhile, the champion
on f1, SMA-BBPSO gives a mean empirical error 2.71E−154 and the third rank
algorithm PSO gives 4.34E−03. It is reasonable to believe that although the

164 J. Guo and Y. Sato

Table 2. Comparisons of empirical error between PSO, BBPSO and FIPS

Function PSO [2] BBPSO [3] FIPS [5,6]

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

f1 1.13E−10 7.94E−11 1.58E−06 1.75E−06 1.03E−04 6.95E−05

f2 5.26E+01 4.20E+01 9.47E+01 8.55E+01 4.29E+01 4.01E+01

f3 8.36E+01 1.98E+01 8.28E+01 1.83E+01 7.78E+01 1.63E+01

f4 1.90E+01 3.59E+00 5.08E−01 8.70E−01 6.86E−01 1.04E+00

f5 2.10E−03 4.16E−03 5.23E−03 7.96E−03 5.53E−02 8.15E−02

f6 3.19E−03 4.95E−04 5.23E−03 3.18E−03 8.01E−02 7.05E−02

Table 3. Comparisons of empirical error between BBPSOwj, SMA-BBPSO and DLS-
BBPSO

Function BBPSOwj [7] SMA-BBPSO [8] DLS-BBPSO

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

f1 4.34E−03 2.37E−02 2.42E−154 2.71E−154 2.14E−41 1.17E−40

f2 6.50E+01 4.22E+01 2.87E+01 1.37E−02 2.79E+01 8.08E−01

f3 1.11E+01 3.45E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f4 1.54E−01 3.55E−01 2.22E−15 1.81E−15 1.72E−15 1.53E−15

f5 3.05E−02 2.84E−02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f6 5.21E−01 1.22E−01 4.80E−12 2.39E−12 0.00E+00 0.00E+00

DLS-BBPSO is better than other algorithms in the test, it is still behind the
SMA-BBPSO so far. Otherwise, on the f2, the result of SMA-BBPSO is 2.78%
larger than DLS-BBPSO’s while the 3rd rank function FIPS gives a 53.76%
larger result. Hence it can be conjectured that the search ability of DLS-BBPSO
on unimodal functions needs to be improved.

On the other hand, in the multimodal group, the DLS-BBPSO gives excellent
results. It wins on all of the four functions in the group and finds the exactly right
position on three. Specifically speaking, the DLS-BBPSO gives a final result 0 on
the f3, while SMA-BBPSO gives the same answer. But the 3rd rank algorithm,
BBPSOwj only gives 1.11E+01. It can be assumed that the DLS-BBPSO and
the SMA-BBPSO successfully escape from the local minimum while others do
not. On the f4, the result SMA-BBPSO gives is 29.07% larger than DLS-BBPSO
gives, while the BBPSOwj gives a 106.40% larger empirical error. The results
of this team prove the DLS-BBPSO has better performance than other chosen
algorithms but still has much room to improve. Moreover, DLS-BBPSO finds
the right point on both the f5 and the f6 while the SMA-BBPSO only succeeds
in f5. It is a good evidence to prove that the dynamic local search system has a
very strong ability to escape from the local minimum. The random selecting and
dynamic grouping strategy give the swarm a powerful weapon to escape from
the local minimum.

A Bare Bones Particle Swarm Optimization Algorithm 165

5 Conclusion

A bare bones particle swarm optimization with dynamic local search (DLS-
BBPSO) is proposed in this paper. The DLS-BBPSO algorithm inherits the
Gaussian distribution from the BBPSO. Apart from this, a dynamic local group-
ing system is used to increase the diversity of the swarm. Furthermore, no
parameter is needed in DLS-BBPSO. Hence it can be fast applied to different
functions.

To verify the performance of the DLS-BBPSO, both unimodal and multi-
modal benchmark functions are used in the experiment. Meanwhile, the standard
PSO and several variants of the BBPSO are running on the same functions to
contrast. Finally, the results confirmed the searching ability of the DLS-BBPSO.

Although the DLS-BBPSO shows better performance than the chosen variant
of PSO and BBPSO, there still some points to be improved in the future. First,
the results of the experiment on unimodal functions show that the DLS-BBPSO
lacks digging ability. Hence, to balance the searching extension and depth is
a good point. Moreover, applying this parameter-free algorithm to real-world
functions is a topic worth to discuss.

References

1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

2. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in
a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

3. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm
Intelligence Symposium, SIS 2003, pp. 80–87. IEEE (2003)

4. Omran, M., Al-Sharhan, S.: Barebones particle swarm methods for unsupervised
image classification. In: IEEE Congress on Evolutionary Computation, pp. 3247–
3252. IEEE (2007)

5. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler,
maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

6. Kennedy, J., Mendes, R.: Neighborhood topologies in fully-informed and best-of-
neighborhood particle swarms. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
36(4), 515–519 (2006)

7. Blackwell, T.: A study of collapse in bare bones particle swarm optimization. IEEE
Trans. Evol. Comput. 16(3), 354–372 (2012)

8. Campos, M., Krohling, R.A., Enriquez, I.: Bare bones particle swarm optimization
with scale matrix adaptation. IEEE Trans. Cybern. 44(9), 1567–1578 (2014)

9. Liang, J.J., Qin, A.K., Member, S., Suganthan, P.N., Member, S., Baskar, S.: Com-
prehensive learning particle swarm optimizer for global optimization of multimodal
functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

Improving Multi-layer Particle Swarm
Optimization Using Powell Method

Fengyang Sun, Lin Wang(B), Bo Yang, Zhenxiang Chen, Jin Zhou,
Kun Tang, and Jinyan Wu

Shandong Provincial Key Laboratory of Network Based Intelligent Computing,
University of Jinan, Jinan 250022, China

wangplanet@gmail.com

Abstract. In recent years, multi-layer particle swarm optimization
(MLPSO) has been applied in various global optimization problems for
its superior performance. However, fast convergence speed leads the algo-
rithm easy to converge to the local minimum. Therefore, MLPSO-Powell
algorithm is proposed in this paper, selecting several swarm particles
by the tournament operator in each generation to run Powell algorithm.
MLPSO global searching performance with Powell local searching perfor-
mance forces swarm particles to search more optima as much as possible,
then it will rapidly converge as soon as it gets close to the global opti-
mum. MLPSO-Powell enhances local search ability of PSO in dealing
with multi-modal problems. The experimental results shows that the
proposed approach improves performance and final results.

Keywords: Multi-layer particle swarm optimization · Powell · Particle
Swarm Optimization · Tournament

1 Introduction

Particle swarm optimization (PSO) [1] can solve many complex optimization
problems and has been widely used in various applications. The weakness of
traditional two-search-layer PSO is that particles are very easy to fall into local
optima and can’t jump out.

Therefore, multi-layer particle swarm optimization (MLPSO) [2] increased
layers from two to multiple, having best positions in multiple potential opti-
mization of each layer at the same time, and the upper layer guides below.
Thus, MLPSO may jump out of local optima through cross-layer collaborative
behavior of the entire group. However, in this way MLPSO’s fast convergence
speed makes it easy converge to local optima instead. If a swarm particle acci-
dentally flies to the inner edge of the global optimal point, unfortunately it is
not the global best swarm particle of this epoch, it will be wrongly drawn away
to the best swarm particle possibly. Thus it will miss out a great opportunity to
approach the real global optimal solution.

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 166–173, 2017.
DOI: 10.1007/978-3-319-61824-1 18

Improving Multi-layer Particle Swarm Optimization Using Powell Method 167

The problem arises here is whether we can force swarm particles which are
close to the inner edge of a local minimum to have the opportunity to really
converge to the local minimum, thus greatly improving the possibility of finding
the global optimal solution?

In order to address this problem, we propose a MLPSO-Powell algorithm,
choosing a number of particles by the tournament operator in each epoch to be
optimized by the Powell algorithm. In this way, the entire population is able
to find more local optima, meanwhile due to the local searching performance of
Powell, the swarm particles which are close to the global minimum will rapidly
converge to it.

The rest of this paper is arranged as follows. Section 2 reviews the recent
developments of Particle Swarm Optimization. Section 3 describes and analyzes
MLPSO-Powell in detail. Section 4 overviews and discusses the results of the
experiment. Section 5 gives the research conclusion.

2 Particle Swarm Optimization

2.1 Related Works

Kennedy and Eberhart [1] proposed Particle Swarm Optimization (PSO) based
on birds foraging. Each particle represents one of the possible solutions. In addi-
tion to inertia from itself, each particles movement also refers to the movement
of the individual itself on best historical practices to produce the migration of
cognitive learning, moreover refers to the best experience of entire population
as social learning. Shi and Eberhart [3] put forward an iterative linear inertia
weight with reduction.

Suganthan [4] introduced a time-varying European spatial neighborhood
operator: in the initial stage, the search neighborhood is defined as each particle
itself, with increase of the number of iterations, neighborhood scope gradually
extended to the entire population. Liang and Suganthan [5] proposed a dynamic
multi-swarm PSO (DMS-PSO). Entire group is divided into many small sub-
groups for exchanging information. [6] used fitness-distance-ratio to select the
adjacent particles. Wang et al. [7] proposed a dynamic tournament topology
strategy, choosing particles from the entire swarm. Each particle is guided by
several particles with better position.

Kennedy et al. [8] proposed a fully informed particle swarm (FIPS). Each
particle learns best historical position of itself and the neighborhood, in addi-
tion learns the successful experience of other particles in the neighborhood.
Liang et al. [9] proposed comprehensive learning particle swarm optimization
(CLPSO). Every particle learns from their own or other particles at random,
and its each dimension can learn from different particle. The learning strategy
makes each particle have more learning objects, and fly in larger potential space,
which is beneficial to global search. [10] used a phased hybrid evolution method
to improve the simulation of cement hydration. Chenghui Zhang et al. studied
oscillation and asymptotic behavior of a class of higher-order delay dynamic

168 F. Sun et al.

equations to improve the system stability, which is beneficial to behavior of par-
ticles [11–13]. Robinson et al. [8] integrated GA with PSO for antenna design
optimization and recursive neural network design. [14] proposed a nearest neigh-
bor partitioning method to increase the flexibility of nearest neighbors.

2.2 Challenge

Although there are many algorithms making various improvements for PSO,
they still revolve around a basic characteristic of traditional PSO, which is that
PSO has only two best positions. Thus, all particles within the space are very
susceptible to the influence of the global best position at each epoch, which
creates premature convergence. There are several algorithms, such as FIPS [8]
and CLPSO [9], enhancing the awareness of particles by learning the information
of other particles in the neighborhood, however it may restrict the possibility
of particles exploring more potential local optima if the learning object is not
actually good or in a right direction. In other words, their common characteristic
is that the local searching ability is not so strong.

MLPSO-Powell algorithm is proposed in this paper on the basis of MLPSO’s
excellent global searching ability, selecting several particles by tournament oper-
ator in each epoch to run Powell. Due to the strong local searching ability of
Powell, when a particle is close to the global optimal point, it is very likely to
rapidly converge. MLPSO-Powell’s details are described in the rest.

3 Methodology

3.1 Strategy of MLPSO-Powell

Multi-layer particle swarm optimization (MLPSO) [2] increased swarm layers
from two to multiple. Best positions are in multiple potential optimization of
each layer at the same time. The upper layer can decide more swarm particles
direction and learn more comprehensive information, thus the upper layer guides
below. In this way, MLPSO could jump out of local optima through cross-layer
collective behavior of the entire group. The velocity updating formula of MLPSO
are presented in Eq. 1,

vi = ωvi +
m∑

j=1

φjr
(
pbestij − xi

)
(1)

where m is the number of layers, φ is the sum of acceleration constants, φj = φ
m

is the acceleration constant of layer j, pbest is the best historical position of each
particle at each layer, ω is random [0, 1] [2].

Powell belongs to the conjugate direction method. It is a effective nonlinear
local search direct method designed for unconstrained optimization problem. It
doesn’t need to compute derivative, and uses function value only: it starts one-
dimensional search from a point along each conjugate direction, and it finally can

Improving Multi-layer Particle Swarm Optimization Using Powell Method 169

get the minimum. Nonlinear means that the initial point of the search direction
is not fixed, and as the change of the initial point location the acceleration
direction will also change, thus searching is not along straight line [15,16].

MLPSO-Powell absorbs the advantages of the two algorithms above. At first
of each iterative epoch, it selects t particles by the tournament operator to
be optimized by Powell. The tournament operators ordering criterion is average
Euclidean distance between the particle and all the rest particles. These particles
fitness and position are replaced by new fitness and position after Powell. The
rest particles compute their fitness normally. Then the algorithm updates pbest
or lbest, and updates each particles velocity and position. Then it executes next
epoch until it meets the termination conditions.

3.2 Details of MLPSO-Powell

MLPSO-Powell is shown in Algorithm1, where FE is number of fitness eval-
uation, MAX FE is maximum fitness evaluation, SP = (SP1, SP2, · · · , SPm)

is the distribution of the population, SPN =
m∏

i=1

SPi is the number of swarm

particles, t is the number of swarm particles to run Powell, T is the set of index
of the t swarm particles.

Algorithm 1. Algorithm of MLPSO-Powell
Initialize population;1

FE=0;2

while FE < MAX FE do3

Select t particles into T through Tournament operator;4

for p=1 to SPN do5

if p ∈ T then6

Powell(xp);7

Update xp and fitness(p);8

end9

Calculate the fitness of the rest swarm particles;10

end11

Update the best position pbest on each layer;12

Update velocity and position of all the swarm particles;13

FE++;14

end15

4 Experiments

4.1 Benchmark Functions and Compared Algorithms

This research tries to test performance of MLPSO-Powell for various bench-
mark functions to simulate the manifestation of these algorithms in dealing with

170 F. Sun et al.

Table 1. Benchmark functions

Function Formula Search range Best
value

Accrucy
level

F1 Quartic F1(x) =
D∑

i=1
ix2i + random[0, 1) [−1.28, 1.28]D 0 1.00E−06

F2 Step F2(x) =
D∑

i=1
(
⌊
xi + 0.5

⌋
)2 [−100, 100]D 0 1.00E−06

F3 Ackley F3(x) = −20 exp(−0.2

√
√
√
√ 1

D
D∑

i=1
x2i) −

exp(1
D

D∑

i=1
cos(2πxi)) + 20 + e

[−32, 32]D 0 1.00E−02

F4 Griewanks F4(x) = 1
4000

D∑

i=1
x2i −

D∏

i=1
cos(

xi√
i
) + 1 [−600, 600]D 0 1.00E−02

F5 Rastrigin F5(x) =
D∑

i=1
(x2i − 10 cos(2πxi) + 10) [−5, 5]D 0 1.00E−02

F6 Noncontinuous
Rastrigin

F6(x) =
D∑

i=1
(y2i − 10 cos(2πyi) + 10)

yi =

⎧
⎨

⎩

xi
∣
∣xi
∣
∣ < 1

2
round(2xi)

2
∣
∣xi
∣
∣ ≥ 1

2

[−100, 100]D 390 390+1.00E−2

F7 Shifted Rotated
Rastrigin

F7(x) =
D∑

i=1
(z2i − 10 cos(2πzi) + 10)

z = (x − o) ∗ M

[−5, 5]D −330 −330+1.00E−2

F8 Shifted Expanded
Griewanks plus
Rosenbrocks

FR(x) =
D−1∑

i=1
(100(x2i − xi+1)2 + (xi − 1)2)

F8(x) = F4(FR(z1, z2))+F4(FR(z2, z3))+...+
F4(FR(zD−1, zD)) + F4(FR(zD, z1))
z = x − o + 1

[−3, 1]D −130 −130+1.00E−2

real complex problems. All of the 8 benchmark functions (3 unimodal and 5
muti-modal [17,18]) are tested between 10 and 20 dimensions. Table 1 shows the
properties and formulas of these functions.

The experiment compared 5 evolutionary algorithms (1 genetic algorithm
and 4 PSO algorithms), including proposed MLPSO-Powell. These Algorithms
are genetic algorithm (GA), PSO with inertia weight (PSO-W), dynamic multi-
swarm PSO (DMS-PSO), global multi-Layer PSO (Global MLPSO), global
multi-layer PSO with Powell (MLPSO-Powell) (Tables 2 and 3).

In the above methods, genetic algorithm [19] is a searching optimal solu-
tion by simulating the natural evolution process. PSO-W [20] is a traditional
PSO algorithm used in various applications. DMS-PSO [5] randomly redraws
the entire group every few epochs. Global MLPSO [2] increases the diversity of
the particles search by increasing the number of layers to improve performance.
All the experimental results are performed in MATLAB 8.4 of the same machine
with Intel(R) Core (TM) i5-3230M 2.60 GHz CPU, 8 G memory and Windows
7 ultimate operating system.

4.2 Convergence Analysis

To compare the convergence speed, the algorithms test the same max fitness
evaluation of 200000 on 10-D and 500000 on 20-D. Each method were simulated
on each benchmark function 10 times with same parameters.

Figure 1 shows the mean performance of best value of each method on each
benchmark function for 10 times. Although MLPSO-Powell performs slower than

Improving Multi-layer Particle Swarm Optimization Using Powell Method 171

Table 2. Best, Worst, Mean, Std results on F1 to F8 for 10-D problems

F1 F2 F3 F4 F5 F6 F7 F8 Average
rank

GA

Mean 8.97E−02 2.30E+00 7.97E−06 1.23E−02 3.98E−01 1.05E+01 −2.81E+02 −1.28E+02

Std 3.04E−02 2.00E+00 3.15E−06 2.28E−02 5.14E−01 4.95E+00 2.44E+01 1.59E+00

Rank 5 5 5 2 2 5 5 5 4.25

PSO-W

Mean 5.15E−04 0.00E+00 2.66E−15 6.74E−02 4.97E−01 2.00E−01 −3.19E+02 −1.29E+02

Std 2.53E−04 0.00E+00 0.00E+00 2.50E−02 5.24E−01 6.32E−01 4.82E+00 1.29E−01

Rank 2 1 2 4 3 2 4 1 2.375

DMS-PSO

Mean 1.65E−03 0.00E+00 1.35E−10 1.39E−01 3.34E+00 4.75E+00 −3.21E+02 −1.29E+02

Std 6.34E−04 0.00E+00 8.30E−11 5.57E−02 1.86E+00 7.41E−01 9.96E−01 1.18E−01

Rank 4 1 4 5 5 4 2 1 3.25

GMLPSO

Mean 1.18E−04 0.00E+00 2.31E−15 4.48E−02 2.49E+00 3.40E+00 −3.20E+02 −1.29E+02

Std 5.46E−05 0.00E+00 1.12E−15 1.86E−02 1.43E+00 1.90E+00 4.12E+00 1.39E−01

Rank 1 1 1 3 4 3 3 1 2.125

MLPSO-Powell

Mean 8.78E−04 0.00E+00 2.66E−15 0.00E+00 1.99E−14 2.13E−15 −3.24E+02 −1.29E+02

Std 5.53E−04 0.00E+00 0.00E+00 0.00E+00 5.02E−14 5.60E−15 2.95E+00 1.77E−01

Rank 3 1 2 1 1 1 1 1 1.375

Table 3. Best, Worst, Mean, Std results on F1 to F8 for 20-D problems

F1 F2 F3 F4 F5 F6 F7 F8 Average
rank

GA

Mean 2.71E−01 1.00E+01 1.26E−05 1.16E−02 2.09E+00 1.92E+01 −5.97E+01 −1.22E+02

Std 1.01E−01 5.98E+00 5.17E−06 1.28E−02 1.44E+00 4.66E+00 5.28E+01 3.88E+00

Rank 5 5 5 3 1 5 5 5 4.25

PSO-W

Mean 1.54E−03 0.00E+00 5.15E−15 3.81E−02 5.37E+00 4.00E−01 −2.41E+02 −1.29E+02

Std 7.93E−04 0.00E+00 1.72E−15 2.81E−02 1.70E+00 5.16E−01 8.26E+00 3.63E−01

Rank 2 1 2 4 3 1 3 1 2.125

DMS-PSO

Mean 7.85E−03 0.00E+00 2.13E−08 4.31E−02 1.59E+01 1.61E+01 −2.34E+02 −1.27E+02

Std 2.00E−03 0.00E+00 2.41E−08 4.73E−02 4.07E+00 2.88E+00 6.37E+00 2.51E−01

Rank 4 1 4 5 4 4 4 4 3.75

GMLPSO

Mean 2.92E−04 0.00E+00 2.66E−15 7.37E−03 1.73E+01 1.23E+01 −2.46E+02 −1.28E+02

Std 1.22E−04 0.00E+00 0.00E+00 1.19E−02 5.73E+00 5.70E+00 7.80E+00 6.82E−01

Rank 1 1 1 2 5 3 2 2 2.125

MLPSO-Powell

Mean 3.87E−03 0.00E+00 5.86E−15 0.00E+00 3.50E+00 5.72E+00 −2.99E+02 −1.28E+02

Std 1.90E−03 0.00E+00 1.12E−15 0.00E+00 1.84E+00 4.90E+00 7.45E+00 3.78E−01

Rank 3 1 3 1 2 2 1 2 1.875

other algorithms sometimes, the former has an excellent search accuracy. The
introduction of Powell makes particles easy to find more local optima, thus it
increases the probability of finding the global optimum. In this way, the algo-
rithm can jump out of local minima and improve the performance finally.

172 F. Sun et al.

Fig. 1. The mean convergence performance on 8 benchmark functions for 10-D (left 8)
and 20-D (right 8) problems

5 Conclusions

MLPSO-Powell algorithm is proposed in this article to improve the overall per-
formance of MLPSO by Powell’s local search. MLPSO-Powell strategy enhances
the local search ability of the algorithm, then it can jump out of local optimum
by finding as much local minima as possible.

In order to assess the performance of the proposed method, we use 8 known
benchmark functions to compare different algorithms. The experimental results
manifest that the proposed approach improves the accuracy and performance.

Acknowledgments. This work was supported by National Natural Science Founda-
tion of China under Grant No. 61573166, No. 61572230, No. 61373054, No. 61472164,
No. 61472163, No. 61672262, No. 61640218. Shandong Provincial Natural Science Foun-
dation, China, under Grant ZR2015JL025. Science and technology project of Shandong
Province under Grant No. 2015GGX101025. Project of Shandong Province Higher
Educational Science and Technology Program under Grant No. J16LN07. Shandong
Provincial Key R&D Program under Grant No. 2016ZDJS01A12.

References

1. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human
Science, MHS 1995, pp. 39–43. IEEE, October 1995

Improving Multi-layer Particle Swarm Optimization Using Powell Method 173

2. Wang, L., Yang, B., Chen, Y.: Improving particle swarm optimization using multi-
layer searching strategy. Inf. Sci. 274, 70–94 (2014)

3. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
1998 IEEE International Conference on Evolutionary Computation. IEEE World
Congress on Computational Intelligence, pp. 69–73. IEEE, May 1998

4. Suganthan, P.N.: Particle swarm optimiser with neighbourhood operator. In: Pro-
ceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 3,
pp. 1958–1962. IEEE (1999)

5. Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer with
local search. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 1,
pp. 522–528. IEEE, September 2005

6. Veeramachaneni, K., Peram, T., Mohan, C., Osadciw, L.A.: Optimization using
particle swarms with near neighbor interactions. In: Cantú-Paz, E., et al. (eds.)
GECCO 2003. LNCS, vol. 2723, pp. 110–121. Springer, Heidelberg (2003). doi:10.
1007/3-540-45105-6 10

7. Wang, L., Yang, B., Orchard, J.: Particle swarm optimization using dynamic tour-
nament topology. Appl. Soft Comput. 48, 584–596 (2016)

8. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler,
maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

9. Susilo, A.: Comprehensive learning particle swarm optimizer (CLPSO) for global
optimization of multimodal functions. Undergraduate theses (2008)

10. Wang, L., Yang, B., Abraham, A.: Distilling middle-age cement hydration kinetics
from observed data using phased hybrid evolution. Soft. Comput. 20(9), 3637–3656
(2016)

11. Zhang, C., Li, T., Agarwal, R.P., Bohner, M.: Oscillation results for fourth-order
nonlinear dynamic equations. Appl. Math. Lett. 25(12), 2058–2065 (2012)

12. Zhang, C., Agarwal, R.P., Li, T.: Oscillation and asymptotic behavior of higher-
order delay differential equations with p-Laplacian like operators. J. Math. Anal.
Appl. 409(2), 1093–1106 (2014)

13. Zhang, C., Agarwal, R.P., Bohner, M., Li, T.: Oscillation of fourth-order delay
dynamic equations. Sci. China Math. 58(1), 143–160 (2015)

14. Wang, L., Yang, B., Chen, Y., Zhang, X., Orchard, J.: Improving neural-network
classifiers using nearest neighbor partitioning. IEEE Trans. Neural Netw. Learn.
Syst. (2016). doi:10.1109/TNNLS.2016.2580570

15. Powell, M.J.: An efficient method for finding the minimum of a function of several
variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)

16. Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calcu-
lations. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 144–157.
Springer, Heidelberg (1978). doi:10.1007/BFb0067703

17. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans.
Evol. Comput. 3(2), 82–102 (1999)

18. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari,
S.: Problem definitions and evaluation criteria for the CEC 2005 special session on
real-parameter optimization. KanGAL report 2005005 (2005)

19. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press (1992)
20. Yuhui, S., Eberhart, R.C.: Empirical study of particle swarm optimization (1999)

http://dx.doi.org/10.1007/3-540-45105-6_10
http://dx.doi.org/10.1007/3-540-45105-6_10
http://dx.doi.org/10.1109/TNNLS.2016.2580570
http://dx.doi.org/10.1007/BFb0067703

On the Improvement of PSO Scripts for Slope
Stability Analysis

Zhe-Ping Shen1 and Walter Chen2(&)

1 Department of Construction and Spatial Design, Tungnan University,
New Taipei, Taiwan

fishfishfishgoo@gmail.com
2 Department of Civil Engineering, National Taipei University of Technology,

Taipei, Taiwan
waltchen@ntut.edu.tw

Abstract. Landslide is a frequently repeated problem in many part of the
world. This study follows up on a 2015 study, which used the PSO to optimize
the STABL program in the slope stability analysis and found the best result in
the literature (factor of safety = 1.238). In the current study, a modification of
the PSO scripts was proposed and two new parameters (cohesion intercept and
frictional angle) were added to the analysis to examine the effect of soil strength
parameters. Assuming a negative correlation, it was found that the cohesion
intercept had a bigger influence than the frictional angle on the final outcome in
the analysis of a sample homogeneous soil slope. The addition of new param-
eters also reduced the FS of the optimized sliding surface.

Keywords: STABL � PSO � Landslides � Slope stability

1 Introduction

Landslide is a frequently repeated problem in many part of the world. Previous study
has shown that its analysis could be improved by the combined use of the PSO (Particle
Swarm Optimization) and the STABL computer program developed by Purdue
University [1]. When this technique was applied to a theoretical 2D soil slope, it was
found that the Factor of Safety (FS) was reduced to 1.238, which was the best value
when it was compared with literature data [2, 3]. In the present study, a modification of
the PSO scripts was proposed, and two new parameters (cohesion intercept and fric-
tional angle) were added to the analysis to explore the influence of soil parameters.
New results were obtained and presented in 2D/3D parameter spaces.

2 PSO and Slope Stability Analysis

PSO is a unique artificial intelligence algorithm, which has the merits of simplicity and
good physical intuition. It was applied to the analysis of slope stability (finding the
minimum FS and the most likely sliding surface) with the following basic equations
[4–6]:

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 174–179, 2017.
DOI: 10.1007/978-3-319-61824-1_19

v ¼ wvþ c1r1 pbest�xð Þ þ c2r2 gbest�xð Þ ð1Þ
x ¼ x þ v ð2Þ

where v and x are velocity and position of individual particles, r1 and r2 are random
numbers, w, c1, and c2 are parameters, and pbest and gbest are the best positions
experienced by individual particles or the entire group. Equations (1) and (2) are the
same equations presented in the original papers. Despite their simplicity, the equations
were applied to the slope stability problem successfully with a special formulation of
the problem, which used a mapping from the physical space of the slope to an
imaginary 2-D solution space [1].

3 Improvement of PSO Scripts

STABL is a computer program that is well perceived by civil engineers working on
construction and development related projects. Developed and maintained by Purdue
University [7], the program has many users worldwide. In the previous study [1], PSO
was added to STABL externally by scripts written in Fortran. The scripts both con-
trolled the execution of STABL and the analysis of its results. Although the focus at
that time was on the determination of trial sliding surfaces, the approach was flexible
enough to allow the continual improvement and the addition of new parameters. In this
study, the following new parameters were added:

Cohesion intercept cð Þ in the range of 0:52c; 1:48c½ �
Frictional angle ð/Þ in the range of 0:737/; 1:263/½ �

In addition, we assumed that c and / were negatively correlated (varied inversely)
in order to compare the relative influence of c and / on FS. Originally, the mapping of
parameters to be optimized by PSO was from the physical space of the slope to an
imaginary 2-D solution space. With the addition of two new parameters c and /, the
problem became a mapping from the physical space of the slope to an imaginary 4-D
solution space. Therefore, the dimension of the problem increased from two to four.
The goal of this study was to examine if PSO still converged to the optimal solution,
and which parameter (c and /) had the uttermost influence on the final outcome.

4 Results and Discussion

The test case used in the present analysis is the same soil slope found in [1–3]. The
slope was 5-m high with homogeneous properties: / = /’ = 100, c = c’ = 9.8 kPa,
and c = 17.64 kN/m3. The original Fortran scripts were modified to consider the added
dimensions, and the new results were plotted as shown in Figs. 1, 2, 3, 4, 5 and 6.

Figure 1 shows a comparison between the initial sliding surface (FS = 1.243) and
the optimized sliding surface (FS = 0.87). The optimized sliding surface (in green) is
shallower and closer to the toe of the slope. Figure 2 shows another comparison

On the Improvement of PSO Scripts for Slope Stability Analysis 175

between the optimized sliding surface (FS = 1.238) in the previous study [1] and the
optimized sliding surface (FS = 0.87) in the current study. The decrease of FS from
1.238 to 0.87 is significant, and the figure also shows a shallower sliding surface as a
result of adding more parameters.

Next, we examine the movement of individual particles in the parameter space.
Because it was not possible to display a 4D space directly, we presented the results in 2D
(Figs. 3 and 4) and 3D spaces (Figs. 5 and 6) instead. Figure 3 shows the movement
of 10 particles (200 times each) in the left boundary versus cohesion intercept space.

Fig. 1. A comparison between the initial sliding surface and the optimized sliding surface (using
4-parameter PSO). (Color figure online)

Fig. 2. A comparison between the previous optimized sliding surface (using 2-parameter PSO)
and the current optimized sliding surface (using 4-parameter PSO). (Color figure online)

176 Z.-P. Shen and W. Chen

Color was used to denote the relative value of FS of particles. The closer to red the color
is, the smaller value of FS it will represent. In contrast, the closer to blue the color is, the
bigger value of FS it will symbolize. It can be seen from Fig. 3 that the particles
converged to a small area (min FS) in the upper-left corner of the figure. Similar result is
observed in Fig. 4, which shows the movement of 10 particles (200 times each) in the
left boundary versus frictional angle space. The particles were also color-coded to

Fig. 3. The movement of particles (from blue to red) showing convergence to a small area (min
FS) in the upper-left corner of the figure in the left boundary versus cohesion intercept space.
(Color figure online)

Fig. 4. The movement of particles (from blue to red) showing convergence to a small area (min
FS) in the top-center of the figure in the left boundary versus frictional angle space. (Color figure
online)

On the Improvement of PSO Scripts for Slope Stability Analysis 177

represent their FS values, and they also converged to a small area (min FS) in the
top-center of the figure.

Finally, if the movement of particles are examined in 3D parameter spaces, they can
be shown in Figs. 5 and 6. The three axes in Fig. 5 are left boundary, frictional angle,
and cohesion intercept, whereas the three axes in Fig. 6 are right boundary, frictional
angle, and cohesion intercept. Both figures show the convergence of particles to a fixed
point of / = 100 and c = 5.1 kPa (9.8 * 0.52).

Fig. 5. The movement of particles (from blue to red) showing convergence to a small area (min
FS) in the 3D parameter space of left boundary, frictional angle, and cohesion intercept. (Color
figure online)

Fig. 6. The movement of particles (from blue to red) showing convergence to a small area (min
FS) in the 3D parameter space of right boundary, frictional angle, and cohesion intercept. (Color
figure online)

178 Z.-P. Shen and W. Chen

5 Summary and Conclusions

In this study, we proposed a modification to the PSO scripts to include more parameters
(c and /) in the analysis of slope stability with STABL. The obvious advantage of this
approach over the previous one is that it enables a more thorough consideration of
slope stability with the inclusion of soil strength parameters (and their uncertainties).
The results were reasonable and satisfactory. The addition of new parameters reduced
the FS of the optimized sliding surface because c and / were allowed to change in the
optimization process. The resulting sliding surface was shallower and closer to the toe
of the slope. Since a negative correlation was assumed between c and /, we found that
c had a bigger influence on the final result. The particles converged to a fixed point of
/ = 100 and c = 9.8 * 0.52 = 5.1 kPa, which was the point of [0.52c, /] in the
parameter space. However, it is speculated that the obtained result is highly linked to
the particular c and / values used in the computation. If a different slope is considered
(hence different c and /), it is possible that a different result (/ more important
over c) may be obtained. Therefore, the authors plan to further verify the validity of the
proposed algorithm by applying the method to the real-world landslide slope discussed
in [8–10] in future studies.

References

1. Chen, W.W., Shen, Z.-P., Wang, J.-A., Tsai, F.: Scripting STABL with PSO for analysis of
slope stability. Neurocomputing 148, 167–174 (2015)

2. Cheng, Y.M., Li, L., Chi, S., Wei, W.B.: Particle swarm optimization algorithm for the
location of the critical non-circular failure surface in two-dimensional slope stability
analysis. Comput. Geotech. 34, 92–103 (2007)

3. Malkawi, A.I.H., Hassan, W.F., Sarma, S.K.: Global search method for locating general slip
surface using Monte Carlo techniques. J. Geotech. Geoenvironmental Eng. 127(8), 688–698
(2001)

4. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE
International Conference on Neural Networks, pp. 1942–1948. IEEE Service Center (1995)

5. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of
the Sixth Symposium on Micro Machine and Human Science, pp. 39–43. IEEE Service
Center (1995)

6. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Porto, V.W.,
Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600.
Springer, Heidelberg (1998). doi:10.1007/BFb0040810

7. Siegel, R.A.: STABL User Manual. Purdue University, West Lafayette (1975)
8. Shen, Z.-P., Chen, W.W.: Profile orientation and slope stability analysis. Sci. Program. 2016,

1–10 (2016)
9. Shen, Z.-P., Chen, W.W.: Directional analysis of slope stability using a real example. In:

Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI 2015.
LNCS, vol. 9140, pp. 176–182. Springer, Cham (2015). doi:10.1007/978-3-319-20466-6_19

10. Shen, Z.-P., Chen, W.W.: Slope stability analysis using multiple parallel profiles. In:
Proceedings of the 11th International Conference on Natural Computation (ICNC). IEEE
(2015)

On the Improvement of PSO Scripts for Slope Stability Analysis 179

http://dx.doi.org/10.1007/BFb0040810
http://dx.doi.org/10.1007/978-3-319-20466-6_19

A High-Dimensional Particle Swarm
Optimization Based on Similarity Measurement

Jiqiang Feng1, Guixiang Lai1, Shi Cheng2(B), Feng Zhang3, and Yifei Sun4

1 Institute of Intelligent Computing Science, Shenzhen University, Shenzhen, China
fengjq@szu.edu.cn

2 School of Computer Science, Shaanxi Normal University, Xi’an, China
cheng@snnu.edu.cn

3 School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, China
4 School of Physics and Information Technology, Shaanxi Normal University,

Xi’an, China

Abstract. Particle Swarm Optimization (PSO) is a kind of classical
population-based intelligent optimization methods that widely used in
solving various optimization problems. With the increase of the dimen-
sions of the optimized problem, the high-dimensional particle swarm opti-
mization becomes an urgent, practical and popular issue. Based on data
similarly measurement, a high-dimensional PSO algorithm is proposed
to solve the high-dimensional problems. The study primarily defines a
new distance paradigm based on the existing similarity measurement
of high-dimensional data. This is followed by proposes a PSO variant
under the new distance paradigm, namely the LPSO algorithm, which is
extended from the classical Euclidean space to the metric space. Finally,
it is showed that LPSO could obtain better solution at higher conver-
gence speed in high-dimensional search space.

Keywords: High-dimensional particle swarm optimization · Data sim-
ilarity measure function · Lclose distance

1 Introduction

Particle Swarm Optimization (PSO) is optimized by the information interac-
tion between individuals in the group [6,9]. Compared with other swarm intel-
ligent optimization algorithms, PSO has the characteristics of fast convergence
speed and a few parameters, thereby it is widely used for solving optimization
problems, such as the optimization of neural network structure research and
industrial system optimization, etc. With the complexity of the industrial pro-
duction process, the dimension of optimization becomes higher and higher, even
to super high-dimensional optimization problems [3]. Most of the existing PSO
algorithms are optimized for 10 to 30 dimensions, and only a small part of the
study is for 100-dimensional or higher optimization problems. PSO algorithms
perform good for low-dimensional optimization problems, but often powerless

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 180–188, 2017.
DOI: 10.1007/978-3-319-61824-1 20

A High-Dimensional Particle Swarm Optimization 181

and need to be improved when dealing with variable-related high-dimensional
and super-high-dimensional optimization problems. Unlike the low-dimensional
optimization problem, the following issues should be considered in dealing with
high-dimensional optimization problems [10]:

1. With the increase of the dimensions, the solution space of the algorithm
increases sharply, and the combination of possible solutions is exponentially
increasing. Thus, the optimal solution could not be found in the polyno-
mial time. Meanwhile, the number of local minima of multimodal function
increases exponentially with the increase of dimensions too.

2. The premature convergence occurs when PSO algorithm solving the high-
dimensional and multimodal problems. The search direction of the PSO
algorithm is determined by the vector synthesis of each dimension flight
velocity, the global search ability of particles become weaker and weaker
with the increase of the solution space dimensions. Thereby, weaknesses of
swarm intelligent algorithms, such as premature convergence and weak in
local search capability, is even more prominent in the super high-dimensional
optimization.

3. In the traditional measure, the difference between the maximum and the min-
imum distance of the particles is approaching 0 with the increase of dimen-
sions. Due to the characteristics of high-dimensional space, the similarity
information of two data samples will be submerged by a few dimensions with
large different values. Thus, in the PSO algorithm, the method of comparing
different particle fitness value will lose efficacy.

For the issue 1, the hierarchical particle swarm algorithm (HPSO-RSC) is
used in [4]. Based on this, an efficient packet method and coevolution framework
are combined [7], which making HPSO-RSC to obtain good performance on high-
dimensional optimization problems. For the issue 2, a multi-dimensional inertia
weight attenuation chaotic PSO algorithm was proposed and it could enhance
the group activity and local search ability in the late search period on vertical
and horizontal directions.

For the issue 3, the Lclose distance is defined according to the existing high-
dimensional spatial similarity measure function, which extends the PSO method
from the classical Euclidean space to the new metric space. In the framework
of classical population diversity measurement, the high-dimensional PSO in the
new metric space can get a better solution at a faster convergence rate in the
high-dimensional search space.

The remaining of the paper is organized as follows. Section 2 introduces the
basic concepts of data similarity metric methods. Section 3 introduces the defi-
nition of LPSO. Experiments of two PSO variants (original PSO algorithm and
LPSO algorithm) are conducted in Sect. 4. Finally, Sect. 5 concludes with some
remarks and future research directions.

182 J. Feng et al.

2 Similarity Measure of High-dimensional Spatial Data

In the era of big data, data attributes increases rapidly and the research space
turns from low-dimensional space to high-dimensional space. Many new problems
emerge while trying to utilize the similarity measure of low-dimensional space
to solve high-dimensional space issues.

In the similarity algorithm of data metric, set two dots X = (x1, x2, . . . , xn)
and Y = (y1, y2, . . . , yn) in the n dimension metric space. The traditional dis-
tance function includes Euclidean distance, Chebyshev distance, Manhattan dis-
tance and Minkowski distance [2,10]. Also, the definition of similarity between
data samples is an alternative way to measure the data space. The similarity
definition could affect the research results. Cosine measurement is a commonly
used similarity coefficient calculation methods.

The results of traditional metric algorithm in a high-dimensional space are
often meaningless due to the characteristics of high-dimensional space, such as
high-dimensional data, data with large volume and sparsely distribution [11].
A conclusion on the relationship between Lk-norms and the data dimension was
conducted in [1]. That is, based on the classic Euclidean distance measurement
method, the relative difference between the nearest and longest distance of any
two objects in space is approaching 0 with the increase of dimensions.

A method was proposed for calculating the degree of data dissipation based
on the gravitational model of the earth [8]. The distance value involved in the
gravitational model of the earth is changed to the information entropy between
the object attributes, to avoid the calculation of distance in the high-dimensional
space. The concept of projection nearest neighbor was proposed, which uses a cri-
terion function to select the relevant dimension and only the relevant dimensions
are used to calculate the similarity between the other dots and the dot itself [5].
A similarity function for high-dimensional data is given in Eq. (1), which avoids
the fact that the definition of distance function in the original low-dimensional
space is not applicable in the high-dimensional space. Thus, the attribute simi-
larity and spatial similarity of high-dimensional data, and the similarity metric
function of different data types are combined into a unified HDsim(X,Y) [11].
The definition is given in Eq. (2).

Hsim(X,Y) =

∑n
i=1

1
1+|xi−yi|
n

(1)

HDsim(X,Y) =
n∑

i=1

δ(tx, ty)
n

∗ 1
1 + ωi|xi − yi| (2)

A close similarity measure function to solve the failure phenomenon when
using traditional similarity measure method in high-dimensional space was pro-
posed [10]. Set X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) are two dots in the
n-dimensional space, and the proximity function is defined as shown in Eq. (3)

Close(X,Y) =
∑n

i=1 e−|xi−yi|

n
(3)

A High-Dimensional Particle Swarm Optimization 183

The minimum value of the function is 0, which means the difference between
X and Y in each dimension is close to infinity, and the similarities between X and
Y are minimized at this time. The maximum value of the function is 1, that rep-
resents X and Y are equal in all dimensions. The X and Y in the n-dimensional
space is coincident at this time, which means the maximum similarity.

3 High-Dimensional PSO Algorithm

3.1 Definition of Lclose Distance

It is proved that the dimensions with the similar values have a major importance
in close function comparing with the traditional distance-based functions [10].
Larger amount of similar dimensions means greater similarity, which is consistent
with the logical of judging the similarity of things.

Lclose distance: Let X = (x1, x2,. . . , xn) and Y = (y1, y2,. . . , yn) are two
points in the n-dimensional search space. Based on the close function, Lclose
distance is defined as:

Lclose(X,Y) =
n

∑n
i=1 e−|xi−yi| − 1 (4)

It usually happens that two similar particles closely at most dimensions and
only varied a few dimensions in high-dimensional space. However, the large differ-
ence at a few dimensions plays the dominant role in the traditional distance sim-
ilarity measure functions. For example, set n dimension space has A, B, C three
dots, A = (1, 1, 1, . . . , 1, 1), B = (1, 1, 1, . . . , 1, 2n), and C = (5, 5, 5, . . . , 5, 5),
respectively. The values of A and B are exactly the same on the first (n − 1)
dimensions, but the distance on the nth dimension is 2n − 1, A and C differs
by 4 in each dimension. According to subjective logic, it should be considered A
and B is more similar.

D2(A,B) =

√
√
√
√

n∑

i=1

(ai − bi)2 = 2n − 1 D2(A,C) =

√
√
√
√

n∑

i=1

(ai − ci)2 = 4
√

n

It can be seen that in the traditional Euclidean space, as the dimension
increases, distance between A and B are more obvious than A and C, it gains a
large deviation from the subjective logic. This leads to evolutional failure of the
PSO algorithm in its iterative process. Based on the definition of Lclose distance
in Eq. (4), the AB, AC distances are calculated as follows:

Lclose(A,B) =
n

∑n
i=1 e−|ai−bi| − 1 =

n

n − 1 + e1−n
− 1

Lclose(A,C) =
n

∑n
i=1 e−|ai−ci| − 1 = e4 − 1

184 J. Feng et al.

Compared with the traditional Euclidean distance, Lclose distance has the
following characteristics:

1. High-dimensional data distance is more coordinated with objective logic, to
increase their proportions for most of the very similar dimensions, and to
weaken their proportions for a few dimensions with large difference.

2. When the dimension is high, the distance value is smaller than the traditional
Euclidean distance.

Under this distance paradigm, the distance between the particles is more coor-
dinated with the evolution of PSO algorithm logic. Therefore, a new PSO algo-
rithm, namely LPSO algorithm is designed.

3.2 PSO Algorithm Based on Lclose Distance Space

In the original PSO algorithm, the particle swarm velocity and position iteration
formula are:

vt+1
i = w × vt

i + c1 × r1 × (pbestti − xt
i) + c2 × r2 × (gbestti − xt

i) (5)

xt+1
i,j = xt

i,j + vt+1
i,j (6)

where vi,j is the velocity of each particle i in j dimension, w is the inertia weight,
pbest is the historical optimal position of the particle, and gbest is the global
optimal position of the particle swarm, c1 and c2 are the accelerating coefficients
of individual cognition and social cognition respectively.

In this paper, based on Lclose distance and the sign function, in the Lclose
distance space, in order to avoid the influence of the high-dimensional charac-
teristics, which is the similarity information of the two data is submerged by a
few dimensions of large different values, and the traditional PSO algorithm is
difficult to achieve the search effect in high dimension distance space. So that to
improve the search effect of population in high dimension space. In the Lclose
distance space, this paper designs the new PSO speed and position iteration
update formula as follows:

vt+1
i,j = w × vt

i,j + c1 × r1 × δ(pti,j − xt
i,j) × (

S∑

i=1

Lclose(xt
i,j , p

t
i,j))

+ c2 × r2 × δ(pti,j − gti,j) × (Lclose(xt
i,j , g

t
i,j))

(7)

and

Lclose(X,Y) =
n

∑n
i=1 e−|xi−yi| − 1, δ(a) =

{
1, a ≥ 0
0, a < 0

In addition, in order to ensure that the particles remain in the search area
during the iterative process, the LPSO algorithm sets a limit function on bound-
ary constraints. When a particle exceeds the search area on a dimension, the
particle will scale down on each dimension to ensure step size of the particle is
not greatly changed.

A High-Dimensional Particle Swarm Optimization 185

4 Experimental Study

4.1 Experimental Process and Parameter Setting

In order to compare the convergence among the algorithms, the process of the
simulation experiment is as follows:

1. Determining the search space and population size S, the number of iterations
t, the inertia weight w and the acceleration coefficients c1, c2.

2. Randomly initializes the initial position and initial velocity of each particle.
Calculate the historical optimal pi of the particle and the global optimal g of
the population.

3. Iteration according to Eqs. (5) and (7) respectively, update the position and
velocity of particles. Updating the historical best pi of particles and the global
optimal g of the population.

4. Limiting the search area of particles. If the updated particle position exceeds
the search interval, the operation is performed: xi,j = 0.8 × xi,j .

5. Calculating the population diversity.
6. Determining whether the termination conditions are met. If yes, finish the

algorithm and output the result g. If no, return to step 3.

In this paper, the parameter settings are shown in Table 1.

Table 1. Parameters setting of different PSO algorithms

Population size S Iterationmax c1 = c2 w

40 2000 2.0 0.5

4.2 Experimental Results

In order to analyze the performance of the PSO algorithm and the LPSO algo-
rithm on solving problem with different dimensions, a simple single-peak func-
tion, Sphere function, is selected in this experiment.

f =
n∑

i=1

x2
i , xi ∈ [−100, 100] (8)

Experimental 1: The numbers of dimensions are set to 50, 100, 200, and 500.
In order to show the comparison of the convergence speed of the functions more
intuitively, the experimental results are shown logarithmically as log(f). The
experimental results are shown in Fig. 1. The dotted line in Fig. 1 represents
the convergence result of the traditional PSO algorithm under four dimensions,
and the solid line represents the LPSO algorithm. In the low dimension (100
dimensions), the traditional PSO algorithm embodies the characteristics of its
fast convergence, but when the dimension reaches 500◦ and higher, it appears

186 J. Feng et al.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−20

−15

−10

−5

0

5

10

15

20
PSO algorithm of 50 dimension
PSO algorithm of 100 dimension
PSO algorithm of 200 dimension
PSO algorithm of 500 dimension
LPSO algorithm of 50 dimension
LPSO algorithm of 100 dimension
LPSO algorithm of 200 dimension
LPSO algorithm of 500 dimension

Fig. 1. PSO algorithm and LPSO algorithm in different dimensions of function fitness
(log(f))

various kinds of high-dimensional space Problems, the algorithm reaches to a
higher degree of fitness and then stops convergence. While the LPSO algorithm is
significantly less affected by dimensions. In the low dimensions, the convergence
effect is slightly worse than that of the PSO algorithm. However, in the 500-fold
and higher dimensions, the LPSO algorithm is less effective than the traditional
PSO algorithm, and shows the superiority of the LPSO algorithm in the high-
dimensional space.

The performance of various PSO algorithm could be explained via the pop-
ulation diversity changes during the search process. The diversity comparison is
shown in Fig. 2. The decrease of diversity will lead to the decline of the global
search ability of the algorithm, so it can be conducted that the LPSO algorithm
has advantages in the global optimization ability in the high dimensional space.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Diversity of LPSO

Diversity of PSO

Fig. 2. Diversity comparison of LPSO and PSO algorithms

A High-Dimensional Particle Swarm Optimization 187

Experimental 2: The numbers of dimensions are set to 100, 500, and 1000.
The results of the LPSO algorithm, PSO algorithm, and HPSO algorithm [7] are
compared. In order to reflect the search performance of the proposed algorithm,
the three algorithms are tested on problems with three kinds of dimensions under
20 runs respectively. The average convergence and stability result of the three
experimental results are compared. The experimental results are given in Table 2.

Table 2. Experimental results of LPSO algorithm, PSO algorithm and HPSO
algorithm

Dimensions Index PSO algorithm HPSO algorithm LPSO algorithm

100 Mean 0.0146 0.0225 50.4241

Maximum 0.0442 0.0901 246.725

Minimum 0.0041 0.0038 1.287E-9

500 Mean 279.6171 0.4015 0.8762

Maximum 516.2834 0.7136 5.7592

Minimum 102.9056 0.1520 5.547E-4

1000 Mean 829.8319 74.34 12.863

Maximum 3.022E+3 422.2 62.9891

Minimum 447.1972 0.523 0.0026

Three indicators, which include mean, maximum, and minimum, are used
to measure the convergence effect in the Table 2. According to the statistical
results of Table 2, it could be known that the efficiency of LPSO algorithm is far
less than that of PSO algorithm and HPSO algorithm in 100-dimensional space.
However, in the higher dimensional space, the performance of the PSO algorithm
degrades obviously. In the 500-dimensional space, due to the high-dimensional
space characteristics, the performance of the traditional PSO algorithm is not
satisfied, which indicates the ineffective of the traditional PSO algorithm. Com-
pared with the traditional algorithm, the LPSO algorithm has obvious advan-
tages in the 500 dimensional space, but it is less than the HPSO algorithm.
The maximum and minimum value of the 20 experimental results have a large
standard deviation. However, in general, it is still better than the traditional
PSO algorithm in the convergence performance. It could be concluded that, in
the high-dimensional space the LPSO algorithm has a superiority of convergence
than PSO algorithm, and this strength is more obvious with the increasing of
dimensions.

5 Conclusions

Based on the close similarity measure function, Lclose distance is defined by the
analysis of the data similarity measurement in high-dimensional space. Com-
pared with the traditional Euclidean distance, the Lclose distance between par-
ticles is more coordinated with the objective logic for the high-dimensional data,

188 J. Feng et al.

which increases the specific gravity for most very similar dimensions and weakens
the proportion of the dimensions with large difference in values. Then the Lclose
distance is applied to the PSO algorithm, and the LPSO algorithm is designed.
The proposed LPSO algorithm is only a preliminary research result. The effi-
ciency of LPSO algorithm in solving high-dimensional optimization problems
will be improved continuously in the following research.

Acknowledgments. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61401283, in part by the Educational Commis-
sion of Guangdong Province, China under Grant 2014KTSCX113, and in part by the
Fundamental Research Funds for the Central Universities under Grant GK201703062
and GK201603014.

References

1. Aggarwal, C.C.: On the effects of dimensionality reduction on high dimensional
similarity search. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp. 256–266 (2001)

2. Cheng, S., Shi, Y., Qin, Q.: Particle swarm optimization based semi-supervised
learning on Chinese text categorization. In: Proceedings of 2012 IEEE Congress
on Evolutionary Computation (CEC 2012), Brisbane, Australia, pp. 3131–3198.
IEEE (2012)

3. Cheng, S., Zhang, Q., Qin, Q.: Big data analytics with swarm intelligence. Ind.
Manag. Data Syst. 116(4), 646–666 (2016)

4. Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer and its adap-
tive variant. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 35(6), 1272–1282
(2005)

5. Kakas, A., Moratis, P.: Argumentation based decision making for autonomous
agents. In: Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2003), Melbourne,
Australia, pp. 883–890 (2003)

6. Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Pub-
lishers, San Francisco (2001)

7. Ma, Z.: Research on particle swarm optimization for high-dimensional and multi-
objective optimization problems. Master’s thesis, Dalian University of Technology
(2014)

8. Modgil, S.: Nested argumentation and its application to decision making over
actions. In: Parsons, S., Maudet, N., Moraitis, P., Rahwan, I. (eds.) ArgMAS 2005.
LNCS, vol. 4049, pp. 57–73. Springer, Heidelberg (2006). doi:10.1007/11794578 4

9. Qin, Q., Cheng, S., Zhang, Q., Li, L., Shi, Y.: Particle swarm optimization with
interswarm interactive learning strategy. IEEE Trans. Cybern. 46(10), 2238–2251
(2016)

10. Shao, C.S., Lou, W., Yan, L.M.: Optimization of algorithm of similarity measure-
ment in high-dimensional data. Comput. Technol. Dev. 21(2), 1–4 (2011)

11. Xie, M., Guo, J., Zhang, H., Chen, K.: Research on the similarity measurement of
high dimensional data. Comput. Eng. Sci. 32(5), 92–96 (2010)

http://dx.doi.org/10.1007/11794578_4

A Center Multi-swarm Cooperative Particle
Swarm Optimization with Ratio

and Proportion Learning

Xuemin Liu, Lili(&), and Jiaoju Ge(&)

Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
ximlli@126.com, jiaoge@hit.edu.cn

Abstract. This paper presents a center multi-swarm cooperative PSO with ratio
and proportion learning (CMCPSO-RP), employing two well-known psychol-
ogy theories. In the original MCPSO-CC, the convergence speed can be
accelerated which comes at decreasing the diversity of sub-swarms, suffering
from premature convergence. There is no mechanism to guarantee every pos-
sible region of the search space could be searched. To tackle this problem, all
best particles from each sub-swarm can be collected and sent to master swarm to
maintain a population of potential solutions. This process is less prone to
becoming trapped in local minima, but typically has lower efficiency of itera-
tions. To balance the ability of exploration and exploitation, a ratio and pro-
portion learning strategy is proposed by empowering the searching particles
with human-like thinking and cognitive process, inspired by Cognitive Load
Theory and Human Problem Solving Theory. In our approach, a reasonable ratio
design can be not only a way to exhibit a solution quality versus speed tradeoff,
but also make CMCPSO-RP more in line with the laws of regular learning in
nature. Application of the newly developed PSO algorithm on several bench-
mark optimization problems shows a marked improvement in performance over
the comparison algorithms on all test functions.

Keywords: Multi-swarm � Center communication � Ratio and proportion
learning

1 Introduction

Particle swarm optimization (PSO) was first developed by Kennedy and Eberhart in
1995 [1]. For general problems, it provides efficient and satisfactory solutions like other
meta-heuristic methods and search algorithms [2], such as genetic algorithms (GA) [3]
and differential evolution (DE) [4]. Owing to its simple concept and high efficiency,
PSO has been used to solve a range of optimization problems [5], including neural
network training [6], data mining [7], feature selection [8], just to name a few. Con-
sidering the fact that the original PSO works better in simple and low-dimensional
search space, various attempts have been made to improve its performance from
aspects of topology, parameter control mechanism, learning strategy and hybridization.
For solving complex multimodal problems, numerous multi-swarm techniques, aiming
to improve the population diversity, are studied, such as dynamic multi-swarm PSO

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 189–197, 2017.
DOI: 10.1007/978-3-319-61824-1_21

(DMS-PSO) [9], cooperative PSO (CPSO) [10] and multi-swarm cooperative PSO
(MCPSO) [11]. Though these efforts, preventing premature convergence while
retaining the fast-converging feature of PSO is still a challenging task. Hence, it is
necessary to design a method that performs well in controlling the compatibility
between exploration and exploitation. Note that, to our knowledge, few scholars pay
attention to augment PSO from the perspective of cognitive process. Given this,
Human Problem Solving Theory (HPST) [12] and the Cognitive Load Theory
(CLT) [13–15] are incorporated, empowering the searching particles with human-like
thinking. The goals of this work are as follows: (1) Reinterpret learning process with
HPST and CLT in PSO; (2) Design a ratio and proportion learning strategy to balance
convergence rate and diversity; (3) Empirically measure the effect of the learning
method proposed.

The remainder of this article is organized as follows: Introduce the framework of
CMCPSO-RP in Sect. 2. Then experiment setting and results are presented in Sect. 3.
Followed by conclusions and future work in Sect. 4.

2 The Proposed MCPSO-RP

2.1 Reinterpret Learning Process with HPST and CLT

HPST explains the nature of problem solving [12]. When handling specified tasks, a
task analysis is primary, including what processes are used, and what mechanisms
perform these processes. Then seek an inventory of possible problem solving mech-
anisms. At last, summarize these experiences, select what can be learned from, and the
relation of these to the problem-solving process.

Compared with current learning methods used in PSOs, HPST takes advantage of
logic in learning and ways of thinking. As for the strategy to assign the ratio, we find the
answer in CLT, stating that if interactions between many elements must be learned, then
intrinsic cognitive load will be high, which will lead to a low efficiency of learning. In
contrast, if elements can be learned successively rather than simultaneously, intrinsic
cognitive load will be low and the learning process will be more effective [13].

2.2 CMCPSO-RP

The motivation for developing CMCPSO-RP derives from MCPSO-CC [16]. For the
original MCPSO-CC, while promising, there is still room to improve its performance.

• The center communication mechanism sacrifice the diversity.
• It cannot guarantee to search every possible region of the search space.
• The particle updates its velocity with the same opportunity, which is somehow

contrary to the laws of regular learning in natural ecosystems.

To address above issues, CMCPSO-RP is proposed based on HPST and CLT.
According to CLT and HPS, when facing a new problem, human tend to believe
themselves first and try their best to deal with the difficulty based on the existing
knowledge, however, if they found it beyond their ability after attempts, they will begin

190 X. Liu et al.

to seek and learn from the neighbors immediately. This regular human problem solving
psychology can be also found in other forms of life in nature, from simple cells through
to mammals. Inspired by it, we can get the point that the opportunity and significance
of each learning part coming from others is different.

In our approach, self-learning and social-learning come from master swarm while
the center-learning and global-learning derive from slave swarms. These four parts
make up the whole learning aspects which can be seen as an overall cognitive process
to refine the global optimization.

(a) Self-learning: For the self-learning part (task analysis), a relative small proportion
will be better according to HPS, especially in initial iterations, which can reduce
interactivity to accelerate the convergence rate, because no good examples can be
learned from.

(b) Social-learning: The social-learning will increase along with iterations. When
best solutions begin to appear, each particle has to give up some of its experience
and useless knowledge to accept the right information from neighbors to enhance
the social learning.

(c) Center-learning: The center communication mechanism will be saved to make
sure the information can be transformed among sub-swarms. CLT states that if
elements can be learned successively rather than simultaneously because they do
not interact, intrinsic cognitive load will be low and the learning process will be
more effective.

(d) Global-learning: Based on CLT, it seems not hard to understand the high
interactivity in global learning. However, this information transaction mechanism
will lead a high cognitive load, resulting in low poor performance. We can lower
the extraneous cognitive load just by reducing the information transaction
between master swarm and slave swarms. As a result, a lower proportion of global
learning should be made to get good performance.

To realize this mechanism, this paper proposes a modification on original
MCPSO-CC velocity update equation as follows:

vMiðtþ 1Þ = wvMiðtÞ þ aR1c1ðpMi � xMiðtÞÞþU � bR2c2ðpMg � xMiðtÞÞþ ð1� UÞ � gR3c3ðpSg � xMiðtÞÞ þ cR4c4ðpSc � xMiðtÞÞ
ð1Þ

xMiðtþ 1Þ ¼ xMit þ vMit ð2Þ

For a minimization problem, U is a migration factor, given by

U ¼ 1 or 0 ; competitive relationship betweenM and S
between 0 and 1; cooperative relationship between M and S

�

The best performed particle is found after sub-swarms updating their positions, the
center particle is updated according to the following formula [22]:

A Center Multi-swarm Cooperative Particle Swarm Optimization 191

PS
cðtþ 1Þ ¼ 1

N

XN

i¼1
png tð Þ ð3Þ

The variables in Eqs. (1)–(3) are summarized in Table 1 and the pseudo code for
MCPSO-CC-RP is listed in Table 2.

3 Experiment and Result

3.1 Benchmarks

In this section, six nonlinear benchmark functions are performed. All functions are
designed to have minima at the origin. They are listed in Table 3.

3.2 Experimental Setting

The performance of CMCPSO-RP was compared with original MCPSO, MCPSO-CC
as well as the standard PSO. The parameters setting are listed in Table 4. For fair

Table 1. Nomenclature

Variables Descriptions Variables Descriptions

M Master swarm v Vector of particle’s velocity
S Slave swarm x Vector of particle’s position
w Inertia weight a; b; g; c Ratio and proportion parameter,aþ bþ gþ c ¼ 1
R Random number pMi ; p

S
i Best previous particle in master and slave swarms

ci Learning factor pSc Center position of the global best particle

Table 2. Pseudocode for CMCPSO-RP

Initialization
Randomly divide the population into s=4
while (termination condition=false)

do
for (i=1 to number of slave particles)

select the fittest global individual S
gp and M

gp , update them respectively
select the center particle, updates its position according to Eq.(3)

end do
do

for i= master swarm
evolve the master swarm
update the velocity and position using Eqs.(1),(2) respectively

end do
end

192 X. Liu et al.

comparison, in all cases the population size was set at 80 (all the sub-swarms of
MCPSO, MCPSO-CC and CMCPSO-RP include the same particles) and a fixed
number of maximum generations 1000 is applied to these six algorithms. A total of 50
runs for each experimental setting are conducted.

3.3 Experimental Results

Table 5 lists the experimental results (i.e. the best, worst, mean and standard deviation
of the function values found in 50 runs) on Sphere, Rosenbrock, Rastrigrin, Griewank,
Ackley and Quadric functions with each experimental setting.

The experimental results (i.e. the best, worst, mean and standard deviation of the
function values found in 50 runs) for each algorithm on each test function are listed in
Table 5. As shown in the table, the numbers in bold-face type represent the compar-
atively best values and all the results were reported as ‘0.00e+000’. Moreover, the
graphs presented in Figs. 1, 2 and 3 illustrate the evolution of best fitness found by four
algorithms, averaged for 50 runs for functions f1–f6.

Function f1, relatively simpler, is easy to solve due to it is a unimodal problem with
only a single global minimum. All algorithms converged exponentially fast toward the
fitness optimum. However, as can be seen from Fig. 1, only CMCPSO-RP method
achieved fast convergence rate. This implies that, for simple problems, lower the
extraneous cognitive load by reducing the information transaction between master
swarm and slave swarms helps MCPSO-RP solves the problem efficiently, namely, a
low ratio of global learning is enough to guarantee a good result.

Table 3. Test functions

1. Sphere f1ðxÞ ¼
PD

i¼1 x
2
i

2. Rosenbrock f2ðxÞ ¼
PD

i¼1 100� ðxiþ 1 � x2i Þ2 þð1� xiÞ2
3. Rastrigrin f3ðxÞ ¼

PD
i¼1 ðx2i � 10 cosð2pxiÞþ 10Þ

4. Griewank f4ðxÞ ¼ 1=4000�PD
i¼1 x

2
i �

QD
i¼1 cosðxi

� ffiffi
i

p Þþ 1

5. Ackley f5ðxÞ ¼ �20 expð�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
30

PD
i¼1 x

2
i

q
Þ � expð 1

30

PD
i¼1 cos 2pxiÞþ 20þ e

6. Quadric f6ðxÞ ¼
PD

i¼1 ix
4
i þ random½0; 1Þ

Table 4. Parameters of test functions

Test problem Dim. Popul. size Search range Initial hypercube fmin

f1 30 80 [−100, 100]n [50, 100]n 0
f2 30 80 [−100, 100]n [15, 30]n 0
f3 30 80 [−5.12, 5.12]n [2.56, 5.12]n 0
f4 30 80 [−600, 600]n [300, 600]n 0
f5 30 80 [−32, 32]n [16, 32]n 0
f6 30 80 [−1.28, 1.28]n [−0.64, 1.28]n 0

A Center Multi-swarm Cooperative Particle Swarm Optimization 193

Function f2, a simple multimodal problem, also known as banana function, which
has a long, narrow, parabolic shaped flat valley from the perceived local optima to the
global optimum. For SPSO and MCPSO, to find the valley is trivial, however, con-
vergence to the global optimum is difficult, which ultimately produced poor average
best fitness for this case. In contrast, MCPSO-CC improved the average optimum
solution significantly but converged slowly when compared with CMCPSO-RP, as
shown in Fig. 1.

Table 5. Results for all algorithms on benchmark functions

SPSO MCPSO MCPSO-CC CMCPSO-RP

f1 Best
Worst
Mean
Std

4.20e−003
2.88e−001
4.77e−002
4.79e−002

4.42e−007
9.27e−005
1.62e−005
1.84e−005

1.11e−206
5.43e−178
1.09e−179
0.00e+000

2.32e−228
1.53e−214
4.55e−216
0.00e+000

f2 Best
Worst
Mean
Std

1.16e+002
3.68e+004
6.04e+003
1.00e+004

2.08e+001
4.47e+002
6.93e+001
7.32e+001

1.80e+001
2.80e+001
2.66e+001
2.00e+000

1.08e+000
2.89e+001
2.69e+001
4.37e+000

f3 Best
Worst
Mean
Std

2.61e+001
1.02e+002
5.82e+001
1.62e+001

2.09e+001
5.07e+001
3.33e+001
6.39e+000

0.00e+000
1.56e−004
3.12e−006
2.21e−005

0.00e+000
5.68e−013
6.14e−014
1.20e−013

f4 Best
Worst
Mean
Std

2.49e−004
1.75e−001
1.95e−002
2.57e−002

0.00e+000
4.67e−003
4.60e−003
8.70e−003

0.00e+000
4.55e−015
1.20e−016
6.71e−016

0.00e+000
0.00e+000
0.00e+000
0.00e+000

f5 Best
Worst
Mean
Std

1.48e+000
2.10e+001
1.64e+001
7.13e+000

9.68e−004
2.06e+001
5.07e+000
8.32e+000

8.88e−016
4.44e−015
9.59e−016
5.02e−016

8.88e−016
8.88e−016
8.88e−016
0.00e+000

f6 Best
Worst
Mean
Std

6.20e−003
2.14e+001
1.47e+000
3.75e+000

4.35e−009
3.22e−005
9.85e−007
4.54e−006

0.00e+000
9.71e−316
1.94e−317
0.00e+000

0.00e+000
3.59e−319
1.43e−320
0.00e+000

0 100 200 300 400 500 600 700 800 900 1000
-250

-200

-150

-100

-50

0

50

Generations

Fit
ne

ss
 (lo

g)

Sphere

SPSO
MCPSO
MCPSO-CC
CMCPSO-RP

0 100 200 300 400 500 600 700 800 900 1000
1

2

3

4

5

6

7

8

9

10

11

Generations

Fit
ne

ss
 (lo

g)

Rosenbrock

SPSO
MCPSO
MCPSO-CC
CMCPSO-RP

Fig. 1. Mean relative performance for Sphere and Rosenbrock function

194 X. Liu et al.

Function f3–f5 are all complex multimodal function. In this group, Rastrigin has a
large number of local optima, when attempting to solve it, algorithms easily fall into a
local optimum. Griewank has a

QD
i¼1 cosðxi

� ffiffi
i

p Þ component causing linkages among
variables, thereby making it difficult to reach the global optimum. Ackley has one
narrow global optimum basin and many minor local optima. Though these problems are
difficult to deal with, MCPSO-RP gave all best optimum results with a particularly fast
convergence rate due to it is capable of maintaining a larger diversity, whereas PSO and
MCPSO stagnated and flatted out with no further improvement. It can be concluded, for
complex multimodal problems, most schemas have to be learned simultaneously
because they interact, but learning too much at one time will slow down the convergence
rate, so a good ratio and proportion of each learning part can well solve this issue. That is
why CMCPSO-RP converged faster than MCPSO-CC, as shown in Figs. 2 and 3.

Function f6 is a noisy function. CMCPSO-RP had the best convergence speed,
followed by MCPSO-CC, MCPSO and SPSO, see Fig. 3. It can be concluded that the
introduction of ratio and proportion learning not only accelerates convergence rate but
also improves the solution quality.

4 Conclusions and Future Work

Our goal in this paper is, first to reinterpret learning process in PSO with HPST, then
design a new learning strategy to balance convergence rate and diversity, finally,
empirically measure the effect of the learning method proposed. In this paper, an

0 100 200 300 400 500 600 700 800 900 1000
-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

Generations

Fit
ne

ss
 (lo

g)
Rastrigrin

SPSO
MCPSO
MCPSO-CC
CMCPSO-RP

0 100 200 300 400 500 600 700 800 900 1000
-20

-15

-10

-5

0

5

Generations

Fi
tn

es
s (

log
)

Griewank

SPSO
MCPSO
MCPSO-CC
CMCPSO-RP

Fig. 2. Mean relative performance for Rastrigrin and Griewank function

0 100 200 300 400 500 600 700 800 900 1000
-16

-14

-12

-10

-8

-6

-4

-2

0

2

Generations

Fit
ne

ss
 (lo

g)

Ackley

SPSO
MCPSO
MCPSO-CC
CMCPSO-RP

0 100 200 300 400 500 600 700 800 900 1000
-350

-300

-250

-200

-150

-100

-50

0

50

Generations

Fit
ne

ss
 (lo

g)

Quadric

SPSO
MCPSO
MCPSO-CC
CMCPSO-RP

Fig. 3. Mean relative performance for Ackley and Quadric function

A Center Multi-swarm Cooperative Particle Swarm Optimization 195

improved center multi-swarm cooperative PSO with ratio and proportion learning
(CMCPSO-RP) is proposed inspired by CLT and the theory of HPST. In CMCPSO-RP,
there are four learning aspects of learning: self-learning and social-learning come from
master swarm while the center-learning and global-learning derive from slave swarms.
According to HPS, self-learning should take a small share. As for global learning, we
can reduce extraneous cognitive load by reducing the information transaction between
master swarm and slave swarms according to CLT. In contrast, a higher proportion of
center learning should be made to keep low information interactivity to improve the
efficiency. The results are compared in terms of solution quality and convergence speed
with relative previous work. The experimental results demonstrate CMCPSO-RP out-
performs the comparison algorithms on all tested functions.

References

1. Eberchart, R.C., Kennedy, J.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks, Perth, Australia (1995)

2. Leboucher, C., Shin, H.S., Siarry, P., et al.: Convergence proof of an enhanced particle
swarm optimisation method integrated with evolutionary game theory. Inf. Sci. 346, 389–
411 (2016)

3. Hassan, R., Cohanim, B., De Weck, O., et al.: A comparison of particle swarm optimization
and the genetic algorithm. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference, p. 1897 (2005)

4. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy
adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417
(2009)

5. Shi, Y.: Particle swarm optimization: developments, applications and resources. In:
Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 81–86. IEEE (2001)

6. Van den Bergh, F., Engelbrecht, A.P.: Cooperative learning in neural networks using particle
swarm optimizers. S. Afr. Comput. J. 2000(26), 84–90 (2000)

7. Rana, S., Jasola, S., Kumar, R.: A review on particle swarm optimization algorithms and
their applications to data clustering. Artif. Intell. Rev. 35(3), 211–222 (2011)

8. Nguyen, H.B., Xue, B., Andreae, P.: Mutual information estimation for filter based feature
selection using particle swarm optimization. In: Squillero, G., Burelli, P. (eds.) EvoAppli-
cations 2016. LNCS, vol. 9597, pp. 719–736. Springer, Cham (2016). doi:10.1007/978-3-
319-31204-0_46

9. Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer with local
search. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 522–528.
IEEE (2005)

10. Van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm
optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

11. Niu, B., Zhu, Y., He, X., et al.: MCPSO: a multi-swarm cooperative particle swarm
optimizer. Appl. Math. Comput. 185(2), 1050–1062 (2007)

12. Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs (1972)
13. Sweller, J.: Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 4

(4), 295–312 (1994)
14. Frederiksen, N.: Implications of cognitive theory for instruction in problem solving. Rev.

Educ. Res. 54(3), 363–407 (1984)

196 X. Liu et al.

http://dx.doi.org/10.1007/978-3-319-31204-0_46
http://dx.doi.org/10.1007/978-3-319-31204-0_46

15. Sweller, J.: Cognitive load during problem solving: effects on learning. Cogn. Sci. 12(2),
257–285 (1988)

16. Niu, B., Li, L.: An improved MCPSO with center communication. In: International
Conference on Computational Intelligence and Security, CIS 2008, vol. 2, pp. 57–61. IEEE
(2008)

A Center Multi-swarm Cooperative Particle Swarm Optimization 197

Applications of Particle Swarm
Optimization

A Discrete Particle Swarm Algorithm
for Combinatorial Auctions

Fu-Shiung Hsieh(&)

Department of Computer Science and Information Engineering,
Chaoyang University of Technology, Taichung 41349, Taiwan

fshsieh@cyut.edu.tw

Abstract. Although combinatorial auctions make trading goods between
buyers and sellers more conveniently, the winner determination problem
(WDP) in combinatorial auctions poses a challenge due to computation com-
plexity. In this paper, we consider combinatorial auction problem with trans-
action costs, supply constraints and non-negative surplus constraints. We
formulate the WDP of combinatorial auction problem as an integer program-
ming problem formulation. To deal with computational complexity of the WDP
for combinatorial auctions, we propose an algorithm for finding solutions based
on discrete PSO (DPSO) approach. The effectiveness of the proposed algorithm
is also demonstrated by several numerical examples.

Keywords: Meta-heuristics � Combinatorial auction � Integer programming �
Winner determination problem

1 Introduction

Auctions are a popular business model for buying and selling goods. One of the recent
trends in the development of auction mechanisms is combinatorial auctions, which
makes it possible for buyers and sellers to trade goods conveniently by placing bids on
a combination of goods rather than just individual items. However, the winner deter-
mination problem (WDP) is one of the most challenging research topics on combi-
natorial auctions. An excellent survey on combinatorial auctions can be found in [1, 2].
Combinatorial auctions are notoriously difficult to solve from a computational point of
view [3, 4]. The WDP can be modeled as a set packing problem (SPP) [5]. Sandholm
et al. mentions that WDP for combinatorial auction is NP-complete [6]. Many algo-
rithms have been developed for WDP [7–10, 15].

In this paper, we propose a meta-heuristic method to solve theWDP based on Particle
swarm optimization (PSO) approach [11]. PSO is an optimization method developed
based on observations of the social behavior of animals such as bird flocking, fish
schooling and swarm theory. It has been applied successfully to nonlinear constrained
optimization problems [12]. In [13], Kennedy and Eberhart also proposed a reworking of
the algorithm to operate on discrete binary variables. In [13], trajectories of particles are
changes in the probability that a decision variable will take on a zero or one value. In this
paper, we apply the method proposed in [13] to develop a discrete Particle swarm
optimization (DPSO) algorithm for solving the WDP in combinatorial auctions. We also
compare our algorithm with Genetic Algorithm by examples to study its effectiveness.

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 201–208, 2017.
DOI: 10.1007/978-3-319-61824-1_22

The remainder of this paper is organized as follows. In Sect. 2, we first formulate
the WDP for combinatorial auctions. We briefly introduce the Particle swarm approach
and propose a DPSO algorithm in Sect. 3 and Sect. 4, respectively. We present our
numerical results in Sect. 5 and conclude this paper in Sect. 6.

2 Problem Formulation

We first formulate the combinatorial auction problem as an integer programming prob-
lem. We then develop a meta-heuristic algorithm for it. In a combinatorial auction, there
are a set of buyers, a seller and amediator for trading goods between the buyers and seller.
Buyers and the seller submit bids to themediator.We use i to represent the seller. LetN be
the number of potential buyers in a combinatorial auction. Each n 2 f1; 2; 3; . . .;Ng
represents a buyer. A buyer may place a number of bids. Let Hn be the number of bids
placed by buyer n 2 f1; 2; 3; . . .;Ng. Let K denote the number of different types of items
in the combinatorial auction. To represent the h� th bid placed by buyer n, let dnhk denote
the buyer- n’s desired units of the k � th items in the h� th bid and let pbnh denote the
price of the h� th bid submitted by buyer n, where k 2 f1; 2; 3; . . .;Kg and
h 2 f1; 2; 3; . . .;Hng. We use BBnh ¼ ðdnh1; dnh2; dnh3; . . .; dnhK ; pbnhÞ to represent the
h� th bid submitted by buyer n. Similarly, we use SBi ¼ ðqi1; qi2; qi3; . . .; qiK ; psiÞ to
represent the j� th bid submitted by seller i, where qik is a nonnegative integer that
denotes the quantity of the k � th items in the j� th bid submitted by seller i and psi is the
price of the j� th bid submitted by seller i. Let Ts be the transaction cost coefficient for a
seller and let Tb be the transaction cost coefficient for a buyer. The surplus of a combi-
natorial auction is the difference between winning buyers’ total bid price and the seller’
total bid price. A combinatorial auction problem aims to maximize the surplus. To
formulate the problem, the following notations are defined.

Notations:

K: the number of different types of items in the combinatorial double auction.
N: the number of potential buyers in a combinatorial auction. Each n 2

f1; 2; 3; . . .;Ng represents a buyer.
Hn: the number of bids placed by buyer n 2 f1; 2; 3; . . .;Ng:
dnhk: the buyer-n’s desired units of the k � th items in the h� th bid, where

k 2 f1; 2; 3; . . .;Kg:
h: the h� th bid created by a buyer in a combinatorial double auction.
ps: the price of the bid submitted by the seller.
qk: a nonnegative integer that denotes the quantity of the k � th items in the bid

submitted by the seller.
x: if the bid placed by the seller is a winning bid, x = 1, otherwise x = 0.
pbnh: the price of the h� th bid submitted by buyer n:
ynh: if the h� th bid placed by buyer n is a winning bid, ynh ¼ 1, otherwise ynh ¼ 0:
Ts: the transaction cost coefficient for a seller.
Tb: the transaction cost coefficient for a buyer.

The WDP is formulated as follows. There are several constraints for the WDP in
combinatorial auctions, including the supply/demand constraints in (1) and

202 F.-S. Hsieh

non-negative surplus constraints in (2). Note that (1) means that, for each type of item,
the total amount of goods supplied by the sellers’ winning bids must be greater than or
equal to the demands of the buyers’ winning bids.

Winner Determination Problem (WDP):

max
XN
n¼1

XH
h¼1

ynh pbnh þ Tbpbnhð Þð Þ
 !

�x ps � Tspsð Þð Þ
" #

s:t: xqk �
XN
n¼1

XH
h¼1

ynhdnhk 8k 2 f1; 2; . . .;Kg ð1Þ

XN
n¼1

XH
h¼1

ynhpbnh � xps ð2Þ

x 2 f0; 1g; ynh 2 f0; 1g 8n; h

3 Particle Swarm Approach

In this section, we present our discrete particle swarm algorithm for the WDP in
combinatorial auction. A brief introduction to the particle swarm optimization method
is given first.

With the standard particle swarm optimization, each particle of the swarm adjusts
its trajectory according to its own flying experience and the flying experiences of other
particles within its topological neighborhood in a D-dimensional space S. The velocity
and position of particle i are represented as vi ¼ ðvi1; vi2; vi3; . . .; viDÞ and
pi ¼ ðpi1; pi2; pi3; . . .; piDÞ, respectively. Its best historical position is recorded as
pbesti ¼ ðpi1; pi2; pi3; . . .; piDÞ, which is also called pbest. The best historical position
that the entire swarm has passed is denoted as gbest ¼ ðpg1; pg2; pg3; . . .; pgDÞ, which is
also called gbest. The velocity and position of particle i on dimension d, where
d 2 f1; 2; 3; . . .;Dg, in iteration tþ 1 are updated as follows:

vtþ 1
id ¼ xvtid þ c1r1ðpbesttid � ptidÞþ c2r2ðgbesttd � xtidÞ

ptþ 1
id ¼ ptid þ vtid

where x is a parameter called the inertia weight, c1 and c2 are positive constants
referred to as cognitive and social parameters, respectively, and r1 and r2 are random
numbers generated from a uniform distribution in the region of [0, 1].

In the WDP, decision variables xij and ynh can be represented by a binary vector z.

The dimension of z is D ¼ 1þ PN
n¼1

Hn. Each element in vector z is either 0 or 1, where

1 denotes that bid is accepted and 0 denotes that bid is not accepted.

A Discrete Particle Swarm Algorithm for Combinatorial Auctions 203

For our problem, the fitness function is Fðx; yÞ, which can be described as follows:

Fðx; yÞ ¼ max
XN
n¼1

XH
h¼1

ynh pbnh þ Tbpbnhð Þð Þ
 !

�x ps � Tspsð Þð Þ
" #

Note that that the problem formulated in Sect. 2 is an optimization problem with
binary decision variables and constraints. In this paper, we adopt a method based on
biasing feasible over infeasible solutions [14]. Let Sf ¼ fðx; yÞ ðx; yÞj is a solution in the
current population, ðx; yÞ satisfies constraints (1) * (2).} is the set of all feasible
solutions in the current population. Let Sfmin ¼ min

ðx;yÞ2Sf
Fðx; yÞ, the object function value

of the worst feasible solution in the current population. The fitness function F1ðx; yÞ is
defined as follows:

F1ðx; yÞ ¼ Fðx; yÞ if ðx; yÞ satisfies constraints ð1Þ� ð2Þ
U1ðx; yÞ otherwise

�
;

where

U1ðx; yÞ ¼ Sfmin þ
XK
k¼1

ððminðxqk
XJ
j¼1

�
XN
n¼1

XH
h¼1

ynhdnhkÞ; 0:0ÞÞ

þminð
XN
n¼1

XH
h¼1

ynhpbnh � xps; 0:0Þ

4 Discrete Particle Swarm Algorithm

In this paper, we apply DPSO algorithm to solve the integer programming problem
with binary decision variables. To describe the DPSO algorithm, we define the required
notations as follows.
M: the number of particles in the population.
St: the set of all particles at time t:
Ny:

the number of bids placed by all buyers, Nx ¼
PN
n¼1

Hn:

D: the dimension of each particle.
Zt
m: the position of particle m at time t, where m 2 f1; 2; . . .;Mg, and

Zt
m ¼ ðxtm; ytmÞ, where xtm is the position (one-dimensional vector) corre-

sponding to decision variables x and ytm(Ny-dimensional vector)is the
position (a vector) corresponding to decision variables y:

PZt
m: the personal best of particle m at time t, where m 2 f1; 2; . . .;Mg, and

PZt
m ¼ ðPxtm; PytmÞ, where Pxtm is the personal best position (one dimen-

sional vector) corresponding to decision variables x and Pytm is the personal
best position (Ny-dimensional vector) corresponding to decision variables y:

GZt: the global best at time t, and GZt ¼ ðGxt; GytÞ, where Gxt is the global best
position (one dimensional vector) corresponding to decision variables x and
Gyt is the global best position (a Ny-dimensional vector) corresponding to
decision variables y:

204 F.-S. Hsieh

c1: a non-negative real parameter less than 1.
c2: a non-negative real parameter less than 1.
r1, a random variable with uniform distribution Uð0; 1Þ:
r2, a random variable with uniform distribution Uð0; 1Þ:
Vmax: A maximum value of velocity.
sðvxtmnÞ: the probability of the bit xtmn:
sðvytmnÞ: the probability of the bit ytmn:

The DPSO algorithm proposed in this paper is as follows:
Discrete Particle Swarm Optimization (DPSO) Algorithm

A Discrete Particle Swarm Algorithm for Combinatorial Auctions 205

5 Numerical Results

We conduct several numerical experiments to illustrate the effectiveness of the pro-
posed meta-heuristic algorithm for combinatorial auctions.

Example: Suppose there are one seller and five buyers that will trade goods in a
combinatorial auction. There are three types of items (goods). The bids placed by the
seller and buyers are shown in Tables 1 and 2, respectively. For this combinatorial
double auction problem, we have

N ¼ 5; K¼ 3; Ts ¼ 0:5; Tb¼ 0:3; q1¼ 1; q2¼ 5; q3¼ 0; ps¼ 168; d111¼ 0; d112¼ 3;

d113 ¼ 0; pb11 ¼ 484; d211 ¼ 1; d212 ¼ 2; d213 ¼ 0; pb21 ¼ 472; d311 ¼ 1; d312 ¼ 5;

d313 ¼ 0; pb31 ¼ 574; d411 ¼ 0; d412 ¼ 5; d413 ¼ 0; pb41 ¼ 545; d511 ¼ 0; d512 ¼ 3;

d513 ¼ 0; pb51 ¼ 484:

The parameters for our PSO algorithm are: M = 10, w = 0.4, c1 = 0.4, c2 = 0.6,
Vmax = 4.

The solutions found by applying our DPSO algorithm for this example are as
follows.

x ¼ 1, y11 ¼ 1, y21 ¼ 1, y31 ¼ 0, y41 ¼ 0, y51 ¼ 0. It is an optimal solution.
In addition to the example above, we also compare the performance of our pro-

posed algorithm with other approach by conduct several experiments. In all these
experiments, the number of particles used in our DPSO algorithm is either 10 or 20 and
parameters w, c1 and c2 are arbitrarily chosen from [0.3 0.8]. The results are shown in
Table 3. It indicates PSO outperforms GA in efficiency and performance.

Table 1. The bid placed by the seller.

k = 1 k = 2 k = 3 Price

1 5 0 168

Table 2. The bids placed by five buyers.

Buyer k ¼ 1 k ¼ 2 k ¼ 3 Price

n = 1 0 3 0 484
n = 2 1 2 0 472
n = 3 1 5 0 574
n = 4 0 5 0 545
n = 5 4 3 0 484

206 F.-S. Hsieh

6 Conclusions

We formulate the WDP of combinatorial auctions as an integer programming problem.
The problem is to determine the winners to maximize the surplus of combinatorial
auctions. Due to computational complexity, it is hard to develop a computationally
efficient method to find an exact optimal solution for the WDP of combinatorial auc-
tions. To reduce computational complexity, we adopt a meta-heuristic approach and
develop a solution algorithm based on discrete Particle swarm optimization method.
We conduct experiments to study the performance and computational efficiency of our
proposed algorithm. To study the computational efficiency of our proposed algorithm,
we conduct the experiments to compare the computational time of our algorithm with
Genetic Algorithms. Although our algorithm does not guarantee generation of optimal
solutions, the numerical results indicate that our proposed algorithm is significantly
more effective in comparison with Genetic Algorithms.

Acknowledgments. This paper is supported in part by Ministry of Science and Technology,
Taiwan, under Grant MOST-105-2410-H-324-005.

References

1. de Vries, S., Vohra, R.V.: Combinatorial Auctions: a survey. Inf. J. Comput. 3, 284–309
(2003)

2. Pekeč, A., Rothkopf, M.H.: Combinatorial auction design. Manag. Sci. 49, 1485–1503
(2003)

3. Rothkopf, M., Pekeč, A., Harstad, R.: Computationally manageable combinational auctions.
Manag. Sci. 44, 1131–1147 (1998)

4. Xia, M., Stallaert, J., Whinston, A.B.: Solving the combinatorial double auction problem.
Eur. J. Oper. Res. 164, 239–251 (2005)

5. Vemuganti, R.R.: Applications of set covering, set packing and set partitioning models: a
survey. In: Du, D.-Z. (ed.) Handbook of Combinatorial Optimization, vol. 1, pp. 573–746.
Kluwer Academic Publishers, Dordrecht (1998)

6. Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. Artif.
Intell. 135, 1–54 (2002)

7. Hsieh, F.S.: Combinatorial reverse auction based on revelation of Lagrangian multipliers.
Decis. Support Syst. 48, 323–330 (2010)

Table 3. Results for several cases.

Case N I K GA CPU time
(GA)

PSO CPU time
(PSO)

1 5 1 3 1316.4 8547 ms 1316.4 563 ms
2 8 5 4 847.0 31687 ms 1256.2 1453 ms
3 10 1 5 2542.2 2593 ms 2542.2 1171 ms
4 12 1 6 1155.6 11797 ms 1637.9 1860 ms
5 14 1 7 1619.2 60641 ms 1914.0 1797 ms

A Discrete Particle Swarm Algorithm for Combinatorial Auctions 207

8. Jones, J.L., Koehler, G.J.: Combinatorial auctions using rule-based bids. Decis. Support
Syst. 34, 59–74 (2002)

9. Hsieh, F.S., Lin, J.B.: Assessing the benefits of group-buying based combinatorial reverse
auctions. Electron. Commer. Res. Appl. 11, 407–419 (2012)

10. Hsieh, F.S., Lin, J.B.: Virtual enterprises partner selection based on re-verse auction. Int.
J. Adv. Manuf. Technol. 62, 847–859 (2012)

11. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

12. El-Galland, A.I., El-Hawary, M.E., Sallam, A.A.: Swarming of intelligent particles for
solving the nonlinear constrained optimization problem. Eng. Intell. Syst. Electr. Eng.
Commun. 9, 155–163 (2001)

13. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In:
IEEE International Conference on Systems, Man, and Cybernetics: Computational
Cybernetics and Simulation, vol. 5, pp. 4104–4108 (1997)

14. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods
Appl. Mech. Eng. 186, 311–338 (2000)

15. Hsieh, F.S., Liao, C.S.: Schemes to reward winners in combinatorial double auctions based
on optimization of surplus. Electron. Commer. Res. Appl. 14(6), 405–417 (2015)

208 F.-S. Hsieh

Registration of GPS and Stereo Vision for Point
Cloud Localization in Intelligent Vehicles Using

Particle Swarm Optimization

Vijay John1(B), Yuquan Xu1, Seiichi Mita1, Qian Long2, and Zheng Liu3

1 Research Center of Smart Vehicles, Toyota Technological Institute,
Nagoya, Japan

{vijayjohn,yuquan.xu86,smita}@toyota-ti.ac.jp
2 Chinese Academy of Sciences, Beijing, China

longqian@ynao.ac.cn
3 University of British Columbia (Okanagan), Kelowna, BC V1V 1V7, Canada

zheng.liu@ieee.org

Abstract. In this paper, we propose an algorithm for the registration
of the GPS sensor and the stereo camera for vehicle localization within
3D dense point clouds. We adopt the particle swarm optimization algo-
rithm to perform the sensor registration and the vehicle localization. The
registration of the GPS sensor and the stereo camera is performed to
increase the robustness of the vehicle localization algorithm. In the stan-
dard GPS-based vehicle localization, the algorithm is affected by noisy
GPS signals in certain environmental conditions. We can address this
problem through the sensor fusion or registration of the GPS and stereo
camera. The sensors are registered by estimating the coordinate trans-
formation matrix. Given the registration of the two sensors, we perform
the point cloud-based vehicle localization. The vision-based localization
is formulated as an optimization problem, where the “optimal” trans-
formation matrix and corresponding virtual point cloud depth image is
estimated. The transformation matrix, which is optimized, corresponds
to the coordinate transformation between the stereo and point cloud
coordinate systems. We validate the proposed algorithm with acquired
datasets, and show that the algorithm robustly localizes the vehicle.

1 Introduction

Vehicle localization in the surrounding environment, such as dense 3D point
clouds, is an important research problem for ADAS applications. In the standard
localization algorithm, the GPS sensor is used. However, the GPS is error prone
in environments, where satellite reception is limited, resulting in localization
errors [2]. Researchers address this problem by performing sensor fusion with
additional sensors such as camera, LIDAR, and Inertial Navigation Systems
(INS) [13]. Since precise INS and LIDAR sensors are expensive, vision and GPS-
based vehicle localization is increasingly receiving attention from the research
community [13].
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 209–217, 2017.
DOI: 10.1007/978-3-319-61824-1 23

210 V. John et al.

In this work, we propose to perform the sensor fusion of the stereo cam-
era and GPS for depth-based vehicle localization within 3D dense point cloud
using the particle swarm optimization algorithm. In the proposed algorithm, we
first register the stereo and GPS coordinate systems in an offline phase. Given
the estimated stereo-GPS transformation matrix, we subsequently localize the
vehicle in the dense point cloud using depth information, in an online phase,
using the particle swarm optimization algorithm. In this phase, stereo vision-
based depth information is used within an optimization framework to perform
the localization within the dense 3-D point clouds. Given the registered GPS and
stereo camera, the localization is performed by estimating the optimal transfor-
mation matrix between the stereo and the point cloud coordinate system. The
optimal world-stereo transformation matrix along with the GPS-stereo trans-
formation matrix generates an optimal virtual depth map from the point cloud
data. The transformation matrices are optimised by measuring the similarity
between the corresponding virtual depth maps and the stereo depth maps. To
efficiently measure the similarity, we prune the depth map using v-disparity [7]
and restrict the similarity measurement to the unpruned regions. The proposed
algorithm is validated with an acquired dataset, where we show the robustness
of the proposed algorithm.

The rest of this paper is structured as follows. In Sect. 2, we present a lit-
erature review of the state-of-the-art. Details of the proposed algorithm are
described in Sect. 3. The experimental results are presented in Sect. 4. Finally,
we present our observations and directions for future work in Sect. 5.

2 Literature Review

The research problem of vehicle localization, typically, uses the GPS sensor.
However, the GPS-based navigation systems suffer from low accuracy and inter-
mittent missing signals under certain conditions [2]. The signal outages or local-
ization errors, typically, occur when the vehicles moves through tunnels and
roads surrounded by tall building. Additionally, the GPS errors are also intro-
duced when the satellites are not widely positioned [2]. Researchers addressed
this issue by incorporating inertial navigation systems (INS) [5] and visual odom-
etry (VO) [8]. However these methods, inspite of improving the localization, are
affected by drift errors.

To address the issue of divergence, researchers have proposed to use envi-
ronmental maps, in the form of satellite images and dense point clouds, for the
vehicle localization [10,11]. Typically, monocular cameras are used for the vehi-
cle localization. In the work by Noda et al. [11] the localization was performed
by matching the speeded-up robust features (SURF) observed from the on-board
camera with the ones from satellite images. Similarly in [10], detected image lanes
were matched with lanes in digital maps using GPS and INS information to per-
form localization. To enhance the accuracy of localization, Yoneda et al. [13]
utilized the LIDAR sensor to perform vehicle localization in dense 3D point
clouds, and achieved good localization accuracy. However, the main drawback

Registration of GPS and Stereo Vision for Point Cloud Localization 211

and limitation of the LIDAR sensor is its high cost. Thus, it is more feasible to use
cheaper sensors, like stereo camera, to perform the matching in dense 3D point
clouds. In spite of the recent advancements in vehicle localisation techniques, it
can be seen that the problem is still not solved. In this paper, we propose to use
stereo vision and GPS sensors to localize the vehicle in dense point clouds.

3 Depth-Based Vehicle Localization in Point Cloud Maps

We propose the sensor fusion of stereo and GPS sensor for vehicle localization
in point cloud maps using depth information. The point cloud maps are gener-
ated as a representation of the vehicle’s environment [1]. The 3D point clouds,
P, contain latitude, longitude and altitude information, where the latitude and
longitude are represented in the 2D Universal Transverse Mercator (UTM) sys-
tem. To perform localization, we estimate the transformation matrices between
the world, vehicle and stereo coordinates. The different coordinate systems are
defined as follows. Firstly, the world coordinate system is defined at the origin of
point cloud map’s UTM system. Secondly, the vehicle coordinate system corre-
sponds to the GPS location in the vehicle. Finally, the stereo coordinate system
is defined at the location of the left camera of the stereo pair. An illustration of
the different coordinate systems are provided in Fig. 1-a.

The localization is achieved by generating virtual depth maps Mv from the
point cloud P, and measuring their similarity with the stereo depth map Ms

within a particle swarm optimization (PSO). While, Ms is generated by the
MPV algorithm [9], Mv are generated using a set of transformation matrices.
This set of matrices correspond to the transformation between the world, vehicle
and stereo coordinate systems. Apart from these transformation matrices, the
stereo’s intrinsic calibration parameters are also needed for Mv generation. The
transformation between the vehicle and stereo coordinate (T s

v) is fixed and cor-
responds to the sensor fusion of the GPS and stereo camera. The transformation
between the word and vehicle (T v

w) varies as the vehicle moves. PSO localizes
the vehicle in two phases, an off-line and online phase. The intrinsic calibration
T i
s and fixed transformation T s

v are estimated in the offline phase. In the online

Fig. 1. (a) An illustration of the different coordinate system. (b) The intelligent vehicle
used for the localization in our experiment.

212 V. John et al.

phase, the varying T v
w are estimated within an PSO-based tracker. The online

tracker is initialized using the GPS-INS information. We propose a computa-
tionally effective PSO cost function, where the depth map is pruned using the
u-v disparity.

3.1 Algorithm Components

Multipath Viterbi Algorithm. The MPV algorithm is a stereo matching algo-
rithm based on the dynamic programming-based Viterbi algorithm. The struc-
tural similarity (SSIM) is used to measure the matching cost or pixel difference
between the stereo images on the epipolar lines. A total variation constraint
is incorporated within the Viterbi algorithm. To estimate the disparity maps,
which are considered as hidden states, the Viterbi process is performed in 4 bi-
directional paths. A hierarchical structure is used to merge the multiple Viterbi
search paths. Additionally, an automatic rectification process is also adopted to
increase the robustness of the algorithm. We refer the authors to Long et al. [9]
for details of the algorithm (Fig. 2).

Depth Map Pruning. Given the estimated depth map, we perform the pruning
to remove the dynamic objects in the image using the real-time curb detection
algorithm proposed by Long et al. [9]. To perform the pruning, we first estimate
the histogram of disparity in horizontal and vertical direction or the U-disparity
(Hy) and V-disparity (Hx). Given, the U and V-disparity maps, we first detect
the road surface using the V-disparity. Subsequently, we detect the curbs in
the depth map. After detecting the curbs and the road, the vertical foreground
objects, such as car or pedestrians, are pruned from the depth map. Examples
of the pruned depth map are shown in Fig. 3. The pruned depth map reduces
the computational complexity during the PSO evaluation.

Fig. 2. A detailed overview of the (a) offline and (b) online phase of our proposed
algorithm.

Registration of GPS and Stereo Vision for Point Cloud Localization 213

Fig. 3. An illustration of the depth pruning with (left) right stereo image, (middle)
depth image and (right) pruned depth map.

Particle Swarm Optimization. In this paper, we use the varying inertia-based
PSO proposed by Shi and Eberhart [12], which functions as global-to-local opti-
mizer. Given a N -dimensional search space, PSO is used to identify the optimal
solution using a swarm of M particles. Each particle in the PSO swarm is an
N -dimensional vector (xm = {xn

m}Nn=1) representing a position. Additionally,
each particle has an associated N -dimensional velocity vector, vm = {vn

m}Nn=1,
to facilitate the search. The best position of each particle and its fitness function
value is given by pm = {pnm}Nn=1 and λm. The best particle in the swarm and its
corresponding fitness function value is denoted by pg = {png }Nn=1 and correspond-
ing fitness function is stored as g respectively. The inertia weight parameter w
defines the exploration of the search space. The social and cognition components
of the swarm are defined by the parameters ρ1 = c1rand() and ρ2 = c2rand().
In this algorithm, we used 5 PSO particles with c1 and c2 set at 2. A was set
to 0.5 and C was set to 100 PSO iterations. A pre-defined search limits derived
from the maximum possible inter-frame velocity was used.

3.2 Algorithm: Sensor Fusion

In the offline or sensor fusion phase, we first calibrate the cameras using the
checkerboard. Subsequently, we estimate the fixed T s

v using the PSO. To perform
the estimation, we first acquire a dataset with our experimental vehicle known
as the vehicle-stereo dataset. The vehicle-stereo dataset contains a set of stereo
depth images Ms along with GPS-INS information. The GPS-INS information
is used to generate the T v

w, or world-vehicle transformation matrix. To eliminate
GPS errors, the vehicle-stereo dataset is acquired in an area without any tall
buildings. Given, the acquired T v

w and the T i
s (intrinsic), we estimate the T s

v by
generating and matching candidate virtual depth maps with the stereo depth
map using the PSO. The candidate depth maps are generated from the Aisan-
based point cloud data [1].

Cost Function. PSO generates the candidate matrix T s
v or PSO particle

x = xs
v

′. The candidate virtual depth map and the corresponding depth map
are evaluated by the PSO-based cost function at the unpruned depth indices,
given as,

f(x′) = dist(Ms,Mv(x′)) (1)

214 V. John et al.

where x′ is the PSO particle which represents the vector representation of the
candidate transformation matrix. x′ = [ex, ey, ez, θ, tx, ty, tz], where ex, ey, ez, θ
represents the axis-angle representation of the rotation matrix and tx, ty, tz rep-
resents the translation parameters.

3.3 Algorithm: Online Phase

Given the estimated T s
v and T i

s , we localize the vehicle by estimating T v
w at

each time instant t using a PSO-based tracker. Similar to the offline phase, the
unknown transformation matrix is optimized by generating and matching virtual
point cloud depth images with the stereo depth image. The PSO-based tracker
has two phases, an automatic initialization phase and estimation phase.

Automatic Initialization. The online PSO tracker is initialized at time instant
t = 1 using the parameters of the T v

w matrix or xv
w(t) obtained from the GPS-

INS. Please note that, following initialization, the PSO tracker estimates the
xv
w(t) for the remaining frames t > 1 without the GPS information.

PSO Estimation. Candidate parameters generated by the PSO algorithm,
along with the previously estimated fixed transformation matrices, are used
to generate the candidate virtual point cloud depth image. By measuring the
similarity between the candidate and stereo depth images, the optimal xv

w(t)
transformation parameters are estimated and the vehicle is localized. The ini-
tialized PSO tracker estimates the optimal candidate for a given frame t, using
the cost function Eq. 1, where x = xv

w(t).

Propagation. Once the transformation matrix is estimated for a given frame
t, the PSO swarm at every subsequent frame t + 1 is initialized by sampling
from a zero-mean Gaussian distribution centered around the previous frame’s
estimate ˆxv

w(t). The zero mean Gaussian distribution is represented by a diago-
nal covariance matrix with covariance value 0.01. By iteratively estimating the
optimal transformation matrix and propagating the optimal candidate, the PSO
tracker performs online tracking. Examples of the localization results are shown
in Fig. 4.

4 Experimental Results

A comparative analysis with baseline algorithms is performed for the offline
and the online phase. The Euclidean distance-based error measure between the
estimated parameters and the ground truth parameters are reported. The ground
truth parameter for xs

v in the offline phase is calculated directly from the distance
and orientation between the GPS and stereo camera on the experimental vehicle.
The ground truth parameter for the online phase corresponds to the parameters
obtained from the GPS. We implement the algorithm using Matlab and Windows
(3.5 GHz Intel i7).

Dataset and Algorithm Parameters. The experimental vehicle was used
to acquire multiple datasets with multiple sequences for the online phase.

Registration of GPS and Stereo Vision for Point Cloud Localization 215

Fig. 4. Localization results. The left column is the left stereo image, the middle column
is the disparity. The right column is the optimal virtual depth map.

The online phase was evaluated with three datasets. The first dataset contains
4 sequences with total of 300 frames. The second dataset contains 5 sequences
with total of 1200 frames, while the third dataset contains 3 sequences with a
total of 1200 frames. The dataset for the offline phase contains 15 stereo depth
maps and corresponding T v

w parameters derived from the GPS sensor.

4.1 Offline Phase

We validate the offline phase by performing a comparative analysis with baseline
optimization algorithms, the genetic algorithm (GA) and the simulated anneal-
ing algorithm (SA) [6]. The number of generations and populations in GA along
with the number of iterations in SA was kept similar to the total number of PSO
evaluations. Similarly, the search limits were uniform across the algorithms. The
results as shown in Table 1, show that the PSO algorithm is better than the
baseline algorithm.

Table 1. Error mean and variance over 3
trials on the offline dataset.

Algorithms PSO GA SA

Error 0.62 ± 0.08 1.52±0.6 1.32 ± 0.5

Time taken (min) 35 37.25 69.75

Table 2. Error mean and variance for
the localization experiment

Dataset PSO PF APF

1 0.63± 0.17 0.89± 0.27 1.57± 0.7

2 0.69± 0.10 1.3± 0.53 2.04± 1.0

3 0.89± 0.06 1.1± 0.3 2.3± 1.6

216 V. John et al.

4.2 Online Phase

In this section, we validate the PSO tracker by performing a comparative analysis
with the widely used particle filter [3] and the APF [4]. The number of particles
and iterations of both the particle filter (PF) and APF were kept the same as the
PSO. The PF contains 250 particles, while the APF contains 125 particles and
2 layers. In the experiment, the GPS was used only for the initialization, and
subsequent localization is only stereo-based. The results tabulated in Table 2,
show that the performance of the PSO is better than the baseline algorithms.
The low accuracy of the PF can be attributed to the divergence error.

5 Conclusion and Future Works

In this paper, we proposed a sensor fusion and vehicle localization algorithm
using particle swarm optimization. To perform the localization, we matched
the stereo depth map with virtual point cloud depth maps within a particle
swarm optimization framework. Virtual depth maps are generated using a series
of transformation matrices. The fixed transformation matrix between the GPS
and calibrated stereo camera is estimated in an offline phase. Subsequently, the
vehicle is localized in the online phase using a particle swarm optimization based
tracking algorithm. We increase the computational efficiency by pruning the
depth map for the evaluation. We performed a comparative evaluation with
state-of-the-art techniques. Based on our results, we demonstrated the improved
performance of the proposed algorithm. In the future work, we will implement
the tracker phase on the GPU to achieve real-time performance.

References

1. Aisan Technology Co. Ltd. (2013). http://www.whatmms.com/
2. Colombo, O.: Ephemeris errors of GPS satellites. Bull. Godsique 60(1), 64–84

(1986)
3. Dailey, M., Parnichkun, M.: Simultaneous localization and mapping with stereo

vision. In: International Conference on Control, Automation, Robotics and Vision
(2006)

4. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed
particle filtering. In: CVPR (2000)

5. Farrell, J., Barth, M.: The Global Positioning System and Inertial Navigation.
McGraw-Hill, New York (1999)

6. Franconi, L., Jennison, C.: Comparison of a genetic algorithm and simulated
annealing in an application to statistical image reconstruction. Stat. Comput. 7(3),
193–207 (1997)

7. Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereovision
on non flat road geometry through “v-disparity” representation. In: Intelligent
Vehicle Symposium (2002)

8. Kneip, L., Chli, M., Siegwart, R.: Robust real-time visual odometry with a single
camera and an IMU. In: British Machine Vision Conference (2011)

http://www.whatmms.com/

Registration of GPS and Stereo Vision for Point Cloud Localization 217

9. Long, Q., Xie, Q., Mita, S., Tehrani, H., Ishimaru, K., Guo, C.: Real-time dense
disparity estimation based on multi-path viterbi for intelligent vehicle applications.
In: British Machine Vision Conference (2014)

10. Mattern, N., Schubert, R., Wanielik, G.: High accurate vehicle localization using
digital maps and coherency images. In: IVS (2010)

11. Noda, M., Takahashi, T., Deguchi, D., Ide, I., Murase, H., Kojima, Y., Naito, T.:
Vehicle ego-localization by matching in-vehicle camera images to an aerial image.
In: Koch, R., Huang, F. (eds.) ACCV 2010. LNCS, vol. 6469, pp. 163–173. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22819-3 17

12. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: International Con-
ference on Evolutionary Computation, pp. 69–73 (1998)

13. Yoneda, K., Tehrani, H., Ogawa, T., Hukuyama, N., Mita, S.: Lidar scan feature
for localization with highly precise 3-D map. In: Intelligent Vehicles Symposium
(2014)

http://dx.doi.org/10.1007/978-3-642-22819-3_17

Immersed Tunnel Element Translation Control
Under Current Flow Based on Particle Swarm

Optimization

Li Jun-jun1, Xu Bo-wei2(&), and Fan Qin-Qin2

1 Merchant Marine College, Shanghai Maritime University, Shanghai 201306,
People’s Republic of China

2 Logistics Research Center, Shanghai Maritime University, Shanghai 201306,
People’s Republic of China
xubowei138@126.com

Abstract. Translation is normally the main working mode of tunnel element
transportation, which is one of key techniques in immersed tunnel. An approach
which can decide the magnitudes and directions of towing forces is presented in
no-power immersed tunnel element’s translation control under current flow.
A particle swarm-based control method, which exploits a sort of linear weighted
logarithmic function to avoid weak subgoals, is utilized. In simulation, the
performance of the particle swarm-based control method is evaluated in the case
of Hong Kong-Zhuhai-Macao Bridge project.

Keywords: No-power immersed tunnel element � Translation control �
Resultant force � Resultant moment � Particle swarm optimization

1 Introduction

The importance of immersed tunnel in the construction of roads and railways crossing a
body of shallow water has been well documented during the past several decades [1].
An immersed tunnel is a kind of underwater tunnel composed of prefabricated else-
where elements in a manageable length. Conventional towage, in which several tugs
assist the tunnel element transporting from the flooded casting basin or dock to the
tunnel trench, is normally used. Straight movement (moving forward or backward) and
transverse movement (moving left or right), which are collectively called “translation”
in this work, are normally the main working modes of immersed tunnel element
floating. Therefore, it’s necessary to study the modeling and optimization for immersed
tunnel element translation.

In this study, the authors investigate the applications of particle swarm-based
control into immersed tunnel element translation optimization under current flow.
Firstly, immersed tunnel element translation is mathematically described. Secondly,
immersed tunnel element translation control model is built. Thirdly, particle
swarm-based control method with a kind of linear weighted logarithmic objective
function is presented. Lastly, the case of Hong Kong-Zhuhai-Macao Bridge project is
demonstrated to test the proposed approach.

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 218–224, 2017.
DOI: 10.1007/978-3-319-61824-1_24

2 Translation Control of Tunnel Element

2.1 Translation Velocity

For the convenience of analysis, the tunnel element with pontoons is illustrated in
Fig. 1. The element center is the origin of coordinate, the element’s axis is x-axis, and
y-axis is perpendicular to the element’s axis.

The current velocity is set as V0. The element velocity relative to ground is set as V1,
while the element velocity relative to current flow is set as V. The angle between V0 and
the positive direction of x-axis is h0; the angle between V1 and the positive direction of x-
axis is h1(in actual towing process, h1 2 f0; p=2; p; 3p=2g); the angle between V and the
positive direction of x-axis is h. The relation among V0, V1, and V is shown in Fig. 1.
Components of V in the positive directions of x and y axis are Vx and Vy respectively,
then Vx ¼ V1 cos h1 þð�V0Þ cos h0 ¼ V1 cos h1 � V0 cos h0, Vy ¼ V1 sin h1 þð�V0Þ
sin h0 ¼ V1 sin h1 � V0 sin h0.

2.2 Resistance of Immersed Tunnel Element Translation

According to “Guidelines for Marine Towage (2011)” [2], the marine towage resistance
RT of the tunnel element can be calculated by: RT ¼ 1:15ðRf þRBÞ. Rf and RB are

friction resistance and residual resistance of tunnel element respectively. Rf ¼
1:67Ae;1jV j1:83 � 10�3 [2], RB ¼ 0:62CbAe;2V2 [3]. The towage resistance of one
floating pontoon is: RTP = 1.15(Rfp + RBp). Then, the total towage resistance is:

R0
T ¼ RT þ 2RTp ¼ 1:15½1:67ðAe;1 þ 2Ap;1ÞjV j1:83 � 10�3 þ 0:62CbðAe;2 þ 2Ap;2ÞV2�

ð1Þ

Where, Rfp and RBp are friction resistance and residual resistance of the floating
pontoon respectively; Ae,1 and Ap,1 are the wetted surface area under water line of
tunnel element and floating pontoon respectively; Cb is block coefficient; Ae,2 and Ap,2

0θ1θθ
x

y

O

Fig. 1. Immersed tunnel element and two floating pontoons

Immersed Tunnel Element Translation Control Under Current Flow 219

are the submerged part of transverse section area in tunnel element and floating pon-
toon respectively. Units of RT, Rf, RB, RTp, Rfp, RBp and R’T are all “kN”.

If the tunnel element is parallel to current flow, Ae,1 = L(B + 2d), Ae,2 = B·d, and
Ap,2 = Bp·dp, Ap,1 = Lp(Bp + 4dp). If the tunnel element is perpendicular to current
flow, Ae,1 = B(L + 2d), Ap,1 = Bp (Lp +2d p), Ae,2 = L·d, and Ap,2 = Lp·dp. Where L,
B and d are the length, width and draft of the tunnel element respectively; Lp, Bp, Bp’
and dp are the length, width under water, width above water and draft of the floating
pontoon respectively.

The element’s movement is parallel or perpendicular to current flow. Resistances
R’Tx and R’Ty in the directions of x and y axis are calculated according to Vx and Vy

respectively. R’Tx and R’Ty are all non-negative real numbers, then jfxj ¼ R0
Tx, and

jfyj ¼ R0
Ty. Here the symbols fx and fy are magnitudes of fx and fy, which are components

of f in the positive directions of x and y axis respectively.

2.3 Towing Force

The number of tugs working collaboratively is N. It is set that towing point of the ith tug
(Gi) at the tunnel element is Ai (i = 1, 2, …, N). The coordinate of Ai is (xi, yi). The
towing force of tug Gi is Fi. The angle of x-axis’s positive direction counter clockwise
to Fi is set as ai, which is called angle of towing force Fi. The scopes of towing forces’
magnitudes and angles are: Fi 2 ½0;Fmax

i � and ai 2 ½amin
i ; amax

i �. Where, i = 1, 2, …, N,
Fmax
i is the maximum towing force of the tug Gi. To make the tunnel element moving

stably, it should be F = −f, T = 0.

3 Translation Control Model

Fx and Vx are in the same direction, while Fy and Vy are in the same direction.
Then Fx ¼ jfxj � sgnðVxÞ ¼ R0

Tx � sgnðVxÞ, Fy ¼ jfyj � sgnðVyÞ ¼ R0
Ty � sgnðVyÞ. Where,

“sgn” is sign function. Therefore,
PN

i¼1
Fi cos ai ¼ Fx ¼ R0

Tx � sgnðVxÞ,
PN

i¼1
Fi sin ai ¼

Fy ¼ R0
Ty � sgnðVyÞ.

All tug moments’ magnitudes in four quadrants are unifiedly represented in:
Ti ¼ sgnðyiÞ � Fi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

p
cosðai þ biÞ, while the resultant moment’magnitude ofN tugs

is shown in: T ¼ PN

i¼1
sgnðyiÞ � Fi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

p
cosðai þ biÞ. Where, bi ¼ arctanðxi=yiÞ. For

the convenience of analysis, a variable L0i is set as: L
0
i ¼ sgnðyiÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

p
cosðai þ biÞ.

According to Sect. 2.3, the resultant moment’ magnitude will meet T ¼ PN

i¼1
FiL0i ¼ 0.

Equations (4) and (5) are set as objective functions of the immersed tunnel element
translation control.

220 L. Jun-jun et al.

max g1 ¼ V1 ð2Þ

max g2 ¼
YN

i¼1

ðFmax
i � FiÞ ð3Þ

Fsc
i is set as the minimum surplus towing force for the ith tug. Then,

Fi 2 ½0;Fmax
i � Fsc

i �. Constraints (in Sects. 2.3 and 3) of resultant force, resultant
moment, towing forces’ magnitudes and angles are restrictions of the immersed tunnel
element translation control.

4 Particle Swarm-Based Translation Control Optimization
of Tunnel Element

In order to treat the two subgoals equally, normalization is done firstly:
h1 ¼ ðg1 � gmin

1 Þ=ðgmax
1 � gmin

1 Þ, h2 ¼ ðg2 � gmin
2 Þ=ðgmax

2 � gmin
2 Þ. For the purpose of

avoiding weak subgoals in the optimization results, natural logarithms of h1 and h2 are
used to replace h1 and h2. A sort of linear weighted logarithmic function is exploited here:

max h ¼ k1 ln h1 þ k2 ln h2 ð4Þ

Where k1 and k2 are weighting coefficients, k1 + k2 = 1, 0 < k1, k2 < 1. Through
this linear weighted logarithmic function, the phenomena that one subgoal is too strong
while the other subgoal is too weak can be avoided.

In translation control problem of immersed tunnel element, there are 2 * N decision
variables: F1 �FN , a1 � aN . It’s easy to calculate resistance by velocity, while it is
difficult to calculate velocity by resistance. So decision variables of particle
swarm-based control method in this work are set as “V1;F1; � � � ;FN�3; a1; � � � ; aN”, not
“F1; � � � ;FN ; a1; � � � ; aN”. FN�2;FN�1 and FN are calculated according to Eq. (8).

Where f 0y ¼ R0
Ty � sgnðVyÞ �

PN�3

i¼1
Fi sin ai, f 0x ¼ R0

Tx � sgnðVxÞ �
PN�3

i¼1
Fi cos ai, and

T 0 ¼ � PN�3

i¼1
Ti.

FN�2 sin aN�2 þFN�1 sin aN�1 þFN sin aN ¼ f 0y ð5Þ

FN�2 cos aN�2 þFN�1 cos aN�1 þFN cos aN ¼ f 0x ð6Þ

FN�2L
0
N�2 þFN�1L

0
N�1 þFNL

0
N ¼ T 0 ð7Þ

According to Kramer rule, FN�2;FN�1 and FN can be obtained by Eq. (8). Where

D ¼
sin aN�2 sin aN�1 sin aN
cos aN�2 cos aN�1 cos aN
L0N�2 L0N�1 L0N

������

������
, D1 ¼

f 0y sin aN�1 sin aN
f 0x cos aN�1 cos aN
T 0 L0N�1 L0N

������

������
,

Immersed Tunnel Element Translation Control Under Current Flow 221

D2 ¼
sin aN�2 f 0y sin aN
cos aN�2 f 0x cos aN
L0N�2 T 0 L0N

������

������
, and D3 ¼

sin aN�2 sin aN�1 f 0y
cos aN�2 cos aN�1 f 0x
L0N�2 L0N�1 T 0

������

������
.

ðFN�2;FN�1;FNÞ ¼ ðD1

D
;
D2

D
;
D3

D
Þ ð8Þ

gmin
2 ¼ 0, gmax

2 ¼ QN

i¼1
Fmax
i , and gmin

1 ¼ 0. But gmax
1 is unable to be obtained directly.

Here, PSO is used to seek gmax
1 . And then, Eq. (7) is used as fitness function to optimize

tunnel element translation problem.

5 Simulation

The performance of the proposed model and algorithm is validated through translation
control simulation of immersed tunnel element in Hong Kong-Zhuhai-Macao Bridge
project, and compared with traditional empirical method. The length, width and draft of
the immersed tunnel element are: L = 180 m, B = 37.95 m and d = 11.1 m respec-
tively. The length and draft of the floating pontoon are: Lp = 40.2 m and dp = 6.2 m
respectively. The width of one side float is 7.2 m, so the width (under water) of one
pontoon, Bp, is 14.4 m. The width above water of the floating pontoon is Bp’ = 56.4 m.
Block coefficient Cb = 1, current velocity V0 = 2.

Take Rongshutou sea-route as an example. The direction of immersed tunnel
element moves is 12°, h1 = 0°. The flow directions of tide rise and retreat are 355o and
175o respectively. Therefore, h0 ¼ 17o in tide rise while h0 ¼ 197o in tide retreat.

The number of tugs N is 6. Their performance is shown in Tab. 1. The sketch map of
towing forces’ directions and the coordinates of towing points A1–A6 are shown in Fig. 2.
The ranges of a1–a4 are [−75°,165°], [−165°,75°], [35°,255°], [105°,325°], [15°, 345°],
[15°, 345°] respectively. Besides, Fsc

i ¼ 10t(i ¼ 1; 2; � � � ;N).

The number of particles M is 20, iterations Nt is 500. In order to ensure the con-
vergent trajectories of particles [4], x = 0.7298 and c1 = c2 = 1.49618 [5].

According to Sect. 4, gmax
1 in tide rise and tide retreat are 6.650 knots and 2.721

knots respectively, which are calculated first by particle swarm-based control method.
The sketch maps of tunnel element towing are drawn taking two situations for example.
In Fig. 3, V1 = 5.474 knots in tide rise. While in Fig. 4, V1 = 1.453 knots in tide
retreat. To compare the empirical method with particle swarm-based control method,

Table 1. Performance of tugs

Tug Power (Hp) Main engine speed (r/min) Fmax
i (ton) Remark

G1, G2 6800 750 56 Azimuth drive
G3, G4 5200 750 50 Azimuth drive
G5, G6 4000 750 43 Azimuth drive

222 L. Jun-jun et al.

the schemes acquired by these two methods are adjacent to each other. In Figs. 3 and 4,
" denotes north while * shows towing point of each towing force. The length of
directed line is proportional to the magnitude of each towing force.

F1

F6 F5

F3

F4
F2

1α
3α

4α
2α

5α6α y

x

1A

2A

3A

4A

5A6A

O

(L/2,B/2)

(L/2,-B/2)

(-L/2,-B/2)

(L/2,-B/2)

(L/4,Bp'/2)(-L/4,Bp'/2)

Fig. 2. Sketch map of towing forces’ directions and towing points’ coordinates.

F1 F2

F3 F4

F5

F6

V1=5.474knot

V0=2knot

N F1 F2

F3 F4

F5

F6

V1=5.474knot

V0=2knot

N

(a) Empirical method (b) Particle swarm-based control method

Fig. 3. Sketch map of tunnel element towing in tide rise.

F1
F2

F3
F4

F5

F6

V0=2knot

V1=1.453knot

N
F1

F2

F3
F4

F5

F6

V0=2knot

V1=1.453knot

N

(a) Empirical method (b) Particle swarm-based control method

Fig. 4. Sketch map of tunnel element towing in tide retreat.

Immersed Tunnel Element Translation Control Under Current Flow 223

In Figs. 3 and 4, the towing forces of tugs G1–G4 are greater in empirical method,
which makes their surplus towing forces less than those of particle swarm-based
control method. The minimum and mean surplus towing force of Empirical method
(EM) and Particle swarm-based control method (PSM) are shown in Table 2. It can be
seen that the surplus towing forces in PSM is obviously higher than that of EM.

6 Conclusion

This work mainly discusses the translation control and optimization of immersed tunnel
element under current flow. It proposes a particle swarm-based control method which is
validated through translation control simulation of immersed tunnel element in Hong
Kong-Zhuhai-Macao Bridge project. The simulation results indicate that particle
swarm-based control method is better than empirical method.

Acknowledgment. This work is supported by the Ministry of education of Humanities and
Social Science project(Nos. 15YJC630145, 15YJC630059), Natural Science Foundation sup-
ported by Shanghai Science and Technology Committee (No. 15ZR1420200), National Natural
Science Foundation of China (No. 61603244). Here we would like to express our gratitude to
them.

References

1. Li, W., Fang, Y.G., Mo, H.H., Gu, R.G., Chen, J.S., Wang, Y.Z., Feng, D.L.: Model test of
immersed tube tunnel foundation treated by sand-flow method. Tunn. Undergr. Space
Technol. 40, 102–108 (2014)

2. China Classification Society: China Classification Society. Sea towage Guide (2011). [EB/OL].
(in Chinese). http://www.ccs.org.cn/ccsewwms2007/displayNews.do?id=ff80808137de736
a0137e39c4039000b. Accessed 13 June 2012

3. Shen, P.G.: Estimation of towing resistance. Marine Technol. 5, 9–12 (2011). (in Chinese)
4. Van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle

trajectories. Inf. Sci. 176, 937–971 (2006)
5. Shi, Y.H., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE

International Conference on Evolutionary Computation, Anchorage, pp. 69–73 (1998)

Table 2. Surplus towing force comparison

V1 (knot) Minimum (ton) Mean(ton)
EM PSM Percentage increased EM PSM Percentage increased

5.474 10.757 18.995 76.58% 18.732 22.161 18.31%
1.453 15.286 21.569 41.10% 21.751 24.745 13.76%

224 L. Jun-jun et al.

http://www.ccs.org.cn/ccsewwms2007/displayNews.do?id=ff80808137de736a0137e39c4039000b
http://www.ccs.org.cn/ccsewwms2007/displayNews.do?id=ff80808137de736a0137e39c4039000b

Solving Inverse Kinematics with Vector
Evaluated Particle Swarm Optimization

Zühnja Riekert and Mardé Helbig(B)

University of Pretoria, Pretoria, South Africa
u12040593@tuks.co.za, mhelbig@cs.up.ac.za

Abstract. Inverse kinematics (IK) is an optimization problem solving
the path or trajectory a multi-jointed body should take for an extremity
to reach a specified target location. When also considering the flow of
movement, IK becomes a multi-objective optimization problem (MOP).
This study proposes the use of the vector evaluated particle swarm opti-
mization (VEPSO) algorithm to solve IK. A 3D character arm, with
7 degrees of freedom, is used during experimentation. VEPSO’s results
are compared to single-objective optimizers, as well as an optimizer that
uses weighted aggregation to solve MOPs. Results show that the weighted
aggregation approach can outperform IK-VEPSO if the correct weight
combination (that is problem dependent) has been selected. However,
IK-VEPSO produces a set of possible solutions.

1 Introduction

Mimicking human movement is the main focus in multiple fields, including film
animation [14], game graphics [33] and humanoid robotics [30]. In robotics,
Rokbani et al. [23,24] suggest that robots are built more human-like to enable
them to assist humans in their environment. For example, legs can help them to
climb stairs and arms can enable them to reach for and pick up objects.

While these actions come naturally to humans, it can be challenging to mimic
in robotics and animation fields. Figure 1 shows an example of a typical inverse
kinematics (IK) problem, where a 3D character’s hand has to be animated mov-
ing towards the position of the red block. To achieve this, one first has to deter-
mine how each joint (shoulder, elbow, wrist) should be rotated for the end-
effector (hand) to reach its goal. This can be done through various techniques,
including trial and error, the use of an IK algorithm or motion capture. The
character can then be animated using a process called inbetweening [28].

From the example shown in Fig. 1, trial and error entails the animator to shift
each bone manually until the hand reaches its target. In this way a character’s
pose can be fine tuned to what the animator needs. However, as stated in [2,29],
it is a tedious, time-consuming process.

Motion capture involves recording an actor’s movements to create easy nat-
ural looking animations [7]. The drawback is that it requires additional resources,
such as cameras, actors and motion capturing software. Therefore, using an algo-
rithm to calculate the required rotation set saves human effort and cost.
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 225–237, 2017.
DOI: 10.1007/978-3-319-61824-1 25

226 Z. Riekert and M. Helbig

Fig. 1. 3D character model’s initial and end poses for animation. The 3D model used,
was downloaded with consent from [22]. (Color figure online)

Jacobian matrix-based methods [34] involve vector calculus computations
that generally produce good IK solutions [4]. However, flaws of these approaches
include possible singularities [3], possible continuous oscillations [4], heavy com-
putation [11] and with high degrees of freedom (DOF) the Jacobian can become
very complex to compute [4].

Learning algorithms used to solve IK, such as Neural Networks and Neuro-
fuzzy algorithms [1,27], are computationally expensive and require suitable train-
ing sets to output adequate rotation sets [26]. Therefore, the focus of IK research,
for the most part, shifted to Heuristic IK solvers. Heuristic algorithms that have
been used as IK solvers include particle swarm optimization (PSO) [11], ant
colony optimization [17], genetic algorithm (GAs) [35], artificial bee colony [5]
and the firefly algorithm [26]. GA and PSO are both relatively easy to implement
[19]. However, according to Parsopoulos PSO outperforms GA on IK [19].

Movements performed by characters in animation should not only allow for
task completion, but should also look natural. People can quickly pick up on
abnormalities in motion [29]. However, even making something appear too real-
istic can have a negative impact (the uncanny valley effect [18]). As shown in
Fig. 2 multiple rotation sets could lead the end-effector to its goal, but not all
of them look natural. According to [32], humans tend to minimize movement
when they reach for objects. Thus, two objectives should be solved, namely min-
imizing the distance between the end-effector and the goal, and minimizing the
total amount of movement. These two objectives lead to IK being defined as a
multi-objective optimization problem (MOP). Yang et al. [35] used a PSO with a
weighted aggregation fitness function to solve two IK objectives simultaneously.
This approach, however, requires the search space and problem specific weights
to be determined beforehand [19]. It also results in only one solution [19].

This study proposes the use of the vector evaluated genetic algorithm
(VEPSO) algorithm to produce a set of IK solutions. The algorithm, IK-VEPSO,
is compared against inertia weight particle swarm optimization (IWPSO) algo-
rithms, as well as IWPSOs with a conuentional weighted aggregation (CWA)
fitness function.

Solving Inverse Kinematics with Vector Evaluated PSO 227

Fig. 2. Multiple rotation sets could lead the hand to the goal location. The 3D model
used, was downloaded with consent from [22].

2 Background

This section provides background information regarding IK, multi-objective opti-
mization (MOO) and the algorithms that were used in this study.

2.1 Inverse Kinematics

An end-effector refers to the extremity used to interact with the environment. On
a leg, it is the foot, on a finger, the finger tip and on some mechanical structure
it is its last body on a chain of connected, jointed bodies.

In animation, the bones of a rigged character follow a hierarchical chain.
Moving a parent bone will move children bones as well. However, moving a child
bone will not affect its parent’s position. An example is shown in Fig. 3 where
rotating an upper arm will move the entire rigged arm, but rotating a forearm
will not change the bicep bone’s position.

Fig. 3. Manually shifting the bones of a rigged character.

228 Z. Riekert and M. Helbig

Forward kinematics (FK), as explained by Rokbani et al. [26], entails that the
joint parameters of all the end-effector’s hierarchical chained bodies are known
to calculate the new position of the end-effector. Therefore, a FK solution will
always exist [35]. In contrast to FK, with IK the desired end-effector’s position is
known, but the joint angles required to move the end-effector to its goal have to
be determined [26]. A solution may not always exist: the target could be placed
too far away to reach [4] or a linked multi-body structure simply cannot “bend”
in the required way to reach the target position.

2.2 Multi-objective Optimization

MOO attempts to solve multiple objective functions simultaneously, where at
least two objectives are in conflict with one another. Therefore, improving a
solution towards one objective, weakens the solution with regards to another
objective [8]. Since these objectives are in conflict with one another [8,15,20], a
single solution does not exist. Therefore, the goal of a MOO algorithm is to find
the set of optimal trade-off solutions. In the objective space this set is referred
to as the Pareto front [20].

2.3 Particle Swarm Optimization Algorithms

PSO was first introduced by Kennedy and Eberhart in 1995 [13]. The idea was
inspired from the behaviour of flocking birds and was initially influenced by
Heppner and Grenander’s work [10,21].

Standard Gbest Particle Swarm Optimization: In the standard gbest PSO
multiple particles are initialized over a search space. The particles move around
until some stopping condition is satisfied. Each particle’s position represents a
possible solution. A solution is ranked according to a fitness function. The swarm
keeps track of its overall global best fitness, while each particle keeps track of its
own personal best fitness achieved. A particle moves through the search space
by constantly updating its velocity and position using (1) and (2), respectively.

vij(t + 1) = vij(t) + c1r1j(t)[yij(t) − xij(t)] + c2r2j(t)[ŷj(t) − xij(t)] (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

Symbols used in (2) denote the following: t is the time step, i is the particle,
xi(t+1) is the updated position vector of particle i, xi(t) is the current position
vector of particle i and vi(t + 1) is the updated velocity vector of particle i.
Symbols not present in (2), but in (1) denote the following: j is the dimension
of the vector, c1 is the cognitive component (positive), c2 is social component
(positive), r1j and r2j are uniform random numbers, yij(t) is particle i’s personal
best position so far and ŷj(t) is global best position of the swarm so far.

The movement of a particle takes its own knowledge, as well as the knowledge
from its swarm, into account. Possible stopping conditions include stopping when
a maximum number of iterations is reached, it is detected that particles stopped
moving or the fitness of some particle is smaller than some predefined error (ε).

Solving Inverse Kinematics with Vector Evaluated PSO 229

Inertia Weight Particle Swarm Optimization: IWPSO is a variant of PSO
where an inertia weight is added to the velocity function:

vij(t + 1) = wvij(t) + c1r1j(t)[yij(t) − xij(t)] + c2r2j(t)[ŷj(t) − xij(t)] (3)

where w denotes inertia weight and controls how much the newly calculated
velocity is influenced by the current velocity.

Conuentional Weighted Aggregation: Multiple objectives can be combined
into a single scalar fitness function using weighted aggregation. CWA implements
weighted aggregation, where the weights are non-negative fixed values [12]:

F =
k∑

i=1

wifi(x)i (4)

where wi refers to the weight of objective function fi(x). The weights usually
sum up to 1 [19]. With this approach, a single run returns a single solution. To
obtain multiple different solutions, it has to be run multiple times [12].

Vector Evaluated Particle Swarm Optimization: VEPSO is a PSO-
based multi-swarm MOO algorithm proposed by Parsoulos and Vrahatis [19]. In
VEPSO each objective is solved by a PSO [15]. Particle velocities are updated
based on shared information between the PSOs (sub-swarms). After each itera-
tion the archive, that holds non-dominated solutions, is updated. If a new non-
dominated solution is added to the archive, and this new solution dominates any
solutions in the archive, the dominated solutions are removed from the archive.
If the archive is full, a solution is removed from a less-dense section of the Pareto
front. The goal of VEPSO is to produce a Pareto front of solutions, where the
set of solutions are as accurate, as well as diverse, as possible.

Sub-swarms in VEPSO share information by using each other’s gbest value
in the velocity update calculation (Eq. (1)). Which PSO’s gbest value is used
is determined by a knowledge transfer strategy (KTS). Various KTSs are
described in [8]. VEPSO stagnation can be avoided by choosing an appropriate
KTS [16].

3 Solving Inverse Kinematics Using PSO

This section discusses how the algorithms were adapted to solve IK.

3.1 PSO for Inverse Kinematics

A PSO used to solve IK is often referred to as an IK-PSO. If an IWPSO is used,
it is often referred to as an IK-IWPSO. In an IK-PSO each particle represents a
complete trajectory towards the target. Each particle’s position represents a set
of joint rotations (θ), i.e. the rotations of each joint around each axis that the

230 Z. Riekert and M. Helbig

joint is permitted to rotate around. After the set of rotations are found, these
rotations can then be used in FK to determine the end-effector’s position after
the trajectory.

The search space of an IK-PSO represents the allowed movement of each joint
in the multi-jointed body (rotation boundaries). For example, hinge joints can
rotate around only one specific axis. In addition to restricting the search space
to the rotation boundaries of joints, the search space can be further reduced to
avoid collisions [29].

The main goal of an IK-PSO is to produce a trajectory that minimizes the
distance between the end-effector and the target location [25]. This difference,
Ferror, is defined as:

Ferror = ||Xt − Xjn|| (5)

where the fitness function, Ferror, represents the Euclidean distance between the
target (Xt) and the end-effector (Xjn) [25]. Xj represents the end position of a
body and n represents the total amount of bodies on a chain of jointed bodies.

3.2 PSO with a CWA Fitness Function for Inverse Kinematics

Multiple approaches exist to minimize energy and smooth over movement,
including the “minimum jerk model” proposed by Flash et al. [9] and the “min-
imum torque-change model” [31]. Total displacement can be defined as follows:

Fdisplacement =
k∑

n=1

(qn,f − qn,i)2 (6)

where qf ={qf,1, . . . , qf,k} represents all the final rotations and qi={qi,1, . . . , qi,k}
represents all the initial rotations.

Equations (5) and (6) can be aggregated with fixed weights to produce
Eq. (7) [35]:

F = weFerror + wdFdisplacement (7)

The values of the weights (we and wd) are search space dependant [19] and
have to be defined beforehand. Eq. (7) can be used instead of Eq. (5) as a fitness
function in the setup described in Sect. 3.1 to produce an IK trajectory per run
that uses minimal movement.

Note that Eqs. (5) and (6) are in conflict with each other, since Eq. (6) aims
to minimize movement, while Eq. (5) requires movement to achieve its goal.

When assigning weights it should however be taken into consideration that
it is more important for the end-effector to actually reach its target than to have
minimal movement with a trajectory that does not reach the target.

3.3 VEPSO for Inverse Kinematics

VEPSO is extended in this study to solve IK. VEPSO solving IK, IK-VEPSO,
has two sub-swarms, S1 and S2, that are initialized. S1 uses Eq. (5) and S2 uses
Eq. (6) as their fitness function respectively.

Solving Inverse Kinematics with Vector Evaluated PSO 231

Knowledge Transfer Strategy: A ring KTS is used to transfer knowledge
between swarms, i.e. S1 uses S2’s gbest and S2 uses S1’s gbest to update their
particles’ velocities [6].

Pareto Dominance: The approach used to determine when one solution would
dominate another is presented in Algorithm1. Algorithm 1 follows the dominance
rule as described in [12] and uses Eqs. (5) and (6) as the only two fitness functions.

Algorithm 1. Determining whether solution P1 dominates solution P2

if P1Ferror <= P2Ferror and P1Fdisplacement <= P2Fdisplacement then1

if P1’s Ferror < P2Ferror or P1Fdisplacement < P2Fdisplacement then2

return true3

end if4

end if5

return false6

4 Experimental Approach

This section discusses the algorithms, general configurations and algorithm spe-
cific configurations that were used for the experiments.

4.1 Algorithms

The following algorithms were used in the study: IK-PSO, IK-IWPSO, IK-
IWPSO with a CWA fitness function and an IK-VEPSO. Three variations of
IK-IWPSO with a CWA fitness function were used, where each variation had
different weight values. Al of these algorithms were applied to solve IK for a 3D
character model’s 7 DOF arm. As illustrated in Fig. 1, the goal was to calculate
the rotation configuration to move an arm from its initial position to a position
that allows its hand to reach the centre of the red block.

4.2 General Configurations

In all simulations 15 particles were used per swarm [25]. Velocities of particles
were initialized to zero [8] and particle positions were initialized to random
positions within the search space. Each particle’s position represented a set of
rotations. Each set of rotations contained the combined rotation configurations of
all 3 major joints present in an arm (shoulder, elbow and wrist). The 7 elements
that were present in a set are listed in Table 1. Boundaries of the search space
were roughly selected based on possible arm movements and adjusted to reduce
collisions.

232 Z. Riekert and M. Helbig

Table 1. Elements in particle rotation set of a 7 DOF arm

Element Joint Axis Boundary (degrees)

q1,f Shoulder X-axis [−130, 45]

q2,f Shoulder Y-axis [−61.4, 61.4]

q3,f Shoulder Z-axis [−130.5, 34.6]

q4,f Elbow X-axis [0, 130]

q5,f Elbow Y-axis [−45, 0]

q6,f Wrist X-axis [−30, 30]

q7,f Wrist Z-axis [−20, 45]

4.3 Algorithm Specific Configurations

This section discusses the algorithm specific configurations of IK-PSO, IK-
IWPSO, IK-PSO with CWA fitness function and VEPSO.

IK-PSO: A cognitive weight (c1) of 1.4047 and a social weight (c2) of 1.494
was used [25]. After each run, the total displacement (Eq. (6)) of each solution
was recorded.

IK-IWPSO: An inertia weight of 0.729 (w), a cognitive weight of 1.494 (c1)
and a social weight (c2) of 1.494 was used [25]. Similar to IK-PSO, the total
displacement was recorded.

IK-IWPSO with CWA Fitness Function: Values produced from Eq. (6) are
considerably larger than those produced by Eq. (5). With we = 1 and wd = 1
(6), Fdisplacement will have a very large influence over a particle’s fitness. A wd

of 1/13.86 was used to scale down Eq. (6) so that it can approximately have the
same influence as Eq. (5). The value 1/13.86 was calculated by considering the
minimum and maximum possible values that can be produced by Eqs. (5) and
(6) in the predefined search space. Since minimizing distance towards the goal
is more important than minimizing movement (refer to Sect. 3.2), displacement
weights of 1/(13.86 ∗ 2) and 1/(13.86 ∗ 10) were also tested.

4.4 VEPSO

Two IWPSOs were used as sub-swarms, both with inertia weights (w) of 0.729,
cognitive weights (c1) of 1.494 and a social weights (c2) of 1.494. The archive
was maintained according to [12] and had a fixed size of 10.

4.5 Experimental Approach

All algorithms were run 50 times. A run was terminated after 300 iterations or
if a solution was found with a fitness less than 0.0001.

Solving Inverse Kinematics with Vector Evaluated PSO 233

5 Results

The IK-VEPSO values presented in Table 2 were calculated by using the archive
solutions with the best distance error fitness (as that is the most important
objective).

Table 2. Distance error and rotation displacement results

Distance error Rotational displacement

Avg StdDev Avg StdDev

IK-PSO 1.96484E−2 9.99659E−3 4.076534 2.231010

IK-IWPSO 7.78310E−5 2.08119E−5 3.32692 1.71769

IK-IWPSO with CWA

we = 1 and wd = 1/13.86 2.73026E−3 1.85584E−2 1.15214 0.19602

we = 1 and wd = 1/(13.86 ∗ 2) 5.06802E−3 2.44249E−2 1.42592 0.41638

we = 1 and wd = 1/(13.86 ∗ 10) 2.70516E−3 1.83785E−2 2.61991 1.16565

IK-VEPSO 2.02625E−2 1.36096E−2 1.07691 0.26468

From Table 2 it can be seen that IK-PSO performed reasonably well with
regards to the distance error. However, it could not find good values for the
rotational displacement, where both the average value and standard deviation
values were high. IK-IWPSO obtained the best distance error values, but did
not obtain very good displacement values. Both IK-PSO and IK-IWPSO only
considered distance error during the search process, which may lead to unnatural
poses.

IK-IWPSO with CWA and IK-VEPSO considered both distance error and
displacement during the search process. The first IK-IWPSO with CWA con-
figuration obtained the second best displacement average value and the best
displacement standard deviation. IK-VEPSO obtained the best displacement
average value, with the second best displacement standard deviation value. How-
ever, its distance error values were not as good as those of IK-IWPSO. It should
be noted however, that IK-VEPSO did find a spread of trade-off solutions (refer
to Fig. 4). These various solutions provide various trade-off values for the two
objective functions.

Table 3 presents the last iteration when gbest was updated. The stopping
condition of the algorithms was 300 iterations or when a solution with a fitness
of less than 0.0001 was found. IK-IWPSO had the lowest average and standard
deviation, which is confirmed by the fact that it obtained fitness levels of less
than 0.0001 (refer to Table 2). IK-VEPSO had an average value of 127.22 and a
very high standard deviation of 81.99. If one considers the fact that its distance
error average was higher than 0.0001 (refer to Table 2), and that it therefore
probably ran for 300 iterations, this may indicate that IK-VEPSO stagnated
during the runs.

234 Z. Riekert and M. Helbig

Fig. 4. Distance error and total rotation displacement of each element in archive

Table 3. Last gbest update iteration number

Average Standard deviation

IK-PSO 104.74 80.68

IK-IWPSO 89.82 17.28547

IK-IWPSO with CWA

we = 1 and wd = 1/13.86 158.1 38.97

we = 1 and wd = 1/(13.86 ∗ 2) 148.08 55.36

we = 1 and wd = 1/(13.86 ∗ 10) 95.82 29.47

IK-VEPSO 127.22 81.99

Furthermore, it can be seen from Tables 2 and 3 that the weight values used
for IK-IWPSO with CWA played an important role in the performance of the
algorithm. Therefore, good weight values are required for the algorithm to per-
form well. However, the weight values are problem-dependent. IK-VEPSO elim-
inates the problem of selecting weight values.

6 Conclusion

IWPSO can render solutions relatively fast and can provide excellent IK solu-
tions, but the total movement or displacement is not considered. Both IK-
IWPSO with a CWA fitness function and IK-VEPSO render solutions with
better movement values than IWPSO, since the total movement used is con-
sidered. IK-IWPSO outperforms IK-VEPSO if the correct weight combination
is chosen. IK-VEPSO renders a wide spread of vastly different IK solutions that
an IK-IWPSO with a CWA fitness function cannot obtain. However, IK-VEPSO
is prone to stagnation.

Solving Inverse Kinematics with Vector Evaluated PSO 235

Future work will include investigating approaches to prevent stagnation of
IK-VEPSO. In addition, IK-VEPSO will be compared against other MOO algo-
rithms on the IK problem.

References

1. Bingul, Z., Ertunc, H.M., Oysu, C.: Comparison of inverse kinematics solutions
using neural network for 6R robot manipulator with offset. In: Proceedings of
ICSC Congress on Computational Intelligence Methods and Applications (2005)

2. Boulic, R., Huang, Z., Thalmann, D.: A comparison of design strategies for 3D
human motions. In: Varghese, K., Pfleger, S. (eds.) Human Comfort and Security
of Information Systems, pp. 306–319. Springer, Heidelberg (1997). doi:10.1007/
978-3-642-60665-6 28

3. Boulic, R., Mas, R.: Hierarchical kinematics behaviors for complex articulated
figures. Interactive Computer Animation. Prentice Hall, Upper Saddle River (1996)

4. Buss, S.R.: Introduction to inverse kinematics with jacobian transpose, pseudoin-
verse and damped least squares methods. IEEE J. Robot. Autom. 17(1–19), 16
(2004)

5. Çavdar, T., Mohammad, M., Milani, R.A.: A new heuristic approach for inverse
kinematics of robot arms. Adv. Sci. Lett. 19(1), 329–333 (2013)

6. Cortes, O.A.C., Rau-Chaplin, A., Wilson, D., Cook, I., Gaiser-Porter, J.: A study
of VEPSO approaches for multiobjective real world applications. In: Proceedings
of the International Conference on Data Analytics, pp. 42–48 (August 2014)

7. Deutscher, J., Davison, A., Reid, I.: Automatic partitioning of high dimensional
search spaces associated with articulated body motion capture. In: Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition. vol. 2, pp. 669–676 (2001)

8. Dibblee, D., Maltese, J., Ombuki-Berman, B.M., Engelbrecht, A.P.: Vector-
evaluated particle swarm optimization with local search. In: Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 187–195 (May 2015)

9. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally con-
firmed mathematical model. Neuroscience 5(7), 1688–1703 (1985)

10. Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird
flocks. In: Krasner, E. (ed.) The ubiquity of chaos, pp. 233–238. AAAS Publications
(1990)

11. Huang, H.C., Chen, C.P., Wang, P.R.: Particle swarm optimization for solving
the inverse kinematics of 7-DOF robotic manipulators. In: Proceedings of the
IEEE International Conference on Systems, Man, and Cybernetics, pp. 3105–3110
(October 2012)

12. Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary
multi-objective optimization: why does it work and how?. In: Proceedings of the
Annual Conference on Genetic and Evolutionary Computation, pp. 1042–1049.
San Francisco, USA (July 2001)

13. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE
(November 1995)

14. Lasseter, J.: Principles of traditional animation applied to 3D computer animation.
Seminal Graphics, pp. 263–272. ACM, New York (1998)

http://dx.doi.org/10.1007/978-3-642-60665-6_28
http://dx.doi.org/10.1007/978-3-642-60665-6_28

236 Z. Riekert and M. Helbig

15. Maltese, J., Ombuki-Berman, B., Engelbrecht, A.: Co-operative vector-evaluated
particle swarm optimization for multi-objective optimization. In: Proceedings
of the IEEE Symposium Series on Computational Intelligence, pp. 1294–1301
(December 2015)

16. Matthysen, W., Engelbrecht, A., Malan, K.: Analysis of stagnation behavior of
vector evaluated particle swarm optimization. In: Proceedings of the IEEE Sym-
posium on Swarm Intelligence, pp. 155–163 (April 2013)

17. Mohamad, M.M., Taylor, N.K., Dunnigan, M.W.: Articulated robot motion plan-
ning using ant colony optimisation. In: Proceedings of the International IEEE
Conference Intelligent Systems, pp. 690–695 (September 2006)

18. Mori, M., MacDorman, K.F., Kageki, N.: The uncanny valley [from the field]. IEEE
Robot. Autom. Mag. 19(2), 98–100 (2012)

19. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in multi-
objective problems. In: Proceedings of the ACM Symposium on Applied Comput-
ing SAC 2002, pp. 603–607. ACM, New York (2002)

20. Parsopoulos, K.E., Tasoulis, D.K., Vrahatis, M.N., et al.: Multiobjective optimiza-
tion using parallel vector evaluated particle swarm optimization. In: Proceedings of
the IASTED International Conference on Artificial Intelligence and Applications,
vol. 2, pp. 823–828 (2004)

21. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell.
1(1), 33–57 (2007)

22. Repository, B.D.M.: Teenage girl model. https://www.blender-models.com/model-
downloads/humans/id/teenage-girl-model, Accessed 9 Jan 2017

23. Rokbani, N., Alimi, M.A., Ammar, B.: Architectural proposal for a robotized intel-
ligent humanoid, IZiman. In: Proceedings of the IEEE International Conference on
Automation and Logistics, pp. 1941–1946 (August 2007)

24. Rokbani, N., Benbousaada, E., Ammar, B., Alimi, A.M.: Biped robot control using
particle swarm optimization. In: Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics, pp. 506–512 (October 2010)

25. Rokbani, N., Alimi, A.M.: Inverse kinematics using particle swarm optimization,
a statistical analysis. Proc. Eng. 64, 1602–1611 (2013)

26. Rokbani, N., Casals, A., Alimi, A.M.: IK-FA, a new heuristic inverse kinematics
solver using firefly algorithm. In: Azar, A.T., Vaidyanathan, S. (eds.) Computa-
tional Intelligence Applications in Modeling and Control, pp. 369–395. Springer
International Publishing, Cham (2015). doi:10.1007/978-3-319-11017-2 15

27. Rutkowski, L., Przybyl, A., Cpalka, K.: Novel online speed profile generation for
industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans.
Industr. Electron. 59(2), 1238–1247 (2012)

28. Sakchaicharoenkul, T.: MCFI-based animation tweening algorithm for 2D para-
metric motion flow/optical flow. MG&V 15(1), 29–49 (2006)

29. Tanskanen, E.: Transition synthesis for skeletal animations using optimization and
simulated physics. G2 pro gradu, diplomity, Aalto University, 03 November 2014

30. Tevatia, G., Schaal, S.: Inverse kinematics for humanoid robots. In: Proceedings
of the IEEE International Conference on Robotics and Automation, vol. 1, pp.
294–299 (2000)

31. Uno, Y., Kawato, M., Suzuki, R.: Formation of optimum trajectory in control of
arm movement: minimum torque-change model. Japan IEICE Technical Report
MBE86-79, pp. 9–16 (1987)

32. Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in
human multijoint arm movement. Biol. Cybern. 61(2), 89–101 (1989)

https://www.blender-models.com/model-downloads/humans/id/teenage-girl-model
https://www.blender-models.com/model-downloads/humans/id/teenage-girl-model
http://dx.doi.org/10.1007/978-3-319-11017-2_15

Solving Inverse Kinematics with Vector Evaluated PSO 237

33. Wampler, K., Andersen, E., Herbst, E., Lee, Y., Popović, Z.: Character animation
in two-player adversarial games. ACM Trans. Graph. 29(3), 1–13 (2010)

34. Whitney, D.E.: Resolved motion rate control of manipulators and human prosthe-
ses. IEEE Trans. Man-Mach. Syst. 10(2), 47–53 (1969)

35. Yang, Y., Peng, G., Wang, Y., Zhang, H.: A new solution for inverse kinematics
of 7-DOF manipulator based on genetic algorithm. In: Proceedings of the IEEE
International Conference on Automation and Logistics, pp. 1947–1951, August
2007

Particle Swarm Optimization for the Machine
Repair Problem with Working Breakdowns

Kuo-Hsiung Wang1 and Cheng-Dar Liou2(&)

1 Department of Computer Science and Information Management,
Providence University, Taichung 43301, Taiwan

khwang@pu.edu.tw
2 Department of Business Administration, National Formosa University,

64, Wunhua Rd., Huwei 63201, Yunlin County, Taiwan, ROC
cdliou@nfu.edu.tw

Abstract. This paper studies the M/M/1 machine repair problem using a single
service station subject to working breakdowns. This service station can be in
working breakdown state only when at least one failed machine exists in the
system. The matrix-analytic method is used to compute the steady-state prob-
abilities for the number of failed machines in the system. A cost model is
constructed to simultaneously determine the optimal values for the number of
operating machines and two variable service rates to minimize the total expected
cost per machine per unit time. The particle swarm optimization (PSO) algo-
rithm is implemented to search for the optimal minimum value until the system
availability constraint is satisfied.

Keywords: Machine repair problem � Working breakdown � Particle swarm
optimization

1 Introduction

This paper deals with the machine repair problem (MRP) withM operating machines and
a single non-reliable service station subject to working breakdowns. A “non-reliable”
service station indicates that the service station may be subject to unpredictable break-
downswhile servicing a customer. A service station operated by a team of technicians can
be considered as a server in the queuing system. The team of technicians cannot always
maintain the same service rate because some of them could be temporarily absent due to
various reasons such as sickness, joining a training course, supporting other departments,
adjusting manpower in off-peak time and so on. In this situation the service station still
provides service but with a lower service rate. This is called the “working breakdown”
period. The working breakdown concept is different from the working vacation concept
by Servi and Finn [1]. It was first proposed by Kalidass and Kasturi [2]. They presented
the steady-state analysis of an M/M/1 infinite queue with working breakdowns. In this
study the service station is assumed to provide service either at a fast rate (when the
service station is working) or at a lower rate (when the service station is subject toworking
breakdown). This model could appear in practical MRP. For example, there are M col-
oringmachines driven and controlled by a series of printed circuit boards (PCBs) in a 24H

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 238–245, 2017.
DOI: 10.1007/978-3-319-61824-1_26

textile factory. When one of the machine PCBs fails the service station (server) operated
by a team of technicians would start to repair that failed machine. Because the coloring
machines are operated 24H and must satisfy various textile product color requirements,
the coloring machines could frequently fail to work. When the repair facility becomes
empty, the repairmen may be on stand-by until there is at least one failed machine waiting
in the queue. Sometimes, due to various reasons such as attending a training course,
meetings, inspecting the equipment, and other duties, some technicians could be tem-
porarily absent. In this situation the repair station cannot provide the usual service rate
(i.e. working breakdown).

Exact steady-state MRP solutions are obtained for (1) the M/M/1 model with a
single service station subject to breakdowns by Wang [3]; (2) the M/Ek/1 model with a
non-reliable service station by Wang and Kuo [4]; (3) the M/M/R model with spares
and server breakdowns by Wang [5]; (4) the M/M/R model with spares operating under
variable service rates by Wang and Sivazlian [6]; and (5) the M/M/R model with
balking, reneging, and server breakdowns by Ke and Wang [7]. The literature on the
single-server queuing models with working breakdowns starts from Kalidass and
Kasturi [2]. Kim and Lee [8] presented the system size distribution and the sojourn time
distribution of the M/G/1 queuing system with disasters and working breakdowns. In
their study, the cold standby substitute server is considered to provide a lower service
rate (i.e. working breakdown) than that of the main server. Lately, Liou [9] investigated
an M/M/1 queue with an unreliable server subject to working breakdowns and impa-
tient customers. However, existing research work regarding MRP does not include the
M/M/1 MRP with working breakdowns. This motivates us to investigate the M/M/1
MRP with a single non-reliable server subject to working breakdowns.

The particle swarm optimization (PSO) algorithm was developed by Kennedy and
Eberhart [10]. The huge power of this technique is its ability to satisfy a performance
criterion without any prior knowledge of the candidate configurations, and the facility
for searching for the global optimum result. Therefore, the PSO algorithm has high
potential for analyzing complex MRP optimization problems. Excellent literature
reviews can be found in the work of Clerc [11] and Alrashidi and EL-Hawary, [12].

The purpose of this paper is threefold. The first is to present a matrix-analytic
method for developing steady-state solutions for an M/M/1 MRP with a single
non-reliable service station subject to working breakdowns. The second is to construct
the expected cost function per machine per unit time to determine the joint optimum
number of machines and service rates at minimum cost until the system availability
constraint is satisfied. The third is to use the PSO algorithm for searching the optimal
solution of the cost minimization problem.

2 Steady-State Equations

An M/M/1 MRP with a non-reliable service station subject to working breakdowns is
considered. The steady-state equations are set up first and then the matrix-analytic
method with an efficient MAPLE program to calculate the steady-state probability.

PSO for the Machine Repair Problem with Working Breakdowns 239

2.1 Steady-State Equations

The system states are presented using pairs fði; nÞji ¼ 0; 1 ; n ¼ 0; 1; 2. . .Mg, where
i = 0 denotes that the service station is in the working period, i = 1 denotes that the
service station is in the working breakdown period, and n is the number of failed
machines in the system. The steady-state probabilities are defined as follows:

P0ðnÞ � Probability that there are n failed machines in the system when the service
station is in the working period;

P1ðnÞ � Probability that there are n failed machines in the system when the service
station is in the working breakdown period,

where n = 0, 1, 2, …, M
The steady-state equations for an M/M/1 MRP with a non-reliable service station

subject to working breakdowns are established.
The steady-state equations for P0ðnÞ and P1ðnÞ relating to Fig. 1 is given by:

ðMkþ aÞP0ð0Þ ¼ lwP0ð1Þþ bP1ð0Þ; ð1Þ

½ðM � nÞkþ lw þ a�P0ðnÞ ¼ ðM � nþ 1ÞkP0ðn
� 1Þþ lwP0ðnþ 1Þþ bP1ðnÞ; 1� n�M � 1 ð2Þ

ðlw þ aÞP0ðMÞ ¼ kP0ðM � 1Þþ bP1ðMÞ; ð3Þ

ðMkþ bÞP1ð0Þ ¼ ldP1ð1Þþ aP0ð0Þ; ð4Þ

½ðM � nÞkþ ld þ b�P1ðnÞ ¼ ðM � nþ 1ÞkP1ðn� 1Þþ ldP1ðnþ 1Þ
þ aP0ðnÞ; 1� n�M � 1

ð5Þ

ðld þ bÞP1ðMÞ ¼ kP1ðM � 1Þþ aP0ðMÞ: ð6Þ

0 1 2

0 1 2

β β β

λM

λM

λ)1(−M

λ)1(−M

dμ dμ

⋅⋅⋅ ⋅⋅⋅

⋅ ⋅⋅ ⋅⋅

M-2 M-1 M

M-2 M-1 M

β β β

λ2

λ2 λ

dμ dμ

wμ wμ wμ wμ

α αα α αα

λ

Fig. 1. State-transition rate diagram for the M/M/1 MRP.

240 K.-H. Wang and C.-D. Liou

2.2 Matrix-Analytic Method

A matrix-analytical method is used to analyze the problem further as it suffers from
extreme difficulty in solving (1)–(6) in a recursive manner to develop the closed-form
expressions for the steady-state probabilities P0ðnÞ and P1ðnÞ , where n = 0, 1, 2, …,M.
The matrix-analytical method to simplify stationary probabilities computation is
implemented in the following.

The corresponding transition rate matrix Q of this Markov chain has the
block-diagonal form:

Q ¼

D1 C0

A1 B1 C1

A1 B2 C2

A1 B3 C3

. .
. . .

. . .
.

A1 BM�1 CM�1

A1 BM

2
6666666664

3
7777777775

:

The rate matrix Q of this state process is similar to the quasi birth and death type,
and this class of Markov processes has been extensively studied by Neuts [13]. Each
element of the matrix Q is listed in the following:

D1 ¼
�ðMkþ aÞ a

b �ðMkþ bÞ

� �
;

A1 ¼
lw 0

0 ld

� �
; 1� n�M

Bn ¼ �½ðM � nÞkþ lw þ a� a
b �½ðM � nÞkþ ld þ b�

� �
; for 1� n�M

Cn ¼ ðM � nÞk 0
0 ðM � nÞk

� �
; 0� n�M � 1

where D1, A1, Bn and Cn are square matrices of order 2.
Let P be the corresponding steady-state probability vector of Q. By partitioning the

vectorP asP ¼ P0; P1; P2; . . .; PM�1; PMf g, wherePn ¼ fP0ðnÞ;P1ðnÞg, (0� n�M)
is a row vector of dimension 2. By solving the steady-state equations PQ ¼ 0, it
follows that

P0D1 þP1A1 ¼ 0;

P0C0 þP1B1 þP2A1 ¼ 0

Pn�1Cn�1 þPnBn þPnþ 1A1 ¼ 0; for 2� n�M � 1

PM�1CM�1 þPMBM ¼ 0:

PSO for the Machine Repair Problem with Working Breakdowns 241

Thus, we obtain:

PM ¼ �PM�1CM�1B
�1
M ¼ PM�1XM ; whereXM ¼ �CM�1B

�1
M ð7Þ

Pn ¼ Pn�1Xn; 2� n�M � 1; ð8Þ

P1 ¼ �P0C0ðB1 þX2A1Þ�1; ð9Þ

P0½D1 � C0ðB1 þX2A1Þ�1A1� ¼ 0; ð10Þ

where Xn ¼ �Cn�1ðBn þXnþ 1A1Þ�1, 2� n�M � 1 are square matrices of order 2.
Equation (10) determines P0 up to a multiplicative constant. The other Eqs. (7)–(9)

determine PM ; PM�1; . . .; P2; P1, up to the same constant, which is uniquely deter-
mined by the following normalizing equation

P0ð0Þþ
XM
n¼1

Pne ¼ 1;

where e is a column vector with each component equal to one. The terms P0ð0Þ, Pn and
PjðnÞ for j ¼ 0; 1 and 1� n�M can be solved using the MAPLE computer software.
Note that the main advantage for the matrix-analytical method is that it can be written
as an efficient subroutine, making it easier and faster to solve a system of linear
equations. Computations for huge scale MRP with N operating machines, for example
N = 300, are entirely straightforward.

3 Cost Analysis

We develop the total expected cost function per machine per unit time for the M/M/1
MRP with a non-reliable server subject to working breakdowns, in which three deci-
sion variables M, lw, and ld are considered. The discrete variable M is a natural
number, and the two continuous variables lw (the service rate in the working period)
and ld (the service rate in the working breakdown period) are positive numbers. Our
main objective is to determine the optimum number of operating machines M, say M�

and the optimum repair rate value (lw, ld), say (l
�
w; l

�
d) simultaneously so that the cost

function is minimized. We also suppose that the service station can be in working
breakdown at any time with breakdown rate a. Whenever the station is in the working
breakdown state, it is immediately repaired at a repair rate b.

3.1 Cost Function

Let Am denote the probability that at least one machine is operating, and A0 represent
the minimum fraction of one machine operating. We select the following cost elements:
C0 � cost per unit time per failed machine in the system when the service station is

the working period,

242 K.-H. Wang and C.-D. Liou

C1 � cost per unit time per failed machine in the system when the service station is
in the working breakdown period,

C2 � fixed cost for fast service rate,
C3 � fixed cost for slow service rate.

E½N0� ¼
XM
n¼1

nP0ðnÞ; ð11Þ

E½N1� ¼
XM
n¼1

nP1ðnÞ; ð12Þ

Using the definitions of these cost elements, the total expected cost function per
machine per unit time is given by

FðM; lw; ldÞ ¼
C0E½N0� þC1E½N1� þC2lw þC3ld

M
ð13Þ

The cost minimization problem can be presented mathematically as

Minimize
M;lw;ld

FðM; lw; ldÞ

Subject to: Am �A0:

The cost parameters in (13) are assumed to be linear in the expected number of
indicated quantities, and it would be a hard task to develop analytical results for the
optimum value ðM�; l�w; l

�
dÞ because the expected cost function is non-linear and

complex. We use the PSO algorithm to search for the optimal value ðM�; l�w; l
�
dÞ.

4 Numerical Results

To evaluate the PSO algorithm performance for the cost minimization problem, we
tested the problems shown in Table 1. For each of the tested examples, the number of
operating machines M was set in the range of 3 to 15 and both lw and ld are con-
tinuous at an interval of 0.01 to 10 and lw > ld . Although the PSO algorithm seems to
be sensitive to the tuning of some parameters, according to the experiences of many
experiments, the following PSO parameters can be used (see Shi and Eberhart [14];
Yoshida, et al. [15]).

PSO algorithm Parameters

• population size = 100;
• generations = 200;
• inertia weight factor is set to vary linearly from 0.9 to 0.4;
• the limit of change in velocity for each member in an individual was as Vmax = 4.0,
• acceleration constant c1 = 2.0 and c2 = 2.0.

PSO for the Machine Repair Problem with Working Breakdowns 243

Table 1 shows the numerical results for 100 independent experiments for each
example using the PSO algorithm, where C0 ¼ $100/day, C1 ¼ $150/day,
C2 ¼ $50/day, C3 ¼ $15/day are assumed. Note that, for the convenience of com-
parison, the mean and maximum ratios were utilized. The solution ratio produced by
the search method is calculated using V/V*, where V is the solution generated by the
PSO algorithm and V* is the minimum solution among 100 independent experiments.

From Table 1, we observe that

(1) the mean values (V/V*) for the PSO algorithm vary from 1.001–1.010. This
implies that PSO algorithm is robust for all test instances.

(2) the max values (V/V*) for the PSO algorithm vary from 1.005–1.019 for. This
implies that the PSO algorithm search quality is very good.

(3) the average CPU time per run for the experimental solutions in Table 1 is about
8.75s for the PSO algorithm. This implies that the PSO algorithm can solve the
test examples within a reasonable time.

5 Conclusions

This search modeled the M/M/1 MRP using a single service station subject to working
breakdowns. The steady-state results were computed numerically using the matrix-
analytical technique. We developed the expected cost function per machine per unit
time and formulated an optimization problem to search for the minimum cost. The PSO
algorithm was implemented to determine the optimal values for M�; l�w, and l�d
simultaneously, which minimizes the expected cost function. The PSO algorithm is
applied to analyze complex MRP optimization problems including economic perfor-
mance. In future research the PSO algorithm can be used to solve the optimization
problems that occur in various queuing systems.

Table 1. PSO in searching the global best solution. (0:01� lw � 10, 0:01� ld � 10)

ðk; a; bÞ M� Av� l�w l�d FðM�; l�w; l
�
dÞ Mean Max

(0.5, 0.1, 0.2) 15 1.0 7.083 10.000 52.262 1.003 1.011
(1.0, 0.1, 0.2) 12 1.0 7.815 10.000 83.762 1.001 1.007
(1.5, 0.1, 0.2) 8 1.0 0.010 10.000 100.671 1.004 1.011
(0.5, 0.2, 0.2) 15 1.0 6.081 10.000 51.111 1.010 1.017
(0.5, 0.3, 0.2) 14 1.0 4.554 10.000 49.624 1.007 1.019
(0.5, 0.4, 0.2) 12 1.0 2.100 10.000 47.459 1.007 1.016
(0.5, 0.1, 0.4) 15 1.0 7.72 1 8.152 52.232 1.002 1.010
(0.5, 0 1, 0 6) 15 1.0 8.018 6.589 51.604 1.002 1.009
(0.5, 0.1, 0.8) 15 1.0 8.229 4.879 50.807 1.001 1.005

244 K.-H. Wang and C.-D. Liou

References

1. Servi, L.D., Finn, S.G.: M/M/1 queue with working vacation (M/M/1/WV). Perform. Eval.
50, 41–52 (2002)

2. Kalidass, K., Kasturi, R.: A queue with working breakdowns. Comput. Ind. Eng. 63, 779–
783 (2012)

3. Wang, K.H.: Profit analysis of the machine repair problem with a single service station
subject to breakdowns. J. Oper. Res. Soc. 41, 1153–1160 (1990)

4. Wang, K.H., Kuo, M.Y.: Profit analysis of the M/Ek/1 machine repair problem with a
non-reliable service station. Comput. Ind. Eng. 32, 587–594 (1997)

5. Wang, K.H.: Profit analysis of the M/M/R machine repair problem with spares and server
breakdowns. J. Oper. Res. Soc. 45, 539–548 (1994)

6. Wang, K.H., Sivazlian, B.D.: Cost analysis of the M/M/R machine repair problem with
spares operating under variable service rates. Microelectron. Reliab. 32, 1171–1183 (1992)

7. Ke, J.C., Wang, K.H.: Cost analysis of the M/M/R machine repair problem with balking,
reneging, and server breakdowns. J. Oper. Res. Soc. 50, 275–282 (1999)

8. Kim, B.K., Lee, D.H.: The M/G/1 queue with disasters and working breakdown. Appl.
Math. Model. 38, 1788–1798 (2014)

9. Liou, C.D.: Markovian queue optimization analysis with an unreliable server subject to
working breakdowns and impatient customers. Int. J. Syst. Sci. 46(12), 2165–2182 (2015)

10. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

11. Clerc, M.: Particle Swarm Optimization (International Scientific and Technical Encyclope-
dia). Wiley_ISTE, London (2006)

12. Alrashidi, M.R., EL-hawary, M.E.: A survey of particle swarm optimization applications in
power system operations. Electr. Power Compon. Syst. 34, 1349–1357 (2006)

13. Neuts, M.F.: Matrix Geometric Solutions in Stochastic Models: An Algorithmic Approach.
The John Hopkins University Press, Baltimore (1981)

14. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Porto, V.W.,
Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600.
Springer, Heidelberg (1998). doi:10.1007/BFb0040810

15. Yoshida, H., Kawata, K., Fukuyama, Y., Nakanishi, Y.: A particle swarm optimization for
reactive power and voltage control considering voltage security assessment. IEEE Trans.
Power Syst. 15, 1232–1239 (2000)

PSO for the Machine Repair Problem with Working Breakdowns 245

http://dx.doi.org/10.1007/BFb0040810

Intelligent Behavioral Design of Non-player
Characters in a FPS Video Game Through PSO

Guillermo Dı́az1 and Andrés Iglesias2,3(B)

1 Master Program in Creation of Video Games, University Pompeu Fabra,
Balmes Building, Balmes 132-134, 08008 Barcelona, Spain

2 Department of Information Science, Faculty of Sciences, Toho University,
2-2-1 Miyama, Funabashi 274-8510, Japan

3 Department of Applied Mathematics and Computational Sciences,
University of Cantabria, Avda. de Los Castros, s/n, E-39005 Santander, Spain

iglesias@unican.es

Abstract. Although barely explored so far, swarm intelligence can
arguably have a profound impact on video games; for instance, as a
simple yet effective approach for the realistic intelligent behavior of Non-
Player Characters (NPCs). In this context, we describe the application
of particle swarm optimization to the behavioral design of NPCs in a
first-person shooter video game. The feasibility and performance of our
method is analyzed through some computer experiments. They show that
the proposed approach performs very well and can be successfully used
in a fully automatic (i.e., without any human player) and efficient way.

Keywords: Swarm intelligence · Particle swarm optimization · Video
game · Non-player characters · Intelligent behavioral design

1 Introduction

Nowadays, the most classical application of artificial intelligence (AI) in video
games is the behavioral animation of their virtual characters, particularly the
NPCs [6–12]. They are virtual characters not controlled by the player, so their
AI must be fully specified by the computer. A classical example of NPCs appears
in first-person shooter (FPS) games, where the human player assumes the role
of a virtual character fighting against a platoon of computer-controlled enemies,
the NPCs. Very often, the human player is also assisted by a small group of
members of his own squad (NPCs allies). The AI of the NPCs in FPSs is very
challenging for several reasons: ons is that human player and the NPCs share a
seemingly identical set of skills, abilities and goals (kill the enemies). The NPCs
have to be believable: the human player should feel that they behave as human
beings as well, taking reasonable decisions most of the time but not always, to
prevent excessive predictability. The NPCs of the ally squad must be coordi-
nated with the human player to operate in a cooperative and synchronized way.
They also should protect/help the human player in a natural and realistic way.
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 246–254, 2017.
DOI: 10.1007/978-3-319-61824-1 27

Intelligent Behavioral Design of Non-player Characters 247

Finally, playability is a must: players should have a chance to win and the risk
to lose. An adequate balance of wins and losses improves the player engagement
and makes the game more believable and fun.

For many years, the AI of NPCs was based on scripts, leading to self-
replicating patterns and simple and repetitive behavioral routines. Other AI
approaches for video games including NPCs were given in the form of a rules-
based system, where a set of rules is used to determine the behavior of the NPCs
(for instance, the Pac-Man). For a large list of rules, the behavior of the NPCs
does not become obvious to the human player, but still the system has very little
intelligence within. In the 90s, more powerful AI approaches (such as finite state
machines or behavior trees) were incorporated into video games. A popular app-
roach for action planning is the HTN (hierarchical task networks) planners, based
on hierarchies of tasks that can be broken down recursively. In recent years, the
level of sophistication has increased and more realistic and complex behavioral
systems have been defined. Regarding the evolutionary approaches, City Con-
quest uses a genetic algorithm during the design process to identify dominant
strategies and evolve the game design, even before it is released. In Darwin’s
Nightmare game, evolutionary computation is applied to drive the exploration
of a large combinatorial space defining the behavior and appearance of enemy
crafts. Finally, PSO is applied to the problems of pathfinding and action plan-
ning in video games in [2]. In this paper we claim that swarm intelligence can
arguably be one of the best approaches for the AI of NPCs. To show it, this
paper applies PSO to the behavioral design of NPCs in a FPS video game.

2 Particle Swarm Optimization

The basic idea of swarm intelligence (SI) is that the collective intelligence of a
swarm arises from local interactions among the individuals and with the envi-
ronment rather than from any centralized intelligence [3,5]. This feature can be
applied to the AI routines of the (generally simple) NPCs in video games.

A popular SI technique is particle swarm optimization (PSO) [1,4,5]. The
procedure is sketched in Algorithm 1. It starts with a population (swarm) of
candidate solutions called particles randomly distributed over the search space
and provided with initial position and velocity. A fitness function is needed to
evaluate the quality of a position. Particles can communicate good positions to
each other, so they can adjust their own position and velocity according to this
information. The swarm evolves iteratively, so that the fitness of the global best
particle improves and eventually reaches the best solution. During the iterations,
each particle modifies its position and velocity as:

vk+1
j = ω vk

j + γ1u1[xk
gb − xk

j] + γ2u2[xk
jb − xk

j] (1)

xk+1
j = xk

j + vk
j (2)

where xk
j and vk

j are the position and the velocity of particle j at iteration k
respectively, ω is called inertia weight and describes how much the old velocity

248 G. Dı́az and A. Iglesias

Algorithm 1. Particle swarm optimization
1: for each particle do
2: Initialize particle //Initialization phase

3: end for
4: while (stop condition = false) do
5: for each particle do
6: Fitness ← fitness of the particle
7: if (Fitness is better than BestIndividualF itness) then
8: BestIndividualF itness ← Fitness //update the memory individual fitness

9: BestIndividualPosition ← Position //update the memory individual solution

10: end if
11: if (Fitness is better than BestGlobalF itness) then
12: BestGlobalF itness ← Fitness //update the current best global fitness

13: BestGlobalPosition ← Position //update the current best global solution

14: end if
15: end for
16: for each particle do
17: Update velocity //eqn. (1)

18: position ← position + velocity //eqn. (2)

19: end for
20: end while
21: return bestGlobalPosition

will affect the new one, and coefficients γ1 and γ2 are constant values called
learning factors, accounting for the “social” component (memory of the swarm
best particle position at time k, xk

gb) and the “cognitive” component (memory
of the best historical position of particle j, xk

jb). Two random numbers, u1 and
u2, with uniform distribution on [0, 1] are included to promote diversity. This
procedure is iterated until a stopping condition is met or the solution is found.

3 Video Game and NPCs Design and Implementation

Our benchmark is based on a FPS developed on the game engine Unreal 4.
In the game, the human player takes the role of a special command member
who, along with other NPC team members, is assigned to difficult missions
(terrorist group deactivation, hostage rescue, etc.) on different environments
(indoor spaces, urban environments, natural landscapes) with no information
about the enemies and the environment. Many AI tasks are required to complete
the missions successfully. For instance, the player’s character has to interact
with the other squad members (autonomous NPCs driven by their own AI) in a
cooperative and synchronized way. This introduces realistic temporal and spatial
constraints. Furthermore, our NPCs exhibit a more sophisticated behavior and
a wider variety of skills than in other types of video games: they can explore the
environment, read and navigate maps, cooperate between them for synchronized
attacks, develop advanced action planning (e.g. espionage, stealth, simulation,

Intelligent Behavioral Design of Non-player Characters 249

Fig. 1. Top view of the game level. Red circle marks the current enemy position. (Color
figure online)

counter-attack, or defensive strategies) and so on. For limitations of space, in
this paper we restrict to a single environment and mission, described in next
paragraphs.

To test the application of PSO to this problem, a 5, 500 square meters maze-
like square public office level was created (see its top view in Fig. 1). The level has
been carefully designed to represent a difficult scenario for the NPCs: it contains
several tricky challenges for the characters, such as a large number of dead ends
and bottlenecks such as those typically found in labyrinths. To make things
more interesting and challenging, the level is fully furnished; the office rooms
and corridors are filled with many objects. Some represent static obstacles the
characters have to avoid, others encourage the NPCs to stay in front, obstructing
the normal flow of motion, and others promote further interaction with the
NPCs. Finally, in this mission, the area has been affected by some explosions,
so there are several objects lying on the ground and other obstacles to avoid.

A setting where a command tries to find someone moving around some place
is an ideal environment to analyze the potential of SI for dynamic goals. To
this aim, we consider a particular mission: the command agents should find and
capture alive an armed terrorist hidden inside this complex environment. The
terrorist is an enemy NPC driven by its own AI and initialized at the center of the
top side in Fig. 1. It moves throughout this environment autonomously, trying to
hide and escape from the command. The command is comprised by four squads,
each consisting of a variable number of members ranging from 3 to 24 initialized
in the center of the bottom side in Fig. 1. Given our goals, there is no human
player in this mission; it would interfere the simulations drastically, modifying
the sequence of events and invalidating our results. The full responsibility to
accomplish the mission falls on the behavioral AI of the command NPCs.

250 G. Dı́az and A. Iglesias

Fig. 2. (left) Squad ally NPCs trying to find and capture alive the enemy NPC using
their PSO-based behavioral AI; (right) Enemy surrendering to the squad NPCs when
getting ambushed and caught by surprise.

The behavioral system of the NPCs requires different context-sensitive act-
ions to execute. Similar to some other FPS games, this is achieved by using
a Behavior Tree. Basically, this is a logical structure commonly used in action
planning that allows an AI to execute the correct task based on some values.
In this way, the NPC could execute one or several actions depending on the
environment context, the course of events, and other factors. For example, the
NPC can run around the map while looking for any terrorist or enemy, and
protect other members of the squad at the same time. Of course, several actions
can be added or overlapped to build up a more complex behavior. For instance,
the agents can move using PSO, look for enemies in sight, or shoot them in case
they attack the agents.

The computational architecture of the NPC behavioral system of the enemies
and command members is similar; their AI is however pretty different, as they
have different goals and actions to perform. The most relevant difference concerns
the inclusion of the PSO method in the AI of the command NPCs. To this aim,
the command agents are considered particles of the swarm, provided with initial
positions and velocities. Then, the PSO is run until the agents reach the final goal
(find the enemy). The autonomous behavior of each agent and the coordination
of all members of the swarm can be properly balanced through the social and
the cognitive parameters γ1 and γ2. In this paper, we take values γ1 = γ2 = 1.4,
well within the convergence area of the algorithm. This choice of the social and
cognitive parameters has yielded pretty good results in our experiments. We
remark, however, that changing these parameters only modifies the time taken
to reach the goal, but the goal is achieved anyway. Other parameters of the PSO
are the population size, ps, and the inertia weight w. They are considered tuning
parameters of the method, so they are modified during our experiments (see
below for details). Of course, the enemy NPC works alone so no PSO algorithm
can be applied to this character. It would be interesting, however, to see what
happens if the PSO is also added to the AI of a swarm of enemy NPCs.

Extra work is also needed to set up all other aspects for a NPC in a video
game, including all programming tasks related to the NPC animations, such as
those shown in Fig. 2. On the left, the members of the command are moving

Intelligent Behavioral Design of Non-player Characters 251

in a formation where the agents in the front carry out searching, surveillance,
and exploration tasks, while those in the rear provide protection to the squad.
The enemy moves slowly and carefully, paying attention to any motion, noise or
shadow, as it happens in real life. On the right, the terrorist has been caught
without enough time to shoot or escape and decides to surrender. Although
the graphical animations are already encoded and stored, they are activated by
specific actions so they should be triggered by the AI of the NPCs.

All modeling tasks were done with Autodesk 3D Studio Max, Adobe Photoshop
tool was used for texturing, and Apple Logic Pro 9 for sound editing. The game
engine Unreal 4 has been used for the graphical environment, implement the
AI algorithms, and perform the tests. An important component is the Behavior
Tree, used to implement the behavioral routines of our NPCs. Unreal Blueprint
visual scripting is also useful for many implementation tasks. In particular, the
PSO algorithm was implemented using Blueprint scripting, along with some
parts directly written in the programming language Unreal C++.

4 Experimental Results

To analyze the performance of our approach, we executed the PSO for different
values of the inertia weight w (ranging from w = 0.2 to w = 1.2 with stepsize
0.2) and the population size of the swarm (from ps = 12 to ps = 96 with stepsize
12). This makes a total of 48 combinations. For each couple, we performed 25
independent executions and computed the CPU time taken for the swarm to find
the enemy and surrender him. Table 1 shows the average time (in seconds) for
the 25 executions for each pair of values (w, ps) in the ranges indicated above.

The first and most important conclusion is that the method performs pretty
well. All simulations reached the final goal, and the CPU times have been very
competitive, given the large size of the environment, its difficult geometry, and
the fact that the goal is highly dynamic: the enemy is constantly moving trying to
escape from the command agents. Moreover, this escape strategy is not random
or accidental, but driven by a smart AI. This shows that the approach works
very well, and can be successfully applied to commercial video games. Second
observation is that the CPU time decreases as the population size increases up to
ps = 48. This fact is not surprising; more agents means additional exploratory

Table 1. Average time (in seconds) on 25 executions for different values of (w, ps).

12 NPCs 24 NPCs 36 NPCs 48 NPCs 60 NPCs 72 NPCs 84 NPCs 96 NPCs

ω = 0.2 227.1489 202.3854 179.0512 127.5967 168.5907 167.3464 153.6267 157.2611

ω = 0.4 164.0612 132.1689 105.8425 87.6574 90.2230 92.6600 81.0496 106.2469

ω = 0.6 126.3209 77.7963 84.5847 45.7596 79.8171 60.8325 66.3322 83.4260

ω = 0.8 93.5823 60.7219 54.3361 37.4781 60.8899 63.5352 60.0020 67.6512

ω = 1.0 40.8895 37.7445 37.8783 32.5637 43.1950 39.5755 43.7119 51.2208

ω = 1.2 47.6974 39.3628 41.1499 36.9983 39.1020 42.7837 44.2017 46.9681

252 G. Dı́az and A. Iglesias

Fig. 3. Distribution of particles for a high value (left) and a small value (right) of the
inertia weight in PSO. Green area marks the radius of distribution of the NPCs. White
dot marks “best global position”. (Color figure online)

capacity. However, this should be taken with care, because increasing the size
of the swarm also increases the computational calculations. In fact, the CPU
time increases again for populations larger than ps = 48. In our case, the best
results were obtained for a population of 48 particles; in fact, any simulation
improves its results once it moves closer to that number of NPCs. However, this
optimal value can vary for different configurations and game conditions. Third
observation is that there is a downward trend in the average time when w gets
closer to 1. In particular, higher values for w work better for dynamic goals,
as the particles do not gather in any particular area of the map; instead, they
move fast within a large radius around the best global position, see Fig. 3(left).
Also, higher values for w work better in big scenarios, where particles should
move fast through the map to approach the solution, while smaller values make
the particles move together but slowly, in a small radius around the best global
position, which does not work that good if the goal changes its position quickly
or when the map is quite large, see Fig. 3(right). Finally, we also noticed that
the initial position of the particles has a big impact on the algorithm: the more
spread out the particles, the better the results. In our case, all particles begin
on a small common area, thus increasing the CPU times.

5 Conclusions and Future Work

This paper reports a successful application of SI to the behavioral design of
NPCs for a FPS video game. The AI of the NPCs is enriched with a powerful SI
method, the popular PSO. We describe the main issues involved in this process,
from the most general layer (game design) to the AI design of the NPCs. Some
implementation issues are also described. Finally, several computational exper-
iments have been carried out to assess the performance of our approach. Our

Intelligent Behavioral Design of Non-player Characters 253

results show that SI can improve the performance of the behavioral systems of
the NPCs in a fully automated way, leading to realistic and autonomous intelli-
gent behaviors from the NPCs. Furthermore, they can be achieved without the
intervention of human players. Although these results come from a particular
problem and video game, they can be properly adapted to other problems and
games. These results validate our claims for further use of SI for video games.
The ability of SI techniques to generate behaviors from models in nature make
them perfect candidates to answer the need for better AI in video games.

All our simulations have been recorded frame by frame to generate videos at
a frame rate of 24 FPS (all screenshots in this paper have actually been taken
from the videos). All these videos along with the numerical data we collected
provide an invaluable source of data and information that has still to be analyzed
at full extent. This is part of our future work in the field.

Acknowledgements. This research work has been supported by Computer Science
National Program, Spanish Ministry of Economy & Competitiveness, Project Ref.
#TIN2012-30768, Toho University and the University of Cantabria.

References

1. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications
and resources. In: Proceedings of the IEEE Congress on Evolutionary Computa-
tion, CEC 2001, pp. 81–86. IEEE Computer Society Press, Los Alamitos (2001)

2. Dı́az, G., Iglesias, A.: Swarm intelligence scheme for pathfinding and action plan-
ning of non-player characters on a last-generation video game. Adv. Intell. Syst.
Comput. 514, 343–353 (2017)

3. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley,
Chichester (2005)

4. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, Perth, Australia, pp. 1942–1948.
IEEE Computer Society Press, Los Alamitos (1995)

5. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Pub-
lishers, San Francisco (2001)

6. Iglesias, A.: A new framework for intelligent semantic web services based on
GAIVAs. Int. J. Inf. Technol. Web. Eng. 3(4), 30–58 (2008)

7. Iglesias, A., Luengo, F.: Intelligent agents for virtual worlds. In: Proceedings of
CW 2004, Tokyo, Japan, pp. 62–69. IEEE Computer Society Press, Los Alamitos
(2004)

8. Iglesias, A., Luengo, F.: A new based-on-artificial-intelligence framework for behav-
ioral animation of virtual actors,. In: Proceedings of CGIV 2004, Penang, Malaysia,
pp. 245–250. IEEE Computer Society Press, Los Alamitos (2004)

9. Iglesias, A., Luengo, F.: New goal selection scheme for behavioral animation of
intelligent virtual agents. IEICE Trans. Inf. Syst. E88–D(5), 865–871 (2005)

10. Iglesias, A., Luengo, F.: AI framework for decision modeling in behavioral anima-
tion of virtual avatars. In: Shi, Y., Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2007. LNCS, vol. 4488, pp. 89–96. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72586-2 12

http://dx.doi.org/10.1007/978-3-540-72586-2_12
http://dx.doi.org/10.1007/978-3-540-72586-2_12

254 G. Dı́az and A. Iglesias

11. Luengo, F., Iglesias, A.: A new architecture for simulating the behavior of virtual
agents. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Dongarra, J.J., Zomaya,
A.Y., Gorbachev, Y.E. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 935–944. Springer,
Heidelberg (2003). doi:10.1007/3-540-44860-8 97

12. Luengo, F., Iglesias, A.: Designing an action selection engine for behavioral ani-
mation of intelligent virtual agents. In: Gervasi, O., Gavrilova, M.L., Kumar, V.,
Laganà, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS,
vol. 3482, pp. 1157–1166. Springer, Heidelberg (2005). doi:10.1007/11424857 124

http://dx.doi.org/10.1007/3-540-44860-8_97
http://dx.doi.org/10.1007/11424857_124

Ant Colony Optimization

An Improved Ant Colony Optimization
with Subpath-Based Pheromone Modification

Strategy

Xiangyang Deng1,2, Limin Zhang1, and Jiawen Feng1(&)

1 Institute of Information Fusion, Naval Aeronautical
and Astronautical University, Yantai, Shangdong, China
xavior2012@aliyun.com, iamzlm@163.com,

fengjiawen777@163.com
2 Institute of Electronic Engineering, Naval Engineering University,

Wuhan, China

Abstract. The performance of an ACO depends extremely on the cognition of
each subpath, which is represented by the pheromone trails. This paper designs
an experiment to explore a subpath’s exact role in the full-path generation. It
gives three factors, sequential similarity ratio (SSR), iterative best similarity
ratio (IBSR) and global best similarity ratio (GBSR), to evaluate some selected
subpaths called r-rank subpaths in each iteration. The result shows that r-rank
subpaths keep a rather stable proportion in the found best route. And then, by
counting the crossed ants of a subpath in each iteration, a subpath-based
pheromone modification rule is proposed to enhance the pheromone depositing
strategy. It is combined with the iteration-best pheromone update rule to solve
the traveling salesman problem (TSP), and experiments show that the new ACO
has a good performance and robustness.

Keywords: Ant colony optimization � Subpath-based pheromone modification
strategy � Travel salesman problem �Meta-heuristic algorithm � Pheromone trails

1 Introduction

The traveling salesman problem (TSP) is a classical NP-Complete problem, and a
meta-model of many problems in reality, and has received increasing attention. ACO
inspired by the foraging behavior of ant colony is proposed to solve TSP firstly in 1991
[1]. After that, many improved ACO-based algorithms has been presented, Among
which, literature [2] proposed a method to avoid premature convergence phenomenon,
literature [3] proposed an ant system based on individual sort, literature [4] adopted an
elimination cross strategy to achieve a local optimization of ant colony algorithm,
literature [5] designed a random selection and perturbation strategy to improve the
global exploring capability, literature [6] discussed the one with Time Windows con-
straints TSP problem, and proposed the ACS-TSPTW algorithm to solve it, literature
[7] discussed the solution of the generalization of TSP and proposed ACO method
combined with the process of mutation and local search.

ACO-based algorithms can be classified into two types by means of their pher-
omone updating models [8]. One of pheromone updating models associates the

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 257–265, 2017.
DOI: 10.1007/978-3-319-61824-1_28

pheromones with arcs, and the other associates pheromones with nodes. The former is
most frequently used by a lot of ant algorithms, such as Ant-Q system [9] and Ant
Colony System (ACS) [10], etc. And the latter is often used in solving a type of
non-ergodic optimal problem, such as the pheromone mark ACO [11] and ACO
applied in generalized TSP problem [12], etc. About the pheromone updating models,
Literature [10] and literature [11] have made a comprehensive and detailed analysis.

In this paper, we discuss a new pheromone updating rule named as subpath-based
pheromone modification rule (SPB rule), and proposed an improved ACO based on
SPB rule, naturally called SPB-ACO. The SPB rule contains an iterative updating part
and an adaptive part. The iterative updating part is used to updating some selected
subpaths’ pheromone trace, which are called r-rank subpaths chosen by counting the
crossed ants of a subpath in each iteration. And the adaptive part regulates the updating
strength with the iteration gradually. Then, by combining the SPB rule and the
iteration-best update rule, an adaptive SPB-ACO is used to solving standard TSP. The
result shows that r-rank subpaths keep a rather stable proportion in the found best route,
and there play a very important role in the overall cognition of the ant colony.

2 The Basic Model of SPB-ACO

The common solution construction procedures of SPB-ACO can be described as fol-
lows: at the beginning, m ants are randomly positioned in n cities, and then each ant
utilizes a pseudo-random proportional rule to select the next city continuously. After a
forward city is selected, a subpath is given between the current city and the selected
city, until a complete and valid route is generated. After each ant finished its tour, the
pheromones on the arcs of the current best route are updated.

The main steps of the algorithm are as follows:

Step 1. Initializing ant colony.
Step 2. The ants use a pseudo-random proportional rule to select a city.
Step 3. Repeat to select city until perform a complete solution.
Step 4. According to the evaluation function to calculate the ants’ fitness and get an

optimal route.
Step 5. Update the pheromones according to the global pheromone update rule.
Step 6. Complete according to the algorithm termination condition or transfer to

step 2.
Step 7. End the algorithm.

When an ant marked k 1; . . .;mð Þ is in city i, it selects the next city according to the
following rule:

j ¼ argmaax
l2Jk ið Þ

silð Þa� gilð Þb
h i

; if q� q0

according to formula ð2Þ; otherwise

8<
: ð1Þ

Where q is a random variable uniformly distributed in [0, 1], and q0 is a given
probability.

258 X. Deng et al.

The state transition probability is calculated based on the amount of pheromones
and the heuristic information on the subpaths. Pk

ij represents the state transition prob-
ability of ant k transferring from city i to city j:

pkij ¼
saij�gbijP

j2 allowned
saij�gbij½ � if j 2 allowned

0; otherwise

8<
: ð2Þ

Where a is the pheromone heuristic factor, representing the relative importance of
the trajectory, and b is the desired heuristic factor, representing the relative importance
of the visibility. sij is the pheromone density on the arc i; jð Þ, and gij is the value of the
heuristic function on the arc i; jð Þ, and is equal to 1

dij
in normal circumstances, and dij

represents the distance of the arc i; jð Þ.
After each ant has completed the tour of all the cities, according to the following

rules to update the pheromone trace:

sij ¼ 1� qð Þ � sij þ q� Dsij
Dsij ¼ 1

Literbest
þ f

�
ð3Þ

Where q is the pheromone evaporation coefficient, and Dsij represents the pher-
omone increment on subpath i; jð Þ in the iteration, and Literbest is the length of the best
route of the iteration, and f is the pheromone increment of the selected subpath gen-
erated by subpath regulation strategy.

3 SPB-ACO with a Subpath-Based Pheromone Modification
Strategy

Ant colony usually achieves a valid solution through iterative competition of the ant
individuals from the same generation colony. They get the heritage information
between different generations. It makes the experience of the previous generation of
ants can guide the successive ants’ searching behaviors, which makes the ants focus
gradually on the optimal solution arcs with a great probability.

After a generation of ant colony building all paths, the pheromones of the subpaths
belong to the iterative optimal path are updated. At the same time, the r-rank subpaths
which more ants traversed are selected to deposit pheromones. The former usually
called iteration-best-update rule (IB rule), and the latter is called SPB rule. The two
rules together compose the subpath-based pheromone modification strategy of
SPB-ACO.

3.1 Rank Subpaths and Superimpose Pheromone

In the ant colony searching process, different ants construct different solution sequences,
but they always go through some same subpaths each other. In the ant colony’s overall
cognitive view, the more ants go through a subpath, the more important the subpath

An Improved Ant Colony Optimization 259

plays a role (more important role the subpath plays) in building a global optimal route.
Generally, a more important subpath should be reserved, because it has a greater pos-
sibility to serve as a best route in successive iterations. Thus, after all ants complete the
construction of solution sequence, the number of ants through a subpath can be counted
and used to generate a new pheromone increment, which can be used to regulate the
layout of pheromone.

After each iteration, rank the subpaths based on the number of rij representing the
traversed ants, and update the pheromones of the first l subpaths. The amount of
pheromone increment calculated in accordance with the following formula:

f ¼ Q; if rank� l
0; otherwise

�
ð4Þ

The pheromone increment calculation process based on subpath updating rule is
clearly demonstrated in the flow chart in the Fig. 1.

3.2 Adaptive Adjustment of Involved Subpaths

In subpath regulation strategy, the pheromones deposited on the involved subpaths
have a negative effect in the late stage, and it will have an influence on the conver-
gence. So, the involved subpaths should be gradually decreased the pheromone

Counter matrix intilization

Get a sub-route

Has a sub-route

Sort the sub-routes

Select the best sub-route
and update its pheromone

Reach the max

End

Count the ants
passing through

the sub-route

Yes

No

Yes

No

Fig. 1. The flow chart of pheromone update rule based on subpath regulation strategy

260 X. Deng et al.

increment. Meanwhile, the superimposed pheromone in the late stage has two sides. On
one hand it can concentrate the random search behaviors; on the other hand it has an
impact on speeding the convergence maybe resulted in a premature convergence.

For a better effect of involved subpaths’ pheromones on the algorithm’s perfor-
mance, an adaptive mechanism is established for pheromone update. In the early stage
of the algorithm, through more subpaths involved in pheromone superposition, it can
get better exploring ability, and makes the pheromone distribution is balanced in the
solution space and let the search behaviors more randomly. In the late stage, a less
amount of subpaths involved in pheromone superposition can speed the convergence.
Along with the iteration, the subpath regulation strategy has a following reationship:

l ¼ a� n� iteration ð5Þ

Where l is the number of the subpaths involved in the pheromone superposition in
the iteration, and a represents the scale factor of the subpaths that participate in the
pheromone update procedure, and n is the number of the cities, iteration is the index of
iteration. In order to keep the function of the subpath’s pheromone in later stage, l has a
minimum value.

Through the adaptive pheromone update mechanism, it can get a smooth transition
of pheromone distribution in the previous and later stage of the algorithm. Moreover,
the pheromone superposition of the subpaths is good for global exploring at the early
stage, and the effect becomes weaker in the late stage and help to get a mall range of
convergence.

4 Experimental Tests

In order to view the performance of the SPB-ACO algorithm, three tests are designed to
analyze the SPB-ACO algorithm, and to compare with ACS in the following envi-
ronment: MatLab 7.8.0 (R2009a), run in the Windows XP environment, computer of
HP540, CPU T5470 1.6 GHz, memory 1G.

4.1 Test of SPB Rule

Expriment 1: Iteration 50 times, recording the top r subpaths by the number of ants that
cross them, calculating the coincidence ratio of r subpaths in iter (>2) iteration and
iter-2 iteration in each iteration, which is called SSPSR.
Expriment 2: Iteration 50 times, recording iteration-best path and the top r subpaths by
the number of ants that cross them, calculating the coincidence ratio of r subpaths and
iteration-best path in each iteration, which is called ISPSR.
Expriment 3: Iteration 50 times, recording global-best path and the top r subpaths by
the number of ants that cross them, calculating the coincidence ratio of r subpaths and
global-best path in each iteration, which is called GSPSR.

An Improved Ant Colony Optimization 261

(a) r=38

(b) r=76

(c) r=114

(d) r=152

Fig. 2. Experiments of subpaths

262 X. Deng et al.

The r is set as 38,76,114 and 152, repeat the experiments, the results are shown in
Fig. 2.

As illustrated in Fig. 2, when r takes different value:

(1) In the process of convergence, SSPSR, ISPSR and GSPSR maintain relatively
stable values, for example, ISPSR = 0.25 when r = 38, ISPSR = 0.5 when
r = 76, ISPSR = 095 when r = 114;

(2) When the algorithm reaches the convergence state, SSPSR, ISPSR and GSPSR
show very large volatility until r = 152, after that, the volatility disappears, the
reason of which is that the base (denominator) is relatively big. This shows that
the sub-paths obtained by counting the number of cross ants are regular in ant
colony evolution. Regardless of the value of base number r, the r-subpaths are not
completely contained in the iterative optimal path or the global optimal path,
meanwhile, the r-subpaths could not completely contained the iterative optimal
path or the global optimal path. This paper defines the r-subpaths as the
r-best-subpaths and proposes an improved ant colony algorithm based on the
regularity above.

During the ant colony’s construction procedure, there are always some same
subpaths existed in the diversity solutions of different ant individuals. From the overall
cognition of the ant colony, the more ants pass through a subpath, the more important
the subpath is in the process of constructing the optimal complete path. We can count
the ants that cross a subpath, and then rank the subpaths. Further more, by investgating
the dynamic ranking process, the role of the subpaths in the whole ant colony evolution
process can be deeply explored.

4.2 Test of Comparing the SPB-ACO with ACS

ACS system will be implemented in the environment of this article, including the main
parameters:

(1) Using nearest neighbor search method to construct the initial path length l0.
(2) The initial pheromone s0 ¼ 1

n�l0
.

(3) Based on the global-best optimal update strategy.

The parameters of SPB-ACO is set as follows: a ¼ 2, b ¼ 1, q ¼ 0:1, a ¼ 2, the
number of ants m ¼ 20, q0 ¼ 0:4, Q ¼ 1

Literbest
, iteration ¼ 500, s0 is same to ACS.

The test does 1000 iterations, and test is repeated 20 times. The standard TSP test
problem eil76.tsp is used, and the best results for SPB-ACO and ACS can be seen in
Fig. 3.

In the Fig. 3, it shows that the SPB-ACO algorithm can converge to a relatively
optimal value, and the optimal solution is 548.13. ACS gets the optimal value 581.
What’s more, the SPB-ACO algorithm reaches convergence in the 75th iterations, and
remains optimization characteristic in the later stage and has a wonderful performance
in local optimization.

An Improved Ant Colony Optimization 263

5 Conclusion

At present, most ACO algorithms mainly pay attention to different solution structures,
pheromone update strategies and the initial state of ant colony to improve the global
exploring capability and convergence. However, it is difficult to achieve the two
characteristics at the same time. This paper summarized the classical ant algorithms and
their pheromone models, and discussed why the ant algorithms prone to premature
convergence. After that, it introduced a subpath-based modification strategy to opti-
mizing the process of constructing optimal path, and then proposed a new ACO
algorithm called SPB-ACO, which provides a global pheromones update mechanism.
The adaptive mechanism enabled the algorithm to obtain a compromise between the
exploring ability and the exploiting ability.

However, the paper didn’t establish a more precise mathematical model to describe
the adaptive adjustment mechanism. So we will to do more experiments and give a
more effective improvement in the near future.

(a) SPB-ACO algorithm

(b) ACS algorithm

Fig. 3. Two results for SPB-ACO and ACS

264 X. Deng et al.

References

1. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In:
Proceedings of the 1st European Conference on Artificial Life, Paris, pp. 134–142 (1991)

2. Stützle, T., Hoos, H.H.: The MAX-MIN ant system and local search for the traveling
salesman problem. In: Back, T., Michalewicz, Z., Yao, X. (eds.) Proceedings of the 1997
IEEE International Conference on Evolutionary Computation (ICEC 1997), pp. 309–314
(1997)

3. Bullnheimer, B., Hartl, R.F., Strauss, C.: A new rank-based version of the ant system: a
computational study. Central Eur. J. Oper. Res. Econ. 7(1), 25–38 (1999)

4. Huang, L., Wang, K., Zhou, C., et al.: Hybrid approach based on ant algorithm for solving
traveling salesman problem. J. Jilin Univ. (Sci. Ed.) 40(4), 369–373 (2002)

5. Hao, J., Shi, L., Zhou, J.: An ant system algorithm with random perturbation behavior for
complex TSP problem. Syst. Eng.-Theory Pract. 9, 88–91 (2002)

6. Cheng, C.-B., Mao, C.-P.: A modfied ant colony system for solving the travelling salesman
problem with time windows. Math. Comput. Model. 46, 1225–1235 (2007)

7. Yang, J., Shi, X., Marchese, M., et al.: An ant colony optimization method for generalized
TSP problem. Prog. Nat. Sci. 18, 1417–1422 (2008)

8. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Trans.
Syst. Man Cybern.-Part B. Also available as Technical report TR/IRIDIA/2003–03, IRIDIA,
Universit Libre de Bruxelles, Belgium (2003)

9. Gambardella, L.M., Dorigo, M.: Ant-Q: a reinforcement learning approach to the traveling
salesman problem. In: Proceedings of the 12th International Conference on Machine
Learning, pp. 252–260 (1995)

10. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the
traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

11. Deng, X., Zhang, L., Lin, H., et al.: Pheromone mark ant colony optimization with a hybrid
node-based pheromone update strategy. Neurocomputing (in press). 10.1016/j.neucom.2012.
12.084

12. Geng, J.Q., Weng, L.P., Liu, S.H.: An improved ant colony optimization algorithm for
nonlinear resource-leveling problems. Comput. Math. Appl. 61, 2300–2305 (2011)

An Improved Ant Colony Optimization 265

http://dx.doi.org/10.1016/j.neucom.2012.12.084
http://dx.doi.org/10.1016/j.neucom.2012.12.084

Decentralized Congestion Control in Random
Ant Interaction Networks

Andreas Kasprzok1(B), Beshah Ayalew1, and Chad Lau2

1 Clemson University International Center for Automotive Research,
4 Research Drive, Greenville, SC 29607, USA

akasprz@clemson.edu
2 Harris Corporation, 2400 Palm Bay Rd NE, Mailstop HTC-5S,

Palm Bay, FL 32905, USA

Abstract. Interaction networks formed by foraging ants are among the
most studied self-organizing multi-agent systems in nature that have
inspired many practical applications. However, the vast majority of prior
investigations assume pheromone trails or stigmergic strategies used by
the ants to create foraging behaviors. We first review an ant network
model where the direction and speed of each ant’s correlated random
walk are influenced by direct and minimalist interactions, such as anten-
nal contact. We incorporate basic ant memory with nest and food com-
passes, and adopt a discrete time, non-deterministic forager recruitment
strategy to regulate the foraging population. The paper’s main focus
is on decentralized congestion control and avoidance schemes that are
activated with a quorum sensing mechanism. The model relies on indi-
vidual ants’ ability to estimate a perceived avoidance sector from recent
interactions. Through simulation experiments it is shown that a random-
ized congestion avoidance scheme improves performance over alternative
static schemes.

1 Background

Ants and other social insects exhibit complex problem solving capabilities in
groups despite the limited capabilities of the individual insect/agent. They can
share information by secreting pheromones into the environment, which can
later be picked up by other ants. This mechanism of communication through
the environment is referred to as stigmergy and is the focus of a multitude of
algorithms and heuristics such as ant colony optimization or ACO [3]. Similar
algorithms have since been applied to many optimization problems such as the
traveling salesman problem (TSP) [21] to network routing and scheduling [4],
protein folding [20] and others [13,18].

Ants can also communicate directly by exchanging hydrocarbons on anten-
nal contact. In habitats unsuited for environmental markers, ants like Pogono-
myrmex barbatus and Lasius Niger instead rely on encounter rates with fellow
ants for navigational purposes: by counting interactions, these ants are able to
discern basic information about distance to the nest or points of interest as well
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 266–276, 2017.
DOI: 10.1007/978-3-319-61824-1 29

Decentralized Congestion Control in Random Ant Interaction Networks 267

as initiate behavioral changes in the case of nest migration. The ant species
Temnothorax albipennis [17] uses encounter rates to choose new nesting sites:
when enough ants congregate at a certain site, increasing encounter rates above
a certain threshold and signaling a consensus [8], individual ants change from
nest searching to migration. This mechanism is referred to as quorum sensing
[16] and is used for similar purposes in honey bees [19] and the bacteria V. har-
veyi [14]. A good discussion of the non-deterministic, yet resilient and robust
characteristics of quorum sensing are summarized in [11].

In this paper, we briefly describe a microscopic model for ants that use
encounter rates for the purposes of navigation and congestion avoidance. Many
aspects of the model are discussed in further detail in our journal paper [12] and
are inspired by the detailed descriptions of ant interaction networks by biologist
Gordon [10]. Here, we specifically focus on decentralized congestion control by
first implementing the quorum sensing mechanism to congestion control instead
of colony migration. Each ant is considered to also estimate the perceived center
of, and sector around, the congestion when detecting a concentration of ants
above the quorum threshold. Three possible implementations of a decentralized
congestion control scheme are proposed and evaluated. To regulate the foraging
ant population, we adopt the recruitment model proposed by Gordon [15], where
the rate of spawning of the ants from the nest is related to the rate of return of
food bearings ants.

This work is motivated by possible applications of ant-inspired decentral-
ized congestion control that could use minimalist direct communication with-
out using external infrastructure or other analogues of stigmergy. Congestion
control problems are prevalent in the management of transportation networks
[5], data networks [7], and other multi-agent resource/information dissemina-
tion/consumption applications, such as social networks [22].

The rest of this paper is organized as follows: Sect. 2 reviews the modeling
assumptions and the navigation scheme used by each ant, while Sect. 3 details the
decentralized congestion control scheme. Section 4 briefly reviews the recruitment
model adopted and Sect. 5 presents results and discussions focusing on variations
of the congestion control scheme. Section 6 concludes the paper.

2 Navigation

The ants’ (the agents’) movement across a 2-dimensional plane is modeled as
a correlated random walk updating at fixed time steps. During their move-
ment, agents may physically contact other agents, which triggers an interac-
tion during which the ants exchange whether or not they are carrying food,
and, if they are, their current heading. However, the simple occurrence of the
encounter/interaction is the most important information for the agents. The
change in heading at each step, θ, is sampled from the von Mises distribution
[1] in Eq. 1,

f(θ) = M(θ;μ;κ) =
1

2πI0κ
eκcos(θ−μ) (1)

268 A. Kasprzok et al.

where κ is the concentration parameter. It varies the dispersion of the distrib-
ution: at κ = 0, the distribution is uniform; when κ is large, the distribution
becomes concentrated about its mean μ. I0 denotes the modified Bessel equa-
tion of the first kind. This distribution is commonly applied to model a wide
range of biological motions including those of ants [6]. Note that θ denotes the
change in the ant’s heading direction from step i to step i + 1. We model each
ants’ response to recent encounter with other ants or interactions by updating
its concentration parameter with the following equation:

κ(t) = κmin +
n∑

i=1

Ae−T (t−ti) (2)

where n is the number of interactions and ti is the time of each interaction’s
occurrence. A and T are parameters, while κmin denotes the minimum concen-
tration parameter of an ant. The purpose of the latter is to retain an amount of
directionality in the absence of interactions, since otherwise κ = 0 would yield a
uniform distribution.

The speed of each ant is also made directly dependent on the number of
recent interactions it experiences. This is modeled as follows:

v(t) = v +
n∑

i=1

Ie−λI(t−ti) −
n∑

i=1

Re−λR(t−ti) (3)

where v is a default or nominal speed for an ant. The two added terms represent,
respectively, the impetus (I) to go faster due to more interactions, and the resis-
tance (R) to the motion from physical impediments of more ants. The impetus
parameters I and λI are made smaller than the resistance parameters R and λR

in order to achieve an initial decrease in speed followed by a prolonged minute
increase. The weighted sum of all (recent n) interactions experienced by each
ant at time ti is then added to the default speed v.

The goal of each foraging ant is to acquire food and return to the nest from
which it is spawned. Using the mechanisms described above, the ants travel
across the search space. When an ant encounters food or decides to return to
the nest after a certain time of foraging unsuccessfully it does so using a Nest
Compass. In nature, ants continuously integrate their walk in order to maintain
an internal vector of the nests location [23]. We integrate this behavior into our
model using a second von Mises distribution whose mean points in the direction
of the nest relative to the agent’s current heading. This is superimposed onto
the ant’s correlated random walk. The result is then normalized and used for
heading decisions. While an ant is returning to the nest, interactions are used to
modify the Nest Compass instead of the random walk: as the ant travels closer
to the nest, it is more likely to encounter other ants and in return reaffirmed in
its general direction. When a foraging ant encounters an ant carrying food, it
sets its heading to the opposite of the encountered ant’s heading before making
its next decision. The assumption made is that the food source will be located
in the general area opposite to where the food-carrying ant is headed, since its

Decentralized Congestion Control in Random Ant Interaction Networks 269

Nest Compass urges it to return. Similar to the Nest Compass, ants who have
previously found food and successfully returned it to the nest possess a Food
Compass, which is modeled via an additional von Mises distribution added to
the random walk that points to the location at which food has recently been
found by the ant. With the above model components, given a certain number of
food-bearing and foraging ants, if the food source is concentrated in an area, a
interaction chain is eventually formed where ants influence each other in their
relative directions and speeds.

3 Decentralized Congestion Avoidance Strategy

While the navigational attributes mentioned above enable the ants/agents to
successfully forage in open environments, constricted scenarios such as those
incorporating corridors and closed spaces greatly hinder the ants ability to for-
age: they get stuck in corners, are often unable to move past each other when
interacting along walls, and may be unable to return to the nest depending on
the geometry of the environment. Additionally, congestion in bottlenecks may
cause a standstill for the colony and total loss of productivity.

We first describe how we model the behavior near walls or obstacles. When
an ant contacts an obstacle other than an ant, the component of its heading per-
pendicular to the wall is nullified and the ant slows down, covering less distance.
Additionally, we have found in computational experiments that this behavior
encourages the coalescence of groups of ants along the walls; often times ants
keep trying to move into opposite directions yet get stuck as they are unable to
efficiently move past each other. To combat this behavior, we endow ants to avoid
contact with a wall after an initial encounter with it. All directional changes that
would move an ant closer to the direction of an encountered wall are avoided
for a short time frame. This avoidance region is taken to be a nearly 178◦ sec-
tor directly perpendicular to the direction of the encountered wall. This simple
behavior assumes that the wall extends a certain distance in either direction,
but is found to increase the colony’s productivity.

Away from obstacles, a decentralized congestion control scheme is imple-
mented starting with the quorum sensing mechanism: when ants sense a high
density of other ants around them, indicated by the concentration parameter
κ reaching or exceeding a threshold value TC , the ants change their behavior
to prioritize the avoidance of further interactions [9]. To model this, we assume
each ant to not only count recent interactions but also the directions from which
they occurred. Then, each ant estimates the average direction to the center of
the congestion using:

θC = atan(
∑m

i=1 sin(θi)∑m
i=1 cos(θi)

) (4)

where θC is the heading pointing to the perceived center of congestion and θi the
direction of contact of a given recent interaction. Higher numbers of interactions
enables the ant to more precisely estimate the center of congestion, as well as
the level of congestion. Once the ant estimates the direction to the center of the

270 A. Kasprzok et al.

congestion, it creates an avoidance area/sector of a certain number of degrees
equally distributed on either side of the congestion direction vector. This sector
is then excluded from possible headings that the ant might choose at its next
decision step, in order to avoid the congested area. The probabilities of the
remaining directions are normalized and then used for further heading decisions.
This behavior is illustrated in Fig. 1, where a foraging ant is avoiding a cluster
of ants surrounding it.

The size of the avoidance area can be made directly dependent on the con-
centration parameter. This is a notion consistent our model of the formation of
the ant network formed by interactions.

βC = XC ∗ κ (5)

where βC is the size of the congestion area, XC is a scaling constant, and κ
is the concentration parameter. When the avoidance area is dependent on the
number of recent interactions, a small amount of congestion will result in less
evasive action which leads to a less drastic change in ant behavior and higher
throughput in moderately traveled bottlenecks.

x axis

y axis

Fig. 1. An ant (center) estab-
lishes its avoidance area after
several encounters with other
ants

Instead of the static estimates of the conges-
tion area sector offered above or the one varying
with the concentration parameter, we also con-
sider a randomized estimate. This can be done
by using the von Mises distribution with a mean
estimated as above and a concentration parame-
ter κ of the random walk (indicator of encounter
rates). By looking up the direction of the conges-
tion’s center as perceived by the agent from this
distribution, we introduce some randomness to
prevent standstills which may occur when groups
of ants traveling in opposite directions encounter
each other in corridors or bottlenecks. We shall
refer to this case as randomized variable sector in
the results below.

For an in-depth discussion on the decision loop of the agents, see [12].

4 Recruitment

The recruitment of foragers in the nest is abstracted using a discrete time recruit-
ment model proposed by Prabhakar et al. [15]:

αn = max(αn−1 − qDn−1 + cAn − d, α), α0 = 0 (6)

Dn ∼ Poisson(αn) (7)

where αn is the rate at which ants are spawned from the nest at time n, An is the
number of returning, food-bearing foragers at time n, and the actual number of

Decentralized Congestion Control in Random Ant Interaction Networks 271

ants departing the nest, Dn, is set to a Poisson random variable using the spawn
rate as its mean. q, c, and d are parameters for the variables already discussed,
while α denotes the minimum spawn rate of the nest.

Ants that have previously found food and therefore possess a Food Compass
are recruited first since according to Gordon [10], a relatively small amount of the
foraging population does a majority of the work. The parameters of Eqs. 6 and
7 are tuned as to recruit ants at a rate similar to the number of ants returning
plus the minimum rate. This leads to steady growth of the population until the
food source is fully consumed.

5 Results and Discussion

We implemented the model described above in the modeling environment Unity t
3D using C#. Unity’s built-in physics system was used for collision detection
between ants as well as their navigation around each other and obstacle. Values
of important parameters used for generating the simulation results presented in
this section are listed in our journal paper [12]. Each experiment was executed
100 times.

We consider two geometric scenarios to primarily evaluate the decentralized
congestion avoidance scheme. Scenario 1, shown in Fig. 2, depicts the nest area
and food area connected by 3 paths. This was chosen to encourage interactions
and create congested areas. It is a version of the double bridge experiment [2],
though with two longer routes instead of one. The direct route between the two
areas will be most traveled due to the ants’ Nest Compass. We hypothesized
that a correctly working congestion avoidance strategy would divert a number
of ants from the shortest paths to the two alternate paths. Scenario 2 adds two
additional pathways at the north and south ends of scenario 1. We run all tests in
this scenario as well in order to evaluate the scalability of our strategy. The task
in all experiments is to collect 180 food items arranged in a 3 × 3 square in the
back of the food area. The results for scenario 2 were found to be in agreement
with observations from scenario 1, and most of its results were therefore not
included here, except where noted (discussion of Table 1), for lack of space.

Fig. 2. Scenario 1

Figure 3a shows the task completion times on
scenario 1 when using three static sectors (with
deterministically estimated perceived center, Eq. 4;
and sectors of 120◦, 180◦, and 240◦), varying the
congestion area/sector in relation to the concen-
tration parameter (Eq. 5) or randomized variable
sector. It can be seen that the variable and ran-
domized sectors lead to improved task completion
times by about 40 s. Furthermore, there appears to
be only minute differences between the results for
the experiments using static congestion avoidance
sectors.

More information about the interactions in the network under the differ-
ent congestion avoidance settings can be gleaned from Fig. 3b, which shows the

272 A. Kasprzok et al.

Fig. 3. Experimental data comparing several congestion avoidance strategies

history of the average concentration parameter of the network during the exper-
iment. The concentration parameter is a direct result of the recent interactions
experienced by each ant. While a wider static congestion avoidance area setting

Decentralized Congestion Control in Random Ant Interaction Networks 273

Table 1. Mean Avoidance Sector sizes for both scenarios and congestion avoidance
strategies

Scenario Avoidance strategy Mean avoidance sector (◦)

1 Variable 243.3

Randomized variable 232.6

2 Variable 229.5

Randomized variable 214.0

results in less interactions/second on average, the ants in these experiments are
unable to resolve the congestion created by the constricted pathways: the rate of
interaction increases even after task completion (240 s, in Fig. 3a). Varying the
avoidance area using κ shows a reduced trend, yet the number of interactions
is still steadily increasing with time. However, randomizing the perceived center
of congestion seems to allow the ants to move past each other in the congested
pathways and reduce both the number of interactions which is reflected in the
concentration parameter.

Table 1 references the average sizes of congestion avoidance sectors for both
scenarios and the two congestion avoidance strategies using a variable sector
size. The size of the congestion avoidance sector for each ant in these experi-
ments was set to 2*κ, or TC = 2. While the difference between the variable and
randomized variable sectors are small relative to how differently they perform,
the results do support the observations made earlier that the randomized vari-
able strategy leads to less interactions and consequently smaller concentration
parameters, thereby reducing the size of the congestion avoidance sector and
increasing the efficiency of the network via a faster task completion time as in
Fig. 3a. Additionally, the increased number of pathways in scenario 2 compared
to scenario 1 leads to less interactions as the ants are able to efficiently spread
out across the increased search space in scenario 2.

Another way to evaluate the effectiveness of each congestion avoidance strat-
egy or setting might be to measure how well it diffuses ants across the environ-
ment. To this effect, Fig. 3c illustrates the average κ for the agents with respect
to their distance from the nest. What this data shows is that a high congestion
avoidance angle is beneficial in avoiding interactions, lowering the concentration
parameter and indicating even diffusion. The randomized variable strategy per-
forms poorly by comparison, yet we can conclude that even distribution does not
necessarily indicate higher throughput, supported by Fig. 3b. Instead the higher,
static congestion avoidance sectors simply leads to a standstill, restricting indi-
vidual ants’ mobility and confining them to their immediate areas.

Figure 3d illustrates the foraging population of the simulated ant colony over
the length of the experiment. Ants are spawned at the minimum rate according
to the recruitment algorithm until the first ants return with food around 100 s
into the simulation, at which point additional ants are spawned to keep the
population growing at a steady pace while food is available. Once the food source

274 A. Kasprzok et al.

has been consumed, the population should stabilize as foraging ants will return
to the nest after their 180 s timeout. The population only stabilizes in the case of
the randomized variable congestion avoidance area, indicating that in the other
cases ants are unable to return to the nest, an observation that is also indicated
by Fig. 3b. This confirms our conjecture above that the randomized variable
sector gives a realistic decentralized congestion control scheme for the random
interaction network created by the foraging ants.

A visual comparison of this trend is shown in Fig. 4, comparing coverage in
scenario 1 between a static 120◦ avoidance sector and a randomized variable
congestion avoidance sector. Note how most of the activity in (a) is confined to
the starting area while (b) shows a more even distribution of activity. This visual
approximation is supported by Fig. 3e, which shows that congestion avoidance
sectors of size 180◦ and 240◦ as well as the randomized variable sector lead to
more even tile coverage compared to the smaller 120◦ sector and the variable
sector size.

(a) A static 120◦ avoidance sector (b) Randomized variable avoidance sector

Fig. 4. Examples of cumulative coverage maps for different congestion avoidance
strategies

6 Conclusions

In this paper, we first reviewed the construction of a model for ants that do
not use stigmergy, but instead rely on encounter rates for forming an interaction
network that results in colony behavior. We then proposed and evaluated three
versions of decentralized congestion control/avoidance strategies. All versions are
based on endowing each ant to estimate a perceived center of congestion from
its recent interactions. The main observation made from our many experiments,
not all included herein, is that the randomized variable sector decentralized con-
gestion control approach is shown to be effective in alleviating congested areas
compared to its static counterparts. This model seems consistent with biologists’
observations of the generally random ant decisions that lead to the formation
of the overall interaction network. We are pursuing applications of these obser-
vations to practical decentralized radio networks and inter-vehicular networks

Decentralized Congestion Control in Random Ant Interaction Networks 275

in intelligent transportation systems. Scenarios where roadside units, cell tow-
ers, or other infrastructure (analogues to stigmergy) are not readily available or
not yet implemented are especially attractive applications of the decentralized
congestion control strategy.

References

1. Codling, E.A.: Biased random walks in biology. Ph.D. thesis, The University of
Leeds (2003)

2. Deneubourg, J.L., Goss, S.: Collective patterns and decision-making. Ethol. Ecol.
Evol. 1(4), 295–311 (1989)

3. Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politec-
nico di Milano, Italy (1992)

4. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Book, Bingley (2004)
5. Downs, A.: The law of peak-hour expressway congestion. Traffic Q. 16(3), 393–409

(1962)
6. Fink, G.A., Haack, J.N., McKinnon, A.D., Fulp, E.W.: Defense on the move: ant-

based cyber defense. IEEE Secur. Priv. 12(2), 36–43 (2014)
7. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance.

IEEE/ACM Trans. Netw. 1(4), 397–413 (1993)
8. Franks, N.R., Stuttard, J.P., Doran, C., Esposito, J.C., Master, M.C., Sendova-

Franks, A.B., Masuda, N., Britton, N.F.: How ants use quorum sensing to estimate
the average quality of a fluctuating resource. Sci. Rep. 5 (2015). Article no. 11890.
doi:10.1038/srep11890

9. Gordon, D.M., Paul, R.E., Thorpe, K.: What is the function of encounter patterns
in ant colonies? Anim. Behav. 45(6), 1083–1100 (1993)

10. Gordon, D.: Ant Encounters: Interaction Networks and Colony Behavior. Primers
in Complex Systems. Princeton University Press, Princeton (2010)

11. Hamar, J., Dove, R.: Quorum sensing in multi-agent systems. INSIGHT 15(2),
35–37 (2012)

12. Kasprzok, A., Ayalew, B., Lau, C.: A microscopic model for multi-agent interaction
networks without stigmergy. Swarm Intelligence (2016, under review)

13. Leitão, P., Barbosa, J., Trentesaux, D.: Bio-inspired multi-agent systems for recon-
figurable manufacturing systems. Eng. Appl. Artif. Intell. 25(5), 934–944 (2012)

14. Liu, X., Zhou, P., Wang, R.: Small RNA-mediated switch-like regulation in bacte-
rial quorum sensing. IET Syst. Biol. 7(5), 182–187 (2013)

15. Prabhakar, B., Dektar, K.N., Gordon, D.M.: Anternet: the regulation of harvester
ant foraging and internet congestion control. In: 2012 50th Annual Allerton Con-
ference on Communication, Control, and Computing (Allerton), pp. 1355–1359
(2012). iD: 1

16. Pratt, S.C.: Quorum sensing by encounter rates in the ant temnothorax albipennis.
Behav. Ecol. 16(2), 488–496 (2005)

17. Pratt, S.C., Mallon, E.B., Sumpter, D.J., Franks, N.R.: Quorum sensing, recruit-
ment, and collective decision-making during colony emigration by the ant leptotho-
rax albipennis. Behav. Ecol. Sociobiol. 52(2), 117–127 (2002)

18. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application.
In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30552-1 2

19. Seeley, T.D., Visscher, P.K.: Quorum sensing during nest-site selection by honeybee
swarms. Behav. Ecol. Sociobiol. 56(6), 594–601 (2004)

http://dx.doi.org/10.1038/srep11890
http://dx.doi.org/10.1007/978-3-540-30552-1_2

276 A. Kasprzok et al.

20. Shmygelska, A., Aguirre-Hernández, R., Hoos, H.H.: An ant colony optimization
algorithm for the 2D HP protein folding problem. In: Dorigo, M., Caro, G., Sam-
pels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 40–52. Springer, Heidelberg
(2002). doi:10.1007/3-540-45724-0 4

21. Stützle, T., Dorigo, M.: ACO algorithms for the traveling salesman problem.
In: Evolutionary Algorithms in Engineering and Computer Science, pp. 163–183
(1999). ISBN: 0471999024

22. Tian, Y.P., Liu, C.L.: Consensus of multi-agent systems with diverse input and
communication delays. IEEE Trans. Autom. Control 53(9), 2122–2128 (2008)

23. Wohlgemuth, S., Ronacher, B., Wehner, R.: Ant odometry in the third dimension.
Nature 411(6839), 795–798 (2001)

http://dx.doi.org/10.1007/3-540-45724-0_4

An Energy-Saving Routing Strategy Based
on Ant Colony Optimization in Wireless Sensor

Networks

Wei Qu(&) and Xiaowei Wang

Shenyang Normal University, Shenyang 110034, China
quweineu@163.com

Abstract. Focus on the problem of finding the optimal path in wireless sensor
networks (WSN), considering energy saving requirement, an energy-saving
routing strategy based on ant colony optimization (DERS-ACO) is proposed.
Our strategy designs the optimization rule of dynamic state transformation, and
introduces the mechanism of rewards and penalties which further saves the
search time and increase the probability of optimal path search, and prolongs
lifetime of network greatly. Simulation showed that the searching probability of
a global for the optimal solution is increased, and the global optimal solution is
obtained quickly and effectively, furthermore the energy consumption of the
nodes is saved, which will prolong the lifetime of network greatly.

Keywords: Wireless sensor networks (WSN) � Ant colony optimization
(ACO) � Optimization rule of dynamic state transformation � Mechanisms of
rewards and penalties

1 Introduction

Wireless Sensor Networks (WSN) is widely used in military and civilian fields [1–3].
WSN works in unattended monitoring environment generally, the network node battery
replacement cost is higher, so the routing design focus more on minimizes the energy
consumption of nodes [4–6]. How to find the shortest path for communication for
nodes in a shortest time is our first priority to consider. The ant colony algorithm
(ACO), which was first proposed by M Dora-go in 1991, is a typical method to solve
this problem, and it has been broadly studied in recent years [7–9]. In wireless sensor
networks, single nodes do not need to have all the information about the location of all
other nodes, and only need to save the nearby nodes’ in the network. However, the
algorithm of ACO also has some drawbacks, such as application of convergence too
fast and easily fall into local optimal solution, resulting in the whole optimal solution is
ignored. In this paper, an energy-saving routing strategy based on ACO (DERS-ACO)
is proposed. Through the carefully design of dynamic state transfer rule, the search
probability of the best path node is realizable, and the network surviving time is
prolonged.

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 277–284, 2017.
DOI: 10.1007/978-3-319-61824-1_30

2 The Energy-Saving Routing Strategy Based on ACO

2.1 State Transition Optimization Rules

Early Probability Model of DERS-ACO. Let bi(t) represent the number of ants on
node i at time t, sij tð Þ represents the Information on path from node i to j at time t, and m
represents the total number of ants in ant colony. According to the information on each
path, ant k (k = 1, 2, 3, …, m) will decide its transfer direction during the movement.
Then it will record the node that ant k have just passed by Tabuk (k = 1, 2, 3,…, m), and
the set will dynamically adjust with the evolutionary process of Tabuk . PK

ij ðtÞ represents
state transition probabilities that ant k transfers from node i to j at time t.

PK
ij ðtÞ ¼

½sijðtÞ�a½gikðtÞ�b
P ½sisðtÞ�a½gisðtÞ�b

ð1Þ

gikðtÞ ¼
1
dij

ð2Þ

In formula (1), information factor is a, which reflects the relative importance of
pheromone accumulated during ant colony search process. If it is bigger, it is more
likely that ants will choose the path previously traveled, and the collaborative between
ants is stronger. Expect heuristic factor is b, and it reflects the relative importance of
heuristic information in guiding the ant colony search process. In formula (2), gikðtÞ is
heuristic function, and dij is distance between two neighbor nodes i and j. To ant k, if dij
is smaller, gikðtÞ is bigger, and PK

ij ðtÞ is bigger. Obviously, the heuristic function
represents the desired degree that ant transfers from node i to node j.

The information on path from node i to j at time tþ tn can be adjusted according to
the formula (3).

s tþ tnð Þ ¼ 1� qð Þ � s tð ÞþDsij tð Þ
Dsij tð Þ ¼

Pm

k¼1
Dsij;k tð Þ

8
<

:
ð3Þ

Dsij tð Þ ¼ Q tð Þ
Lk

ð4Þ

q represents pheromone evaporation coefficient, and 1-q represents pheromone
residual factor. To avoid the unlimited accumulation of information, q must be in the
range of [0,1). Dsij tð Þ represents the pheromone increment on path from node i to j in
this circle, and set its initial value is 0, that is Dsij tð Þ ¼ 0. Dsij;k tð Þ represents the
amount of information when ant k stays on the path rom node i to j at time t in this
circle. In formula (4), Q represents pheromone strength, and to some extent it affects
the convergence speed. Lk represents the total length that Ant k traverses in this cycle.

278 W. Qu and X. Wang

Late Probability Adjustment Rules of DERS-ACO. State transition optimization
rules design balance parameter q0 first in order to balance the relative importance
between “exploring” new paths and “using” the information that already exist. When
q[q0 explore the new path, and when q \q0 use the information that already exists
(q0 is a random number between 0 and 1). The design of q0 is important, and the value
of the state transition optimization rules designed q0 will dynamically adjust based on
the condition parameters in the iterative process. The designing of adjusting in state
transition optimization rules are as follows: Choose pheromones larger side when
algorithm starts running. After NC times iteration, in order to prevent falling into local
optimal solution, change the value of q0 and design a random function rad() to generate
a random number satisfying rand(min(pij) � rad � max(pij)). When pij � rad, node
i choose the next hop node j in order to open up a new path, expand the search space
and prevent the algorithm falling into local optimization. Finally in order to make the
algorithm converges to the global optimal solution, change the value of q0 again to be
more likely to choose pheromones largest side, until the running is over. In terms of a
and b, the state transition optimization rules designed the dynamic adjustment. It can
targeted solve the problem that algorithm is easy to fall into local optimal solution. The
state transition probabilities show that ants individual looking for the next node based
on the value of pheromone concentration and distance between nodes. Then a and b
respectively represent the relative emphasis of pheromone and distance during the
search. The state transition optimization rules design the dynamic adjustment mecha-
nism of a and b based on the stage where the Iteration is. Adjusted as follows:

(1) Initialize the value of q0, a and b according to the stage where the iteration is.
Use random function rad() to generate a random number and assign to q, and
0� q� 1. Initialization model is as formula (5).

q0 ¼
U ð0\NC\N0Þ
U0 ðN0\NC\N1Þ
U1 ðN1\NC\Nc maxÞ

8
<

:
ð5Þ

PK
ij tð Þ

saij tð Þgbik tð ÞP
sais tð Þgbis tð Þ q� q0

1
Ln

else

8
<

:
ð6Þ

N0 represents the iteration in first phase, N1 represents the iteration in second phase,
and Nc represents the iteration in local phase. Nc max is the maximum number of
iterations, and U, U0 and U1 are the value of varying q0.

(2) When q[q0, node i will randomly choose the next hop node in candidate node
set j[] in order to open up a new path. Otherwise, it will be decided according to
state transition probabilities and pheromone of the next hop. State transition
probability adjustment model is shown in formula (6), Ln represents the number
of neighbor node of node n.

An Energy-Saving Routing Strategy 279

2.2 The Reward and Punishment Mechanism

(1) When the current iteration t ¼¼ 1, pheromone concentration updates normally,
and the iteration of Dsij tð Þ between nodes rewards on the base of the original. That
is:

Dsij tð Þ ¼ Q=LðantÞ ð7Þ

LðantÞ represents the length of total path that the local ant has passed in an iteration.
(2) When the current iteration t� 2, record the length of shortest path Lall best in all

iterations from the beginning to last time, and reward or punish for the con-
centration of pheromones according to the length of the path. If the path length of
current meets Lnow � Lave Nc½ � (Lave Nc½ � is the avenue length of all the path in local
iteration), Dsij tð Þ between nodes will be rewarded based on the original according
to formula (7). If path length of current meets Lnow [Lave Nc½ �, Dsij tð Þ between
nodes will be punished based on the original according to formula (8). If path
length of current meets Lnow � Lall best, then Dsij tð Þ between nodes will be
rewarded based on the original according to formula (9).

Dsij tð Þ ¼ �Ck=LðantÞ ð8Þ

Dsij tð Þ ¼ NC � Cbestð Þ=LðantÞ ð9Þ

Ck represents the penalty parameter, and Cbest represents the reward parameter.

2.3 Implementation Steps of DERS-ACO

(1) Confirm the starting node S (non-beacon nodes), and find a beacon node D which
is the nearest node to S according to hop matrix from beacon nodes to unknown
nodes, and make S_hop represents the hop between them. The first node in Tabu
[](Tabu[] is Tabu list) assigned to S. And Tabu[] records the node number that m
ants sequentially passed.

(2) The initial value of Nc is set to 1, and take Nc times iteration.
(3) When the ant m begin routing (the initial value of m is 1), the initial value of hop

Tc that Tabu list has passed at present is 1.
(4) Starting from node S, puts the nodes that have passed at present into visited[],

and in the beginning set visited[] to the subscript of nodes from column one to
column Tc in row m in Tabu[] at present.

(5) In the nodes within communication range of S, put the index subscript of nodes
that the hop between beacon nodes D and itself is smaller than S_hop into J_tmp[].

(6) Choose the node index that has maximum difference with hop S, that is to say,
put the index subscript of nodes nearest beacon nodes D into j[] as an index of
pending hop.

280 W. Qu and X. Wang

(7) Adjust the probability model in late stage of DEAS-ACO. And according to
formula (5), determine the number of iterations at this time is in the early, mid or
end stage. Initialize the value of q0, a and b according to the stage where the
iteration is. Use random function rad () to generate a random number and assign
to q, and 0� q� 1.

(8) If q[q0, the node state transition probability p is all the same, and it will
randomly choose the next hop node in j[]. Otherwise, execute according to the
state transition adjustment probabilities formula (6), scilicet the next hop is
decided by pheromone concentration. Put the next hop that is chosen into
to_visit, and put to_visit into row m column Tc++ in Tabu[].

(9) Determine whether the node of to_visit is beacon node D or not. If it is, put m to
m + 1, and return to Step 3. But if not, put S to to_visit, and return to Step 4.

(10) After the ants have searching path over, calculate the total length L(ant) of path of
each ant.

(11) Record the length of best path in this iteration, and put it into L_best[]. Record
the best path in this iteration, and put it into R_best[]. Record the average path
length in this iteration, and put it into L_ave[].

(12) Reset pheromones variety matrix Dsij tð Þ in this iteration.
(13) In the process of searching, compare the path that is found to the average path

length in this iteration and the past optimal solution. If it is better than the past
optimal solution, take different rewards. But if not, punish. If Nc ¼¼ 1, the
pheromone concentration will normally update based on formula (7). But if not,
record the shortest path length Lall best in all iterations from the beginning to the
last, and reward or punish pheromone concentration according to length of the
path. If the path length of local ant meets Lnow � Lave Nc½ � (Lave Nc½ � is the average
length of all the path in local iteration), reward the parameter of Dsij tð Þ between
nodes according to formula (7); if the path length of local meets Lnow [Lave Nc½ �,
punish Dsij tð Þ between nodes on the original according to formula (8). If the path
length of local meets Lnow � Lall best, reward Dsij tð Þ between nodes on the bass of
original according to formula (9).

(14) According to pheromones updating formula update pheromone matrix Dsij tð Þ.
(15) Clear Tabu list Tabu[]. Put Nc þ 1 to Nc.
(16) Determine whether Nc is lager than Nc max. If it is, finish the iteration, and if

not, return to Step 2.

3 Simulation

Using MATLAB simulation platform, test and verify the node path selection perfor-
mance based on the designed strategy of DERS-ACO and the algorithm of ACO.

We can see from Table 1 that the final best path length obtained by the strategy of
DERS-ACO in every randomized trial remains stable, and they keep on the value of
49.4713. This is mainly due to that the next generation is influenced seriously by the
previous generation with the algorithm of AOC, so it is easy to fall into local optimum.

An Energy-Saving Routing Strategy 281

3.1 The Iterations Performance of First Time to Find the Best Path

In Table 2 the minimum iterations of first time to find the best path with the strategy of
DERS-ACO in every randomized experiment keep stable near the value of 3, and the
volatile is less. However, the average minimum iterations of the best path found by the
algorithm of ACO have greater volatility, and there will be no regular pattern. It can
clearly be seen that the strategy of DERS-ACO is stable that will be beneficial to
prolong the lifetime of the network.

3.2 The Average Length of the Best Path Performance During Nc Times
Iterations

We can see from Fig. 1 that there is a lot difference between the average length of best
path and the average length offinal best path duringNc times iterations, and the difference
gap with the strategy of DERS-ACO is acquire to 13% of that of the algorithm of ACO.

Table 1. The final best path length performance

DERS-ACO ACO

Random value1 49.4713 49.4713
Random value2 49.4713 49.4713
Random value3 49.4713 49.4713
Random value4 49.4713 49.4713
Random value5 49.4713 49.4713
Random value6 49.4713 49.5390
Random value7 49.4713 49.4713
Random value8 49.4713 49.5390
Random value9 49.4713 49.4713
Random value10 49.4713 49.5390
Average value 49.4713 49.4916

Table 2. The table of iterations performance of first time to find the best path

DERS-ACO ACO

Random value1 4 1
Random value2 4 1
Random value3 1 1
Random value4 3 47
Random value5 2 4
Random value6 3 3
Random value7 3 13
Random value8 1 8
Random value9 4 2
Random value10 5 23
Average value 3 10.3

282 W. Qu and X. Wang

3.3 The Performance of the Path Avenue Length and the Best Path
Length that Every Ant Has Passed During 100 Times Iterations

In Fig. 2, there is a period of time that the routing result keep higher than the other, and
are mainly concentrated in the middle part of the optimization during times iterations in
finding the best iteration path with the strategy of DERS-ACO. This is mainly due to
the designing of the new path of exploration added in the middle of routing in the
strategy of DERS-ACO.

4 Conclusions

In this paper, focus on the problem of finding optimization goal of avoiding falling into
local optimal solution and speeding up the search, the problem of finding the optimal
path in the wireless sensor networks is studied, and an energy-saving routing strategy
based on ant colony optimization (DERS-ACO) is proposes. The theoretical analysis
and experimental data show that this strategy effectively expands the search capabilities

Fig. 1. The performance of difference between best paths to the average length during Nc times
iterations and final best path

0 10 20 30 40 50 60 70 80 90 100
48

50

52

54

56

58

60

62
average distance & shortest distance

Fig. 2. The performance of the path avenue length and the best path length that every ant has
passed during 100 times iterations with the strategy of DERS-ACO.

An Energy-Saving Routing Strategy 283

of the new node, increases the searching probability of the new node, and achieves a
rapid and effective global searching through dynamic state transition rule designing.
Furthermore, by the designing of the mechanism of rewards and penalties, the strategy
will save time while further increasing the probability of the best path search, which
effectively reduce the energy consumption and prolong the lifetime of the network.

Acknowledgements. This work is supported by shenyang normal university science and
technology research project of 2016 funding, No: XNL2016010, and liaoning province education
science project of 2016 funding, No: JG16DB406.

References

1. Qu, W., Lin, H., Wang, J.K.: A dynamic energy-efficient routing scheme in Wireless Sensor
Networks. In: ICIC-EL, vol. 8, no. 11, pp. 3113–3119 (2014)

2. Karimi, M., Naji, H.R.: Optimize cluster-head selection in wireless sensor networks using
Genetic Algorithm and Harmony Search Algorithm. In: 20th Iranian Conference on Electrical
Engineering, pp. 706–710 (2012)

3. Zhang, G.Y., Tang, B., Sun, J.G., Li, J.N.: Ant colony routing strategy based on distribution
uniformity degree for contentcentric network. J. Commun. 36(6), 2015126-1–2015126-12

4. Qu, D.P., Wang, X.W., Hang, M.: An aware ant routing algorithm in mobile peer-to-peer
networks. Chin. J. Comput. 36(7), 1456–1464 (2013)

5. Al-ali, R., Rana, O., Walker, D.W., et al.: G-QoSM: grid service discovery using QoS
properties. Comput. Inform. 21(4), 363–382 (2012)

6. Amaldi, E., Capone, M., Filippini, I.: Design of wireless sensor networks for mobile target
detection. IEEE-ACM Trans. Netw. 20(3), 784–797 (2012)

7. Karaboga, D., Okdem, S., Ozturk, C.: Cluster based wireless sensor network routing using
artificial bee colony algorithm. Wirel. Netw. 18(7), 847–860 (2012)

8. Okdem, S., Ozturk, C., Karaboga, D.: A comparative study on differential evolution based
routing implementations for wireless sensor networks. In: Innovations in Intelligent Systems
and Applications (INISTA), pp. 1–5 (2012)

9. Colorni, A., Dorigo, M., Maniezzo, V., et al.: Distributed optimization by ant colonies. In:
Proceedings of European Conference on Artificial Life, Paris, pp. 134–142 (1991)

284 W. Qu and X. Wang

Pheromone Inspired Morphogenic Distributed
Control for Self-organization of Autonomous

Aerial Robots

Kiwon Yeom(B)

Department of Intelligent Robotics, Youngsan University,
288 Joonam-ro, Yangsan, South Korea

pragman@gmail.com

Abstract. A central issue in distributed formation of swarm is enabling
robots with only a local view of their environment to take actions that
advance global system objectives (emergence of collective behavior). This
paper describes a bio-inspired control algorithm using pheromone for
coordinating a swarm of identical flying robots to spatially self-organize
into arbitrary shapes using local communication maintaining a certain
level of density.

1 Introduction

Flying robots can fly over difficult terrain such as flooded or debris areas [1].
Rather than relying on positioning sensors which depend on the environment and
are costly, flying robots rely on proprioceptive sensors and local communication
with neighbors (see Fig. 1).

In this paper, we focus on a control algorithm in which flying robots self-
organize and self-sustain arbitrary 2D formations. An approach to form an arbi-
trary shape in two dimensional space called the ‘ShapeBugs’ is depicted by [2]. It
only requires robots to have the ability of local communication, two approximate
measures for relative distance and motion, and a global compass.

In this work, we assume that our flying robots are equipped with imperfect
proprioceptive sensors and a short-range wireless communication device with
which robots can exchange information with only nearby neighbors. Briefly, our
algorithm works as follows: first, flying robots initially wander with no informa-
tion about their own coordinates or their environment. However, they have a pro-
grammed internal knowledge of the desired shape to be formed. As non-seeded
robots move, they continually perform local trilaterations to figure out their
location by continuous local communication. At the same time, robots maintain
a certain density level among themselves using pheromones and flocking-rule-
based distance measurements [3]. This enables flying robots to disperse within
the specific shape and fill it efficiently.

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 285–292, 2017.
DOI: 10.1007/978-3-319-61824-1 31

286 K. Yeom

Fig. 1. Artistic view of the use of a swarm of UAVs for establishing communication
networks between users located on ground

2 Related Work

Several map-based UAV applications are proposed in [4,5]. In map-based appli-
cations, UAVs know their absolute position which can be shared locally or glob-
ally within the swarm.

However, obtaining and maintaining relative or global position information
is challenging for UAVs or mobile robot systems. A possible advance is to adopt
a global positioning system (GPS). However, GPS is not reliable and rarely
possible in cluttered areas [6]. Alternatively, wireless technologies can be used to
estimate the range or angle between robots of the swarm. In this case, beacon
robots can be used for a reference position to other moving robots. However,
depositing beacons is generally not practical for swarm systems in unknown
environments [7].

Our system attempts to achieve connected arbitrary formation using a decen-
tralized local coordinate system of robots with relative distance and density
model.

3 Aerial Robot Model

Each robot has several simple equipment such as distance and obstacle-detection
sensors, a magnetic compass, wireless communication, etc. (see Table 1).

Table 1. Flying robot model

Distance sensor Provides estimated distance of each neighbor

Detection sensor Detects obstacles in direct proximity to robot

Wireless comm. Allows robots to communicate with each other

Locomotion Moves robots in the world but has error

Internal shape map Is specified by user as a target shape

Pheromone Inspired Morphogenic Distributed Control for Self-organization 287

We assume that robots are able to move in 2D continuous space, all robots
execute the same program, and robots can interact only with other nearby
robots by measuring distance and message exchange. The robots’ communica-
tion architecture is based on a simple IR ring architecture because we assume
that robots can interact only with nearby neighbors. The robots have omnidi-
rectional transmission, and directional reception. This means that when a robot
receives a transmission, it knows roughly which direction the transmission came
from (see Fig. 2).

Fig. 2. Aerial robot model inspired from capabilities of real UAVs

4 Self-organizing Formation Algorithm

In our self-organizing formation algorithm, each aerial robot has a shared map
of the shape to be constructed and this should be overlaid on the robot’s learned
coordinate system. Initially, aerial robots are randomly scattered into the simula-
tion world without any information about the environment. Then robots begin to
execute their programmed process to decide their position using only data from
their proximity sensors (i.e., distance and density) and their wireless communi-
cation link with nearby neighbors.

4.1 Robot Transition Cycle

In our model, robots have a simple transition cycle model as shown in Fig. 3(a).

Fig. 3. (a) Robot’s process cycle. (b) Robot’s trilateration.

288 K. Yeom

The second sense step is necessary because robots should compare the data
before and after movement to determine distance and orientation from position-
ing error. After each transition of robot, the time until the next transition is set
randomly from [Tmin, Tmax), where Tmin is 0 to the time for computation (see
Fig. 3(b)) and Tmax is approximately the time of wait or move. Robot can move
only one unit or 0 unit during Move and Sense transition process. Therefore, if
robot does not move, the robot’s Move does not have any time code.

Fig. 4. An example of robot’s state machine.

In this model, robots have three computational states such as lost, out of
shape, and in shape (see Fig. 4 as describe in [2]. Although [2] is robust, it does
not provide any stable state because there is no definition of simulation complete
state.

Unlike [2], our model uses 8 IR sensors to approximately sense the direction
of the referenced robot. As mentioned earlier, this enables for robot to easily
and fast approach towards inside the target shape. Once robots acquire a shared
coordinate system, they begin to fill a formation shape by each robot diffuses
pheromone with repulse range Rrep (see Fig. 5(b)). The pheromone emission
mechanism allows the formation shape to be robust against robots’ death, while
robots evenly spread out throughout the shape.

4.2 Hybrid Robot Positioning Algorithm

Trilateration allows an robot to find its perceived position (xp, yp) on the con-
nected coordinate system (see Fig. 3(b)). It is also used subsequently to adjust
its position.

Let the positions of the three fixed anchors be defined by the vectors x 1,x 2,
and x 3 ∈ R

2. Further, let x p ∈ R
2 be the position vector to be determined.

Consider three circles, centered at each anchor, having radii of di meters, equal
to the distances between x p and each anchor x i. These geometric constraints
can be expressed by the following system of equations:

Pheromone Inspired Morphogenic Distributed Control for Self-organization 289

‖x p − x 1‖2 = d21 (1)
‖x p − x 2‖2 = d22 (2)
‖x p − x 3‖2 = d23 (3)

Generally, the best fit for x p can be regarded as the point that minimizes the
difference between the estimated distance (ζ) and the calculated distance from
x p(xp, yp) to the neighbors reported coordinate system. That is,

argmin
(xp,yp)

∑

i

|
√

(x i − x p)2 − ζi|. (4)

From this information, we can learn that this problem is closely related to the
sum-minimization problems that arise in least squares and maximum-likelihood
estimation. Therefore we suggest simple way of search of local minima (see
Eqs. 5 and 6). However, in this paper, we do not consider finding any optimal
or global solution but a local minimum, because it requires a lot of computa-
tional resources and it is not suitable for a small and inexpensive device. For
simplification, formula 4 can be rewritten in the form of a sum as follows:

Q(w) =
n∑

i

Qi(w) (5)

where the parameter w is to be estimated and where typically each summand
function Qi() is associated with the i-th observation in the data set. We perform
Eq. 6 to minimize the above function:

w := w − α∇Q(w) = w − α

n∑

i=1

∇Qi(w) (6)

where α is a step size.

4.3 Flocking Movement Control

For simplification we assume that robots can continuously walk in a random
zig-zag path (see Fig. 5(a)).

When robots are inside the shape, they are considered as part of the swarm
that comprises it. Once robots have acquired a coincident coordinate system in
the shape, they should not take any steps so that place them outside of the
shape. Then robots attempt to fill a formation shape. In this work, we achieve
this control by modeling virtual pheromones in a closed container. Robots react
to different densities of neighbors around them, moving away from areas of high
density towards those of low density [8]. They finally settle into an equilibrium
state of constant density level throughout the shape over time (see pseudo code
in Fig. 6).

290 K. Yeom

Fig. 5. (a) Robot’s random walk in zig-zag path. (b) Pheromone robot’s influence
ranges.

Fig. 6. An example of robot’s behavior for searching a target using pheromone.

4.4 Pheromone Model for Density Control

Pheromone model is inspired by following factors: (1) biological discoveries about
how cells self-organize into global patterns, and (2) distributed control systems
for self-reconfigurable robot [9,10]. Pheromone provides the common mechanism
that makes it possible for robots to communicate without identifiers or addresses.
The basic idea of pheromone is that a swarm is a network of robots that can
dynamically communicate in the network. Robot will react to pheromone accord-
ing to their local topology and state information.

Let roboti and NetEdgei denote the number of robots and the number of
networked edges, respectively. Then the dynamic network can be mathematically
written as follows:

DN = (roboti, NetEdgei) (7)

Note that both roboti and NetEdgei can be dynamically changed because
robots can autonomously join, leave, or be failed and died.

The diffusion and dissipation of pheromone of a given robot is denoted by
P (x, y), where x and y are 2D space. We simply introduce the mechanism of
diffusion and dissipation of pheromone as follows:

Pheromone Inspired Morphogenic Distributed Control for Self-organization 291

∂P

∂t
=

(
α

∂2C

∂x2
+ β

∂2P

∂y2

)
− ΔE (8)

The first term on the right is for diffusion, and α and β represent the rate of
diffusion in x and y directions, respectively. The second term is for dissipation
and the constant δ is the rate of dissipation. Equation 8 can be considered as
a part of environment function which responsible for the implementation of the
dynamic communication and other effects.

4.5 Density Control and Error Correction

The density control is based on Payton approach [8], but is also similar in nature
to the flocking rules proposed by Reynolds [9]. Our density control is to equalize
overall density of robots at any situation. To this end, as shown Fig. 5(b), the
robot has three different influence ranges. Each robot has a varying repellant (or
repulsive power) that has a maximum value near center which is described as
Collision area and a minimum value around Range zone (see Fig. 5(b)) regarding
any adjacent robot. The robot’s movement vector is weighted inversely by dis-
tance. Therefore, if any two robot are close, they push away one another. This
allows robots to disperse evenly at any density.

5 Discussion

In the proposed approach, when an robot moves, it should move to another place
without negatively affecting the stability of the coordinate system for adjacent
robots. To demonstrate that robot movement does not negatively affect the
stability, we examined the following experiment.

Fig. 7. (a) Percentage of robots in the shape with different measurement of density.
(b) Percentage of robots in the shape with different angle of sensors.

First, we set 1000 robots in a given 100 × 100 world. After 150 steps, these
robots are to converge on a consistent coordinate system. Then, we assign each
robot a probability to move randomly with a probability. After 220 steps, the
robots are no longer allowed to move (see Fig. 7(b)). For every 10 steps, the
consistency is recorded. This experiment is repeated 5 times and the result

292 K. Yeom

is shown in Fig. 7. The consistency is sum of the difference of the actual
distance between the two robots and the distance between their locations in the
coordinate system. In other words, it is computed as Σall

Robotsi,j(Distancei,j −√
(xi − xj)2 + (yi − yj)2).

6 Conclusion and Future Work

We show that robots can self-organize into arbitrary user-specified shapes and
maintain well the formed architecture by continuous trilateration-based on a
consensus coordinate system and a virtual pheromone-based density model. We
also provide several quantitative evaluations to describe the effectiveness of the
proposed control algorithm in terms of percentage of robots in shapes and the
variance of learned coordinate systems according to robots’ movement sensor
errors.

Acknowledgments. This work was supported by a 2017 research grant from
Youngsan University, Republic of Korea.

References

1. Basu, P., Redi, J., Shurbanov, V.: Coordinated flocking of UAVs for improved con-
nectivity of mobile ground nodes. In: IEEE Military Communications Conference,
MILCOM 2004, vol. 3, pp. 1628–1634. IEEE (2004)

2. Cheng, J., Cheng, W., Nagpal, R.: Robust and self-repairing formation control for
swarms of mobile agents. In: Proceedings of the National Conference on Artifi-
cial Intelligence, vol. 20, p. 59. AAAI Press, MIT Press, Menlo Park, Cambridge,
London (1999, 2005)

3. Elston, J., Frew, E.: Hierarchical distributed control for search and tracking by het-
erogeneous aerial robot networks. In: IEEE International Conference on Robotics
and Automation, ICRA 2008, pp. 170–175. IEEE (2008)

4. Kadrovach, B., Lamont, G.: Design and analysis of swarm-based sensor systems. In:
Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems,
MWSCAS 2001, vol. 1, pp. 487–490. IEEE (2001)

5. Kovacina, M., Palmer, D., Yang, G., Vaidyanathan, R.: Multi-agent control algo-
rithms for chemical cloud detection and mapping using unmanned air vehicles. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp.
2782–2788. IEEE (2002)

6. Siegwart, R., Nourbakhsh, I.: Introduction to Autonomous Mobile Robots. The
MIT Press, Cambridge (2004)

7. Hu, L., Evans, D.: Localization for mobile sensor networks. In: Proceedings of the
10th Annual International Conference on Mobile Computing and Networking, pp.
45–57. ACM (2004)

8. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone robotics.
Auton. Robots 11(3), 319–324 (2001)

9. Reynolds, C.: Flocks, herds and schools: a distributed behavioral model. In: ACM
SIGGRAPH Computer Graphics, vol. 21, pp. 25–34. ACM (1987)

10. Rubenstein, M., Shen, W.: A scalable and distributed approach for self-assembly
and self-healing of a differentiated shape. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2008, pp. 1397–1402. IEEE (2008)

Solving the Selective Pickup and Delivery
Problem Using Max-Min Ant System

Rung-Tzuo Liaw, Yu-Wei Chang, and Chuan-Kang Ting(B)

Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi 621, Taiwan

{lrt101p,cyw104m,ckting}@cs.ccu.edu.tw

Abstract. The pickup and delivery problem (PDP) is relevant to many
real-world problems, e.g., logistic and transportation problems. The
problem is to find the shortest route to gain commodities from the
pickup nodes and supply them to the delivery nodes. The amount of
commodities of pickup nodes and delivery nodes is usually assumed to
be in equilibrium; thus, all pickup nodes have to be visited for collecting
all commodities required. However, some real-world applications, such
as rental bikes and wholesaling business, need only to gain sufficient
commodities from certain pickup nodes. A variant of PDP, namely the
selective pickup and delivery problem (SPDP), is formulated to address
the above scenarios. The major difference of SPDP from PDP lies in the
requirement of visiting all pickup nodes. The SPDP relaxes this require-
ment to achieve more efficient transportation. The goal of the SPDP
is to seek the shortest path that satisfies the load constraint to sup-
ply the commodities demanded by all delivery nodes with some pickup
nodes. This study proposes a max-min ant system (MMAS) to solve the
SPDP. The ants aim to construct the shortest route for the SPDP con-
sidering the number of selected pickup nodes and all delivery nodes. This
study conducts experiments to examine the performance of the proposed
MMAS, in comparison with genetic algorithm and memetic algorithm.
The experimental results validate the effectiveness and efficiency of the
proposed MMAS in route length and convergence speed for the SPDP.

1 Introduction

The pickup and delivery problem (PDP) is a combinatorial optimization prob-
lem applicable to many real-world cases, e.g., logistics and robotics [1,2]. This
problem consists of pickup nodes and delivery nodes, where the former supplies
a number of commodities for the latter to demand. The aim of the PDP is to
find the shortest route to satisfy the requirement of all nodes. This problem
has been proved to be NP-hard [3]. According to different requirements for the
pickup and delivery nodes, the variants of PDP can be classified into one-to-one,
one-to-many-to-one, and many-to-many schemes [4]. However, some real-world
applications focus on supplying the demands of all delivery nodes, e.g., rental
bikes and wholesaling business. These applications seek the shortest path without
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 293–300, 2017.
DOI: 10.1007/978-3-319-61824-1 32

294 R.-T. Liaw et al.

visiting all pickup nodes. Such relaxation of constraint allows gathering sufficient
commodities from only few pickup nodes and can reduce the transportation cost
for supplying the demands of delivery nodes.

Ting and Liao [5] formulated this variant of PDP as the selective pickup
and delivery problem (SPDP) and proved its NP-hardness. The SPDP enables
the selectivity of pickup nodes and additionally considers the vehicle capacity
in the PDP. More specifically, the SPDP aims for the shortest route that can
satisfy all delivery requests with the supplements from some pickup nodes under
the constraint on the vehicle loading. They also applied the SPDP formulation
to a real-world logistic problem for the public bike-rental service in Kaohsiung
city in Taiwan. According to the classification of Berbeglia et al. [4], the SPDP
belongs to the many-to-many scheme, which has no limitation on the source and
destination of commodities.

This study designs a max-min ant system (MMAS) for the SPDP in view of
its high capability and successes in dealing with routing and combinatorial opti-
mization problems [6,7]. In the MMAS, a route is constructed by a population of
ants with three considerations. First, the route construction of ants is affected by
accumulation and evaporation of pheromone along the paths. Second, the num-
ber of nodes visited by an ant is varying due to the selectivity of pickup nodes.
Third, the ants should follow the vehicle loading constraint, i.e., the loading at
each node should be nonnegative and not exceed the capacity. Such constraint
prohibits the circumstance of insufficient or excessive commodities. This study
carries out experiments to examine the performance of the MMAS in comparison
with genetic algorithm and memetic algorithm for the SPDP.

The rest of this paper is organized as follows. Section 2 introduces the SPDP
formulation and its related studies. Section 3 describes the proposed MMAS.
Section 4 presents the experimental results and discussions. The conclusions are
drawn in Sect. 5.

2 Problem Formulation

The formulation of SPDP enables the selectivity of pickup nodes by relaxing
the equilibrium of commodities supplied by pickup nodes and demanded by
delivery nodes. More precisely, the SPDP assumes the amount of supplies from
pickup nodes surpasses that of demands by delivery nodes. Given a complete
graph G = (V,E) with V = {v0, . . . , vn} and E = {(vi, vj) |vi, vj ∈ V, vi �= vj},
each edge (vi, vj) is assigned a cost cij and each node vi has a demand di.
According to their demands, the nodes are classified into three types: pickup
nodes V + = {vi|vi ∈ V, di > 0}, delivery nodes V − = {vi|vi ∈ V, di < 0}, and
the depot v0 with demand d0 = 0.

The SPDP aims to find the shortest route that can satisfy all delivery nodes
with the commodities supplied from some pickup nodes. In the transportation
process, the vehicle loading at each node should be nonnegative and no larger
than the capacity Q. Let m be the number of nodes visited and v(i) denote the
ith node visited. The SPDP selects the pickup nodes and searches for a visiting

Solving the Selective Pickup and Delivery Problem 295

order p =
(
v0, v(1), . . . , v(m)

)
with the minimum cost. Formally, the SPDP is

formulated as follows.

min
∑

vi,vj∈V

cijxij (1)

s.t.
∑

vi∈V

xij =
∑

vi∈V

xji ≤ 1,∀vj ∈ V + (2)

∑

vi∈V

xij =
∑

vi∈V

xji = 1,∀vj ∈ V − ∪ {v0} (3)

∑

vi,vj∈S

xij ≤ |S| − 1,∀S ⊆ V \{v0} (4)

0 ≤ �(t) ≤ Q,∀t ∈ {1, ..,m} (5)
xij ∈ {0, 1} (6)

where the decision variable xij determines the inclusion of edge (vi, vj) in the
route:

xij =

{
1 vehicle travels from vi to vj ,

0 otherwise.

The objective function (1) is to minimize the transportation cost, e.g., the
route length, under the constraints (2)–(5). The constraints (2) and (3) concern
the visits of pickup and delivery nodes. Restated, they ensure that the degree
of pickup nodes should be less than or equal to one, and the degree of delivery
nodes should be equal to one. The sub-tour elimination constraint (4) limits
that any subset S of nodes excluding the depot v0 has at most |S| − 1 edges to
prevent sub-tours. The load constraint (5) guarantees the vehicle loading �(t) at
each node v(t) is within the range [0, Q], where �(t) = �(t−1) + d(t).

Ting and Liao presented the SPDP [8,9] and proved its NP-hardness [5].
The SPDP is more difficult than the PDP because the former introduces new
constraints to the latter, making it harder to gain feasible solutions. To resolve
this problem, they proposed a memetic algorithm (MA) based on the genetic
algorithm (GA) scheme and a modified 2-opt operator. The experimental results
show that the solution quality and convergence speed of the MA outperforms
GA and tabu search. In addition, they applied the MA to deal with a real-world
SPDP for the public bike-rental service in Kaohsiung.

The evolutionary algorithms, such as GA and MA, yield good solution quality
for the SPDP; nevertheless, owing to the representation of chromosomes, these
methods require a penalty function or a repair strategy for dealing with the
infeasible routes. This study proposes an MMAS, which is capable of finding the
feasible solutions for the SPDP. More details about the proposed MMAS are
described below.

3 Methodology

This study develops an MMAS to solve the SPDP. The MMAS follows the par-
adigm of ant colony optimization (ACO), which has shown its effectiveness in

296 R.-T. Liaw et al.

tackling various combinatorial optimization and routing problems [10–14]. The
MMAS constructs the routes for the SPDP by manipulating the ants, led by
the distribution of pheromone. The following subsections introduce the major
procedures in the MMAS for the SPDP: route construction and pheromone
distribution.

3.1 Route Construction

The route construction involves the ants determining the visiting order of nodes,
including the selected pickup nodes and all delivery nodes. Starting from the
depot v0, ants move to the remaining nodes according to the transition proba-
bility, which considers the global pheromone trail τij (t) and the local information
ηij . In this study, η is defined as the reciprocal of cost cij , i.e., ηij = 1/cij . Let
pk

ij(t) be the transition probability from node vi to node vj at the t-th iteration.
Stützle and Hoos [7] proposed computing the transition probability by

pk
ij(t) =

⎧
⎨

⎩

[τij(t)]
α[ηij]

β

∑
lεNk

i
[τil(t)]α[ηil]β

if j ∈ Nk
i ,

0 otherwise.

The arguments α and β control the balance between the global pheromone trails
and the local heuristics. In other words, the setting of α > β intensifies the pref-
erence for the edges with high pheromone; by contrast, the setting of β > α tends
to visit the edges with low cost. The MMAS maintains a set Nk

i of nodes that are
feasible for visiting and vehicle loading constraints. The ants are manipulated
by the above rules to iteratively construct legal routes for the SPDP.

3.2 Pheromone Distribution

The distribution of pheromone is essential to the performance of MMAS because
it directly influences the selection of nodes to visit. The pheromone distribution
in the MMAS is controlled by two factors: evaporation and deposition. After all
ants constructed their routes, the pheromone on the edges is updated according
to the following equation:

τij (t + 1) = (1 − ρ) τij (t) + Δτbest
ij ,

where ρ ∈ (0, 1] stands for the evaporation rate and the Δτbest
ij is the deposition

of pheromone

Δτbest
ij =

{
1/f

(
pbest

) ∀ (vi, vj) ∈ pbest,

0 otherwise.

The f
(
pbest

)
represents the length of the iteration-best route pib or the global-

best route pgb. The study [7] suggested that considering only global-best route
pgb intensifies exploitation and thus results in premature convergence. Therefore,

Solving the Selective Pickup and Delivery Problem 297

this study takes both iteration-best route pib and the global-best route pgb into
account in the update of pheromone. Specifically, the global-best ant pgb is
adopted as the pbest every fixed number of generations and the iteration-best
route pib is applied in the other generations.

The MMAS further considers the background and peak concentration
of pheromone, i.e., the minimum pheromone trail τmin

ij and the maximum
pheromone trail τmax

ij . The distribution of each pheromone trail τij is bounded
by the minimum and maximum pheromone trails to τij ∈ [

τmin
ij , τmax

ij

]
with

τmax
ij (t) =

1
ρ × f (pgb)

τmin
ij (t) =

τmax (t)
μ × gτ

where μ is the number of ants in the MMAS, and the coefficient gτ resolves on
the ratio of maximum and minimum pheromone trails.

4 Experimental Results

In this study, we carried out several experiments to examine the effectiveness
and efficiency of the proposed MMAS on the SPDP, compared to GA and MA.
The experiments adopt the SPDP instances [15]. The notation X(Y) Z denotes
the name of the original PDP instance, the number of nodes, and the number of
pickup nodes, respectively. The performance of test algorithms is evaluated on
the test instances of two sizes, i.e., 91 and 181 nodes. In addition, we investigate
their performance on the instances with different gains γ in the demand of pickup
nodes, where the vehicle capacity Q = 400 for γ ∈ {100, 200} and Q = 600 for
γ = 400. Table 1 lists the parameter setting for GA, MA, and the proposed
MMAS. The MA follows the evolutionary procedure of GA with fixed-length
representation and applies the 2-opt local search [15]. The proposed MMAS uses
varying-length representation. Each test algorithm runs 30 trials considering the
stochastic nature of evolutionary algorithms.

We first examine the solution quality of the MMAS in comparison with GA
and MA. Table 2 lists the route lengths obtained from the three test algorithms
on the two sizes of SPDP instances with different γ values. The results show that
MMAS and MA outperform GA in terms of route length. The MA performs best
among the three test algorithms on the small instance n100mosA(91), revealing
the utility of 2-opt local search in improving the routes. On the other hand,
the results show that MMAS surpasses GA and MA in terms of route length
on the large instance n200mosA(181). Table 2 further presents the t-test results.
With confidence level α = 0.01, the t-test results show no statistical significance
between MA and MMAS on the small instance n100mosA(91), reflecting that
the route lengths obtained from the proposed MMAS are comparable to those
attained by MA. Furthermore, the results show that MMAS can achieve signifi-
cantly shorter routes than MA does on the large instances n200mosA(181).

298 R.-T. Liaw et al.

Table 1. Parameter setting for the test algorithms

GA MA MMAS

Representation Fixed-length Fixed-length Varying-length

Population size 500 500 50

Selection 2-tournament 2-tournament -

Crossover Order crossover
(pc = 1.0)

Order crossover
(pc = 1.0)

-

Mutation Bit-flip(
pm = 1/

∣
∣V +
∣
∣)

+ inversion
(pm = 1.0)

Bit-flip(
pm = 1/

∣
∣V +
∣
∣)

+ inversion
(pm = 1.0)

-

Survival (μ + λ) (μ + λ) -

Local search - 2-opt -

Intensification - - α = 1, β = 5

Evaporation rate - - ρ = 0.02

Termination 10,000 generations
(5.0 × 106

evaluations)

3,000 generations
(1.5 × 105

evaluations)

2,000 generations
(1.0 × 105

evaluations)

Table 2. The average length and the number of selected pickup nodes in the routes
obtained from GA, MA, and the proposed MMAS for different gains γ. The number
after the slash indicates the average number of selected pickup nodes. The boldface
marks the shortest route among the test algorithms. The p-values account for the
results of t-test on the route lengths of MA and MMAS. The bold p-values signify the
statistical significance with confidence level α = 0.01.

Length/#Nodes p-value

Instance γ GA MA MMAS MA vs. MMAS

n100mosA(91) 42 100 5442/2.33 5274/2.17 5249/2.70 1.64E−01

200 5430/2.00 5268/2.00 5237/2.00 1.07E−01

400 5366/1.00 5170/1.00 5193/1.00 4.34E−02

n200mosA(181) 94 100 8558/5.07 7646/5.03 7494/5.00 4.38E−08

200 8780/3.07 7715/3.00 7468/3.00 2.01E−11

400 8770/2.00 7581/2.00 7479/2.00 6.41E−04

Figure 1 compares the convergence of MA and the proposed MMAS. Accord-
ing to the results, MMAS converges much faster than MA does on n100mosA(91),
where their difference in solution quality is statistically insignificant. As the size
of instance increases, MMAS has faster convergence speed as well as signifi-
cantly better solution quality than MA does. These satisfactory results indicate
the effectiveness and efficiency of the proposed MMAS.

Solving the Selective Pickup and Delivery Problem 299

Fig. 1. The variation of mean best fitness for MA and MMAS against the number of
evaluations on the four SPDP instances with gain γ = 100.

5 Conclusions

The SPDP renders a significant PDP variant pertinent to real-world logistic and
transportation applications. The SPDP aims to find the shortest route satisfying
all requests of delivery nodes with the supplements from some pickup nodes. A
key feature of the SPDP is that it relaxes the constraint of visiting all pickup
nodes and thus enables the selectivity of pickup nodes for shorter routes. To
resolve the SPDP, this study proposes an MMAS, which has two major advan-
tages:

– The route is constructed by progressively selecting the pickup nodes and
delivery nodes through ants.

– The constructed route can always satisfy the constraint on the vehicle load
in the SPDP.

This study carries out experiments to examine the effectiveness and efficiency
of the proposed MMAS on the SPDP. Regarding solution quality, the experimen-
tal results show that the proposed MMAS is superior to GA on all test instances.
In addition, MMAS performs comparably to MA on a small instance and out-
performs MA on a large instance. As for convergence speed, MMAS converges
much faster than MA does on all test instances. These satisfactory outcomes
validate the advantage of MMAS over GA and MA in terms of solution quality
and convergence speed on the SPDP.

Some directions remain for future work. First, the integration of MMAS with
local enhancement operator is promising to enhance the performance. Second,
extension of the MMAS to tackle the multi-objective SPDP is worthy of further
study.

References

1. Parragh, S., Doerner, K., Hartl, R.: A survey on pickup and delivery problems.
Part I: Transportation between customers and depot. J. für Betriebswirtschaft 58,
21–51 (2008)

300 R.-T. Liaw et al.

2. Parragh, S., Doerner, K., Hartl, R.: A survey on pickup and delivery problems. Part
II: Transportation between pickup and delivery locations. J. für Betriebswirtschaft
58, 81–117 (2008)

3. Savelsbergh, M., Sol, M.: The general pickup and delivery problem. Trans. Sci.
29(1), 17–29 (1995)

4. Berbeglia, G., Cordeau, J., Gribkovskaia, I., Laporte, G.: Static pickup and delivery
problems: a classification scheme and survey. Top 15(1), 1–31 (2007)

5. Ting, C.K., Liao, X.L.: The selective pickup and delivery problem: formulation and
a memetic algorithm. Int. J. Prod. Econ. 141(1), 199–211 (2013)

6. Stützle, T., Hoos, H.: The max-min ant system and local search for combinatorial
optimization problems. In: Voß, S., Martello, S., Osman, I.H., Roucairol, C. (eds.)
Meta-heuristics, pp. 313–329. Springer, Heidelberg (1999)

7. Stützle, T., Hoos, H.: Max-min ant system. Future Gener. Comput. Syst. 16(8),
889–914 (2000)

8. Liao, X.L., Ting, C.K.: An evolutionary approach for the selective pickup and deliv-
ery problem. In: Proceedings of the IEEE Congress on Evolutionary Computation,
pp. 1–8 (2010)

9. Liao, X.L., Ting, C.K.: Evolutionary algorithms using adaptive mutation for the
selective pickup and delivery problem. In: Proceedings of the IEEE Congress on
Evolutionary Computation, pp. 1–8 (2012)

10. Pérez Cáceres, L., López-Ibáñez, M., Stützle, T.: Ant colony optimization on a
budget of 1000. In: Dorigo, M., Birattari, M., Garnier, S., Hamann, H., Montes de
Oca, M., Solnon, C., Stützle, T. (eds.) ANTS 2014. LNCS, vol. 8667, pp. 50–61.
Springer, Cham (2014). doi:10.1007/978-3-319-09952-1 5

11. Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization. IEEE Comput.
Intell. Mag. 1(4), 28–39 (2006)

12. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoret. Comput.
Sci. 344(2–3), 243–278 (2005)

13. Maur, M.: Adaptive ant colony optimization for the traveling salesman problem.
Master’s thesis. Technical University of Darmstadt (2009)

14. Mou, L., Dai, X.: A novel ant colony system for solving the one-commodity trav-
eling salesman problem with selective pickup and delivery. In: Proceedings of the
International Conference on Natural Computation, pp. 1096–1101 (2012)

15. Liao, X.L., Ting, C.K.: Solving the biobjective selective pickup and delivery prob-
lem with memetic algorithm. In: Proceedings of the IEEE Workshop on Compu-
tational Intelligence in Production and Logistics Systems, pp. 107–114 (2013)

http://dx.doi.org/10.1007/978-3-319-09952-1_5

An Improved Ant-Driven Approach
to Navigation and Map Building

Chaomin Luo1(B), Furao Shen2, Hongwei Mo3, and Zhenzhong Chu4

1 Department of Electrical and Computer Engineering,
University of Detroit Mercy, Michigan, USA

luoch@udmercy.edu
2 Department of Computer Science and Technology,

Nanjing University, Nanjing, China
3 Automation College, Harbin Engineering University, Harbin, China
4 College of Information Engineering, Shanghai Maritime University,

Shanghai, China

Abstract. An improved ant-type approach, ant colony optimization
(ACO) model, integrated with a heading direction scheme (HDS) to
real-time collision-free navigation and mapping of an autonomous robot
is proposed in this paper. The developed HDS-based ACO model for
concurrent map building and safety-aware navigation is capable of rem-
edying the shortcoming of risky distance from obstacles in combination
with the Dynamic Window Approach (DWA) algorithm as a local naviga-
tor. Its effectiveness and efficiency of the developed real-time hybrid map
building and safety-aware navigation of an autonomous robot have been
successfully validated by simulated experiments and comparison studies.

Keywords: ACO · Motion planning · HDS · DWA · Local navigation ·
Grid-based map

1 Introduction

An improved ant-driven model integrated with a Dynamic Window Approach
(DWA) algorithm to real-time collision-free navigation and mapping with safety
consideration is proposed in this paper. Concurrent navigation and map building
of an autonomous robot under unknown environments is one of the challenges
in robotics motion planning.

There have been a large number of models proposed for autonomous robot
navigation with obstacle avoidance such as fuzzy logic method [8], neural net-
works [6,9,10], machine leaning [7], and Ant Colony Optimization (ACO) [1,5],
etc. Vasak and Hvizdos [8] developed a robot navigation method deployed RFID
tags with the sonar through a fuzzy logic model.

Neural networks (NNs) approach plays an increasingly crucial role on
robot mapping and navigation [6,9,10]. NNs algorithm aims to navigate an
autonomous robot in light of sensor information in association with a fuzzy logic

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 301–309, 2017.
DOI: 10.1007/978-3-319-61824-1 33

302 C. Luo et al.

controller [8]. Yi et al. [10] applied a bio-inspired neural network model to the 3D
path planning and task assignment under uncertain circumstances. However, the
map building and local navigator have not been integrated yet. Yang and Luo
[9] proposed a new bio-inspired neuro-dynamics model for robot complete cov-
erage motion planning under dynamically varying environments. However, the
proposed model lacks the local reactive navigation and map building compo-
nents under unknown environments [6]. Mo et al. proposed a machine-learning
based Imitation Learning (IL) algorithm for robot navigation [7]. Luo et al.
[5] proposed an ACO-based multi-goal navigation and mapping approach of an
intelligent robot. However, the proposed model lacks local navigation.

In this paper, a two-level hybrid real-time mapping and navigation model of
an autonomous robot is proposed. Top level is an improved ACO approach that
plans a global trajectory. Bottom level utilizes DWA-based algorithm in light
of the sensor information to direct a robot locally to autonomously traverse
from one waypoint to another. In addition, in order to generate safer, more
reasonable collision-free trajectories, novel heuristic algorithms are designed to
optimize the trajectory. The developed real-time ACO model for concurrent map
building and safety-aware navigation is capable of remedying the shortcoming
of trajectories generated with risky distance from obstacles in combination with
the DWA algorithm as a local navigator.

2 The HDS-Based ACO Algorithm

Ants in the ACO algorithm as intelligent agents in the navigation, which traverse
from one waypoint to another directed by pheromone trails with an a priori
available heuristic information. The field of “ant-like algorithms” creates models
derived from the behavior observation of real ants, in which these models as a
source of biological inspiration are utilized to design novel algorithms for the
solution of optimizations.

Ant pheromone strength τij(t), is a sort of numerical information defined with
each arc (i, j) that is updated in the ACO algorithm, in which t is the iteration
counter. The agent is initially arranged in a waypoint. At each iteration stage, a
probabilistic action choice rule is applied to an agent, k (an autonomous mobile
robot could be an agent). The probability pk

ij(t) of an agent k, currently at
waypoint i, which moves to waypoint j at the tth iteration of the algorithm, is
obtained as follows in Eq. (1) [2].

pk
ij(t) =

[τij(t)]α × [ϑij]β∑
l∈ℵk

i
[τil(t)]α × [ϑil]β

if j ∈ ℵk
i , (1)

where ℵk
i is the feasible adjacent waypoint of the agent k, the set of waypoints

which the agent k has not yet visited. The ϑij = 1/dij is an a priori available
heuristic value, and dij is the distance between two waypoints. Parameter α
represents importance factor of the pheromone matching a classical stochastic
greedy algorithm. Parameter β is an importance factor of the heuristics function.
Parameters α and β determine the relative influence of the pheromone trail and
the heuristic information [2].

An Improved Ant-Driven Approach to Navigation and Map Building 303

At each iteration stage, �τk
ij(t), the amount of pheromone agent k leaves

on the arcs it has visited is dynamically updated by decreasing the pheromone
strength on all arcs by a constant factor before enabling each agent to supplement
pheromone on the arcs. The pheromone strength τij is dynamically updated as
follows in Eq. (2) when 0 < ρ < 1.

{
τij(t + 1) = (1 − ρ) · τij(t)+ �τij

�τij =
∑n

k=1 �τk
ij

(2)

Algorithm 1. ACO algorithm for Navigation with HDS
1: procedure ACO with HDS(x, y) � Find out the trajectory (x, y coordinates)
2: Set parameters, initialize pheromone trails
3: while (termination condition not met) do � reach the goal?
4: ConstructSolutions
5: ApplyLocalSearch
6: HeadingDirectionScheme
7: UpdateTrails
8: end while
9: return The trajectory (x, y coordinates) � reach the goal!

10: end procedure

The amount of pheromone �τk
ij(t) in ant cycle system mode is defined as [2]:

�τk
ij(t) =

{
Q

Lk(t)
if arc (i, j) is used by the robot k,

0 otherwise.
(3)

Lk(t) is the length of the kth robot’s tour in this paper. The ACO algo-
rithm for motion planning with a heading direction scheme is summarized as
Algorithm 1. Note that there is a heading direction scheme (HDS) heuristic
embedded in this ACO algorithm. It will be depicted in the section later.

3 Map Building and DWA-Driven Local Navigation

The proposed robot navigation system is comprised of two layers. One is an
ACO global path planner whereas the other is a DWA-based local navigator.
Both effectiveness and efficiency motivate ACO to be adapted to navigation
and mapping as the global plan planner. The objective of the local navigator
is to generate velocity commands for the autonomous mobile robot to move
towards a target. In order to assure the obstacle avoidance, Fox et al. [3] first
successfully proposed a DWA algorithm method for the local navigation. The
DWA is an obstacle-avoidance approach with synchro-drives, which considers
the constraints imposed by limited velocities and accelerations, derived directly
from the motion dynamics of synchro-drive autonomous mobile robots.

304 C. Luo et al.

Unlike vector field histogram (VFH) method, the DWA considers the
dynamic and kinematic constraints of a mobile robot [3]. In a nutshell, only a
short time interval is periodically taken into account when calculating the next
steering command to decrement the tremendous complexity of the robot motion
planning. Let x(t) and y(t) be the coordinate at time t of a mobile robot in a
global coordinate system. Let θ(t) denote the heading direction (orientation).
Let the triplet x, y, θ(t) denote the kinematic configuration of the robot. The
translational velocity and rotational velocity of the robot at time t are described
by υ(t), and ω(t), respectively. The robot is assumed to move with a constant
velocity (υ, ω) during each control loop, in which the pair (υ, ω) is considered
admissible, if the robot is able to stop before it reaches the closest obstacle on
the corresponding curvature. Let the term d(υ, ω) represent the distance to the
closest obstacle on the corresponding curvature with regard to a velocity (υ, ω).

The maximal admissible velocity, over a given curvature, depends really
on the distance to the next obstacle over the curvature. The accelerations are
denoted to be υ̇d and ω̇d for breakage [3]. The set Va of admissible velocities is
expressed as (4). Therefore, the robot is allowed to stop with obstacle avoidance
as the Va is the set of velocities (υ, ω) in Fig. 1(a).

(a)

target

predicted position

actual position

ɵ

(b)

dynamic window Vd

Vr
actual velocity

-90 deg/sec 90 deg/sec

Va

Vs

90 cm/sec

Fig. 1. The illustration of DWA algorithm (a) angle the robot’s direction to the target;
(b) dynamic window (redrawn from [3]).

Va = {υ, ω | υ ≤
√

2 · d(υ, ω · υ̇d) ∧ ω ≤
√

2 · d(υ, ω · ω̇d)} (4)

The dynamic window is centered on the actual velocity. All curvatures outside
the dynamic window are not reachable in the next time interval, which are
not taken into account for the obstacle avoidance. At the time interval t, the
accelerations υ̇ and ω̇ will be exerted. Let (υa, ωa) be the actual velocity, and
then the dynamic window Vd is described as (5)

Vd = {(υ, ω) | υ ∈ [υa − υ̇ · t, υa + υ̇ · t] ∧ ω ∈ [ωa − ω̇ · t, ωa + ω̇ · t]} (5)

The area Vr within the dynamic window is generated through the restrictions
imposed on the search space for the velocities depicted in Fig. 3, in which Vs is

An Improved Ant-Driven Approach to Navigation and Map Building 305

assumed to be the space of possible velocities. The area Vr is defined as the
intersection of the restricted areas as expressed in Eq. (6) (see Fig. 1(b)).

Vr = Va ∩ Vd ∩ Vs (6)

After the generated search space Vr is determined, a velocity is selected from
Vr. The maximum of the objective function G(υ, ω) is calculated over Vr as Eq.
(7) to integrate the criteria target heading, velocity and clearance.

G(υ, ω) = ρ [α · H(υ, ω) + β · D(υ, ω) + γ · V el(υ, ω)], (7)

where ρ is a factor that smooths the weighted sum of three elements of G(υ, ω).
The target heading function, represented by H(υ, ω) is utilized to measure the
alignment of the robot with the target direction, calculated by 180 − θ, where θ
is the angle between the target point and the heading direction of a mobile robot
shown in Fig. 1(b). The function velocity V el(υ, ω) evaluates the movement of
the robot on the corresponding route that is a projection on the translational
velocity υ. The function D(υ, ω) depicts the distance to the nearest obstacle
intersected with the curvature.

A 2D grid-based map filled with equally-sized cells, marked as either occupied
or free, is constructed as the mobile robot moves. The initial value is zero,
which indicates that the cell is neither occupied nor unoccupied. Concurrent map
building and navigation are the essence of successful navigation under unknown
environments.

4 Heading Direction Motion Based Navigation

A heading direction motion planning scheme, called heading direction scheme
(HDS), is developed to acquire a more reasonable and safer trajectory in the
vicinity of obstacles. The fundamental principle of this scheme is to adjust the
heading direction of an autonomous robot to traverse along a safe route while
carrying out the ACO navigation algorithm (illustrated in Fig. 2).

The HDS scheme is designed to check the next motion of the robot. In the
vicinity of obstacles, the robot is especially guided to next cell horizontally or
vertically, instead of, diagonally. By means of the environmental information
provided by the LIDAR sensors, the adjacent cells to obstacles on the built
map are to be known thus accessible. For instance, an agent (ant) is located at
the center of the cells next to the eight adjacent cells including free space, and
obstacles shown in Fig. 2. The next position the robot will move to is likely a,
b, c or d . Based on the defined HDS scheme, in this kind of structure, positions
indicated by red cells d , is unfavorable. Therefore, it is directed to the accessible
cells such as a, b and c in Fig. 2. The robot shall not move to the positions
located in the cells that are not preferable to be entered. Consequently, safer
and more reasonable trajectory is generated in light of both the ACO algorithm
and HDS scheme. A robot initiates from the initial position S to the target T in
a test scenario of workspace shown in produced safe and reasonable trajectory
is illustrated in Fig. 3(a). Based on the developed heading direction scheme, the
produced safe and reasonable trajectory is illustrated in Fig. 3(a).

306 C. Luo et al.

Ant

(a)

a

b c d

Ant

(b)

Fig. 2. Developed HDS scheme (a) the generated motion; (b) HDS in the cell structure.
(Color figure online)

5 Simulation and Comparison Studies

5.1 The Hybrid Model in a Bar-Like Environment

The developed hybrid approach is applied to a test scenario with a bar-like obsta-
cle. The developed HDS scheme associated with the ACO and DWA navigation
directs an autonomous robot in the test scenario exactly identical as the one in
Fig. 5 of [1]. It is now illustrated in Fig. 3(b), in order to compare our model
with theirs. An ACO approach to the robot path planning in search of the final
destination is developed by Chia et al. [1].

0 10 20 30 40

S

T0

40

10

20

30

0 10 20 30 40

S

T0

40

10

20

30

(c)(b)
0 5 10 15 200

5

20

15

10

Favorable cell

S

T

Unfavorable cell

(a)

Fig. 3. Illustration of the heading direction motion scheme (a); Planned trajectory in
a bar-like test scenario (b) by Chia’s model of Fig. 5 (redrawn from [1]); (c) by our
proposed model.

The workspace is defined with a size of 40 × 40, topologically organized as a
cell-based map. The parameters of the ACO algorithm are selected as follows:
α = 1; ρ = 0.3 and β = 5. Initially, the initial position is located at S(19, 39)
and the robot drives toward the target at T (19, 1). The trajectory planned by

An Improved Ant-Driven Approach to Navigation and Map Building 307

the model of Chia et al. [1] is illustrated in Fig. 3(b), whereas the trajectory
produced through our ACO algorithm with HDS scheme is shown in Fig. 3(c).

It is found that the generated trajectory has the safer distance from the
obstacles shown in Fig. 3 in comparison with the one generated by the model
of Chia et al. [1]. The trajectory length, and number of turns as well as steps
to complete the navigation mission are summarized in Table 1 Although the
trajectory length and steps for both models are equal, with regard of the number
of turns, ours is significantly better than theirs.

Table 1. Comparison of path length, steps and turns

Model Length Steps Turns

Chia et al.’s model 23.14 19 6

Ours with HDS 23.14 19 3

5.2 The Hybrid Model in a Room-Like Environment

The proposed model is applied to a test scenario with populated obstacles in
comparison with an identical case as Fig. 1 of [4] which is now illustrated in
Fig. 4(a). Garcia et al. developed a hybrid model consisting of an ACO algorithm
and a fuzzy logic approach [4], in which the decision-making of navigation is
impacted by the distance between the source and target nodes.

(b)(a)
0 100

50

S
10

20

30

40

20 30 40 50

F

0 10
0

50

S
10

20

30

40

20 30 40 50

F

(c)

Fig. 4. Planned trajectory in a room-like test scenario (a) by Garcia et al.’s model of
Fig. 1 (redrawn from [4]); (b) by our proposed model; (c) mapping and navigation by
our proposed model.

The test scenario is a 50 × 50 topologically organized workspace with a grid-
based map. The parameters of the ACO are chosen same as the case above
with S(1, 1) and F (49, 49). The navigation of robot via Garcia et al.’s model is
shown in Fig. 4(a) while the trajectory generated through our model is depicted
in Fig. 4(b). The trajectory length and number of turns, steps by the proposed
model and the model of Garcia et al. were calculated in Table 2. It reveals that

308 C. Luo et al.

the length of the trajectory by the developed ACO model is 5.17% shorter than
that of their model. The number of turns of the proposed model is only 2/3
of that of their model, i.e., 33.33% better than that of theirs. Additionally,
the number of steps to direct the robot from the initial point to the target by
the proposed ACO with HDS model is 31.82% less than that of their model.
With ACO and DWA based concurrent navigation and mapping from the initial
position S(1, 1) to the final position F (49, 49), The final map built when the
robot achieves the final point is shown in Fig. 4(c).

Table 2. Comparison of path length, steps and turns

Model Length Steps Turns

Garcia et al.’s model 87 22 9

Ours with HDS 82.5 15 6

6 Conclusion

A real-time ant-driven model for map building and safety-aware navigation is
developed to remedy the shortcoming of trajectories generated with risky dis-
tance from obstacles in combination with the Dynamic Window Approach algo-
rithm as a local navigator. An efficient heading-enabled ACO algorithm is cre-
ated for the real-time concurrent mapping and navigation. Its effectiveness and
efficiency of the developed model have been successfully validated by simulated
experiments and comparison studies.

References

1. Chia, S.H., Su, K.L., Guo, J.H., Chung, C.Y.: Ant colony system based mobile
robot path planning. In: Proceedings of 2010 Fourth International Conference on
Genetic and Evolutionary Computing, pp. 210–213 (2010)

2. Dorigo, M., Stutzle, T.: Ant Colony Optimization. The MIT Press, San Francisco
(2004)

3. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoid-
ance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)

4. Garcia, M.A.P., Montiel, O., Castillo, O., Lveda, R.S., Melin, P.: Path planning
for autonomous mobile robot navigation with ant colony optimization and fuzzy
cost function evaluation. Appl. Soft Comput. 9(1), 1102–1110 (2009)

5. Luo, C., Mo, H., Shen, F., Zhao, W.: Multi-goal motion planning of an autonomous
robot in unknown environments by an ant colony optimization approach. In: Pro-
ceeings of the Sixth International Conference on Swarm Intelligence, pp. 519–527
(2016)

6. Luo, C., Yang, S.X.: A bioinspired neural network for real-time concurrent map
building and complete coverage robot navigation in unknown environments. IEEE
Trans. Neural Netw. 19(7), 1279–1298 (2008)

An Improved Ant-Driven Approach to Navigation and Map Building 309

7. Mo, H., Luo, C., Liu, K.: Robot indoor navigation based on computer vision and
machine learning. In: Proceedings of the Sixth International Conference on Swarm
Intelligence, pp. 528–534 (2016)

8. Vasak, J., Hvizdos, J.: Vehicle navigation by fuzzy cognitive maps using sonar
and RFID technologies. In: Proceedings of IEEE 14th International Symposium
on Applied Machine Intelligence and Informatics, pp. 75–80 (2016)

9. Yang, S.X., Luo, C.: A neural network approach to complete coverage path plan-
ning. IEEE Trans. Syst. Man Cybern. 34(1), 718–725 (2004)

10. Yi, X., Zhu, A., Yang, S.X., Luo, C.: A bio-inspired approach to task assignment of
swarm robots in 3-D dynamic environments. IEEE Trans. Cybern. 47(4), 974–983
(2017)

Artificial Bee Colony Algorithms

A Multi-cores Parallel Artificial Bee Colony
Optimization Algorithm Based

on Fork/Join Framework

Jiuyuan Huo1,2(&) and Liqun Liu3

1 School of Electronic and Information Engineering,
Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China

huojy@mail.lzjtu.cn
2 Gansu Data Engineering and Technology Research Center for Resources

and Environment, Lanzhou, China
3 College of Information Science and Technology,
Gansu Agricultural University, Lanzhou, China

liulq@gsau.edu.cn

Abstract. There are lots of computationally intensive tasks in optimization
process of Artificial Bee Colony (ABC) algorithm, which requires large CPU
processing time. To improve optimization precision and performance of the
ABC algorithm, a parallel Multi-cores Parallel ABC algorithm (MPABC) was
proposed based on the Fork/Join framework. The algorithm is to introduce the
multi-populations’ parallel operation to guarantee population’s diversity,
improve the global convergence ability and avoid falling into the local optimum.
The performance of the original serial ABC algorithm and the MPABC algo-
rithm was analyzed and compared based on four benchmark objective functions.
The results show that the MPABC algorithm can achieve the speedup of 3.795
and the efficiency of 94.87% in solving complex problems. It can make full use
of multi-core resources, improve the solution’s quality and efficiency, and have
the advantages of low parallel cost and simple realizing process.

Keywords: Parallel � Artificial bee colony algorithm � Fork/join framework

1 Introduction

For the Bio-inspired algorithms such as the Genetic Algorithm (GA) [1], Particle
Swarm Optimization (PSO) [2], Differential Evolution (DE) algorithm [3] and Artificial
Bee Colony (ABC) algorithm [4], increasing the number of populations is an effective
solution under the premise of constant population size for improving computational
efficiency and accuracy. However, in the serial computing environment, these methods
will lead to large number of computing-intensive tasks in the optimization process
which require lots of processing time [5].

With the popularization of multi-cores processors and in-depth study of parallel
computing mechanisms, parallel computing has gradually become an important way to
improve the computational efficiency [6]. Compared with the serial computing,
multi-cores could effectively implement the thread-level parallelism, and improve
computational efficiency [7].

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 313–319, 2017.
DOI: 10.1007/978-3-319-61824-1_34

The population-based meta-heuristics algorithms such as the GA, PSO, and ABC
algorithms can explore efficiently from the parallel concepts to speed up their search
process. A parallel master-slave model of the cooperative micro-particle swarm opti-
mization approach based on the decomposition of the original search space in sub-
spaces of smaller dimension was introduced [8]. A new technique has been described
for using processors in parallel PSO to improve the performance of the algorithm [9].
For the ABC algorithms, there are several liberations discussed the parallelization.
A parallel Artificial Bee Colony algorithm was applied for solving vehicle routing
problem efficiently and results proved this approach to be superior [10]. In [7], three
parallel models of the Artificial Bee Colony Algorithm were compared, and the
trade-offs were analyzed between quality of solution and processing time.

In summary, the researches of parallel artificial bee colony algorithm are still in the
initial stage. Therefore, a Multi-cores Parallel Artificial Colony (MPABC) algorithm
was proposed to improve the running efficiency and optimization precision by utilizing
the Fork/Join framework.

2 Java Fork/Join Framework

Fork/Join framework is a classic multi-core parallel framework that based on the
divide-and-conquer strategy, and can take full advantage of multi-core CPU for mas-
sively parallel computing [11]. In the Fork/Join framework, a complex computing task
is organized into a virtual tree structure. The basic idea is to use a recursive method
based on threshold value to divide (Fork) a complex task into a plurality of
smaller-scale, independent subtasks for solving, then the final result of the complex
task could be gotten through the merge (Join) result of all the sub-tasks. Thus, this
method is often referred to as the Fork/Join framework.

3 Multi-cores Parallel Artificial Bee Colony (MPABC)
Algorithm

The framework of the multicore parallel Artificial Bee Colony (MPABC) algorithm is
divided into upper layer and lower layer. The upper layer is implemented based on the
coarse-grained model to ensure the diversity of the population. Its idea is the inde-
pendent parallel run of multiple populations. It is characterized by divide-and-conquer
strategy that divide population into multiple sub-populations, each sub-population
using separate threads simultaneously for evolving to prevent being trapped of local
optimization. In the lower layer, the Fork/Join framework is took as the parallel
computing tool to realize the computing tasks of distribution and stealing. Figure 1
depicts the MPABC model with four hives at the upper level (ellipses with solid lines)
and Fork/Join threads in each hive at the lower level.

The approach that repeatedly runs of the swarm optimization algorithm is better to
get a more optimal solution. Each swarm independent runs on one core, and they do not
make communication between multiple threads. Inside of the swarm, the Fork/Join

314 J. Huo and L. Liu

framework is used for the fine-grained parallel computing to improve performance.
With the combination parallelization of fine-grained and coarse-grained, the running
speed could increase to almost equivalent as they perform in the system kernel.

4 Experimental Analyses

The Experiments in this paper is to analyze and compares the performance of the
original serial ABC algorithm with the parallel MPABC algorithm based on four
standard benchmarking functions. The Java Fork/Join library was adopted to provide
powerful and efficient parallel computing. All of our tests have been performed on an
Intel (R) Core i7-4720HQ @ 2.6 GHz 4 cores with 8 GB of RAM with Microsoft
Windows 8.

4.1 Benchmark Functions

The well-defined benchmark functions which based on standard mathematical func-
tions can be used as objective functions to measure and test the performance of
algorithms. The original serial ABC algorithm and the MPABC algorithm were applied
to four well-known benchmark functions which were exten-sively used in the literature
[12]. For ease of comparison, some functions were adjusted to make theoretical optimal
value to zero. The Parameter ranges, formulations and global optimum values of these
functions are given in Table 1.

Obtain global
optimal solution

Hive 1 Hive 2

Hive 3 Hive 4
Complicated task

Subtask 1 Subtask 2 Subtask 3

Subtask 1.1 Subtask 1.2 Subtask 3.1 Subtask 3.2

Subtask1's result Subtask2's result Subtask3's result

Complicated task's result

Complicated task

Subtask 1 Subtask 2 Subtask 3

Subtask 1.1 Subtask 1.2 Subtask 3.1 Subtask 3.2

Subtask1's result Subtask2's result Subtask3's result

Complicated task's result

Complicated task

Subtask 1 Subtask 2 Subtask 3

Subtask 1.1 Subtask 1.2 Subtask 3.1 Subtask 3.2

Subtask1's result Subtask2's result Subtask3's result

Complicated task's result

Complicated task

Subtask 1 Subtask 2 Subtask 3

Subtask 1.1 Subtask 1.2 Subtask 3.1 Subtask 3.2

Subtask1's result Subtask2's result Subtask3's result

Complicated task's result

Fig. 1. The parallel framework of the MPABC algorithm

A Multi-cores Parallel Artificial Bee Colony Optimization Algorithm 315

4.2 Parallel Performance Evaluation Indexes

The main evaluation indexes to measure the performance of parallel algorithms are the
speedup Sp and parallel efficiency Ep [13].

(1) Speedup Sp: For a solving problem, Ts is the computation time that the sequential
algorithm spends in the worst case, Tp is the computation time that a parallel
algorithm spends for solving this problem in the worst case, p is the number of
processors, and then the speedup of the parallel algorithm is defined as

Sp ¼ Ts=Tp ð1Þ

As it can be seen, 1� Sp � p. When Sp ¼ p, the parallel algorithm is the optimal
parallel algorithm.

(2) Efficiency (Normalized speedup): Efficiency of parallel algorithm can be defined
as the value that speedup divides the number of processors.

Ep ¼ Sp=p ð2Þ

Ep reflects the processors’ utilization in the execution of the algorithm. Since
1� Sp � p, 1�Ep � 1. If a parallel algorithm’s efficiency is equal to 1, then it means
that in the execution process of the algorithm each processor has been fully utilized.
However, under normal circumstances, it is impossible to reach 1.

4.3 Experimental Results Analysis

In this section, experiments were taken on the four benchmark functions to compare the
performance of the ABC algorithm and MPABC algorithm. By setting up the number
of running cores, we evaluated the MPABC algorithm in single-core, dual-core,
four-core, and eight-core environment respectively.

For all benchmark functions, the experimental parameters are set as follows: the
number of subpopulations n is 4, the number of individuals in the subpopulation

Table 1. Numerical benchmark functions

Function Function expression Ranges Minimum

Sphere
f1ðX

!Þ ¼ PD
i¼1

X2
i

[−100, 100] 0

Griewank
f2ðX

!Þ ¼ 1
4000

PD
i¼1

ðXi � 100Þ2 � QD
i¼1

cosðXi�100ffi
i

p Þþ 1
[−600, 600] 0

Rastrigin
f3ðX

!Þ ¼ PD
i¼1

ðX2
i � 10 cosð2pXiÞþ 10Þ [−5.12, 5.12] 0

Rosenbrock
f4ðX

!Þ ¼ PD�1

i¼1
100ðXiþ 1 �X2

i Þ2 þðXi � 1Þ2 [−50, 50] 0

316 J. Huo and L. Liu

NP is 200, and D is the dimension of the problem to be resolved. D was arbitrarily set
to 200 to turns the problem solving process extremely difficult to all algorithms. It will
help us in evaluating the behavior of the parallel models, regarding processing time and
quality of solutions. The Limit value is set to 0.25 * NP * D [14]. And the maximum
number of iterations of algorithms is set to 5000 and the termination condition is
reached the maximum number.

Under the same condition, each of the algorithms was repeated 30 times for each
test functions independently to statistically analyze the mean and standard deviation of
the experiment results. The results of execution time (sec), Speedup and Efficiency for
given number of cores of the two algorithms are shown in Table 2. In which, Mean and
SD are the average value of mean and standard deviation of the statistical experimental
data of the 30 times independent experiments.Mean shows precision that algorithm can
achieve in a given function evaluation times, which reflecting the convergence accu-
racy. SD reflects the stability and robustness of the algorithm. For clarity, the results of
the best algorithm are marked in boldface, respectively; if not all algorithms produce
identical results.

For the time-consuming tasks, such as the Rosenbrock function, the ABC serial
computation takes about 211 s, while the 4-cores MPABC parallel computation takes
only 51 s, the speedup is 3.795, and the parallel efficiency is 94.87%. Therefore, the
MPABC algorithm could make full use of the CPU multi-cores’ parallel resources,
greatly reduce the run time, and improve the operation efficiency. But for the simple

Table 2. Exectution time (sec), Speedup and Efficiency for given number of cores

Function Number of
cores

ABC serial
runs Execution
time(sec)

MPABC
Parallel runs
(sec) Execution
time(sec)

Speedup
(Sp)

Efficiency
(Ep)

Mean SD Mean SD

Sphere 1 35.662 1.284 – – – –

2 63.278 1.4550 0.5636 28.18%
4 32.420 0.1300 1.100 27.50%
8 32.541 0.1624 1.096 13.70%

Griewank 1 114.885 3.088 – – – –

2 81.970 1.245 1.402 70.08%
4 35.889 0.7617 3.201 80.83%
8 47.408 1.1524 2.545 31.82%

Rastrigin 1 110.129 4.536 – – – –

2 70.746 2.4805 1.557 77.85%
4 33.016 0.2498 3.336 83.39%
8 45.133 0.7117 2.440 30.50%

Rosenbrock 1 210.690 7.115 – – – –

2 143.497 4.034 1.468 73.41%
4 55.518 0.661 3.795 94.87%
8 55.536 1.023 3.794 47.42%

A Multi-cores Parallel Artificial Bee Colony Optimization Algorithm 317

tasks, such as Sphere function, the parallelization does not enhance the computational
efficiency, but consumes lots of computing time because of resources consumption and
threads switch.

5 Conclusions

In this paper, a new parallel artificial bee colony (MPABC) algorithm based on the
Fork/Join framework was proposed to improve optimization precision and performance
of the ABC algorithm. Based on the benchmark functions’ tests, it showed that the
MPABC algorithm performs well in all performance indicators than the original serial
ABC algorithm and realizes the significant increase of the computational efficiency on
the ordinary multi-cores machine.

Acknowledgement. This work is supported by National Nature Science Foundation of China
(Grant No. 61462058), Gansu Province Science and Technology Program (No. 1606RJZA004)
and Gansu Data Engineering and Technology Research Center for Resources and Environment.

References

1. Tavares, L.G., Lopes, H.S., Lima, C.R.E.: A study of topology in insular parallel genetic
algorithms. In: World Congress on Nature and Biologically Inspired Computing (NaBIC),
pp. 632–635. IEEE (2009)

2. Kennedy J., Eberhart R.: Particle swarm optimization. In: Proceedings of IEEE International
Conference on Neural Networks, pp. 1942–1948 (1995)

3. Fan, Q.Q., Yan, X.F.: Self-adaptive differential evolution algorithm with discrete mutation
control parameters. Expert Syst. Appl. 42, 1551–1572 (2015)

4. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical
report-tr06, Vol. 200. Erciyes university, engineering faculty, computer engineering
department (2005)

5. Zhu, X.P., Zhang, C., Yin, J.X.: Optimization of water diversion based on reservoir
operating rules: analysis of the Biliu River reservoir. China J. Hydrol. Eng. 19, 411–421
(2014)

6. Tu, K.Y., Liang, Z.C.: Parallel computation models of particle swarm optimization
implemented by multiple threads. Expert Syst. Appl. 38, 5858–5866 (2011)

7. Parpinelli, R.S., Benitez, C.M.V., Lopes, H.S.: Parallel approaches for the artificial bee
colony algorithm. In: Panigrahi, B.K., Shi, Y., Lim, M.-H. (eds.) Handbook of Swarm
Intelligence, pp. 329–345. Springer, Heidelberg (2011)

8. Konstantinos, E.P.: Parallel cooperative micro-particle swarm optimization: a master-slave
model. Appl. Soft Comput. 12, 3552–3579 (2012)

9. Gardner, M., McNabb, A., Seppi, K.: A speculative approach to parallelization in particle
swarm optimization. Swarm Intell. 6(2), 77–116 (2012)

10. Akancha, T., Afshar, M.A.: Implementation of parallel artificial bee colony algorithm on
vehicle routing problem. Int. J. Adv. Res. Sci. Eng. (IJARSE) 2(5), 122–130 (2013)

11. Lea, D.: A Java fork/join framework. In: Proceedings of the ACM 2000 Conference on Java
Grande, pp. 36–43. ACM, June 2000

318 J. Huo and L. Liu

12. Gao, W., Liu, S., Huang, L.: A global best artificial bee colony algorithm for global
optimization. J. Comput. Appl. Math. 236(11), 2741–2753 (2012)

13. Alba, E., Luque, G.: Evaluation of parallel metaheuristics. In: Parallel Problem Solving from
Nature (PPSN-EMAA 2006). LNCS, vol. 4193, pp. 9–14 (2006)

14. Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (ABC) optimization algorithm for
training feed-forward neural networks. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.)
MDAI 2007. LNCS, vol. 4617, pp. 318–329. Springer, Heidelberg (2007). doi:10.1007/978-
3-540-73729-2_30

A Multi-cores Parallel Artificial Bee Colony Optimization Algorithm 319

http://dx.doi.org/10.1007/978-3-540-73729-2_30
http://dx.doi.org/10.1007/978-3-540-73729-2_30

Identification of Common Structural Motifs
in RNA Sequences Using Artificial Bee Colony

Algorithm for Optimization

L.S. Suma1(&) and S.S. Vinod Chandra2

1 College of Engineering Attingal, Thiruvananthapuram, Kerala, India
sumals.1@gmail.com

2 University of Kerala, Thiruvananthapuram, India
vinod@keralauniversity.ac.in

Abstract. RNA molecules folded into secondary structure are found to have
structure related functionalities. Efficient computational techniques are required
for common structural motif identification due to its relevance in the study of
various functional aspects. In this work we focus on finding the most frequent
descriptor motif inherent in given set of RNA sequences. Our approach uses an
efficient computational method incorporating Nature inspired optimization
algorithm. The motif skeletons are obtained by applying context free grammar
defined for the descriptor motif. Then swarm intelligence based Artificial Bee
Colony optimization algorithm is applied to derive the common motif with
minimum and maximum length values of each motif element. Optimization
process is done based on the objective function defined with the frequency of
occurrence as major criterion. This method is able to generate correct motif
structures in Signal Recognition Particle data set. The resultant motif is com-
pared with the common motifs generated by other evolutionary methods.

1 Introduction

RNA Genetics is a well studied area in Molecular Biology, driven by both structural
and functional aspects. Involvement of RNA molecules in various cellular activities
and the importance of its structure in the functionalities has motivated the research in
this field. RNA molecules consist of conserved structural subunits that lead to the
formation of secondary structure. Secondary structure prediction plays an important
role in molecular level analysis [1]. While analyzing the secondary structure of RNA
molecules, recurring local patterns are found in related ones. Digging out such struc-
tural motifs from a set of input sequences is an important problem. RNA motifs are
grouped as secondary structure motifs, tertiary structure motifs, functional motifs and
binding motifs. MicroRNAs are found to play critical role in gene expression regula-
tion activities [2]. Distinguishing pre-miRNA from other stem loop hairpins is a widely
addressed problem in microbiology [3].

There exist a number of mechanisms that addressed the problem of identifying
secondary structural motifs from a set of input sequences. CMfinder is a framework that

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 320–327, 2017.
DOI: 10.1007/978-3-319-61824-1_35

predict RNA motifs in unaligned sequences [4]. The method is based on Expectation-
Maximization algorithm that uses covariance model for motif description. A stochastic
algorithm RNApromo finds local motifs with the details of known RNA secondary
structure [5]. Candidate structures that occur in maximum number of the given inputs
are taken to start the algorithm. RNAmine makes use of stem properties in the graph. It
reframes motif finding as pattern extraction/graph mining problem [6].

Evolutionary computation is an efficient methodology inspired by biological evo-
lution process and it is used to identify motifs from the huge search space comprising
of Signal Recognition Particle dataset [7]. Genetic Algorithm and genetic programming
methods are also applied to find common motifs in a set of RNA sequences [8, 9].
GeRNAMo is another technique that uses genetic programming algorithm and repre-
sents individuals in solution space as tree structures [10].

Nature inspired algorithms are found to be powerful in solving non linear problems
with less computational effort. Particle Swarm Optimization is used to solve the motif
finding problem in genomic sequences [11]. Artificial Bee Colony (ABC) algorithm is
one of the most efficient Nature inspired algorithms that is suited for numerical opti-
mization [12]. The principle of honey bee foraging is successfully applied on the
classical optimization problem of transportation [13]. As ABC algorithm is more
powerful, it is applied in solving descriptor based motif finding problem.

2 Background

RNA molecules consist of nucleotides Adenine, Uracil, Guanine & Cytocine. The
pairing nature of complementary bases (A-U&G-C) leads to the formation of secondary
structure. Another form of RNA structure is the tertiary structure described by
intramolecular interactions. Conserved structural patterns that are recurrently present in
RNA molecules are known as motifs. The commonly occurring structural motifs in
RNA secondary structure include double helices, internal loops, hairpin loops or
junctions.

An important aspect to be considered in motif identification process is the mode of
representing the motif structures. A widely used motif representation scheme comprises
3 basic elements ss, h5 and h3 to characterize single stranded, 5’ end of helix and 3’
end of helix respectively. h5(4)ss(2)h3(4)ss(3) is an example representation for the
compressed notation ((((..))))… usually referred as dot bracket notation. Here the
numerals in parantheses describe the number of corresponding elements.

Suppose, the same pattern exists in another RNA molecule but with slightly dif-
ferent motif element lengths. If h5(6)ss(3)h3(6)ss(1) is the second pattern, then the
same motif is said to be present in multiple sequences and hence it is said to be a
common motif. To represent such a common motif, the varying length of motif ele-
ments is also to be considered. This is done with minimum and maximum length
values. The common motif in this example is represented as h5(4,6)ss(2,3)h3(4,6)ss
(1,3). Here, the h5 helix in different motifs will contain 4 to 6 elements and thus min &
max values in the common motif becomes (4,6).

Identification of Common Structural Motifs in RNA Sequences 321

3 Methodology

A set of related RNA sequences from SRP dataset is taken as input and tried to identify
the most commonly occurring motifs by incorporating optimization process on motif
length part. Our methodology consists of a preprocessing phase and an optimization
phase. In the initial phase, the subsequences of varying length(input by the user) are
generated. It is followed by predicting secondary structure, modeling the descriptor
motif and generating the motif skeletons. In the later phase, these are converted into the
common motif format by including the range of length component and finally opti-
mization is performed to derive the common motifs. Figure 1 shows the overall pro-
cessing done for motif generation.

3.1 Motif Generation Phase

In order to generate the motif skeletons, the input RNA sequences must be processed
and represented in a suitable format. Secondary structure need to be predicted for each
subsequence of the given input sequences. RNAfold, a part of ViennaRNA Package 2.0
is a minimum free energy based framework and is used here for generating the sec-
ondary structure [14]. A sample secondary structure produced by RNAfold is as
follows:

Input (test_sequence) : GGGCUAUUAGCGUAGCCC
Output : (((((((….)))))))

This output in turn is represented in the compressed notation h5(7)ss(4)h3(7). The file
that stores the entire compressed notation subsequences will serve as the database for
the upcoming optimization process.

Fig. 1. Steps in motif generation process.

322 L.S. Suma and S.S. Vinod Chandra

Identifying common motifs from a huge set of subsequences is a difficult task.
Figure 2 shows Fogel’s descriptor motif with two stems which is used in this work.
From the very large search space of secondary structures, we identify only sequences
that have the given motif structure. Context Free Grammar is used for modeling the
motif structure. CFG is a powerful modeling technique that is used in many scientific
applcations. As Context Free Grammar can easily represent the nested pairing nature of
RNA structure, it is successfully applied for modeling of homologous RNA sequences
[15]. To model the putative motif structure, the following grammar is used.

 M Yh5Xh3Y/h5Xh3Y/Yh5Xh3/h5Xh3
 X ssM1ss/ss/null

M1 h5Xh3/ss/null
 Y ss

Here, the X production is applied corresponding to the occurrence of stem in the
input sequence. The subsequences are parsed by the grammar and the motif of the
desired structure is generated. The motif skeleton generated by the Grammar is then
converted into common motif format as described. Now we got the desired motif, but
what remains is the correct length value identification of motif elements. It is done in
the optimization phase.

3.2 Optimization Phase-Artificial Bee Colony Algorithm

Nature Inspired Computing provides efficient metaheuristic algorithms that are suc-
cessfully applied in a variety of problems. Various species in nature-ants, birds, fish etc.
has inspired scientific community to adopt their nature of work to solve problems.
Artificial Bee Colony algorithm is one among this class, utilizing the honey foraging
activities of bees. The basic algorithm considers three agents corresponding to 3 types
of bees involved in the work. They are Employees, Onlookers & Scouts. The food
sources in the algorithm correspond to the solutions of the application. The principle of
optimization lies in the fact that quality of selected solution corresponds to the nectar
amount (quality) of the food source.

Fig. 2. Fogel’s motif descriptor for SRP data

Identification of Common Structural Motifs in RNA Sequences 323

Each cycle of ABC algorithm includes actions of employee, onlooker and scout
bees. Each food source is assigned with an Employee bee. It tries to generate new food
source using the previous information stored in the memory. After comparing the
quality of these two solutions, it stores the best food source. Once this information is
received from all the employee bees associated with N/2 food sources, onlooker bees
start selecting the best one. The information is supplied to onlooker bees through
woggle dance. Then scout bees are sent to explore the possible food sources. The ABC
algorithm that optimizes our problem is as follows.

Step 1: Initializing length of D elements (ss, h5, h3) in N motif vectors with values in
range (lb, ub)

z ið Þ ¼ lbi þ ubi� lbið Þ � r: ð1Þ

Step 2: For each employed bee, take each of these motif vectors

(i) Perform searching of motif with length values of V in subsequence database
(ii) Evaluate its quality by computing the objective function and update the

position of food source by

x0 ið Þ ¼ x ið Þ + r * xj ið Þ� xk ið Þ� �
: ð2Þ

k varies from 1 to no: of solutions, k 6¼ j, r ranges between 0 & 1.

(iii) Calculate the fitness value of new solution and compare with the fitness of
the previous one.

Step 3: The probability is calculated for each employee bee by

P = f xð Þ=
X

f xkð Þ: ð3Þ

Step 4: Each onlooker bee repeats same calculations in step 3.
Based on the probability of employed bees, onlooker bees select food source.

Step 5: After N cycles, if a particular food source is not found improved, then that
source is abandoned. If one such source is found, scout bee replaces it with a
random one.

As per the obtained motif structure, the parameters are chosen. The optimization
algorithm starts with initialization of solution space. Here, the motif skeletons obtained
constitute the particles in the solution space. These particles are initialized with length
values in (lb, ub) range. After analyzing the features of the descriptor motif inherent in
the dataset, suitable values have been chosen so as to facilitate the initialization of
solution space. Now, each solution is to be evaluated based on its quality. Selection of
objective function is so crucial that it decides the efficiency of the algorithm. Here, as
we require the most frequently occurring motif in the sequences, objective function is

324 L.S. Suma and S.S. Vinod Chandra

taken as F =
P

count(motif, seq)/N. After running the algorithm for a given number of
cycles, optimal solution corresponding to the final objective function value is
memorized.

4 Results and Discussion

We used the Signal Recognition Particle data set which is used in other methods. The
data set contains 5 sequences with gi numbers 38795, 42758, 150042, 177793 and
216348.

In the pre processing steps, we generated the subsequences with length in the range
(15, 50). This data set is expected to contain the descriptor motif. The problem
dependent parameter, no: of stems is taken as 2. On parsing through the grammar, we
have obtained 3 motif skeletons, of which we chose the most frequently occurring one.
As per the obtained motif structure, the following parameters were chosen (Table 1).
The comparison of resultant motifs is shown in Table 2.

After the 30th iteration of ABC algorithm, the value of objective function obtained
is 0.998526. Consequently, the corresponding vector V is taken as the resultant length
vector of the common motif and the common SRP motif is h5(3,4)ss(3,5)h5(2,3)ss(4,6)
h3(2,3)ss(4,5)h3(2,4).

On comparing we can see that the result obtained is very much similar to Fogel’s
motif as well as GeRNAMo. Figure 3 shows that minimum length values of motif
elements differ from GeRNAMo by only one unit. For GPRM motif, the length of stem
elements (h5 & h3) vary from the other motif structures. The comparison of maximum
length values is shown in Fig. 4. As all the component length values coincide with

Table 1. Parameters chosen for ABC algorithm

Parameter Type Value

Dimension D Problem specific 14
No: of solutions General 30
No: of employed bee N/2 15
Lower bound Problem specific 2
Upper bound Problem specific 6

Table 2. Comparing resultant motifs

Method Motif

Fogel h5(3,3)ss(3,5)h5(3,3)ss(4,6)h3(3,3)ss(3,5)h3(3,3)
GeRNAMo h5(3,4)ss(4,5)h5(3,4)ss(4,5)h3(3,4)ss(4,5)h3(3,4)
GPRM h5(3,5)ss(0,3)h5(7,9)ss(0,3)h3(3,5)ss(5,6)h3(7,8)
Our approach h5(3,4)ss(3,5)h5(2,3)ss(4,6)h3(2,3)ss(4,5)h3(2,4)

Identification of Common Structural Motifs in RNA Sequences 325

other methods, line of ABC is not visible. This shows the accuracy of length values of
the obtained motif. Moreover, ABC algorithm can solve this optimization problem in
linear time.

5 Conclusion

RNA common motif identification is a well addressed problem for which we suc-
cessfully applied ABC algorithm in optimizing the motif components. The powerful
technique, CFG is also associated to this process for deriving the motif skeletons.
Presently this approach can find out common motifs in SRP data. By designing suitable
grammar, motifs can be derived from any data set. As motif identification is a com-
binatorial optimization problem, global optimization techniques can be used effec-
tively. Protein motif identification is another important problem in bioinformatics. We
will try to make use of variants of ABC algorithm in finding such common motifs.
Hence we conclude that this global optimization method can be used for other com-
putational problems in the field of Computational Biology.

h5 ss h5 ss h3 ss h3
0

2

4

6

8

10

GPRM
ABC
GeRNAMo
Fogel

Fig. 3. Comparing minimum length values

h5 ss h5 ss h3 ss h3
0
1
2
3
4
5
6
7
8

GPRM
ABC
GeRNAMo
Fogel

Fig. 4. Comparing maximum length values

326 L.S. Suma and S.S. Vinod Chandra

References

1. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

2. Chandra, S.S.V., Reshmi, G.: A Pre-microRNA classifier by structural and thermodynamic
motifs. IEEE World Congress on Nature and Biologically Inspired Computing (2009)

3. Reshmi, G., Chandra, S.S, Babu, V.J., Babu, P.S., Santhi, W.S., Ramachandran, S.,
Lakshmi, S., Nair, A.S., Pillai, M.R.: Identification and analysis of novel micro RNAs from
fragile sites of human cervical cancer: computational and experimental approach. Genomics
97, 333–340 (2011)

4. Yao, Z., Weinberg, Z., Ruzzo, W.L.: CMfinder—a covariance model based RNA motif
finding algorithm. Bioinformatics 22, 445–452 (2006)

5. Rabani, M., Kertesz, M., Segal, E.: Computational prediction of RNA structural motifs
involved in posttranscriptional regulatory processes. Proc. Natl. Acad. Sci. 105, 14885–
14890 (2008)

6. Hamada, M., Tsuda, K., Kudo, T., Kin, T., Asai, K.: Mining frequent stem patterns from
unaligned RNA sequences. Bioinformatics 22, 2480–2487 (2006)

7. Fogel, G.B., William Porto, V., Weekes, D.G., Fogel, D.B., Griffey, R.H., McNeil, J.A.,
Lesnik, E., Ecker, D.J., Sampath, R.: Discovery of RNA structural elements using
evolutionary computation. Nucleic Acids Res. 30(23), 5310–5317 (2002)

8. Chen, J.H., Le, S.-Y., Maizel, J.V.: Prediction of common secondary structures of RNAs: a
genetic algorithm approach. Nucleic Acids Res. 28, 991–999 (2000)

9. Hu, Y.-J.: GPRM: a genetic programming approach to finding common RNA secondary
structure elements. Nucleic Acids Res. 31, 3446–3449 (2003)

10. Michal, S., Ivry, T., Schalit-Cohen, O., Sipper, M., Barash, D.: Finding a common motif of
RNA sequences using genetic programming: the GeRNAMo system. IEEE/ACM Trans.
Comput. Biol. Bioinf. 4, 596–610 (2007)

11. Preeja, V., Abdul, Nazeer, K.A., Vinod Chandra, S.S.: Common structural motif
identification in genomic sequences. In: IEEE-ICDSE, pp. 37–41 (2012)

12. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function
optimization: Artificial Bee Colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007)

13. Saritha, R., Vinod Chandra, S.S.: A novel algorithm based on honey bee foraging principle
for transportation problems. In: ACCIS Proceedings of Elsevier (2014)

14. Lorenz, R., Bernhart, S.H., zu Siederdissen, C.H., Tafer, H., Flamm, C., Stadler, P.F.,
Hofacker, I.L.: ViennaRNA package 2.0. Algorithms Mol. Biol. 6 (2011)

15. Knudsen, B., Hein, J.: Pfold: RNA secondary structure prediction using stochastic CFG.
Bioinformatics 31, 3423–3428 (2003)

Identification of Common Structural Motifs in RNA Sequences 327

A Mixed Artificial Bee Colony Algorithm
for the Time-of-Use Pricing Optimization

Huiyan Yang, Xianneng Li(B), and Guangfei Yang

Faculty of Management and Economics, Dalian University of Technology,
Dalian, China

xianneng@dlut.edu.cn

Abstract. Demand side management (DSM) is proposed to solve the
contradiction between supply and demand of electricity market. To avoid
the peak load, time-of-use (TOU) pricing strategy plays an important
role in DSM to affect the behavior of using electricity by the users. In
this paper, we proposed a mixed artificial bee colony (mABC) algorithm
to TOU pricing optimization. Different from traditional research which
optimizes the time division and electricity price separately, we consider
these two factors together and optimize them simultaneously through
the proposed mABC. The experimental results on a real-world sce-
nario show the superiority of the mABC over traditional state-of-the-art
methods.

Keywords: Demand side management · Swarm intelligence · Artificial
bee colony · Mixed optimization · Time-of-use pricing

1 Introduction

Demand side management (DSM) is proposed to solve the supply and demand
contradiction in electricity market [17]. The contradiction mainly refers to the
unbalance between the stability of generation capacity and the volatility of
demand which varies in the course of a day and different seasons [14]. There
have been numerous DSM techniques used in the literature [7,12], within which
the time-of-use (TOU) pricing is one of the most unique strategies to promote
the overall electricity system efficiency, security and sustainability based on the
existing electrical infrastructure [5,18]. It guides the users to choose the time
of electricity consumption rationally by reasonable electricity price system and
improves the electricity consumption structure by shifting the peak load to val-
ley time, so as to achieve the peak load shifting effect [2–4,19]. The main feature
of the TOU pricing strategy is to assign different electricity prices to different
time divisions based on the concrete electricity load. For the valley load, a lower
price is used to encourage the customers to use the electricity, while a higher
price is levied to punish the usage of electricity in the peak load. Accordingly, the
load pressure of electricity providers is relaxed and the cost of power generation

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 328–336, 2017.
DOI: 10.1007/978-3-319-61824-1 36

A Mixed Artificial Bee Colony Algorithm 329

is reduced. In other words, TOU pricing strategy works as a soft solution to
improve the profits of both energy providers and users without the construction
of new electrical infrastructure.

In order to achieve the peak-valley load shifting, the TOU pricing strategy
is required to deal with two considerable targets.

– Factorization of time divisions (for a day, 24 h) with respect to the overall
electricity load. This target is to factorize each time period into 3 categories
of electricity load, i.e., valley load, flat load or peak load.

– Determination of electricity prices. This target is to determine what
electricity price is to be levied for the 3 categories of electricity load.

Currently, there have been various studies focusing on the TOU pricing optimiza-
tion to realize the electricity load shifting effect [1,10,13,16], however, within
which most of them focus on optimizing the electricity prices by a fixed, prede-
fined factorization of time divisions. In this paper, we adopt a heuristic-based
swarm intelligence method named artificial bee colony (ABC) [6,8] to address the
problem. ABC is originated for solving the continuous optimization problems,
while the discrete variables, i.e., Factorization of time divisions, cannot be han-
dled. Accordingly, we develop an extended version named mixed ABC (mABC),
which can optimize the discrete variable (Factorization of time divisions) and
continuous variables (Determination of electricity prices) simultaneously.

The remaining paper is organized as follows. Section 2 describes the TOU
pricing model. In Sect. 3, the details of mABC are presented. Section 4 conducts
the experiments on a real-world scenario. Finally, we conclude the paper.

2 Time-of-Use (TOU) Pricing Model

To construct the TOU pricing model, 2 assumptions are made first. First, the
amount of daily electricity consumption remains unchanged before and after the
implementation of TOU pricing strategy. Second, the users’ behavior of using
electricity is only influenced by the electricity prices, regardless the impact of
other potential factors. The notations used are presented as follows.

– Qv, Qf and Qp: the amounts of power consumption for valley load, flat load
and peak load before TOU pricing strategy.

– Q′
v, Q

′
f and Q′

p: the amounts of power consumption for valley load, flat load
and peak load after TOU pricing strategy.

– Qmin and Qmax: the maximal and minimal power load in a day.
– pv, pf and pp: the electricity prices for valley load, flat load and peak load.
– p0: the electricity price before TOU pricing strategy.
– M0, MTOU : the profits gained by the electricity provider before and after

TOU pricing strategy.
– M ′: The saved generation cost of electricity by TOU pricing strategy.

330 H. Yang et al.

Afterwards, we hold the following 3 equations.

Qv + Qf + Qp = Q′
v + Q′

f + Q′
p. (1)

M0 = p0 (Qv + Qf + Qp) . (2)

MTOU = pvQ
′
v + pfQ

′
f + ppQ

′
p. (3)

The prime target of implementing TOU pricing strategy is to benefit both
of the electricity providers and the end-users. Therefore, we have the following
constraints: For the electricity providers: MTOU ≥ M0 −M ′; For the end-users:
MTOU ≤ M0. It is clear that the target of TOU pricing strategy is to reduce
M ′ as much as possible. The realistic solutions to realize the objective are (1)
minimize the peak load and (2) maximize the valley load (can be transferred
to minimize the difference of peak-valley load). We assume that the end-users’
reaction function between the electricity consumption and prices is represented
by f(p), and Q = f(p). Accordingly, we formulate the TOU pricing model as
follows.

Minimize 0.5Qmax + 0.5(Qmax − Qmin), (4)

subject to M0 − M ′ ≤ MTOU ≤ M0 (5)

3 Mixed Artificial Bee Colony (mABC) Algorithm

3.1 Optimization Targets

To address the above TOU pricing model, two considerable targets are to be
optimized, that is, factorization of time divisions and determination of
electricity prices.

For the first issue, we divide a day (24 h) into 24 time periods, while we need to
determine that for each time period, what category of electricity prices is levied,
i.e., pv, pf or pp. Therefore, there are 24 discrete variables to be optimized, where
each variable can be assigned {valley, flat, peak}.

For the second target, we need to determine what electricity price is to be
levied for the 3 categories of electricity load, i.e., pv, pf or pp. Based on the
previous research, we directly assign pf = p0 for the flat load, which is predefined.
Therefore, there are 2 continuous variables to be optimized, i.e., pv and pp.

3.2 Mixed Artificial Bee Colony (mABC) in Details

In order to solve this problem, we propose a mixed artificial bee colony (mABC)
algorithm. mABC is originated from ABC [6,8,9] which have been success-
fully applied to solve the continuous optimization problems. mABC extends
traditional ABC to solve the mixed optimization problems, where the 24 dis-
crete variables and 2 continuous variables of TOU pricing model are optimized
simultaneously.

A Mixed Artificial Bee Colony Algorithm 331

H0 H1 H2 ... H22 H23 pv pp

Fig. 1. Individual structure of mABC

1 initialization;
2 repeat
3 send the employed bees;
4 send the onlooker bees;
5 if abandoned solution is found then
6 send the scout bees;
7 end

8 until the optimal solution is found or MFEs is reached ;

Algorithm 1. Basic algorithm of mABC

Individual Structure: To optimize the discrete and continuous variables simul-
taneously, the individual structure of mABC is coded as Fig. 1.

Algorithmic Description: The basic algorithm of mABC is preserved as the
traditional ABC, which is shown in Algorithm1. It maintains a population of
individuals. The population size is defined by the number of individuals SN .
Three groups of artificial bees are developed and sent to the individuals, includ-
ing the employed bees, onlooker bees and scout bees. They play the essential role
to modify the existing individuals to find better ones until reaching the terminal
condition, e.g., the maximal number of fitness evaluations (MFEs).

Employed Bees: The employed bees focus on searching around the current
population to seek better ones. There are total SN employed bees, each of which
corresponds to a unique individual. The search procedure of each individual Xi

is performed in Algorithm 2. To generate Vi, we use the following strategy.

1. If the selected jth variable is discrete, vji is randomly assigned from {0, 1, 2}
which is different from xj

i .
2. If the selected jth variable is continuous, the following equation is used.

vji = xj
i + rand(−1, 1) ×

(
xj
i − xj

k

)
. (6)

Here, k ∈ {1, 2, . . . , SN} is a randomly selected neighbour individual.
rand(−1, 1) is a random value ranging in [−1, 1].

Onlooker Bees: Afterwards, the onlooker bees (with size SN) are sent.
Roulette-wheel selection is applied to guide each onlooker bee to select an indi-
vidual, that, individuals with higher quality tend to have higher probability to
be selected. After selection, Algorithm 2 is applied to seek a better candidate.

Scout Bees: If an individual can not be improved even that it has been searched
by the employed/onlooker bees many times, i.e., limits times, it is considered as
an abandoned solution that will be removed from the population. A scout bee
will be sent to randomly generate a new individual to the population.

332 H. Yang et al.

1 randomly select the jth variable, j ∈ {1, 2, ..., D};
2 create offspring solution Vi, whose variables are equal to Xi;

3 change a new variable value vji in Vi to replace the original value xj
i ;

4 if the Vi is better than Xi, Xi ← Vi; otherwise Xi will be remained;

Algorithm 2. Search procedure of each individual Xi

4 Experiments

4.1 Experimental Scenario

The data used in the experiment is from a real-world scenario of China [13].
The distribution of electricity load is described in Table 1, and the end-users’
reaction data between electricity prices and consumption is shown in Table 2.

The electricity price before TOU pricing strategy, i.e., p0, is 0.6357
RMB/KWh. Based on the realistic consideration, the electricity prices hold the
following constraints.

⎧
⎨
⎩

0.3p0 ≤ pv ≤ 0.8p0;
pf = p0;
1.2p0 ≤ pp ≤ 1.8p0.

(7)

4.2 Experimental Results and Analysis

As described in Sect. 2, the first issue to deal with the TOU pricing model
is to estimate an appropriate end-users’ reaction function between the elec-
tricity prices and consumption, i.e., Q = f(p). Traditional research generally

Table 1. The electricity load data of a day (unit: 104 KWh)

Period Electricity
load

Period Electricity
load

Period Electricity
load

00:00–01:00 172.05 08:00–09:00 241.56 16:00–17:00 245.43

01:00–02:00 179.28 09:00–10:00 247.12 17:00–18:00 247.45

02:00–03:00 175.08 10:00–11:00 253.34 18:00–19:00 261.93

03:00–04:00 165.32 11:00–12:00 225.57 19:00–20:00 260.92

04:00–05:00 182.99 12:00–13:00 229.77 20:00–21:00 245.43

05:00–06:00 188.53 13:00–14:00 233.17 21:00–22:00 229.28

06:00–07:00 200.66 14:00–15:00 230.97 22:00–23:00 195.78

07:00–08:00 216.65 15:00–16:00 230.97 23:00–24:00 186.35

Table 2. The end-users’ reaction data between electricity prices and consumption

Price (per unit value) 0.333 0.4 0.5 0.667 1 1.5 2 2.5 3

Consumption (per unit value) 1.2124 1.1970 1.1376 1.0897 1.0140 0.8603 0.7496 0.6217 0.5261

A Mixed Artificial Bee Colony Algorithm 333

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0.5 1 1.5 2 2.5 3

E
le

ct
ric

ity
 c

on
su

m
pt

io
n

Electricity prices

MAE
LR
SR

0.069
0.037

Reaction data
LR
SR

Fig. 2. The end-users’ reaction function

 130

 140

 150

 160

 170

 180

 0 10000 20000 30000 40000 50000

Fi
tn

es
s

va
lu

e

Number of fitness evaluations

GA
UMDA

DE
mABC

Fig. 3. Performance of fitness values

applies linear regression (LR) to solve the issue, while we apply the genetic
programming-based symbolic regression (SR) approach [15,20] in the paper. The
reaction functions obtained by LR and SR are shown in Eq. 8, as well as the
graphic illustration in Fig. 2. The mean absolute error (MAE) results show that
the quadratic obtained by SR is more accurate estimation than that of LR.

{
LR : Q = −0.258p + 1.27;
SR : Q = 0.0296p2 − 0.356p + 1.33. (8)

Afterwards, we apply mABC to optimize the factorization of time divisions
and determination of electricity prices simultaneously (The source codes refer
to the acknowledgements). The parameters of mABC is defined by: SN = 10,
limit = 260 and MFEs = 200, 000. The experimental results are the aver-
age values over 30 independent runs. In order to evaluate the performance of
mABC, three state-of-the-art evolutionary algorithms are compared, i.e., genetic
algorithm (GA), univariate marginal distribution algorithm (UMDA) [11] and a
mixed version of differential evolution (DE) which treats the discrete variables
as mABC.

Convergence Performance: The convergence curves of the compared algo-
rithms are shown in Fig. 3. It is clear that mABC outperforms the other three
compared algorithms. DE ranks in the second place, and GA shows the worst
results. The detailed results of fitness values are shown in Table 3. Meantime,
we conduct student t-test (two-tailed, paired, with confidence level 95%) to val-
idate the statistical significance. The t-test results (P values) show that mABC
outperforms the other algorithms with statistical significance.

Optimal TOU Pricing Strategy: The optimal TOU pricing strategy obtained
by the studied algorithms are shown in Table 4. Three groups of results are
listed, i.e., factorization of time divisions, determination of electricity prices and
maximal/minimal electricity load. In 9 out of 24 time periods, the four algorithms
recommend different time factorization, resulting in different final performance.
As for the proposed mABC, the optimal time division scheme is: Valley hours:
00:00–06:00, 22:00–24:00 (8 h); Flat hours: 06:00–08:00, 11:00–16:00, 21:00–22:00

334 H. Yang et al.

Table 3. Performance of fitness values and statistical test

GA UMDA DE mABC

Mean 145.2310 142.3732 142.4420 134.3569

Std. dev. 5.060984 6.579869 1.740538 0.802585

P value 3.72E-18 6.01E-12 1.49E-07 —

Table 4. Performance of the optimal TOU pricing strategy

Period Factorization of time divisions Determination of electricity prices
GA UMDA DE mABC GA UMDA DE mABC

00:00-01:00 valley valley valley valley pv 0.3p0 0.52162p0 0.463791p0 0.427678p0
01:00-02:00 valley valley valley valley Pp 1.536556p0 1.390754p0 1.411189p0 1.427157p0
02:00-03:00 valley valley valley valley
03:00-04:00 valley valley valley valley
04:00-05:00 valley valley valley valley
05:00-06:00 valley valley valley valley Maximal/minimal electricity load (unit: 104KWh)
06:00-07:00 flat valley valley flat GA UMDA DE mABC
07:00-08:00 flat flat flat flat Qmax 239.9997 234.6684 235.0245 231.7929
08:00-09:00 peak flat flat peak Qmin 192.6046 190.5077 193.6323 195.7299
09:00-10:00 flat flat peak peak Diff. 47.39502 44.16071 41.39224 36.06298
10:00-11:00 peak peak peak peak
11:00-12:00 flat flat flat flat
12:00-13:00 peak flat peak flat
13:00-14:00 peak flat flat flat
14:00-15:00 flat flat flat flat
15:00-16:00 flat flat peak flat
16:00-17:00 peak flat flat peak
17:00-18:00 flat flat flat peak
18:00-19:00 peak peak peak peak
19:00-20:00 peak peak peak peak
20:00-21:00 flat peak flat peak
21:00-22:00 flat flat flat flat
22:00-23:00 valley valley valley valley
23:00-24:00 valley valley valley valley

(8 h); Peak hours: 08:00–11:00, 16:00–21:00 (8 h), which is much more reasonable
than the other algorithms’. The maximal/minimal electricity load shows that
mABC results in much more smaller Qmax and the difference of Qmax and Qmin,
where both are the optimization targets of the TOU pricing model. Eventually,
by using the optimal TOU pricing strategy of mABC, the electricity load is
adjusted to a more smooth curve, such that the supply-demand relationship is
much more relaxed.

5 Conclusion and Future Work

In this paper, we proposed a mixed artificial bee colony (mABC) algorithm to
Time-of-Use (TOU) pricing optimization. We consider the time division and elec-
tricity price together and optimize them simultaneously through the proposed
mABC. The experimental results on a real-world scenario of China show the

A Mixed Artificial Bee Colony Algorithm 335

superiority of the mABC over traditional state-of-the-art algorithms, i.e., GA,
UMDA and DE. By using the proposed mABC, a more supply-demand friendly
electricity load is achieved to benefit both of the electricity providers and the
end-users. In the future, we will consider to explore this approach to a more
complex smart grid scenario, and develop enhanced optimization algorithms.

Acknowledgments. This work is supported by the National Natural Science Founda-
tion of China (71601028, 71671024, 71421001, 71431002). The source codes are available
at http://faculty.dlut.edu.cn/li/en/article/960204/list/.

References

1. Arteconi, A., Hewitt, N., Polonara, F.: State of the art of thermal storage for
demand-side management. Appl. Energy 93, 371–389 (2012)

2. Celebi, E., Fuller, J.D.: Time-of-use pricing in electricity markets under different
market structures. IEEE Trans. Power Syst. 27(3), 1170–1181 (2012)

3. Datchanamoorthy, S., Kumar, S., Ozturk, Y., Lee, G.: Optimal time-of-use pricing
for residential load control. In: 2011 IEEE International Conference on Smart Grid
Communications (SmartGridComm). pp. 375–380, IEEE (2011)

4. Gellings, C.W.: The concept of demand-side management for electric utilities. Proc.
IEEE 73(10), 1468–1470 (1985)

5. Hatami, A., Seifi, H., Sheikh-El-Eslami, M.K.: A stochastic-based decision-making
framework for an electricity retailer: time-of-use pricing and electricity portfolio
optimization. IEEE Trans. Power Syst. 26(4), 1808–1816 (2011)

6. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC)
algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

7. Kurucz, C.N., Brandt, D., Sim, S.: A linear programming model for reducing sys-
tem peak through customer load control programs. IEEE Trans. Power Syst. 11(4),
1817–1824 (1996)

8. Li, X., Yang, G.: Artificial bee colony algorithm with memory. Appl. Soft Comput.
41, 362–372 (2016)

9. Li, X., Yang, G., Kıran, M.S.: Search experience-based search adaptation in artifi-
cial bee colony algorithm. In: 2016 IEEE Congress on Evolutionary Computation
(CEC), pp. 2524–2531. IEEE (2016)

10. Min, L., Yanhui, Z., Bailin, H.: Peak and valley periods division and time-of-use
price based on power generation cost. East China Electr. Power 33(12), 90–91
(2005)

11. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of
distributions I. Binary parameters. In: Voigt, H.-M., Ebeling, W., Rechenberg,
I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer,
Heidelberg (1996). doi:10.1007/3-540-61723-X 982

12. Ng, K.H., Sheble, G.B.: Direct load control-a profit-based load management using
linear programming. IEEE Trans. Power Syst. 13(2), 688–694 (1998)

13. Ning, N.: Research on Time-of-Use Price Optimization of DSM Based on Genetic
Algorithm. Tianjin University, Tianjin (2012)

14. Rabl, V.A., Gellings, C.W.: The concept of demand-side management. In:
De Almeida, A.T., Rosenfeld, A.H. (eds.) Demand-Side Management and Electric-
ity End-Use Efficiency. NATO ASI Series, vol. 149, pp. 99–112. Springer, Nether-
lands (1988). doi:10.1007/978-94-009-1403-2 5

http://faculty.dlut.edu.cn/li/en/article/960204/list/
http://dx.doi.org/10.1007/3-540-61723-X_982
http://dx.doi.org/10.1007/978-94-009-1403-2_5

336 H. Yang et al.

15. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.
Science 324(5923), 81–85 (2009)

16. Sheen, J.N., Chen, C.S., Yang, J.K.: Time-of-use pricing for load management
programs in taiwan power company. IEEE Trans. Power Syst. 9(1), 388–396 (1994)

17. Strbac, G.: Demand side management: benefits and challenges. Energy policy
36(12), 4419–4426 (2008)

18. Torriti, J.: Price-based demand side management: assessing the impacts of time-
of-use tariffs on residential electricity demand and peak shifting in Northern Italy.
Energy 44(1), 576–583 (2012)

19. Wei, D., Jiahai, Y., Zhaoguang, H.: Time-of-use price decision model considering
users reaction and satisfaction index. Autom. Electr. Power Syst. 29(20), 10–14
(2005)

20. Yang, G., Li, X., Wang, J., Lian, L., Ma, T.: Modeling oil production based on
symbolic regression. Energy Policy 82, 48–61 (2015)

Optimization of Office-Space Allocation Problem
Using Artificial Bee Colony Algorithm

Asaju La’aro Bolaji1(B), Ikechi Michael2, and Peter Bamidele Shola3

1 Department of Computer Science, Faculty of Pure and Applied Sciences,
Federal University Wukari, Wukari, Taraba State, Nigeria

lbasaju@fuwukari.edu.ng
2 VConnect Global Services Limited, No. 60, Marine View Plaza, 7th Floor,

Apongbon, Lagos 100221, Nigeria
mykehell123@gmail.com

3 Department of Computer Science, University of Ilorin, Ilorin, Nigeria
shola.bp@unilorin.edu.ng

Abstract. Office-space allocation (OFA) problem is a class of complex
optimization problems that distributes a set of limited entities to a set of
resources subject to satisfying set of constraints. Due to the complexity
of OFA, numerous metaheuristic-based techniques have been proposed.
Artificial Bee Colony (ABC) algorithm is a swarm intelligence, meta-
heuristic techniques that have been utilized successfully to solve several
formulations of university timetabling problems. This paper presents an
adaptation of ABC algorithm for solving OFA problem. The adaptation
process involves integration of three neighbourhood operators with the
components of the ABC algorithm in order to cope with rugged search
space of the OFA. The benchmark instances established by University
of Nottingham namely Nothingham dataset is used in the evaluation of
the proposed ABC algorithm. Interestingly, the ABC is able to produced
high quality solution by obtaining two new results, one best results and
competitive results in comparison with the state-of-the-art methods.

Keywords: Artificial Bee Colony · Timetabling problem · Office space
allocation · Nature-inspired computing

1 Introduction

Typically, the office-space allocation (OFA) is a class of complex combinatorial
optimization problems that has been widely investigated by the researchers in the
domain of timetabling and operations research over the last few decades due to
its practical utility to many organization across the globe. The problem involves
assignment of a set of limited spaces to a set of resources in such a way that all
resources are scheduled to the require spaces for optimal utilization subject to
set of constraints satisfaction. In OFA, the classification of constraints is divided
into two: hard and soft. Note that it is compulsory for the hard constraints to be
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 337–346, 2017.
DOI: 10.1007/978-3-319-61824-1 37

338 A.L. Bolaji et al.

satisfied in an OFA problem for the solution to be feasible, while the satisfactions
of the soft constraints is required but not mandatory. Basically, the quality of the
OFA solution is determined by the satisfactions of number of soft constraints.

The introduction of several algorithmic approaches for tackling the OFA
have been proposed by the workers in the domain of operational research and
Artificial Intelligence over past few decades [1]. The techniques utilized for the
OFA under mathematical programming approaches are [2–4]. While those that
employed the usage metaheuristic approaches for the OFA are classified into
local search-based and population-based approaches. Some examples of local
search-based approaches which are utilized for the OFA include hill climbing
[5,6], simulated annealing [5,7] and tabu search [6]. Furthermore, those used
population-based approaches for the OFA are evolutionary algorithm [5,8], har-
mony search algorithm (HSA) [9]. Similarly, the usage of hyper-heuristic and
hybrid metaheuristic approaches have also been reported [10–12]. While the
success of the metaheuristic algorithms when applied independently to opti-
mization problems have been reported, substantial research efforts emanated
from hybridization especially for large scale scheduling/timetabling problems.
Few example of hybridization between population-based and local search-based
that algorithms applied to timetabling appeared in [13–15].

Karaboga in [16] proposed Artificial Bee Colony (ABC) algorithm as a class of
swarm intelligence algorithm which imitates foraging behaviour of artificial bee
in their colony. Due to the simplicity of this algorithm, it has been successfully
adopted to tackle several NP-hard and complex optimization problems [17,18].
Studies have shown that ABC algorithms have been adapted and hybridized
for the different formulations of timetabling problems, however non of these
studies have investigated the ABC for the OFA. Therefore, the contribution of
this paper is to investigates the performance ABC algorithm on OFA problem.
The proposed ABC algorithm for the OFA is evaluated using the benchmark
instances from the University of Nottingham, and one instance from the Uni-
versity of Wolverhampton. Experimentally, the ABC algorithm shows successful
performance by achieving two new results, one best results and a comparable
results in the remaining benchmark instances.

The remaining part of the paper is organized as follows: Sect. 2 provides
brief formulation of the OFA while the main concept of artificial bee colony
is presented in Sect. 3. Section 4 introduces the proposed ABC approach for the
OFA problem. The computational experiments, results and discussions are given
in Sect. 5, and finally conclusion and future work are presented in Sect. 6.

2 Office-Space Allocation Problem (OFA)

The formulation OFA involves a set of l entities, with dimensions d1, d2, . . . , dl,
and a set of m rooms with capacities c1, c2, . . . , cm. The solution to the OFA
problem is represented by a two dimensional matrix X of [xi,j] values, in which
xi,j = 1 if the entity j (ej) is assigned to room i (ri). The main objective OFA
is to generates a feasible solution with the best quality. The different constraints
of the OFA problem considered in this study are:

Optimization of Office-Space Allocation Problem 339

– No sharing- In this constraint, one particular entity should not share the
room with another entity.

– Be located in - a particular entity should be assigned to a specific room.
– Be adjacent to - a particular entity should be assigned to room adjacent to

another entity.
– Be away - a particular entity should not be allocated close to another entity.
– Be together with - two particular entity should be assigned to the same room.
– Be grouped with - A group of entities should be assigned close to each other.

The solution to the OFA is evaluated based on the fitness cost f(x) as shown
in Eq. (1)

min f(x) = f1(x) + f2(x). (1)

subject to
l−1∑

i=0

m−1∑

j=0

xi,j = 1. (2)

where f1(x) represents the space misuse function and f2(x) is used to compute
the violation of the soft constraints.

f1(x) =
l−1∑

i=0

WPi +
l−1∑

i=0

OPi. (3)

f2(x) =
k−1∑

r=0

SCPr. (4)

where both WPi and OPi are the amount of space wasted or overused for each
room i ; SCPr represent the penalty for violating the rth soft constraint. For
each room only i one of WPi or OPi has a value greater than zero, and the
amount of overused for each room i is computed as shown in Eqs. 5 and 6.

WPi = max(0, ci −
m−1∑

j=0

xi,j · wj). (5)

OPi = max(0, 2(
m−1∑

j=0

xi,j · wj − ci)). (6)

3 Artificial Bee Colony Algorithm

In the recent time, Karaboga proposed artificial bee colony (ABC) for tack-
ling numerical optimization [16]. It is a typical swarm intelligence population-
based algorithm that simulates intelligent foraging behaviour of honey bees in
their colonies. The colony of ABC consists of three categories of bees namely:
employed, onlooker and scout bees. Employed bees occupy the first half of the
colony while the onlooker bees take over the remaining half. During the search
process, each employed bee explores its neighbourhood for the new food sources

340 A.L. Bolaji et al.

since information about the food sources exist in their memory, and shares the
information of their food sources with the onlooker bees. Based on informa-
tion provided by the employed bees, onlooker bees decides to select and further
explores the neighbourhood of those food sources with good information in order
to generate new ones. Any employed bee whose food source is exhausted and
abandon by the onlooker bee will automatically turns to scout. Then scout bee
randomly explore the search space in order to discover the new food source. The
key procedural steps of ABC as an iterative improvement process are given as
follows:

– Generate the initial population of the food sources randomly.
– REPEAT

• Send the employed bees onto the food sources and calculate the fitness
cost.

• Evaluate the probability values for the food sources.
• Send the onlooker bees onto the food sources depending on probability

and calculate the fitness cost.
• Abandon the exploitation process, if the sources are exhausted by the

bees.
• Send the scouts into the search area for discovering new food sources

randomly.
• Memorize the best food source found so far.

– UNTIL (requirements are met).

4 The Proposed ABC for Office-Space Allocation
Problem (OFA)

In this section, the continuous nature of the ABC algorithm is modified with the
introduction of three different neighourbood structures to cope with the solution
search space of the OFA problem. The five steps of the ABC algorithm as adapted
to the OFA is provided in the next subsections. Note that the feasibility of the
solutions is preserved through out the study.

4.1 Initialize the ABC and OFA Parameters

The three control parameters of ABC algorithm which are required for solving
the OFA are initialized in this step. The parameters are solution number (SN)
which refers to the number of food sources in the population and similar to
the population size in GA; maximum cycle number (MCN) is the maximum
number of iterations; and limit which is normally used to diversify the search
and it is responsible for the abandonment of solution, if there is no improvement
for certain number of iterations. Similarly, the OFA variables like set of the
entities, set of rooms, room capacity, the size of capacity required by each entity
and set of constraints (i.e. hard and soft) are also extracted from the dataset.

Optimization of Office-Space Allocation Problem 341

4.2 Initialize the Food Source Memory

The food source memory (FSM) is represented by memory location which con-
sists of sets of feasible solutions (i.e. food sources) as determined by SN as shown
in Eq. 7. This step generates the initial feasible food source (i.e. solution vectors)
using the peckish heuristic strategy introduced in [19] and these food sources are
sorted in ascending order in the FSM in accordance with the objective function
values of the food source, that is f(x1) ≤ f(x2) . . . f(xSN). Algorithm 1 shows
the pseudocode of the peckish heuristic strategy where each food source satisfies
all hard constraints and all resources are allocated in the suitable rooms.

FSM =

⎡

⎢⎢⎢⎣

x1
1 x2

1 · · · xN
1

x1
2 x2

2 · · · xN
2

...
...

. . .
...

x1
SN x2

SN · · · xN
SN

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

f(x 1)
f(x 2)

...
f(xSN)

⎤

⎥⎥⎥⎦ . (7)

Algorithm 1. Peckish heuristic strategy
while all entities are not assigned do

K = N/3
Select an unassigned entity j randomly
Select a number of K rooms which satisfy 1/2 × wj ≤ wj ≤ 3/2 × wj randomly
Select the best room from K rooms with the minimum penalty
Assign the entity j to the best room

end while

4.3 Send the Employed Bee to the Food Sources

In this step, the employed bee operator selects feasible OFA solutions sequen-
tially from the FSM and randomly explores their neighbourhoods using the three
neighbourhood structures to produce a new set of neighbouring solutions (i.e.
food sources). The neighbourhood structures utilized by employed bee are:

1. Neighbourhood Relocate (NR): In this neighbourhood, the entity of
the allocation x′

i is moved from the current room to another room selected
randomly.

2. Neighbourhood Swap (NS): the room of the allocation x′
i is swapped with

the room of the resource x′
j selected randomly.

3. Neighbourhood Interchange (NI): In this neighbouhood, all entities of
the two selected rooms are randomly interchanged. For example, entities
assigned to room A are randomly reassigned to the room B.

The fitness of each neighbouring food source is calculated, if it is better,
then it replaces the original food source food source in FSM. This process is
implemented for all solutions in FSM. The detailed algorithm of this process
can be found in our previous paper [20].

342 A.L. Bolaji et al.

4.4 Send the Onlooker Bee to the Food Sources

In this step, the information of exploited food sources (i.e. OFA solutions) are
shared with onlookers by the employed bees. Subsequently, onlooker bees based
on shared information (i.e. proportional selection probability shown in Eq. (6))
decides to exploits the food sources randomly using the set of three neighbour-
hood structures discussed above. Note that the solution with highest probability
has higher chanced of being chosen and perturbed to its neighbourhood using
the same strategy of the employed bee. The fitness cost of the new food source
is evaluated and if better, then the current food source is replaced by the new
neighbouring one.

pj =
f(x j)∑SN
k=1 f(xk)

.

Note that the
∑SN

i=1 pi is unity.

4.5 Send the Scout to Search for Possible New Food Sources

The scout bee as a colony explorer commences its operation once a solution is
abandoned by the onlooker i.e. if the improvement of a solution in the FSM has
been stopped for certain number of iterations as determined by limit. Then a
new solution is randomly generated by the scout bee to replaces the abandoned
one in FSM. Furthermore, the ABC algorithm memorizes the best food source
xbest in FSM.

4.6 Stopping Condition

The search process of Steps 3 to 5 are repeated until a stop criterion is met as
originally determined by the MCN value.

5 Computational Experiments, Results and Discussions

The proposed ABC for the OFA is coded in Microsoft Visual Basic.NET on
Windows 8 platform on Intel core(TM) i3-4005u CPU @1.70 GHz and 4 GB RAM
and the results all instances are obtained within computational time of 149 s.
The performance of the proposed method is tested using datasets established by
University of Nottingham, and University of Wolverhampton. The characteristics
of these datasets is provided in Table 1.

5.1 Experimental Design

In this section, experimental design showing the influence of parameters on the
performance of the proposed ABC is carried out. A series of experiments com-
prising 9 convergence cases of different settings of ABC parameters that are
utilized for tackling the OFA problem. Table 2 shows the different experimental
cases and values employed to study those two ABC parameters: SN and Limit.

Optimization of Office-Space Allocation Problem 343

Table 1. Characteristics of OFA dataset

Instances NOTT 1 NOTT 1A NOTT 1B NOTT 1C NOTT 1D NOTT 1E Wolver 1

Entities 158 142 104 94 56 86 115

Rooms 131 115 77 94 56 59 115

Constraints H S H S H S H S H S H S H S

Allocation 0 35 0 30 0 9 0 35 0 9 0 26 0 0

Same room 0 20 0 15 0 20 0 0 0 0 0 30 0 0

Not sharing 100 0 90 0 34 0 46 0 46 0 38 0 115 0

Adjacency 5 15 5 10 3 6 3 15 3 6 1 5 0 0

Grouped by 0 10 0 7 0 64 0 37 0 24 0 0 0 0

Away from 6 14 0 12 0 0 0 8 0 0 4 6 0 0

Table 2. ABC experimental cases

Cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

SN 10 10 10 20 20 20 30 30 30

Limit 100 500 1000 100 500 1000 100 500 1000

5.2 Experimental Results

Experimental results of 9 convergence cases defined previously are summarized
in Table 3 for the datasets under consideration. Note that the numbers in the
table refers to objective cost value (lowest is best). For each instance of both
datasets, the best, ave and worst result of 10 runs are recorded and MCN is fixed
at 10000 cycle. The best result among all cases in each instance is highlighted
in bold. Similarly, Fig. 1 shows the boxplots that illustrate the distribution of
solution quality for all experimental cases for the NOTT 1 instances. It can be
seen from Fig. 1 that the gaps between the best, average, and worst solution
qualities are very close, which demonstrates that the proposed ABC has the
good capability of exploring the search.

As shown in Table 3, it can be seen that increase in SN has significant impact
on the performance of the ABC for the OFA, however as SN increases from 20 to
30, the difference is not much. For example, Case 5 with SN = 20 achieved best
results in five instances. This is followed by Cases 6 and 8 where both achieved
best results in three instances. It is worthy to mention that all convergence cases
achieved new results in the smallest instance (i.e. WOLVER 1). Apparently, Case
4 is better than remaining cases where obtained best results in two instances.
Summarily, Case 5 with SN = 20 and Limit = 500 has the potential to enhance
the search capability and therefore obtained impressive results.

5.3 Comparison with Other Approaches

The best experimental results obtained by the ABC using the both datasets
are compared with other techniques that worked on the same datasets. These
techniques are IPM-OFA [4], OFA-MP [4], HSA-OFA [9], SA-OFA [21], and

344 A.L. Bolaji et al.

Table 3. Experimental results of the ABC convergence cases

Instance Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

NOTT 1 Best 428.35 470.70 428.30 445.95 425.50 447.25 474.50 439.30 462.15

Avg 491.74 508.96 465.24 487.06 484.34 469.02 519.65 490.39 490.88

Worst 555.50 604.85 503.40 531.20 545.65 488.70 575.75 524.15 547.55

NOTT 1A Best 482.75 464.50 471.55 502.15 437.05 471.15 474.40 466.60 453.75

Avg 532.48 486.43 509.31 531.58 480.38 510.60 499.16 501.95 489.07

Worst 564.55 522.70 536.75 567.35 520.00 536.95 510.40 574.30 518.40

NOTT 1B Best 387.50 389.35 403.25 372.35 356.60 378.60 410.50 376.00 386.15

Avg 409.57 408.56 412.35 416.30 413.24 377.26 425.18 394.22 395.06

Worst 429.65 432.50 423.15 451.35 409.70 400.00 438.65 409.80 428.75

NOTT 1C Best 360.05 349.20 339.20 365.70 324.20 349.95 344.20 329.20 368.55

Avg 384.99 383.72 373.26 389.71 391.60 342.71 366.41 348.63 371.18

Worst 427.75 418.05 398.55 408.60 420.75 361.80 418.65 378.55 388.55

NOTT 1D Best 360.00 349.15 344.15 370.00 340.65 334.15 354.15 334.15 337.65

Avg 373.05 359.06 358.53 379.76 354.01 349.02 370.94 352.32 345.15

Worst 385.00 370.00 373.50 393.50 363.50 359.15 382.90 370.00 355.65

NOTT 1E Best 152.20 157.70 157.70 147.70 157.70 147.70 152.20 147.70 157.70

Avg 166.70 171.70 162.60 162.60 161.70 158.60 161.50 157.50 164.60

Worst 188.20 197.70 172.20 167.70 167.70 167.70 177.70 167.70 177.70

WOLVER 1 Best 634.19 634.19 634.19 634.19 634.19 634.19 634.19 634.19 634.19

Avg 634.19 634.19 634.19 634.19 634.19 634.19 634.19 634.19 634.19

Worst 634.19 634.19 634.19 634.19 634.19 634.19 634.19 634.19 634.19

400

450

500

550

600

1 2 3 4 5 6 7 8 9
Experimental Cases

Fi
tn

es
s

C
os

t

Fig. 1. Boxplot showing the effect of varying parameters on ABC algorithm

HMHPB [21]. Note that the best results obtained by the different methods are
presented in bold. Interestingly, the performance ABC is better than other exist-
ing methods by achieving high quality solutions in both datasets, where the
ABC obtained new results in two instances (i.e. NOTT 1 and NOTT 1E) of the
University of Nottingham dataset and had comparable performance in the
remaining instances of the dataset. Similarly, the proposed ABC achieved best
result in one instance of the University of Wolverhampton (i.e. WOLVER 1) as
achieved by IMP-OFA and HSA-OFA methods (Table 4).

Optimization of Office-Space Allocation Problem 345

Table 4. The best results achieved by the ABC and other comparative methods

Instance ABC IPM-OFA OFA-MP HSA-OFA SA-OFA HMHPB

NOTT 1 425.50 - - 539.35 543.70 482.20

NOTT 1A 437.05 378.88 - - - -

NOTT 1B 356.60 246.18 243.28 - - 417.10

NOTT 1C 324.20 305.73 305.73 - - 315.40

NOTT 1D 334.15 202.70 202.73 200.10 - -

NOTT 1E 147.70 177.70 177.70 - -

WOLVER 1 634.19 634.20 634.19 634.19 - -

6 Conclusion

In this paper an Artificial Bee Colony Algorithm (ABC) is presented for Office-
space allocation (OFA) using the datasets published by University of Notting-
ham and University of Wolvehampton respectively. The initial feasible solutions
are generated by the proposed techniques using Peckish heuristic strategies [19].
ABC as an iterative improvement algorithm optimize the food sources with aid
of three operators: employed, onlooker and scout bees. The best food source gen-
erated at each cycle is memorized. This search process is repeated until a max-
imum cycle number (MCN) is achieved. Experimental results produced by the
proposed technique are compared with those generated by other existing tech-
niques, which shows the promising performance of the techniques. Interestingly,
the proposed ABC produced two new results one best result and comparable
results on the remaining instance from the dataset of the University of Notting-
ham. Further improvement could be tailored towards enhancing the exploitation
capability of the proposed ABC when employed to solve the OFA. Therefore,
our future work will focus on the enhance of this technique.

References

1. McCollum, B.: A perspective on bridging the gap between theory and practice in
university timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS,
vol. 3867, pp. 3–23. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77345-0 1

2. Ritzman, L., Bradford, J., Jacobs, R.: A multiple objective approach to space
planning for academic facilities. Manag. Sci. 25(9), 895–906 (1979)

3. Benjamin, C.O., Ehie, I.C., Omurtag, Y.: Planning facilities at the university of
missouri-rolla. Interfaces 22(4), 95–105 (1992)

4. Ülker, Ö., Landa-Silva, D.: A 0/1 integer programming model for the office space
allocation problem. Electron. Notes Discrete Math. 36, 575–582 (2010)

5. Burke, E.K., Cowling, P., Landa Silva, J.D., McCollum, B.: Three methods to
automate the space allocation process in UK universities. In: Burke, E., Erben, W.
(eds.) PATAT 2000. LNCS, vol. 2079, pp. 254–273. Springer, Heidelberg (2001).
doi:10.1007/3-540-44629-X 16

http://dx.doi.org/10.1007/978-3-540-77345-0_1
http://dx.doi.org/10.1007/3-540-44629-X_16

346 A.L. Bolaji et al.

6. Lopes, R., Girimonte, D.: The office-space-allocation problem in strongly hierar-
chized organizations. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol.
6022, pp. 143–153. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12139-5 13

7. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated
annealing. Science 220(4598), 671–680 (1983)

8. Ülker, Ö., Landa-Silva, D.: Evolutionary local search for solving the office space
allocation problem. In: 2012 IEEE Congress on Evolutionary Computation (CEC),
pp. 1–8. IEEE (2012)

9. Awadallah, M.A., Khader, A.T., Al-Betar, M.A., Woon, P.C.: Office-space-alloca-
tion problem using harmony search algorithm. In: Neural Information Processing,
Springer 365–374(2012)

10. Burke, E.K., Silva, J.D.L., Soubeiga, E.: Multi-objective hyper-heuristic approaches
for space allocation and timetabling. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.)
Metaheuristics: Progress as Real Problem Solvers, vol. 32, pp. 129–158. Springer US,
New York (2005). doi:10.1007/0-387-25383-1 6

11. Burke, E., Cowling, P., Silva, J.L.: Hybrid population-based metaheuristic appro-
aches for the space allocation problem. In: Proceedings of the 2001 Congress on Evo-
lutionary Computation, 2001, vol. 1, 232–239. IEEE (2001)

12. Burke, E., Cowling, P., Landa Silva, J., Petrovic, S.: Combining hybrid meta-
heuristics and populations for the multiobjective optimisation of space allocation
problems. In: Proceedings of the 2001 Genetic and Evolutionary Computation
Conference (GECCO 2001), 1252–1259 (2001)

13. Bolaji, A.L., Khader, A.T., Al-Betar, M.A., Awadallah, M.A.: University course
timetabling using hybridized artificial bee colony with hill climbing optimizer. J.
Comput. Sci. 5(5), 809–818 (2014)

14. Bolaji, A.L., Khader, A.T., Al-Betar, M.A., Awadallah, M.A.: A hybrid nature-
inspired artificial bee colony algorithm for uncapacitated examination timetabling
problems. J. Intell. Syst. 24(1), 37–54 (2015)

15. Awadallah, M.A., Bolaji, A.L., Al-Betar, M.A.: A hybrid artificial bee colony for
a nurse rostering problem. Appl. Soft Comput. 35, 726–739 (2015)

16. Karaboga, D.: An idea based on honey bee swarm for numerical optimization.
Technical report TR06, Erciyes University Press, Erciyes (2005)

17. Bolaji, A.L., Khader, A.T., Al-Betar, M.A., Awadallah, M.A.: Artificial bee colony,
its variants and applications: a survey. J. Theor. Appl. Inform. Technol. (JATIT)
47(2), 434–459 (2013)

18. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey:
artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42, 21–57
(2012)

19. Corne, D., Ross, P.: Peckish initialisation strategies for evolutionary timetabling.
In: Burke, E., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 227–240. Springer,
Heidelberg (1996). doi:10.1007/3-540-61794-9 62

20. Bolaji, A.L., Khader, A.T., Al-Betar, M.A., Awadallah, M.A.: Artificial bee colony
algorithm for solving educational timetabling problems. Int. J. Natural Comput.
Res. 3(2), 1–21 (2012)

21. Landa-Silva, D., Burke, E.K.: Asynchronous cooperative local search for the office-
space-allocation problem. INFORMS J. Comput. 19(4), 575–587 (2007)

http://dx.doi.org/10.1007/978-3-642-12139-5_13
http://dx.doi.org/10.1007/0-387-25383-1_6
http://dx.doi.org/10.1007/3-540-61794-9_62

Genetic Algorithms

Enhancing Exploration and Exploitation
of NSGA-II with GP and PDL

Peter David Shannon1,2(&), Chrystopher L. Nehaniv2,
and Somnuk Phon-Amnuaisuk1

1 School of Computing and Informatics, Universiti of Teknologi Brunei, Bandar
Seri Begawan, Brunei

{Peter.Shannon,Somnuk.Phonamnuaisuk}@utb.edu.bn
2 School of Computer Science, University of Hertfordshire, Hatfield, UK

C.L.Nehaniv@herts.ac.uk

Abstract. In this paper, we show that NSGA-II can be applied to GP and the
Process Description Language (PDL) and describe two modifications to
NSGA-II. The first modification removes individuals which have the same
behaviour from GP populations. It selects for de-duplication by taking the result
of each objective fitness function together to make a comparison. NSGA-II is
designed to expand its Pareto front of solutions by favouring individuals who
have the highest or lowest value (boundary points) in a front, for any objective.
The second modification enhances exploitation by preferring individuals who
occupy an extreme position for most objective fitness functions. The results
show, for the first time, that NSGA-II can be used with PDL and GP to suc-
cessfully solve a robot control problem and that the suggested modifications
offer significant improvements over an algorithm used previously with GP and
PDL and unmodified NSGA-II for our test problem.

Keywords: Genetic programming � Process description language � Exploration
and exploitation � NSGA-II

1 Introduction

Non-dominated Sorting Genetic Algorithm II (NSGA-II) is one of the most commonly
used evolutionary algorithms (EA); we are using it as a basis for further research and to
replace a framework used previously [1]. Here we present some of our findings which
may be of general interest to the community on using NSGA-II with Process Definition
Language (PDL)—a formal representation of behavioural robot control programs—and
Genetic Programming (GP).

Previous work using GP and PDL [1] used a generational model and a form of
aggregated fitness function with different stages of learning (Staged Learning). Shannon
and Nehaniv showed that it was possible to use GP and PDL to solve a small robot
controller problem: to parallel park a car—a more sophisticated version of Koza’s
backup tractor-trailer truck problem [2]. Here we adapt NSGA-II to replace the EA used
previously and, while we present different experiments, the simulation and test problem
is otherwise similar.

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 349–361, 2017.
DOI: 10.1007/978-3-319-61824-1_38

PDL is used here as part of an investigation into exploiting its innate modularity
and if it is generally a good representation to use with GP robot control problems. It is
highly amenable to analysis, i.e., the effect of each submodule in a PDL program can be
determined and assessed over a program’s lifetime and even used as a historical
account of activities [3, 4]. Such submodule analysis is much more difficult with typical
tree or graph representations. We do not report here on our progress exploiting these
properties, this report is about foundational work: creating an improved framework for
automatically creating PDL programs with GP based on NSGA-II and two types of
modification we found interesting.

We modified NSGA-II in two ways: firstly, phenotypic de-duplication of the
population, and secondly, introducing a preference for individuals who occupy a
greater number of single objective boundary points. GA and GP are very similar and
NSGA-II can be use with GP without altering core concepts. However, an issue we find
with GP is its inherently redundant representation: one program can be represented in
an infinite number of ways. Enhancing exploration of the search of GA by removing
duplicates from the population has been attempted several times [5–7]. The strategies
employed normally operate on individuals’ genotype to find similarity, often use
hamming distance to compare GA bit-strings. The relative simplicity and efficiency of
comparing hamming distance makes a lot of sense for GA but an analogous syntax tree
comparison for GP is a lot less compelling. Not only is the operation is more complex
but more importantly the veracity of the comparison is less clear. Instead we compare
the phenotype of individuals, by creating n-tuples of ordered SO fitness values and
compare those. Clearly with this method there is no way to differentiate between two
individuals who have similar structure and similar behaviour with other individuals
who have very different structure but similar behaviour. We do, however, sidestep very
difficult problems, such as accounting for non-functional or equivalent but different
code in our individuals, during comparison.

In order to search the solution space more thoroughly, when choosing between two
candidate individuals who are in the same Pareto front, NSGA-II will always prefer
individuals which, for any single objective, scored highest or lowest: these individuals
are the boundary points. We modified the algorithm to differentiate between the
number of boundary points individuals occupy. NSGA-II would not differentiate: when
comparing two individuals a, who occupies 1 point, and ϐ, who occupies 2 points,
neither is preferred; with our modification ϐ is preferred.

The first contribution this paper makes is to show that search can be enhanced by
removing duplicate phenotypic individuals and preferring individuals who occupy more
than one objective boundary points (see Sect. 3.2.) Previous experiments on
de-duplication of the population with GA and GP have used the genotype as the basis of
comparison, we use its phenotype (see Sect. 3.1, Canonical Non-dominated Sorting.)
The second contribution is demonstrating GP and PDL can be successfully used in
conjunction with NSGA-II.

In the rest the paper we will: describe PDL, its use with GP and our test problem;
the adjustments to NSGA-II just mentioned; the results of the experiments; observa-
tions and analysis; and conclude by assessing this work and suggest improvements we
might make to this work in future.

350 P.D. Shannon et al.

2 Problem Formulation

Steels, describes PDL as: “Control programs viewed as dynamical systems which
establish a continuous relation between the time varying data coming out of sensors
and a stream of values going to the actuators.” [8] This report describes a slightly
simplified form of PDL as used with GP before [1]. Typically, each actuator is asso-
ciated with a quantity; the quantity’s value is used to set the value of the actuator. We
are using PDL to search for robot control programs which can parallel park a car; the
robot controllers manipulate two quantities: steering and velocity. Each behaviour in
our implementation of PDL is a small syntax tree, e.g., for a very simple behaviour,
such as 1 + 5, the root would be an addition operator with two operands, 1 and 5. The
relationship between quantities, behaviours, operators, terminals and actuators is
illustrated in Fig. 1.

A PDL program P could be formally defined as a tuple of quantities where quantity
Q could be partially defined as a tuple of behaviours:

P ¼ ðQ0; . . .;QnÞ: ð1Þ

Q ¼ ðB0; . . .;BmÞ: ð2Þ

Each quantity also has a value, which changes each time-step.

Fig. 1. Input, output and structure of a PDL program using the experiment presented here as an
example.

Enhancing Exploration and Exploitation of NSGA-II with GP and PDL 351

The value of Q, vQ, can be determined by summing the changes in vQ for all
previous time-steps. If t stands for the current time-step and t-1 the previous time-step
we can define vQ as:

vQ ¼
Xt�1

i¼0

dðQiÞ: ð3Þ

Here d(Qi) is the change in vQ from time-step i-1 to time-step i. d(Q) is determined
by evaluating of each of Q’s behaviours and summing the results. Each of Q’s beha-
viour, B0…m, is a syntax tree and is evaluated (as a computer program); accessing
sensor information, which depends on the current state of the simulation to determine
its influence (which is a number):

dðQÞ ¼
Xm

j¼0

evalðBjÞ: ð4Þ

2.1 Representation of a PDL Genetic Program

Most discussions of genetic operators are based on the assumption that programs are
represented as trees. In this case programs are represented as several collections of
syntax trees, one collection for each quantity. Typical GP operators are used on syntax
trees (crossover and mutation). We augment these with operators which work on a
quantity’s collection of trees (Table 1).

Syntax tree crossover and mutation (as well as the object storing the syntax tree) are
implemented using functions from DEAP [9]: they are what is normally thought of as
typical GP operators. A behaviour can be copied from one quantity to another, or
removed, without any concern that the resulting PDL program will crash. This feature
facilitates the new forms of crossover and mutation. These new operators are designed
to afford manipulations at a modular level. In this way, we might consider each
behaviour to be a module and each quantity a super-module. Normally, a programmer
would not consider a single line of code as a module but that is what we mean, in effect,
when we refer to modularity with PDL.

Table 1. Parameters for selecting a reproduction method.

Method Rate

Crossover 25%
Crossover-copy (copies a whole syntax tree) 25%
Mutation 15%
Mutation-add (adds a randomly created syntax tree) 5%
Mutation-subtract (deletes a randomly selected syntax tree) 30%

352 P.D. Shannon et al.

An example PDL program is shown in Fig. 2. The two quantities, steering and
velocity, are shown one above the other with their respective behaviours listed
underneath, each on a separate line and indented when a syntax tree is too long or
complicated to put on one line.

2.2 Designing Objective Functions

The problem is represented in a 3D virtual environment and with a physics simulation.
Our objective is to find a program to parallel park a robot toy car between two blocks.
The assessment of success is broken down into four tests carried out after a fixed
number of time-steps:

1. Distance to the centre of the parking spot from the centre of the car.
2. Rotation off parallel to the blocks.
3. Disruption to the blocks. The blocks (mass and friction parameters) are configured

so that the slightest collision between them and the car will cause the blocks to drift
away.

4. Movement. It should be stationary.

Steering
add(-2.0, sensorFl)
add(mul(sensorFrSide, -4.0), mul(sensorBrSide, sensorFr))
sub(-4.0, add(sensorBrBack, -2.0))
add(sensorBrSide, velocity)
add(-2.0, sensorFl)
add(-2.0, sensorBlSide)

Velocity
mul(-1.0, sensorFrFront)
mul(sub(sub(4.0, sensorFlSide), add(velocity, sensorFr)),

sub(add(sensorBrBack, velocity), add(sensorBl, sensorBl)))
sub(sensorFr, velocity)
mul(

add(
mul(mul(2.0, 0.0), mul(velocity, sensorFr)),
sub(mul(-2.0, sensorBrBack), sub(-1.0, velocity))),

mul(
add(sub(sensorBlSide, sensorFlSide), add(sensorBr, velocity)),
sub(add(sensorBl, sensorFrFront), mul(sensorBrBack, -4.0))))

sub(
add(

sub(sub(sensorFrFront, sensorFrSide), add(1, sensorBr)),
add(add(sensorFrSide, -1.0), mul(-1.0, steering))),

sub(
add(mul(-2.0, velocity), add(-1.0, -4.0)),
mul(add(1, velocity), mul(sensorFrFront, sensorBlSide))))

mul(sensorBl, sensorFr)
mul(-1.0, sensorFrFront)

Fig. 2. An example of a controller program found by the EA.

Enhancing Exploration and Exploitation of NSGA-II with GP and PDL 353

The experiments use fitness functions with very little a priori knowledge [10]
incorporated—it makes no assumptions about how the problem should be solved—and
is assessed at the end of the simulation after a fixed number of time-steps. The terminal
set is semantically very low level, limited to distances sensors, the values of quantities,
numerical constants and the operators multiply, add and subtract.

The fitness objective 1–4 are not treated equally. Each criterion is important but, in
the case of parking a real car, if it was parallel to the curb, did not crash into anything
but stopped ten feet from the parking spot, it would not be badly parked it would be
stopped in the middle of the road. Objective 2–4 only have meaning if in the context of
the parking spot, failure to get to the parking spot renders them almost meaningless.
The only input to the robot is the distance sensors so the controllers are highly context
sensitive. To reflect this objective 2–4 were compounded (multiplied) with objective 1.
Our implementation of NSGA-II works with objective 2–4 which depend on the first
objective.

Aggregate Fitness. While the EA we are using, NSGA-II, is Pareto based we find it
useful when analysing results to refer to an aggregated score so each individual can be
compared with only one number. For example, in Sect. 2.3, the aggregated fitness
score is used to reject bad initial controllers for the first generation. The aggregate
fitness is calculated by taking the mean of the normalised objective fitness scores.

2.3 Initialisation, Termination and Parameters

When a run is started, the initial generation is populated with new individuals. One to
four behaviours are created for each quantity of an individual, the number of beha-
viours is selected at random. New behaviours are created using the using the ramped
half-and-half method and are limited to a maximum depth of 4. Each new individual is
evaluated and if a minimum normalised aggregated fitness of 0.1 is not achieved it is
discarded and another individual will be created to replace it until the initial generation
is complete.

3 Modified NSGA-II

A common approach to scoring multi-objective (MO) problems is to create a weighted
aggregate fitness. Instead, NSGA-II selects individuals using two mechanisms. The first
mechanism is ranking them using a Pareto analysis, assigning each individual to a
front. The second mechanism is a density estimation tool, termed crowding distance.
NSGA-II’s algorithm for finalising the group of individuals which are selected from for
binary tournaments to decide which reproduce, is illustrated in Fig. 3. Deb et al. [12]
described how individuals are scored and compared in terms of two properties assigned
to each individual. We add a third property using the same notation, icanonical:

354 P.D. Shannon et al.

– Rank (irank) is the front assigned to an individual during non-dominated sorting. The
rank value, of individual i, is referred to as irank.

– Crowding distance (idistance) signifies how unique an individual is in a front, the
larger the value the more unusual its MO fitness should be in its front. The crowding
distance value, of individual i, is referred to as idistance.

– Canonical (icanonical) indicates if an individual represents a unique class of behaviour
within certain bounds. If several individuals have the same outcome or behaviour
(their MO fitness is the same) then only one will be marked as canonical. It is assigned
during non-dominated sorting and in one variation we tested indicates that no other
individuals which have been added to a front have the same MO fitness scores.
Comparison of MO fitness is achieved by creating an n-tuple of normalised objective
fitness scores rounded to 3 decimal places and then compared position by position.
This attribute does not indicate the individual is strictly canonical, merely it is the only
individual which has a specific behaviour (indicated by n-tuple of fitness character-
istics) which we wish to propagate. We are declaring it to be the true representation of
a specific behaviour without considering how natural that representation is.

Rank, crowding distance and, the new property we add, canonical are used to
compare individuals in binary tournaments for reproduction.

Fig. 3. Top pane: left, ranks of Pareto fronts; right, crowding distances for points X and Y.
Bottom pane: non-dominated crowd distance sorting decides which individuals become members
of the set which might reproduce, the dotted line indicates how large the final set of members will
be; (1) prospective members are a combination of members of the previous generation (gn-1) and
individuals created in this generation (gn), (2) individuals are sorted into non-dominated, crowd
distance sorted, fronts, (3) fronts are added to the final selection until the selection is full, (4) if
too many individuals would be added, the final front is truncated. Adapted from [11, 12].

Enhancing Exploration and Exploitation of NSGA-II with GP and PDL 355

3.1 Modifications to Enhancing Exploration

We explored two variations on the same modification. The first, CNS, removes
duplicates from the entire population. The second, CCO, only remove duplicates from a
front and is a much less aggressive application of the same idea.

Canonical Non-dominated Sorting (CNS). We modified NSGA-II to adjust the
non-dominated sorting procedure to enhance diversity and exploration. This was done
by recording the MO fitness characteristics of each individual which are found to be
non-dominated as they are added to a front. If no individuals have been added to any
front, in this generation, with the same MO characteristics then it is considered
canonical. In this variation, only individuals which are canonical will be added to a
front. Non-canonical individuals will remain in the last front once sorting has finished
and the entire front may be discarded.

This method of sorting ensures that only individuals which have different behaviour
will reproduce, we expect this will increase the time spent exploring and delaying
convergence of the population.

Canonical Crowd-comparison Operator (CCO). This variation on CNS and adjusts
the crowd comparison operator to consult icanonical during tournament selection, rather
than discarding non-canonical individuals during sorting. It de-duplicates the popula-
tion less aggressively than CNS. CCO first consults a lookup for the two individuals
being compared and if one the individuals is canonical will favour it.

The procedure to create the lookup is as follows:

– Flatten the non-dominated fronts into a list, in which order is maintained, so that
individuals in the first rank are first, the second rank are second and so on.

– Iterate over each individual in the list: if the MO fitness characteristics of an
individual do not occur in the set of preceding individuals—in the flattened list—
then set icanonical to true, otherwise false.

icanonical ¼ if 62 Pf : ð5Þ

A more formally definition for icanonical is given in (5). The modified crowd-
comparison operator is shown in (6). Partial ordering is now determined by first
checking if either, but not both, i or j is considered canonical. Otherwise it is the same
NSGA-II’s crowd comparison operator.

i �n j ifððicanonicaland notðjcanonicalÞÞ
orððicanonical = jcanonicalÞ

andððirank \jrankÞ
orððirank = jrankÞ and
ðidistance [jdistanceÞÞÞ

ð6Þ

356 P.D. Shannon et al.

3.2 Enhancing Exploitation Using a Modified to Promotion of Crowding
Distance Outliers (MCDO)

The modifications presented so far will encourage more diversity and, we expect, the
EA to explore the solution space further. This modification is intended increase
exploitation instead and can be used with the other proposed modification or otherwise
unmodified NSGA-II. With unmodified NSGA-II, individuals in fronts which are in the
most extreme positions are awarded infinite crowding distance; the EA should respond
to this by broadening its search, which is desirable. This method of increasing
explorations has interesting features, some of which are negative:

– An individual with an extreme characteristic may be part of a cluster of similar
individuals and not truly represent interestingly unusual class of solution. We
simply do not look to see with NSGA-II.

– Each time an objective is added two more individuals in a front are awarded an
infinite crowding distance and its power to discern valuable solutions diminishes. If
two individuals are selected for a tournament from the same front—even with only
3 objectives and therefore 6 extreme positions to occupy and chances to be awarded
infinite crowding distance—discerning unusual solutions will be unlikely.

– A positive feature of awarding crowding distance this way is that a MO problems
may have some relatively easy to achieve objectives and some hard to achieve
objectives. In this way, an individual distinguished in a difficult to achieve objective
will be recognised equally to one who is distinguished in an easier objective.

To address some of these point, this modification simply awards a share of infinity
based on how many objectives there are and how many extreme positions an individual
occupies. In practice ∞ is represented by a large number. The MCDO shared crowding
distance for individual i, which occupies at least one extreme position, is defined as ∞
divided by the number of objectives n, multiplied by the number of extreme positions it
holds, ei.

ci ¼ 1
n
ei: ð7Þ

4 Experiment Design

We designed two experiments to test how well the 2 modifications, in various com-
binations, perform compared to two controls NSGA-II and Staged Learning from [1].
In total 7 combinations were tested: CNS, CCO, NSGA-II & MCDO, CNS & MCDO,
CCO & MCDO, NSGA-II and Staged Learning. The experiments were designed to
test, and hopefully reject, our null hypothesis: each of the different combinations of
modified NSGA-II find good controller programs equally well as NSGA-II and Staged
Learning do.

Population size has a complex relationship with how long is spent exploring and
how long is spent exploiting what has been found. The modifications we designed
should affect exploitation and exploration, so we choose to run two experiments, one

Enhancing Exploration and Exploitation of NSGA-II with GP and PDL 357

with more of individuals per generation and one with a less per generation. The smaller
populations were allowed to continue longer as convergence would be slower
(Table 2).

We used ANOVA to determine if the algorithms produced significantly different
results and, in the case that they did, a post-hoc pairwise t-test, with the Holm method
to correct for multiple testing, a significance level of p < 0.05 and Family Wise Error
Rate (FWER) = 0.05. Each run contributed its best individual (the one with the highest
aggregate fitness) to the sample for analysis; the sample size is therefore 40 (equal to
the number of runs).

5 Results

For Experiment 1 we found that there is a significant difference in how well the
different versions of NSGA-II find good programs at the p < 0.05 level [F(6,
273) = 5.302, p = 0.0]. The post-hoc test revealed that every algorithm was signifi-
cantly better than Staged Learning; due to limited space, we omit the details but this
outcome can be clearly seen in Fig. 4. No other significant differences in the group
samples were found.

Table 2. Parameters for the two experiments; each experiment has 7 samples—one for each
algorithm—and a sample size of 40.

Individuals per generation Generations per run Run repetitions

Experiment 1 25 90 40
Experiment 2 100 45 40

Fig. 4. The averaged performance of each group at each generation. Left, in Experiment 1,
Staged Learning is significantly worse in later generations. Right, in Experiment 2, again staged
learning is significantly worse. More interestingly a clear trend develops, in later generations, of a
widening gap in performance between CNS & MCDO and NSGA-II. The graphs are
un-smoothed except by linear interpolation between points.

358 P.D. Shannon et al.

For Experiment 2 we found once more that there is a significant difference in how
well the different versions of NSGA-II find good programs at the p < 0.05 level [F(6,
273) = 8.661, p = 0.0]. The post-hoc test revealed that every algorithm significantly
outperformed Staged Learning for this experiment too. More interestingly, while we
cannot note significantly improved results demonstrated for CNS & MCDO over
NSGA-II based on the post-hoc analysis alone, the graph in Fig. 4 shows a clear and
consistently widening performance gap, generation on generation, in the second half of
the experiment. Considering the graph together with the weaker but positive confidence
level p < 0.1 found with the pairwise t test, we reject the null hypothesis: CNS &
MCDO is better at finding good controller programs than NSGA-II and Staged
Learning.

6 Conclusion and Future Work

Our work improves on the initial study in [1] using a widely accepted and well
understood EA. We show, for the first time, that NSGA-II can be used with PDL and
GP to successfully solve a robot control problem. We also found that CNS & MCDO

Table 3. Means and standard deviations for experiment 2.

l Standard deviation

CNS 0.437 0.037
CCO 0.435 0.055
NSGA-II & MCDO 0.442 0.05
CNS & MCDO 0.458 0.046
CCO & MCDO 0.425 0.033
NSGA-II 0.44 0.05
Staged Learning 0.407 0.049

Table 4. A subset of pairwise comparisons, where p < 0.2, for experiment 2.

Statistic P-value Reject

CNS Staged Learning 4.710 0.006 True
CNS & MCDO CNS 2.023 0.05 False
CCO & MCDO CNS −1.361 0.181 False
CCO CNS & MCDO −1.862 0.07 False
CCO Staged Learning 4.261 0.0001 True
NSGA-II & MCDO Staged Learning 4.332 0.0001 True
NSGA-II & MCDO CNS & MCDO −1.555 0.128 False
CNS & MCDO CCO & MCDO 3.947 0.0003 True
CNS & MCDO NSGA-II 0.091 0.091 False
CNS & MCDO Staged Learning 5.330 0 True
CCO & MCDO Staged Learning 3.506 0.001 True
NSGA-II Staged Learning 3.805 0.008 True

Enhancing Exploration and Exploitation of NSGA-II with GP and PDL 359

are superior to unmodified NSGA-II for this problem. CNS can be applied to NSGA-II
used with GP and MCDO more generally with any form of GA. However, we only
noted significant improvement when both were used together and only demonstrated
this for on a single problem. Further, we note earlier generations appear to be nega-
tively affected by these approaches. However, performance was only noticeably worse
in the earliest generations, before the 15th generation in Experiment 2 (see Fig. 4.) This,
we surmise, is an effect de-duplication has on slowing convergence of the population,
increasing the time spent exploring the solution space.

The logically affect of CNS is to increase diversity and for MCDO to favour
individuals who are best (and worst) at the most objectives. These can be thought of as
enhancing exploration and exploitation. However, here we have only shown that they
improve searching when used together, not how their interactions work. An analysis of
the genealogical origins and mechanisms of creation of the best individuals as a run
matures may shed some light on these workings and how these modifications might be
used most effectively.

Our next research priority is to create new testbed problems and gauge the gen-
erality of using GP and PDL to search for robot controllers.

References

1. Shannon, P., Nehaniv, C.L.: Evolving robot controllers in PDL using genetic programming.
In: IEEE SSCI 2011-Symposium Series on Computational Intelligence-IEEE ALIFE 2011:
2011 IEEE Symposium on Artificial Life, pp. 92–99. IEEE, Paris (2011)

2. Koza, J.R.: A genetic approach to finding a controller to back up a tractor-trailer truck. In:
American Control Conference, pp. 2307–2311. IEEE, Chicago (1992)

3. Nehaniv, C., Dautenhahn, K.: Embodiment and memories-algebras of time and history for
autobiographic agents. In: Trappl, R. (ed.) Cybernetics and Systems, vol. 2, pp. 651–656.
Austrian Society for Cybernetic Studies, Vienna, Austria (1998)

4. Nehaniv, C.L., Dautenhahn, K.: Semigroup expansions for autobiographic agents. In: First
Symposium on Algebra, Languages and Computation, pp. 77–84. University of Aizu, Japan
(1998)

5. Mauldin, M.L.: Maintaining diversity in genetic search. In: AAAI, pp. 247–250 (1984)
6. Shimodaira, H.: DCGA: a diversity control oriented genetic algorithm. In: Proceedings of the

Ninth IEEE International Conference on Tools with Artificial Intelligence 1997, pp. 367–
374. IEEE (1997)

7. Sangkawelert, N., Chaiyaratana, N.: Diversity control in a multi-objective genetic algorithm.
In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 4, pp. 2704–2711.
IEEE (2003)

8. Steels, L.: Mathematical analysis of behavior systems. In: Proceedings From Perception to
Action Conference 1994, pp. 88–95. IEEE (1994)

9. Fortin, F.A., Rainville, F.M.D., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

10. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: a survey
and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009). Elsevier

360 P.D. Shannon et al.

11. Olson-Manning, C.F., Wagner, M.R., Mitchell-Olds, T.: Adaptive evolution: evaluating
empirical support for theoretical predictions. Nature Rev. Genet. 13(12), 867–877 (2012).
Nature Publishing Group

12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). IEEE

Enhancing Exploration and Exploitation of NSGA-II with GP and PDL 361

A Novel Strategy to Control Population
Diversity and Convergence for Genetic

Algorithm

Dongyang Li1, Weian Guo2(&), Yanfen Mao2, Lei Wang1,
and Qidi Wu1

1 School of Infomation and Electronical Information,
Tongji University, Shanghai 201804, China

2 Sino-German College of Applied Sciences, Tongji University,
Shanghai 201804, China
guoweian@163.com

Abstract. Genetic algorithm (GA), an efficient evolutionary algorithm inspired
from the science of genetics, attracts the worldwide attention for several dec-
ades. This paper tries to strengthen the search ability of the population in GA in
the way of improving the distance among individuals by introducing a new
solution updating strategy based on the theory of Cooperative Game. The
simulation is done using fourteen benchmark functions, and the results
demonstrate that this modified genetic algorithm works efficiently.

Keywords: GA � Solution distance � Cooperative game � Solution updating
strategy

1 Introduction

Genetic algorithm (GA), a powerful heuristic algorithm which is established by
mimicking the processes of inheritance evolution of biological, was first proposed by
Holland in 1975 [1]. Since then, a number of studies have been done and prove that GA
exhibits excellent optimization performance, not only on various kinds of numerical
benchmarks, but also on high-dimensional and multi-objective optimization problems.
In original GA, the algorithm has already outperformed many other evolutionary
algorithms for some benchmarks. However, it shows a poor performance on the
multi-peak functions usually. In another word, GA tends to a fast convergence to a
local minimum. Therefore, it need to be improved in many of its aspects.

Since the advent of GA, many studies have been done to improve the searching
ability of GA by improving the diversity of its population. For the multi-mode
resource-constrained project scheduling problem, Peteghem and Vanhoucke utilize a
strategy of two separate populations to enhance the seeking ability of GA and achieve
good results [2]. When solving the problem of flexible job-shop scheduling, Zhang not
only modifies the mutation and crossover methods, but also proposes a new population
initialization strategy based on the global selection and local selection [3]. Vidal and
Crainic equip GA with adaptive diversity management by introducing the efficient local

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 362–369, 2017.
DOI: 10.1007/978-3-319-61824-1_39

search based improvement procedures and diversity management approaches [4]. In the
study of Castro and Soma [5], the set of feasible solutions should be made a division
into regions in order to diversify the search that is used on a GA variation. An adaptive
method of maintaining variable population size is proposed by Arabas and Michale-
wicz [6], which is used to improve the diversity of GA. Liu and Zhong [7] turn out that
the population of GA which is initialized by ACO instead of randomly generated will
strengthen the global search ability of GA and can be used for QoS-aware service
composition problem perfectly. In [8], Tsai and Huang make an improvement of GA by
consisting of two parallel EGAs along with a migration operator, their results
demonstrate that this modified GA takes advantages of better population diversity,
inhibiting premature convergence, and keeping parallelism in comparison with con-
ventional Gas. In addition, Wang [9] uses ACO to improve GA to solve the problem of
Job-Shop Scheduling. Tang and Pan [10] extend the search ability and convergence of
original GA by incorporating an infeasible solution repairing procedure and a local
optimization procedure.

Obviously, all these studies mentioned above are just trying to improving the search
ability of GA by increasing the diversity of the population. The reason is that in original
GA, the regular design that higher crossover probability and lower mutation probability
will lead the population to poor diversity and premature convergence. In this paper, in
order to improve the searching ability of GA and optimize the population of GA, we
propose a new solution updating strategy to improve the search ability of GA by
utilizing the theory of Cooperative Game to increase the distance between individuals
in the population.

The rest of this paper is organized as follows. In Sect. 2, a brief overview of GA
will be introduced. In Sect. 3, the new solution updating strategy will be presented. The
simulation results will be compared and discussed in Sect. 4. We end this paper with
conclusion in Sect. 5.

2 Genetic Algorithm

2.1 The Principle of Genetic Algorithm

Genetic algorithm (GA) is just established based on the evolution mechanism of natural
selection and natural inheritance. The optimization problem is mapped to an evolution
process, and it is considered to be the natural environment, a potential solution is seen
as a chromosome which is called as an individual, and a set of solutions is defined as a
species which we call it population. First, GA generates a population randomly and
arranges the fitness values for individuals based on the fitness function set according to
the optimization problem. Then a new population will be produced by selecting enough
individuals to crosses with others and mutates. Note that, an individual with a higher
fitness value should be selected with a higher probability than an individual with a
lower fitness value. Through repeating this operation, potential solutions will be more
and more close to the optimal solution of the problem, and the approximate optimal
solution can be obtained finally.

A Novel Strategy to Control Population Diversity 363

2.2 Implementation Steps of GA

After a large efforts of scholars, a number of different genetic algorithms have been
proposed. The GA proposed by Holland in 1975 is seen as the standard GA (SGA).
The main steps are as follows:

(1) Encoding. Encoding is a bridge between problems and algorithms.
(2) Generate an initial population.
(3) Fitness evaluation. A fitness function ought to be defined reasonably to reflect the

adaption ability to the environment of individuals.
(4) Selection operator. Selection operator is a reflection of “survival of the fittest”.

Generally, the probability of being selected of an individual is proportional to its
fitness.

(5) Crossover operator. Crossover operator is an important operator of GA. The single
point crossover strategy is adopted in SGA.

(6) Mutation operator. A random bit of the chromosome may be changed based on a
mutation probability Pm.

(7) Ending criteria. An ending principle must be set to terminate GA.

Where MaxGen is the maximum of evolution algebra, N is the size of the Popu-
lation while Pc and Pm is the crossover probability and mutation probability
respectively.

The ability of dealing with many complex problem of GA is strong has been proved
for many years. However, due to its very small probability of mutation, its global
exploration too poor to solve the problem with a large solution space or with a number
of local minimums. Hence the main drawback of GA is tend to a premature
convergence.

3 An Improved GA Based on Cooperative Game

As discussed above, GA does not have a suitable strategy to solve the problem with a
large solution space or too many local minimums. In this section, we will provide an
brief introduction of Cooperative Game and propose a new solution updating strategy
to improve GA.

3.1 Cooperative Game

Cooperative game is first proposed by Rowland [11] in 1944. The focus of Cooperative
game is how people share the benefits through cooperation, that is, the issue of benefits
distribution. Cooperation and compromise is the core of cooperative game. The pur-
pose of Cooperative game is the interests of both sides in the game have increased, or at
least one’s benefits of the increase, while the other one is not compromised, and the
interests of the whole society will get an increase finally. More details about cooper-
ative game can be found in [11].

A hot topic in GA is the outstanding genes in the parents must be remained to the
offspring, while each individual of the offspring also should be better to keep a proper

364 D. Li et al.

distance to others during the progression of evolution. This can be seen as a cooper-
ative game between individuals of which the goal is to make sure the population has
both proper distance among solutions and convergence. Based on this idea, this paper
proposed a new solution updating strategy to increase the distance among individuals
without breaking its convergence.

3.2 CGGA

As mentioned above, we should give a new solution updating strategy to increase the
distance among solutions of population but cannot make GA be a random search
algorithm. And this strategy based on cooperative game is introduced as follows.

(1) The population is seen as a game alliance S and the benefits of it is defined as
v Sð Þ, which is evaluated by the rate of increase shown as formula (1).

v Sð Þ ¼ w1 � D P1ð Þ � D Pð Þ
D Pð Þ þ sum fitð Þ � sum fit1ð Þ

sum fitð Þ ð1Þ

Where w1 is the weight of distance between solutions which is calculated by
formula (2), fit is the sum of fitness of the parents, while fit1 is the sum of fitness of the
offspring, D Pð Þ and D P1ð Þ represent the distance among individuals of parents and
offspring respectively, which is defined as formula (3).

w1 ¼ popsize
sum fitð Þ � N MinFitð Þ=20 ð2Þ

D Pð Þ ¼ Var Fitð Þ ð3Þ

Here, N(MinFit) is the number of consecutive equal values of MinFit up to the
current generation, and Var �ð Þ is the variance function which is used to evaluate the
variance of Fit of P.

(2) Every two individuals selected to do the crossover and mutation operation will
begin a cooperative game and aim to increase v Sð Þ without harming the benefits of
each other. Note that amargin is set as 1.2 to avoid a too low probability of evolving.
The individual individual that has executed the crossover andmutationwill be noted
as individuali. The benefits of an individual is defined as in formula (4).

v ið Þ ¼ w1 � D P1cð Þ � D Pð Þ
D Pð Þ þ sum fitið Þ � sum fiticð Þ

sum fitið Þ ð4Þ

Where Pic represents the population that replaces individual Pi with using
individuali, fiti and fitic represent the fitness of individuali and individualic.

A Novel Strategy to Control Population Diversity 365

In summary, the idea of the new solution updating strategy is every two selected
individuals ready to evolve should try to improve v Sð Þ and cannot reduce the interests
of its partner.

4 Simulation and Discussion

In this section, we make a simulation experiment using fourteen benchmark functions.
And the results will be shown in this part.

The fourteen benchmark function which is shown in Table 1 are selected to test the
modified GA.

More details of these benchmarks can be find in [12–14]. Five other popular EAs
are also used to compare with the new algorithm CGGA. They are GA [15, 16], PBIL
[17], standard PSO [18–20], ACO [21, 22], and ES [23].

Additionally, for GA and CGGA, we chose the roulette wheel selection, single
point crossover, the crossover probability = 1, and the mutation probability = 0.01.
And the parameters for other EAs can be found in [24].

In this simulation, the mean optimization results and the best optimization results of
each EAs are shown in Tables 2 and 3.

For all of these EAs, Table 2 shows that the mean optimization results of CGGA
are better than other EAs in all cases, which is benefit from the healthy distance among
individuals in the population. Besides, the best optimization results, which are shown in
Table 3, indicate that in the process of the evolution, CGGA performs better in
searching the minimum than others in most cases, just for Fletcher, Penalty1, and

Table 1. Benchmark functions.

Function Name Domain

F1 Ackley −30 � x � 30
F2 Fletcher −p � x � p

F3 Griewank −600 � x � 600
F4 Penalty1 −50 � x � 50
F5 Penalty2 −50 � x � 50
F6 Quartic −1.28 � x � 1.28
F7 Rastrigin −5.12 � x � 5.12
F8 Rosenbrock −2.0481 � x � 2.048
F9 Schwefel −65.536 � x � 65.536
F10 Schwefel2 −100 � x � 100
F11 Schwefel3 −10 � x � 10
F12 Schwefel4 −512 � x � 512
F13 Sphere −5.12 � x � 5.12
F14 Step −200 < x < 200

366 D. Li et al.

Schwefel, the best optimization results of CGGA are the second best. It shows that
CGGA works more effective than all the other EAs in finding out the minima of the
fourteen benchmarks mentioned above.

5 Conclusions

In this paper, we improve GA based on the theory of cooperative game, and propose a
new evolutionary algorithm CGGA. With considering the distance among individuals
of population, it uses the cooperation mechanism of cooperative game to equip the

Table 2. Mean optimization results

Function GA CGGA PBIL PSO ACO ES

F1 6.96E+00 2.14E+00 1.86E+01 1.44E+01 5.89E+00 8.87E+00
F2 2.20E+04 1.46E+04 3.44E+05 3.33E+05 4.30E+05 5.52E+05
F3 1.28E+00 1.10E+00 1.71E+02 5.17E+01 1.15E+00 9.80E+01
F4 5.40E−02 2.12E−02 3.92E+07 1.17E+06 9.07E+07 3.95E+07
F5 6.04E−01 2.11E−01 1.18E+08 8.14E+06 1.78E+08 1.13E+08
F6 1.93E−06 1.16E−06 1.09E+01 1.49E+00 3.40E−03 1.47E+01
F7 2.63E+01 2.75E+00 2.00E+02 1.37E+02 7.39E+01 2.18E+02
F8 3.88E+01 3.71E+01 1.29E+03 3.43E+02 8.41E+02 2.48E+03
F9 4.50E+01 2.54E+01 4.28E+03 3.63E+03 3.16E+01 2.94E+03
F10 2.90E+03 6.85E+02 9.82E+03 5.41E+03 1.96E+03 1.29E+04
F11 3.89E+00 8.95E−01 5.37E+01 2.73E+01 2.20E+01 7.54E+01
F12 1.86E+01 5.97E+00 5.90E+01 3.52E+01 2.02E+01 2.10E+01
F13 9.23E−02 8.06E−03 5.31E+01 1.52E+01 8.02E+00 6.77E+01
F14 1.30E+01 5.05E+00 1.91E+04 5.67E+03 2.11E+01 1.59E+04

Table 3. Best optimization results

Function GA CGGA PBIL PSO ACO ES

F1 3.50E+00 9.66E-01 1.67E+01 1.09E+01 4.05E+00 6.66E+00
F2 1.83E+03 4.61E+03 1.84E+05 1.87E+05 2.62E+05 1.97E+05
F3 1.06E+00 1.05E+00 1.02E+02 2.63E+01 1.05E+00 5.97E+01
F4 4.10E−03 4.27E−03 4.35E+06 5.25E+04 2.29E+01 2.66E+06
F5 1.23E−01 1.11E−01 2.40E+07 1.10E+06 1.35E−32 1.91E+07
F6 4.50E−07 7.00E−08 4.68E+00 3.80E−01 1.30E−03 4.87E+00
F7 1.14E+01 0.00E+00 1.74E+02 1.09E+02 5.18E+01 1.70E+02
F8 9.84E+00 7.43E+00 4.04E+02 1.72E+02 3.94E+02 1.03E+03
F9 3.83E+00 6.63E+00 3.14E+03 2.68E+03 9.85E+00 2.30E+03
F10 1.01E+03 2.20E+02 5.59E+03 3.09E+03 4.62E+02 7.33E+03
F11 1.40E+00 4.00E−01 4.39E+01 1.48E+01 5.70E+00 4.80E+01
F12 7.00E+00 3.00E+00 4.26E+01 2.75E+01 6.40E+00 1.29E+01
F13 1.01E−02 0.00E+00 2.94E+01 8.64E+00 2.73E+00 3.59E+01
F14 1.00E+00 1.00E+00 1.27E+04 2.70E+03 9.00E+01 1.02E+04

A Novel Strategy to Control Population Diversity 367

solutions with a strong ability of searching. In this way, the distance among individuals
in the population increased. A set of fourteen benchmarks is used to test and compare
the proposed algorithm with several popular EAs. The results demonstrate the proposed
algorithm is effective to deal with optimization problems.

References

1. Holland, J.H.: Adaptation in Natural and Artificial Systems, pp. 211–247. MIT Press,
Cambridge (1975)

2. Peteghem, V.V., Vanhoucke, M.: A genetic algorithm for the preemptive and non-preemptive
multi-mode resource-constrained project scheduling problem. Eur. J. Oper. Res. 201(2),
409–418 (2010)

3. Zhang, G., Gao, L., Shi, Y.: An effective genetic algorithm for the flexible job-shop
scheduling problem. ACM Trans. Intell. Syst. Technol. 38(4), 3563–3573 (2011)

4. Vidal, T., Crainic, T.G., Gendreau, M., et al.: A hybrid genetic algorithm with adaptive
diversity management for a large class of vehicle routing problems with time-windows.
Comput. Oper. Res. 40(40), 475–489 (2013)

5. Castro, J.L.D., Soma, N.Y.: A constructive hybrid genetic algorithm for the flowshop
scheduling problem. Int. J. Comput. Sci. Netw. Secur. 9, 219–223 (2013)

6. Arabas, J., Michalewicz, Z., Mulawka, J.: GAVaPS - a genetic algorithm with varying
population size. In: Proceedings of the First IEEE Conference on Evolutionary Computation,
IEEE World Congress on Computational Intelligence, vol. 1, pp. 73–78. IEEE Xplore (1994)

7. Liu, H., Zhong, F., Ouyang, B., et al.: An approach for QoS-aware web service composition
based on improved genetic algorithm. In: International Conference on Web Information
Systems and Mining, pp. 123–128. IEEE Xplore (2010)

8. Tsai, C.C., Huang, H.C., Chan, C.K.: Parallel elite genetic algorithm and its application to
global path planning for autonomous robot navigation. IEEE Trans. Industr. Electron.
58(10), 4813–4821 (2011)

9. Wang, L., Haikun, T., Yu, G.: A hybrid genetic algorithm for job-shop scheduling problem,
pp. 271–274 (2015)

10. Tang, M., Pan, S.: A hybrid genetic algorithm for the energy-efficient virtual machine
placement problem in data centers. Neural Process. Lett. 41(2), 211–221 (2015)

11. Rowland, E.: Theory of Games and Economic Behavior. Theory of games and economic
behavior, pp. 2–14. Princeton University Press (1944)

12. Back, T.: Evolutionary Algorithms in Theory and Pratice. Oxford University Press, Oxford
(1996)

13. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol.
Comput. 3, 82–102 (1999)

14. Cai, Z., Wang, Y.: A multiobjective optimization-based evolutionary algorithm for
constrained optimization. IEEE Trans. Evol. Comput. 10, 658–675 (2006)

15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer,
New York (1992)

16. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading (1989)

17. Parmee, I.: Evolutionary and Adaptive Computing in Engineering Design. Springer,
New York (2001)

368 D. Li et al.

18. Onwubolu, G., Babu, B.: New Optimization Techniques in Engineering. Springer, Berlin
(2004)

19. Eberhart, R., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann, San Mateo
(2001)

20. Clerc, M.: Particle Swarm Optimization. ISTE Publishing, Amsterdam (2006)
21. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
22. Dorigo, M., Gambardella, L., Middendorf, M., Stutzle, T.: Special section on ‘ant colony

optimization’. IEEE Trans. Evol. Comput. 6(4), 317–365 (2002)
23. Guo, W., Wang, L., Ge, S.S., Ren, H., Mao, Y.: Drift analysis of mutation operations for

biogeography-based optimization. Soft Comput. 19, 1881–1892 (2015)
24. Li, D., Wang, L., et al.: Particle swarm optimization-based solution updating strategy for

biogeography-based optimization. In: IEEE Congress on Evolutionary Computation (CEC),
pp. 455–459 (2016)

A Novel Strategy to Control Population Diversity 369

Consecutive Meals Planning by Using
Permutation GA: Evaluation Function

Proposal for Measuring Appearance Order
of Meal’s Characteristics

Tomoko Kashima1(B), Yukiko Orito2, and Hiroshi Someya3

1 Kindai University, 1, Takaya Umenobe, Higashi-Hiroshima 739-2116, Japan
kashima@hiro.kindai.ac.jp

2 Hiroshima University, 1-2-1, Kagamiyama, Higashi-Hiroshima 739-8525, Japan
3 Tokai University, 4-1-1, Kitakaname, Hiratsuka 259-1292, Japan

Abstract. The consecutive meals planning is a combinatorial optimiza-
tion problem that determines a meals plan in one period consisting of
consecutive days. This paper proposes an evaluation function using a
moving entropy for this problem. The function measures the appearance
order of meal’s characteristics on the plan. In the numerical experiments,
we apply a permutation GA to the problem. We show that our meals plan
is a good solution with large variation of appearance order of meal’s char-
acteristics for the consecutive meals planning.

1 Introduction

The meals planning is to determine the food combination which minimizes or
maximizes a given objective function. Many researchers have dealt with caloric
intake minimization problem, cost minimization problem, and other problems
for their purposes [1–5]. Each of their problems is viewed as an integer or a
mixed-integer linear programming problem. Hence, we can find the high accurate
solution by using a simplex method, an interior point method, or some of other
optimization methods.

On the other hand, an educational institution such as elementary school
and preschool provides the school meal every daily lunch. In each institution,
the individual nutrition managers freely decide every meal on plan by his/her
own policy under some strict rules such as an amount of calories and cost.
They may consecutively provide the meals in similar characteristics though each
institution has to provide various meals in different characteristics such as food
style, ingredient, and cooking method, for growth of an infant or a child. We
have to consider the variation of appearance order of meal’s characteristics on a
plan as well as the variation of meal’s characteristics.

In this paper, we call such a problem “consecutive meals planning” and
propose an evaluation function which measures the variation of appearance order
of meal’s characteristics on a plan by using information entropies on moving
intervals.
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 370–377, 2017.
DOI: 10.1007/978-3-319-61824-1 40

Consecutive Meals Planning by Using Permutation GA 371

We apply a permutation GA to the consecutive meals planning and then
show that our evaluation function works well for maximizing the variation of
appearance order of meal’s all characteristics in the numerical experiments.

2 Consecutive Meals Planning

Generally, one meal consists of one main dish and some side dishes. But we deal
with only a main dish as a meal and call it “Meal Class” in this paper. In other
word, we determine the main dishes plan on one period consisting of consecutive
days.

We first define the following notations.

t: Time point t (t = 1, · · · , T) on a period.
xi,j : Item j of Characteristics i on Meal Class. That is xi,j (i = 1, · · · , I, j =

1, · · · , J |i).
Xm: Meal Class which is categorized by difference of characteristics. That is

Xm = {x1,j , · · · , xI,j} (m = 1, · · · ,M).
Y(t): Meal Class provided at t.

Y: Meals plan consisting of T variables. That is a solution, Y =
{Y(1), · · · ,Y(T)}.

αi,j(t): Appearance/non-appearance of meal’s characteristics xi,j on meals plan
Y(t). That is represented by a binary variable 1/0.

Pi,j : Frequency rate of meal’s characteristics provided on an interval.

In this paper, we classify the individual meals into Meal Classes according
to its characteristics. Let i (i = 1, · · · , I) be the kind of meal’s characteristics.
Let j|i (j = 1, · · · , J |i) be the kind of items of Characteristics i. Let xi,j be
the meal’s characteristics for Item j of Characteristics i. The Meal Class Xm,
combination of meal’s characteristics from x1,j to xI,j , is defined as,

Xm = {x1,j , · · · , xI,j}, (m = 1, · · · ,M), (1)

m =
I−1∑

i=1

{
(j|i − 1)

I∏

k=i+1

J |k
}

+ j|I , (j|i ∈ {1, · · · , J |i}),

M =
I∏

i=1

J |i.

For example, we classify the meal’s characteristics into three categories; “food
style”, “ingredient”, and “cooking method.” In addition, we classify the category
of food style into “Japanese”, “Western”, and “Chinese”, the category of ingre-
dient into “Meat”, “Fish”, and “Egg”, and the category of cooking method into
“Simmer”, “Fry”, “Saute”, and “Deep-fry”, respectively. Using these settings,
Meal Class is defined as,

Xm = {x1,j , x2,j , x3,j}, (m = 1, · · · ,M), (2)

372 T. Kashima et al.

x1,j ∈
⎧
⎨

⎩

Japanese (j = 1)
Western (j = 2)
Chinese (j = 3)

, x2,j ∈
⎧
⎨

⎩

Meat (j = 1)
Fish (j = 2)
Egg (j = 3)

,

x3,j ∈

⎧
⎪⎪⎨

⎪⎪⎩

Simmer (j = 1)
Fry (j = 2)
Saute (j = 3)
Deep-fry (j = 4)

,

m =
2∑

i=1

{
(j|i − 1)

3∏

k=i+1

J |k
}

+ j|3, (j|i ∈ {1, · · · , J |i}),

M =
3∏

i=1

J |i = 3 · 3 · 4 = 36.

From the practical viewpoints, the educational institution such as elementary
school and preschool has many opportunities to provide special meals on event
days. For example, Japanese preschool provides a chicken dish at Christmas. In
a word, the Meal Class provided at an event date is fixed on the meals plan.
Hence, we assume that the event date which provides a special meal is randomly
given in the period for the consecutive meals planning.

Here, let t(e) be the time point for event date and let X(e) (X(e) ∈
{X1 · · · ,XM}) be the Meal Class provided at t(e). The meals plan for the period
consisting of T time points is defined as,

Y = {Y(1), · · · ,Y(T)}, (3)
Y(t) = {y1,j , · · · , yI,j}|t, (t = 1, · · · , T),

s.t. Y(t) ∈ {X1, · · · ,XM}, Y(t(e)) = X(e), X(e) ∈ {X1 · · · ,XM}.

The meals plan defined by Eq. (3) is the solution for the consecutive meals
planning.

3 Evaluation Function

It is well known that the information entropy is an index which measures the
predictability/unpredictability of information content and is defined as the prob-
ability of observing event. We propose an evaluation function by using the infor-
mation entropy.

We first define the frequency rate of each item of Characteristics i in Meal
Class, Pi,j , as the probability of observing the item on a period. The information
entropy of Characteristics i is maximized if all items of Characteristics i are
observed the same number in the period. However, the information entropy has
a problem that it cannot measure the appearance order which the event occurs
in the period though it can measure the number of occurrences.

In this paper, however, the evaluation function has to measure the variation
of appearance order of meal’s characteristics on meals plan. For measuring the

Consecutive Meals Planning by Using Permutation GA 373

appearance order, we divide one period consisting of T time points into the
short intervals consisting of the number of items for each meal’s characteristics.
As described in Eq. (1), the number of items of Characteristics i is J |i. Here,
the first interval consists of J |i time points from t = 1 to t = J |i. Moreover,
the interval moves from the first one to the last one every one time point on the
period. The last interval consists of J |i time points from t = T −J |i+1 to t = T .
Hence, we can divide the period into T − J |i + 1 intervals for Characteristics i.
To maximize the information entropy on each of all intervals means to maximize
the variation of appearance order of meal’s characteristics because the number of
time points on each interval is same as the number of items of Characteristics i.

For Characteristics i, the average of entropies in all intervals is represented
as Hi and the theoretical value is represented as H∗

i . We define the evaluation
function, “the total entropy of all meal’s characteristics”, as follows.

H =
I∑

i=1

Hi

H∗
i

, (4)

Hi = − 1
T − J |i + 1

T−J|i+1∑

t=1

J|i∑

j=1

Pi,j(t) log Pi,j(t), (i = 1, · · · , I),

Pi,j(t) =
1

J |i

J|i−1∑

p=0

αi,j(t + p), (t = 1, · · · , T − J |i + 1, j = 1, · · · , J |i),

αi,j(t) =
{

1 (yi,j(t) = xi,j)
0 (yi.j(t) �= xi,j)

, (t = 1, · · · , T).

4 Permutation GA

In this paper, we apply a permutation GA to optimize this problem. The per-
mutation GA expresses a round trip route most simply.

4.1 Genetic Representation and Fitness Value

In the genetic representation of the permutation GA, we define the individual
which is expressed as different from the solution.

First, the solution Y, given by Eq. (3), is defined as the phenotype of per-
mutation GA.

We replace the solution to the individual. We define the individual as the
following genotype consisting of the integer sequence.

v = {v(1), · · · , v(T)}, v(t) = ws mod M, (5)
ws ∈ {1, · · · , T}, ws1 �= ws2 , (s1, s2 = 1, · · · , T, s1 �= s2).

Hence, at time point t, the permutation GA has two kinds of variables, Y(t)
of solution and v(t) of individual.

We employ the total entropy of all meal’s characteristics given by Eq. (4) as
the fitness value. The permutation GA tries to find the optimal solution which
maximizes the fitness value.

374 T. Kashima et al.

4.2 Genetic Operations

Each operation of the permutation GA is designed as follows.
Note that the Meal Classes provided at event date are randomly given in

the period and are fixed on the procedure of permutation GA. They are not
operated by the crossover and the mutation.

1. Initial State
Meal Classes provided at event date are fixed in advance. On the first genera-
tion, the permutation GA generates Np individuals in the initial parents’ pop-
ulation. Each individual consists of T variables which are randomly selected
from the integer sequence {1, · · · , T} without overlapping.

2. Evaluation and Selection
The permutation GA applies the elitism and tournament selections to select
the individuals to the next population.

3. Crossover
Let Pc be the crossover rate. The permutation GA makes new Pc × No indi-
viduals by using the order crossover [6] for exchanging the partial structure
between two individuals according to the order of the sequence.

4. Mutation
Let Pm be the mutation rate. The permutation GA makes new Pm × No

individuals by exchanging two variables selected at random on one individual.
5. Terminate Criterion

The permutation GA repeats the operations of producing the offspring pop-
ulation and performing the selection until the maximum number of the rep-
etitions is satisfied.

From the last population, we choose one solution whose individual has the
highest fitness value of all. This solution is the optimum or quasi-optimum meals
plan for our consecutive meals planning.

5 Numerical Experiments

We applied the permutation GA to optimize the consecutive meals planning.

5.1 Experimental Setting and Parameters

In the numerical experiments, the meal’s characteristics are categorized into each
of food style x1,j , ingredient x2,j , and cooking method x3,j . The Meal Class of
experiments is defined by the same condition as Eq. (2).

The setting for the consecutive meals planning is as follows.

– The number of Meal Classes: M = 36 (given by Eq. (2)).
– Length of period: T = 245 (The number of weekdays in 2016).
– The number of event dates: 24 (Two days per one month).

Consecutive Meals Planning by Using Permutation GA 375

Hence, the consecutive meals planning is the problem of determining the solu-
tion Y = {Y(1), · · · ,Y(245)} such that the evaluation function is maximized.

The parameters of permutation GA are set as follows: Parents’ Population
Size; Np = 100, Offspring’s Population Size; No = 200, Crossover Rate; Pc =
0.9, Mutation Rate; Pm = 0.1, The maximum number of the repetitions; 1000,
Algorithm Run; 10.

5.2 Results and Discussion

In order to demonstrate the power of our evaluation function, the total entropy
of all meal’s characteristics, we compare it with other two functions. We explain
three models employing these three functions as follows.

– Model 1
Model 1 employs our function, the total entropy of all meal’s characteristics
given by Eq. (4), as the fitness value of permutation GA. In the experiments,
we re-define the optimization problem of Model 1.

max H =
I∑

i=1

Hi

H∗
i

. (6)

– Model 2
Model 2 employs the function, the entropy of only Meal Classes without meal’s
characteristics, as the fitness value of permutation GA. In the experiments,
we define the optimization problem of Model 2.

max L =
1
L∗

{
− 1

T − M + 1

(
T−M+1∑

t=1

M∑

m=1

Pm(t) log Pm(t)

)}
, (7)

Pm(t) =
1
M

M−1∑

p=0

αm(t + p), (t = 1, · · · , T − M + 1,m = 1, · · · ,M) ,

αm(t) =
{

1 (Y(t) = Xm)
0 (Y(t) �= Xm) , (t = 1, · · · , T),

where L∗ is the theoretical value of the entropy of Meal Classes.
– Model 3

Model 3 employs the function, the guaranteed minimum of the variation of
appearance order of all meal’s characteristics, as the fitness value of permu-
tation GA. In the experiments, we define the following maximin problem of
Model 3.

max min
(

H1

H∗
1

, · · · ,
HI

H∗
I

)
. (8)

As the results of Model 1, the fitness value of the optimum or quasi-optimum
solution, H, is shown in Table 1. Note that we show the maximum, the minimum,

376 T. Kashima et al.

Table 1. Results of Model 1 (Fitness value: H given by Eq. (6))

H L H1 H2 H3

Max. 2.6464 0.8704 0.8823 0.8823 0.8904

Min. 2.6056 0.8575 0.8633 0.8650 0.8656

Avg. 2.6274 0.8634 0.8724 0.8747 0.8803

Sd. 0.0132 0.0059 0.0076 0.0063 0.0076

Table 2. Results of Model 2 (Fitness value: L given by Eq. (7))

H L H1 H2 H3

Max. 2.0212 0.9815 0.6806 0.6840 0.7282

Min. 1.9174 0.9774 0.5936 0.6085 0.6519

Avg. 1.9627 0.9796 0.6337 0.6411 0.6879

Sd. 0.0343 0.0011 0.0263 0.0201 0.0206

Table 3. Results of Model 3 (Fitness value: result of maximin problem given by Eq. (8))

H L H1 H2 H3 Maximin

Max. 2.5472 0.8766 0.8494 0.8511 0.8494 0.8488

Min. 2.5136 0.8554 0.8384 0.8390 0.8363 0.8363

Avg. 2.5378 0.8634 0.8456 0.8465 0.8457 0.8449

Sd. 0.0113 0.0076 0.0036 0.0040 0.0042 0.0038

the average, and the standard deviation of the fitness values obtained by the
permutation GA 10 times. The entropy of each of meal’s characteristics, Hi (i =
1, 2, 3), and the entropy of only Meal Classes, L, are also shown in Table 1,
respectively.

As the results of Model 2, the fitness value of the optimum or quasi-optimum
solution, L, is shown in Table 2. The entropy of each of meal’s characteristics,
Hi (i = 1, 2, 3), and the total entropy of all meals’s characteristics, H, are also
shown in Table 2, respectively.

As the results of Model 3, the fitness value of the optimum or quasi-optimum
solution obtained by the maximin problem is shown in Table 3. The entropy of
each of meal’s characteristics, Hi (i = 1, 2, 3), the total entropy of all meal’s
characteristics, H, and the entropy of only Meal Classes, L, are also shown in
Table 3, respectively.

From Tables 1 and 2, the total entropies of all meal’s characteristics, Hs,
obtained by Model 1 are higher than those of Model 2. On the other hand, the
entropies of only Meal Classes, Ls, obtained by Model 2 are higher than those of
Model 1 because Model 2 is the problem which maximizes L. However, entropies
of only meal’s characteristics, H1, H2, and H3, are smaller than those of Model 1.

Consecutive Meals Planning by Using Permutation GA 377

In addition, Model 3 is the problem which maximizes the guaranteed min-
imum of the variation of appearance order of all meal’s characteristics. Thus,
the entropies of only meal’s characteristics, H1, H2, and H3, in Table 3 are the
guaranteed minimum for the consecutive meals planning. However, the H1, H2,
Cand H3 obtained by Model 1 in Table 1 are larger than those of Model 3 in
Table 3.

Therefore, our evaluation function of Model 1, the total entropy of all meal’s
characteristics H, is the effective function for the consecutive meals planning
with large variation of appearance order of multiple meal’s characteristics.

6 Conclusion

In the consecutive meals planning, we proposed an evaluation function which
measures the variation of appearance order of meal’s characteristics. We applied
the permutation GA to optimize the optimization problem.

In the numerical experiments, we showed that our evaluation function is
effective for the consecutive meals planning with large variation of appearance
order of multiple meal’s characteristics.

For obtaining the optimum or the higher accurate quasi-optimum solution
by using the evolutionary algorithms, however, we need to analyze the details of
the landscape of solutions and the search paths of algorithm. This is our future
work.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Numbers
#25750007 and #15K00339.

References

1. Lancaster, L.M.: The history of the application of mathematical programming to
menu planning. EJOR 57, 339–347 (1992)

2. Darmon, N., Ferguson, E., Briend, A.: Linear and nonlinear programming to opti-
mize the nutrient density of a population’s diet: an example based on diets of
preschool children in rural Malawi. Am. J. Clin. Nutr. 75(2), 245–253 (2002)

3. Salookolayi, D.D., Yansari, A.T., Nasseri, S.H.: Application of fuzzy optimization
in diet formulation. J. Math. Comput. Sci. 2(3), 459–468 (2011)

4. Cadenas, J.M., Pelta, D.A., Pelta, H.R., Verdegay, J.L.: Application of fuzzy opti-
mization to diet problems in Argentinean farms. EJOR 158, 218–228 (2004)

5. Kashima, T., Matsumoto, S., Ishii, H.: Evaluation of menu planning capability based
on multi-dimensional 0/1 knapsack problem of nutritional management system.
IAENG IJAM 39(3), IJAM 39 3 04 (2009)

6. Davis, L.: Applying adaptive algorithms to epistatic domains. In: 9th International
Joint Conference on Artificial Intelligence, pp. 162–164. Morgan Kaufmann Pub-
lishers Inc., San Francisco (1985)

Improving Jaccard Index Using Genetic
Algorithms for Collaborative Filtering

Soojung Lee(B)

Gyeongin National University of Education,
155 Sammak-ro, Anyang 13910, Korea

sjlee@gin.ac.kr

Abstract. As data sparsity may produce unreliable recommendations in
collaborative filtering-based recommender systems, it has been addressed
by many researchers in related fields. Jaccard index is regarded as effec-
tive when combined with existing similarity measures to relieve data
sparsity problem. However, the index only reflects how many items are
co-rated by two users, without considering whether their ratings are eval-
uated similar or not. This paper proposes a novel improvement of Jaccard
index, reflecting not only the ratio of co-rated items but also whether the
ratings of each co-rated item by two users are both high, medium, or low.
A genetic algorithm is employed to find the optimal weights of the levels
of evaluations and the optimal boundaries between them. We conducted
extensive experiments to find that the proposed index significantly out-
performs Jaccard index on moderately sparse to dense datasets, in terms
of both prediction and recommendation qualities.

Keywords: Similarity measure · Jaccard coefficient · Collaborative
filtering · Recommender system

1 Introduction

A recommender system has received much attention as a useful tool to reduce
the work of users when searching for information on Internet. This is because
it is usually designed to provide only the information that might be suitable
to the users, by filtering out seemingly unnecessary information. Among several
types of recommender systems, collaborative filtering (CF) is most well-known
as it is successfully utilized in commerce to recommend products that might
be preferred by customers. Some of the practical CF systems are GroupLens,
Ringo, and Amazon.com [5]. The basic principle of CF systems is to refer to
other likeminded users and recommend items which have been highly rated by
them. Underlying this principle is surely the assumption that users with similar
preferences for the items in the past would also have similar preference for the
unseen items.

A main task of CF systems is to find likeminded or similar users, since items
with high ratings given by them should be recommended to the current user.

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 378–385, 2017.
DOI: 10.1007/978-3-319-61824-1 41

https://www.amazon.com/

Improving Jaccard Index Using Genetic Algorithms 379

Determination of similar users is a critical aspect of the CF system which signifi-
cantly affects its performance. In literature, similarity calculation is usually made
by two kinds of approaches, correlation-based and vector cosine-based [1,5,8,12].
Examples of the former approaches are the Pearson correlation and its variants,
constrained Pearson correlation and Spearman rank correlation [5,12]. Cosine-
based method treats each user or item as a vector and measures an angle between
the vectors.

Despite the popularity of the traditional similarity measures, their disadvan-
tages are often disclosed when the ratings data of the two users are insufficient.
This problem, known as data sparsity, is inherent to CF systems and may pro-
duce unreliable similar users. Drawbacks resulting from this problem associated
with traditional similarity measures are well analyzed in [2,11]. While various
techniques have been developed to take care of the data sparsity problem, a
simpler technique which incorporates Jaccard index into the previous similarity
measure draws attention of many researchers [3,4,7,8,11]. Jaccard index is a
useful tool to reflect the number of common items rated by two users. It plays
an important role in computing more reliable similarity and is reported to con-
tribute to enhancing performance of CF. This paper proposes a new index based
on Jaccard index, which utilizes a genetic algorithm. The proposed index reflects
not only the ratio of co-rated items but also the levels of their ratings by the
two users; that is, whether they are both high, medium, or low. The superior-
ity of the proposed index is demonstrated through extensive experiments using
datasets with different characteristics.

2 Related Work

Traditional similarity measures are reported unreliable for CF systems when the
ratings data are sparse [2]. As a simple but efficient way to solve this problem,
the number of items co-rated by two users is often taken into consideration in
calculating similarity. Jamali and Ester introduced a sigmoid function which has
the number of common users as input. They combined this sigmoid function
with Pearson correlation to define a similarity function [6]. Hence, the resulting
similarity decreases exponentially as the number of common users decreases.
Ren et al. measured the degree of rating overlap and combined this heuristic
factor with Pearson correlation and the cosine similarity [9]. Their new measure
is proved to mitigate the sparsity problem through various experiments and to
outperform the corresponding traditional measures.

Another approach to handle data sparsity is to incorporate Jaccard index
[7] into the previous similarity measure. Jaccard index measures the ratio of
the number of co-rated items by two users to the total number of items rated
by them. It has been succesfully adopted in several studies to compensate for
the drawbacks of previous similarity measures which are mainly caused by data
sparsity or cold-start users [3,4,8,11,13]. For example, Bobadilla et al. proposed
a new similarity measure that combines mean squared differences with Jaccard
index [3]. The results state that their approach outperforms Pearson correlation

380 S. Lee

with datasets of short-ranged ratings but not much with a dataset of rather long-
ranged ratings such as FilmAffinity. In addition, their experiments only include
Pearson correlation for comparison, thus the proposed measure being not fully
verified over the other traditional similarity measures.

Saranya et al. presented a weighted combination of Pearson correlation
and Jaccard index as similarity measure [11]. They reported that the mea-
sure achieved a little improvement in recommendation quality [11]. However,
the improvement is very slight compared to Jaccard Uniform Operator Distance
[13] and no comparison is made to more popular similarity measures such as
Pearson correlation, cosine similarity, or mean squared differences.

Liu et al. also proposed a formulation of similarity measure that encompasses
not only the local context information of user ratings, but also the global pref-
erence of user behavior. Within the formulation, PIP similarity, Jaccard index,
and the mean and variance of the ratings are included in a heuristic manner [8].
They conducted experiments with very sparse datasets of MovieLens and Epin-
ions which have a rating range of 1 to 5. In their experiments, as many as ten
state-of-the-art similarity measures are compared with their proposed method.
In terms of recommendation qualities, the results show that the cosine similarity
performs best when the number of consulting users is few to medium in both
datasets, comparable to the best with more consulting users with Epinions, and
is defeated only by the adjusted cosine measure with MovieLens with more con-
sulting users. Hence, it is rather out of expectations that such a complex and
well-formulated measure proposed by [8] is mostly outperformed by the cosine
and the adjusted cosine similarities.

From the above discussion, Jaccard index is known to be used as a popular
component comprising a new formulation of similarity measure which was partly
successful in improving CF performance using previous similarity measures. This
achievement is still notable in that the index considers only relative number of
common items rated by two users, without taking the ratings themselves into
account. The index is formally defined as follows. Let Iu be the set of items rated
by user u and |Iu| be its cardinality. Then Jaccard index between users u and
v is

Jaccard(u, v) =
|Iu ∩ Iv|
|Iu ∪ Iv| .

3 The Proposed Index

Although Jaccard index is designed to take only the number of common ratings,
it can be modified to reflect more from the common ratings between two users, as
far as their similarity is concerned. For instance, consider two cases: (a) ru,i = 3,
ru,j = 3, rv,i = 3, rv,j = 4 and (b) ru,i = 1, ru,j = 1, rv,i = 1, rv,j = 2,
where ru,i is the rating given by user u to item i. Assuming that there are only
two common ratings made by u and v and the rating range is [1..5] where 1 is
the lowest, it may be inferred that case (b) indicates higher similarity between
the users than case (a). Our idea is based on this observation and also on the

Improving Jaccard Index Using Genetic Algorithms 381

work by [3]. This work discovered that users tend to give ratings higher than the
median and avoid the extreme values. This result implies that two users giving
a same extreme rating can be treated as more similar than those giving a more
common rating.

Based on the above discussion, our proposed index is designed to be different
from Jaccard index in that it considers whether the rating of a common item is
normal or extreme. That is, we are interested in how many items are commonly
rated with normal or extreme values. Hence, we divide the rating range of the
system into three subintervals of low, medium, and high ratings. Within each
subinterval Jaccard index is computed separately. Specifically, let Lbd and Hbd

be boundaries of the sub-intervals, where Lbd < Hbd. Then the set of items rated
by user u, Iu, is divided into three as follows, based on the rating values assigned
by u.

IL,u = {i ∈ Iu|ru,i ≤ Lbd}, IM,u = {i ∈ Iu|Lbd < ru,i < Hbd}, IH,u = {i ∈ Iu|ru,i ≥ Hbd}.

Also let us define three types of Jaccard indexes between users u and v as follows.

JL(u, v) =
|IL,u ∩ IL,v|
|IL,u ∪ IL,v| , JM (u, v) =

|IM,u ∩ IM,v|
|IM,u ∪ IM,v| , JH(u, v) =

|IH,u ∩ IH,v|
|IH,u ∪ IH,v|

Then our metric, named as JLMH , is calculated as an arithmetic average of the
three Jaccard indexes as follows.

JLMH(u, v) =
1
3
(JL(u, v) + JM (u, v) + JH(u, v))

Given the above framework, we further refine our index by optimalizing the
boundaries and the weight portion of each component in JLMH . The final index
is presented as

JLMH,GA(u, v) = αLJL(u, v) + αMJM (u, v) + αHJH(u, v), αL + αM + αH = 1,

where a genetic algorithm is used to determine the optimal α’s and the bound-
aries, Lbd and Hbd. Hence, in our genetic algorithm, the set of five weights com-
prises an individual of the population. We choose MAE (Mean Absolute Error)
for the fitness function, a representative metric for measuring prediction quality
of collaborative filtering systems. Initially, each weight is randomly created using
Nb bits to represent a real number in the range R. The algorithm terminates
either when it reaches a given number of generations Ngens or when the best
fitness of solutions in the population is less than a given threshold fth.

Concerning genetic operators, three typical operators, i.e., selection,
crossover, and mutation, are used. At each generation, a solution with the higher
fitness is selected with higher proability. Two solutions selected as such are then
crossed over with crossover probability ProbC to produce two new offsprings.
Each of these offsprings is to undergo the mutation step where a random bit is
flipped with mutation probability ProbM . The three steps of genetic operation
are repeated until the number of new offsprings becomes the given number of
solutions, PS. We keep the population size PS constant throughout the gener-
ations. Table 1 describes the parameters used in our genetic algorithm and their
values for experiments.

382 S. Lee

Table 1. Parameter description and values for the genetic operation

Parameter Description Value

Nb Number of bits composing a gene 10

PS Population size 60

R Real range of a gene [0, 1]

Ngens Number of generations for algorithm termination 20

fth Fitness threshold (MovieLens/BookCrossing/Jester datasets) 0.65/1.0/2.5

ProbC Crossover probability 0.85

ProbM Mutation probability 0.05

Table 2. Characteristics of the datasets

Matrix size
(users × ratings)

Rating scale Sparsity level

MovieLens 1000 × 3952 1∼5 (integer) 0.9607

Jester 998 × 100 −10∼+10 (real) 0.2936

BookCrossing 1014 × 883 1∼10 (integer) 0.9775

4 Performance Experiments

4.1 Design of Experiments

Our experiments are conducted with the purpose of investigating how much
improvement the proposed metric achieves over Jaccard index, when it is used
as a sole similarity measure for collaborative systems. Hence, we experimented
with three similarity measures, Jaccard index (Jaccard), JLMH (JLMH), and
JLMH,GA (JLMHGA). Each experiment result is obtained through the five-fold
cross validation [5], where the ratio of training and testing data is set to 80:20.

Among the datasets used in literature, three popular datasets are selected
in our experiments, each having very unique characteristics different from the
others, as presented in Table 2. Sparsity level represents how sparse the dataset
is. It is defined by 1-(total number of ratings/matrix size).

Performance is evaluated based on two well-known standards in related stud-
ies, prediction quality and recommendation quality. To examine prediction qual-
ity, MAE (Mean Absolute Error) is popularly used, which is the mean difference
between the predicted rating of an unrated item and its corresponding real rat-
ing. Rating prediction is typically made by referring to ratings of similar users,
weighted average of which is used [10]. Hence, determination of most similar
users, called the nearest neighbors (topNNs), critically affects the accuracy of
prediction, which emphasizes the importance of similarity measure. Recommen-
dation quality is usually measured by precision and recall metrics or their har-
monic mean F1 [12]. We presented F1 results only, due to the space constraint.

Improving Jaccard Index Using Genetic Algorithms 383

Fig. 1. Comparison of MAE performance: (a) MovieLens, (b) Jester, and (c) Book-
Crossing datasets

4.2 Performance Results

Figure 1 shows MAE results with varying number of nearest neighbors (topNN)
for the three different datasets. It is observed that the results of Jaccard are either
far best or worst, depending on the dataset. It seems the most advantageous
when the dataset is very sparse, such as BookCrossing. Although MovieLens
is also as sparse as BookCrossing, Jaccard shows the worst result with slight
difference on MovieLens, implying that a small difference of data sparsity can
cause a significant performance difference in terms of MAE. This observation is
convincing because Jaccard yields very worse MAE results on a dense dataset
like Jester.

With analogous reasonings as above, JLMH results in far better MAE than
Jaccard on Jester, which proves successfulness of our idea of separate application
of Jaccard index to sub-ranges of ratings. This achievement is rather moderate
on MovieLens and not effective on BookCrossing, all of which seem due to the
dataset sparseness. By comparing the MAE results of JLMH and JLMHGA, it
can be figured out that how a genetic algorithm impacts on performance. As
expected, regardless of the datasets, JLMHGA yields better MAE than JLMH.
However, the degree of improvement is almost ignorable on BookCrossing. Since
the reason for such results on BookCrossing is presumed as data sparsity, we
further experimented with two sub-intervals instead of three used for JLMHGA.
This additional experiment, the legend of whose results is JLMHGA2 in the
figure, differs from JLMHGA in the number of weights in the chromosome:
that is, four weights rather than five. Observe that using only one boundary,
JLMHGA2 notably outperforms JLMHGA. This result is because the Jaccard
on each of the two sub-intevals is now more meaningful as more common number
of ratings should be included in each sub-interval.

Regarding recommendation quality, Fig. 2 depicts F1 results of the measures.
Similar to the behavior shown in MAE results, Jaccard leads to worst F1 perfor-
mance on MovieLens and Jester, whereas it shows competitiveness with the oth-
ers on BookCrossing. Therefore, the overall results of Jaccard is relatively poor in
terms of F1, even though it demonstrates excellency on a very sparse dataset like
BookCrossing in terms of MAE. On the contrary, JLMHGA is absolutely supe-
rior to the other two on MovieLens, which is also proved through MAE results.

384 S. Lee

Fig. 2. Comparison of F1 performance: (a) MovieLens, (b) Jester, and (c) BookCross-
ing datasets

However, its effectiveness exploiting a genetic algorithm is hardly shown on the
other two datasets. This rather unexpected behavior of JLMHGA, especially
on Jester, is most probably due to the rough criteria for defining preference in
measuring precision or recall; note that the items of ratings higher than a given
threshold is considered relevant in measuring precision, thus prediction of the
exact rating not so important as in MAE. Observe that the extra experiments
to improve performance of JLMHGA on BookCrossing, i.e., JLMHGA2, are also
effective, as shown in the figure.

To conclude, our idea of enhancing performance of Jaccard is well verified
through various experiments. The idea is more successful on a denser dataset
and effective in both recommendation and prediction qualities. Specifically, its
improvement over Jaccard is about 19.1 to 29.8% on Jester in terms of F1 per-
formance and about 4.7 to 7.3% on the same dataset in terms of MAE. In addi-
tion, the proposed index has a potential to further performance improvement, as
demonstrated through the experiment results of JLMHGA2 on BookCrossing.

5 Conclusion

This paper proposed a novel improvement of Jaccard index, where not only the
number of common items but also the levels of their ratings is considered. That
is, we divide the whole rating range of the system into subintervals and examine
how many items are commonly rated with normal or extreme values. The level
of contribution of each subinterval to the new index as well as its boundaries is
determined using a genetic algorithm. We investigated the performance of the
proposed index for collaborative filtering using datasets with different charac-
teristics. It is found that our index significantly outperformed Jaccard index on
the datasets in terms of both recommendation and prediction qualities. The only
exception occurs for prediction quality on a very sparse BookCrossing dataset
where Jaccard index defeats all the other measures. Consequently, the superiority
of the proposed index is verified on moderately sparse to dense datasets, opening
a new prospect that it can be better utilized in CF systems in conjunction with
other metrics for similarity computation.

Improving Jaccard Index Using Genetic Algorithms 385

References

1. Aamir, M., Bhusry, M.: Recommendation system: state of the art approach. Int.
J. Comput. Appl. 120(12), 25–32 (2015)

2. Ahn, H.J.: A new similarity measure for collaborative filtering to alleviate the new
user cold-starting problem. Inf. Sci. 178(1), 37–51 (2008)

3. Bobadilla, J., Serradilla, F., Bernal, J.: A new collaborative filtering metric that
improves the behavior of recommender systems. Knowl.-Based Syst. 23(6), 520–
528 (2010)

4. Bobadilla, J., Ortega, F., Hernando, A., Bernal, J.: A collaborative filtering app-
roach to mitigate the new user cold start problem. Knowl.-Based Syst. 26, 225–238
(2012)

5. Bobadilla, J., Ortega, F., Hernando, A., Gutierrez, A.: Recommender systems sur-
vey. Knowl.-Based Syst. 46, 109–132 (2013)

6. Jamali, M., Ester, M.: Trustwalker: a random walk model for combining trust-based
and item-based recommendation. In: 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 397–406. ACM (2009)

7. Koutrica, G., Bercovitz, B., Garcia-Molina, H.: FlexRecs: expressing and combining
flexible recommendations. In: The 2009 ACM SIGMOD International Conference
Management of Data, pp. 745–758. ACM (2009)

8. Liu, H., Hu, Z., Mian, A., Tian, H., Zhu, X.: A new user similarity model to improve
the accuracy of collaborative filtering. Knowl.-Based Syst. 56, 156–166 (2014)

9. Ren, L., Gu, J., Xia, W.: A weighted similarity-boosted collaborative filtering app-
roach. Energy Procedia 13, 9060–9067 (2011)

10. Resnick, P., Lakovou, N., Sushak, M., Bergstrom, P., Riedl, J.: Grouplens: an
open architecture for collaborative filtering of netnews. In: Proceedings the ACM
Conference on Computer Supported Cooperative Work, pp. 175–186. ACM Press
(1994)

11. Saranya, K.G., Sadasivam, G.S., Chandralekha, M.: Performance comparison of
different similarity measures for collaborative filtering technique. Indian J. Sci.
Technol. 9(29) (2016)

12. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv.
Artif. Intell. 2009, 4 (2009)

13. Sun, H.-F., et al.: JacUOD: a new similarity measurement for collaborative filtering.
J. Comput. Sci. Technol. 27(6), 1252–1260 (2012)

Optimizing Least-Cost Steiner Tree in Graphs
via an Encoding-Free Genetic Algorithm

Qing Liu1,2(&), Rongjun Tang1, Jingyan Kang1, Junliang Yao1,2,
Wenqing Wang1,2, and Yali Wu1,2

1 Faculty of Automation and Information Engineering,
Xi’an University of Technology, Xi’an, China

liuqing@xaut.edu.cn
2 Shaanxi Key Laboratory of Complex System Control and Intelligent

Information Processing, Xi’an, China

Abstract. Most bio-inspired algorithms for solving the Steiner tree problem
(STP) require the procedures of encoding and decoding. The frequent operations
on both encoding and decoding inevitably result in serious time consumption
and extra memory overhead, and then reduced the algorithms’ practicability. If a
bio-inspired algorithm is encoding-free, its practicability will be improved.
Being motivated by this thinking, this article presents an encoding-free genetic
algorithm in solving the STP. To verify our proposed algorithm’s validity and
investigate its performance, detailed simulations were carried out. Some insights
in this article may also have significance for reference when solving the other
problems related to the topological optimization.

Keywords: Steiner tree problem � Genetic algorithm � Encoding-free �
Tree-based genotype

1 Introduction

Many practical problems like network routing [1], VLSI design [2], data-aggregation
[3], boil down to the Steiner tree problem (STP) in graphs [4]. Given an undirected
graph with non-negative edge costs and a subset of vertices, usually referred to as
terminals, the STP in graphs requires a least-cost tree that contains all terminals but not
limited to the terminals only. Since the STP is NP-complete [8], no exact algorithm can
solve it within polynomial time. A large number of heuristic algorithms were thus
proposed for finding the approximate solution to the STP within acceptable time, such
as the well-known shortest path heuristic (SPH) [5], the distance network heuristic
(DNH, also referred to as KMB, implying its three proposers’ initials) [6], and the
average distance heuristic (ADH) [7], etc. These heuristics run fast indeed, but their
worst-case performance is poor [9], even never return the optimal solution. Given the
situation that the heuristic algorithms perform poorly in the worst-case while the exact
algorithms inevitably suffer from extremely serious time-overhead, increasingly more
researchers tend to use the bio-inspired algorithms to obtain the optimal solution or at
least the sub-optimal ones to the STP in consideration of the bio-inspired algorithms’
global search ability and fast convergence.

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 386–393, 2017.
DOI: 10.1007/978-3-319-61824-1_42

So far, the bio-inspired algorithms for solving the STP are not uncommon [10–13].
Without loss of generality, these bio-inspired algorithms always rely on a population
consisting of a number of candidate trees and their optimization mechanism could be
summed up as “generation + evaluation”. For “generation” alone, the bio-inspired
algorithms generate candidate trees in different manners and thus require different
encoding schemes to represent them. For instance, Fan et al. [10] adopted a binary
tree-based scheme when using a hybrid genetic algorithm in optimizing multicast
routing; Ma et al. [13] employed a predecessor-based tree-representation to prevent
from generating loops in their research. Beyond that, as long as a certain scheme of
encoding candidate trees is adopted, a corresponding operator for decoding is also
required. For example, Liu et al. [1] utilized 0/1 strings as the encoding representations
and thus Prim’s algorithm [14] was used as the operator for decoding trees. In literature
[12], Zhong et al. did the similar thing. When using the bio-inspired algorithms to solve
the STP, the frequent operations on both encoding and decoding inevitably result in
serious time consumption and extra memory overhead. In consideration of this, the
practicability of the bio-inspired algorithms in solving the STP is thus reduced, espe-
cially in the application scenarios requiring solution speed, such as network routing
optimization.

Therefore, a bio-inspired algorithm for solving the STP but not requiring the link of
encoding is more needed. Actually, to propose a bio-inspired algorithm without
encoding is feasible as long as we directly use the candidate trees as the genotype in the
algorithms. Genetic programming (GP) pioneered by John Koza is such an instance, in
which syntax tree-based genotype is employed [15]. Such a successful instance further
motivates us to propose an encoding-free bio-inspired algorithm for solving the STP
better. Nevertheless, how to implement the related operators acting on the genotype of
uncoded trees becomes a new issue, and our research work to be presented in this paper
mainly focuses on solving it. In this paper, we present an encoding-free genetic
algorithm (GA) to optimize the least-cost Steiner tree for the given STP. The rest part
of this paper are organized as follows. Section 2 formulates the mathematical
description of the STP. The implementation of the proposed GA is to be detailed in
Section 3. The simulation will be given in Section 4, followed by our conclusion as
Section 5.

2 Mathematical Model of Steiner Tree Problem

Given an undirected graph G consisting of a vertex set V and an edge set E, in which
each edge e is associated with a positive cost c(e), the STP on such a graph G can be
related as that of determining a least-cost Steiner tree spanning V 0j j vertices (i.e. a root
and several destinations). Suppose that T* = (VT*, ET*) is the least-cost Steiner tree, the
optimization objective can thus be expressed as below:

min
X

e2T�
cðeÞ ð1Þ

Optimizing Least-Cost Steiner Tree in Graphs 387

It must be noticed that, for the case of V 0j j ¼ 2, the STP reduces to shortest path
problem (SPP); And for the case of V 0j j ¼ Vj j, the STP reduces to the minimal
spanning tree problem (MSTP). Either the SPP or the MSTP can be easily solved
within polynomial time. The STP in graphs specially refers to the case of
2 < V 0j j\ Vj j.

3 Tree-Based Genetic Algorithm for Evolving Steiner Tree

3.1 Representation of Candidate Steiner Trees

We took the undirected graph G shown as in Fig. 1(a) as an instance to explain. For a
set of specified vertices, including the vertex 1 as the root (R) and the vertices 10, 4, 5,
12, 7 as the destinations (D1, D2, D3, D4, D5), the tree structure shown as in Fig. 1(b) is
a candidate Steiner tree spanning the specified vertices. Since we are to abolish the link
of encoding on purpose during optimizing, the tree structure in Fig. 1(b) can thus be
directly used as the genotype in our proposed GA. And the genotype is stored as the
form of its several branches. For example, the candidate Steiner tree shown in Fig. 1(b)
is stored as a set of branches, i.e. {10!3!2!1, 4!11!3, 5!4, 12!4, 7!4},
which is noted as g-ST for simplicity and the set of all the vertices involved in the g-ST
is noted as v-ST. For our proposed approach, the phenotype is the genotype. So the tree
cost is directly used to evaluate a genotype’s fitness.

The process of randomly generating a candidate Steiner tree on a graph G can be
mainly described as the following steps:

Step 1 Initialization: g-ST = ∅; root = R; destination set D ¼ Diji ¼ 1. . . V 0j jf g;
v-ST = ∅;

Step 2 Add R into the v-ST;
Step 3 Choose an element Di from D at random to be the starting vertex of the branch

to be generated, then remove Di from D;
Step 4 Generate a random route from Di to any one of the vertices constituting v-ST

to be a branch, and then add this generated branch into the g-ST, meanwhile
add the vertices included by this branch into v-ST;

Step 5 Go back to Step 3 if D 6¼ ∅ but terminate the process otherwise.

2

3

4

7

12

5

11
10

R

D1

D2

D3

D4

D5

Fig. 1. An undirected graph G and a randomly generated Steiner tree spanning a set of specified
vertices: (a) A undirected graph G; (b) A candidate Steiner tree

388 Q. Liu et al.

Through finishing the above-described process on G, various Steiner trees spanning
R and D may be generated. We encapsulated such a process as an operator, referred to
as RST-generator(�), for being expediently called when generating a random Steiner
tree on an arbitrary undirected graph arg-G. The calling syntax is RST-generator(arg-
G), where arg-G is passed to the operator as the argument.

3.2 Genetic Operators

GA evolves the optimal solution to a problem by iteratively acting the genetic oper-
ators. This subsection is to detail the specific implementation of them.

Crossover. So far, numerous crossover techniques have been widely used in
problem-solving, such as single-point crossover, two-point crossover, uniform cross-
over, etc. However, they are not suitable to be acted on the tree-based genotype.
A brand new way of implementing the crossover that adapts the tree-based genotype is
thus required.

Essentially, crossover is the process that two parent solutions generate their offspring
by exchanging their genetic information. For the tree-based genotype, the genetic
information refers to the tree topology in fact. We thus implement the crossover operator
by exchanging two parent solutions’ partial topologies. To be specific, we assume that
the parent1 in Fig. 2(a) and the parent2 in Fig. 2(b) are randomly selected out of the
population of GA. Since the topologies of their tree-based genotypes imply their
respective genetic information, the undirected graph obtained by merging the parent1
and the parent2 could thus be treated as a gene pool, as shown in Fig. 2(c). As thus, any
offspring Steiner tree being generated from such a gene pool deservedly inherits the
genetic information of the two parents. For instance, Fig. 2(d) and (e) separately exhibit
two randomly generated offspring, of which the topologies are indeed different from but
similar to that of their parents. As for the method of generating the offspring, the
afore-said operator RST-generator(�) can be directly used by passing the gene pool as its
argument.

Furthermore, we actually made more improvements on the crossover operator.
Usually, two parents generate two offspring during the process of crossover. In our
proposed approach, two parents may generate k > 2 offspring individuals in order to
enhance the crossover operator’s effectiveness on the respect of local exploitation,
where k is a new parameter of our proposed GA. Nevertheless, among the k generated
offspring individuals, only the best two are permitted to enter the offspring population.
Therefore, the number of the generated individuals still equals to PopSize�Pc, where Pc
refers to the probability of crossover.

Mutation. Mutation alters a candidate solution’s genetic information from its initial
state. For our proposed approach, the genetic information refers to the topology in fact.
However, to alter a Steiner tree’s topology at random can result in the Steiner tree being
unconnected or invalid. To avoid this risk, we implement mutation operator in a similar
way to the crossover. To be specific, we beforehand generate a brand new Steiner tree
at random and merge it with the one to be mutated. Namely, we built a gene pool

Optimizing Least-Cost Steiner Tree in Graphs 389

containing the genetic information from the one to be mutated and the one being newly
generated. As thus, any Steiner tree derived from such a gene pool can be treated as the
mutant, because the mutant inherits the partial topologies of the one to be mutated and
also some new topologies. As for the method of generating the mutant from the built
gene pool, we still use the encapsulated RST-generator(�) by passing the built gene pool
as its argument. Among the population, a total of PopSize�Pm candidate solutions are to
be mutated, where Pm refers to the probability of mutation.

Sorting-Based Selection. Selection is the operator by which the superior candidate
solutions survive for later breeding while the inferior ones are eliminated. We adopted
the commonly used sorting-based selection to eliminate the inferior candidate solutions.
Admittedly, the usage of the sorting-based selection will accelerate the decrease of the
population diversity. This drawback may result in premature convergence. We thus
proactively replace the repetitive individuals among the population by the newly gen-
erated ones. This practice helps to avoid the drawback of the sorting-based selection.

3.3 Primary Procedure During One Generation

Based on the previous description, this section introduces how the previously related
genetic operators are organized together. During the period of one generation, the
primary procedure can be depicted as the following schematic diagram in Fig. 3. The
superior individuals among the original population and the offspring population get
survived and then form the new generation. Evolving in this way, generation by
generation, our proposed GA finally returns the optimal solution to the STP.

2

3

4

7

12

5

11
10

8

R

D1

D3

D4

D5D2

2

3

4

6

9

7

12

5

11
10

R

D1

D3

D4

D5D2

2

3

4

6

9

7

12

5

11
10

8

R

D1

D3

D4

D5D2

2

3

4

6

9

7

12

5

11
10

R

D1

D3

D4

D5D2

2

3

4

6

9

7

12

5

11
10

8

R

D1

D3

D4

D5D2

Fig. 2. Diagram of crossover operator: (a) Parent1; (b) Parent2; (c) Gene pool being composed
of the topology of parent1 and that of parent2; (d) Offspring1; (e) Offspring2

Fig. 3. Schematic diagram to the procedure of our proposed GA during one generation

390 Q. Liu et al.

4 Simulation

We implemented the proposed GA in C++ and carried out the simulation experiments
on a computer with an Intel Core i7-3520 M 2.5 GHz CPU, 8 GB RAM, and Windows
7 sp1 (x64) operating system, in order to investigate its validity and performance.

4.1 Comparison with Other Bio-Inspired Algorithms

To verify our proposed GA’s validity, we tested it through the task of finding the
least-cost Steiner tree spanning the set of vertices {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24} on an undirected graph, as shown in Fig. 4. For comparison, some other
bio-inspired algorithms based on various encoding schemes in Refs. [1, 12, 13] were
also tested. The parameters of the proposed GA are set as PopSize = 100; Pc = 0.95;
Pm = 0.05; k = 4;MaxGeneration = 300. As for the compared algorithms’ parameters,
the same settings as reported were adopted.

The final solutions obtained by the tested algorithms are compared in terms of the
structure and the corresponding tree cost, as demonstrated in Fig. 5(a) and (b). Our
proposed GA as well as the AFSA in literature [1] and the PSO in literature [12] found
the optimal Steiner tree, whose tree cost equals to 314, while another version of the
AFSA [13] only found a sub-optimal Steiner tree. Obviously, our proposed GA is valid
for solving the STP. Much more importantly, unlike any of the compared algorithms,
our proposed GA is encoding-free, and thus no decoding algorithm is needed. Its
practicability is thus better than the compared ones in terms of time consumption, space
utilization, and easy programming.

4.2 Comprehensive Investigation on Convergence

The STP’s difficulty is varying when specifying different number of vertices to span,
while the optimization task in the previous simulation only tests the case of 12 vertices.
The influence on our proposed GA’s convergence resulted by the newly introduced
parameter k is also not investigated. Thus, in the subsequent part, we are to investigate
our proposed GA from the two aspects through three groups of simulation experiments,
in which each group investigates the convergence effectiveness when setting k as
different values. The optimization tasks assigned for the three groups are to find the
least-cost Steiner trees of spanning 18, 20, and 22 vertices respectively. For each
optimization task as well as each k, our proposed GA was run 100 times and the
convergence duration of each run was recorded.

We demonstrated the recorded convergence duration of all runs in the form of box
plot as in Fig. 6, which is a convenient way of graphically depicting groups of
numerical data through their quartiles. And the lines extending vertically from the
boxes indicating variability outside the upper and lower quartiles. Outliers are also
plotted, marked as red ‘+’. According to Fig. 6, we are able to conclude that our
proposed GA converges faster and steadily with larger k in stastical sense, which
actually benefits from the enhanced local exploitation during crossover.

Optimizing Least-Cost Steiner Tree in Graphs 391

5 Conclusion

The effort of our research work is to present an encoding-free genetic algorithm in
solving the Steiner tree problem in graphs, such that the originally required procedures
of both encoding and decoding are no longer needed, such that the practicability of the
algorithm could be improved. In the proposed approach, candidate trees are directly
used as the genotype. To make the related genetic operators adaptive to the tree-based
genotype, we redefined the crossover and mutation based on a specially defined
operator RST-generator(�), which is originally used to generate candidate Steiner trees

Fig. 4. Graph with 26 vertices and 65 edges

Fig. 5. Steiner trees respectively obtained by the compared AFSA [1, 13], PSO [12], and our
proposed GA: (a) Steiner tree obtained by AFSA [13], tree cost = 320; (b) Steiner tree obtained
by PSO [12], AFSA [1], and our proposed GA, tree cost = 314

0

10

20

30

40

2 4 6 8 101214161820
Varying values of parameter k

C
on

ve
rg

en
ce

 d
ur

at
io

n/
s

20 vertices

0

5

10

2 4 6 8 101214161820
Varying values of parameter k

C
on

ve
rg

en
ce

 d
ur

at
io

n/
s

18 vertices

0

10

20

30

2 4 6 8 101214161820
Varying values of parameter k

C
on

ve
rg

en
ce

 d
ur

at
io

n/
s

22 vertices

Fig. 6. Box plots of the recorded convergence duration of all runs: (a) Optimization task 1;
(b) Optimization task 2; (c) Optimization task 3 (Color figure online)

392 Q. Liu et al.

at random when initializing the population in fact. Since all the related genetic oper-
ators are based on the RST-generator(�), our proposed encoding-free GA is very suc-
cinct and easy programming. Detailed simulations were carried out to verify the
algorithm’s validity and investigate its performance. Besides, some insights in this
article, such as the implementation of crossover, may also have significance for ref-
erence when solving the other problems related to the topological optimization.

Acknowledgements. This research is supported in part by National Science Foundation of
China (No. 61502385, No. 61401354, No. 61503299), Key Basic Research Fund of Shaanxi
Province (2016JQ6015), and Scientific Research Program Funded by Shaanxi Provincial Edu-
cation Department (No. 16JK1554).

References

1. Liu, Q., Odaka, T., Kuroiwa, J., et al.: An artificial fish swarm algorithm for the multicast
routing problem. IEICE Trans. Commun. E97-B(5), 996–1011 (2014)

2. Zhou, Z., Jiang, C., Huang, L., et al.: On optimal rectilinear shortest paths and 3-Steiner tree
routing in presence of obstacles. J. Softw. 14(9), 1503–1514 (2003). (in Chinese with an
English abstract)

3. Li, Z., Shi, H.: A data-aggregation algorithm based on minimum Steiner tree in wireless
sensor networks. J. Northwest. Polytech. Univ. 27(4), 558–564 (2009). (in Chinese with an
English abstract)

4. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem, vol. 53. Elsevier,
Amsterdam (1992)

5. Takahashi, H., Matsuyama, A.: An approximate solution for the Steiner problem in graphs.
Math. Jpn. 24(6), 573–577 (1980)

6. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Informatica 15,
141–145 (1981)

7. Rayward-Smith, V.J.: The computation of nearly minimal Steiner trees in graphs. Int.
J. Math. Educ. Sci. Tech. 14(1), 15–23 (1983)

8. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-completeness (1979)

9. Plesník, J.: Worst-case relative performances of heuristics for the Steiner problem in graphs.
Acta Math. Univ. Comen. LX(2), 269–284 (1991)

10. Fan, Y., Jianjun, Yu., Fang, Z.: Hybrid genetic simulated annealing algorithm based on
niching for QoS multicast routing. J. Commun. 29(5), 65–71 (2008). (in Chinese with an
English abstract)

11. Ma, X., Liu, Q.: A particle swarm optimization for Steiner tree problem. In: Proceedings of
the 6th International Conference on Natural Computation (ICNC), pp. 2561–2565 (2010)

12. Zhong, W.L., Huang, J., Zhang, J.: A novel particle swarm optimization for the Steiner tree
problem in graphs. In: IEEE World Congress on Evolutionary Computation, pp. 2460–2467
(2008)

13. Ma, X., Liu, Q.: An artificial fish swarm algorithm for Steiner tree problem. In: IEEE-FUZZ,
pp. 59–63 (2009)

14. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech.
J. 36(6), 1389–1401 (1957)

15. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge (1992)

Optimizing Least-Cost Steiner Tree in Graphs 393

An Energy Minimized Solution for Solving
Redundancy of Underwater Vehicle-Manipulator

System Based on Genetic Algorithm

Qirong Tang1(B), Le Liang1, Yinghao Li1, Zhenqiang Deng1, Yinan Guo2,
and Hai Huang3

1 Laboratory of Robotics and Multibody System, Tongji University,
Shanghai 201804, China

qirong.tang@outlook.com
2 University of Mining and Technology, Xuzhou 221116, China

3 National Key Laboratory of Science and Technology on Underwater Vehicle,
Harbin Engineering University, Harbin 150001, China

Abstract. An energy minimized method using genetic algorithm for
solving redundancy of underwater vehicle-manipulator system is pro-
posed in this paper. Energy minimization is here set up as an optimiza-
tion problem. Under the constraints of the dynamic and kinematic equa-
tions, the inverse kinematic solution with the optimal index is formed
by using the weight pseudoinverse matrix. Energy consumption func-
tion is chosen as the objective function, and then the energy minimized
solution based on genetic algorithm for solving the redundancy of the
system is performed. Two numerical examples are carried out to verify
the proposed method and promising result is obtained.

Keywords: UVMS · Redundancy · Energy minimization · Genetic
algorithm

1 Introduction

Underwater vehicle-manipulator system (UVMS) is kind of autonomous robot,
which has the ability to complete certain intervention missions in the ocean
environment [1]. With the exploration of the ocean stepping more widely, the
research on UVMS is of great scientific and economic value.

The UVMS generally consists of a vehicle and a manipulator with links.
It is a complex coupled redundant system in both kinematics and dynamics.
Meanwhile, it becomes very complicated in the underwater environment where
UVMS will be affected by restoring moments and disturbances. A solution with
redundancy issue solved is to determine the motion trajectory of each degree
of freedom (DOF) under the premising of completing missions [2]. The typical
kinematic redundancy resolution methods, such as gradient projection method
(GPM) and task-priority method [3], have been successfully applied to solve the
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 394–401, 2017.
DOI: 10.1007/978-3-319-61824-1 43

An Energy Minimized Solution for Solving Redundancy 395

UVMS’s redundancy with some specific purposes. Nevertheless, for a UVMS, it
is important to handle the redundant DOFs and at the same time to consider
the limitation of energy resources.

There are some researches on the energy optimization of redundant DOFs for
the UVMS. One of the most common methods is to use the weighted pseudoin-
verse Jacobian matrix to solve inverse kinematics [4]. This method guarantees
the instantaneous kinetic energy to reach a minimum. However, the minimum
of energy consumption can not be achieved because of the existence of restoring
moments and disturbance. To solve the energy minimizing problem for UVMS,
Sarkar in [5] used GPM to reduce the drag forces. The energy consumption is
reduced by actual thruster forces which are decided by thruster dynamics. Sim-
ilarly, the energy consumption is reduced by minimizing restoring moments in
[6]. Those GPMs are applied to optimize the solution of redundancy and the dis-
tance between the center of gravity and the center of buoyancy is selected as the
objective function. The same optimization method is also applied in [7]. Overall
control effort is reduced with the reduction of gravity and buoyancy loadings on
both vehicle and manipulator during end-effector motion.

The performance of the optimization using GPM strongly depends on the
parameter which is very difficult to select in general. Besides, the energy gradient
function of the UVMS is difficult to be obtained. Moreover, with the increase
of the DOF of the UVMS, calculating the derivative of the gradient function
becomes very complex. Therefore, instead of constructing the gradient function,
the weight pseudoinverse matrix is used to solve the redundancy. Meanwhile, to
find the solution of redundancy which minimizes the energy consumption, the
global optimal solution of redundancy is studied based on genetic algorithm.

This paper is organized as follows. In Sect. 2, the research problem is
described. The expression of optimization problem and its constraints are given.
In Sect. 3, the dynamic and kinematic constraints of UVMS are introduced. In
Sect. 4, genetic algorithm is used for energy optimization. Two numerical exam-
ples are carried out in Sect. 5 and the effectiveness of the energy minimized
redundancy solving method is verified with comparisons. Conclusions are given
in Sect. 6 to close this paper.

2 Problem Description

The UVMS, which is usually composed of a vehicle and a manipulator, is kine-
matically a redundant system. It is assumed that the vehicle is a m-DOF float-
ing base and the manipulator is a n-DOF serial mechanism, the kinematically
redundant is referred to m+n > w, where w is the number of workspace DOFs.
Because of the existence of redundant DOFs, the system will possess infinite set
of kinematical solutions when the workspace task is specified. These redundant
DOFs will result different indicators, such as the shortest movement time and
the lowest energy consumption. Therefore, it is very necessary to find an optimal
solution for a specific situation.

For UVMS, endurance is an important performance factor. It is of great
economic value to research on the redundant DOFs to carry out the trajectory

396 Q. Tang et al.

which can minimize the consumption of energy while operating autonomously
in the ocean environment. The solution of redundancy with energy minimized
can be formulated as an optimization problem

min

∫ tf

t0

fe(t)dt, (1)

s.t. τ (t) = fD(ζ, ζ̇, ζ̈, t), (2)
ζ(t0) = ζ0 , ζ(tf) = ζf , (3)

ζ̇(t0) = ζ̇0 , ζ̇(tf) = ζ̇f , (4)
xE(t) = fK(ζ), (5)

where fe(t) is the energy function of the UVMS, t0 and tf represent initial
time and final time of system motion, respectively. Here τ ∈ R

m+n represents
generalized driving force which can be obtained by solving the system dynamic
equations fD(t), ζ, ζ̇, ζ̈ ∈ R

m+n indicates the generalized position coordinates,
generalized velocity and generalized acceleration, respectively. The (3) and (4)
are the boundary conditions of the system task space. Function fK(t) is the
kinematic constraint of the system, specifically, the kinematic equation between
the generalized coordinates and the end effector of the manipulator. An energy
minimization trajectory is a rational solution that satisfies the constraints and
makes the objective function minimized.

3 Constraints

3.1 Dynamic Modeling of UVMS

Because of the characteristics of the underwater environment, it is necessary to
consider the effect of buoyancy and restoring moments acting on the UVMS [8].
The dynamic equation of UVMS can be established based on Lagrange equation
and can be written in a compact state-space form by

M (ζ)ζ̈ + C (ζ, ζ̇)ζ̇ + G(ζ) = τ , (6)

where M (ζ) ∈ R
(m+n)×(m+n) is the inertia matrix of the UVMS including added

mass terms, C (ζ, ζ̇) ∈ R
(m+n)×(m+n) is the matrix of Coriolis and centripetal

terms, G(ζ) ∈ R
(m+n) is the vector of gravity and buoyancy effects (restoring

moment), τ ∈ R
(m+n) is the generalized driving force.

3.2 Solution for Kinematic Redundancy

The kinematic equations can be obtained by getting the derivation of kinematic
constraint in (5) which is then governed by

ẋE = JE ζ̇, (7)

An Energy Minimized Solution for Solving Redundancy 397

where JE ∈ R
w×(m+n) is the Jacobian matrix defined as JE = ∂fK/∂ζ. The

Jacobian matrix here is a transformation matrix that describes the relationship
between the end effector velocity and the generalized velocity. Because of the
kinematic redundancy of the system, there are infinite inverse kinematics solu-
tions. In order to obtain the one that satisfies energy minimization, a feasible
solution of redundancy is given by

ζ̇ = J̃ †
E ẋE , (8)

where
J̃ †

E = D−1J T
E(JD−1J T

E)−1, (9)

where matrix D ∈ R
(m+n)×(m+n) is a diagonal matrix and J̃ †

E is the weight
pseudoinverse matrix which depends on matrix D . The solution ζ̇ given in (8)
minimizes ζ̇TD ζ̇ over all feasible solutions. According to [8], the instantaneous
kinetic energy, which is represented as 1/2 ζ̇TM ζ̇, is minimized when matrix
D is replaced by inertia matrix M . However, the total energy consumption is
not minimized in the motion process because of the existence of the restoring
moments. Therefore, finding a suitable matrix D is the key to solve the problem.
Once matrix D is determined, the solution that minimizes energy consumption
can be obtained.

4 Solution Optimized by Genetic Algorithm

In order to obtain the optimal matrix D, the energy consumption function is
chosen as the objective function which can be expanded as

E =
∫ tf

t0

|τ (t)T | · |ζ̇(t)|dt =
∫ tf

t0

|τ (t)T | · |D−1J T
E(JD−1J T

E)−1xE(t)|dt, (10)

where E represents the consumption of energy during the motion process.
The expression of objective function E is very complex, so it is difficult

to get the gradient. Traditional optimization methods, such as climbing hill
method, are powerless in this problem. Genetic algorithm (GA) is a general
optimization method based on natural selection and genetic evolution and has
been successfully applied to solve optimization problems. Here GA is used to
determine an optimal matrix D . The diagonal coefficients of the matrix D are
used as the inputs.

Here, genetic algorithm is used to solve a constrained optimization prob-
lem. It is necessary to adjust the chromosome representation and the selection
method. There will be infeasible or even illegal solutions in constrained optimized
problem while using binary coding. Using order-based chromosome representa-
tion can ensure that new individuals satisfy the constraint conditions [9]. Instead
of roulette wheel selection, (μ + λ) selection, which is considered to be the most
suitable method for optimization problems, is applied because it selects the best
chromosomes from the each generations. And the swap mutation, which ensures
that there are no illegal solutions, is a feasible method to our problem [10].

398 Q. Tang et al.

The main procedures of this algorithm are,

(1) create initial population, coding population using order-based method
(2) evaluate the population using Eq. (10), and select optimal individuals as elite

solution
(3) if the stop criterion, i.e., the maximum number of iterations is achieved or

the global optimal value has not changed over 20 iterations, is reached, move
to step 6)

(4) apply the mutation operation to population, elite solutions do not participate
in mutation operation

(5) apply (μ + λ) selection and order crossover, generate new population, move
to step 2)

(6) output optimal solution as the matrix D

The off-line optimization result matrix D, which can reduce the energy consump-
tion of the system, is used as the weight matrix of the redundancy resolution.

5 Numerical Example

Numerical examples are performed to verify the proposed method. The physical
data of UVMS used here for simulation is taken from a practical system. How-
ever, here it only considers in planar situation, see in Fig. 1(a) and (b). Thus,
the 3-DOF vehicle and 3-DOF manipulator together result in the redundancy.

In this example, the end of manipulator is desired to move along the red
dash line in Fig. 1(a), meanwhile the energy required for the motion should be
minimized. The constraints of the path are set as

ζ(t0) = [0 0 0 − π/4 π/4 π/4]T , (11)
ζ̇(t0) = 0 , ζ̇(tf) = 0 , (12)

ẍE =
{

[−0.02 − 0.04]T t0 < t ≤ (t0 + tf)/2
[0.02 0.04]T (t0 + tf)/2 < t < tf

, (13)

where ζ(t0) represents initial position of UVMS. Both initial and terminal veloc-
ity are set to zero. It uses SI units.

The operators and parameters of the genetic algorithm are set as follows:
chromosome representation is order-based; population size is 50; initial popu-
lation is selected as inertia matrix M ; crossover strategy is order crossover;
selection strategy is (μ+λ) selection; elite rate is 0.05 and mutation rate is 0.02;
maximal iteration is 200 generations.

The optimization problem is solved by genetic algorithm and the optimal
matrix D is obtained as D = diag{46.96 29.43 26.16 18.26 10.63 1}. Using
this matrix D , a solution that minimized energy consumption is obtained. To
verify the effectiveness of the method, another simulation case using matrix M
has been executed.

The results using matrix M are shown in Fig. 1(a), (c) and (e). Figure 1(a)
shows the motion process of the trajectory of UVMS. It can be seen that

An Energy Minimized Solution for Solving Redundancy 399

manipulator links

vehicle

desired path

(a) motion process (matrix M)

vehicle

manipulator links

desired path

(b) motion process (matrix D)

0 1 2 3 4 5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

time/(s)

fo
rc

e/
(N

) a
nd

 to
rq

ue
/(N

m
)

1(t)

2(t)

3(t)

4(t)

5(t)

6(t)

(c) generalized driving force (M)

0 1 2 3 4 5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

time/(s)

fo
rc

e/
(N

) a
nd

 to
rq

ue
/(N

m
)

1(t)

2(t)

3(t)

4(t)

5(t)

6(t)

(d) generalized driving force (D)

0 1 2 3 4 5
-0.3

-0.2

-0.2

0

0.1

time/(s)

di
sp

la
ce

m
en

t/(
m

) a
nd

 ro
ta

tio
n/

(ra
d)

displacement in X axis
displacement in Y axis
rotation

(e) vehicle motion trajectory (M)

0 1 2 3 4 5
-0.3

-0.2

-0.2

0

0.1

time/(s)

di
sp

la
ce

m
en

t/(
m

) a
nd

 ro
ta

tio
n/

(ra
d)

displacement in X axis
displacement in Y axis
rotation

(f) vehicle motion trajectory (D)

Fig. 1. Planning result using matrix M and matrix D (Color figure online)

the motion of the manipulator end is coincident with the desired trajectory.
Figure 1(c) shows the force/torque value-time curves of the generalized driving
force. The vehicle rotating torque τ3(t) is more larger, because the clockwise
rotation of the vehicle will against the restoring moments. Figure 1(e) is the
curves of the vehicle displacement.

The results using matrix D are shown in Fig. 1(b), (d) and (f). In Fig. 1(b),
the maximum of rotation of the vehicle becomes smaller compared to Fig. 1(a).
In Fig. 1(d), it can be found that the generalized driving force of vehicle in Y-
axis τ2(t) is significantly smaller than the one in Fig. 1(c). One can find that the
rotation magnitude in Fig. 1(f) of the vehicle is apparently smaller than the one

400 Q. Tang et al.

in Fig. 1(e). In the case that matrix D is used, the vehicle restricts its rotational
motion to reduce the energy used of counteracting the restoring moments.

Figure 2 shows the comparison of energy consumption between two examples.
It can be clearly seen that the energy consumption of the path planned by using
the inertia weight matrix M is higher. In the underwater environment, due to
the influence of restoring moments, kinetic consumption can not represent the
total energy consumption. In order to achieve the minimal energy consumption,
it should limit the displacement in the direction of opposite to the restoring
moment.

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time/(s)

en
er

gy
 c

on
su

m
pt

io
n/

(W
)

using inertia matrix M

using matrix D

Fig. 2. Comparison of energy consumption

6 Conclusion

In this paper, an energy minimized method for solving the redundancy of UVMS
using genetic algorithm is carried out. First of all, the energy minimization is
described as a optimization problem. Then the dynamic and kinematic equation
of UVMS are given as the constraint condition. The inverse kinematics is solved
by using weight pseudoinverse matrix. Genetic algorithm is used for choosing
this weight matrix. Through the comparison of two numerical examples, the
effectiveness of the proposed energy optimization method is verified.

In our following work, more efficient genetic algorithm will be discussed to
enhance the effectiveness of optimization. Meanwhile, it is necessary to verify
our method on a real physical UVMS system.

Acknowledgments. This work is supported by the Key Basic Research Project of
‘Shanghai Science and Technology Innovation Plan’ (No. 15JC1403300), the National
Natural Science Foundation of China (No. 61603277; No. 51579053), the State Key Lab-
oratory of Robotics and Systems (Harbin Institute of Technology), key project (No.
SKLRS-2015-ZD-03), and the SAST Project (No. 2016017). Meanwhile, this work is
also partially supported by the Fundamental Research Funds for the Central Universi-
ties (No. 2014KJ032; ‘Interdisciplinary Project’ with No. 20153683), and ‘The Youth
1000 program’ project (No. 1000231901). It is also partially sponsored by ‘Shanghai
Pujiang Program’ project (No. 15PJ1408400), the National College Students Innova-
tion Project (No. 1000107094), as well as the project from Nuclear Power Engineering
Co., Ltd. (No. 20161686). All these supports are highly appreciated.

An Energy Minimized Solution for Solving Redundancy 401

References

1. Marani, G., Choi, S.K., Yuh, J.: Underwater autonomous manipulation for inter-
vention missions AUVs. Ocean Eng. 36, 15–23 (2009)

2. Mohan, S., Kim, J.: Indirect adaptive control of an autonomous underwater vehicle-
manipulator system for underwater manipulation tasks. Ocean Eng. 54, 233–243
(2012)

3. Antonelli, G., Chiaverini, S.: Task-priority redundancy resolution for underwater
vehicle-manipulator systems. In: IEEE International Conference on Robotics and
Automation, Leuven, Belgium, pp. 756–761 (1998)

4. Angeles, J.: On the numerical solution of the inverse kinematic problem. Int. J.
Robot. Res. 4, 21–37 (1985)

5. Sarkar, N., Podder, T.K.: Coordinated motion planning and control of autonomous
underwater vehicle-manipulator systems subject to drag optimization. IEEE J.
Ocean. Eng. 26, 228–239 (2001)

6. Han, J., Chung, W.K.: Redundancy resolution for underwater vehicle-manipulator
systems with minimizing restoring moments. In: 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Diego, USA, pp. 3522–3527
(2007)

7. Ismail, Z.H., Dunnigan, M.W.: Redundancy resolution for underwater vehicle-
manipulator systems with congruent gravity and buoyancy loading optimization.
In: 2009 IEEE International Conference on Robotics and Biomimetics, Guilin,
China, pp. 1393–1399 (2009)

8. Ishitsuka, M., Sagara, S., Ishii, K.: Dynamics analysis and resolved acceleration
control of an autonomous underwater vehicle equipped with a manipulator. In:
International Symposium on Underwater Technology, Taipei, Taiwan, pp. 277–281
(2005)

9. Liao, C.C., Ting, C.K.: Extending wireless sensor network lifetime through order-
based genetic algorithm. In: 2008 IEEE International Conference on Systems, Man
and Cybernetics, Singapore, pp. 1434–1439 (2008)

10. Back, T.: Selective pressure in evolutionary algorithms: a characterization of selec-
tion mechanisms. In: The First IEEE Conference on Evolutionary Computation,
Orlando, USA, pp. 57–62 (1994)

Study of an Improved Genetic Algorithm
for Multiple Paths Automatic Software Test

Case Generation

Erzhou Zhu1(&), Chenglong Yao1, Zhujuan Ma2, and Feng Liu1(&)

1 School of Computer Science and Technology,
Anhui University, Hefei 230601, China
{ezzhu,fengliu}@ahu.edu.cn
2 School of Economic and Technical,

Anhui Agricultural University, Hefei 230011, China

Abstract. Automatic generation of test case is an important means to improve
the efficiency of software testing. As the theoretical and experimental base of the
existing heuristic search algorithm, genetic algorithm shows great superiority in
test case generation. However, since most of the present fitness functions are
designed by a single target path, the efficiency of the generating test case is
relatively low. In order to cope with this problem, this paper proposes an effi-
ciency genetic algorithm by using a novel fitness function. By generating
multiple test cases to cover multiple target paths, this algorithm needs less
iterations hence exhibits higher efficiency comparing to the existing algorithms.
The simulation results have also shown that the proposed algorithm is high path
coverage and high efficiency.

Keywords: Software testing � Test case generation � Genetic algorithm �
Multiple paths coverage

1 Introduction

Software testing is expensive, time-consuming and tedious. It is estimated that software
testing requires about 50% of the total cost of software development. As an evolutionary
approach for computing, Genetic algorithm (GA) has the ability to determine appropriate
approx for providing solutions to optimization problems. It has been successfully
applied in automatic generation of test cases. Mansour and Salame [1] combine simu-
lated annealing algorithm and genetic algorithm to generate test case covering specific
paths. Chen and Zhong [2] uses multi-population GA to generate test case for path
coverage. Previous test case generators based on genetic algorithms, however, are
inefficient in covering multiple target paths. As a consequence, researches are focusing
on multi-path coverage test case generation. Ahmed and Hermadi [3] proposed the idea
of generating test data for multiple paths, but the fitness algorithm is rather complex,
resulting in a relatively long test case generation time and low efficiency. Gong and
Zhang [4] used the Huffman coding method to generate multi-path test case based on
genetic algorithm, however, the program under testing must be converted into binary
tree before test case generation, and its time consumption is increased.

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 402–408, 2017.
DOI: 10.1007/978-3-319-61824-1_44

Based on the ideas of [3, 4], this paper presents a new GA, by redesigning the
fitness function and modifying the operating operators to improve the ability of the
GA’s coverage and test case generation efficiency. Simulation results have verified the
superiority of the proposed algorithm.

2 Algorithm Implementation

Assuming that the control flow graph (CFG) of program T contains n branches, the
branch set Bs of program T can be expressed as: Bs ¼ \b1; b2; . . .bn [, where bi is a
branch of T and Pi is composed of multiple bi. All branches that T runs through xi are
denoted as Be xið Þ, T executes a set of test cases N, which is a set of all the branches that
N is executed on T, denoted as Bes.

2.1 Fitness Function Design

The fitness function is designed based on path and branch coverage. The path is
encoded according to the path and branch information of the generated CFG. During
the execution of an arbitrary test case, the true branch at the node is marked as 1 while
the false is marked as 0. The wth evolutionary population Nw is denoted as
Nw ¼ x1; x2; . . .xmh i, where xi is an individual in the population and m is the popu-
lation size. With the individual xi as the test case, the execution path PeðxiÞ is obtained
after executing a path in Cs. From the path encoding we can see that PeðxiÞ consists of 0
and 1 strings. Let L(xiÞ be the number of bits in the string, that is the number of
execution branches of the path. L(xi; j) is the maximum number of identical bits
between the arbitrary path Pj of Cs and the execution path PeðxiÞ of individual xi. The
similarity value of the kth bit in the same bit of Pj and PeðxiÞ is denoted as
Vkðxi; jÞ;Vkðxi; jÞ; is the XOR operation result of the kth value in both paths. The
similarity between the execution path PeðxiÞ and the target path Pj is:

fsimðPe xið Þ; PjÞ ¼
XL xi;jð Þ

k¼0
k*Vk xi; jð Þ: ð1Þ

The similarity between individual xi and the entire set Cs is:

fsim Pe xið Þ;Cs wð Þð Þ ¼ ð
Xm

k¼0
fsimðPeðxiÞ; PjÞÞ=k: ð2Þ

The average similarity of the wth generation population NW is:

favgsim ¼ ð
Xm

k¼0
fsimðPe xið Þ;Csðw)ÞÞ=k: ð3Þ

The branch coverage of individual xi is the ratio of the specific branch BðxiÞ of the
individual to the total number of branches B(T) in the procedure under test, it can be
defined as:

Study of an Improved Genetic Algorithm 403

fbðxiÞ ¼ B xið Þ=B Tð Þ: ð4Þ

Thus in wth population, the fitness function of individual xi can be given as:

ffitðxi;Cs wð ÞÞ ¼ fbðxiÞþ favgsim � fsim PeðxiÞ;Csðw)ð Þ� �2
: ð5Þ

The formula (5) is adopted as the fitness function of the individual xi in this paper.

2.2 Genetic Operator Construction

Selection Operator. In each generation, individuals with higher fitness than average
ones are regarded as elite individuals and are directly copied into the next generation
population. The remaining individuals are selected by roulette strategy. In roulette
strategy, the probability of an individual is selected depends on the proportion of the
fitness of the individual to the fitness of all individuals. Taking the individual xi of the
wth generation population NW as an example, the accumulation probability of xi can be
expressed as: PaccðxiÞ ¼

Pi
j¼1 ffitðxj;Cs Wð ÞÞ thus the selection probability of indi-

vidual xi can be denoted as:

PðxiÞ ¼ ffit xi;CsðWÞð Þ=
XN

j¼1
ffitðxj;CsðWÞÞ: ð6Þ

The probability interval of individual xi is (
Pi�1

j¼1 ffitðxj;CsðWÞÞ,Pi
j¼1 ffitðxj;CsðWÞÞÞ,

by generating a random number in interval (0,
PN

j¼1 ffitðxj;CsðWÞÞÞ, judging that the
value belongs to which section is the individual selected in this roulette strategy.

Crossover Operator and Mutation Operator. Mutation operator simulates biolog-
ical phenomenon of individual mutations to improve the diversity and avoid inbreeding
through random changes. In genetic algorithm based on path coverage and branch
coverage, the crossover and mutation operations are aimed at the specific value of the
solution space and do not directly change the specific execution path. The binary string
corresponding to the specific value is simulated as the chromosome gene of the indi-
vidual in the genetic algorithm sequence. The crossover of the algorithm is that the two
concrete solutions in the solution space exchange the binary code string with the
crossover probability Pc according to the binary coding characteristic. The mutation of
the algorithm is a specific solution to the mutation probability Pm of its binary string in
a bit inversion operation. In this paper, we adopt the idea of adaptive crossover and
mutation operator proposed by Srinivas and Patnaik [5]. The formulas of the adaptive
crossover operator Pc and the mutation operator Pm are as follows:

Pc ¼ Pcf ffit � favg
� � Pcf�Pcl

fmax�favg
favg � f

Pcf f\favg

(

: ð7Þ

404 E. Zhu et al.

Pm ¼ Pmf f � favg
� � Pmf�Pml

fmax�favg
favg � f

Pmf f\favg

(

: ð8Þ

In Eq. (7), Pcf and Pcl are the crossover parameters at the time of algorithm ini-
tialization, thus the fitness interval of the crossover operator Pc is Pcf½ ; Pcl�, the same as
Pm. favg is the average fitness of this generation and fmax is the more adaptive one of the
two individuals to be crossed. By judging the relationship between individual fitness
and the average fitness of the population, adaptively adjusting the crossover and
mutation operations dynamically, the population can retain the high fitness and keep
the species diversity of the whole population. This can effectively prevent the popu-
lation from premature convergence to the local optimal solution and avoid the mutation
probability becoming too large to evolve into random evolution.

3 Algorithm Steps

Steps for generating test case by using multi-path GA are described as follows:

Step1. Using static analysis to obtain Ts, Cs, Bs and other information, initialize basic
parameters of the algorithm;

Step2. For each individual xi in the population NW:
(1) Execute xi and collect the relevant information;
(2) Delete the path executed in Cs, and delete the branch executed in Bs;
(3) The fitness value and the whole space average fitness value are calculated.

Step3. If the termination condition is met, then go to Step4, otherwise go to Step7;
Step4. The residual solution is selected and the next generation solution space NW + 1

is formed with individuals above the average fitness value;
Step5. For each individual xi in the population NW + 1:

(1) Randomly select two individuals according to Pc crossover operation;
(2) Randomly select two individuals according to Pm mutation operation.
Then go to Step2;

Step6. Stop evolution and output test cases.

4 Experiments and Results

Experiments are carried out on Lenovo ThinkCentre M8500t, with Intel i7 4790U CPU
(3.6 GHz), 16 GB DDR3 1333 RAM and 64 bits Ubuntu 13.10 OS. The IDAPro
software is used to perform the static analysis on executable software. The compilation
environment for test cases is gcc4.4.7. The experiment of genetic algorithm is based on
Visual Studio 2012 in C++ Genetic Algorithm Development Kit. The strategies and
parameters related to GA are listed in Table 1. In this experiment, the coverage of the
multi-path algorithm and the generation efficiency of the test case are tested to evaluate
the superiority of our method.

Study of an Improved Genetic Algorithm 405

4.1 The Coverage of the Multi-path Algorithm

In order to verify the coverage of the multi-path algorithm in this paper, we choose the
three benchmark procedures, namely triangle classifier, three number sort, bubble sort.
The end condition of the algorithm is to find all paths or reach the maximum number of
iterations. Since each evolutionary time is only a few milliseconds, 100 total execution
times are recorded as the execution time of the algorithm. Table 2 documents the basic
information of the three benchmarks and the algorithm execution time and path cov-
erage. Because there is an infeasible path in three number sorting and bubble sorting, it
can be concluded that the test cases generated by this algorithm cover all the paths that
can be covered.

4.2 Test Case Generation Efficiency

In order to confirm the efficiency of our method, three other methods of generating test
case are chosen for comparison: the single path method [6], Ahmed’s method [7] and
multi-path [3] methods. The single path method generates test case for a target path
only once in a GA run. The fitness of an individual is the sum of the branch distance
and the approach level which are not normalized. Ahmed’s method generates test case
for all target paths at one GA run, in which the fitness of an individual is the average of
the sum of the branch distance and the approach level for all target paths. The
multi-path method design the fitness function considering the matching degree of
traversing path and each target path, and runs the GA once to generate the test data
across all feasible paths.

Table 1. Parameters in the genetic algorithm

Parameter Value

Selection operator Elite and roulette selection
Crossover operator Adaptive probabilities
Crossover rate 0.8
Mutation operator Adaptive probabilities
Mutation rate 0.25
Gene coding Binary coding
Population size 30
Termination generations 1000

Table 2. Basic information of the three benchmark program and its path coverage

Program Number of
theoretical
paths

Branch
structure

Number of
components

Domain Execution
time

Path coverage

Triangle classifier 4 3 select 3 [0,100]3 0.0652 100%
Three number sort 8 3 select 3 [0,100]3 0.3794 87.5%
Bubble sort 8 2 loop

1 select
3 [0,100]3 0.1063 87.5%

406 E. Zhu et al.

The main difference between our method and the three other methods is the cal-
culation of the fitness of an individual. Each method run 100 times independently,
recording the time and number of iterations required to generate the test case, and
calculating their averages. In Table 3, the fitness function is redesigned with the
combination of path coverage and branch coverage, the improved selection operator
and the adaptive crossover operator and mutation operator proposed by Srinivas are
used on the genetic operator, which greatly reduces the number of iterations needed to
achieve the optimal solution.

5 Conclusion and Future Work

Finding an effective method for test case generation is one of the important contents of
software testing research. In this paper, we redesigned the fitness function, and pro-
posed a multi-path coverage algorithm based on path coverage and branch coverage,
and modified the genetic operator. The proposed method is applied to three typical
benchmark programs. The comparisons with single path method, Ahmed’s method and
multi-path method have shown that our method is superior the other ones from per-
spectives coverage rate and efficiency.

Acknowledgments. This paper is supported by the National Natural Science Foundation of
China (Grant No. 61300169) and the Natural Science Foundation of Education Department of
Anhui province (Grant No. KJ2016A257).

References

1. Mansour, N., Salame, M.: Data generation for path testing. Softw. Qual. J. 12(2), 121–136
(2004)

Table 3. Performance index value by using different methods in three benchmark program

Program Method Run
time

Run time
rate (%)

Average number
of iterations

Iteration
rate (%)

Triangle
classifier

Single path method 0.4378 14.89 373.3 8.44
Ahmed’s method 0.2936 22.21 63.7 49.45
Multi-path method 0.1526 42.73 34.1 92.38
Our method 0.0652 100 31.5 100

Three
number sort

Single path method 4.68 8.11 482.5 3.98
Ahmed’s method 0.825 45.99 46.9 40.94
Multi-path method 0.3921 81.24 23.8 80.67
Our method 0.3794 100 19.2 100

Bubble sort Single path method 1.7642 6.03 230.4 10.98
Ahmed’s method 0.321 33.12 40.2 62.94
Multi-path method 0.1325 80.23 32.0 79.06
Our method 0.1063 100 25.3 100

Study of an Improved Genetic Algorithm 407

2. Chen, Y., Zhong, Y.: Automatic path oriented test data generation using a multi population
genetic algorithm. In: Proceedings of the 4th International Conference on Natural
Computation, pp. 566–570. IPICNC, Jinan, China (2008)

3. Ahmed, M.A., Hermadi, I.: GA-based multiple paths test data generator. Comput. Oper. Res.
35, 3107–3124 (2008)

4. Gong, D.W., Zhang, Y.: Novel evolutionary generation approach to test data for multiple
paths coverage. Acta Electron. Sin. 38(6), 1299–1304 (2010)

5. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in Genetic
Algorithm. IEEE Trans. Syst. Man Cybern. 24(4), 656–667 (1994)

6. Gong, D.W., Yao, X.J., Zhang, Y.: Evolution Theory and Application for Testing Data
Generation, 1st edn, pp. 8–32. Science Press, Beijing (2014)

7. Sthamer, H.H.: The automatic generation of software test data using genetic algorithms. Ph.D.
thesis. University of Glamorgan, Pontyprid, Wales, UK, pp. 25–48 (1995)

408 E. Zhu et al.

Differential Evolution

An Adaptive Differential Evolution with
Learning Parameters According to Groups
Defined by the Rank of Objective Values

Tetsuyuki Takahama1(B) and Setsuko Sakai2

1 Hiroshima City University, 3-4-1 Ozuka-Higashi, Asaminami-ku 731-3194,
Hiroshima, Japan

takahama@info.hiroshima-cu.ac.jp
2 Hiroshima Shudo University, 1-1-1 Ozuka-Higashi, Asaminami-ku 731-3195,

Hiroshima, Japan
setuko@shudo-u.ac.jp

Abstract. Differential Evolution (DE) has been successfully applied to
various optimization problems. The performance of DE is affected by
algorithm parameters such as a scaling factor F and a crossover rate CR.
Many studies have been done to control the parameters adaptively. One
of the most successful studies on controlling the parameters is JADE. In
JADE, the values of each parameter are generated according to one prob-
ability density function (PDF) which is learned by the values in success
cases where the child is better than the parent. However, search perfor-
mance might be improved by learning multiple PDFs for each parameter
based on some characteristics of search points. In this study, search points
are divided into plural groups according to the rank of their objective
values and the PDFs are learned by parameter values in success cases
for each group. The advantage of JADE with the group-based learning
is shown by solving thirteen benchmark problems.

Keywords: Adaptive differential evolution · Group-based learning ·
Differential evolution · Evolutionary algorithms

1 Introduction

Optimization problems, especially nonlinear optimization problems, are very
important and frequently appear in the real world. There exist many studies on
solving optimization problems using evolutionary algorithms (EAs). Differential
evolution (DE) is an EA proposed by Storn and Price [9]. DE has been success-
fully applied to optimization problems including non-linear, non-differentiable,
non-convex and multimodal functions [2,3,6]. It has been shown that DE is a
very fast and robust algorithm.

The performance of DE is affected by algorithm parameters such as a scaling
factor F , a crossover rate CR and population size, and by mutation strategies
such as a rand strategy and a best strategy. Many studies have been done to
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 411–419, 2017.
DOI: 10.1007/978-3-319-61824-1 45

412 T. Takahama and S. Sakai

control the parameters and the strategies. One of the most successful studies on
controlling the parameters is JADE (adaptive DE with optional external archive)
[18]. In JADE, the values of parameters F and CR are generated according to
the corresponding probability density function (PDF) and a child is created
from the parent using the generated values. The values in success cases, where
the child is better than the parent, are used to learn the PDFs. As for F , a
location parameter of Cauchy distribution is learned, the scale parameter is
fixed and values of F are generated according to the Cauchy distribution. As for
CR, a mean of normal distribution is learned, the standard deviation is fixed
and values of CR are generated according to the normal distribution. However,
search performance might be improved by learning multiple PDFs for F and CR
based on some characteristics of search points.

In this study, group-based learning of the PDFs is proposed. Search points
are divided into plural groups according to the rank of their objective values.
The PDFs are learned by parameter values in success cases for each group. The
advantage of JADE with the group-based learning is shown by solving thirteen
benchmark problems.

In Sect. 2, related works are described. DE and JADE are briefly explained
in Sect. 3. In Sect. 4, JADE with the group-based learning is proposed. The
experimental results are shown in Sect. 5. Finally, conclusions are described in
Sect. 6.

2 Related Works

The performance of DE is affected by control parameters such as the scaling
factor F , the crossover rate CR and the population size N , and by mutation
strategies such as the rand strategy and the best strategy. Many researchers
have been studying on controlling the parameters and the strategies.

The methods of controlling the parameters can be classified into some cate-
gories as follows:

(1) selection-based control: Strategies and parameter values are selected regard-
less of current search state. CoDE (composite DE) [15] generates three trial
vectors using three strategies with randomly selected parameter values from
parameter candidate sets and the best trial vector will head to the survivor
selection.

(2) observation-based control: The current search state is observed, proper para-
meter values are inferred according to the observation, and parameters
and/or strategies are dynamically controlled. FADE (Fuzzy Adaptive DE)
[5] observes the movement of search points and the change of function values
between successive generations, and controls F and CR. DESFC (DE with
Speciation and Fuzzy Clustering) [10] adopts fuzzy clustering, observes par-
tition entropy of search points, and controls CR and the mutation strategies
between the rand and the species-best strategy. LMDE (DE with detecting
Landscape Modality) [11,12] detects the landscape modality such as uni-
modal or multimodal using the change of the objective values at sampling

Differential Evolution with Learning Parameters According to Groups 413

points which are equally spaced along a line. If the landscape is unimodal,
greedy parameter settings for local search are selected. Otherwise, parameter
settings for global search are selected.

(3) success-based control: It is recognized as a success case when a better search
point than the parent is generated. The parameters and/or strategies are
adjusted so that the values in the success cases are frequently used. It is
thought that the self-adaptation, where parameters are contained in individ-
uals and are evolved by applying evolutionary operators to the parameters,
is included in this category. DESAP (DE with Self-Adapting Populations)
[14] controls F,CR and N self-adaptively. SaDE (Self-adaptive DE) [7] con-
trols the selection probability of the mutation strategies according to the
success rates and controls the mean value of CR for each strategy according
to the mean value in success case. jDE (self-adaptive DE algorithm) [1] con-
trols F and CR self-adaptively. JADE (adaptive DE with optional external
archive) [18] and MDE pBX (modified DE with p-best crossover) [4] control
the mean or power mean values of F and CR according to the mean values
in success cases. CADE (Correlation-based Adaptive DE) [13] introduces
the correlation of F and CR to JADE.

In the category (1), useful knowledge to improve the search efficiency is
ignored. In the category (2), it is difficult to select proper type of observation
which is independent of the optimization problem and its scale. In the category
(3), when a new good search point is found near the parent, parameters are
adjusted to the direction of convergence. In problems with ridge landscape or
multimodal landscape, where good search points exist in small region, parame-
ters are tuned for small success and big success will be missed. Thus, search
process would be trapped at a local optimal solution. JADE adopted a weighted
mean value for F , which is larger than a usual mean value, and succeeded to
reduce the problem of the convergence.

In this study, we propose to improve JADE in the category (3) by introducing
group-based learning according to the rank of objective values, which belongs
the category (2). Thus, the proposed method is a hybrid method of the category
(2) and (3).

3 Optimization by Differential Evolution

3.1 Optimization Problems

In this study, the following optimization problem with lower bound and upper
bound constraints will be discussed.

minimize f(x)
subject to lj ≤ xj ≤ uj , j = 1, . . . , D,

(1)

where x = (x1, x2, · · · , xD) is a D dimensional vector and f(x) is an objective
function. The function f is a nonlinear real-valued function. Values lj and uj

are the lower bound and the upper bound of xj , respectively.

414 T. Takahama and S. Sakai

3.2 Differential Evolution

In DE, initial individuals are randomly generated within given search space and
form an initial population of size N . Each individual xi, i = 1, 2, · · · , N contains
D genes as decision variables. At each generation, all individuals are selected
as parents. Each parent is processed as follows: The mutation operation begins
by choosing several individuals from the population except for the parent in
the processing. The first individual is a base vector. All subsequent individuals
are paired to create difference vectors. The difference vectors are scaled by a
scaling factor F and added to the base vector. The resulting vector, or a mutant
vector, is then recombined with the parent. The probability of recombination
at an element is controlled by a crossover rate CR. This crossover operation
produces a child, or a trial vector. Finally, for survivor selection, the trial vector
is accepted for the next generation if the trial vector is better than the parent.

There are some variants of DE that have been proposed. The variants are
classified using the notation DE/base/num/cross such as DE/rand/1/bin and
DE/rand/1/exp.

“base” specifies a way of selecting an individual that will form the base vector.
For example, DE/rand selects an individual for the base vector at random from
the population. DE/best selects the best individual in the population.

“num” specifies the number of difference vectors used to perturb the base
vector. In case of DE/rand/1, for example, for each parent xi, three individuals
xp1, xp2 and xp3 are chosen randomly from the population without overlapping
xi and each other. A new vector, or a mutant vector x′ is generated by the base
vector xp1 and the difference vector xp2 − xp3, where F is the scaling factor.

x′ = xp1 + F (xp2 − xp3) (2)

“cross” specifies the type of crossover that is used to create a child. For exam-
ple, ‘bin’ indicates that the crossover is controlled by the binomial crossover using
a constant crossover rate, and ‘exp’ indicates that the crossover is controlled by
a kind of two-point crossover using exponentially decreasing the crossover rate.

3.3 JADE

In JADE, the mean value of the scaling factor μF and the mean value of the
crossover rate μCR are learned to define two PDFs, where initial values are
μF = μCR = 0.5. The scaling factor Fi and the crossover rate CRi for each indi-
vidual xi are independently generated according to the two PDFs as follows:

Fi ∼ C(μF , σF) (3)
CRi ∼ N(μCR, σ2

CR) (4)

where Fi is a random variable according to a Cauchy distribution C(μF , σF)
with a location parameter μF and a scale parameter σF = 0.1. CRi is a random
variable according to a normal distribution N(μCR, σ2

CR) of a mean μCR and a
standard deviation σCR = 0.1. CRi is truncated to [0, 1] and Fi is truncated to

Differential Evolution with Learning Parameters According to Groups 415

be 1 if Fi > 1 or regenerated if Fi ≤ 0. The location μF and the mean μCR are
updated as follows:

μF = (1 − c)μF + cSF 2/SF (5)
μCR = (1 − c)μCR + cSCR/SN (6)

where SN is the number of success cases, SF , SF 2 and SCR are the sum of F ,
F 2 and CR in success cases, respectively. A constant c is a weight of update in
(0,1] and the recommended value is 0.1.

JADE adopts a strategy called “current-to-pbest” where an intermediate
point between a parent xi and a randomly selected individual from top individ-
uals is used as a base vector. A mutation vector is generated by current-to-pbest
without archive as follows:

m = xi + Fi(xpbest − xi) + Fi(xr2 − xr3) (7)

where xpbest is a randomly selected individual from the top 100p% individuals.
The child xchild is generated from xi and m using the binomial crossover.

In order to satisfy bound constraints, a child that is outside of the search
space is moved into the inside of the search space. In JADE, each outside element
of the child is set to be the middle between the corresponding boundary and the
element of the parent as follows:

xchild
j =

{
1
2
(lj + xi

j) (xchild
j < lj)

1
2
(uj + xi

j) (xchild
j > uj)

(8)

This operation is applied when a new point is generated by JADE operations.

4 Proposed Method: Group-Based Learning

In this study, a population of individuals {xi | i = 1, 2, · · · , N} is divided into
K groups according to a criterion, where N is the number of individuals and
K is the number of groups. All individuals are sorted according to the criterion
and the rank ri (ri = 1, 2, · · · , N) is assigned to each individual xi. In this
study, the objective value of each individual is used as the criterion. The rank
of the best individual, who has the best objective value, is 1. In case of K = 2,
the individuals are divided into good individuals (group 1) and bad individuals
(group 2).

The group ID of xi, group(xi) is defined as follows:

group(xi) =
⌈ ri
N

K
⌉

(9)

In order to realize group-based learning using parameter control of JADE,
the following equations are adopted for each group k = 1, · · · ,K.

Fi ∼ C(μk
F , σF) (10)

CRi ∼ N(μk
CR, σ2

CR) (11)
μk
F = (1 − c)μk

F + cSk
F 2/Sk

F (12)
μk
CR = (1 − c)μk

CR + cSk
CR/Sk

N (13)

416 T. Takahama and S. Sakai

where μk
F is the location of Cauchy distribution for F in group k, μk

CR is the
mean of normal distribution for CR in group k. Sk

N is the number of success
cases in group k, where the better child than the parent is generated. Sk

F , Sk
F 2

and Sk
CR are the sum of Fi, F 2

i , CRi at success cases in group k, respectively.
As well as JADE, CRi is truncated to [0, 1] and Fi is truncated to be 1 if Fi > 1
or regenerated if Fi ≤ 0.

5 Numerical Experiments

In this paper, well-known thirteen benchmark problems are solved by the pro-
posed method ADEGL (Adaptive DE with Group-based Learning).

5.1 Test Problems and Experimental Conditions

The 13 scalable benchmark functions are sphere(f1), Schwefel 2.22(f2), Schwefel
1.2(f3), Schwefel 2.21(f4), Rosenbrock(f5), step(f6), noisy quartic(f7), Schwefel
2.26(f8), Rastrigin(f9), Ackley(f10), Griewank(f11), and two penalized functions
(f12 and f13), respectively [17,18]. Every function has an optimal objective value
0. Some characteristics are briefly summarized as follows: Functions f1 to f4 are
continuous unimodal functions. The function f5 is Rosenbrock function which is
unimodal for 2- and 3-dimensions but may have multiple minima in high dimen-
sion cases [8]. The function f6 is a discontinuous step function, and f7 is a noisy
quartic function. Functions f8 to f13 are multimodal functions and the number
of their local minima increases exponentially with the problem dimension [16].

Experimental conditions are same as JADE as follows: Population size N =
100, initial mean for scaling factor μF = 0.5 or μk

F = 0.5 and initial mean for
crossover rate μCR = 0.5 or μk

CR = 0.5, the pbest parameter p = 0.05, and the
learning parameter c = 0.1.

Independent 50 runs are performed for 13 problems. The number of dimen-
sions for the problems is 30 (D = 30). Each run stops when the number of func-
tion evaluations (FEs) exceeds the maximum number of evaluations FEmax. In
each function, different FEmax is adopted.

5.2 Experimental Results

Table 1 shows the experimental results on JADE, ADEGL (K = 2) and ADEGL
(K = 3). The mean value and the standard deviation of best objective values in
50 runs are shown for each function. The maximum number of function evalu-
ations is selected for each function and is shown in column labeled FEmax. The
best result among algorithms is highlighted using bold face fonts. Also, Wilcoxon
signed rank test is performed and the result for each function is shown under the
mean value. Symbols ‘+’, ‘−’ and ‘=’ are shown when ADEGL is significantly
better than JADE, is significantly worse than JADE, and is not significantly dif-
ferent from JADE, respectively. Symbols ‘++’ and ‘−−’ are shown when the sig-
nificance level is 1% and ‘+’ and ‘−’ are shown when the significance level is 5%.

Differential Evolution with Learning Parameters According to Groups 417

Table 1. Experimental results on 13 functions

FEmax JADE ADEGL (K =2) ADEGL (K =3)

f1 150,000 9.38e−59 ± 6.5e−58 4.32e−66± 1.3e−65 3.36e−64± 2.2e−63

++ ++

f2 200,000 4.19e−31 ± 2.4e−30 5.10e−32 ± 2.7e−31 2.57e−37± 1.6e−36

= ++

f3 500,000 8.17e−62± 3.0e−61 1.77e−59 ± 1.2e−58 2.25e−60 ± 1.5e−59

= =

f4 500,000 2.01e−23 ± 9.8e−23 1.20e−24± 4.3e−24 3.70e−24 ± 1.0e−23

+ =

f5 300,000 5.78e−01 ± 3.5e+00 7.97e−02± 5.6e−01 7.26e−01 ± 3.5e+00

= =

f6 10,000 3.02e+00 ± 1.3e+00 1.78e+00± 1.2e+00 1.98e+00 ± 1.1e+00

++ ++

f7 300,000 6.04e−04± 2.4e−04 7.11e−04 ± 2.3e−04 6.80e−04 ± 2.2e−04

= =

f8 100,000 2.37e+00 ± 1.7e+01 2.46e−05± 3.1e−05 1.18e+01 ± 3.6e+01

++ +

f9 100,000 1.01e−04 ± 3.9e−05 5.64e−05± 2.8e−05 5.95e−05 ± 3.0e−05

++ ++

f10 50,000 9.20e−10 ± 6.4e−10 4.22e−10 ± 3.0e−10 3.41e−10± 3.1e−10

++ ++

f11 50,000 1.15e−08± 6.9e−08 1.97e−04 ± 1.4e−03 3.46e−04 ± 1.7e−03

+ =

f12 50,000 2.40e−16 ± 1.6e−15 4.99e−18 ± 2.6e−17 1.37e−18± 5.5e−18

++ ++

f13 50,000 1.15e−16 ± 2.2e−16 2.17e−17 ± 5.1e−17 1.69e−17± 7.5e−17

++ ++

+ — 9 8

= — 4 5

− — 0 0

ADEGL (K = 2) attained best mean results in 6 functions f1, f4, f5, f6, f8
and f9 out of 13 functions. ADEGL (K = 3) attained best mean results in 4
functions f2, f10, f12 and f13. JADE attained best mean results in 3 functions
f3, f7 and f11. Also, ADEGL (K = 2) attained significantly better results than
JADE in 9 functions f1, f4, f6, f8, f9, f10, f11, f12 and f13. ADEGL (K = 3)
attained significantly better results than JADE in 8 functions f1, f2, f6, f8, f9,
f10, f12 and f13. Thus, it is thought that ADEGL (K = 2) is the best method
among 3 methods and ADEGL (K = 3) is the second best method. JADE could
not attain significantly better results than ADEGL of K = 2 nor K = 3.

418 T. Takahama and S. Sakai

Figure 1 shows the change of F and CR over the number of function evalu-
ations for f1 in case of K = 2. ADEGL (K = 2) tends to learn smaller values of
F and CR than those of JADE for the best group (group 1) and larger values
of F and CR than those of JADE for the worst group (group 2).

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

0e+000 5e+004 1e+005

F

Evaluations

JADE(F)
ADEGL K=2 (group 1)
ADEGL K=2 (group 2)

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

0e+000 5e+004 1e+005

C
R

Evaluations

JADE(CR)
ADEGL K=2 (group 1)
ADEGL K=2 (group 2)

Fig. 1. The graph of F and CR in f1

6 Conclusion

In this study, group-based learning of algorithm parameters is proposed, where
individuals are divided into plural groups according to the rank of objective
values and the parameters are learned for each group. DE with group learning
is applied optimization of various 13 functions including unimodal functions, a
function with ridge structure, multimodal functions. It is shown that the pro-
posed method ADEGL is effective compared with JADE. Also, it is shown that
parameters for good individuals are controlled to intensify convergence and para-
meters for bad individuals are controlled to keep divergence.

In the future, we will apply group-based learning to other adaptive optimiza-
tion algorithms including differential evolution and particle swarm optimization.

Acknowledgments. This study is supported by JSPS KAKENHI Grant Numbers
26350443 and 17K00311.

References

1. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control
parameters in differential evolution: a comparative study on numerical benchmark
problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

2. Chakraborty, U.K. (ed.): Advances in Differential Evolution. Springer, Heidelberg
(2008)

3. Das, S., Suganthan, P.: Differential evolution: a survey of the state-of-the-art. IEEE
Trans. Evol. Comput. 15(1), 4–31 (2011)

Differential Evolution with Learning Parameters According to Groups 419

4. Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive differential
evolution algorithm with novel mutation and crossover strategies for global numer-
ical optimization. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 482–500
(2012)

5. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft. Com-
put. 9(6), 448–462 (2005)

6. Price, K., Storn, R., Lampinen, J.A.: Differential Evolution: A Practical Approach
to Global Optimization. Springer, Heidelberg (2005)

7. Qin, A., Huang, V., Suganthan, P.: Differential evolution algorithm with strategy
adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2),
398–417 (2009)

8. Shang, Y.W., Qiu, Y.H.: A note on the extended Rosenbrock function. Evol. Com-
put. 14(1), 119–126 (2006)

9. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

10. Takahama, T., Sakai, S.: Fuzzy c-means clustering and partition entropy for
species-best strategy and search mode selection in nonlinear optimization by dif-
ferential evolution. In: Proceedings of the 2011 IEEE International Conference on
Fuzzy Systems, pp. 290–297 (2011)

11. Takahama, T., Sakai, S.: Differential evolution with dynamic strategy and para-
meter selection by detecting landscape modality. In: Proceedings of the 2012 IEEE
Congress on Evolutionary Computation, pp. 2114–2121 (2012)

12. Takahama, T., Sakai, S.: Large scale optimization by differential evolution with
landscape modality detection and a diversity archive. In: Proceedings of the 2012
IEEE Congress on Evolutionary Computation, pp. 2842–2849 (2012)

13. Takahama, T., Sakai, S.: An adaptive differential evolution considering correlation
of two algorithm parameters. In: Proceedings of the Joint 7th International Confer-
ence on Soft Computing and Intelligent Systems and 15th International Symposium
on Advanced Intelligent Systems (SCIS&ISIS2014), pp. 618–623 (2014)

14. Teo, J.: Exploring dynamic self-adaptive populations in differential evolution. Soft.
Comput. 10(8), 673–686 (2006)

15. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector
generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1),
55–66 (2011)

16. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans.
Evol. Comput. 3, 82–102 (1999)

17. Yao, X., Liu, Y., Liang, K.H., Lin, G.: Fast evolutionary algorithms. In: Ghosh, A.,
Tsutsui, S. (eds.) Advances in Evolutionary Computing: Theory and Applica-
tions, pp. 45–94. Springer-Verlag New York, Inc., New York (2003). doi:10.1007/
978-3-642-18965-4 2

18. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

http://dx.doi.org/10.1007/978-3-642-18965-4_2
http://dx.doi.org/10.1007/978-3-642-18965-4_2

Comparison of Differential Evolution
Algorithms on the Mapping Between Problems

and Penalty Parameters

Chengyong Si1(&), Jianqiang Shen1, Xuan Zou1, and Lei Wang2

1 Shanghai-Hamburg College, University of Shanghai for Science
and Technology, Shanghai 200093, China

sichengyong_sh@163.com
2 College of Electronics and Information Engineering,

Tongji University, Shanghai 201804, China
wanglei@tongji.edu.cn

Abstract. Penalty parameters play a key role when adopting the penalty
function method for solution ranking. In the previous study, a corresponding
relationship between the constrained optimization problems and the penalty
parameters was constructed. This paper tries to verify whether the relationship is
related with the evolutionary algorithms (EAs), i.e., how the EAs influence the
relationship. Two differential evolution algorithms are taken as an example.
Experimental results confirm the influence and show that an improved EA will
enlarge the available value of corresponding penalty parameter, especially for
the intermittent relationship. The findings also prove that EA can make up the
shortcoming of constraint handling techniques to some extent.

Keywords: Constrained optimization � Constraint handling techniques �
Differential evolution � Penalty parameter � Algorithm selection

1 Introduction

Constrained Optimization Problems (COPs) are very common and important in the
real-world applications. The COPs can be generally expressed by the following
formulations:

Minimize f ð~xÞ
Subject to: gjð~xÞ� 0; j ¼ 1; � � � ; l

hjð~xÞ ¼ 0; j ¼ lþ 1; � � � ;m
: ð1Þ

where~x ¼ ðx1; � � � ; xnÞ is the decision variable. The decision variable is bounded by the
decision space S which is defined by the constraints:

Li � xi �Ui; 1� i� n : ð2Þ

where l is the number of inequality constraints and m − l is the number of equality
constraints.

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 420–428, 2017.
DOI: 10.1007/978-3-319-61824-1_46

The Evolutionary Algorithms (EAs) are essentially unconstraint search techniques
[1] and play an important role in generating solutions. After solution generating, how to
choose the better solutions especially for the COPs is another equivalently important
issue, which leads to the development of various constrained optimization evolutionary
algorithms (COEAs) [2]. The three most frequently used constraint handling techniques
(CHTs) in COEAs are penalty functions, biasing feasible over infeasible solutions and
multi-objective optimization.

Besides these basic CHTs, some other concepts like cooperative coevolution [3]
and ensemble [4, 5] have also been proposed, which can be seen as a dynamic
adjustment process. Also, some other dynamic approaches based on the three different
situations in solving COPs [6] have been developed.

Among all of these aforementioned methods, the problem characteristics are rarely
considered. But as Michalewicz summarized [7], it seems that all the components of
Evolutionary Algorithms might be problem-specific.

Some researchers have emphasized the importance of the relationship between
problem characteristics and algorithms, and have tried to realize some simple combi-
nation of algorithm variants, although the results are not very satisfactory. For example,
Tsang and Kwan [8] pointed out the need to map constraint satisfaction problems to
algorithms and heuristics. But they did not give an exact relationship between them.
Mezura-Montes et al. [9] proposed a simple combination of two DE variants (i.e.,
DE/rand/1/bin and DE/best/1/bin) based on the empirical analysis of four DE variants.
Gibbs et al. [10] identified the relationship between the optimal number of GA gen-
erations and the problem characteristics, through quantifying different problem char-
acteristics of unconstrained problems.

Other methods concerning the problem characteristics were also reported [11, 12].
As presented in [11], a method to construct the relationship between problems and
algorithms as well as constraint handling techniques from the qualitative and quanti-
tative point of view was proposed. In the paper, the problem characteristics were also
summarized systematically. In [12], a new framework combining promising aspects of
two different Constraint Handling Techniques (CHTs) in different situations with
consideration of problem characteristics was proposed.

In the previous paper [13], a corresponding relationship between the problems and
the penalty parameters was confirmed through an empirical study based on different
classification of benchmark functions. But whether the relationship is related with the
evolutionary algorithms are not studied. In this work, we try to study this effect by
comparing a new DE algorithm with the original one.

The rest of this paper is organized as follows. Section 2 briefly introduces DE.
Section 3 illustrates the basic idea of this paper and the penalty parameter setting. The
experimental results and analysis are presented in Sect. 4. Finally, Sect. 5 concludes
this paper and provides some possible paths for future research.

Comparison of Differential Evolution Algorithms on the Mapping 421

2 Differential Evolution (DE)

DE, which was proposed by Storn and Price [14], is a simple and efficient EA. The
mutation, crossover and selection operations are introduced in DE. The first two
operations are used to generate a trial vector to compete with the target vector while the
third one is used to choose the better one for the next generation. To date several
variants of DE have been proposed [15].

The population of DE consists of NP n-dimensional real-valued vectors

~xi ¼ xi;1; xi;2; . . .; xi;n
� �

; i ¼ 1; 2; . . .;NP : ð3Þ

The mutation, crossover and selection operations are defined as follows.

A. Mutation Operation

Taking into account each individual ~xi (named a target vector), a mutant vector
~vi ¼ vi;1; vi;2; . . .; vi;n

� �
is defined as

~vi ¼~xr1 þF � ð~xr2 �~xr3Þ: ð4Þ

where r1, r2 and r3 are randomly selected from [1, NP] and satisfying: r1 6¼ r2 6¼
r3 6¼ i and F is the scaling factor.

If vi;j violates the boundary constraint, it will be reset as follows [16]:

vi;j ¼ min Uj; 2Lj � vi;j
� �

; if vi;j\Lj
max Lj; 2Uj � vi;j

� �
; if vi;j [Uj

�
: ð5Þ

B. Crossover Operation

A trial vector~ui is generated through the binomial crossover operation on the target
vector~xi and the mutant vector~vi

ui;j ¼ vi;j if randj or j ¼ jrand
xi;j otherwise

:

�
ð6Þ

where i ¼ 1; 2; . . .;NP, j ¼ 1; 2; . . .; n, jrand is a randomly chosen integer within the
range [1, n], randj is the jth evaluation of a uniform random number generator within
[0, 1], and Cr is the crossover control parameter. The introduction of j ¼ jrand can
guarantee the trial vector ~ui is different from its target vector~xi.

C. Selection Operation

Selection operation is realized by comparing the trial vector ~ui against the target
vector~xi and the better one will be preserved for the next generation.

422 C. Si et al.

~xi ¼ ~ui if f ð~uiÞ� f ð~xiÞ
~xi otherwise

�
: ð7Þ

3 Comparison of Differential Evolution on the Mapping

3.1 Basic Idea

In the previous paper, the basic idea for mapping constrained optimization problems
and penalty parameters are illustrated, i.e., by using different penalty parameters to
solve different problems, the types of problems that the penalty parameters are good at
solving can be obtained and summarized, and then the corresponding relationship can
be constructed.

In this paper, the basic idea is similar (as in Fig. 1), but as the main aim is to check
whether the evolutionary algorithm will influence the relationship, for page limited, the
problem characteristics will not be in detail. In Fig. 1, Ori-DE means DE adopted in the
previous paper [13].

3.2 Penalty Parameter Setting

The penalty parameter setting is the same as in the previous paper.
As analyzed in [18], if the penalty parameter exceeds some value (kmax), or is less

than some value (kmin), the ranking will not be influenced. Here, kmax and kmin are
determined by the current population.

f1
f2
.
.
.
fn

λ1
λ2
.
.
.
λm

.

.

.

Pro_set_1

.

.

.

Pro_set_s

.

.

.

λ1

λm

Pro_set_1'

.

.

.

Pro_set_s'

.

.

.

λ1

λm

Ori-DE

CoDE

compare

Fig. 1. Illustration of the basic idea

Comparison of Differential Evolution Algorithms on the Mapping 423

Based on this conclusion, the penalty parameter setting in this experiment is
selected ranging from 0.001 to 100000. As there is no guidelines how to set the penalty
parameters in such case so as to distinguish the effect better, a simple method with the
same scale (i.e., 0, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000) is adopted.

4 Experimental Study

4.1 Experimental Settings

23 benchmark functions [19] were used in our experiment.
In the previous paper, DE/rand/1/bin was adopted as the search algorithm. In this

paper, CoDE [17] was adopted as a comparison algorithm. In CoDE, several trial
vector generation strategies with a number of control parameter settings are randomly
combined at each generation to create new trial vectors. The three selected trial vector
generation strategies are DE/rand/1/bin, DE/rand/2/bin, and DE/current-to-rand/1.
The three control parameter settings are [F = 1.0, Cr = 0.1], [F = 1.0, Cr = 0.9], and
[F = 0.8, Cr = 0.2]. It should be pointed out that some minor changes have been made
to the selection operation of CoDE, i.e., the offspring are selected from the pool which
is composed by all the trial vectors and target vectors.

The parameters in the Ori-DE are set as follows: the population size (NP) is set to
100; the scaling factor (F) is randomly chosen between 0.5 and 0.6, and the crossover
control parameter (Cr) is randomly chosen between 0.9 and 0.95.

4.2 Experimental Results

25 independent runs were performed for each test function using 5 � 105 FES at
maximum, as suggested by Liang et al. [19]. Additionally, the tolerance value d for the
equality constraints was set to 0.0001.

Table 1 shows the succeed rate (SR) for different penalty parameters on different
problems with DE and CoDE respectively.

4.3 Comparison

In this section, we compare the results by Ori-DE and CoDE, to check the effect of
different EAs on the mapping between COPs and penalty parameters.

The summarized results are listed in Table 2. Here, in the first column “result”,
“Always” means the results will not be affected by the penalty parameters; “Conti-
nuity” means when penalty parameter is larger than certain value (the value adopted in
this paper, not so exact), it can always find the optimal value; “Intermittent” means that
the optimal value can be obtained only with certain penalty parameter values (also
limited to the values adopted in this paper).

424 C. Si et al.

Table 1. Success rate for different parameters with Ori-DE and CoDE

Prob. k

0.001 0.01 0.1 0 1 10 100 1000 10000 100000

g01 Ori-DE 0 0 0 0 1 1 1 1 1 1
CoDE 0 0 0 0 1 1 1 1 1 1

g02 Ori-DE 0 0 0 0 0.92 0.88 0.92 0.72 0.76 0.80
CoDE 0 0 0 0 0.52 0.56 0.44 0.52 0.48 0.48

g03 Ori-DE 0 0 0 0 0 0 0 0.28 0 0.04
CoDE 0 0 0 0 0 0 0 0.24 0 0

g04 Ori-DE 0 0 0 0 0 0 0 1 1 1
CoDE 0 0 0 0 0 0 0 1 1 1

g05 Ori-DE 0 0 0 0 0 1 1 0.24 0 0
CoDE 0 0 0 0 0 1 1 1 1 0.80

g06 Ori-DE 0 0 0 0 0 0 0 0 0.56 0
CoDE 0 0 0 0 0 0 0 0 1 1

g07 Ori-DE 0 0 0 0 0 1 1 1 1 1
CoDE 0 0 0 0 0 1 1 1 1 1

g08 Ori-DE 0.16 0.12 0.40 0.16 0.32 0.68 1 1 1 1
CoDE 0 0 0 0 0 0 1 1 1 1

g09 Ori-DE 0 0 0 0 0 1 1 1 1 1
CoDE 0 0 0 0 0 1 1 1 1 1

g10 Ori-DE 0 0 0 0 0 0 0 0 0.32 0
CoDE 0 0 0 0 0 0 0 0 1 0

g11 Ori-DE 0 0 0 0 1 1 1 1 0.60 0.68
CoDE 0 0 0 0 0 1 1 1 1 1

g12 Ori-DE 1 1 1 1 1 1 1 1 1 1
CoDE 1 1 1 1 1 1 1 1 1 1

g13 Ori-DE 0 0 1 0 0.20 0 0 0 0 0
CoDE 0 0 1 0 0.72 0.28 0 0 0 0

g14 Ori-DE 0 0 0 0 0 0 1 0.96 0.48 0.48
CoDE 0 0 0 0 0 0 1 1 1 1

g15 Ori-DE 0 0 0 0 0 1 0.36 0.16 0.04 0.20
CoDE 0 0 0 0 0 1 1 1 0.96 0.80

g16 Ori-DE 0 0 0 0 1 1 1 1 1 1
CoDE 0 0 0 0 1 1 1 1 1 1

g17 Ori-DE 0 0 0 0 0 – 1 0 0 0
CoDE 0 0 0 0 0 0 1 0.64 0 0

g18 Ori-DE 0 0 0 0 1 1 1 1 1 1
CoDE 0 0 0 0 0.76 1 1 1 1 0.92

g19 Ori-DE 0 0 0 0 1 1 1 1 1 1
CoDE 0 0 0 0 1 1 1 1 1 1

g21 Ori-DE 0 0 0 0 0 0 0 0 0 0

(continued)

Comparison of Differential Evolution Algorithms on the Mapping 425

From Table 2, some interesting finding can be observed:

(1) For the class of “Continuity”, the corresponding problems almost keep the same
compared to the original results, except for g11, from k� 1 to k� 10. The dif-
ference lies in SR, with some getting larger, e.g., g14, and some getting smaller,
e.g., g02 and g18.

(2) For the class of “Intermittent”, almost all the corresponding k changed. Some
value range gets larger, e.g., g13, g17, g23, with some becoming continuity, e.g.,
g05, g06, and g15; some keeps the same, e.g., g03 and g10, but SR changes.

(3) For all the problems, we can see that there is no difference on these k with
SR = 1, while others change with different EAs.

(4) Good EAs can improve SR of some problems, e.g., g05, g06, g10, g14, g15, but
not in all problems, e.g., g08. The consequent question is how to judge or evaluate
a good evolutionary algorithm, or why some parameter settings perform better
than others. This finding can help to illustrate that EAs can improve some
drawbacks of CHTs to some extent. But how much can be improved is the next
research topic we will do in the future.

Table 1. (continued)

Prob. k

0.001 0.01 0.1 0 1 10 100 1000 10000 100000

CoDE 0 0 0 0 0 0 0 0.24 0.28 0.04

g23 Ori-DE 0 0 0 0 0 0 0 1 0 0
CoDE 0 0 0 0 0 0 0 1 0.72 0

g24 Ori-DE 0 0 0 0 1 1 1 1 1 1
CoDE 0 0 0 0 1 1 1 1 1 1

Table 2. Comparison of results by Ori-DE and CoDE

Result k Problem
Ori-DE CoDE

Always Any g08, g12 g12
Continuity k� 1 g01, g16, g18, g19, g24, g02, g11 g01, g16, g18, g19, g24, g02

k� 10 g07, g09 g07, g09, g11, g15, g05
k� 100 g14 g08, g14
k� 1000 g04 g04
k� 10000 - g06

Intermittent 0.1 g13 -
10 g15 -
100 g17 -
1000 g03, g23 g03
10000 g06, g10 g10
10/100/1000 g05 -
0.1/1 - g13
100/1000 - g17
1000/10000 - g23

426 C. Si et al.

5 Conclusion

In this paper, two differential evolution algorithms are adopted to verify how the EAs
influence the relationship between the constrained optimization problems and the
penalty parameters obtained by the previous study. The experimental results show that
the corresponding relationship will be affected by the EAs, and EAs can improve some
drawbacks of CHTs to some extent.

This research can be seen as just an example toward this research direction, as only
one kind of algorithm (i.e., DE) was adopted. What is the inner mechanism behind
these features, and how much can the EAs improve the CHTs, as well as which factors
are involved will be our future research.

Acknowledgments. This work was supported in part by the National Natural Science Foun-
dation of China under Grants 71371142, Shanghai Young Teachers’ Training Program under
Grants ZZslg15087.

References

1. Mezura-Montes, E., Coello, C.A.C.: A simple multimembered evolution strategy to solve
constrained optimization problems. IEEE Trans. Evol. Comput. 9(1), 1–17 (2005)

2. Mezura-Montes, E., Coello, C.A.C.: Constraint-handling in nature-inspired numerical
optimization: past, present and future. Swarm Evol. Comput. 1(4), 173–194 (2011)

3. Li, X., Yao, X.: Cooperatively coevolving particle swarm for large scale optimization. IEEE
Tran. Evol. Comput. 16(2), 210–224 (2012)

4. Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Decomposition based multiobjetive evolutionary
algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16(3), 442–
446 (2012)

5. Mallipeddi, R., Suganthan, P.N.: Ensemble of constraint handling techniques. IEEE Tran.
Evol. Comput. 14(4), 561–579 (2010)

6. Wang, Y., Cai, Z., Zhou, Y., Zeng, W.: An adaptive tradeoff model for constrained
evolutionary optimization. IEEE Trans. Evol. Comput. 12(1), 80–92 (2008)

7. Michalewicz, Z.: Quo Vadis, evolutionary computation? on a growing gap between theory
and practice. In: Liu, J., Alippi, C., Bouchon-Meunier, B., Greenwood, Garrison W.,
Abbass, Hussein A. (eds.) WCCI 2012. LNCS, vol. 7311, pp. 98–121. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30687-7_6

8. Tsang, E., Kwan, A.: Mapping constraint satisfaction problems to algorithms and heuristics.
Technical report, CSM-198 (1993)

9. Mezura-Montes, E., Miranda-Varela, M.E., Gómez-Ramón, R.C.: Differential evolution in
constrained numerical optimization: an empirical study. Inform. Sci. 180(22), 4223–4262
(2010)

10. Gibbs, M., Maier, H., Dandy, G.: Relationship between problem characteristics and the
optimal number of genetic algorithm generations. Eng. Optim. 43(4), 349–376 (2011)

11. Si, C., Wang, L., Wu, Q.: Mapping constrained optimization problems to algorithms and
constraint handling techniques. In: Proceedings of the CEC, pp. 3308–3315 (2012)

12. Si, C., Hu, J., Lan, T., Wang, L., Wu, Q.: A combined constraint handling framework: an
empirical study. Memet. Comput. 9(1), 69–88 (2017)

Comparison of Differential Evolution Algorithms on the Mapping 427

http://dx.doi.org/10.1007/978-3-642-30687-7_6

13. Si, C., Shen, J., Zou, X., Wang, L., Wu, Q.: Mapping constrained optimization problems to
penalty parameters: an empirical study. In: Proceedings of the CEC, pp. 3073–3079 (2014)

14. Storn, R., Price, K.: Differential evolution: a simple and efficient adaptive scheme for global
optimization over continuous spaces. Technical report, TR-95-012 (1995)

15. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans.
Evol. Comput. 15(1), 4–31 (2011)

16. Menchaca-Mendez, K., Coello Coello, C.A.: Solving multiobjective optimization problems
using differential evolution and a maximin selection criterion. In: Proceedings of the CEC,
pp. 3143–3150 (2012)

17. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation
strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)

18. Si, C., Lan, T., Hu, J., Wang, L., Wu, Q.: On the penalty parameter of the penalty function
method. Control Decis. 9, 1707–1710 (2014)

19. Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello Coello,
C.A., Deb, K.: Problem definitions and evaluation criteria for the CEC 2006. Technical
report, Special Session on Constrained Real-Parameter Optimization (2006)

428 C. Si et al.

Cooperation Coevolution Differential
Evolution with Gradient Descent Strategy

for Large Scale

Chen Yating(&)

School of Date and Computer Science,
Sun Yat-Sen University, 510275 Guangzhou, China

yating.chen@foxmail.com

Abstract. In order to better solve the large scale optimization problem, we
propose a cooperation coevolution differential evolutionary (CCDE) algorithm
with a gradient descent strategy (GDS). The GDS based CCDE algorithm
(CCDE/GDS) benefits the solution of large scale optimization problems in two
critical aspects. Firstly, the optimization turned out to be far less time consuming
due to that GDS is helpful for guiding the search direction on the globally best
individual position. More importantly, the GDS is controlled by an elastic
operator to be carried out only when the globally best individual has been trapped,
making the algorithm fast respond to the large scale evolutionary environment.
Secondly, GDS was reported in the literature to approximate the local best value
on most object functions. Therefore, the GDS used in CCDE can promote the
globally best individual position to more promising region when it is trapped into
local optimum, so as to achieve high accuracy. We designed experiments on
CEC2010 benchmark functions for evaluating our newly proposed algorithm,
which shows that the proposed algorithm and modified framework can obtain
very competitive results on the large scale optimization problem efficiently.

Keywords: Cooperation coevolution differential evolutionary � Gradient
descent strategy � Large scale optimization problem

1 Introduction

In the case of numerical and combinatorial optimization, evolutionary optimization
algorithms have made a huge impact [1]. However, the performance of most existing
evolutionary algorithms (EA) still seriously suffered from increases on the dimen-
sionality of the search space increases [1]. For the past few years, studies on large scale
optimization have been paid much more attention because of its important effect on
theoretical research and practice. Some inchoate efforts focusing large multi-
dimensional problems led to unrealistic or even false assumptions, in which the
problem is treated as a separable object. Different from those early researches, this
paper will put emphasis on non-separable functions for avoiding small sub-problems
brought by separable functions and making up their drawbacks for multi-dimension.

Cooperative coevolution (CC) specializes in segmentation processing large and
complicated problems [2], which is usually seen as a kind of automatic implementing

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 429–439, 2017.
DOI: 10.1007/978-3-319-61824-1_47

method for the “divide-and-conquer” strategy. A CC algorithm would break down an
original problem into several sub-components under ideal conditions, which can
min-imize interdependencies between different subcomponents. There are two simple
decomposition strategies of algorithms in [3–6] based on the standard framework of
CC: the “one-dimensional based” and “splitting-in-half”. The former attempts to dis-
assemble a multi-dimensional problem into several one-dimensional sub-problems. It is
straightforward for separable functions but incapable of tackling non-separable prob-
lems satisfactorily. The later strategy splits a multi-dimensional problem in half, which
is still unclear details of interdependencies between diverse variables that can be
obtained for non-separable problems. Moreover, existing CC-based algorithms do not
consider more effective evolutionary optimization algorithms that have been proposed
in recent years. Thus, there is still room for improving the CC algorithms for better
handling large and complex problems as more advanced are adopted.

The remainder of this paper is organized as follows: Sect. 2 summarizes the
background including CC as well as CCDE-G. Section 3 presents the CCDE/GDS
algorithm in detail. Section 4 introduces the evaluation experiments on a diverse set of
CEC2010 functions and analyses the test results in detail. And the conclusions in
Sect. 5 summarize this paper and discuss future research activities based on this paper.

2 Background

2.1 Cooperative Coevolution (CC)

CC is designed as a generic framework for evolutionary optimization algorithm on
large or complex problems making use of the “divide-and-conquer” strategy. The
objective system is decomposed into several submodules belonging to a subpopulation
which separately goes through evolution separately with only cooperation occurrence.
When it comes to optimization process on multi-dimensional problems, main opera-
tions of the CC framework can be described as follows:

1. Problem division: Divide a multi-dimensional objective vector into m low-
dimensional child components which can be processed by traditional EA.

2. Loop initiation: Set i = 1 and recommence a new loop.
3. Child component optimization: Evolve the ith child component separately by some

evolutionary algorithm under a predetermined number of fitness evolutions. If i < m
then i++, and continue optimization operations.

4. Child component coadaptation: Coadaptation is crucial when capturing such
interdependencies during optimization, because interdependencies may exist
between subcomponents. Stop once terminal conditions are met; or else jump to
Step 2 for a new loop.

To be noted, an integral loop here covers all child components and their complete
evolution. Once a multi-dimensional problem is first disassembled into several
low-dimensional child components, these child components would evolve cooperatively
within a predetermined number of loops. The size of any one of subcomponents should
be within the evolutionary algorithm’s optimization ability.

430 C. Yating

2.2 Cooperation Coevolution Differential Evolution Grouping (EACC-G)

Cooperation coevolution differential evolution grouping (EACC-G) [7] was proposed
with a group-based problem decomposition strategy which groups structures in
dynamically changing. It can raise the possibility of optimizing interacting variables
together, and maintain coadaptation among diverse groups for overall controlling. The
core idea of EACC-G framework is a two-step process to divide a complete vector into
child components in lower dimensions, and process all child components respectively
by means of an evolutionary algorithm. Also, EACC-G employs an adaptive weighting
strategy for coadaptation that assigns a weight to every child component when a loop
ends, and evolves the relevant weight vector with come optimizers. In order to make
the paper self-contained, the core process of EACC-G described in [7] is also briefly
introduced herein as the following steps:

1. Set i ¼ 1 and recommence a new loop.
2. Divide a n-dimensional vector into m child components in lower dimension

stochastically.
3. Compute the ith child component separately by using a conventional EA for a

predetermined ceiling of fitness evolutions. If i\m; let iþ þ and re-access opti-
mization operations.

4. Assign a weight to every child component. Perform evolutions of the weight vectors
to get three key parameters of current population: the best, the worst and stochastic
members.

5. Stop once terminal conditions are met; otherwise re-access Step 1 for a new loop.

Themajor distinctions between EACC-G and those conventional CCs, for instance in [3,
4], are a dynamically changing grouping structure for variables as well as a novel adaptive
weighting which maintains coadaptation among child components at the end of each
loop. After each loop, a weight vector will be build up for each of these child components.
Because the determination of the optimal weight vector can be processed by evolutionary
algorithms in existence, because it is a typical optimization problem in lower dimension.

Given a non-separable function, no CCs would perform well once all variables of it are
heavily interdepending on each other. The EACC-G treats tightly interdependent variables
as a group and optimizes them in batch, instead of one-by-one optimization strategyof other
existing algorithms. In order to gain a cleaner vision of the grouping strategy’s advantages,
let’s take the following theorem as a quick example of the probability when optimizing two
interacting variables together in EACC-G, which shows how such a grouping strategy can
step up the probability of obtaining the interdependencies of variables. In order tomake the
paper self-contained, the Theorem that given in [8] is also described as follows:

Theorem 1. The EACC-G’s probability to apply two interactional variables xi and xj
as a unitary child component for more than k loops is:

pk ¼
XN
r¼k

N
r

� �
1
m

� �
1� 1

m

� �N�r

; ð1Þ

where N is the upper limit of loops and m specifies the sum of child components [8].

Cooperation Coevolution Differential Evolution with Gradient Descent Strategy 431

Proof 1. In any one of independent loops, the EACC-G’s probability to apply xi and xj
as a unitary child component is:

p ¼
m
1

� �

m2 ¼ 1
m
; ð2Þ

The times of splitting operation in EACC-G are merely in accord with the sum of
loops. For example, if there is N loops, then EACC-G will obtain N executions of
splitting operations. Notice that these disintegration operations are mutually indepen-
dent among each other. Set pr represent EACC-G’s probability to apply xi and xj as a
unitary child component for r loops. The value of pr is easy to get

pr ¼ N
r

� �
pr 1� pð ÞN�r¼ N

r

� �
1
m

� �r

1� 1
m

� �N�r

; ð3Þ

Thus,

pk ¼
XN
r¼k

pr ¼
XN
r¼k

N
r

� �
1
m

� �
1� 1

m

� �N�r

; ð4Þ

The Theorem 1 is proved. That is, EACC-G’s grouping strategies are valid for figuring
out interdependencies of variables without profession or specialized knowledge [8].

3 Proposed CCDE/GDS Algorithm

In this section, the proposed CCDE/GDS algorithm for solving large scale optimization
is described. Firstly, the differential evolution under CCDE-G framework. Then, the
gradient descent strategy (GDS) is presented. Finally, the whole complete CCDE/GDS
algorithm is presented in detail.

3.1 Cooperative Coevolution (CC)

Differential evolution (DE) [9, 10] is a straight forward algorithm against global opti-
mization problems. DE process variation by employing a weighted difference vector to
distinguish two objects from the others. And these mutated objects will depend on
greedy selection and discrete crossover on matching objects to generate offspring. Many
researches have been done on the control arguments of DE (e.g., crossover rate CR,
population size NP and scaling factor F) [11, 12]. Also, DE has been combined with
some other algorithms leading to various hybrid algorithms [13, 14]. First of all, we will
introduce one of the latest DE variants for child components in our CC algorithm.

A self-adaptive DE algorithm (SaDE) [14] was recently designed to automatically
adjust arguments during evolutionary process. And two learning strategies of DE were
employed as candidates due to their good performance. Crossover rate CR and scaling
factor F are automatically adjusted during the evolutionary process. And SaDE had

432 C. Yating

shown a good behavior in verification test on the set of 25 benchmark functions from
CEC2005 Special Session [15].

SaDE attempts to improve classical DE’s performance in a different manner. SaDE
focus on self-adaption of control arguments, which is different fromNSDEmixing search
biases of various NS operators adaptively. And the self-adaptive NSDE (SaNSDE), just
as its name implies, combines the advantages of NSDE and SaDE together in a single
algorithm [16]. SaNSDE and NSDE behave very similarly except where shown below:

1. Following SaDE’s self-adaptive mechanism.
2. Using SaDE’s dynamically adaptive strategy to adapt the value of CR.
3. Introducing SaDE’s self-adaptive strategy to dynamically balancing Gaussian and

Cauchy operators.

Based on SaNSDE, the corresponding cooperative coevolution, called CCDE-G, is
designed by means of EACC-G’s operations mentioned in Sect. 2. Moreover, another
optimizer for the weighting strategy of CCDE-G is specified. We prefer to employ the
classical DE in this paper for evaluating the effectiveness of SaNSDE as a child
component optimizer, although SaNSDE could be used for this purpose as well. It will
be less complex to evaluate its contribution of the new CC framework.

3.2 Gradient Descent Strategy (GDS)

Gradient descent (GD) method is a first-order iterative optimization algorithm. It is
common practice to take steps proportional to the gradient’s negative at the current
point when a function is searching the local minimum by means of GD. GD is built on
the observation that if the function F(x) of several variables is defined and differentiable
on point a’s neighborhood, then F(x) achieves its fastest deceleration once one starts
with a in the negative gradient direction of F at a, −∇F(a). It follows that, if

for c small enough, then F(a) > F(b). In other words, the term c∇F(a) is subtracted
from a because we want to move against the gradient, namely down toward the
minimum. Based on this observation, one goes from a conjecture x0 for a local min-
imum of F, and reckons the sequence x0; x1; x2; x3; . . . such that

We have

F x0ð Þ� F x1ð Þ� F x2ð Þ� � � � :;

3.3 CCDE/GDS

The whole complete CCDE/GDS algorithm is given in Fig. 1. Round-Robin would be
employed to optimize grouping once CC framework grouping is finished. The

Cooperation Coevolution Differential Evolution with Gradient Descent Strategy 433

differential value between best values of two consecutive iterations has been adopted to
determine whether to proceed with gradient descent algorithm. If

the gradient descent algorithm would be executed to update the global best_mem
when searching velocity drops. The GD obtain functions’ extremum value along the
direction of grandian descent:

where gradient is the gradient magnitude of best_mem in ith iteration, and a is the
velocity coefficient that might need to be adjusted based on demand of computation. To
be noted, gradient of function may be unable to get. We explored gradient magnitude of
best_mem by finite difference method (FDM). If the best_val obtained by GDS is better
than the previous one, the best_val will be update.

4 Benchmark Tests and Comparisons

4.1 Experimental Settings

In this paper, in order to investigate the advantages of CCDE/GDS, we will compare
the performance of CCDE/GDS and CCDE-G proposed in [8] on CEC2010 benchmark
functions. These 20 benchmark functions are divided into 5 groups as detailed in [17].

Group1: Separable functions, F1–F3;
Group2: Single-group m-nonseparable functions, F4–F8;
Group3: n

2m -group m-nonseparable functions, F9–F13;
Group4: n

m -group m-nonseparable functions, F14–F18;
Group5: Nonseparable functions, F19, F20.

Decompose the decision variables into group{1},
group{2} …..
for each group such as group{i}

optimize by evolutionary algorithm
update bestval
if bestval_old-bestval <epsilon

compute the gradient for variables in group{i} based on
bestmem
%update bestmem by gradient decent method
bestmem{j}=bestmem{j}-lamda*gradient{j}
update bestval according the new value of bestmem

end if
end for

Fig. 1. Pseudocode of the CCDE/GDS

434 C. Yating

In our algorithm, D is the dimension and set as 1000. m is introduced here for
regulating the sum of variables in all groups and hence, defining the degree of sepa-
rability. And m gets its value of 50 in the experimental suite. We also set population
size NP = 50, the number of fitness evaluations(FEs) will be set as 3 � 106. The
threshold value for gradient descent algorithm is set to 10−5.

4.2 Experimental Results

We test CCDE/GDS and CCDE-G’s performance on the CEC’2010 benchmark
functions. The statistics over 25 independent executions of our performance tests are
listed in Table 1. Mann–Whitney U test was used between CCDE/GDS and CCDE-G
and expressed as p-value. in p-value, symbol ‘−’ means that the CCDE/GDS opti-
mization results are better than CCDE-G. And the “#” means that the results of two
objects are significantly different.

As shown in Table 1, we executed CCDE/GDS optimization operations on 20
functions from test suite. Obviously, eleven of them has obtained better average
optimization results than those produced from CCDE-G. And 8 best results are in

Table 1. Optimization results of CCDE/GDS and CCDE-G on CEC2010 benchmark functions

Group Function CCDE-G CCDE/GDS

Group1
Separable
functions

F1 Mean 3.26E−26 0.00E + 00
Std. 1.78E−25 0.00E + 00
p-value −3.3E−01 –

F2 Mean 2.39E + 02 3.27E + 02
Std. 1.43E + 01 1.83E + 01
p-value 3.01e−11# –

F3 Mean 1.31E−13 1.28E−13
Std. 6.32E−15 1.87E−15
p-value −2.35e−02# –

Group2
Single-
group
m-nonseparable

F4 Mean 4.59E + 11 7.74E + 11
Std. 1.59E + 11 2.49E + 11
p-value 2.88e−06# –

F5 Mean 2.60E + 08 2.37E + 08
Std. 6.45E + 07 6.63E + 07
p-value −2.06E−01 –

F6 Mean 2.10E + 06 2.26E + 06
Std. 6.80E + 05 4.16E + 05
p-value 6.46E−01 –

F7 Mean 7.83E + 00 1.98E + 02
Std. 4.15E + 00 7.44E + 01
p-value 3.02e−11# –

(continued)

Cooperation Coevolution Differential Evolution with Gradient Descent Strategy 435

Table 1. (continued)

Group Function CCDE-G CCDE/GDS

F8 Mean 2.08E + 07 2.56E + 07

Std. 2.43E + 07 2.75E + 07
p-value 1.76E−01 –

Group3
D
2m�
group
m-nonseparable

F9 Mean 3.33E + 07 2.09E + 07
Std. 2.79E + 06 2.12E + 06
p-value −3.02e−11# –

F10 Mean 1.32E + 04 5.14E + 03
Std. 2.02E + 02 2.20E + 02
p-value −3.02e−11# –

F11 Mean 1.57E−13 1.70E−13
Std. 1.06E−14 1.09E−14
p-value 4.86e−05# –

F12 Mean 4.54E + 06 6.31E + 02
Std. 1.83E + 05 5.67E + 01
p-value −3.02e−11# –

F13 Mean 7.81E + 02 8.19E + 02
Std. 1.42E + 02 2.29E + 02
p-value 7.28E−01 –

Group4
D
m�
group
m-nonseparable

F14 Mean 1.13E + 08 4.22E + 07
Std. 7.71E + 06 3.65E + 06
p-value −3.02e−11# –

F15 Mean 1.59E + 04 7.06E + 03
Std. 2.52E + 02 3.17E + 02
p-value −3.02e−11# –

F16 Mean 1.67E−13 1.32E + 01
Std. 1.97E−14 7.24E + 01
p-value 6.01e−10# –

F17 Mean 7.63E + 06 1.71E + 03
Std. 4.13E + 05 1.16E + 02
p-value −3.02e−11# –

F18 Mean 1.63E + 03 1.85E + 03
Std. 3.00E + 02 5.34E + 02
p-value 1.09E−01 –

Group5
Nonseparable
functions

F19 Mean 1.85E + 07 2.30E + 05
Std. 1.61E + 06 2.14E + 05
p-value −3.02e−11# –

F20 Mean 1.24E + 03 1.21E + 03
Std. 9.54E + 01 8.27E + 01
p-value −2.77E−01 –

436 C. Yating

boldface. The 8 best results are mainly distributed from the 3rd to 5th, which means
that the proposed new CCDE/GDS approach in this paper performance better on
solving non-separable problems with multi-dimension and multi-group.

Figure 2 shows the evolution of CEC2010 benchmark functions. It is obvious that
CCDE/GDS had better performance when compared to CCDE-G. CCDE- G/GD
gained much better results than the non-GD algorithm on multi-group and nonseparable
functions, which shows the superiority of our proposed algorithms for large opti-
mization problems.

Fig. 2. Converge rate of two methods

Cooperation Coevolution Differential Evolution with Gradient Descent Strategy 437

5 Conclusion

In this paper, we attempted to develop a novel algorithm based on the GD to CCDE-G
for solving large scale optimization problems. The CCDE-G method itself is suitable
for tackling large multi-dimensional problems because it can decompose large and
complex problems into several submodules which separately goes through evolution
separately with only cooperation occurrence. Moreover, GDS can improve the bestval
from a single iteration to the whole evolution, which can help to improve the perfor-
mance of coevolutionary optimization significantly. Experimental tests have been
conducted on 20 typical CEC’2010 benchmark functions with different characteristics.
The experimental results convinced us not only the CCDE-G promising performance
but also the CCDE-G/GDS outstanding performance.

References

1. Sarker, R., Mohammadian, M., Yao, X.: Evolutionary Optimization. Kluwer Academic
Publishers, Norwell (2002)

2. Liu, Y., Yao, X., Zhao, Q., Higuchi, T.: Scaling up fast evolutionary programming with
cooperative coevolution. In: Proceedings of the Congress on Evolutionary Computation,
pp. 1101–1108 (2001)

3. Potter, M., De Jong, K.: A cooperative coevolutionary approach to function optimization. In:
Proceedings of the 3th Conference on Parallel Problem Solving from Nature, pp. 249–257
(1994)

4. Shi, Y., Teng, H., Li, Z.: Cooperative coevolutionary differential evolution for function
optimization. In: Proceedings of the 1st Conference on Natural Computation, pp. 1080–1088
(2005)

5. Sofge, D., De Jong, K., Schultz, A.: A blended population approach to cooperative
coevolution for decomposition of complex problems. In: Proceedings of the Congress on
Evolutionary Computation, vol. 1, pp. 413–418 (2002)

6. Potter, M., De Jong, K.: Cooperative coevolution: an architecture for evolving coadapted
subcomponents. Evol. Comput. 8(1), 1101–1108 (2000)

7. Yang, Z., Tang, K., Xiao, X.: Large scale evolutionary optimization using cooperative
coevolution. Inf. Sci. 178, 2985–2999 (2008)

8. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global
Optimization. Springer, Heidelberg (2005). ISBN 3-540-20950-6

9. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

10. Gamperle, R., Muller, S.D., Koumoutsakos, P.: A Parameter Study for Differential
Evolution. In: Proceedings of the WSEAS International Conference on Advances in
Intelligent Systems, pp. 293–298 (2002)

11. Zaharie, D.: Critical values for the control parameters of differential evolution algorithms. In:
Proceedings of the 8th International Conference on Soft Computing, pp. 62–67 (2002)

12. Sun, J., Zhang, Q., Tsang, E.: DE/EDA: a new evolutionary algorithm for global
optimization. Inf. Sci. 169, 249–262 (2005)

438 C. Yating

13. Zhang, W., Xie, X.: DEPSO: hybrid particle swarm with differential evolution operator. In:
Proceedings of the 2003 IEEE International Conference on Systems, Man and Cybernetics,
vol. 4, pp. 3816–3821 (2003)

14. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical
optimization. In: Proceedings of the Congress on Evolutionary Computation, vol. 2,
pp. 1785–1791 (2005)

15. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem
Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-parameter
Optimization, Technical report, Nanyang Technological University, Singapore (2005).
http://www.ntu.edu.sg/home/EPNSugan

16. Yang, Z., Tang, K., Yao, X.: Self-adaptive differential evolution with neighborhood search.
In: Proceedings of the 2008 Congress on Evolutionary Computation, in press

17. Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark functions for the
CEC’2010 special session and competition on large-scale global optimization, Technical
report, Nature Inspired Computation and Applications Laboratory (NICAL), USTC, China
(2010)

Cooperation Coevolution Differential Evolution with Gradient Descent Strategy 439

http://www.ntu.edu.sg/home/EPNSugan

Chebyshev Inequality Based Approach
to Chance Constrained Optimization Problems

Using Differential Evolution

Kiyoharu Tagawa(B) and Shohei Fujita

Kindai University, Higashi-Osaka 577-8502, Japan
tagawa@info.kindai.ac.jp

Abstract. A new approach to solve Chance Constrained Optimization
Problem (CCOP) without using the Monte Carlo simulation is proposed.
Specifically, the prediction interval based on Chebyshev inequality is used
to estimate a stochastic function value included in CCOP from a set of
samples. By using the prediction interval, CCOP is transformed into
Upper-bound Constrained Optimization Problem (UCOP). The feasible
solution of UCOP is proved to be feasible for CCOP. In order to solve
UCOP efficiently, a modified Differential Evolution (DE) combined with
three sample-saving techniques is also proposed. Through the numerical
experiments, the usefulness of the proposed approach is demonstrated.

Keywords: Chebyshev inequality · Chance constraint · Optimization

1 Introduction

The Chance Constrained Optimization Problem (CCOP) is one of the possible
formulations of the stochastic optimization problem. The quality of solution can
be guaranteed by a specified probability in CCOP [8]. A number of real-world
problems have been formulated as CCOPs [2,8]. However, CCOP is difficult to
solve because its solutions have to be evaluated by using a time-consuming Monte
Carlo simulation. Even though a number of Evolutionary Algorithms (EAs) have
been reported for solving optimization problems under uncertainties [3], only a
few EAs are dealing with CCOPs [2,4,7] insofar as we know.

This paper proposes a novel approach to solve CCOP without using the
Monte Carlo simulation. The prediction interval based on Chebyshev inequality
is used to estimate a stochastic function value included in CCOP from a set
of samples. By using the prediction interval, CCOP is transformed into Upper-
bound Constrained Optimization Problem (UCOP). It is proved that the feasible
solution of UCOP is also feasible for CCOP. In order to solve UCOP efficiently, a
modified Differential Evolution (DE) is proposed. That is because DE is arguably
one of the most powerful stochastic real-parameter optimization algorithms in
current use [9]. Since the multiple sampling of a solution is usually expensive for
real-world problems, the modified DE employs three sample-saving techniques,
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 440–448, 2017.
DOI: 10.1007/978-3-319-61824-1 48

Chebyshev Inequality Based Approach to CCOP 441

namely accumulative sampling [6], reliability relaxation [12], and upper-bound
cut [13]. Finally, the usefulness of the proposed approach is demonstrated.

2 Problem Formulation of CCOP

Let x = (x1, · · · , xD) ∈ X, X = [xj , xj]D ⊆ �D be a vector of decision
variables, or a solution. The uncertainty is given by a vector of random variables
ξ ∈ Ξ with support Ξ. Stochastic functions are defined as gm : X × Ξ → �.
Thereby, for a required probability level α ∈ (0, 1), CCOP is stated as

⎡
⎢⎣

min
x∈X

γ

sub. to Pr(∀ξ ∈ Ξ : g0(x, ξ) ≤ γ) ≥ 1 − α

Pr(∀ξ ∈ Ξ : gm(x, ξ) ≤ 0) ≥ 1 − α, m ∈ IM

(1)

where IM = {1, 2, · · · , M} is an index set of constraints.
Let f : Ξ → (0, ∞) be the Probability Density Function (PDF) of ξ ∈ Ξ.

The PDF f(ξ) of ξ is usually known. However, we can’t derive the PDF of
gm(x, ξ) from f(ξ) analytically because the procedure of gm(x, ξ) is too complex
or black box in many real-world problems. Therefore, the feasibility of x ∈ X
has to be verified empirically by a time-consuming Monte Carlo simulation.

3 Proposed Approach to CCOP

3.1 Chebyshev Inequality from Samples

Due to ξ ∈ Ξ in (1), different function values gm(x, ξ) ∈ � are observed for
repeated evaluations of the same solution x ∈ X. We derive the prediction
interval of the random variable gm(x, ξ) from Chebyshev inequality.

Saw et al. [10] have extended Chebyshev inequality to cases where the mean
and variance are not known and may not exist, but you want to use the sample
mean and sample variance from N samples to bound the expected value of a
new drawing from the same distribution. Let gm(x, ξn), ξn ∼ f(ξ) be a sample
of gm(x, ξ). By using the sample mean gm(x) and the sample variance s2m(x)
calculated from gm(x, ξn), n = 1, · · · , N , Chebyshev inequality [10] is

Pr

(
|gm(x, ξ) − gm(x)| ≥ λ

√
N + 1

N
sm(x)

)

≤ 1
N + 1

⌊ (N + 1) (N − 1 + λ2)
N λ2

⌋ (2)

where �·� denotes the floor function. λ > 1 is an arbitrary real number.
The following theorem [11] provides the prediction interval of gm(x, ξ) which

can be calculated from the sample mean gm(x) and variance s2m(x).

442 K. Tagawa and S. Fujita

Fig. 1. Change of κ in (4) for N and α Fig. 2. Control of κ by rule in (11)

Theorem 1. Let gm(x, ξn), n = 1, · · · , N be a set of samples and N ≥ Nmin.
From a probability level α ∈ (0, 1), the minimum sample size is

Nmin =
⌊ 1
α

+ 1
⌋
. (3)

From the probability level α and the sample size N , κ is defined as

κ =

√
N2 − 1

N (α N − 1)
. (4)

By using gm(x), s2m(x), and κ, the prediction interval of gm(x, ξ) is

Pr([gm(x) − κ sm(x), gm(x) + κ sm(x)] gm(x, ξ))

= Pr([gL
m(x), gU

m(x)] gm(x, ξ)) ≥ 1 − α.
(5)

Proof. See [11]. ��
Figure 1 shows the change of coefficient value κ in (4) that depends on both

the probability level α and the sample size N . κ =
√

1/α holds for N → ∞.

3.2 Upper-Bound Constrained Optimization Problem (UCOP)

As stated above, CCOP in (1) is transformed into UCOP. By using the upper-
bounds gU

m(x), m ∈ {0} ∪ IM shown in (5), we formulate UCOP as
[

min
x∈X

gU
0 (x) = g0(x) + κ s0(x)

sub. to gU
m(x) = gm(x) + κ sm(x) ≤ 0, m ∈ IM

(6)

where we suppose that the sample size N is larger enough than Nmin in (3).

Theorem 2. If x ∈ X is a feasible solution of UCOP in (6) then x ∈ X is
also a feasible solution of CCOP in (1) under a condition γ = gU

0 (x).

Chebyshev Inequality Based Approach to CCOP 443

Proof. We assume that x ∈ X is a feasible solution of UCOP in (6). Therefore,
the solution x ∈ X provides the prediction interval as shown in (5).

Since gU
0 (x) = γ holds,

Pr(g0(x, ξ) ≤ γ) = Pr((−∞, γ] g0(x, ξ))

≥ Pr([gL
0 (x), gU

0 (x)] g0(x, ξ)) ≥ 1 − α.
(7)

Since gU
m(x) ≤ 0, m ∈ IM holds,

Pr(gm(x, ξ) ≤ 0) = Pr((−∞, 0] gm(x, ξ))

≥ Pr([gL
m(x), gU

m(x)] gm(x, ξ)) ≥ 1 − α.
(8)

From (7) and (8), x ∈ X satisfies all chance constraints in (1). ��

4 Basic Differential Evolution for UCOP

We present a basic DE (DEB) for solving UCOP in (6). Like classic DE [9],
DEB works by building a population P ⊂ X of vectors which is a set of possible
solutions to UCOP. The initial vectors xi ∈ P , i = 1, · · · , NP are generated
randomly. Each xi ∈ P is evaluated N times. Then the upper-bounds gU

m(xi),
m ∈ {0} ∪ IM are calculated from samples gm(xi, ξn), n = 1, · · · , N .

Within a generation of a population, each vector xi ∈ P is assigned to the
target vector in turn. A basic strategy named “DE/rand/1/bin” [9] generates a
new solution called the trial vector u ∈ X from the target vector xi ∈ P .

A self-adapting setting of the control parameters [1] is used by DEB. In
order to handle the constraints of UCOP in (6), ε-constrained method [14] is
also employed. The constraint violation φ(x) of x ∈ X is defined as

φ(x) =
∑

m∈IM

max{0, gU
m(x)}. (9)

A newborn trial vector u ∈ X is judged to be better than the target vector
xi ∈ P if at least one of the following three criteria is satisfied: (1) φ(u) ≤ ε(t)
and gU

0 (u) ≤ gU
0 (xi); (2) φ(u) ≤ ε(t) and φ(xi) > ε(t); (3) φ(u) > ε(t) and

φ(u) ≤ φ(xi). The value of ε(t) is controlled dynamically based on the current
generation t [14]. If u is better than xi ∈ P , xi ∈ P is replaced by u.

5 Three Sample-Saving Techniques

5.1 Accumulative Sampling

The accumulative sampling evaluates each xi ∈ P in the initial population only
a few times for calculating the upper-bounds gU

m(xi), m ∈ {0} ∪ IM . There-
after, each xi ∈ P is reevaluated one time at every generation to update the

444 K. Tagawa and S. Fujita

upper-bounds gU
m(xi) until they are regarded to be converged. If xi ∈ P satis-

fies the following condition for three consecutive generations, we regard that the
values of the upper-bounds gU

m(xi), m ∈ {0} ∪ IM have been converged.

∀m ∈ {0} ∪ IM :
∣∣∣∣
gU

m(xt
i) − gU

m(xt−1
i)

gU
m(xt

i)

∣∣∣∣ < 10−3 (10)

where xi ∈ P is denoted by xt−1
i and xt

i at generation t − 1 and t.

Fig. 3. Change of α for sample size N Fig. 4. Feasible region of DCOP in (13)

5.2 Reliability Relaxation

As a drawback of the accumulative sampling, κ in (4) has to be evaluated with
a small sample size N at the beginning of search. Since the small sample size N
makes κ large as shown in Fig. 1, the upper-bound is overestimated.

Let N t
i be the sample size of vector xt

i ∈ P at generation t. Instead of (4),
the proposed reliability relaxation decides κ for xt

i ∈ P as

κ =

{
κ̂, if N t

i < Nmin

min {κ̂, κt
i}, if N t

i ≥ Nmin

(11)

where κ̂ is chosen from κ̂ >
√

1/α and κt
i is calculated as

κt
i =

√
(N t

i)2 − 1
N t

i (α N t
i − 1)

. (12)

Figure 2 illustrates the value of κ controlled by the rule in (11). When κ = κ̂
holds in (11), the value of α is changed for N . For example, Fig. 3 shows the
value of α that satisfies the relation in (4), but κ̂ = 0.5 is used instead of κ. The
reliability relaxation enlarges α over the original value specified by CCOP.

Chebyshev Inequality Based Approach to CCOP 445

5.3 Upper-Bound Cut

The upper-bound cut (U-cut) judges hopeless trial vectors only by few samplings
and discards them. When a newborn trial vector u is compared with the target
vector xt

i ∈ P , U-cut takes and examines its samples gm(u, ξn), n = 1, · · · , N t
i

one by one. Then u is judged to be worse than xt
i ∈ P and discarded if at least

one of the following three criteria is satisfied along the way: (1) φ(xt
i) ≤ ε(t)

and gU
0 (xt

i) ≤ g0(u, ξn); (2) φ(xt
i) ≤ ε(t) and φ(u) > ε(t); (3) φ(xt

i) > ε(t) and
φ(xt

i) ≤ φ(u). The constraint violation φ(u) of the trial vector u is evaluated
by (9) in which gm(u, ξn), m ∈ IM is used instead of gU

m(u).

6 Numerical Experiment

6.1 Comprehensive Example of CCOP

We show the validity of the proposed approach. The test problem of CCOP is
based on a Deterministic Constrained Optimization Problem (DCOP):

⎡
⎢⎣

min
x∈X

g0(x) = x2
1 + (x2 − 2)2

sub. to g1(x) = (x1 − 4)2 − 2x2 ≤ 0
g2(x) = −x1 + 2x2 − 2 ≤ 0

(13)

where x = (x1, x2) and X = [−5, 10]2 ⊆ �2.
Considering disturbance ξj ∈ �, we extended DCOP in (13) to CCOP as
⎡
⎢⎣

min
x∈X

γ

sub. to Pr(g0(x, ξ) = g0(x + ξ) ≤ γ) ≥ 1 − α,

Pr(gm(x, ξ) = gm(x + ξ) ≤ 0) ≥ 1 − α, m ∈ IM = {1, 2}
(14)

where ξ1, ξ2 ∼ N (0, 0.012), ξ = (ξ1, ξ2), and α = 0.05.
We transformed CCOP in (14) into UCOP as shown in (6). By using DEB,

we obtained a solution x◦ = (2.061, 1.979) of UCOP with gU
0 (x◦) = 4.444.

Figure 4 illustrates the feasible region of DCOP in (13) on the decision vari-
able space. The optimal solution x� ∈ �2 of DCOP denoted by “•” exists on
the boundary of the feasible region. On the other hand, the solution x◦ ∈ �2 of
UCOP denoted by “◦” exists on the inside of the feasible region of DCOP.

We will verify whether a solution x ∈ �2 is feasible for CCOP in (14) or not.
Let Pr(gm(x, ξ) > z) = αm be a true probability of the complementary event
of a chance constraint in (14). The value z ∈ � is chosen as z = γ for m = 0
and z = 0 for m ∈ IM = {1, 2}. From a huge number of samples gm(x, ξn),
ξn ∼ f(ξ), n = 1, · · · , N generated by the Mote Carlo simulation, an empirical
probability α̂m ∈ [0, 1] of the complementary event is calculated as

⎡
⎢⎢⎢⎢⎣

α̂m =
1
N

N∑
n=1

	(gm(x, ξn) > z)

	(gm(x, ξn) > z) =

{
1; if gm(x, ξn) > z

0; otherwise.

(15)

446 K. Tagawa and S. Fujita

For any ε ∈ (0, 1) and δ ∈ (0, 1), if N ≥ (1/2 ε2) log(2/δ) samples are used
to calculate α̂m then Chernoff bound [15] ensures Pr(|αm − α̂m| ≤ ε) ≥ 1 − δ.

Table 1 compares the solution x◦ of UCOP with the solution x� of DCOP in
the empirical probabilities evaluated for the chance constraints in (14). Selecting
ε = 0.01 and δ = 10−3 for N , we used N = 2, 649, 159 samples to calculate each
α̂m, m ∈ {0} ∪ IM . From Table 1, we can confirm that x◦ is feasible for CCOP
significantly because ∀m ∈ {0} ∪ IM : α̂m ≈ αm < α holds. Even though x� is
better than x◦ in the objective value γ, x� is not feasible for CCOP.

Table 1. Empirical probability evaluated for CCOP

Problem Solution γ α̂0 α̂1 α̂2

DCOP x� = (2.000, 2.000) 4.000 0.501 0.500 0.499

UCOP x◦ = (2.061, 1.979) 4.444 0.000 0.000 0.000

Table 2. Comparison of modified DEs for UCOP

TC tmax = 100 TN ≈ 101 × 103 D

CCOP PC DEB DEA DEAR DEARU PC DEB DEA DEAR DEARU

G4 γ −30625 −30622 −30624 −30624 γ −30625 −30629 −30632 −30633

D = 5 WT — — — WT ** ** —

M = 6 TN 505, 000 247, 247 169, 737 70, 843 NS 101NP 170NP 204NP 256NP

G7 γ 35.672 36.090 35.948 35.832 γ 35.672 31.703 30.284 28.646

D = 10 WT — — — WT ** ** **

M = 8 TN 1, 010, 000 582, 603 426, 259 120, 839 NS 101NP 150NP 174NP 419NP

G9 γ 692.87 693.68 693.11 692.95 γ 692.87 691.54 690.74 690.28

D = 7 WT — * — WT ** ** **

M = 4 TN 707, 000 388, 101 278, 065 104, 011 NS 101NP 153NP 192NP 258NP

6.2 Effects of Sample-Saving Techniques

In order to verify the effects of the sample-saving techniques, we compared four
modified DEs: (1) DEB, (2) DEB with Accumulative sampling (DEA), (3) DEA
with Reliability relaxation (DEAR), and (4) DEAR with U-cut (DEARU).

We used three test problems from [5], namely G4, G7, and G9, to compare
the modified DEs. They are given by DCOPs with D decision variables and M
constraints. By adding a disturbance ξj ∼ N (0, 0.012) to decision variable xj ,
j = 1, · · · , D, we extended each DCOP to CCOP with α = 0.05 in the same way
with CCOP in (14). Then we transformed each CCOP into UCOP. By using the
population size NP = 10D, we applied modified DEs respectively to each UCOP
30 times. The sample size was fixed to N = 100 for DEB. The Termination

Chebyshev Inequality Based Approach to CCOP 447

Condition (TC) of DEs was given by either the maximum number of generations:
tmax = 100 or the Total Number (TN) of samples: TN ≈ 101 × 103 D.

Table 2 compares the four modified DEs in three Performance Criteria (PC):
the objective value γ = gU

0 (x◦), TN spent by DE, and Number of Solutions
(NS) examined by DE. The values of PC are averaged over 30 runs. Besides,
by using Wilcoxon Test (WT) about γ, DEARU was compared with the others.
Symbols “**” and “*” mean that there is significant difference between DEARU
and an opponent respectively with risks 1[%] and 5[%]. Symbol “—” means that
there is no significant difference between DEARU and an opponent.

From the results in Table 2, if TC is given by tmax, there is not much difference
between DEARU and the others in the value of γ. However, from the value of
TN , we can confirm the effects of the three sample-saving techniques. Actually,
DEARU finds its solution with the least TN . On the other hand, if TC is given
by TN , DEARU always finds the best solution that provides the minimum γ
value. From the value of NS, we can see that DEARU examines the largest
number of solutions until it terminates the search of the best solution.

7 Conclusion

A new approach for solving CCOP without using the Monte Carlo simulation
was proposed. By using the prediction interval of a stochastic function value,
CCOP was transformed into UCOP. For solving UCOP efficiently, a modified
DE combined with three sample-saving techniques was also proposed. Through
the numerical experiments conducted on several test problems, we verified the
usefulness of the proposed approach. In the future work, we would like to apply
the proposed approach to real-world problems formulated as CCOPs.

References

1. Brest, J., Greiner, S., Bos̆ković, B., Merink, M., Z̆umer, V.: Self-adapting control
parameters in differential evolution: a comparative study on numerical benchmark
problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

2. Jiekang, W., Jianquan, Z., Guotong, C., Hongliang, Z.: A hybrid method for opti-
mal scheduling of short-term electric power generation of cascaded hydroelectric
plants based on particle swarm optimization and chance-constrained programming.
IEEE Trans. Power Syst. 23(4), 1570–1579 (2008)

3. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments. IEEE
Trans. Evol. Comput. 9(3), 303–317 (2005)

4. Liu, B., Zhang, Q., Fernández, F.V., Gielen, G.G.E.: An efficient evolutionary
algorithm for chance-constrained bi-objective stochastic optimization. IEEE Trans.
Evol. Comput. 17(6), 786–796 (2013)

5. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parame-
ter optimization problems. Evol. Comput. 4(1), 1–32 (1996)

6. Park, T., Ryu, K.R.: Accumulative sampling for noisy evolutionary multi-objective
optimization. In: Proceedings of the GECCO 2011, pp. 793–800 (2011)

448 K. Tagawa and S. Fujita

7. Poojari, C.A., Varghese, B.: Genetic algorithm based technique for solving chance
constrained problems. Eur. J. Oper. Res. 185, 1128–1154 (2008)

8. Prékopa, A.: Stochastic Programming. Kluwer Academic Publishers, Berlin (1995)
9. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical

Approach to Global Optimization. Springer, Heidelberg (2005)
10. Saw, J.G., Yang, M.C.K., Mo, T.C.: Chebyshev inequality with estimated mean

and variance. Am. Stat. 38(2), 130–132 (1984)
11. Tagawa, K.: Worst case optimization using Chebyshev inequality. In: Proceedings

of BIOMA 2016, 173–185 (2016)
12. Tagawa, K., Fujita, S.: Robust optimization based on Chebyshev inequality and

accumulative sampling with reliability relaxation. Inf. Process. Soc. Jpn. Trans.
Math. Model. Appl. 9(3), 75–86 (2016)

13. Tagawa, K., Harada, S.: Multi-noisy-objective optimization based on prediction
of worst-case performance. In: Dediu, A.-H., Lozano, M., Mart́ın-Vide, C. (eds.)
TPNC 2014. LNCS, vol. 8890, pp. 23–34. Springer, Cham (2014). doi:10.1007/
978-3-319-13749-0 3

14. Takahama, T., Sakai, S.: Constrained optimization by the ε constrained differential
evolution with gradient-based mutation and feasible elites. In: Proceedings of IEEE
CEC 2006, pp. 1–8 (2006)

15. Tempo, R., Calafiore, G., Dabbene, F.: Randomized Algorithms for Analysis and
Control of Uncertain Systems: With Applications. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/978-3-319-13749-0_3
http://dx.doi.org/10.1007/978-3-319-13749-0_3

Solving the Distributed Two Machine
Flow-Shop Scheduling Problem Using

Differential Evolution

Paul Dempster1(B), Penghao Li2, and John H. Drake3

1 Artificial Intelligence and Optimisation Research Group,
School of Computer Science, University of Nottingham Ningbo China,

Ningbo 315100, China
paul.dempster@nottingham.edu.cn

2 School of Computer Science, University of Nottingham Ningbo China,
Ningbo 315100, China

zy10611@nottingham.edu.cn
3 Operational Research Group, Queen Mary University of London,

Mile End Road, London E1 4NS, UK
j.drake@qmul.ac.uk

Abstract. Flow-shop scheduling covers a class of widely studied opti-
misation problem which focus on optimally sequencing a set of jobs
to be processed on a set of machines according to a given set of con-
straints. Recently, greater research attention has been given to distrib-
uted variants of this problem. Here we concentrate on the distributed two
machine flow-shop scheduling problem (DTMFSP), a special case of clas-
sic two machine flow-shop scheduling, with the overall goal of minimising
makespan. We apply Differential Evolution to solve the DTMFSP, pre-
senting new best-known results for some benchmark instances from the
literature. A comparison to previous approaches from the literature based
on the Harmony Search algorithm is also given.

1 Introduction

Flow-shop scheduling is a classic optimisation problem with an extensive litera-
ture dedicated to studying a number of different variants. At its core, the aim is
to generate a schedule of jobs to be completed on a set of machines, where each
job has a given processing time on each machine, optimising for a particular
objective. Although some variants of the problem can be solved easily, minor
extensions can lead to a great increase in computational complexity. When the
processing times for each job are fixed, although the two-machine case is solvable
by a polynomial time algorithm [4], it becomes NP-hard when a third machine [3]
or operation [5] is added.

Differential Evolution (DE) [9] is a popular population-based metaheuristic
which has been particularly successful at solving continuous optimisation prob-
lems [1]. Despite the fact that DE is chiefly designed to operate in a continuous

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 449–457, 2017.
DOI: 10.1007/978-3-319-61824-1 49

450 P. Dempster et al.

environment, it has frequently been adapted to solve combinatorial optimisa-
tion problems and in particular, flow-shop scheduling problems. Onwubolu and
Davendra [6] defined methods to transform solutions between real-valued vector
and integer permutation representations, searching in continuous space whilst
evaluating solution quality in discrete space. Qian et al. [8] combined differential
evolution operating in continuous space with local search in discrete space to
solve a multi-objective variant of the flow-shop scheduling problem with buffers
in-between machines. Other work by Pan et al. [7] and Wang et al. [11] defined
specific operators in discrete space to perform direct search on flow-shop prob-
lems using DE.

Here we focus on the distributed two machine flow-shop scheduling problem
(DTMFSP). This variant of flow-shop scheduling considers a distributed set of
locations containing two machines, with a set of jobs of varying lengths which
must be processed on both machines at a single location. Previous work by Deng
et al. [2] compared three variants of the Harmony Search algorithm over a set
of benchmarks to this problem. In this paper we apply DE to the benchmark
instances for the DTMFSP and compare to the previously presented Harmony
Search based approaches.

2 The Distributed Two Machine Flow-Shop Scheduling
Problem (DTMFSP)

The well-known two machine flow-shop scheduling problem [4] is defined as fol-
lows. Given a set of n jobs J ∈ {J1, . . . , Jn}, to be processed on two machines
M1 and M2. Each job Ji ∈ J consists of two sequential operations Oi,M1 and
Oi,M2 with associated processing time pi,M1 and pi,M2 respectively. A schedule
is a permutation π = (π(1), . . . , π(n)) of jobs representing the order in which the
jobs are processed on the two machines. Under the constraints that each machine
can only process one job at a time and jobs must be processed sequentially on
the two machines, using makespan as the performance criteria, the goal is to
minimise the overall time taken to complete all of the jobs. This problem can be
solved to optimality in polynomial-time using Johnson’s rule [4].

The distributed two machine flow-shop scheduling problem (DTMFSP) is an
extended version of this problem [2]. The difference between the two is that jobs
in the DTMFSP can be processed in any of f identical factories, each containing
a machine Mf,1 and a machine Mf,2, whereas the classical problem considers only
a single factory. Additionally, jobs cannot be transferred to another factory, i.e.
once a job has been processed on machine Mf,1 at a given factory, it is not
possible to then process the second operation of the job on a machine in another
factory Mg,2 where g �= f . Rather than searching directly on the space of possible
job permutations, when solving the DTMDSP search takes place over a vector of
integers representing the allocated factory of each job. For each set of schedules,
the overall makespan can be calculated as the longest completion time of a single
factory after applying Johnson’s rule to each factory.

Solving the Distributed Two Machine Flow-Shop Scheduling Problem 451

Given a processing sequence πk at a particular factory k, with a total of nk

jobs at each factory, the makespan of a set of schedules CMAX can be calcu-
lated as:

Cπk(1),M1
= pπk(1),M1

, k = 1, 2, . . . , f (1)

Cπk(i),M1
= Cπk(i−1),M1

+ pπk(i),M1
, k = 1, 2, . . . , f ; i = 2, 3, . . . , nk (2)

Cπk(1),M2
= Cπk(1),M1

+ pπk(1),M2
, k = 1, 2, . . . , f ; (3)

Cπk(i),M2
= max{Cπk(i),M1

, Cπk(i−1),M2
} + pπk(i),M2

, k = 1, 2, . . . , f ; i = 2, 3, . . . , nk

(4)
CMAX = max{Cπk(nk),M2

}, k = 1, 2, . . . , f ; (5)

3 Proposed Differential Evolution-Based Approach

Differential Evolution (DE) [9] is a relatively simple evolutionary algorithm,
primarily used to solve continuous optimisation problems. Through the nature-
inspired concepts of selection, mutation and crossover, DE iteratively attempts to
improve a set of candidate solutions to a particular problem, where a solution is
represented by a vector of real values, by updating the population when better
solutions are found until some termination criteria is met. DE has previously
been used to solve a variety of optimisation problems, with a wide range of DE
variants existing in the literature [1].

The general DE framework used in this paper is as follows. The first step is
to initialise N solutions x1. . .xN , where N is the population size, with random
values in each dimension. The algorithm then repeats the following steps until
some termination criterion is met. At generation G, for each individual xi,G in
the population, depending on the mutation strategy used, up to five solutions
are chosen at random to use for mutation. The random solutions are used to
calculate difference vectors to diversify the solution. A new mutant vector vi,G
is generated using the given mutation strategy. In general a DE mutation strat-
egy is referred to in the format: mutation strategy/number of difference vectors.
Given xbest as the best solution found so far, randomly selected solutions xr1

to xr5 and F ∈ [0, 2] as a weighting (the differential weight) used to control the
influence of different vectors within the mutation, the five mutation strategies
used in this paper are as follows:

rand/1 vi,G = xr1,G + F · (xr2,G − xr3,G) (6)

rand/2 vi,G = xr1,G + F · (xr2,G − xr3,G)
+ F · (xr4,G − xr5,G)

(7)

best/1 vi,G = xbest,G + F · (xr1,G − xr2,G) (8)

best/2 vi,G = xbest,G + F · (xr2,G − xr3,G)
+ F · (xr4,G − xr5,G)

(9)

current − to − best/1 vi,G = xi,G + F · (xbest,G − xi,G)
+ F · (xr1,G − xr2,G)

(10)

452 P. Dempster et al.

After a mutant vector vi,G has been obtained, crossover is performed between
the original target vector xi,G and the mutant vector vi,G. In each case we use
binomial crossover to generate a trial vector ui,G, with the value assigned to
each dimension j of the trial vector as follows:

uj,i,G =

{
vj,i,G if rand[0,1) ≤ CR or j = jrand

xj,i,G otherwise
(11)

Here CR ∈ [0, 1] is the crossover probability, controlling which of the two
parents, either the target vector or the mutant vector, has the greatest influence
on the trial vector generated. jrand is the value of a random dimension to ensure
that at least one dimension is taken from each of the parent solutions. Finally
the target vector and the trial vector are compared using a fitness function g,
with the best of the two kept in the population for the following generation:

xi,G+1 =

{
ui,G if g(ui,G) < g(xi,G)
xi,G otherwise

(12)

3.1 Encoding and Decoding Solutions to the DTMFSP

As mentioned above, given n jobs, the search process when solving the DTMFSP
is over a vector of integers S = s1, . . . , sn, with each s ∈ S able to take a
value between 1 and f corresponding to the factory that job is allocated to. As
DE operates over a space of real values, a method to map a DE vector to a
DTMFSP solution in discrete space is needed. Assuming that there are n jobs
and f factories in the DTMFSP problem, each vector x has n dimensions with
values in the range [0,1]. To interpret a vector as a solution to the DTMFSP
problem, the range [0,1] is partitioned into n equal parts, that is [0, 1/f), [1/f,
2/f), . . . , [(n-1)/f, n). For example with 4 factories and 5 jobs the vector [0.21,
0.85, 0.42, 0.63, 0.31] indicates that the 1st job is assigned to 1st factory (as it
is in the interval [0, 0.25)), the 2nd job is assigned to 4th factory (it is within
the interval [0.75, 1)), with the remaining jobs assigned to factory 2, factory 3,
and factory 2 respectively. After determining which jobs are assigned to which
factory based on the DE vector, we can then determine the job sequence of each
factory. For each factory, finding the minimum makespan is the classical two
machine flow-shop scheduling problem, so we can use Johnson’s rule to compute
the optimal job sequence. The maximum makespan of this schedule can then be
computed.

4 Experimental Framework and Parameter Tuning

In our experiments we use the DTMFSP benchmark instances based on a real-
world scenario introduced by Deng et al. [2]. This set consists of 100 instances
with 5 instances for each f ∈ {2, 3, 4, 5, 6} and n ∈ {20, 50, 100, 200}. Here we will
focus on the largest of these instances where f = 3, 4 and 5. As Deng et al. [2]

Solving the Distributed Two Machine Flow-Shop Scheduling Problem 453

used 0.1 * n seconds CPU time as a termination criterion on different hardware,
only an indirect comparison can be made to their results. For the benefit of
future work in this area, we use the number of fitness evaluations as a termination
criterion, allowing each run to evaluate 500,000 individuals. All experiments were
performed on an Intel Core i7 CPU @ 2.40 GHz with 16 GB RAM.

The set of possible parameter settings for each DE component are given in
Table 1. In order to test all of these parameter settings, we would have to test
625 (54) combinations. However, using an orthogonal array we are able to reduce
this to 25 combinations, and use the results of these 25 experiments to derive
the best set of parameters to use on the full benchmark set. Consistent with
the parameter tuning performed by Deng et al. [2], we use the 11th 4-factory
instance (F4 11), which has n= 100 jobs to schedule for parameter tuning.

Table 1. Set of possible settings for each DE parameter

Parameter Possible values

F {0.25, 0.50, 0.75, 1.00, 1.25}
CR {0.02, 0.04, 0.06, 0.08, 0.10}
N {10, 25, 50, 100, 200}
Mutation strategy {rand/1, rand/2, best/1, best/2, current-to-best/1}

After applying each of the 25 parameter combinations to F4 11, we are able
to define the best set of parameters as DEBest. It was found that the parameter
set where F = 0.50, CR = 0.02, N = 25 and mutation strategy = rand/2
performed best, and will be referred to as DEBest herein.

5 Results

Deng et al. [2] presented three Harmony Search variants applied to the DTMFSP:
classic Harmony Search (HS), ‘improved’ Harmony Search (IHS) and Global-best
Harmony Search (GHS). Tables 2, 3 and 4 show the results of the best value
obtained from 10 runs of DEBest compared to the results of IHS, HS and GHS
obtained by Deng et al. [2] for instances with 4, 5 and 6 factories respectively.
Although only an indirect comparison can be made due to the differing termi-
nation criteria used, DEBest does not run for a significantly different amount of
time to the methods of Deng et al. [2], even when differences in hardware are
taken into consideration. The best results obtained for each instance are high-
lighted bold, with new best results also highlighted with an asterisk(*). Due to
space limitations, in the case of 4 factories in Table 2, we have only included those
instances for which new best results are obtained. For the remaining instances
of this type, DEBest and IHS [2] obtain identical results.

454 P. Dempster et al.

Table 2. Best makespan obtained by DEBest and Harmony Search variants over 10
runs of each instance of the Deng et al. [2] benchmark set with f = 4 factories

Instance DEBest IHS HS GHS

F4 4 312* 313 313 313

F4 11 1199* 1200 1201 1200

Average (F4 1–F4 20) 1171.0 1171.1 1173.1 1173.0

Table 3. Best makespan obtained by DEBest and Harmony Search variants over 10
runs of each instance of the Deng et al. [2] benchmark set with f = 5 factories

Instance DEBest IHS HS GHS

F5 1 227 227 229 231

F5 2 234 234 236 235

F5 3 243* 244 244 244

F5 4 272 272 275 275

F5 5 234 234 236 238

F5 6 543* 545 547 546

F5 7 537 537 547 544

F5 8 518* 519 525 522

F5 9 534 534 542 542

F5 10 466 465 473 469

F5 11 1008 1007 1024 1029

F5 12 1044 1044 1057 1060

F5 13 982 982 988 985

F5 14 986* 988 1004 1005

F5 15 1090* 1092 1096 1097

F5 16 2079 2079 2086 2089

F5 17 2131 2131 2140 2143

F5 18 2087 2087 2094 2095

F5 19 2050 2050 2073 2069

F5 20 2018 2017 2029 2029

Average 964.2 964.4 972.3 972.4

For the instances with f = 4 factories Table 2, DEBest and IHS clearly out-
perform HS and GHS, with DEBest obtaining new best solutions for instances
F4 4 and F4 11. DEBest also outperforms IHS on average in these instances.
GHS performs particularly badly on these instances, only obtaining the same
best result as the other 3 methods in 1 of the 20 instances, with HS only per-
forming marginally better. As noted by Deng et al. [2], as the number of facto-
ries increases, the task of assigning jobs to factories assignment becomes more

Solving the Distributed Two Machine Flow-Shop Scheduling Problem 455

Table 4. Best makespan obtained by DEBest and Harmony Search variants over 10
runs of each instance of the Deng et al. [2] benchmark set with f = 6 factories

Instance DEBest IHS HS GHS

F6 1 173 173 173 174

F6 2 235 235 235 235

F6 3 192* 194 194 194

F6 4 217* 218 219 219

F6 5 233 232 234 236

F6 6 434* 438 449 443

F6 7 423* 426 433 428

F6 8 393 391 406 405

F6 9 445 442 462 459

F6 10 460 459 474 465

F6 11 907 904 925 926

F6 12 787 787 798 796

F6 13 867 867 880 882

F6 14 877 874 901 900

F6 15 883 878 915 904

F6 16 1782* 1786 1801 1799

F6 17 1725 1724 1740 1739

F6 18 1664 1662 1698 1689

F6 19 1707 1707 1724 1731

F6 20 1680 1677 1728 1715

Average 804.2 803.7 819.5 817.0

complex, making it more difficult to find the best combination of jobs for a par-
ticular factory. As we see in Table 3 where f = 5, HS and GHS are no longer able
to find same best result as DEBest for any of these instances. DEBest is the best
performing method on 17 of these 20 instances and overall on average, finding
new best solutions for 5 instances. Table 4 presents the results when the num-
ber of factories f = 6. In this set of large instances the performance of DEBest

drops off somewhat, although it is able to find new best results for 5 of the 20
instances and obtains the best solution of all methods for 10 of the 20 instances.
It is notable here that IHS is the best performing method when the instances
get bigger, particularly for instances F6 11–F6 20 where the number of jobs is
100 and 200. One possible reason that DEBest is being outperformed on these
larger instances is the nature of the parameter tuning experiments performed.
As the parameter tuning was done on slightly smaller instances, where f = 4, it
could be the case that the parameters of DEBest are overfitted to instances of
this size and are not scaling well to the largest instances in the benchmark set.

456 P. Dempster et al.

Despite this, DEBest outperforms the three Harmony Search variants presented
by Deng et al. [2] on average for instances with f = 4 and 5, providing new
best-known results for 12 of the 60 benchmark instances tested.

6 Conclusions and Future Work

In this paper we have presented experiments applying Differential Evolution
(DE) to the distributed two machine flow-shop scheduling problem (DTMFSP).
Although the search space of the problem is discrete, a mapping is defined from
continuous to discrete space in order to apply DE to the problem indirectly.
An initial set of parameter tuning experiments were performed to decide the
parameters for DE before the best combination was applied to a set of benchmark
instances and compared to 3 existing methods based on the Harmony Search
algorithm. DE was able to outperform the Harmony Search methods in 2 of 3
sets of instances when clustered by number of factories and provide new best-
known results for 12 instances of the 60 tested.

All of the DE methods tested use fixed parameters throughout a run, with
the same set of parameters used across all instances of the benchmark set. It is
possible that good parameter settings are dependent on the particular instance
under consideration, or even the current state of the search. The literature con-
tains existing variations of DE such as SHADE [10] and JADE [12], which con-
trol parameters including crossover probability and differential rate adaptively.
Future work will apply methods such as these to the DTMFSP to see if any gain
can be made by controlling parameters in a dynamic manner.

References

1. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art.
IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

2. Deng, J., Wang, L., Shen, J., Zheng, X.: An improved harmony search algorithm for
the distributed two machine flow-shop scheduling problem. In: Kim, J.H., Geem,
Z.W. (eds.) Harmony Search Algorithm. AISC, vol. 382, pp. 97–108. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-47926-1 11

3. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

4. Johnson, S.M.: Optimal two-and three-stage production schedules with setup times
included. Naval Res. Logist. Q. 1(1), 61–68 (1954)

5. Lin, B.M., Hwang, F., Gupta, J.N.: Two-machine flowshop scheduling with three-
operation jobs subject to a fixed job sequence. J. Sched., 1–10 (2017, to appear)

6. Onwubolu, G., Davendra, D.: Scheduling flow shops using differential evolution
algorithm. Eur. J. Oper. Res. 171(2), 674–692 (2006)

7. Pan, Q.K., Wang, L., Gao, L., Li, W.: An effective hybrid discrete differential
evolution algorithm for the flow shop scheduling with intermediate buffers. Inf.
Sci. 181(3), 668–685 (2011)

8. Qian, B., Wang, L., Huang, D., Wang, W., Wang, X.: An effective hybrid de-based
algorithm for multi-objective flow shop scheduling with limited buffers. Comput.
Oper. Res. 36(1), 209–233 (2009)

http://dx.doi.org/10.1007/978-3-662-47926-1_11

Solving the Distributed Two Machine Flow-Shop Scheduling Problem 457

9. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

10. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differen-
tial evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation
(CEC 2013), pp. 71–78. IEEE (2013)

11. Wang, L., Pan, Q.K., Suganthan, P.N., Wang, W.H., Wang, Y.M.: A novel hybrid
discrete differential evolution algorithm for blocking flow shop scheduling problems.
Comput. Oper. Res. 37(3), 509–520 (2010)

12. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

A Multi-objective Differential Evolution
for QoS Multicast Routing

Wenhong Wei1(&), Zhaoquan Cai2, Yong Qin1, Ming Tao1,
and Lan Li3

1 School of Computer, Dongguan University of Technology,
Dongguan 523808, China
weiwh@dgut.edu.cn

2 Huizhou University, Huizhou 516007, China
3 School of Software, Nanchang University, Nanchang 330047, China

Abstract. This paper presents a new multi-objective differential evolution
algorithm (MODEMR) to solve the QoS multicast routing problem, which is a
well-known NP-hard problem in mobile Ad Hoc networks. In the MODEMR,
the network lifetime, cost, delay, jitter and bandwidth are considered as five
objectives. Furthermore, three QoS constraints which are maximum allowed
delay, maximum allowed jitter, and minimum requested bandwidth are included.
In addition, we modify the crossover and mutation operators to build the
shortest-path multicast tree to maximize network lifetime and bandwidth, min-
imize cost, delay and jitter. In order to evaluate the performance and the
effectiveness of MODEMR, the experiments are conducted and compared with
other algorithms for these problems. The simulation results show that our pro-
posed method is capable of achieving faster convergence and more preferable
for multicast routing in mobile Ad Hoc networks.

Keywords: Mobile Ad Hoc network � Multicast routing � Differential
evolution � Quality of service

1 Introduction

Differential evolution (DE), which was first proposed by Storn and Price [1], is one of
the most powerful evolutionary algorithms for global numerical optimization. The
advantages of DE are its ease of use, simple structure, speed, efficiency, and robustness
[2, 3]. Recently, DE has been successfully applied in diverse domains [4, 5]. DE also
can be used to solve multi-objective optimization problems [6, 7].

Multicast routing has drawn a lot of attention in recent years, and it is one type of
data transmission service in mobile Ad Hoc networks where the data are sent from
source node to many destination nodes through more than one path [8]. That is, it sends
the data packet only once and then it is duplicated and sent to different multicast group
members. In multicast routing, transmissions with high level of quality of service
(QoS) are fundamental guarantee of media applications, and the most important QoS
requirements are cost, delay, jitter and bandwidth [9]. However, in mobile Ad Hoc
networks, the data transmission range is influenced by the node battery power. If the

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 458–465, 2017.
DOI: 10.1007/978-3-319-61824-1_50

battery power consumption is high in any one of the nodes, the chances of network
lifetime reduction due to path breaks are also more. This may lead to packet loss during
packet forwarding in the multicast network. Thus, the QoS becomes more lower and
lower. That is to say, the higher node battery power, the higher is QoS.

In general, the objects in the multicast routing optimization problem include
minimization of routing cost, minimization of link delay, minimization of link jitter and
maximization of the bandwidth etc. [10]. It is well known that multicast routing
optimization is a non-deterministic polynomial (NP) hard problem for large-scale and
wide area network, so many metaheuristic algorithms and their variants are often used
for solving multicast routing optimization problem [11].

It is obvious that multicast routing problem is a multi-objective optimization
problem. So, in this work, the multicast routing problem with five objectives including
cost, delay, jitter, bandwidth and network lifetime is studied. We adopt multi-objective
differential evolution algorithm to solve these problems, and modify the crossover and
mutation operators to build the shortest-path multicast tree. In addition, we also adopt
non-dominant sorting and handing constraint techniques to solve the five objectives
optimization and three QoS constraints problems.

The rest of this paper is organized as follows. We firstly introduce the related work
in Sect. 2. Section 3 discusses the mobile Ad Hoc networks model and the problem
description. The proposed algorithm (MODEMR) is then presented in detail in Sect. 4.
Section 5 reports experimental results. Finally, conclusions are drawn in Sect. 6.

2 Related Work

As multicast routing problem is a NP-complete problem, several metaheuristic methods
have been employed to solve this problem. These optimization methods are as follows:
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Opti-
mization (ACO), Artificial Neural Networks (ANN) and Tabu Search (TS) research
activities. GA and its variants are the most used in multicast routing. Haghighat et al.
[10] proposed a novel QoS-based multicast routing algorithm based on the genetic
algorithms, and proposed connectivity matrix of edges for representation of the Steiner
trees, they considered a fitness function based on the total cost, the total delay and the
minimum bandwidth of a path using the penalty technique. Yen et al. [12] proposed a
multi-constrained QoS multicast routing method using the genetic algorithm for mobile
Ad Hoc networks, this algorithm floods data using the available resources and mini-
mum computation time in a dynamic environment. Karthikeyan and Baskar [13]
proposed an ensemble of immigrant strategies with genetic algorithm which optimizes
the combined objectives of network lifetime and delay is proposed for solving multicast
routing problem. The proposed algorithm ensembles random immigrant with random
replacement, random immigrant with worst replacement, elitism-based immigrant and
hybrid immigrant strategies. Sun et al. [14] proposed a modified quantum-behaved
particle swarm optimization method for QoS multicast routing in mobile Ad Hoc
networks. In the proposed method, QoS multicast routing is converted into an integer
programming problem with QoS constraints and is solved by the QPSO algorithm
combined with loop deletion operation. Bitam and Mellouk [15] proposed a novel bee

A Multi-objective Differential Evolution for QoS Multicast Routing 459

colony optimization algorithm called bees life algorithm applied to solve the quality of
service multicast routing problem for vehicular ad hoc networks as NP-Complete
problem with multiple constraints. The algorithm was applied to solve QoS multicast
routing problems with four objectives which were cost, delay, jitter, and bandwidth and
three QoS metrics constraints.

3 Mobile Ad Hoc Networks Model and Problem Description

For a given mobile Ad Hoc networks, it can be modeled as a weighted undirected graph
G = (V, E), where V = {v1, v2, …, vp} denotes the set of nodes and E = {e1, e2, …, eq}
denotes the set of links connecting these nodes. There are a weight vectors w con-
taining QoS attributes corresponding to each edge in E, such as cost, delay, jitter and
bandwidth. They represent the link transmission cost, the real delay during the link
transmission, the real link transmission delay variation (jitter) and the estimated link
band-width, respectively.

Suppose s 2 V be the source node of the multicast tree, and M ¼
fd1; d2; . . .; dng�fV � sg be the set of destination nodes of the multicast tree. Let
T(s,M) be the multicast tree, |V| be the total number of nodes, |E| be the total number of
links, R+ be the set of positive real numbers. So T(s,M) which the source node will send
the message to multiple destination nodes can be generated from the nodes of graph
G through.

In the multicast tree T(s, M), let p(s, t) denotes the routing path of T(s, M) from the
source node s to destination node tðt 2 MÞ. Hence, the total QoS metrics are given by
the following functions:

Cost T s;Mð Þð Þ ¼
X

e2Tðs;MÞ
CostðeÞ ð1Þ

Delay p s; tð Þð Þ ¼
X

e2pðs;tÞ
DelayðeÞ ð2Þ

Jitter p s; tð Þð Þ ¼
X

e2pðs;tÞ
JitterðeÞ ð3Þ

Bandwidth p s; tð Þð Þ ¼ min Bandwidth eð Þð Þ; e 2 p s; tð Þ ð4Þ

In addition, let Degi denotes the degree of the node i, Enyi denotes the residual
battery energy of the node i, uij denotes the flow from the node i to the node j, and hij
denotes the energy consumption of the node i to transmit a unit of datagram to the node
j. Assume that the values of uij and hij are same in all nodes, the datagram flow rate
Cij ¼ uij � hij. Hence, the lifetime of the multicast tree T(s, M) is given as follows:

Tot lifeðTðs;MÞÞ ¼ min
i2Tðs;MÞ

Enyi
PCij

j2Degi

()

ð5Þ

460 W. Wei et al.

Total lifetime of the mobile Ad Hoc networks is determined only for the topology
of the multicast tree T(s, M), furthermore, from Eq. (5), the higher the Degi, the greater
is energy consumption. As we well known, in mobile Ad Hoc networks, the Degi
represents the set of nodes connected to node i by links. So, the higher the Degi, the
lower is the routing cost.

Above all, for the sake of practical deployment, in this work, the two maximization
objectives bandwidth and network lifetime are transferred to two minimization
objectives according to add sign “−” to the objective functions. So the five objectives
can be formulated as follows:

Min : f T s;Mð Þð Þ ¼ f1; f2; f3; f4; f5ð Þ ð6Þ

where

f1 = Cost(T(s, M))
f2 = Delay(T(s, M))
f3 = Jitter(T(s, M))
f4 = −Bandwidth(T(s, M))
f5 = −Tot_life(T(s, M))

Subject to:

Delay p s; tð Þð Þ�QD
Jitter p s; tð Þð Þ�QJ
Min
t2T

fBandwidthðp; sÞÞg�QB

where the maximum delay and the jitter should be lower or equal to the delay threshold
QD and the jitter threshold QJ respectively, and the minimum of Bandwidth(p(s, t)) in
every link in the whole multicast tree should be greater or equal to the minimum
bandwidth threshold QB.

4 MODEMR Algorithm

To solve the multicast routing problem in mobile Ad Hoc networks, we design
multi-objective differential evolution algorithm named as MODEMR using modified
the crossover and mutation operators to build the shortest-path multicast tree. In the
MODEMR, since there exist QoS constraints, constraint handling scheme is used to
handle QoS constraints.

4.1 Coding Scheme

In this work, the path coding scheme is employed to represent individual. In this coding
scheme, the individual is represented as single solution which is multicast tree contains
the different paths from source node s to each destination node di 2 M via a set of
intermediate nodes. Path is encoded as a nodes sequence, and then an individual is
represented by tree structure contains its different paths.

A Multi-objective Differential Evolution for QoS Multicast Routing 461

4.2 Initialization Scheme

It is a great helpful that population evolve using a good initialization scheme, which
can make the promising areas quickly be discovered. In this work, a new population
initialization scheme is designed, the details are given as follows:

Firstly, for given weighted graph G including cost, delay, jitter, bandwidth and
lifetime, some spanning trees are generated using the spanning tree algorithm. Suppose
that the number of spanning trees is NP and the number of destination nodes is n. that
is, there are NP individuals with n-dimensional parameter vectors. Then, based on each
obtained spanning tree, an initial population is generated using the n paths staring from
the root node s to the destination nodes {d1, d2, …, dn} in it.

4.3 Mutation Scheme

In DE, mutation is an operator which is used to generate a mutated individual according
to differential vector. In this work, we modify mutation operator, and an example for
rand/1 mutation operator is given as follows:

Firstly, three paths towards three destinations are selected from three individuals,
such as p1, p2 and p3. For the p3, we selected randomly an intermediate node according
to the probability F from destination node to source node, and we search the same node
in the p2 from destination node to source node. If the same node is found in the p2, the
part path of the p3 from destination node to the intermediate node will swap the same
part of the p2. If the chosen intermediate node is not found, this process is repeated until
success. When this process successes, the p1 and p2 will become two new paths. Then,
we selected randomly an intermediate node from destination node to source node in the
p2, and we search the same node in the p1 from destination node to source node.
Similarly, if the same node is found in the p1, the part of the p2 from destination node to
the intermediate node will swap the same part of the p1. If the chosen intermediate node
is not found, this process is repeated until success. After these operators finish, p1, p2
and p3 will success to mutate.

4.4 Crossover Scheme

The crossover is a binomial operator which is used to recombine the vector of two
individuals to generate the trial vectors according to the probability CR. In this work,
path crossover is used to substitute binomial crossover operator. In the path crossover
operator, if there are two paths with the same destination nodes in two individuals, the
two paths are selected and exchanged. This process is repeated until reaching all
individuals with crossover probability of CR.

4.5 Selection Scheme

Before selection operator is executed, we must get the fitness of objective functions
using constraint handling scheme. Then, the offspring replaces the parent immediately

462 W. Wei et al.

if the parent is dominated by the offspring. If the parent dominates the offspring, the
offspring is discarded. Otherwise, when the offspring and parent are non-dominated
with each other, the parent and the offspring are stored in archive together.

5 Experimental Results and Analysis

To demonstrate the effectiveness of the MODEMR, the comprehensive experiments are
conducted to evaluate the performance of the MODEMR. We use Waxman’s random
graph generator generate a network topologies. All simulations are carried out in an
Intel Core Quad CPU with 2.83 GHz and 4.00 GB RAM. The proposed algorithm was
programmed in Matlab 2013b and was run on a windows 7 operating system (64 bit).

In the experiments, the proposed MODEMR is compared with other state-of-the-art
EAs for multicasting rouging problem, such as EISGA [13], QPSO [14] and BLA [15].
In addition, since this is a stochastic optimization algorithm, the comparative approa-
ches are performed on 30 independent runs for each test, and the maximum number of
generations is 200.

The number of nodes in the networks was set to be 10, 20, 30, 40 and 50. The
characteristics of the links are also described by a quaternary (C, D, J, B), and the QoS
constraints set are described by set {QD, QJ, QB}. These constraints are as follows:

(1) the cost C = rand(2, 10); (2) the delay D = 2/3 * C ms; (3) the jitter J = rand
(5, 15) ms; (4) the bandwidth B = rand(50, 200) kbit/s; (5) the network lifetime T =
rand(15, 30) min; (6) path maximum delay threshold at QD = rand(60, 80) ms;
(7) maximum path jitter threshold QJ = rand(20, 50) ms; (8) minimum path bandwidth
threshold QB = rand(100, 170) kbit/s.

To certify that the MODEMR can outperform the EISGA, QPSO, and BLA in each
objective preference, the results of the average rankings of these different algorithms by
the Friedman test are shown in Tables 1. It is clearly shown that the MODEMR
consistently obtain best rankings in all algorithms for the five objectives. In addition,
from Table 1, we also find that the QPSO and BLA are ranked 2 and 3 respectively.

Then, the Wilcoxon Signed Rank test is used to perform statistically significant
testing between pairs of algorithms. Table 2 shows Wilcoxon Signed Rank test result
on the non-dominated solutions obtained by the MODEMR and the best solutions
obtained by the EISGA, QPSO, and BLA in each objective preference. It is clearly seen
that the MODEMR obtain higher R+ values than R− values, which indicates that the
MODEMR is significantly better than the EISGA, QPSO and BLA.

Table 1. Average ranking of all the algorithms by the Friedman test for five objectives.

Algorithms Ranking
Cost Delay Jitter Bandwidth Lifetime

MODEMR 1.6(1) 1.6(1) 1.4(1) 1.6(1) 1(1)
EISGA 4(4) 4(4) 4(4) 3.2(4) 4(4)
QPSO 1.8(2) 1.8(2) 1.6(2) 2.2(2) 2.2(2)
BLA 2.6(3) 2.6(3) 3(3) 3(3) 2.8(3)

A Multi-objective Differential Evolution for QoS Multicast Routing 463

6 Conclusion

In mobile Ad Hoc network, the multicast routing problem was studied as a
multi-objective optimization problem with constraints. The objectives include trans-
mission cost, delay, jitter, bandwidth and network lifetime. To solve multicast routing
problems in Mobile Ad Hoc Network, this work proposed a QoS multicast routing
algorithm based on multi-objective DE algorithm. The proposed algorithm encoded the
number of the path from the source node to each destination nodes in the network as
each individual vector, and its mutation and crossover operators were modified. Thus,
the multicast routing problem with the constraints representing QoS requirements was
solved by multi-objective DE. In order to prove the reliability and the efficiency of this
proposal, the experiments are conducted. The obtained results compared with other
algorithms show that the proposed algorithm is capable of achieving faster convergence
and more preferable for multicast routing problem in mobile Ad Hoc network.

Acknowledgement. This work was supported by the National Nature Science Foundation of
China (Nos. 61370185, 61402217), Guangdong Higher School Scientific Innovation Project
(No. 2014KTSCX188), the outstanding young teacher training program of the Education
Department of Guangdong Province (YQ2015158); and Guangdong Provincial Science and
Technology Plan Projects (Nos. 2016A010101034, 2016A010101035). Guangdong Provincial
High School of International and Hong Kong, Macao and Taiwan cooperation and innovation
platform and major international cooperation projects (No. 2015KGJHZ027).

Table 2. The Wilcoxon sign rank test results for MODEMR Against EISGA, QPSO and BLA.

Algorithms Criteria R+ R−

MODEMR - to - EISGA Cost 15 0
Delay 15 0
Jitter 15 0
Bandwidth 13.5 1.5
Lifetime 15 0

MODEMR - to - QPSO Cost 8 7
Delay 9 6
Jitter 10 5
Bandwidth 13.5 1.5
Lifetime 15 0

MODEMR - to - BLA Cost 12 3
Delay 12 3
Jitter 15 0
Bandwidth 13.5 1.5
Lifetime 15 0

464 W. Wei et al.

References

1. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

2. Wei, W., Wang, J., Tao, M.: Constrained differential evolution with multiobjective sorting
mutation operators for constrained optimization. Appl. Soft Comput. 33, 207–222 (2015)

3. Zhou, X., Zhang, G., Hao, X., Yu, L.: A novel differential evolution algorithm using local
abstract convex underestimate strategy for global optimization. Comput. Oper. Res. 75, 132–
149 (2016)

4. Rajesh, K., Bhuvanesh, A., Kannan, S., Thangaraj, C.: Least cost generation expansion
planning with solar power plant using differential evolution algorithm. Renew. Energy 85,
677–686 (2016)

5. Malathy, P., Shunmugalatha, A., Marimuthu, T.: Application of differential evolution for
maximizing the loadability limit of transmission system during contingency. In: Pant, M.,
Deep, K., Bansal, J.C., Nagar, A., Das, K. (eds.) Proceedings of Fifth International
Conference on Soft Computing for Problem Solving. AISC, vol. 437, pp. 51–64. Springer,
Singapore (2016). doi:10.1007/978-981-10-0451-3_6

6. Wei, W., Wang, J., Tao, M., Yuan, H.: Multi-objective constrained differential evolution
using generalized opposition-based learning. Comput. Res. Dev. 53(6), 1410–1421 (2016)

7. Cheng, J., Yen, G.G., Zhang, G.: A grid-based adaptive multi-objective differential evolution
algorithm. Inf. Sci. 367–368, 890–908 (2016)

8. Liu, Y., Dong, M., Ota, K., Liu, A.: ActiveTrust: secure and trustable routing in wireless
sensor networks. IEEE Trans. Inf. Forensics Secur. 11(9), 2013–2027 (2016)

9. Tao, M., Lu, D., Yang, J.: An adaptive energy-aware multi-path routing strategy with load
balance for wireless sensor networks. Wirel. Pers. Commun. 63(4), 823–846 (2012)

10. Haghighat, A., Faez, K., Dehghan, M.: GA-based heuristic algorithms for QoS based
multicast routing. Knowl. Based Syst. 16, 305–312 (2003)

11. Koyama, A., Nishie, T., Arai, J., Barolli, L.: A GA-based QoS multicast routing algorithm
for large-scale networks. Int. J. High Perform. Comput. Netw. 5, 381–387 (2008)

12. Yen, Y., Chao, H., Chang, R., Vasilakos, A.: Flooding-limited and multi-constrained QoS
multicast routing based on the genetic algorithm for MANETs. Math. Comput. Model. 53,
2238–2250 (2011)

13. Karthikeyan, P., Baskar, S.: Genetic algorithm with ensemble of immigrant strategies for
multicast routing in ad hoc networks. Soft. Comput. 19, 489–498 (2015)

14. Sun, J., Fang, W., Wu, X., Xie, Z., Xu, W.: QoS multicast routing using a quantum-behaved
particle swarm optimization algorithm. Eng. Appl. Artif. Intell. 24, 123–131 (2011)

15. Bitam, S., Mellouk, A.: Bee life-based multi constraints multicast routing optimization for
vehicular ad hoc networks. J. Netw. Comput. Appl. 36, 981–991 (2013)

A Multi-objective Differential Evolution for QoS Multicast Routing 465

http://dx.doi.org/10.1007/978-981-10-0451-3_6

Energy-Saving Variable Bias Current
Optimization for Magnetic Bearing Using

Adaptive Differential Evolution

Syuan-Yi Chen(&) and Min-Han Song

Department of Electrical Engineering, National Taiwan Normal University,
Taipei 106, Taiwan

chensy@ntnu.edu.tw

Abstract. This study proposes an adaptive differential evolution (ADE)-based
variable bias current control strategy to improve the energy efficiency of an
active magnetic bearing (AMB) system. In the AMB system, the drive current is
composed of a control current and a superimposed bias current in which the
former is controlled by an external controller used to regulate the rotor position
while the latter is set as a pre-designed constant used to improve the linearity
and dynamic performance. Generally, the bias current causes power loss even if
no force is required. In this regard, the ADE-based variable bias current control
strategy is proposed to minimize the energy consumption of the AMB control
system without altering the control performance. Experimental results demon-
strate the high-accuracy control and significant energy saving performances of
the proposed method. The energy improvements compared to baseline were
20.24% and 17.65% for the operation periods of 10 s and 50 s, respectively.

Keywords: Variable bias current optimization � Differential evolution �
Magnetic bearing � Energy-saving

1 Introduction

Active magnetic bearing (AMB) uses electromagnetic forces to support and regulate a
rotor to the predefined positions [1, 2]. Specific features of such bearings, such as
noncontact and low friction, make AMBs appropriate for uses in some special envi-
ronments such as flywheel energy storage devices [3] and spindles [4]. Most drive
schemes of AMB use a constant bias current with a superimposed dynamic control
current to linearize the relationship between the control current and the electromagnetic
force [1, 2]. The control current is controlled by an external controller used to regulate
the rotor position while the bias current is set as a pre-designed constant used to
improve the control linearity. Although the bias current can improve the linearity of
AMB, there are always some power losses even if no force is required [5].

In general, lowering the bias current may enhance the nonlinearities of the AMB
positioning system and lead to a control singularity [6]. The existent methods for
determining the variable bias current can be categorized into adaptive control [5] and
switching control [6]. Both methods depend on the dynamic model and system

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 466–474, 2017.
DOI: 10.1007/978-3-319-61824-1_51

parameters heavily. For the time being, there is no research that uses evolutionary
algorithm to optimize the bias current without system information dynamically.

Differential evolution (DE) uses mutation, recombination, and selection operators at
each generation to move the population toward the global optimal solution. It has been
successfully applied in diverse fields [7–9]. However, three crucial control parameters
of DE, population size (NP), mutation factor (F), and crossover rate (CR), may sig-
nificantly affect the optimization performance [8]. Therefore, many strategies and
operations have been proposed to accelerate the convergence speed and enhance the
optimization performance of the conventional DE algorithm [8, 9].

In this study, an energy saving variable bias current control strategy is proposed to
optimize the bias current automatically for improving the energy efficiency and control
performance simultaneously. The core of the strategy is based on an online DE
algorithm. In this regard, no mathematical model and system parameters are required
during the control process. Experimental results illustrated the validity and advantages
of the proposed variable bias current optimization for the AMB positioning system.

2 AMB Positioning System

Figure 1 shows the control principle of the AMB positioning system. To regulate the
position of the rotor to the zero, the currents circulated through the two electromagnets
should be controlled exactly and dynamically. The deviation of the nominal air gap z0
is denoted by variable z, which is also referred to as the rotor position. Two power
amplifiers are used to transfer the voltage signals to drive currents. Moreover, the bias
current i0 is decided by a predesigned constant bias voltage v0. On the other hand, the
control current iz, which is determined by the output of the controller vz in real-time, is
added to the bias current in the right electromagnetic coil and subtracted from the bias
current in the left one. According to the dynamic adjustment of the control current iz,
the rotor can be positioned and moved to the arbitrary position.

Σ

−
Σ

+

zv−0

0v

zv
+

+
zv

zv+0

z
Proposed Energy-Saving AMB Control Strategy

Right
Electromagnet

Power
Amplifier

Power
Amplifier

Left
Electromagnet

zii

iv

v +0

zi−0
Thrust
Disk

Rotor

Rotor Position Signal z

Position
Sensor

zd

Nominal
Position

z

z0–z

z0z0

z0+z

Fz

NN-based
Control Current

Controller

Fz1Fz2

ADE-based
Bias Current
Optimization

Fig. 1. Drive system of the AMB positioning system.

Energy-Saving Variable Bias Current Optimization 467

The nonlinear attractive electromagnetic force can be modeled as follows [1, 2]:

Fz ¼ kðFz1 � Fz2Þ ¼ k
ði0 þ izÞ2
ðz0 � zÞ2 �

ði0 � izÞ2
ðz0 þ zÞ2

" #
ð1Þ

where k is the electromagnet factor; Fz1 and Fz2 are the forces caused by the right and
left electromagnets, respectively. The dynamic model of the AMB positioning system
can be derived using as follows [2]:

m€z ¼ �c_zþKzzþKiiz þFd ð2Þ

where m is the mass of the rotor, c is the friction factor due to the supporting bearings
in radial direction, and Fd is the external disturbance. The instantaneous power loss is
introduced to compare the energy efficiency of the drive system as below:

P ¼ ði0 þ izÞþ ði0 � izÞ½ �R ð3Þ

where R is the resistance of the coil. The control current iz can be positive, zero, or
negative values depending on the rotor position while the bias current i0 is a constant.
Hence, the accumulated energy consumption Ep during the time interval T [0, T] is:

EpðtÞ ¼
Z T

0
PðtÞdt ð4Þ

3 Adaptive DE Algorithm

The steps of the adopted adaptive DE (ADE) algorithm are described as follows [8]:

1. Initialization: The initial target vector Xg
i are generated randomly as follows:

Xg
i ¼ xgi;1; x

g
i;2; . . .x

g
i;j; . . .; x

g
i;d

h i
ð5Þ

where i = 1, 2, …, NP, in which NP is the population size; j = 1, 2, …, d, in which
d is the dimension of the search space; and g represents the gth generation.

2. Mutation: For the individual target vector Xg
i , three individual vectors,

Xg
r1;X

g
r2; andX

g
r3 among the population are randomly selected to generate the mutant

vector Vgþ 1
i according to the following mutation mechanism:

Vgþ 1
i ¼ Xg

r1 þFðXg
r2 � Xg

r3Þ ð6Þ

where r1 6¼ r2 6¼ r3 6¼ i, and F is a mutation factor. In general, the small constant
mutation factor F may lead to premature convergence, whereas a large constant

468 S.-Y. Chen and M.-H. Song

mutation factor may result in poor convergence efficiency. Therefore, an adaptive
selection mechanism for the factor F is adopted as follows [8]:

F ¼ /� f� k ð7Þ

where / is a random value between (0, 1), k is an adaptive factor, and f is an inertia
weight defined as

f ¼
ffi
gmax � gnow

gmax

r
ð8Þ

where gmax is the maximum number of generations, and gnow is the current number
of generations. Moreover, the factor k is used to balance the global exploration and
local search abilities as follows:

k ¼ kb � 1; if q� qd
ks\1; otherwise

�
ð9Þ

where q is the improvement rate of the target vector Xg
i , qd is the threshold of the

acceptable improvement rate, kb and ks are the big and small step sizes,
respectively.

3. Recombination: In this step, the individual target vector Xg
i is crossed over with its

mutated mutant vector Vgþ 1
i to generate the trial vector Ugþ 1

i as follows:

ugþ 1
i;j ¼ vgþ 1

i;j ; if randj �CR
xgi;j; otherwise

�
ð10Þ

where ugþ 1
i;j ; vgþ 1

i;j ; and xgi;j are the jth elements ofUgþ 1
i ; Vgþ 1

i ; andXg
i ; respectively;

randj is a random value between (0, 1); and CR is a predesigned crossover rate.

4. Selection: The trial vector Ugþ 1
i is compared with the target vector Xg

i via the fitness
values. The better one is then selected as a new target vector for the next generation.

Xgþ 1
i ¼ Ugþ 1

i ; if FITðUgþ 1
i Þ�FITðXg

i Þ
Xg
i ; otherwise

�
ð11Þ

where FIT is a fitness function defined by the users. Repeat Steps 1–4 until the best
fitness value is achieved or a preset count of the generation is reached.

4 Proposed Control Strategy

Selecting the bias current manually with the simultaneous considerations of the control
performance and energy efficiency is difficult. In this regard, an energy saving
ADE-based variable bias current control strategy is proposed. First, the rotor position

Energy-Saving Variable Bias Current Optimization 469

was controlled by the control current through a well-designed neural network
(NN) controller; moreover, the variable bias current was optimized by the ADE to
minimize the power loss of the AMB. For example, NP target vectors X1,1–X4,NP with
one searching space dimension, which is simplified as X1–XNP here, were assumed and
selected randomly in the searching range as follows:

Xmin\Xi �Xmax ð12Þ

In the beginning of the control process, a predesigned bias voltage v0 was applied
directly to the AMB positioning system as shown in Fig. 2. Each trial vector Xi was
then sequentially adopted as the bias voltage v0 and learned dynamically through the
ADE algorithm. The execution of the ADE algorithm in each time interval T includes
Ng generation for evolution. All target vectors X1–XNP were evaluated and learned
during the evolution, respectively. The positioning errors ea and power loss P during
one period are measured to evaluate the fitness value of Xi as follows:

FITðXi; IÞ ¼ 1

eþ PNg

I¼1
sceaðIÞþ spPðIÞ
� � ð13Þ

where I represents the Ith iteration; sc and sp are the trade-off weights for considered
positioning performance and energy efficiency respectively. The vector Xi with the
highest fitness value will be selected as the bias voltage v0 for the practical AMB
positioning system in the next period so that the bias current i0 can be adjusted
dynamically by considering the control performance and energy efficiency effectively.

0

Rotor Position
(μm)

Time
(sec)

v0=

ADE ADE ADE ADE ADE ADE

v0= v0= v0= v0=

T

v0=4.5V

: Vector Xi with the highest fitness value

… … … … … …

Fig. 2. Proposed energy saving variable bias current control strategy for the AMB positioning
system using the ADE algorithm.

470 S.-Y. Chen and M.-H. Song

5 Experimental Results

5.1 Experimental Setup

In the experimental setup, a digital signal processor (DSP) with 14-b resolution
analog-to-digital converters (ADCs) and 16-b resolution digital-to-analog converters
(DACs) was used as the control core. In this study, the bias voltage v0 was selected as
4.5 V to achieve the best transient and steady state control performance through some
trials. Moreover, the scaling of the input voltage and output current of the power
amplifier was 0.2 A/V. Furthermore, a low-pass filter with cutting frequency of 60 Hz
was used to filter the high-frequency noise of the position signal. In the DSP, the
interrupt service routine with execution frequency of 5 kHz first calculated the rotor
position from the ADC interface. Subsequently, the control signal was determined
according to the controller and transmitted to the power amplifier through the DAC. In
addition, the maximum positioning error TM, average positioning error TA, and standard
deviation of the positioning error TS for the trajectory positioning are measured to
compare the control performances during the control process [10].

5.2 Experimentation

The experimental setup is illustrated in Fig. 3. In the experiment, a NN controller with
constant bias voltage v0 was tested for comparing the control performance. The control
voltage vz was determined via the NN controller while the bias voltage v0 was fixed at a
constant value of 4.5 V. The control voltage vz was changed for generating the required
dynamic electromagnetic force. Though the rotor can be controlled accurately, the
energy efficiency problem was not considered. The bias current i0 circulated in the
electromagnetic coils of the AMB even if no force was required. To improve the energy
efficiency of the AMB positioning system, the ADE algorithm was further adopted for
the optimization of the bias current. The control parameters were designed as NP = 6,
Ng = 50, CR = 0.3, kb = 1.5, ks = 0.5, qd = 0.3, d = 1, sc = 0.5, sp = 0.5, Xmin = 3.5,
and Xmax = 4.5. The experimental results are presented in Fig. 4. As seen in Fig. 4,

DSP

Power
Amplifiers

Position Signal
Amplifier

Axial
AMB

Digital
Oscilloscope

Position Signal
Filter

DSP Terminal
Board

Left Radial
Bearing

Rotor
Position
Sensor

Right Radial
Bearing

Fig. 3. Practical experimental setup of the AMB positioning system.

Energy-Saving Variable Bias Current Optimization 471

the bias voltage v0 was varied in the search range to optimize the positioning perfor-
mance and energy efficiency simultaneously.

The control performance measures of the NN controller with constant bias voltages
v0 of 3.5 V and 4.5 V and NN-ADE control strategy with variable bias voltage v0 are
shown in Fig. 5. It shows that the higher bias voltage can produce stronger electro-
magnetic force but also consume more energy unavoidably. On the other hand, the
energy consumptions of the NN controller with constant bias voltages v0 of 3.5 V and
4.5 V and NN-ADE with variable bias voltage for operation periods of 10 s and 50 s
are shown in Fig. 6. The experimental results showed that the AMB positioning system
using the NN-ADE control strategy consumed lower energy than that using the NN

Rotor
Position

0V

1sec

Reference
Trajectory

2V

0 μm

90μm

90μm

60μm

60μm30μm

1sec7.5μm

1sec

1sec

1sec

R
ot

or
 P

os
iti

on
z(

μ
m

)

0μm

Tr
ac

ki
ng

 E
rr

or
e

(μ
m

)
C

on
tro

l V
ol

ta
ge

v z
 (

V
)

To
ta

l C
ur

re
nt

s
i 0

+
i Z

(A

)
 i

0
–

i Z
(A

)
Time (sec)

(a)

Time (sec)
(b)

Time (sec)
(c)

Time (sec)
(e)

0V
2V 1secB

ia
s V

ol
ta

ge
v o

(V
)

Time (sec)
(d)

0A
1A

1A
0A

3.5V
4.5V

Fig. 4. Experimental results of the AMB positioning system using the NN-ADE control
strategy. (a) Reference trajectory and positioning response of the rotor. (b) Positioning error e. (c)
Control voltage vz. (d) Variable bias voltage v0. (e) Total currents i0 + iz and i0 − iz.

472 S.-Y. Chen and M.-H. Song

controller with constant bias voltages of 4.5 V; moreover, it exhibited higher control
performance than the NN controller with a constant bias voltage 3.5 V. Compared with
the NN controller with constant bias voltages v0 of 4.5 V, the energy improvements of
the proposed NN-ADE control strategy were 20.24% and 17.65% for the operation
periods of 10 s and 50 s, respectively. The outstanding energy improvement achieved
by the proposed NN-ADE control strategy can be verified clearly.

6 Conclusion

This study successfully demonstrated the development and application of the novel
ADE-based energy saving variable bias current control strategy for an AMB posi-
tioning system considering the energy efficiency and control performance simultane-
ously. The theoretical bases of the proposed NN-ADE-based variable bias current
control strategy were introduced to minimize the energy consumption of the AMB
considering the requirements of positioning performance and robustness. The experi-
mental results showed that not only the rotor can track the reference trajectory precisely
but energy consumption can also be minimized through online bias current optimiza-
tion with regard to the highly nonlinear AMB positioning system.

5.67

1.25 1.15

4.5

0.91 0.89

4.48

0.96 0.93
0
1
2
3
4
5
6

NN (v0=3.5V)
NN (v0=4.5V)
NN-ADE

(μm)

Maximum TM Average TA Standard Deviation TS

v0
v0

Fig. 5. Control performance measures of the NN and NN-ADE controllers.

6.4

32

8.4

42.5

6.7

35

0

10

20

30

40

50

10 seconds 50 seconds

NN (v0=3.5V)
NN (v0=4.5V)
NN-ADE

(J)

v0
v0

Fig. 6. Energy consumptions of the various controllers for 10 s and 50 s operation periods.

Energy-Saving Variable Bias Current Optimization 473

References

1. Schweitzer, G., Bleuler, H., Traxler, A.: Active Magnetic Bearings: Basics, Properties, and
Applications of Active Magnetic Bearings. vdf Hochschulverlag, Zurich (1994)

2. Chen, S.Y., Lin, F.J.: Robust nonsingular terminal sliding-mode control for nonlinear
magnetic bearing system. IEEE Trans. Control Syst. Technol. 19(3), 636–643 (2011)

3. Mukoyama, S., Matsuoka, T., Hatakeyama, H., Kasahara, H., Furukawa, M., Nagashima, K.,
Ogata, M., Yamashita, T., Hasegawa, H., Yoshizawa, K., Arai, Y., Miyazaki, K., Horiuchi, S.,
Maeda, T., Shimizu, H.: Test of REBCOHTSmagnet of magnetic bearing for flywheel storage
system in solar power system. IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015)

4. Pesch, A.H., Smirnov, A., Pyrhonen, O., Sawicki, J.T.: Magnetic bearing spindle tool
tracking through l-synthesis robust control. IEEE/ASME Trans. Mechatron. 20(3), 1448–
1457 (2015)

5. Sahinkaya, M.N., Hartavi, A.E.: Variable bias current in magnetic bearings for energy
optimization. IEEE Trans. Magn. 43(3), 1052–1060 (2007)

6. Motee, N., de Queiroz, M.S.: A switching control strategy for magnetic bearings with a
state-dependent bias. In: Proceeding of the 42nd IEEE Conference on Decision and Control,
Maui, Hawaii USA, vol. 1, pp. 245–250, 9–12 December 2003

7. Lei, Q., Wu, M., She, J.: Online optimization of fuzzy controller for coke-oven combustion
process based on dynamic just-in-time learning. IEEE Trans. Autom. Sci. Eng. 12(4), 1535–
1540 (2015)

8. Lee, W.P., Chien, C.W., Cai, W.T.: Improving the performance of differential evolution
algorithm with modified mutation factor. J. Adv. Eng. 6(4), 255–261 (2011)

9. Tang, L., Dong, Y., Liu, J.: Differential evolution with an individual-dependent mechanism.
IEEE Trans. Evol. Comput. 19(4), 560–573 (2015)

10. Lin, F.J., Chen, S.Y., Huang, M.S.: Tracking control of thrust active magnetic bearing
system via Hermite polynomial-based recurrent neural network. IET Electr. Power Appl.
4(9), 701–714 (2010)

474 S.-Y. Chen and M.-H. Song

Fireworks Algorithm

Acceleration for Fireworks Algorithm Based
on Amplitude Reduction Strategy and Local

Optima-Based Selection Strategy

Jun Yu1 and Hideyuki Takagi2(B)

1 Graduate School of Design, Kyushu University, Fukuoka 815-8540, Japan
2 Faculty of Design, Kyushu University, Fukuoka 815-8540, Japan

takagi@design.kyushu-u.ac.jp

Abstract. We propose two strategies for improving the performance of
the Fireworks Algorithm (FWA). The first strategy is to decrease the
amplitude of each firework according to the generation, where each fire-
work has the same initial amplitude and decreases in size every genera-
tion rather than by dynamic allocation based on its fitness. The second
strategy is a local optima-based selection of a firework in the next gen-
eration rather than the distance-based selection of the original FWA.
We design a set of controlled experiments to evaluate these proposed
strategies and run them with 20 benchmark functions in three different
dimensions of 2-D, 10-D and 30-D. The experimental results demonstrate
that both of the two proposed strategies can significantly improve the
performance of the original FWA. The performance of the combination
of the two proposed strategies can further improve that of each strategy
in almost all cases.

Keywords: Fireworks algorithm · Decrement strategy · Local optima-
based selection strategy

1 Introduction

Swarm intelligence has attracted the attention of many researchers because of
its simplicity, robustness, parallelism and others. It simulates the mutual coop-
eration among simple individuals to achieve complex social behavior, such as
in particle swarm optimization (PSO) [1] and ant colony optimization [2]. The
fireworks algorithm (FWA) [3] is an emerging swarm intelligence algorithm pro-
posed in 2010, which repeatedly simulates the explosion of fireworks to find the
optimal solution.

Some improved versions of FWA have subsequently been proposed. For exam-
ple, the enhanced fireworks algorithm (EFWA) [4] improves several operations
of the original FWA and can achieve a better performance. Dynamic FWA (dyn-
FWA) [5] uses a dynamic explosion amplitude for the currently best firework.

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 477–484, 2017.
DOI: 10.1007/978-3-319-61824-1 52

478 J. Yu and H. Takagi

Although these modifications versions of FWA have improved the perfor-
mance of the original FWA, there are still some limitations, and many researchers
are still trying to propose new improvements.

The objective of this paper is to propose two strategies and improve the
performance of the original FWA with the same cost consumption. The first
approach used to attain this objective is to decrease the amplitude of each fire-
work in accordance with the firework’s generation rather than its fitness in order
to achieve a good balance between exploration and exploitation. The second
approach proposes a local optima-based selection strategy to keep the diversity
of the population instead of the distance-based selection used in original FWA.
We compare the performances of each proposal and their combination together
with the original FWA.

We introduce the framework of original FWA and propose our two new strate-
gies in Sect. 2. Then, we evaluate them compared with the original FWA using
20 benchmark functions of 3 different dimensions in Sect. 3. Finally we discuss
the experimental evaluations in Sect. 4.

2 Improvements of Fireworks Algorithm

2.1 Original Fireworks Algorithm

In the real world, fireworks are launched into the sky, and many sparks are gen-
erated around the fireworks. The explosion process of a firework can be viewed as
a local search around a specific point. FWA simulates the explosion process iter-
atively to find the optimal solution. Figure 1 demonstrates the explosive process
of the FWA. Algorithm 1 shows the flowchart of FWA consisting of three oper-
ations principally: explosion, mutation and selection [3].

Fig. 1. Search process of FWA. (a) fireworks are generated, (b) sparks are generated
around each firework, and mutation point is generated, (c) new fireworks are generated
in the next generation using the (b). The (b) and (c) are iterated until a termination
condition is satisfied.

2.2 Proposed Improvements

In this paper, we propose two strategies to replace the corresponding opera-
tions of the original FWA. The firework amplitudes of the original FWA are

Acceleration for Fireworks Algorithm 479

Algorithm 1. The framework of the fireworks algorithm.
1: Initialize n fireworks randomly.
2: Evaluate the fitness of each firework.
3: while termination condition is not satisfied do
4: Generate explosion sparks for each firework.
5: Use Gauss mutation to obtain Gauss sparks.
6: if sparks are generated outside search area then
7: use a mapping rule for bringing back to the area.
8: end if
9: Evaluate the fitness of each generated sparks.

10: Select n new fireworks for next generation.
11: end while
12: end of program.

automatically decided by their fitness values using the formula mentioned in
the previous section. Better fireworks have relatively smaller amplitudes, while
worse fireworks have relatively larger amplitudes.

The first strategy is to decrease the amplitude sizes of all fireworks from one
generation to the next regardless of their fitness. We use the formula of Eq. (1) to
determine the amplitude of fireworks. Figure 2 shows how the amplitude changes
throughout the exploration period.

Ai =
{
Ainit ∗ (1 − FEcur

FEmax
) if FEcur < c ∗ FEmax

Ainit ∗ (1 − c) Others
(1)

where, Ainit is the initial maximum amplitude of fireworks; FEcur and FEmax

represent the current and maximum number of fitness evaluations, respectively;
and c is a constant for preventing the amplitude from becoming too small.

Fig. 2. Changes in amplitude throughout the exploration period

The second proposed strategy is to use a local optima-based selection of
fireworks in the next generation instead of the distance-based selection used

480 J. Yu and H. Takagi

in the original FWA. Since the generated sparks can be considered as a local
search around each firework, a set of a firework and its generated sparks can
be considered a local subgroup. Then, we can obtain n local subgroups and a
mutation subgroup consisting of all mutated sparks as the (n+ 1)-th subgroup.
Because n new fireworks should be selected in the next generation, we merge the
mutation subgroup and the subgroup of the worst firework into a new subgroup.
The proposed local optima-based selection strategy takes the best firework or
spark from each subgroup to form the next generation. Figure 3 demonstrates
this selection strategy.

Fig. 3. The best one in each subgroup will be selected and go to next generation.

3 Experimental Evaluations

We use 20 benchmark functions from the CEC2013 benchmark test suite [6] in
our evaluations. Table 1 shows their types, characteristics, variable ranges, and
optimum fitness values. These landscape characteristics include shifted, rotated,
global on bounds, unimodal and multi-modal. We test them with 3 dimensional
settings: D = 2, 10 and 30.

To analyze the effect of each proposed improvement, we design the following
four experiments; Experiments 1, 2, 3, and 4 are, respectively, the original FWA,
the original FWA + the first proposed strategy (amplitude decrease strategy),
the original FWA + the second proposed strategy (selection method of the fire-
work in the next generation), and the original FWA + both strategies. Table 2
shows the parameter settings of the canonical FWA. The parameter settings for
Experiments 2–4 are the same as the canonical FWA except the initial ampli-
tudes; initial amplitudes Ainit and constant c of the Eq. (1) are set as 10 and
0.95, respectively.

We evaluate convergence along the number of fitness calls instead of genera-
tions. We test each benchmark function with 30 trial runs in 3 different dimen-
sional spaces. We apply the Friedman test and Holm’s multiple comparison to
the fitness values at the stop condition, i.e. maximum number of fitness calcula-
tions, for each benchmark function to check for significant difference among the
methods. Table 3 shows the result of these statistical tests.

Acceleration for Fireworks Algorithm 481

Table 1. Benchmar Function: Uni= unimodal, Multi = multimodal.

No. Types Characteristics Ranges Optimum
fitness
value

F1 Uni Sphere function [−100, 100] −1400

F2 Rotated high conditioned elliptic function −1300

F3 Rotated Bent Cigar function −1200

F4 Rotated discus function −1100

F5 Different powers function −1000

F6 Multi Rotated Rosenbrock’s function [−100, 100] −900

F7 Rotated Schaffers function −800

F8 Rotated Ackley’s function −700

F9 Rotated Weierstrass function −600

F10 Rotated Griewank’s function −500

F11 Rastrigin’s function −400

F12 Rotated Rastrigin’s function −300

F13 Non-continuous rotated Rastrigin’s function −200

F14 Schwefel’s function −100

F15 Rotated Schwefel’s function 100

F16 Rotated Katsuura function 200

F17 Lunacek BiRastrigin function 300

F18 Rotated Lunacek BiRastrigin function 400

F19 Expanded Griewank’s plus Rosenbrock’s function 500

F20 Expanded Scaffer’s F6 function 600

Table 2. Parameter setting of original FWA.

Paramaters Values

of fireworks for 2-D, 10-D and 30-D search 5

of sparks m 50

of Gauss mutation sparks, 5

constant parameters a = 0.04 b = 0.8

Maximum amplitude Amax 40

stop condition; MAXNFC , for 2-D, 10-D, and 30-D search 4,000, 40,000, 100,000

dimensions of benchmark functions, D 2, 10, and 30

of trial runs 30

4 Discussions

We begin our discussion with an explanation of the superiority of our proposed
strategies. In the original FWA, better fireworks can obtain more resources
within a small range, thus undertaking responsibility for exploitation. Explo-
ration is achieved by worse fireworks obtaining less resources in a larger range

482 J. Yu and H. Takagi

Table 3. Statistical test result of the Friedman test and Holm’s multiple comparison
for average fitness values of 30 trial runs of 4 methods. A � B and A > B mean that
A is significant better than B with significant levels of 1% and 5%, respectively. A ≈ B
means that there is no significant difference between A and B. Numbers in the table
represent that 1: original FWA, 2: original FWA + proposed strategy 1, 3: original
FWA + proposed strategy 2, and 4: original FWA + proposed strategies 1 and 2.

f1 2-D 10-D 30-D

f1 4 ≈ 2 � 3 � 1 4 � 2 � 3 � 1 4 � 2 � 3 � 1

f2 4 ≈ 3 ≈ 2 > 1 4 > 2 � 3 ≈ 1 4 > 2 � 3 � 1

f3 3 ≈ 2 � 1 � 4 4 ≈ 2 ≈ 3 � 1 4 ≈ 2 > 3 � 1

f4 3 ≈ 2 ≈ 4 ≈ 1 2 � 1 ≈ 4 ≈ 3 2 > 4 � 3 > 1

f5 4 ≈ 2 � 3 � 1 4 � 2 � 3 � 1 4 � 2 � 3 � 1

f6 4 ≈ 2 ≈ 3 ≈ 1 4 > 3 ≈ 2 � 1 2 ≈ 3 ≈ 4 � 1

f7 3 � 2 ≈ 4 � 1 1 ≈ 2 ≈ 4 ≈ 3 4 ≈ 1 ≈ 3 ≈ 2

f8 4 > 3 ≈ 1 > 2 4 ≈ 3 ≈ 2 � 1 4 ≈ 2 > 1 ≈ 3

f9 4 � 3 � 2 � 1 3 ≈ 4 ≈ 1 ≈ 2 3 ≈ 4 ≈ 1 ≈ 2

f10 4 ≈ 2 > 3 � 1 4 > 2 � 3 � 1 4 � 2 � 3 � 1

f11 3 ≈ 4 ≈ 2 � 1 3 � 1 ≈ 4 � 2 3 ≈ 1 ≈ 4 � 2

f12 3 ≈ 2 ≈ 4 ≈ 1 1 ≈ 3 ≈ 2 ≈ 4 1 ≈ 4 ≈ 3 ≈ 2

f13 3 ≈ 2 ≈ 1 ≈ 4 3 ≈ 1 ≈ 2 � 4 1 ≈ 3 ≈ 2 ≈ 4

f14 3 ≈ 1 ≈ 2 ≈ 4 3 � 1 ≈ 4 � 2 3 > 4 ≈ 1 � 2

f15 1 ≈ 3 ≈ 2 ≈ 4 4 ≈ 2 ≈ 3 ≈ 1 4 ≈ 2 ≈ 3 � 1

f16 4 ≈ 2 � 3 ≈ 1 4 ≈ 2 � 3 > 1 2 ≈ 4 � 3 � 1

f17 4 ≈ 2 ≈ 3 ≈ 1 4 � 2 � 3 � 1 4 � 2 > 3 � 1

f18 4 ≈ 2 ≈ 3 ≈ 1 2 ≈ 4 ≈ 1 ≈ 3 2 > 4 � 1 ≈ 3

f19 2 ≈ 4 ≈ 3 � 1 4 > 2 ≈ 3 � 1 4 � 2 � 3 � 1

f20 2 ≈ 4 ≈ 3 � 1 3 ≈ 1 ≈ 4 ≈ 2 1 ≈ 3 ≈ 2 ≈ 4

through the whole search period. However, exploration should be a task per-
formed primarily in the early stages of search, while exploitation should be
gradually emphasized along with the convergence of the population. So the first
proposed strategy uses a decrement strategy to make all fireworks responsible
for exploration in the early generations, with this exploration ability becom-
ing gradually weaker as the exploitation ability becomes gradually stronger to
achieve a good balance between exploration and exploitation.

We simply use the number of fitness evaluations to control the amplitude of
fireworks in this paper, but this is not the unique realization of the proposed
strategy 1; there must be other realizations which would allow us to improve
its performance even more. For example, the amplitude can be adjusted adap-
tively according to optimization tasks, not just based on the number of fitness
evaluations.

Acceleration for Fireworks Algorithm 483

The distance-based selection used in the original FWA aims to preserve the
diversity of fireworks, but there are still some shortcomings. This selection strat-
egy gives higher selection probabilities to individuals located far away from other
individuals. However, there is no guarantee that the fireworks selected by this
original strategy have better fitness in the next generation than those in the
current generation except the best individual. Further, there is also no guaran-
tee that individuals coming from each subgroup will be selected fireworks in the
next generation. If no individual from a certain subgroup is selected in the next
generation, the area will not be explored in the next generation and the diversity
may be lost.

The second proposed strategy can overcome these shortcomings and ensure
each local optimum individual can remain in the next generation to maximize
and the preserve the population diversity. This strategy may develop to become
a new niche method for finding multi local or global optima at one time run.

Next, we discuss the effectiveness of our proposed strategies. To analyze their
performances, Friedman test and Holm’s multiple comparison test were applied
at the stop condition in three different dimensions. The two strategies do not
add additional fitness computation cost. Nevertheless, the statistical results in
the Table 3 show that either of the two proposed strategies can improve the
performance of the original FWA, and their combination can further improve
performance in almost all evaluation cases.

Although combining two proposed strategies 1 and 2 with original FWA
works well, it did not show clear performance for f11–f14 in the Table 3. Figure 4

Fig. 4. Convergence curves of the original FWA, the original FWA + proposed strat-
egy 1, the original FWA + proposed strategy 2, and the original FWA + proposed
strategies 1 and 2 for 30-D f11–f14, respectively.

484 J. Yu and H. Takagi

shows the average convergence curves of 4 methods for these 30-dimensional
benchmark functions. These improved strategies for Rastrigin’s function and
Schwefel’s function showed better performance in the early searching stages,
while it could not keep their better performance in the later period and even
became worse than the original FWA. It may be due to their many local optima;
the local optima-based selection can maximize the diversity of the population,
but it may reduce the convergence speed. We need further analysis of this result
to understand the real reason and develop its solution.

5 Conclusion

We proposed two strategies to enhance the performance of the original FWA. The
first strategy further emphasizes the balance between exploration and exploita-
tion, and the second one selects local optimum individuals to preserve search
diversity. Controlled experiments confirmed that they can improve the perfor-
mance of the original FWA significantly.

In future work, we will further study these strategies and make full use of
local information to obtain better performance.

Acknowledgment. This work was supported in part by Grant-in-Aid for Scientific
Research (JP15K00340).

References

1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948 (1995)

2. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Tran. Syst. Man Cybern. Part B Cybern. 26(1), 29–41
(1996)

3. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan,
K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13495-1 44

4. Zheng, S.Q., Janecek, A., Tan, Y.: Enhanced fireworks algorithm. In: IEEE Inter-
national Conference on Evolutionary Computation, Cancun, Mexico, pp. 2069–2077
(2013)

5. Zheng, S.Q., Janecek, A., Li, J.Z., Tan, Y.: Dynamic search in fireworks algoritm.
In: IEEE International Conference on Evolutionary Computation, Beijing, China,
pp. 3222–3229 (2014)

6. Liang, J., Qu, B., Suganthan, P., Hernández-Dı́az, A.G.: Problem definitions and
evaluation criteria for the CEC 2013 special session on real-parameter optimization
(2013). http://al-roomi.org/multimedia/CEC Database/CEC2013/RealParameter
Optimization/CEC2013 RealParameterOptimization TechnicalReport.pdf

http://dx.doi.org/10.1007/978-3-642-13495-1_44
http://al-roomi.org/multimedia/CEC_Database/CEC2013/RealParameterOptimization/CEC2013_RealParameterOptimization_TechnicalReport.pdf
http://al-roomi.org/multimedia/CEC_Database/CEC2013/RealParameterOptimization/CEC2013_RealParameterOptimization_TechnicalReport.pdf

From Resampling to Non-resampling:
A Fireworks Algorithm-Based Framework
for Solving Noisy Optimization Problems

JunQi Zhang1,2(B), ShanWen Zhu1,2, and MengChu Zhou3

1 Department of Computer Science and Technology, Tongji University,
Shanghai, China

zhangjunqi@tongji.edu.cn, zhushanwen321@hotmail.com
2 Key Laboratory of Embedded System and Service Computing,

Ministry of Education, Shanghai, China
3 Department of Electrical and Computer Engineering,

New Jersey Institute of Technology, Newark, NJ 07102, USA
zhou@njit.edu

Abstract. Many resampling methods and non-resampling ones have
been proposed to deal with noisy optimization problems. The former pro-
vides accurate fitness but demands more computational resources while
the latter increases the diversity but may mislead the swarm. This paper
proposes a fireworks algorithm (FWA) based framework to solve noisy
optimization problems. It can gradually change its strategy from resam-
pling to non-resampling during the evolutionary process. Experiments
on CEC2015 benchmark functions with noises show that the algorithms
based on the proposed framework outperform their original versions as
well as their resampling versions.

Keywords: Fireworks algorithm · Noisy environment · Resampling ·
Non-resampling

1 Introduction

Noise is ubiquitous in real-world problems. Resampling methods [3,7] are com-
monly employed to resolve it. Equal resampling (ER) is a simple allocation
method that evaluates all the solutions for the same number of times regard-
less their fitness values. Optimal Computing Budget Allocation (OCBA) [1]
equally resamples them at first and then sequentially allocates different bud-
get to each solution based on the first stage’s solution quality and variation.
Another method, called Equal Resampling top-N (ERN) [8], originates from ER
but gives extra resampling resources to the most promising solutions. Besides,
a powerful tool in stochastic environment, learning automaton, is introduced to
alleviate the impact of noise in [12]. The studies have revealed that resampling
methods may not be necessary to deal with noises. The studies [6,7] claim that
particle swarm optimization (PSO) is stable and efficient in noise environment.
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 485–492, 2017.
DOI: 10.1007/978-3-319-61824-1 53

486 J. Zhang et al.

Furthermore, a non-resampling method, called evaporation [9], progressively
reduces the objective value of the best position found by the swarm such that
the positions with worse objective values are allowed to be considered.

From the above discussions, resampling methods provide accurate fitness
value but demand more resources while non-resampling methods increase the
diversity but may mislead the population to unpromising areas. This paper
presents a fireworks algorithm (FWA) based framework for Noisy Optimiza-
tion problems (FWANO for short), to allow gradual changes of its strategy from
resampling to non-resampling along the evolution. The resampling strategy is
employed to locate the true promising area in the early evolutionary stage.
Then, to keep the diversity, a non-resampling strategy gradually takes charge
and utilizes the unique characteristic of FWA that the information of sparks
around a firework represents whether the firework is prospective. The consensus
of promising sparks are adopted in FWANO instead of the best spark to neu-
tralize noises. This feature reduces the resampling cost and obtains appreciable
accuracy of the estimation, especially when sparks are close to each other in a
later evolutionary stage.

The rest of the paper is arranged as follows. Section 2 reviews the background
and some related works. FWANO is presented in Sect. 3. Experimental results
are demonstrated in Sect. 4. Section 5 concludes the paper.

2 Background

2.1 Optimization Problems Subject to Noise

This study considers the following minimization problems:

min
x∈X

f(x), x = [x1, x2, ..., xd] (1)

where d is the number of dimensions and X is the feasible region of solution x.
Noises in optimization problems can be modeled as random variables fol-

lowing a Gaussian distribution [2]. The severity is described by its standard
deviation σ. Besides, two types of Gaussian noises, additive and multiplicative,
are presented as follows:

f̂+(x) = f(x) + N(0, σ2) (2)

f̂×(x) = f(x)×N(1, σ2) (3)

where f(x) represents the true fitness value of a solution x. In this paper, the
noisy fitness evaluation and the fitness estimation of solution x are represented
as f̂(x) and f̃(x). Obviously, f(x) = f̂(x) = f̃(x) when σ = 0.

2.2 Two Resampling Methods

ER first re-evaluates the fitness value of a solution for B times, and then utilizes
the sample means as the estimation of true fitness:

f̃(x) =
1
B

×
B∑

b=1

f̂b(x) (4)

From Resampling to Non-resampling 487

To improve the accuracy of promising solutions, ERN is proposed [8]. It
estimates all solutions at first and then allocates extra budget BΣ to top N
solutions.

2.3 Fireworks Algorithms

The idea behind a fireworks algorithm [10] is to search around promising areas
as if generating sparks around fireworks. The number of sparks and amplitude of
explosions are allocated to fireworks according to their fitness values as follows:

si = M · ymax − f(xi) + ε∑n
i=1(ymax − f(xi)) + ε

(5)

Ai = Â · f(xi) − ymin + ε∑n
i=1(f(xi) − ymin) + ε

(6)

where xi represents the location of firework i (i = 1, 2, ..., n), M and Â are
parameters to control the total number of sparks and amplitude of explosions,
ymax = max (f(xi)) and ymin = min (f(xi)) (i = 1, 2, ..., n) are the maximum
and minimum fitness value among n fireworks, and ε is the machine epsilon to
prevent zero-division-error.

Nevertheless, conventional FWA fails in shifted functions. To solve the prob-
lem, a comprehensive study of FWA [14] reports five modifications and an
enhanced fireworks algorithm (EFWA). Based on EFWA, an adaptive fireworks
algorithm (AFWA) [4] is proposed to determine a proper amplitude for the
firework with minimal fitness without parameters. In [13], a dynamic search
fireworks algorithm (dynFWA) is proposed. It defines the concept of core fire-
work (CF) as the firework with minimal fitness among all the fireworks, and
non-core fireworks (non-CFs) as the rest of the fireworks. DynFWA applies a
dynamic amplitude strategy on CF to improve its local search ability. The per-
formances of FWA, EFWA, AFWA and dynFWA are compared in [16]. The work
[15] proposes a cooperative framework for FWA (CoFFWA), which adopts an
independent selection strategy to reinforce the exploitation ability of non-CFs.

2.4 CoFFWA

CoFFWA computes the number of sparks si and amplitude of explosion Ai

as does in FWA, i.e., (5) and (6). Define xc as the position of CF, x∗ as the
individual with the best fitness among all sparks and fireworks in this generation,
and At

c as the amplitude of CF in generation t. At
c is updated as follows:

At
c =

{
At−1

c × C+ if f(x∗) − f(xc) < 0

At−1
c × C− otherwise

(7)

where C+ and C− are two parameters to increase and decrease. Then, each
firework explodes according to the given si and Ai. In the independent selection

488 J. Zhang et al.

operator, each firework chooses the best candidate among its generated sparks
and itself in the current generation as the new firework. If the distance between
firework i and CF is less than a threshold τ , firework i is reinitialized in the
feasible space. More details can be found in [15].

3 A Fireworks Algorithm-Based Framework for Noisy
Optimization

This work proposes a fireworks algorithm-based framework that changes its
strategy from resampling to non-resampling gradually. Its main procedure is
presented in Algorithm 1.

Algorithm 1. FWANO
1: Initialize n fireworks and evaluate their fitness f(xi) for B times
2: while (stopping criterion not met) do
3: Update the number of resampling B (and BΣ) using (10) and (11)
4: Update the number of top sparks N using (12)
5: Compute the number of sparks using (9)
6: Compute the amplitude for each firework using (7)
7: for each firework do
8: Generate explosion sparks
9: Re-evaluate generated sparks

10: Select the new firework independently
11: Compute the consensus for each firework using (8)
12: end for
13: end while

3.1 Resampling Methods

At first, resampling is performed in FWANO. It re-evaluates sparks to provide
accurate fitness through the sample mean as given in (4). This method ensures
that FWANO finds true promising areas in noisy environments as in stationary
environments. Two specific methods are introduced to FWANO and thus lead
to two algorithms. The algorithm with ER, called FWANO-ER, evaluates all the
sparks for B times. The one with ERN, named as FWANO-ERN, evaluates all
the sparks for B times first in each generation. Then for firework i (i = 1, 2, ..., n),
it re-evaluates its top Ni sparks for additional BΣ times.

3.2 The Consensus of Top Sparks

The consensus of top Ni sparks around firework i (i = 1, 2, ..., n) is introduced.
Note that they are the same top Ni sparks in FWANO-ERN. For firework i,
FWANO sorts all its sparks by fitness in an ascending order and then takes
the first Ni sparks as set Ti. In case that a firework has less sparks than Ni,

From Resampling to Non-resampling 489

bounds are set as 1 ≤ Ni ≤ min (si, N), where si is the number of sparks from
firework i, N is the maximum number of top sparks. The fitness of the consensus
is calculated as follows:

fc(xi) =
1
Ni

×
∑

x∈Ti

f̃(x) (8)

where f̃(x) is the sample mean. Obviously, the more sparks are in Ti, the higher
the diversity is. Moreover, this method consumes no additional evaluation.

fc(xi) substitutes the fitness of the firework to calculate the number of sparks
si in the next generation:

si = M · ỹmax − fc(xi) + ε∑n
i=1(ỹmax − fc(xi)) + ε

(9)

where ỹmax = max (fc(xi)), ỹmin = min (fc(xi)) (i = 1, 2, ..., n) and ε is the
machine epsilon to prevent any zero-division-error. Note that fc(xi) = f(xi)
when N = 1.

3.3 From Resampling to Non-resampling

When sparks get closer and closer to each other, the fitness of the consensus in
noisy environment gradually approaches its true value. To ensure that sparks are
substantially near each other as the optimization proceeds, the dynamic ampli-
tude strategy in (7) is adopted for all fireworks in this study. Thus, resampling in
the later evolutionary stage becomes unnecessary. FWANO transforms a resam-
pling strategy to a non-resampling one by reducing the numbers of resamplings,
i.e., B and BΣ :

B = �B̂ × Em − E

Em
� (10)

BΣ = �B̂Σ × Em − E

Em
� (11)

while enlarging the number of top sparks N :

N = �N̂ × E

Em
� (12)

B̂ and B̂Σ are parameters controlling the largest number of resamplings, while
N̂ controls that of top sparks. Em is the maximum number of evaluations and
E is the number of used evaluations. � � is a ceiling function.

4 Experiments

4.1 Experimental Setting

The test suite is CEC2015 single objective optimization benchmark [5] cover-
ing 15 functions, whose fitness values are all positive. Four types of functions

490 J. Zhang et al.

Table 1. Parameters of resampling

Algorithm Parameter(s)

CoFFWA-ER B = 6

FWANO-ER B̂ = 6, N̂ = 6

CoFFWA-ERN B = 6, N = 2, BΣ = 25

FWANO-ERN B̂ = 6, N̂ = 6, B̂Σ = 10

are employed: unimodal, multimodal, hybrid and composition functions. The
dimensionality of these functions is d = 30 and all algorithms are run for 51
times on each function. The maximum number of evaluations is 10000 × d for
each run. Errors of fitness values of an algorithm are calculated as its perfor-
mance. Multiplicative noises are applied to all the functions and the levels are
set to σ = {0.06, 0.12, 0.18, 0.24, 0.30}. To keep the noisy fitness a positive value,
noises are allowed to fall into [1 − 3σ, 1 + 3σ].

Besides FWANO-ER and FWANO-ERN, CoFFWA and its ER (CoFFWA-
ER) and ERN (CoFFWA-ERN) versions are also tested for comparison. For
fairness, most of the parameters are the same in FWANO-ER and CoFFWA-
ER, and so do ERN based algorithms. Common parameters for all algorithms are
set as in [15]. For CoFFWA-ER, B is set to 6. Correspondingly, the maximum
number of resamplings and top sparks in FWANO-ER is B̂ = 6 and N̂ = 6,
respectively. For CoFFWA-ERN, N = 2 and BΣ = 25 as suggested in [8]. But
in FWANO-ERN, N̂ is set to 6 and B̂Σ is set to 10 to roughly keep the same
number of resources as in CoFFWA-ERN. Details are given in Table 1.

4.2 Experimental Results

Results are partially presented in Fig. 1 for unimodal functions, Fig. 2 for mul-
timodal functions and Fig. 3 for hybrid and composition functions. In all the
following box plots, ‘abcde’ in bottom axis represents CoFFWA, CoFFWA-ER,
CoFFWA-ERN, FWANO-ER and FWANO-ERN respectively, and numbers in
the top axis represents the level of noises. In some box plots, the figure of CoFFWA
exceeds the bound of plots for visibility of the results from other algorithms.

F01

a b c d e a b c d e a b c d e a b c d e a b c d e

Fi
tn

es
s

Va
lu

es

× 108

0

1

2

3

4

5

6

0.06 0.12 0.18 0.24 0.30

Different Algorithms in Noisy Environments

F02

a b c d e a b c d e a b c d e a b c d e a b c d e

Fi
tn

es
s

Va
lu

es

× 1011

0

0.5

1

1.5

2

0.06 0.12 0.18 0.24 0.30

Different Algorithms in Noisy Environments

Fig. 1. The comparison of fitness values (left axis) on unimodal functions among (a)
CoFFWA, (b) CoFFWA-ER, (c) CoFFWA-ERN, (d) FWANO-ER, (e) FWANO-ERN
(bottom axis) under different noisy environments (top axis)

From Resampling to Non-resampling 491

F03

a b c d e a b c d e a b c d e a b c d e a b c d e

Fi
tn

es
s

Va
lu

es

21

21.2

21.4

21.6

21.8

22

0.06 0.12 0.18 0.24 0.30

Different Algorithms in Noisy Environments

F05

a b c d e a b c d e a b c d e a b c d e a b c d e

Fi
tn

es
s

Va
lu

es

0

2000

4000

6000

8000

10000

12000
0.06 0.12 0.18 0.24 0.30

Different Algorithms in Noisy Environments

Fig. 2. The comparison of fitness values (left axis) on multimodal functions among (a)
CoFFWA, (b) CoFFWA-ER, (c) CoFFWA-ERN, (d) FWANO-ER, (e) FWANO-ERN
(bottom axis) under different noisy environments (top axis)

F06

a b c d e a b c d e a b c d e a b c d e a b c d e

Fi
tn

es
s

Va
lu

es

× 107

0

1

2

3

4

5

6

0.06 0.12 0.18 0.24 0.30

Different Algorithms in Noisy Environments

F15

a b c d e a b c d e a b c d e a b c d e a b c d e

Fi
tn

es
s

Va
lu

es

-500

0

500

1000

1500

2000

2500

3000
0.06 0.12 0.18 0.24 0.30

Different Algorithms in Noisy Environments

Fig. 3. The comparison of fitness values (left axis) on hybrid and composition func-
tions among (a) CoFFWA, (b) CoFFWA-ER, (c) CoFFWA-ERN, (d) FWANO-ER,
(e) FWANO-ERN (bottom axis) under different noisy environments (top axis)

The higher the noise level is, the worse the fitness estimation is. Original
CoFFWA deteriorates severely, which can be observed in most functions. Com-
paring algorithm (a) with (b) or (c), it is obvious that resampling methods
significantly improve the performance of CoFFWA. Both algorithms, FWANO-
ER and FWANO-ERN, defeat their contenders. In total, the former outperforms
CoFFWA-ER on 13 functions while the latter outperforms CoFFWA-ERN on
12 among total 15 functions. Those results manifest that the idea of chang-
ing its strategy from resampling to non-resampling can remarkably enhance the
performance of FWA in noisy environments.

5 Conclusions

This paper presents a new FWA-based framework for optimization problems
subject to noises. Its key idea is to change its strategy from resampling to non-
resampling. Its application to real-world problems, e.g., [11] should be pursued.

Acknowledgments. This work is supported by China NSF under Grants No. 61572
359 and 61272271, and partly supported by the Fundamental Research Funds for the
Central Universities of China (No. 0800219332).

492 J. Zhang et al.

References

1. Chen, C.H., Lin, J., Yücesan, E., Chick, S.E.: Simulation budget allocation for
further enhancing the efficiency of ordinal optimization. Discrete Event Dyn. Syst.
10(3), 251–270 (2000)

2. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.
IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

3. Zhang, J., Xu, L., Ma, J., Zhou, M.: A learning automata-based particle swarm
optimization algorithm for noisy environment. In: Proceedings of IEEE Congress
on Evolutionary Computation, pp. 141–147. IEEE (2015)

4. Li, J., Zheng, S., Tan, Y.: Adaptive fireworks algorithm. In: 2014 IEEE Congress
on Evolutionary Computation (CEC), pp. 3214–3221, July 2014

5. Liang, J.J., Qu, B.Y., Suganthan, P.N., Chen, Q.: Problem definitions and eval-
uation criteria for the CEC 2015 competition on learning-based real-parameter
single objective optimization. Technical report 201411A, Zhengzhou University,
Zhengzhou, China and Nanyang Technological University, Singapore, November
2014

6. Parsopoulos, K., Vrahatis, M.N.: Particle swarm optimizer in noisy and continu-
ously changing environment. In: Hamza, M.H. (ed.) Artificial Intelligence and Soft
Computing, pp. 289–294 (2001)

7. Parsopoulos, K., Vrahatis, M.N.: Particle swarm optimization for imprecise prob-
lems. In: Scattering and Biomedical Engineering: Modeling and Applications, pp.
254–264 (2002)

8. Rada-Vilela, J., Zhang, M., Johnston, M.: Resampling in particle swarm optimiza-
tion. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 947–954
(2013)

9. Rada-Vilela, J., Zhang, M., Seah, W.: A performance study on the effects of noise
and evaporation in particle swarm optimization. In: 2012 IEEE Congress on Evo-
lutionary Computation (CEC), pp. 1–8 (2012)

10. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan,
K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13495-1 44

11. Lu, X., Wang, L., Wang, H., Wang, X.: Kalman filtering for delayed singular
systems with multiplicative noise. IEEE/CAA J. Automatica Sinica 3(1), 51–58
(2016)

12. Zhang, J., Xu, L., Li, J., Kang, Q., Zhou, M.: Integrating particle swarm optimiza-
tion with learning automata to solve optimization problems in noisy environment.
In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC),
pp. 1432–1437 (2014)

13. Zheng, S., Janecek, A., Li, J., Tan, Y.: Dynamic search in fireworks algorithm. In:
2014 IEEE Congress on Evolutionary Computation (CEC), pp. 3222–3229, July
2014

14. Zheng, S., Janecek, A., Tan, Y.: Enhanced fireworks algorithm. In: 2013 IEEE
Congress on Evolutionary Computation, pp. 2069–2077, June 2013

15. Zheng, S., Li, J., Janecek, A., Tan, Y.: A cooperative framework for fireworks
algorithm. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(1), 27–41 (2017)

16. Zheng, S., Liu, L., Yu, C., Li, J., Tan, Y.: Fireworks algorithm and its variants
for solving ICSI2014 competition problems. In: Tan, Y., Shi, Y., Coello, C.A.C.
(eds.) ICSI 2014. LNCS, vol. 8795, pp. 442–451. Springer, Cham (2014). doi:10.
1007/978-3-319-11897-0 50

http://dx.doi.org/10.1007/978-3-642-13495-1_44
http://dx.doi.org/10.1007/978-3-319-11897-0_50
http://dx.doi.org/10.1007/978-3-319-11897-0_50

Elite-Leading Fireworks Algorithm

Xinchao Zhao1(&), Rui Li1, Xingquan Zuo2, and Ying Tan3

1 School of Science, Beijing University of Posts and Telecommunications,
Beijing 100876, China

zhaoxc@bupt.edu.cn
2 School of Computer Science,

Beijing University of Posts and Telecommunications,
Beijing 100876, China

3 School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China

Abstract. Fireworks algorithm (FWA) is effective to solve optimization
problems as a swarm intelligence algorithm. In this paper, the elite-leading
fireworks algorithm (ELFWA) is proposed based on dynamic search in fire-
works algorithm (dynFWA), which is an important improvement of FWA. In
dynFWA firework is separated to two group: core-firework (CF) and non-core
fireworks (non-CFs). This paper takes some beneficial information from
non-CFs to reinforce the local search effect of CF. Random reinitialization and
elite-leading operator are used to maintain the diversity of the non-CFs, which
play an important role in global search. Based on the CEC2015 benchmark
functions suite, ELFWA has a very competitive performance when comparing
with state-of-the-art fireworks algorithms, such as dynFWA, dynFWACM and
eddynFWA.

Keywords: Fireworks algorithm � Elite-leading operator � Random
reinitialization

1 Introduction

Both in the academic field and in the industrial world, many problems can be simplified
as optimization problems. In order to solve those problems many swarm intelligence
(SI) algorithms were proposed in recent years. Fireworks algorithm (FWA) [1], pro-
posed by Tan and Zhu in 2010, is one of SI algorithms based on simulating the
fireworks explosion process. The performance of twelve evolutionary algorithms are
tested and compared by Bureerat in 2011 [2], in which FWA ranks at the sixth, which
verifies that FWA works effectively on some optimization problems.

Due to its bloom developing, FWA has many improved variants to enrich its
research field. The Enhanced Fireworks Algorithm (EFWA) [3], proposed by Zheng
et al. in 2013, is an important improvement of the FWA. Five main operators of the
FWA have been improved or corrected in the EFWA, which are the methods of
calculating explosion amplitude, generating new explosion sparks, generating Gaussian
sparks, selecting the population for the next iteration and the new mapping strategy for
sparks which are out of the search space. Hence, some algorithms, like dynFWA, are

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 493–500, 2017.
DOI: 10.1007/978-3-319-61824-1_54

applied to the EFWA rather than FWA. Based on the EFWA, Zheng et al. [4] proposed
Dynamic Search in Fireworks Algorithm (dynFWA) in 2014. In dynFWA, fireworks
are separated into two groups. The first group consists of the firework with best fitness
named core firework (CF), while the second group consists of all other fireworks
named non-core fireworks (non-CFs). Compared with non-CFs, the explosion ampli-
tude of CF is smaller, hence CF is good at local search. Non-CFs have larger explosion
amplitudes which are fitter for global search. Moreover, the biggest difference between
two groups is that the CF has very high probability to generate the best candidate which
will be selected to the next iteration as firework.

Based on the dynFWA Yu et al. [5] proposed the dynamic fireworks algorithm with
covariance mutation (dynFWACM) in 2015. It introduced the mutation operator into
dynFWA, which calculates the mean value and covariance matrix of the better sparks
and produces sparks according to Gaussian distribution. Zheng et al. [6] proposed an
exponentially decreased dimension number strategy based dynamic search fireworks
algorithm (eddynFWA) in 2015. Yu et al. [7] put forward a new FWA with differential
mutation (FWA-DM) by using differential operator in 2014. Li et al. [8] proposed an
adaptive fireworks algorithm (AFWA) in 2014. Zhang et al. [9] proposed an improving
enhanced fireworks algorithm (IEFWA) with new Gaussian explosion and population
selection strategies.

Moreover, many developments for multi-objective optimization have also been
proposed. Zheng et al. [10] proposed a multi-objective fireworks optimization for
variable-rate fertilization in oil crop production. Tan [11] proposed an S-metric based
multi-objective fireworks algorithm in 2015. FWA has also been applied to many
practical fields and problems. FWA has been used for digital filters design [12], pattern
recognition [13] and so on.

2 dynFWA

In dynFWA [4] firework is separated into two groups. One group is named as Core
Firework (CF) and the other is non-core fireworks (non-CFs). In each iteration, CF
means the firework with the currently best fitness and non-CFs mean all the rest
fireworks. The main operations of dynFWA are listed as follows.

2.1 Calculate the Numbers of Explosion Sparks

In order to take full advantage of all the fireworks, different fireworks have different
numbers of sparks in dynFWA, which depends its fitness as Eq. (1).

Si ¼ Me � ymax � f ðXiÞþ ePN
j¼1 ðymax � f ðXjÞÞþ e

ð1Þ

In this equation, Si represents the number of sparks for the firework i, Me controls
the number of sparks. ymax ¼ max f Xið Þð Þ, f Xið Þ denotes the fitness value of the fire-
work i. N is the number of fireworks.

494 X. Zhao et al.

2.2 Calculate the Explosion Amplitude

Fireworks with better fitness should have smaller explosion amplitudes to bias the local
search. On the contrary, fireworks with worse fitness should have larger explosion
amplitudes to bias the global search. So dynFWA uses Eq. (2) to calculate the
explosion amplitude for non-CF.

Ai ¼ Â � f ðXiÞ � ymin þ ePN
j¼1 ðf ðXjÞ � yminÞþ e

ð2Þ

In this equation, Ai represents the explosion amplitude of the firework i, Â controls
the explosion amplitude of sparks. ymin ¼ min f Xið Þð Þ, f Xið Þ denotes the fitness value of
the firework i. N is the number of fireworks.

But for CF, the explosion amplitude is generated with Eq. (3). Parameters Ca and
Cr are used to control the amplification and reduction ratio of the exploitation
amplitudes.

ACFðtÞ ¼ Ca � ACFðt� 1Þ if f(XCFðt)) \ f(XCFðt� 1ÞÞ;
Cr � ACFðt� 1Þ otherwise:

�
ð3Þ

2.3 Generate the Explosion Sparks

After getting the information of explosion sparks and explosion amplitude, each fire-
work explodes and creates explosion sparks with Eq. (4).

Xk
i ¼ Xk

i þAi � randð�1; 1Þ if firework is non-CF
Xk
CF þACF � randð�1; 1Þ if firework is CF

�
ð4Þ

Xk
i is the i-th firework and Ai is the explosion amplitude, rand (−1,1) represents a

random number between −1 and 1.
The location of a new spark will be mapped within the search space with Eq. (5) if

it exceeds the search range in dimension k.

Xk
i ¼ Xk

min þ rand � ðXk
max � Xk

minÞ ð5Þ

3 Elite-Leading Fireworks Algorithm (ELFWA)

Before proposing the Elite-leading Fireworks Algorithm (ELFWA), the difference
between CF and non-CFs in the dynFWA should be introduced. The biggest difference
is that CF has more chance to generate a better spark and then be selected into the next
iteration. The main role of non-CFs is to keep population diversity and perform global
search. But the global search is possible to be more effective if other more effective
operations were used and the CF’s effect is possible to be more obvious if more sparks

Elite-Leading Fireworks Algorithm 495

were given. Based on this motivation, a new improvement of dynFWA, Elite-leading
Fireworks Algorithm (ELFWA) is proposed. When comparing to dynFWA, the CF in
ELFWA have more sparks and the non-CFs will generate none sparks. As a com-
pensation, non-CFs will run another operation to evolve constantly for global search.

3.1 CF Operations

Some operations of CF in ELFWA will be introduced. (1) In ELFWA, CF denotes the
global best solution which is the optimal solution found until now. (2) Different from
dynFWA, the number of sparks in ELFWA is not alterable. In this paper the number of
CF sparks is a constant which is equal to the number of non-CFs. (3) The method of
calculating explosion amplitude of CF is not changed and Eq. (3) is also used. (4) The
way of CF generating sparks is the same as dynFWA doing in Eq. (4). (5) CF will be
updated with the best solution from non-CFs or sparks of CF at the current iteration or
the global best solution in the previous iteration, depending on the fitness as Eq. (6)
illustrates.

CFðtÞ ¼ argmin f ðnonCFðtÞÞ; f ðSparksOfCFðtÞÞ; f ðCFðt � 1ÞÞf g ð6Þ

3.2 Non-CFs Operations

A new strategy is proposed and utilized to the non-CFs which includes two operations,
i.e., random reset operation and Elite-leading operation. Random reset operation
decides whether to reset the non-CFs with a probability. If a random number r1 is less
than the given probability, non-CFs will be reinitialized with Eq. (7).

nonCFk
i ¼ Xk

min þ rand � ðXk
max � Xk

minÞ ð7Þ

nonCFk
i represents the k-th dimension of the i-th non-CF.Xk

max and Xk
min represent

the upper bound and lower bound of the k-th dimension.
After non-CFs are reinitialized, all solutions will be redistributed in the search

space again and usually become worse. So in order to scan more a little more beneficial
areas ELFWA uses Elite-leading operation to improve the quality of non-CFs at the
successive iteration with Eq. (8).

nonCFiðtÞ ¼ nonCFiðt � 1Þþ randð0; 1Þ � ðgBSðt�1Þ � lBSðt�1ÞÞ ð8Þ

In Eq. (8), gBS(t-1) indicates the global best solution and lBS(t-1) indicates the best
solution in the non-CFs of the previous iteration. It will be changed when the non-CFs
are reinitialized. rand(0,1) is a random number between 0 and 1. It will be found that all
the non-CFs have the same directions, which is decided by gBS and lBS. This process
can be regarded as the best solution of the current non-CFs leading all the non-CFs to
the best one of them. Additionally, gBS is equal to the CF, so gBS is very crucial for
the algorithm. That is why this research is named as Elite-leading Fireworks Algorithm.

496 X. Zhao et al.

The mapping operator of the ELFWA is changed into Eq (9).

Xk
i ¼ min(Xk

max; 2 � Xk
max � Xk

i ÞÞ if Xk
i [Xk

max
max(Xk

min; 2 � Xk
min � Xk

i ÞÞ if Xk
i \Xk

min

�
ð9Þ

After mapping operation, ELFWA evaluates the quality of the explosion sparks and
non-CFs. So, the framework of Elite-leading Fireworks Algorithm (ELFWA) is pre-
sented as follows.

4 Experiment and Analysis

15 benchmark functions of CEC 2015 [14] competition are used to verify the effec-
tiveness of ELFWA. Following four state-of-the-art algorithms are compare toELFWA,
EFWA [3], dynFWA [4], dynFWACM [5] and eddynFWA [6].

4.1 Experimental Setup

Several parameters in ELFWA are set as follows. The dimension of benchmark
function is 30. Parameters Ca and Cr in Eq. (3) are empirically set to 0.9 and 1.1. In
order to make full use of the ability of global search of CF, ACF is set to the size of the
space in the beginning. Both the number of non-CFs and the number of sparks are 50 in
ELFWA. All the algorithms are performed 30 runs on each benchmark functions; the
final mean results are recorded with 300 000 function evaluations.

Elite-Leading Fireworks Algorithm 497

4.2 Experimental Results and Analysis

The online performance comparison of five FWA algorithms is shown as Fig. 1, which
clearly shows that ELFWA is effective. Especially, ELFWA is very effective for f1, f2,
f6, f8, f10 and f12. For functions f3 and f5, all algorithms nearly find the same results.
For the rest functions, although ELFWA does not perform best, it can find a com-
petitive solution in short time with the less benchmark functions evaluations.

0 0.5 1 1.5 2 2.5 3

x 10
5

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f1 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
2

10
4

10
6

10
8

10
10

10
12

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es
Comparison among algorithms on f2 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
2.506

10
2.507

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f3 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
2

10
3

10
4

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f4 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
3

10
4

10
5

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f5 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f6 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
2

10
3

10
4

10
5

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f7 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f8 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
3.1

10
3.2

10
3.3

10
3.4

10
3.5

10
3.6

10
3.7

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f9 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f10 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
3

10
4

10
5

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f11 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
3.12

10
3.14

10
3.16

10
3.18

10
3.2

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f12 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
3

10
4

10
5

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f13 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
4

10
5

10
6

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f14 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Function Evaluations

Av
er

ag
e

Fu
nc

tio
n

Va
lu

es

Comparison among algorithms on f15 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

Fig. 1. Online performance comparison among algorithms

498 X. Zhao et al.

Table 1 shows that three improvements of dynFWA are better than dynFWA and all
of four dynFWAs outperform EFWA. Among them, ELFWA is the slightly best one both
in mean value and in the best solution, a little better than, or performs comparably with
dynFWACM and eddynFWA. According to the general ranks of several FWA variants,
eddynFWA, dynFWACM and ELFWA have similar ranks, however, ELFWA has the
best rank. When comparing with dynFWA, ELFWA outperforms dynFWA on 10 from
15 benchmarks and performs equally on 2 functions. dynFWA slightly outperforms,
however, comparably with ELFWA on other 3 functions. The value of std. also shows
that the result of ELFWA is relatively stable and robust. In order to compare the difference
between the existing algorithms and ELFWA, the value of student test is given. If the
mean value of ELFWA is smaller than the mean value of existing algorithms and the
Wilcoxon’s rank-sum test under 5% significance level is true, then it is believed that the
results of ELFWA are significant better than existing algorithms. In Table 1, an algorithm
which is significant better than ELFWA is marked with ‘+’, no performance significant
difference is marked with ‘�’, significant worse than ELFWA is marked with ‘−’. In
Table 1, ELFWA is significant better than those four algorithms at 13, 10, 8, 7 functions.
The performance of ELFWA at other functions is competition with those four algorithms.

5 Conclusion and Future Work

An improved variant of dynFWA is proposed based on the information borrowing and
elite leading strategies in this paper. In order to explore whether strengthen the search
ability of elites is effective. Based on the two groups of dynFWA, this paper uses some
beneficial information of non-CFs to reinforce the effect of CF. Another strategy is used
to maintain the diversity of the non-CFs and to make them play an important role in

Table 1. The result of the experiment

dynFWA dynFWACM eddynFWA ELFWA

Mean Std Mean Std Mean Std Mean Std

f1 1.03E+06 3.23E+05 – 7.71E+05 4.53E+05 – 9.52E+05 6.34E+05 – 2.67E+05 1.37E+05

f2 4.24E+03 3.93E+03 – 3.78E+03 4.02E+03 – 3.54E+03 4.06E+03 – 2.92E+03 3.15E+03
f3 3.20E+02 5.87E−06 � 3.20E+02 1.51E−05 � 3.20E+02 1.88E−06 � 3.20E+02 2.64E−03

f4 5.26E+02 3.35E+01 � 5.23E+02 3.51E+01 � 3.20E+02 3.34E+01 � 5.30E+02 3.32E+01
f5 4.10E+03 7.01E+02 � 3.95E+03 6.85E+02 � 3.46E+03 6.60E+02 � 4.28E+03 8.64E+02

f6 4.96E+04 3.62E+04 – 2.72E+04 2.07E+04 – 1.01E+05 6.12E+04 – 1.63E+04 1.02E+04

f7 7.18E+02 1.37E+01 – 7.15E+02 4.73E+00 � 7.17E+02 1.51E+01 � 7.18E+02 1.27E+01

f8 4.85E+04 1.95E+04 – 2.87E+04 1.34E+04 – 1.59E+05 1.03E+05 – 1.92E+04 1.10E+04

f9 1.02E+03 6.15E+01 – 1.01E+03 3.58E+01 � 1.01E+03 3.34E+01 � 1.01E+03 3.97E+01
f10 4.91E+04 1.66E+04 – 3.45E+04 1.36E+04 – 1.10E+05 6.88E+04 – 2.48E+04 1.22E+04

f11 1.71E+03 2.60E+02 � 1.66E+03 2.44E+02 � 1.68E+03 2.10E+02 � 1.93E+03 2.15E+02

f12 1.31E+03 1.94E+00 – 1.31E+03 1.98E+00 – 1.31E+03 1.95E+00 – 1.31E+03 1.71E+00
f13 1.43E+03 5.79E+00 – 1.43E+03 6.91E+00 – 1.41E+03 7.68E+00 � 1.43E+03 7.44E+00

f14 3.50E+04 1.75E+03 – 3.55E+04 1.86E+03 – 3.47E+04 1.43E+03 � 3.49E+04 1.42E+03
f15 1.60E+03 8.76E−12 – 1.60E+03 8.52E−13 � 1.60E+03 4.53E−13 – 1.60E+03 9.23E−13

Rank 3.13 2.26 2.2 2.13

Elite-Leading Fireworks Algorithm 499

global research. The experiments show that this inspiring motivation works well. The
proposed ELFWA algorithm significantly outperforms dynFWA and performs a little
better than, and comparably with two recently enhanced dynFWAs, i.e., dynFWACM
and eddynFWA. In the future, more useful global research operators will be considered
to improve FWA algorithm and other SI algorithms.

Acknowledgments. This research is supported by National Natural Science Foundation of
China (61375066, 61374204). We will express our awfully thanks to the Swarm Intelligence
Research Team of BeiYou University and to the reviewers for their helpful suggestions.

References

1. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.)
ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010). doi:10.1007/978-3-
642-13495-1_44

2. Bureerat, S.: Hybrid population-based incremental learning using real codes. In: Coello, C.
A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 379–391. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25566-3_28

3. Zheng, S., Janecek, A., Tan, Y.: Enhanced fireworks algorithm. In: Evolutionary
Computation, pp. 2069–2077. IEEE (2013)

4. Zheng, S.Q., et al.: Dynamic search in fireworks algorithm. In: Evolutionary Computation,
pp. 3222–3229. IEEE (2014)

5. Yu, C., Kelley, L.C., Tan, Y.: Dynamic search fireworks algorithm with covariance mutation
for solving the CEC 2015 learning based competition problems. In: Evolutionary
Computation, pp. 1106–1112. IEEE (2015)

6. Zheng, S.Q., et al.: Exponentially decreased dimension number strategy based dynamic
search fireworks algorithm for solving CEC2015 competition problems. In: Evolutionary
Computation, pp. 1083–1090. IEEE (2015)

7. Yu, C., et al.: Fireworks algorithm with differential mutation for solving the CEC 2014
competition problems. In: Evolutionary Computation, pp. 3238–3245. IEEE (2014)

8. Li, J.Z., Zheng, S., Tan, Y.: Adaptive fireworks algorithm. In: Evolutionary Computation,
pp. 3214–3221. IEEE (2014)

9. Zhang, B., Zhang, M., Zheng, Y.-J.: Improving enhanced fireworks algorithm with new
gaussian explosion and population selection strategies. In: Tan, Y., Shi, Y., Coello, C.A.C.
(eds.) ICSI 2014. LNCS, vol. 8794, pp. 53–63. Springer, Cham (2014). doi:10.1007/978-3-
319-11857-4_7

10. Zheng, Y., Song, Q., Chen, S.Y.: Multi-objective fireworks optimization for variable-rate
fertilization in oil crop production. Appl. Soft Comput. 13(11), 4253–4263 (2013)

11. Tan, Y.: S-metric based multi-objective fireworks algorithm. In: Evolutionary Computation,
pp. 1257–1264. IEEE (2015)

12. Gao, H., Diao, M.: Cultural firework algorithm and its application for digital filters design.
Int. J. Model. Ident. Control 14(4), 324–331 (2011)

13. Zheng, S.Q., Tan, Y.: A unified distance measure scheme for orientation coding in
identification. In: IEEE Third International Conference on Information Science and
Technology, pp. 979–985. IEEE (2013)

14. Liang, J., Qu, B., Suganthan, P., Chen, Q.: Problem definitions and evaluation criteria for the
CEC 2015 competition on real-parameter single objective optimization (2014)

500 X. Zhao et al.

http://dx.doi.org/10.1007/978-3-642-13495-1_44
http://dx.doi.org/10.1007/978-3-642-13495-1_44
http://dx.doi.org/10.1007/978-3-642-25566-3_28
http://dx.doi.org/10.1007/978-3-642-25566-3_28
http://dx.doi.org/10.1007/978-3-319-11857-4_7
http://dx.doi.org/10.1007/978-3-319-11857-4_7

Guided Fireworks Algorithm Applied
to the Maximal Covering Location Problem

Eva Tuba1, Edin Dolicanin2, and Milan Tuba3(B)

1 Faculty of Mathematics, University of Belgrade, Belgrade, Serbia
2 Department of Technical Sciences, State University of Novi Pazar,

Novi Pazar, Serbia
3 Graduated School of Computer Science, John Naisbitt University,

Belgrade, Serbia
tuba@ieee.org

Abstract. Maximal covering location problem is an interesting and
applicable hard optimization problem. It is a facility location problem
where facilities have to be placed in optimal positions to maximize cov-
erage of the weighted demand nodes, while respecting some constraints.
This hard optimization problem has been successfully tackled by swarm
intelligence algorithms. In this paper we propose adjustment of the recent
guided fireworks algorithm for maximal covering location problem. We
tested our approach on standard benchmark data sets and compared
results with other approaches from literature where our proposed algo-
rithm proved to be more successful, both in the quality of the coverage
and convergence speed.

Keywords: Maximal covering location problem · Optimization · Meta-
heuristics · Fireworks algorithm · Swarm intelligence

1 Introduction

Location problems are optimization problems that are part of many different
applications. They represent an interesting topic in computer science but are also
applicable in real life. Location problems refer to searching for facility locations
that optimize some service to demand nodes respecting given constraints. The
goal is to minimize (or maximize) some characteristics, e.g. traveling cost or
distance. Facility location problem was applied for optimizing carbon market
trading [1], fuel station deployment [2], etc.

Covering location problems are specific location problems where each facility
has some cover range and the goal is to minimize or maximize covered nodes
demands. Demand nodes can be weighted, e.g. if demand nodes are buildings,
weight for each building can be the number of residents, the number of apart-
ments, etc. In this paper the maximal covering location problem (MCLP) will be

M. Tuba—This research is supported by Ministry of Education, Science and
Technogical Development of Republic of Serbia, Grant No. III-44006.

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 501–508, 2017.
DOI: 10.1007/978-3-319-61824-1 55

502 E. Tuba et al.

considered. MCLP is NP-hard problem [3] and such kind of problems for larger
dimension cannot be solved in a reasonable time by deterministic algorithms.
In recent years nature inspired algorithms were successfully used for finding rel-
atively good solutions for NP-hard problems. Nowadays, one group of nature
inspired algorithms, swarm intelligence algorithms, have been proven to be very
successful. In this paper a novel swarm intelligence algorithm, guided fireworks
algorithm, was adjusted and used to solve maximal covering location problem.
The results favorably compared to other approaches from literature, both in
term of coverage and convergence speed.

The rest of the paper is structured as follows. In Sect. 2 mathematical model
of maximal coverage location problem is defined. In Sect. 3 the main features of
guided fireworks algorithm are presented. Our proposed algorithm for solving
the MCLP is explained in Sect. 4. Experimental results are shown in Sect. 5 and
in Sect. 6 conclusion and propositions for further improvements are given.

2 Mathematical Formulation of the MCLP

Maximal coverage location problem refers to the task of finding optimal locations
for P facilities with some covering range on a network of N demand nodes so that
covered or serviced number of population-weighted demand nodes is maximal.
Mathematical formulation of the problem is given as follows:

maximize z =
∑

i∈I

ai ∗ yi. (1)

so that the following conditions are met:
∑

j∈Ni

xj ≥ yi for all i ∈ I. (2)

∑

j∈J

xj = P. (3)

where ai is the population needed to be served at demand node i, I is the set of
demand nodes, J is set of facilities, P is the number of facilities that need to be
located, while Ni is the set of facilities able to cover demand of node i. Variables
xj and yi are defined by the following equations:

xj =

{
1 if a facility is allocated to site j

0 otherwise
. (4)

yi =

{
1 if demand node i is covered by a facility within distance S

0 otherwise
. (5)

where distance S represents the covering range of the facility. This definition can
be changed so that the MCLP is written as:

minimize
n∑

i=1

yi ∗ ai. (6)

GFWA Applied to the MCLP 503

where yi = 1 − y1. In order to use this formulation, condition from Eq. 2 is
changed to ∑

j∈Ni

xj + yi ≥ 1 for all i ∈ I. (7)

The MCLP represents NP-hard problem. In the past years different methods
for solving this problem were proposed. In [4] modified particle swarm optimiza-
tion (PSO) was proposed for localization of special facilities in healthcare which
is modeled by capacitated maximal covering location problem. In [5] genetic
algorithm was adjusted for this problem. A hybrid PSO combined with genetic
algorithm was proposed in [6]. In [7] a large-scale MCLP was studied. In order
to solve the problem, a combination of greedy variable neighborhood search and
fuzzy simulation was proposed.

In this paper we propose a method for solving MCLP based on adjusted
swarm intelligence guided fireworks algorithm which was successfully used for
various applications.

3 Guided Fireworks Algorithm

Guided fireworks algorithm (GFWA) is the latest update of the widely used
fireworks algorithm. Guided FWA was proposed by Li et al. in 2016 [8]. Original
fireworks algorithm (FWA) was proposed in 2010 [9] and the idea was to simulate
fireworks explosions of well and badly manufactured fireworks which was used
to implement exploitation and exploration.

Since its introduction, fireworks algorithm has been used as part of many
different applications for solving hard optimization problems. It was used to
solve constrained portfolio optimization problem in [10], while in [11] it was
used for parameter tuning of local-concentration model for spam detection. In
[12] FWA was used for solving RFID network planing problem, in [13] for WSN
localization problem and in [14] FWA was used for finding optimal threshold
values for multilevel image thresholding. Support vector machine was optimized
by fireworks algorithm in [15]. In [16] guided fireworks was applied to retinal
image registration problem.

Wide use of the fireworks algorithm resulted in numerous improvements and
modifications. Authors he original fireworks algorithms have been collecting ideas
and results and proposed several upgraded versions. In the first modification,
enhanced fireworks algorithm in 2013, five modification to the initial fireworks
algorithm were introduced [17]. Cooperative FWA (CoFWA) was proposed in
[18] as the second version of the FWA. CoFWA enhanced the exploitation ability
by introducing independent selection operator, while the exploration capacity
was increased by crowdness-avoiding cooperative strategy. In [19] two meth-
ods for improving exploration were proposed and that version is known as the
FWA with dynamic resource allocation (FWA-DRA). The latest version pro-
posed by Li et al. is named guided FWA [8]. Objective function information was
used to create a guiding vector with promising direction and adaptive length
hence the quality of the solution as well as the convergence speed was improved.

504 E. Tuba et al.

Created vector was added to the position of the firework and an elite solution
was generated (guiding spark).

Guided fireworks algorithm uses μ fireworks and for each of them the number
of sparks is calculated. Fireworks and sparks represent points in d-dimensional
space, where d is the dimension of the problem. For each firework explosion
amplitude is calculated based on the previous solution and the best solution in
generation is used to generate sparks positions.

In the GFWA the firework with the best fitness in each generation is named
core firework (CF) and explosion amplitude calculation was adjusted. Also, in
each generation a guiding spark (GS) is generated for each firework. The guiding
spark is generated by adding a guiding vector (GV) to the firework’s position.
The position of the guiding spark Gi for the firework Xi is determined by the
following algorithm [8]:

Algorithm 1. Generating the Guiding Spark for Xi

Require: Xi, sij , λi and σ
Sort the sparks by their fitness values f(sij) in ascending order.
Δi ← 1

σλi
(
∑σλi

j=1)sij −∑λi
j=λi−σλi+1 sij

Gi ← Xi + Δi

return Gi

The guiding vector Δi is the mean of σλi vectors which is defined by the
following equation:

Δi =
1

σλi

σλi∑

j=1

(sij − si,λi−j+1). (8)

At the end of each generation the best individual is kept as firework, and
from the rest of individuals random μ − 1 were chosen to be saved for the next
generation.

4 The Proposed Algorithm

In this paper we propose adjusted guided fireworks algorithm for solving max-
imal covering location problem. In order to use the GFWA for the MCLP few
adjustments were necessary.

Dimension of input vector is equal to the number of facilities that need to
be set multiplied by the dimension of network. Optimal locations for P facilities
need to be determined and location is defined by its coordinates. Search range
was set to [xi min, xi max] where i in the index represents dimension while min
and max are minimal and maximal coordinates of dimension i of demand nodes.

Guided fireworks algorithm searches for the solution in real space. In the case
of maximal covering location problem, solutions, i.e. facility locations, cannot
be just any combination of numbers from the search space. In most problems

GFWA Applied to the MCLP 505

facilities can be placed to one of the locations of demand nodes. In some other
cases facilities cannot be placed in specific locations, e.g. mobile antennas cannot
be in the center of a crossroad. In this paper we tested with standard datasets
where facilities have to be in locations of the demand nodes. In order to secure
that only possible solutions are used we implemented the following mechanism.
After a solution is generated distances from all possible locations are calculated
and the solution is placed to the nearest one.

Another adjustment was made due the fact that coordinates can be large
numbers and the distance between two possible locations can also be large while
the GFWA changes locations for some small vectors. In this case, a new solution
that GFWA generated would be again returned to the same possible position.
In order to overcome this problem, coordinates were mapped into range [−1, 1]
for use in the GFWA.

Since the objective function given by Eq. 6 needs to be maximized and the
GFWA tries to minimize the objective function, negative value of Eq. 6 was be
used.

Our proposed algorithm is summarized in Algorithm2.

Algorithm 2. Guided fireworks algorithm for the MCLP
Randomly initialize μ fireworks in the potential space.
Evaluate the fireworks’ fitness.
repeat

For each firework calculate number of sparks (λi).
For each firework calculate explosion amplitude Ai.
For each firework, generate λi sparks within the amplitude Ai

Each generated spark is moved to nearest valid location.
For each firework, generate guiding sparks according to Algorithm 1.
Each guided spark is moved to nearest valid location
Evaluate all the sparks’ fitness according to Eq. 6.
Keep the best individual as a firework.
Randomly choose other μ − 1 fireworks among the rest of individuals.

until termination criteria is met.
return the position and the fitness of the best individual.

5 Experimental Results

The proposed algorithm was implemented in Matlab version R2016b. All exper-
iments were performed on Intel R© CoreTM i7-3770K CPU at 4 GHz, 8 GB RAM
computer with Windows 10 Professional OS.

Our proposed method was tested on standard dataset given in [20]. Dataset
is publicly available on http://www.lac.inpe.br/∼lorena/instancias.html. Data
in this dataset are real data obtained from Sao Jose dos Campos city in Brazil
for purpose of finding optimal locations for internet antennas with coverage
radius of 800 m. Dataset contains five instances where the number of demand

http://www.lac.inpe.br/~lorena/instancias.html

506 E. Tuba et al.

nodes is changed. Each instance has a file with coordinates of N demand nodes
(buildings) that are also possible locations for facilities (internet antennas) and
file with weights for the nodes (population of the building). The goal is to find
optimal locations for P antennas to achieve maximal weighted covering.

In order to prove the quality of our proposed method we compared our results
with results in [21]. In [21] particle swarm optimization based algorithm was
proposed for solving the MCLP and the results were compared with [20]. The
proposed method was tested on the same dataset. In Table 1 results reported in
[21] along with the results from [20] and results obtained by our proposed algo-
rithm are presented. The first column N is the number of locations (buildings),
while the second column P is the number of antennas. As in [20,21], we reported
the best result in 20 runs.

Table 1. Comparison of our proposed algorithm and the methods proposed in [20,21]

N P GA [20] PSO [21] GFWA

Eval Cover(%) Time(s) Eval Cover(%) Time(s) Eval Cover(%) Time(s)

324 5 12,152 100 5,485 115 100 0.9 95 100 0.2

324 5 - - - 260 100 2.0 - - -

324 5 - - - 280 100 2.1 - - -

402 6 15,984 100 3,502 2,720 100 31.8 2,079 100 8.3

402 6 - - - 5,000 99.75 15.8 - - -

402 6 - - - 8,580 100 99.0 - - -

500 8 19,707 100 7,695 4,050 100 80.9 3,963 100 14.0

500 8 - - - 5,000 99.8 8.0 - - -

500 8 - - - 12,780 100 238.6 - - -

In [21] results achieved by using different number of particles were presented.
Because of the different numbers of sparks generated for each firework the num-
bers of iterations are not comparable. Instead, we compared required objective
function evaluations. Evaluation numbers for results from [21] were calculated
as number of particles multiplied by number of iterations. Coverage percentage
was in almost all cases 100%, thus computational time was the characteristics
that could be improved. As shown in Table 1, by using GFWA the number of
objective function evaluations was reduced. For dataset with 324 possible loca-
tions execution time was reduced from 0.9 s that was obtained by the proposed
PSO from [21] to 0.2 s. Evaluations number is also slightly better. Other reported
computational times in [21] for this instance are worse. For the instance with
402 possible locations results were improved more than in the previous case.
The best result by PSO was with covering of 100% that was achieved in 2,720
evaluation and computational time was 31.8 s. Guided FWA successfully covered
100% in 2,079 evaluations while computational time was reduced almost 4 times
since our proposed algorithm found the solution in 8.3 s. Finally, for the third

GFWA Applied to the MCLP 507

tested instance with 500 locations, our proposed algorithm arranged facilities
so the coverage was 100% in 3,963 evaluations. For this task our computational
time was 14.0 s. The best results reported in [21] was for full coverage achieved in
4,050 evaluations but with the computational time of 80.9 s. Again, our compu-
tational time was significantly reduced, almost six times. Based on these results
and the fact that results in [21] outperformed the results from [20] it can be
concluded that our proposed algorithm outperformed both methods proposed
in [20,21].

6 Conclusion

In this paper a novel swarm intelligence algorithm, guided fireworks algorithm,
was adjusted for solving maximal covering location problem. MCLP represents
an important problem that can be used for various applications, thus an efficient
method for solving it is needed. It has been proven that the MCLP represents
NP-hard problem, so deterministic algorithms cannot solve it. In this paper we
have shown that GFWA adjusted for this problem achieved excellent results.
Our proposed method was compared with other approaches from literature and
based on the simulation results it can be concluded that our proposed algorithm
has faster convergence and significantly reduced computational time. Also, our
proposed algorithm easily found maximal coverage for the largest benchmark
problem which means that this algorithm is promising for larger problems. In
further work, proposed algorithm can be adjusted for specific problems that will
include some additional constraints.

References

1. Diabat, A., Abdallah, T., Al-Refaie, A., Svetinovic, D., Govindan, K.: Strategic
closed-loop facility location problem with carbon market trading. IEEE Trans.
Eng. Manag. 60, 398–408 (2013)

2. MirHassani, S.A., Ebrazi, R.: A flexible reformulation of the refueling station loca-
tion problem. Trans. Sci. 47, 617–628 (2013)

3. Megiddo, N., Zemel, E., Hakimi, S.L.: The maximum coverage location problem.
SIAM J. Algebraic Discret. Methods 4, 253–261 (1983)

4. ElKady, S.K., Abdelsalam, H.M.: A modified particle swarm optimization algo-
rithm for solving capacitated maximal covering location problem in healthcare
systems. In: Hassanien, A.-E., Grosan, C., Fahmy Tolba, M. (eds.) Applications
of Intelligent Optimization in Biology and Medicine. ISRL, vol. 96, pp. 117–133.
Springer, Cham (2016). doi:10.1007/978-3-319-21212-8 5

5. Pasandideh, S.H.R., Niaki, S.T.A.: Genetic application in a facility location prob-
lem with random demand within queuing framework. J. Intell. Manuf. 23, 651–659
(2012)

6. Hongxiang, W., Wenxian, G., Jianxin, X., Hongmei, G.: A hybrid PSO for opti-
mizing locations of booster chlorination stations in water distribution systems. In:
International Conference on Intelligent Computation Technology and Automation
(ICICTA), vol. 1, pp. 126–129. IEEE (2010)

http://dx.doi.org/10.1007/978-3-319-21212-8_5

508 E. Tuba et al.

7. Davari, S., Zarandi, M.H.F., Turksen, I.B.: A greedy variable neighborhood search
heuristic for the maximal covering location problem with fuzzy coverage radii.
Knowl.-Based Syst. 41, 68–76 (2013)

8. Li, J., Zheng, S., Tan, Y.: The effect of information utilization: introducing a novel
guiding spark in the fireworks algorithm. IEEE Trans. Evol. Comput. 21, 153–166
(2017)

9. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan,
K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13495-1 44

10. Bacanin, N., Tuba, M.: Fireworks algorithm applied to constrained portfolio opti-
mization problem. In: IEEE Congress on Evolutionary Computation (CEC), pp.
1242–1249 (2015)

11. He, W., Mi, G., Tan, Y.: Parameter optimization of local-concentration model for
spam detection by using fireworks algorithm. In: Tan, Y., Shi, Y., Mo, H. (eds.)
ICSI 2013. LNCS, vol. 7928, pp. 439–450. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38703-6 52

12. Tuba, M., Bacanin, N., Beko, M.: Fireworks algorithm for RFID network planning
problem. In: 25th International Conference Radioelektronika, pp. 440–444 (2015)

13. Tuba, E., Tuba, M., Beko, M.: Node localization in ad hoc wireless sensor net-
works using fireworks algorithm. In: 5th International Conference on Multimedia
Computing and Systems (ICMCS), pp. 223–229. IEEE (2016)

14. Tuba, M., Bacanin, N., Alihodzic, A.: Multilevel image thresholding by fireworks
algorithm. In: 25th International Conference Radioelektronika, pp. 326–330 (2015)

15. Tuba, E., Tuba, M., Beko, M.: Support vector machine parameters optimization by
enhanced fireworks algorithm. In: Tan, Y., Shi, Y., Niu, B. (eds.) ICSI 2016. LNCS,
vol. 9712, pp. 526–534. Springer, Cham (2016). doi:10.1007/978-3-319-41000-5 52

16. Tuba, E., Tuba, M., Dolicanin, E.: Adjusted fireworks algorithm applied to retinal
image registration. Stud. Inform. Control 26, 33–42 (2017)

17. Zheng, S., Janecek, A., Tan, Y.: Enhanced fireworks algorithm. In: IEEE Congress
on Evolutionary Computation (CEC), pp. 2069–2077 (2013)

18. Zheng, S., Li, J., Janecek, A., Tan, Y.: A cooperative framework for fireworks
algorithm. IEEE/ACM Trans. Comput. Biol. Bioinf. 14, 27–41 (2017)

19. Li, J., Tan, Y.: Enhancing interaction in the fireworks algorithm by dynamic
resource allocation and fitness-based crowdedness-avoiding strategy. In: IEEE
Congress on Evolutionary Computation (CEC), pp. 4015–4021 (2016)

20. Arakaki, R.G.I., Lorena, L.A.N.: A constructive genetic algorithm for the max-
imal covering location problem. In: Proceedings of Metaheuristics International
Conference, pp. 13–17 (2001)

21. Drakulic, D., Maric, M., Takaci, A.: Solving maximal covering location problem
(MCLP) by using the particle swarm optimization (PSO) method. Math. Inform.
Phys. 51, 19–22 (2012)

http://dx.doi.org/10.1007/978-3-642-13495-1_44
http://dx.doi.org/10.1007/978-3-642-38703-6_52
http://dx.doi.org/10.1007/978-3-642-38703-6_52
http://dx.doi.org/10.1007/978-3-319-41000-5_52

Brain Storm Optimization Algorithm

An Improved Brain Storm Optimization
with Learning Strategy

Hong Wang1,2, Jia Liu1, Wenjie Yi1, Ben Niu1,3(&),
and Jaejong Baek3(&)

1 College of Management, Shenzhen University, Shenzhen, China
Drniuben@gmail.com

2 Department of Mechanical Engineering, Hong Kong Polytechnic University,
Hung Hom, Hong Kong

3 School of Computing, Informatics and Decision Systems Engineering,
Arizona State University, Tempe, AZ 85281, USA

jbaek7@asu.edu

Abstract. Brain Storm Optimization (BSO) algorithm is a brand-new and
promising swarm intelligence algorithm by mimicking human being’s behavior
of brainstorming. This paper presents an improved BSO, i.e., BSO with learning
strategy (BSOLS). It utilizes a novel learning strategy whereby the first half
individuals with better fitness values maintain their superiority by keeping away
from the worst ones while other individuals with worse fitness values improve
their performances by learning from the excellent ones. The improved algorithm
is tested on 10 classical benchmark functions. Comparative experimental results
illustrate that the proposed algorithm performs significantly better than the
original BSO and standard particle swarm optimization algorithm.

Keywords: Brain Storm Optimization � Improved BSO � Learning strategy �
Benchmark functions

1 Introduction

Brain Storm Optimization (BSO) is a swarm intelligence algorithm that simulates the
problem-solving process of human brainstorming. The basic framework of BSO was
proposed by Shi [1, 2], who designed the clustering and creating operators by mim-
icking brainstorming process based on Osborn’s four rules in 2011.

As a young and promising algorithm, BSO can be further improved by developing
various searching strategies. In [3–6], a variety of clustering methods were utilized into
BSO instead of k-means clustering to reduce the computational burden of the algo-
rithm. Zhou et al. [7] employed an adaptive step size and generated new individuals in
a batch-mode. Krishnanand et al. [8] presented a hybrid algorithm combining BSO and
Teaching-Learning-Based Optimization algorithm. Sun et al. [9] designed a closed-
loop strategy based BSO (CLBSO) by taking advantage of feedback information and
developed three versions of CLBSO. Cao et al. [10] incorporated differential evolution
strategy into the creating operator of individuals and introduced a new step size control

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 511–518, 2017.
DOI: 10.1007/978-3-319-61824-1_56

method. Cheng et al. [11] removed the clustering strategy and divided the solutions into
elitist and normal classes. Yadav et al. [12] modified BSO with the inclusion of a
mathematical theory called fractional calculus.

In addition, the basic BSO and its variants have been applied successfully to several
kinds of real-world problems. Most applications of BSOs focused on electric power
systems [8], design problems in aeronautics field [9], wireless sensor networks [4] and
optimization problems in finance [13]. However, in evolutionary computation research,
there have always been attempts to further improve any given findings. In this paper,
we present an improved variant of the BSO algorithm named BSO with learning
strategy (BSOLS). In original BSO, new individuals were generated by only one or two
individuals. It may trap into local optima easily. The BSOLS implement a novel
learning strategy imitating human behavior of seeking benefits and avoiding weakness.
The proposed algorithm is tested on 10 benchmark functions, and the results show that
the BSOLS algorithm significantly improves the performance of BSO and the diversity
of population.

The remaining paper is organized as follows. Section 2 will give a brief intro-
duction of the original BSO algorithm. The proposed learning strategy and the
improved algorithm are described in detail in Sect. 3. Simulations on benchmark
functions and experimental results are given in Sect. 4. Finally, the conclusions and
future works are made in Sect. 5.

2 Original Brain Storm Optimization Algorithm

Derived from the human brainstorming process, Shi [1] first proposed BSO algorithm
and gained success. The detailed procedure of BSO can be described as follow:

Step 1: Generate n potential solutions randomly and calculate their fitness values.
Step 2: Cluster n solutions into m classifications using k-means clustering method.
Then select the best solution as a cluster center in each classification. Step 3: Utilize a
newly generated idea in place of a randomly selected cluster center with a small
probability P1 to explore more potential solutions. Step 4: If rand (0, 1) is smaller than
P2, randomly choose one cluster. Otherwise, two randomly chosen clusters are utilized
to obtain Xold. Based on one cluster, a cluster center or a random solution is selected
according to P3. On the basis of choosing two clusters, combine two cluster centers or
two random solutions from selected clusters according to P4. The combination is
defined as

Xold ¼ randðÞ � X1 þð1� randðÞÞ � X2 ð1Þ

Step 5: Update Xold into Xnew according to

Xnew ¼ Xold þ n � Nðl; rÞ: ð2Þ

Where Nðl; rÞ is the Gaussian random value with mean l and variance r. n is an
alterable factor which can be expressed as:

512 H. Wang et al.

n ¼ log sigð0:5T � t
k

Þ � randð0; 1Þ: ð3Þ

Where logsig () is a logarithmic sigmoid transfer function, T and t are respectively
the maximum and current iteration number, and k is for changing the slope of logsig ()
function. Step 6: Compare the newly generated idea with the previous one and keep the
better one as the next iteration of the new information.

The assigned values to the set of parameters of BSO are presented in Table 1.

3 Brain Storm Optimization with Learning Strategy

In this paper, we propose a novel learning strategy inspired by the learning capacity of
humans. In general, normal individuals have a willingness to make progress. However,
different individuals have different learning capacity and learning strategy. Some
individuals are so outstanding in special fields that what they need to pay attention to is
avoiding mistakes. Others perform poorly in one area so that it is required for them to
make great efforts for improvement by learning from those individuals who are
excellent. Based on the above strategies, we introduce an improved BSO with learning
strategy called BSOLS.

The original BSO selects only one idea or two combined idea as Xold to generate
Xnew, which may obtain local optima easily. In this paper, we add a learning strategy
after updating operator to enhance the population diversity and to jump out of local
optima.

All the updated individuals Xnew are ranked from the best to the worst according to
their fitness values to differentiate which ones are better. The top Pe % of individuals
will be categorized as “elitists” while the last Pl % will be categorized as “laggards”.
The first half individuals have already been better so their ideas only need to keep far
away from laggards’ ideas. While, the second half individuals have great space to
improve. So they should learn towards elitists. The learning rule is as follow:

X
0
new ¼ Xranked � ðXlast � XrankedÞ � q1 � randðÞ

Xranked þðXtop � XrankedÞ � q2 � randðÞ
�

if i\n=2þ 1 ð4Þ

Where X
0
new s is a new idea after learning operator, Xlast is randomly selected from

last Pl percentage ideas, Xlast is randomly selected from top Pe percentage ideas, q1 and
q2 are similar to c2 in PSO which expresses the influence of other individuals.

According to the parameters investigation in [14], the current replacing operator
makes less or even no contributions to the BSO. To simplify the algorithm, we remove

Table 1. Parameter settings for original BSO

m P1 P2 P3 P4 k l r

5 0.2 0.8 0.4 0.5 20 0 1

An Improved Brain Storm Optimization with Learning Strategy 513

the replacing operator from BSO. The procedure of the proposed BSO with learning
strategy can be described as follows:

(1) The initialization, evaluating, cluster, selecting and updating operator are the same
as the basic BSO. While the replacing operator in Step 3 of original BSO is
omitted.

(2) Sorting. Sort fitness values for each idea Xnew in ascending or descending order (It
depends on the expected fitness value, maximum or minimum) to obtain Xranked.

(3) Learning. If the index of Xranked is no more than half of total individuals, execute
the learning strategy of avoiding weakness. Otherwise, implement the learning
strategy of seeking benefits.

The assigned values to the set of parameters of BSOLS are presented in Table 2.
In BSOLS, the percentage of elitists and laggards are both set to be 0.1. q1 and q2 are
equal to 0.13 and 0.15, respectively.

4 Benchmark Tests and Experimental Results

4.1 Test Problems

To validate the BSOLS, we use 10 benchmark functions, which have often been used
to test population-based algorithms in the literature. All the 10 benchmark functions
and their dynamic ranges are from [15], among which the first five functions are
unimodal functions and the remaining five functions are multimodal functions. All
functions are minimization problems with minimum being zero. Each benchmark
function will be tested with three different dimension setting, i.e., 10, 20 and 30,
respectively. The proposed BSOLS will be compared with the original BSO and the
standard particle swarm optimization (SPSO). To obtain reasonable statistical results,
the tested BSO algorithms for each benchmark function will be run 30 times. All the
experiments are run under the MATLAB R2014a environment on the same machine
with an Intel 2.2 GHz CPU, 4 GB memory. The operating system is Windows 10.

4.2 Parameter Settings

The common parameters for both BSO algorithms are set the same for the purpose of
comparison, that is, the population size n is set to be 100, the maximum number of
iterations is 2000. The parameters for BSO and BSOLS are given in Tables 1 and 2,
respectively. In SPSO, we set c1 = c2 = 2, and inertia weight decrease from 0.9 to 0.5.

Table 2. Parameter settings for BSOLS

m P2 P3 P4 k l r Pe Pl q1 q2
5 0.8 0.4 0.5 20 0 1 0.1 0.1 0.13 0.15

514 H. Wang et al.

4.3 Results and Analysis

The mean fitness values, the minimum and the maximum obtained by the three
algorithms are listed in Table 3. The best of all the numerical values obtained on each
function are emphasized by using a bold type. Additionally, the average results
obtained by the three algorithms with 30 dimensions are visually shown for the
example in Fig. 1. The red dotted line, the blue line and the green line are the means of
each iteration for running 30 times of BSOLS, BSO and SPSO, respectively.

According to Table 3, we can draw the following conclusions:
BSOLS performs significantly better than the original BSO on all the tested

benchmarks, which means the learning strategy is effective in terms of the search
accuracy no matter the dimensions and categories of the functions.

Table 3. Experiment results on benchmark functions

Function D BSOLS BSO SPSO

Mean Best Worst Mean Best Worst Mean Best Worst

f1
Sphere

10 2.88E−54 7.47E−77 8.64E−53 3.55E−44 4.88E−45 6.61E−44 2.42E−59 4.01E−66 6.39E−58

20 3.57E−53 2.54E−75 7.47E−52 3.11E−43 1.87E−43 4.06E−43 4.75E−26 1.95E−29 4.99E−25

30 4.18E−53 3.89E−76 1.25E−51 9.58E−43 6.29E−43 1.48E−42 3.10E−14 1.92E−16 3.65E−13

f2
Schwefel’s
P221

10 1.81E−31 1.06E−38 5.29E−30 1.19E−22 7.91E−23 1.59E−22 3.06E−18 6.80E−21 4.48E−17

20 1.43E−31 6.77E−40 4.15E−30 2.75E−04 2.66E−12 3.29E−03 5.77E−03 7.55E−04 1.53E−02

30 2.38E−33 4.39E−40 4.00E−32 6.93E−02 9.77E−03 1.94E−01 2.58E+00 8.51E−01 6.25E+00

f3
Step

10 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0

30 0 0 0 3.33E−02 0 2.00E+00 0 0 0

f4
Schwefel’s
P222

10 4.60E−26 1.75E−37 5.44E−25 4.68E−22 3.48E−22 7.29E−22 1.03E−34 7.81E−37 7.81E−34

20 3.88E−29 3.44E−38 8.97E−28 4.02E−10 1.30E−21 1.19E−08 3.26E−17 1.13E−18 1.84E−16

30 8.63E−26 1.06E−37 1.00E−24 1.63E−02 4.34E−17 2.79E−02 2.50E−10 2.63E−11 7.94E−10

f5
Quartic
Noise

10 4.42E−05 4.42E−06 1.63E−04 4.25E−04 5.92E−05 1.73E−03 1.57E−03 1.99E−04 3.78E−03

20 3.76E−05 6.26E−07 1.26E−04 2.21E−03 3.38E−04 5.08E−03 7.59E−03 2.39E−03 1.32E−02

30 4.58E−05 2.82E−06 2.50E−04 1.13E−02 3.44E−03 2.33E−02 2.00E−02 7.08E−03 4.78E−02

f6
Ackely

10 8.88E−16 8.88E−16 8.88E−16 4.44E−15 4.44E−15 4.44E−15 5.39E−15 4.44E−15 7.99E−15

20 8.88E−16 8.88E−16 8.88E−16 7.16E−15 4.44E−15 1.15E−14 3.89E−14 1.15E−14 1.82E−13

30 8.88E−16 8.88E−16 8.88E−16 1.52E−14 4.44E−15 2.93E−14 5.36E−08 2.86E−09 1.56E−07

f7
Rastrigin

10 0 0 0 4.44E+00 1.99E+00 7.96E+00 1.03E+00 0 3.98E+00

20 0 0 0 1.96E+01 1.19E+01 3.18E+01 1.07E+01 4.03E+00 1.89E+01

30 0 0 0 3.59E+01 2.19E+01 5.67E+01 3.05E+01 1.49E+01 4.97E+01

f8
Rosenbrock

10 0 0 0 6.12E+00 4.16E+00 1.23E+01 2.71E+00 8.34E−03 1.16E+01

20 0 0 0 2.26E+01 1.59E+01 9.18E+01 3.34E+01 1.35E+00 1.11E+02

30 0 0 0 6.15E+01 2.60E+01 1.24E+02 4.38E+01 4.94E+00 1.20E+02

f9
Schwefel’s
P226

10 1.27E−04 1.27E−04 1.27E−04 1.35E+03 4.74E+02 2.47E+03 2.21E+02 1.27E−04 4.74E+02

20 7.90E+01 2.55E−04 2.37E+03 3.32E+03 2.11E+03 4.72E+03 6.75E+02 3.55E+02 1.30E+03

30 3.82E−04 3.82E−04 3.82E−04 5.17E+03 3.57E+03 8.27E+03 1.10E+03 4.74E+02 2.01E+03

f10
Griewank

10 0 0 0 2.04E+00 7.06E−01 4.29E+00 5.90E−02 2.46E−02 9.83E−02

20 0 0 0 1.02E−01 0 1.44E+00 3.92E−02 0 1.20E−01

30 0 0 0 1.18E−02 1.97E−13 6.63E−02 1.28E−02 7.77E−16 8.60E−02

An Improved Brain Storm Optimization with Learning Strategy 515

f1 f2

f3 f4

f5 f6

f7 f8

f9 f10

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6
x 10

4

Iterations

Fi
tn

es
s

BSOLS
BSO
SPSO

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

Iterations

Fi
tn

es
s

BSOLS
BSO
SPSO

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7
x 10

4

Iterations

Fi
tn

es
s

BSOLS
BSO
SPSO

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

11

Iterations

Fi
tn

es
s

BSOLS
BSO
SPSO

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

Iterations

Fi
tn

es
s

BSOLS
BSO
SPSO

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

Iterations

Fi
tn

es
s

BSOLS
BSO
SPSO

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

400

450

Iterations

Fi
tn

es
s

BSOLS
BSO
SPSO

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5
x 10

8

Iterations

Fi
tn

es
s

BSOLS
BSO
SPSO

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2000

4000

6000

8000

10000

12000

Iterations

Fi
tn

es
s

BSOLS
BSO
SPSO

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

Iterations

Fi
tn

es
s

BSOLS
BSO
SPSO

Fig. 1. Convergence Curves of BSOLS, BSO and SPSO (Color figure online)

516 H. Wang et al.

For f3, f7, f8 and f10, BSOLS can find the optimum zero all the time. It means that
the search stability and superiority of BSOLS in specific optimization problem is best
as compared to BSO and SPSO.

Although the mean fitness values of BSOLS on f1 and f4 with 10 dimensions are
slightly worse than SPSO, BSOLS still performs quite well in terms of the minimum.

We observed visually from Fig. 1 that BSOLS achieves the highest quality of the
solution and the most rapid convergence rate. Altogether, whether in unimodal func-
tions or in multimodal functions, it can be observed that BSOLS outperforms the other
two algorithms.

5 Conclusions

In this paper, we propose a novel learning strategy and combine it with BSO algorithm.
We apply BSOLS, the original BSO and SPSO to a set of benchmark functions to
demonstrate the effect of our proposed algorithm. The results on benchmark functions
show that the learning strategy significantly improves the performance of the original
BSO.

In the future, BSOLS will be compared with more state-of-art algorithms and also
be applied to some real-world problems. Moreover, our future work will focus on the
development of modified BSO with a lighter computational burden to promote its
efficiency.

Acknowledgment. This work is partially supported by The National Natural Science Founda-
tion of China (Grants Nos. 71571120, 71271140, 71471158, 71001072, 61472257), Natural
Science Foundation of Guangdong Province (2016A030310074) and Shenzhen Science and
Technology Plan (CXZZ20140418182638764).

References

1. Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.)
ICSI 2011. LNCS, vol. 6728, pp. 303–309. Springer, Heidelberg (2011). doi:10.1007/978-3-
642-21515-5_36

2. Shi, Y.: An optimization algorithm based on brainstorming process. Int. J. Swarm Intell. Res.
(IJSIR) 2(4), 35–62 (2011)

3. Zhan, Z.H., Zhang, J., Shi, Y.H., Liu, H.L.: A modified brain storm optimization. In: 2012
IEEE Congress on Evolutionary Computation (CEC), pp. 1–8, June 2012

4. Chen, J., Xie, Y., Ni, J.: Brain storm optimization model based on uncertainty information.
In: 2014 Tenth International Conference on Computational Intelligence and Security,
pp. 99–103 (2014)

5. Zhu, H., Shi, Y.: Brain storm optimization algorithms with k-medians clustering algorithm.
In: Proceedings of the Seventh International Conference on Advanced Computational
Intelligence (ICACI 2015), pp. 107–110. IEEE (2015)

6. Cao, Z., Shi, Y., Rong, X., Liu, B., Du, Z., Yang, B.: Random grouping brain storm
optimization algorithm with a new dynamically changing step size. In: Tan, Y., Shi, Y.,
Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI 2015. LNCS, vol. 9140,
pp. 357–364. Springer, Cham (2015). doi:10.1007/978-3-319-20466-6_38

An Improved Brain Storm Optimization with Learning Strategy 517

http://dx.doi.org/10.1007/978-3-642-21515-5_36
http://dx.doi.org/10.1007/978-3-642-21515-5_36
http://dx.doi.org/10.1007/978-3-319-20466-6_38

7. Zhou, D., Shi, Y., Cheng, S.: Brain storm optimization algorithm with modified step-size and
individual generation. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012. LNCS, vol. 7331,
pp. 243–252. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30976-2_29

8. Krishnanand, K.R., Hasani, S.M.F., Panigrahi, B.K., Panda, S.K.: Optimal power flow
solution using self–evolving brain–storming inclusive teaching–learning–based algorithm.
In: Tan, Y., Shi, Y., Mo, H. (eds.) ICSI 2013. LNCS, vol. 7928, pp. 338–345. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38703-6_40

9. Sun, C., Duan, H., Shi, Y.: Optimal satellite formation reconfiguration based on closed-loop
brain storm optimization. IEEE Comput. Intell. Mag. 8(4), 39–51 (2013)

10. Cao, Z., Wang, L., Hei, X., Shi, Y., Rong, X.: An improved brain storm optimization with
differential evolution strategy for applications of ANNs. Math. Probl. Eng. 2015, 1–18
(2015)

11. Shi, Y.: Brain storm optimization algorithm in objective space. In: Proceedings of 2015
IEEE Congress on Evolutionary Computation, (CEC 2015), pp. 1227–1234. IEEE, Sendai
(2015)

12. Yadav, P.: Case retrieval algorithm using similarity measure and adaptive fractional brain
storm optimization for health informaticians. Arab. J. Sci. Eng. 41, 1–12 (2016)

13. Niu, B., Liu, J., Liu, J., Yang, C.: Brain storm optimization for portfolio optimization. In:
Tan, Y., Shi, Y., Li, L. (eds.) ICSI 2016. LNCS, vol. 9713, pp. 416–423. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-41009-8_45

14. Zhan, Z.H., Chen, W.N., Lin, Y., Gong, Y.J., Li, Y.L., Zhang, J.: Parameter investigation in
brain storm optimization. In: Proceedings of the 2013 IEEE Symposium on Swarm
Intelligence (SIS 2013), pp. 103–110 (2013)

15. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol.
Comput. 3(2), 82–102 (1999)

518 H. Wang et al.

http://dx.doi.org/10.1007/978-3-642-30976-2_29
http://dx.doi.org/10.1007/978-3-642-38703-6_40
http://dx.doi.org/10.1007/978-3-319-41009-8_45

Difference Brain Storm Optimization
for Combined Heat and Power Economic

Dispatch

Yali Wu1,2(&), Xinrui Wang1,2, Yulong Fu1,2, and Yingruo Xu1,2

1 Faculty of Automation and Information Engineering,
Xi’an University of Technology, Xi’an, China

yliwu@xaut.edu.cn
2 Shaanxi Key Laboratory of Complex System Control and Intelligent

Information Processing, Xi’an, China

Abstract. Brain Storm Optimization (BSO) is inspired by human being brain
storm process. A novel Difference Brain Storm Optimization (DBSO) is pro-
posed to solve combined heat and power economic dispatch (CHPED) problem
in power plant. The difference mutation operation is adopted to replace the
Gaussian mutation in the original BSO algorithm for increasing the diversity of
the population and the speed of convergence. A test system with 7 units taken
from the literature is simulated to verify the performance of the proposed
algorithm. The results show that comparing with other intelligent optimization
method, both BSO and DBSO can provide the better solution. The convergence
speed of the DBSO is better than BSO algorithm.

Keywords: Brain storm algorithm � Difference brain storm optimization �
Combined heat and power economic dispatch

1 Introduction

The efficiency of conventional power production unit is less than 60% in power plant.
While cogeneration unit can reach about 90%, so it is now widely used in power plant.
Moreover, the emission in cogeneration unit is only about 13%–18% in the environ-
ment aspects (such as CO2, SO2, etc.). Cogeneration units in the thermal power plant
can not only supply power to the broad masses of electricity users, but also the heating
for the users. In order to improve the economic efficiency of thermal power plant,
economic dispatch problem which is called combined heat and power economic dis-
patch (CHPED) problem has been paid more attention in recent years. Its objective is to
determine the best output of cogeneration unit under the constraints of operating
constraints of electricity and heat demand.

Compared with conventional power plants, cogeneration unit not only the load
demand of electricity and heat must be met respectively, but also the coupling rela-
tionship between them must be met in the CHP system. This makes the constraints

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 519–527, 2017.
DOI: 10.1007/978-3-319-61824-1_57

more complex than ever. The traditional optimization algorithm is difficult to solve this
problem. Many researchers proposed different intelligent optimization algorithm to
solve CHPED problem. Su [1] improved genetic algorithm with an improved evolu-
tionary direction operator and multiplier updating (IGA-MU) to avoid deforming the
augmented Lagrange function. The proposed algorithm provided an efficacious
approach for large-scale systems of the CHPED problem. Song [2] worked on CHPED
using genetic algorithm based penalty function method. Sudhakaran and Slochanal [3]
involved an integrating genetic algorithms and tabu search for combined heat and
power system which consists of a conventional thermal unit, two cogeneration units
and a heat-only unit. Tyagi [4] proved that particle swarm optimization algorithm can
be skilled to solve CHPED problem. Mohammadi-Ivatloo [5] introduced a novel time
varying acceleration coefficients particle swarm optimization (TVAC-PSO) algorithm
to solve CHPED problem. The acceleration coefficients in PSO algorithm were varied
adaptively during iterations to improve solution quality of original PSO and avoid
premature convergence. The proposed method is applied to five test cases which are
four units, five units, seven units, twenty-four units and forty-eight units. The results
demonstrate the superiority of the proposed method in solving non-convex and con-
strained CHPED problem.

In recent years, many kinds of new type of intelligent optimization algorithm were
used in CHPED problem. Basu [6] involved an opposition-based group search opti-
mization which employs opposition-based learning for population initialization and
also for iteration wise update operation. It was found that the proposed opposition-
based group search optimization based approach can provide better solution. Meng [7]
used crisscross optimization algorithm for solving CHPED problem. Beigvand [8]
adopted gravitational search algorithm for CHPED problem.

As a novel swarm intelligence optimization algorithm, Brain Storm Optimization
(BSO), which is inspired by the human brainstorming process, was presented by Shi
[9] on the Second International Conference on Swarm Intelligence (ICSI11) in 2011.
Zhao [10] analyzed the parameter of BSO algorithm and proposed an improved BSO
which prepared with OPTICS clustering algorithm. BSO algorithms with k-medians
clustering algorithms [11] and BSO algorithm in objective space [12] was put forward
respectively by Shi in 2015. Xue [13] solved multi-objective optimization problems
by BSO algorithm, which used non-dominated solutions to fit the true Pareto-front,
the simulation results shows that it is effective to solve the multi-objective problem.
More and more researchers focused their attention on the improvement of the per-
formance on BSO algorithm. In this paper, we try to apply BSO to solve CHPED
problem.

The structure of this paper is listed as follows. The mathematical model of CHPED
problem is described in Sect. 2. The BSO and DBSO are proposed in Sect. 3.
The DBSO algorithm is applied to CHPED problem in Sect. 4. And the simulation and
result discussion is shown in Sect. 5. The conclusion is given in Sect. 6.

520 Y. Wu et al.

2 The Formulation of Combined Heat and Power Economic
Dispatch Problem

2.1 The Objective Function of CHPED Problem

The CHPED system consists of power-only units, CHP units and heat-only units. The
objective function of CHPED problem is minimizing the system cost. Considering
valve-point effects and transmission loss, CHPED problem is a non-convex and
non-linear problem. The objective function is represented as follows.

minCT ¼
XNp

i¼1

CiðPp
i Þþ

XNc

j¼1

CjðPc
j ;H

c
j Þþ

XNh

k¼1

CkðHh
k Þ

¼
XNp

i¼1

faiðPp
i Þ2 þ biP

p
i þ ci þ ki sinðqiðPpmin

i � Pp
i ÞÞ

��� ���g

þ
XNc

j¼1

fajðPc
j Þ2 þ bjPc

j þ cj þ djðHc
j Þ2 þ ejHc

j þ fjHc
j P

c
j g

þ
XNh

k¼1

f/kðHh
k ÞþukH

h
k þwkg

ð1Þ

Where CT is the total production cost. CiðPp
i Þ is the cost of power-only unit i.

CjðPc
j ;H

c
j Þ is the cost of CHP unit j. CkðHh

k Þ is the cost of heat-only unit k. Np;Nc;Nh

are the number of power-only units, CHP units and heat-only units respectively. Pp
i is

power output of power-only unit i. Pc
j ;H

c
j are the power output and heat output of CHP

unit j respectively. Hh
k is heat output of heat-only unit k. ai; bi; ci are cost coefficients of

power-only unit i. aj; bj; cj; dj; ej; fj are coefficients of CHP unit j. /k;uk;wk are coef-
ficients of heat-only unit k.

2.2 The Constraints of CHPED Problem

The constraints of power and heat production and demand balance can be stated as
follows.

XNp

i¼1

Pp
i þ

XNc

j¼1

Pc
j ¼ Pd þPloss ð2Þ

Ploss ¼
XNp

i¼1

XNp

m¼1

Pp
i BimP

p
m þ

XNp

i¼1

XNc

j¼1

Pp
i BijP

c
j þ

XNc

j¼1

XNc

n¼1

Pc
j BinP

c
n ð3Þ

XNc

j¼1

Hc
j þ

XNh

k¼1

Hh
k ¼ Hd ð4Þ

Difference Brain Storm Optimization for Combined Heat 521

Where Pd ;Hd are the demand of power and heat, respectively. Ploss is transmission
loss of power. B is the loss coefficients.

The capacity limits of power-only units, CHP units and heat-only units are pre-
sented as follows.

Ppmin
i �Pp

i �Ppmax
i i ¼ 1; . . .;Np ð5Þ

Pcmin
j ðHc

j Þ�Pc
j �Pcmax

j ðHc
j Þ j ¼ 1; . . .;Nc ð6Þ

Hcmin
j ðPc

j Þ�Hc
j �Hcmax

j ðPc
j Þ j ¼ 1; . . .;Nc ð7Þ

Hhmin
k �Hh

k �Hhmax
k k ¼ 1; . . .;Nh ð8Þ

Where Ppmin
i ;Ppmax

i are the minimum and the maximum power output of power-only
unit i. Pcmin

j ðHc
j Þ and Pcmax

j ðHc
j Þ are the minimum and the maximum power limit of CHP

unit j which are functions of generated heat ðHc
j Þ. Hcmin

j ðPc
j Þ;Hcmax

j ðPc
j Þ are the mini-

mum and the maximum heat limit of CHP unit j which are functions of generated heat
ðPc

j Þ. The feasible heat-power operation regions of CHP units [14] is depicted in Fig. 1.

Hhmin
k ;Hhmax

k are the minimum and the maximum heat output of heat-only unit k.

3 Difference Brainstorm Optimization Algorithm

3.1 Brain Storm Optimization Algorithm

The design of BSO algorithm is based on the brainstorming process [15]. In the
brainstorming process, the generation of the idea obeys the Osborn’s original four
rules. The people in the brainstorming group will need to be open-minded as much as
possible and therefore generate more diverse ideas. Any judgment or criticism must be
held back until at least the end of one round of the brainstorming process, which means
no idea will be ignored. The optimization algorithm based on the idea human produce
process should be superior to that of clustering behavior of animals, for human are the
most intelligent animals in the world. Inspired by this process, Shi proposed BSO
algorithm [9] in 2011.

A
B

C

D
E

F

/H MVth

/P MV Maximum Fuel

Minimum Fuel

Maximum Heat
Extraction

Fig. 1. The heat-power feasible regions of CHP units

522 Y. Wu et al.

3.2 Difference Brainstorm Optimization Algorithm

The Gaussian random values will be used as random values which are added to
generate new individuals in classical BSO algorithm. The new individual generation in
Step 6 can be represented as the Eq. (9), which is listed in the following.

Xd
new ¼ Xd

selected þ n � l; rð Þ ð9Þ

Where Xd
selected is the dth dimension of the individual selected to generate new

individual. Xd
new is the dth dimension of the individual newly generated. n l; rð Þ is the

Gaussian random function with mean l and variance r. The parameter n is a coefficient
that weights the contribution of the Gaussian random value. For the simplicity and for
the purpose of fine tuning, the n can be calculated as:

n ¼ log sig 0:5 �max iteration� current iterationð Þ=Kð Þ � randðÞ ð10Þ

Where log sigðÞ is a logarithmic sigmoid transfer function. max iteration is the
maximum number of iterations. current iteration is the current iteration number. K is
for changing function’s slope. randðÞ is a random value within ð0; 1Þ.

As a common mutation method, the variance of Gaussian mutation is obtained by
multiplying n and the Gaussian random function. The value of log sigðÞ is between 0
and 1. n 2 0; 1ð Þ. As shown in Fig. 2, the Gaussian distribution follows the principle of
3r. when l and r is fixed, the Gaussian function produces most values between
l� 3r; lþ 3r;ð Þ which is shown in Fig. 3. When l ¼ 0; r ¼ 1; the range of variation
is �3; 3ð Þ.

During the process of searching the optimal solution, all the solutions can be
uniformly generated in the decision space at first. And the global search should be
carried out. At the latter stage, the local variation should be optimized due to the overall
rise of the solution, quality, The variance should be smaller with the stage process lasts.
However, Gaussian variation is consistent, because of the range of variation is basically
fixed, the individuals cannot make full use of information in the current population. In
addition, the Gaussian mutation operation process is very complex.

Differential evolution (DE) mutation can be served as a useful tool in this paper to
achieve the purpose. The mutation operation can be described in Eq. (11).

Fig. 2. Gaussian distribution Fig. 3. The range of variation when l ¼ 0; r ¼ 1

Difference Brain Storm Optimization for Combined Heat 523

xnewd ¼ rand Ld; Hd
� �

xselectd þ rand 0; 1ð Þ � x1 � x2ð Þ
if randðÞ\Pr

else

�
ð11Þ

Where Xd
selected is the dth dimension of the individual selected to generate new

individual. Xd
new is the dth dimension of the individual newly generated. The upper and

lower bounds of the dimension is Ld;Hd . And x1; x2 for the two different individuals
chosen in the contemporary world.

Compared with Gaussian variation, only the random function and the four mixed
operations are considered in the difference variation, so the computation complexity
will be reduced significantly. And the running speed will be significantly improved.
Whenever the generation of random values is based on other individuals within the
contemporary population, can the information of the other individuals within the
population be obtained, this make the searching efficiency higher than ever. In addition,
the differential mutation can balance the local search and global search in the search
process greatly which can improve the algorithm performance effectively.

4 DBSO Algorithm for Combined Heat and Power Economic
Dispatch

The steps of DBSO for solve CHPED problems as follows:

1. Initialize operation.

Each individual in the population represents a solution, it can be stated as:

XðiÞ ¼ ½Pp
i1; . . .;P

p
iNP

;Pc
i1; . . .;P

c
iNc
;Hc

i1; . . .;H
c
iNc
;Hh

i1; . . .;H
h
iNk
�

Due to every individual satisfy the constraints, the steps of this constraints are
handled as follows:

(1) The initial values of the power-only units and heat-only units are randomly
generated using the formula (12). The power and the heat of CHP units are
randomly generated according to the formula (13).

Pp
ij ¼ Ppmin

j þ r � ðPpmax
j � Ppmin

j Þ j ¼ 1; . . .;Np

Hh
ij ¼ Hhmin

j þ r � ðHhmax
j � Hhmin

j Þ j ¼ 1; . . .;Nh

ð12Þ

Pc
ij ¼ Pcmin

j ð�Þ þ r � ðPcmax
j ð�Þ � Pcmin

j ð�ÞÞ j ¼ 1; . . .;Nc

Hc
ij ¼ Hcmin

j ð�Þ þ r � ðHcmax
j ð�Þ � Hcmin

j ð�ÞÞ j ¼ 1; . . .;Nc

ð13Þ

(2) The power and the heat of CHP units must satisfy the feasible regions requirement,
as shown in Fig. 1, assuming BC, DC, DE that the relationship between Pc

ij andH
c
ij

are Hc
ij ¼ f1ðPc

ijÞ;Hc
ij ¼ f2ðPc

ijÞ;Hc
ij ¼ f3ðPc

ijÞ, respectively. The feasible regions
constraints of the CHP units can be handled as the same as the formula (14).

524 Y. Wu et al.

ðPc
ij;H

c
ijÞ ¼

ðPc
ij; f1ðPc

ijÞÞ if Pc
C �Pc

ij �Pc
B and f1ðPc

ijÞ�Hc
ij

ðPc
ij; f2ðPc

ijÞÞ if Pc
E �Pc

ij �Pc
C and f2ðPc

ijÞ�Hc
ij

ðPc
ij; f2ðPc

ijÞÞ if Pc
D �Pc

ij �Pc
E and f2ðPc

ijÞ�Hc
ij

ðPc
ij; f3ðPc

ijÞÞ if Pc
D �Pc

ij �Pc
E and f3ðPc

ijÞ�Hc
ij

8>><
>>:

ð14Þ

(3) The load requirements of the power and the heat output may be satisfied, by
calculating the difference (m and n) between the power and heat of individuals
using Eq. (15). And then the difference m; n are distributed evenly over the
power of the power-only units and the heat of the heat-only units, respectively.

m ¼ Pd þPloss � Pp
i1 � . . .� Pp

iNP
� Pc

i1 � . . .Pc
iNc

n ¼ Hd � Hc
i1 � . . .� Hc

iNc
� Hh

i1 � . . .� Hh
iNk

ð15Þ

2. The constraints satisfaction of update operation.

When the differential mutation operation is operated, the new individual may not
meet the capacity constraints. If it is exceeds the upper bound, the individual takes the
upper limit of the corresponding unit; if the individual shorts of the lower bound, the
individual takes the lower limit of the corresponding unit. If the power and the heat of
CHP units are not satisfy the feasible regions requirement, the feasible regions con-
straints of the CHP units can be handled according to the formula (14). If the power and
the heat output are not satisfy the load requirements, the load constraints of the power
and the heat output are handled according to the third step of this constraints are
handled.

In this way, the new individual which satisfies all the constraint conditions is
generated. The fitness value of the new individual is calculated and the optimal indi-
vidual is retained.

5 Experiments and Discussions

In this section, the CHP system with seven units [5] is considered as an example. The
parameters set of DBSO algorithm are presented in Table 1.

The power and heat generations corresponding to best cost obtained from DBSO
and other algorithms is shown in Table 2. Evidently, it is seen that DBSO and BSO
algorithm can provide the better solution than the other reported algorithms.

Table 1. Parameters of DBSO algorithm

The size of population Max-iteration Number of clusters P5a P6b P6biii P6c

100 500 2 0.01 0.8 0.4 0.5

Difference Brain Storm Optimization for Combined Heat 525

6 Conclusions

In this paper DBSO is successfully used to solve CHPED problem. DBSO use dif-
ference mutation instead of Gaussian mutation in the original BSO algorithm for
improve the diversity of population and increases the speed of convergence. Compared
with reported algorithms. It is found that DBSO and BSO algorithm can provide the
better solution, and the convergence speed of the DBSO is better than BSO algorithm.

Acknowledgments. This paper is supported by National Youth Foundation of China with Grant
Number 61503299.

References

1. Su, C.T., Chiang, C.L.: An incorporated algorithm for combined heat and power economic
dispatch. Electr. Power Syst. Res. 69(2), 187–195 (2004)

2. Song, Y.H., Xuan, Q.Y.: Combined heat and power economic dispatch using genetic
algorithm based penalty function method. Electr. Mach. Power Syst. 26(4), 363–372 (1998)

3. Sudhakaran, M., Slochanal, S.M.R.: Integrating genetic algorithms and tabu search for
combined heat and power economic dispatch. In: TENCON 2003, Conference on
Convergent Technologies for Asia-Pacific Region, vol. 1, pp. 67–71 (2003)

4. Tyagi, G., Pandit, M.: Combined heat and power dispatch using Particle swarm
optimization. In: Electrical, Electronics and Computer Science, pp. 1–4. IEEE (2012)

5. Mohammadi-Ivatloo, B., Moradi-Dalvand, M., Rabiee, A.: Combined heat and power
economic dispatch problem solution using particle swarm optimization with time varying
acceleration coefficients. Electr. Power Syst. Res. 95(1), 9–18 (2013)

6. Basu, M.: Combined heat and power economic dispatch using opposition-based group
search optimization. Int. J. Electr. Power Energy Syst. 73, 819–829 (2015)

7. Meng, A., Mei, P., Yin, H., et al.: Crisscross optimization algorithm for solving combined
heat and power economic dispatch problem. Energy Convers. Manag. 105, 1303–1317
(2015)

Table 2. Optimal dispatch results obtained by different algorithms

Algorithms P1 P2 P3 P4 P5 P6 H5 H6 H7 Po Ho Cost

PSO [16] 18.463 124.26 112.78 209.816 98.814 44.011 57.924 32.76 59.316 608.143 150 10613

CPSO [5] 75 112.38 30 250 93.27 40.159 32.566 72.674 44.761 600.809 150 10325.3339

TVAC-PSO [5] 47.338 98.54 112.674 209.816 92.372 40 37.847 75 37.153 600.739 150 10100.3164

EP [16] 61.361 95.121 99.943 208.732 98.8 44 18.071 77.555 54.374 607.956 150 10390

DE [17] 44.212 98.538 112.691 209.774 98.822 44 12.538 78.348 59.114 608.037 149.999 10317

RCGA [18] 74.683 97.958 167.231 124.908 98.801 44 58.097 32.412 59.492 607.581 150 10667

AIS [16] 50.133 95.555 110.752 208.768 98.8 44 19.424 77.078 53.498 608.008 150 10355

BCO [18] 43.946 98.589 112.932 208.772 98.8 44 12.097 78.024 59.879 608.035 150 10317

TLBO [19] 45.266 98.548 112.979 209.828 94.412 40.006 25.837 74.997 49.167 600.739 150 10094.8384

OTLBO [19] 45.886 98.54 112.674 209.814 93.825 40 29.291 75 45.708 600.119 150 10094.3529

CSO [7] 45.491 98.54 112.673 209.816 94.184 40 27.179 75 47.821 600.704 150 10094.1267

BSO 45.45 98.54 112.674 209.816 94.076 40 27.822 74.999 47.18 600.555 150 10093.6666

DBSO 45.45 98.54 112.674 209.816 94.076 40 27.822 74.999 47.18 600.555 150 10093.6666

526 Y. Wu et al.

8. Beigvand, S.D., Abdi, H., Scala, M.L.: Combined heat and power economic dispatch
problem using gravitational search algorithm. Electr. Power Syst. Res. 133, 160–172 (2016)

9. Shi, Y.: Brain storm optimization algorithm. In: Proceedings of the Advances in Swarm
Intelligence - Second International Conference, ICSI 2011, Chongqing, China, 12–15 June
2011, pp. 1–3 (2011)

10. Zhao, X.: The application of Brain storm optimization. Xi’an University of Technology
(2013)

11. Zhu, H., Shi, Y.: Brain storm optimization algorithms with k-medians clustering algorithms.
In: Seventh International Conference on Advanced Computational Intelligence. IEEE (2015)

12. Shi, Y.: Brain storm optimization algorithm in objective space. In: Evolutionary
Computation, pp. 1–3. IEEE (2015)

13. Xue, J., Wu, Y., Shi, Y., Cheng, S.: Brain storm optimization algorithm for multi-objective
optimization problems. In: Tan, Y., Shi, Y., Ji, Z. (eds.) Advances in Swarm Intelligence.
LNCS, vol. 7331, pp. 513–519. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30976-
2_62

14. Sashirekha, A., Pasupuleti, J., Moin, N.H., et al.: Combined heat and power (CHP) economic
dispatch solved using Lagrangian relaxation with surrogate subgradient multiplier updates.
Int. J. Electr. Power Energy Syst. 44(1), 421–430 (2013)

15. Smith, R.: The 7 Levels of Change, 2nd edn. Tapeslry Press, Littleton (2002)
16. Basu, M.: Artificial immune system for combined heat and power economic dispatch. Int.

J. Electr. Power Energy Syst. 43(1), 1–5 (2012)
17. Basu, M.: Combined heat and power economic dispatch by using differential evolution.

Electr. Power Compon. Syst. 38(8), 996–1004 (2010)
18. Basu, M.: Bee colony optimization for combined heat and power economic dispatch. Expert

Syst. Appl. 38(11), 13527–13531 (2011)
19. Roy, P.K., Paul, C., Sultana, S.: Oppositional teaching learning based optimization approach

for combined heat and power dispatch. Int. J. Electr. Power Energy Syst. 57(5), 392–403
(2014)

Difference Brain Storm Optimization for Combined Heat 527

http://dx.doi.org/10.1007/978-3-642-30976-2_62
http://dx.doi.org/10.1007/978-3-642-30976-2_62

Cuckoo Search

Multiple Chaotic Cuckoo Search Algorithm

Shi Wang1, Shuangyu Song2, Yang Yu2, Zhe Xu2, Hanaki Yachi2,
and Shangce Gao2(B)

1 College of Computer Science and Technology, Taizhou University,
Taizhou, Jiangsu, China

2 Faculty of Engineering, University of Toyama, Toyama, Japan
gaosc@eng.u-toyama.ac.jp

Abstract. Cuckoo search algorithm (CSA) is a nature-inspired meta-
heuristic based on the obligate brood parasitic behavior of cuckoo species,
and it has shown promising performance in solving optimization prob-
lems. Chaotic mechanisms have been incorporated into CSA to utilize the
dynamic properties of chaos, aiming to further improve its search perfor-
mance. However, in the previously proposed chaotic cuckoo search algo-
rithms (CCSA), only one chaotic map is utilized in a single search itera-
tion which limited the exploitation ability of the search. In this study, we
consider to utilize multiple chaotic maps simultaneously to perform the
local search within the neighborhood of the global best solution found by
CSA. To realize this, three kinds of multiple chaotic cuckoo search algo-
rithms (MCCSA) are proposed by incorporating several chaotic maps
into the chaotic local search parallelly, randomly or selectively. The per-
formance of MCCSA is verified based on 48 widely used benchmark opti-
mization functions. Experimental results reveal that MCCSAs generally
perform better than CCSAs, and the MCCSA-P which parallelly utilizes
chaotic maps performs the best among all 16 compared variants of CSAs.

Keywords: Cuckoo search algorithm · Chaotic local search · Neighbor-
hood search · Optimization · Computational intelligence

1 Introduction

Optimization is basically ubiquitous, from engineering to economics, and from
holiday planning to Internet routing. Because of the limited availability of cap-
ital, resources and time, the best utility of these available resources is critical.
Under a variety of complex constraints, most real-world optimization is highly
nonlinear and multi-modal. Many of the problem solving process is heuris-
tic throughout human history. However, heuristic as a scientific optimization
method is a common modern phenomenon. Heuristic intelligent algorithms [1]
such as genetic algorithm, ant colony algorithm and particle swarm algorithm
are the hot topics in the field of computational algorithm design and analy-
sis, which are simulated by the behavior of biological or natural phenomenon.

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 531–542, 2017.
DOI: 10.1007/978-3-319-61824-1 58

532 S. Wang et al.

Although a lot of meta-heuristic algorithms have been proposed in the literature,
it is still a big demand and challenge to propose more new heuristic algorithms.
The famous Free Lunch Theorem [2] proves that no meta-heuristic is best suited
to solve all optimization problems. New heuristic rules can bring new inspira-
tion, mechanism, motivation and characteristics to the problem-solving research
community.

With the development of simulated biological behavior, in 2009, Yang and
Deb [3] of Cambridge University proposed a novel search algorithm named
cuckoo search algorithm (CSA). CSA is inspired by the behavior of cuckoo
breeding. Cuckoos are charming birds that can make beautiful sounds, and their
aggressive reproduction strategy make them even more fascinating. Some of the
cuckoo species evolved in such a way: the female parasitic cuckoo is usually very
specialized in imitating the color and pattern of the eggs of several selected host
species. This reduces the chances of the eggs being abandoned and increased
their fecundity. If the host bird finds that the eggs are not their own, it either
throws the foreign egg away or simply gives up its nest and builds a new nest
elsewhere. Parasitic cuckoos usually choose a nest, where the host bird laid its
eggs not long ago. Usually, the host eggs hatch slightly later than the cuckoo
eggs. If the first cuckoo hatches chicks, his first instinct is to evict the host eggs
by blindly pushing the eggs out of the nest. This action leads to an increase in
the food share of the cuckoo chick provided by its host bird. From the algorith-
mic perspective, CSA is simple, efficient and it has been successfully applied to
engineering optimization and other practical problems [4].

Aiming to further enhance the search performance of CSA, chaotic mech-
anisms have been incorporated and several chaotic cuckoo search algorithms
(CCSA) have been proposed in the literature. In [5], Ouyang et al. utilized the
famous Logistic chaotic map to construct the chaotic local search and embedded
it into CSA to realize a search balance between exploitation and exploration.
This work was extended by Wang et al. [6,7] where 12 different chaotic maps are
tested to find out which chaotic map is the most suitable for improving the per-
formance of CSA. Their experimental results showed that the Sinusoidal chaotic
map was the best choice. In contrast to the usage of chaotic map to perform
local search, Wang and Zhong [8] used chaotic maps to define the scaling factor
and the fraction probability in CSA, aiming to enhance the solution quality and
convergence speed. Huang et al. [9] used chaotic sequences to enhance initialized
host nest location, change step size of Lévy flight and reset the location of host
nest beyond the boundary. Although these chaotic mechanisms have achieves
some improvement for CSA, only a single chaos embedded CSA in a search
iteration still suffer from the inefficient search ability due to (1) the dynamic
system derived from the single chaos remains the same properties during the
whole search progress, and (2) the resultant dynamic system is lack of vari-
ability. Thus, it is natural and reasonable to simultaneously combine multiple
chaotic maps with CSA to fully utilize the distinct characteristics of each map.

Based on the above considerations, in this study we propose three kinds
of multiple chaotic cuckoo search algorithms (MCCSAs) by incorporating 12
different chaotic maps into CSA parallelly, randomly, or selectively, and call

Multiple Chaotic Cuckoo Search Algorithm 533

them MCCSA-P, MCCSA-R or MCCSA-S respectively. As demonstrated in our
previously works [10,11], chaos used to perform local search is more efficient than
chaotic sequences. Thus, the chaotic maps in MCCSAs are all used to perform
the exploitation around the global best solution found by CSA in an iteration.
To verify the proposed algorithms, 48 widely used benchmark optimization func-
tions including unimodal, multimodal, shifted, rotated and hybrid composition
functions are adopted. Extensive simulation and statistical results suggest that
MCCSA generally performs significantly better than CSA and all 12 variants of
CCSAs. Moreover, MCCSA-P which utilizes all different chaotic maps parallelly
in a single iteration performs the best among all compared algorithms, indicating
that multiple chaotic maps can play complementary effects in the neighborhood
exploitation due to their different dynamic properties.

The remainder of this paper is organized as follows. Section 2 gives a brief
description of CSA. Section 3 elaborates the details of the proposed MCCSA.
Section 4 gives the experimental results and discussions. Finally, some general
remarks are given to conclude this paper.

2 Cuckoo Search Algorithm

CSA is a population-based optimization algorithm, and each cuckoo (i.e. solu-
tion) can be formally expressed as Xi = {x1

i , x
2
i , . . . , x

D
i }, (i = 1, 2, . . . , N),

where N is the population size and D is the dimension of the optimization prob-
lem. There are three idealized rules of cuckoo search: (1) each cuckoo lays one
egg at a time, and it is placed in a randomly chosen nest; (2) the optimal nests
will be transferred to the next generation; and (3) The number of available host
nests is fixed, and the alien egg can be discovered by the host with a fixed prob-
ability pa. Based on these three rules, the pseudo-code of CSA can be illustrated
in Algorithm 1.

Algorithm 1. Cuckoo Search Algorithm
begin

Set the generation counter t = 1;
Initialize the population of hot nests randomly;
Set the discovery rate pa;
while t < Maximum number of generations do

Sort the population according to their fitness f ;
Get a cuckoo randomly Xi and replace its solution by performing Lévy
flights;

Choose a nest Xj among the population randomly;
if f(Xi) < f(Xj) then

Replace Xj with the new solution Xi;

A fraction (pa) of the worse nests is deleted and new ones are generated;
Sort the population and find and output the current best;
t = t+ 1;

534 S. Wang et al.

Table 1. The definition of twelve chaotic maps.

Name Equation Initial z0

Logistic map zk+1 = 4zk(1 − zk) 0.152

PWLCM zk+1 =

{
zk/0.7, zk ∈ (0, 0.7)

(1 − zk)(1 − 0.7), zk ∈ [0.7, 1)
0.002

Singer map zk+1 = 1.073(7.86zk − 23.31z2k + 28.75z3k − 13.302875z4k) 0.152

Sine map zk+1 = sin(πzk) 0.152

Sinusoidal map zk+1 = 2.3z2ksin(πzk) 0.74

Tent map zk+1 =

{
zk/0.4, 0 < zk ≤ 0.4

(1 − zk)/0.6, 0.4 < zk ≤ 1
0.152

Bernoulli map zk+1 =

{
zk/0.6, 0 < zk ≤ 0.6

(zk − 0.6)/0.4, 0.6 < zk < 1
0.152

Chebyshev map zk+1 = cos(0.5 cos−1 zk) 0.152

Circle map zk+1 = zk + 0.5 − 1.1
π

sin(2πzk)mod(1) 0.152

Cubic map zk+1 = 2.59zk(1 − z2k) 0.242

Gaussian map zk+1 =

{
0, zk = 0

(1/zk)mod(1) zk �= 0
0.152

ICMIC zk+1 = sin(70/zk) 0.152

In Algorithm 1, the Lévy flight is used to expand the search range and
increase the diversity of the population to be more likely to jump out of the
local optima. For the cuckoo Xi, the Lévy flight is implemented as follows.

Xi := Xi + α
⊕

Lévy(λ) (1)

where the parameter α > 0 denotes the step size. In our experiment, α is set to
0.01. The product

⊕
means entry-wise multiplications. The Lévy flight in fact

provides a random walk, and the random step length is calculated by the Lévy
distribution formula shown as:

Lévy ∼ u = t−λ (1 < λ ≤ 3) (2)

Essentially, a random walk process is formed by the consecutive jumps of a
cuckoo. The random walk process obeys a power-law step-length distribution
with a heavy tail.

3 Multiple Chaotic Cuckoo Search Algorithm

Chaos is a kind of dynamic behavior of non-liner systems. Recently, it has
attracted much attention in the field of scientific identification such as chaos
control, pattern recognition and optimization theory. Twelve one-dimensional
chaotic maps shown in Table 1 are considered in this study. These chaotic maps
display bounded dynamic instability, pseudo-random, ergodicity and non-period

Multiple Chaotic Cuckoo Search Algorithm 535

behavior relied on control parameters and initial value. For its ergodicity and
randomness, the chaotic system changes randomly, but if it lasts long enough,
it eventually passes through each state.

To improve the convergence speed and solution quality of cuckoo search, the
local search procedure is considered in this study. We should pay attention to
that the local search is only applied to the current global best agent Xg because
(1) the area around the current global best agent may be the most promising
area to find good solutions, and (2) if we perform a local search on all agents,
it will take a lot of implementation time at each iteration. It can save much
implementation time by apply on current global best agent. After a local search
for current global best agent Xg, an agent Xg

′ is generated. If Xg
′ is better

than Xg, Xg
′ will replace the current global worst agent Xw to survive into next

iteration.
The chaotic local search that uses only one chaotic map is defined as:

Xg
′(t) = Xg(t) + r(t)(Ub − Lb)(2c(t) − 1) (3)

Xg(t) is the current global best agent at the tth iteration. Xg
′(t) is a new agent

that generated by the chaotic local search. Ub represent the upper bound of the
search, and Lb is the lower bound. c(t) is a chaotic variable produced from one
of the 12 chaotic maps shown in Table 1. Additionally, it is a fact that chaotic
search in a small range is more effective. r(t) represents a chaotic search radius
parameter which becomes gradually smaller. The equation of r(t) is defined by:

r(t + 1) = ρr(t) (4)

where ρ is a shrinking parameter which is set to be 0.988 in the experiment. Ini-
tially, the search radius r(0) is set to 0.03. After the local search, the agent updat-
ing procedure is implemented. The current global worst agent will be replaced
by the xg

′ if the fitness of xg is improved, and the others survive to enter into
the next iteration. These single chaotic map embedded cuckoo search algorithms
are named as CCSA1–CCSA12, respectively.

As different chaotic maps show different and unique dynamic characteristics,
different chaos therefore have different effects on different problems. In other
words, the performance of CCSA is effected not only by the characteristics of
the embedded chaotic map, but also by the landscape of the solved problems.
To fully utilize the search dynamics of chaotic maps and their complementary
ergodicities, three kinds of multiple chaotic maps embedded are proposed for
CSA to construct MCCSA-P, MCCSA-R, and MCCSA-S by parallelly, randomly
and selectively incorporating them, respectively.

In this study, all 12 considered chaotic maps are used in MCCSAs. In
MCCSA-P, these chaotic maps are parallelly utilized to perform the chaotic
local search within the neighborhood of current global best cuckoo, shown as:

Xj
g′(t) = Xg(t) + r(t)(Ub − Lb)(2cj(t) − 1) (5)

Xg′(t) = argmin{f(Xj
g′(t))} (6)

536 S. Wang et al.

where Xj
g′(j = 1, 2, . . . , 12) presents a candidate solution temporarily generated

by the chaotic local search. Xg′(t) is the best one of the twelve candidate solutions
obtained by using different chaotic maps. If Xg′(t) is better than Xg(t), replace
current worst agent Xw(t) with Xg′(t), while the others survive to enter into the
next iteration.

In MCCSA-R, we randomly select a chaotic map to carry out the chaotic
local search using:

Xg′(t) = Xg(t) + r(t)(Ub − Lb)(2cR(t) − 1) (7)

where Xg′(t) represents the chaotic sequence generated by the Rth chaotic map
randomly selected from 12 chaotic maps. j is a randomly generated from the set
{1, 2, . . . , 12}. Each chaotic map is selected with a same probability 1/12.

In MCCSA-S, the local search is applied to the current global best agent Xg

by a probability. The probability that a chaotic map is selected from 12 chaotic
maps depends on the success rate and failure rate in generating improved solu-
tions within a certain number (i.e. LP) of previous iterations. Assume that the
probability of jth chaotic map be selected is Pj , j = 1, 2, . . . , 12. The probabili-
ties with respect to each chaotic map are initialized as 1/12. At the generation
t, if the new agent generated by the jth chaotic map is better than current best
agent, we assign nsj,t a value of 1 while assign nfj,t a value of 0. On the contrary,
we assign nsj,t a value of 0 while assign nfj,t a value of 1. We use success memory
and failure memory to store these numbers within a fixed number of previous
generations hereby named learning period (LP). At the generation t, the new
agent generated by different chaotic map that can enter or fail to enter the next
generation over the previous LP generations are stored in different columns of
the memories. Once the memories overflow after LP = 50 generations, the earli-
est records stored i.e., nft−LP or nst−LP will be removed so that those numbers
in the current generation can be stored in the memories. After the initial 50
generations, the probabilities of selecting different chaotic maps will be updated
at each subsequent generation based on the success and failure memories. With
the lapse of iteration, at the generation t, the selection probabilities are updated
according to:

pj,t =
Sj,t∑12

j=1 Sj,t

(8)

Sj,t =
∑t−1

t−LP nsj,t
∑t−1

t−LP nsj,t +
∑t−1

t−LP nfj,t

+ ε, (j = 1, 2, . . . , 12; t > LP) (9)

where pj , t represents the probability of selecting the jth chaotic map at the tth
iteration. Sj , t represents the success rate of the new agent generated by the jth
chaotic map and successfully entering the next generation within the previous
50 generations with respect to generation t. ε = 0.01 is set to avoid the possible
null success rates. At each generation, the probabilities of choosing each chaotic
map in the candidate pool are summed to 1. Sj , t represents the success rate of
the new agent generated by the jth chaotic map and successfully entering the
next generation within the previous 50 generations with respect to generation t.

Multiple Chaotic Cuckoo Search Algorithm 537

ε = 0.01 is a small constant value which is used to avoid the possible null success
rates. pj , t represents the probability of selecting the jth chaotic map at the tth
iteration. To ensure that the probability of selecting all chaotic maps is always
1, we divide Sj,t by

∑12
j=1 Sj,t to calculate pj,t. Obviously, the larger the success

rate for the jth chaotic map within the previous 50 generations is, the larger the
probability of applying it to do local search at the current generation is.

4 Experimental Results and Discussions

To evaluate the performance of these methods, we adopt 48 widely used bench-
mark optimization functions. F1–F25 are the CEC2005 composite benchmark
functions and F26–F48 are the most commonly used benchmark numerical func-
tions. Function F1–F5 are shifted unimodal functions; Function F6–F12 are mul-
timodal basic functions; Function F13–F14 are multimodal expanded functions.
Function F15–F25 are hybrid composition functions. Functions F26–F38 are
high-dimensional problems. Functions F26–F30 are unimodal functions. Func-
tion F31 is the step function, which has one minimum and is discontinuous. Func-
tion F32 is a noisy quartic function. Functions F33–F38 are multimodal func-
tions where the number of local minima increases exponentially with the problem
dimension. Functions F39–F48 are low-dimensional functions which have only a
few local minima.

In the experiment, the population size is set to 30, the dimension of all tested
functions is 30, and the maximum number of iterations is 1000. In order to make
a statistical analysis, all compared algorithms are implemented 30 independent
times for 48 benchmark functions. We list the experimental results of CSA,
CCSA1-CCSA12, MCCSA-P, MCCSA-R and MCCSA in Tables 2, 3, 4 and 5.

Table 2. Experimental results of test functions (F1–F12).

F1 F2 F3 F4 F5 F6

CSA 1.06E-02±6.56E-03 1.73E+03±6.93E+02 1.19E+07±3.28E+06 1.74E+04±4.48E+03 5.73E+03±1.11E+03 1.27E+03±1.37E+03
CCSA1 1.21E-04±2.05E-04 5.67E+02±2.65E+02 3.85E+06±1.26E+06 1.53E+04±5.35E+03 4.91E+03±1.39E+03 1.14E+03±2.29E+03
CCSA2 7.45E-05±4.70E-05 5.57E+02±3.09E+02 4.15E+06±1.66E+06 1.34E+04±4.11E+03 5.41E+03±1.30E+03 1.13E+03±2.33E+03
CCSA3 1.66E-04±5.33E-04 5.93E+02±3.53E+02 3.86E+06±1.84E+06 1.36E+04±3.80E+03 5.58E+03±1.18E+03 1.43E+03±3.34E+03
CCSA4 8.99E-05±1.39E-04 5.74E+02±2.91E+02 3.43E+06±1.35E+06 1.48E+04±3.90E+03 5.22E+03±1.23E+03 1.50E+03±2.95E+03
CCSA5 8.93E-05±1.01E-04 6.76E+02±5.24E+02 3.61E+06±2.00E+06 1.34E+04±4.62E+03 5.43E+03±1.42E+03 5.11E+02±4.54E+02
CCSA6 8.38E-05±9.62E-05 6.98E+02±3.54E+02 3.56E+06±1.94E+06 1.36E+04±3.87E+03 5.73E+03±1.45E+03 6.14E+02±1.02E+03
CCSA7 6.54E-05±5.82E-05 6.57E+02±3.53E+02 3.59E+06±1.84E+06 1.65E+04±4.90E+03 5.28E+03±1.11E+03 1.26E+03±2.81E+03
CCSA8 9.02E-05±8.45E-05 5.70E+02±3.43E+02 3.72E+06±1.73E+06 1.41E+04±4.06E+03 5.10E+03±1.32E+03 1.10E+03±2.70E+03
CCSA9 1.06E-04±1.29E-04 6.05E+02±3.69E+02 3.47E+06±1.49E+06 1.33E+04±3.13E+03 5.24E+03±1.17E+03 1.13E+03±2.78E+03
CCSA10 1.02E-04±1.30E-04 6.26E+02±4.17E+02 3.93E+06±2.13E+06 1.36E+04±2.85E+03 5.32E+03±1.41E+03 5.40E+02±5.04E+02
CCSA11 5.59E-04±8.01E-04 5.89E+02±3.64E+02 4.98E+06±3.15E+06 1.48E+04±5.11E+03 4.94E+03±1.00E+03 1.27E+03±2.36E+03
CCSA12 1.05E-04±1.41E-04 5.76E+02±3.84E+02 4.21E+06±1.92E+06 1.35E+04±3.74E+03 5.26E+03±9.49E+02 6.68E+02±7.81E+02
MCCSA-P 8.78E-03±4.26E-03 1.82E+03±6.53E+02 1.07E+07±2.72E+06 1.79E+04±4.67E+03 5.62E+03±1.14E+03 8.81E+02±7.11E+02
MCCSA-R 6.80E-05±7.18E-05 5.22E+02±2.64E+02 3.79E+06±1.72E+06 1.40E+04±5.01E+03 4.71E+03±1.08E+03 4.86E+02±4.01E+02
MCCSA-S 5.74E-05±5.16E-05 5.73E+02±2.73E+02 3.62E+06±1.67E+06 1.31E+04±4.32E+03 4.98E+03±1.13E+03 4.99E+02±4.05E+02

F7 F8 F9 F10 F11 F12

CSA 4.70E+03±1.55E-01 2.10E+01±7.33E-02 1.13E+02±1.63E+01 1.90E+02±3.26E+01 3.22E+01±1.45E+00 9.70E+04±2.12E+04
CCSA1 4.70E+03±7.39E+00 2.04E+01±9.80E-02 8.45E+01±2.24E+01 2.08E+02±4.23E+01 3.00E+01±2.93E+00 2.57E+04±1.78E+04
CCSA2 4.70E+03±1.63E-12 2.04E+01±1.37E-01 8.92E+01±2.43E+01 1.82E+02±4.58E+01 2.98E+01±2.67E+00 3.47E+04±2.19E+04
CCSA3 4.70E+03±2.65E-12 2.04E+01±9.48E-02 9.21E+01±2.08E+01 1.85E+02±4.60E+01 3.01E+01±1.88E+00 3.17E+04±2.99E+04
CCSA4 4.70E+03±8.73E+00 2.04E+01±1.45E-01 8.87E+01±2.41E+01 1.82E+02±4.59E+01 2.90E+01±3.26E+00 2.98E+04±2.45E+04
CCSA5 4.70E+03±5.54E+00 2.04E+01±1.92E-01 9.72E+01±2.00E+01 1.86E+02±4.35E+01 2.94E+01±3.05E+00 2.66E+04±1.96E+04
CCSA6 4.70E+03±2.54E-12 2.04E+01±1.71E-01 8.90E+01±2.55E+01 1.79E+02±2.68E+01 3.02E+01±2.64E+00 3.02E+04±2.57E+04
CCSA7 4.70E+03±2.06E-07 2.04E+01±6.22E-02 9.68E+01±2.56E+01 1.73E+02±3.89E+01 2.91E+01±2.23E+00 3.13E+04±2.00E+04
CCSA8 4.70E+03±5.19E+00 2.04E+01±7.33E-02 9.43E+01±2.35E+01 1.86E+02±3.59E+01 2.99E+01±2.56E+00 2.65E+04±2.03E+04
CCSA9 4.70E+03±2.45E-12 2.04E+01±1.47E-01 8.37E+01±2.36E+01 1.75E+02±3.44E+01 2.92E+01±2.14E+00 3.27E+04±2.56E+04
CCSA10 4.70E+03±8.73E+00 2.04E+01±1.57E-01 8.68E+01±2.39E+01 1.65E+02±3.07E+01 2.99E+01±1.75E+00 2.82E+04±1.94E+04
CCSA11 4.70E+03±1.56E-02 2.04E+01±1.46E-01 8.30E+01±2.14E+01 1.73E+02±5.66E+01 2.95E+01±3.44E+00 2.24E+04±1.61E+04
CCSA12 4.70E+03±2.19E+00 2.04E+01±2.23E-01 8.76E+01±2.42E+01 1.78E+02±4.36E+01 2.98E+01±2.44E+00 2.58E+04±1.53E+04
MCCSA-P 4.70E+03±4.77E-03 2.10E+01±1.31E-01 1.14E+02±1.85E+01 2.00E+02±3.65E+01 3.25E+01±1.42E+00 8.73E+04±1.81E+04
MCCSA-R 4.70E+03±2.97E-12 2.03E+01±9.20E-02 8.18E+01±2.65E+01 1.73E+02±4.24E+01 2.90E+01±2.57E+00 2.38E+04±1.84E+04
MCCSA-S 4.70E+03±5.38E+00 2.03E+01±8.51E-02 8.66E+01±1.99E+01 1.55E+02±2.96E+01 3.00E+01±2.12E+00 2.69E+04±1.72E+04

538 S. Wang et al.

Table 3. Experimental results of test functions (F13–F24).

F13 F14 F15 F16 F17 F18

CSA 9.78E+00±1.38E+00 1.34E+01±1.67E-01 4.45E+02±4.70E+01 2.59E+02±4.71E+01 3.14E+02±5.86E+01 9.12E+02±2.27E+00
CCSA1 6.37E+00±2.16E+00 1.32E+01±2.82E-01 4.08E+02±6.14E+01 2.48E+02±9.83E+01 3.06E+02±7.32E+01 9.17E+02±8.22E+00
CCSA2 6.75E+00±1.69E+00 1.32E+01±3.38E-01 4.25E+02±5.39E+01 2.15E+02±7.51E+01 3.04E+02±6.87E+01 9.15E+02±7.52E+00
CCSA3 6.94E+00±2.04E+00 1.32E+01±3.10E-01 4.44E+02±5.18E+01 2.71E+02±1.06E+02 2.99E+02±8.76E+01 9.19E+02±1.17E+01
CCSA4 6.72E+00±2.04E+00 1.32E+01±3.02E-01 4.16E+02±5.69E+01 2.62E+02±9.10E+01 3.11E+02±7.17E+01 9.18E+02±9.01E+00
CCSA5 7.03E+00±1.75E+00 1.32E+01±3.03E-01 4.06E+02±6.24E+01 2.30E+02±8.13E+01 3.07E+02±9.11E+01 9.20E+02±1.32E+01
CCSA6 6.39E+00±1.74E+00 1.32E+01±2.37E-01 4.16E+02±6.50E+01 2.13E+02±7.27E+01 3.03E+02±6.61E+01 9.16E+02±1.21E+01
CCSA7 6.94E+00±1.89E+00 1.32E+01±3.17E-01 4.19E+02±5.27E+01 2.49E+02±8.26E+01 3.01E+02±6.73E+01 9.16E+02±7.58E+00
CCSA8 6.68E+00±1.73E+00 1.32E+01±2.98E-01 4.19E+02±5.33E+01 2.50E+02±8.75E+01 2.90E+02±6.94E+01 9.17E+02±9.49E+00
CCSA9 6.35E+00±1.52E+00 1.32E+01±2.35E-01 4.08E+02±4.20E+01 2.23E+02±8.82E+01 3.29E+02±8.58E+01 9.12E+02±2.27E+01
CCSA10 6.60E+00±2.16E+00 1.32E+01±3.79E-01 4.27E+02±5.23E+01 2.48E+02±8.77E+01 3.05E+02±7.10E+01 9.15E+02±4.70E+00
CCSA11 6.50E+00±1.67E+00 1.32E+01±3.06E-01 4.04E+02±2.66E+01 2.24E+02±6.86E+01 3.08E+02±7.66E+01 9.14E+02±6.68E+00
CCSA12 6.73E+00±1.99E+00 1.32E+01±4.06E-01 4.25E+02±4.62E+01 2.43E+02±7.70E+01 2.91E+02±7.17E+01 9.14E+02±4.66E+00
MCCSA-P 1.11E+01±1.83E+00 1.34E+01±1.64E-01 4.44E+02±3.64E+01 2.86E+02±6.64E+01 3.41E+02±5.61E+01 9.04E+02±6.25E+00
MCCSA-R 6.33E+00±2.02E+00 1.31E+01±3.18E-01 4.05E+02±7.19E+01 2.27E+02±8.36E+01 3.19E+02±9.55E+01 9.16E+02±6.01E+00
MCCSA-S 5.98E+00±1.67E+00 1.32E+01±2.42E-01 4.09E+02±4.20E+01 1.95E+02±4.64E+01 2.79E+02±6.58E+01 9.15E+02±5.65E+00

F19 F20 F21 F22 F23 F24

CSA 9.12E+02±2.52E+00 9.13E+02±2.34E+00 5.35E+02±9.39E+01 9.79E+02±3.27E+01 6.26E+02±1.67E+02 8.87E+02±2.06E+02
CCSA1 9.14E+02±4.59E+00 9.19E+02±9.31E+00 6.81E+02±2.76E+02 9.65E+02±3.45E+01 7.62E+02±2.52E+02 7.41E+02±3.42E+02
CCSA2 9.16E+02±7.38E+00 9.18E+02±1.17E+01 6.55E+02±2.55E+02 9.55E+02±3.25E+01 6.39E+02±1.57E+02 7.25E+02±3.67E+02
CCSA3 9.22E+02±1.34E+01 9.18E+02±1.21E+01 6.21E+02±2.43E+02 9.66E+02±3.94E+01 7.83E+02±2.50E+02 7.06E+02±3.67E+02
CCSA4 9.14E+02±5.32E+00 9.12E+02±2.20E+01 6.41E+02±2.56E+02 9.74E+02±4.76E+01 6.78E+02±1.99E+02 7.08E+02±3.55E+02
CCSA5 9.17E+02±7.17E+00 9.16E+02±1.02E+01 6.12E+02±2.37E+02 9.71E+02±4.54E+01 6.78E+02±2.19E+02 7.86E+02±3.61E+02
CCSA6 9.16E+02±2.95E+01 9.16E+02±1.28E+01 6.32E+02±2.57E+02 9.59E+02±4.02E+01 6.52E+02±1.66E+02 6.48E+02±3.68E+02
CCSA7 9.15E+02±5.64E+00 9.14E+02±5.91E+00 6.41E+02±2.68E+02 9.74E+02±4.31E+01 7.05E+02±2.11E+02 8.07E+02±3.22E+02
CCSA8 9.16E+02±6.78E+00 9.15E+02±6.20E+00 6.97E+02±2.95E+02 9.71E+02±4.35E+01 7.43E+02±2.18E+02 6.38E+02±3.90E+02
CCSA9 9.17E+02±9.47E+00 9.16E+02±8.37E+00 5.64E+02±1.96E+02 9.64E+02±4.08E+01 6.55E+02±1.76E+02 6.70E+02±3.84E+02
CCSA10 9.19E+02±1.08E+01 9.20E+02±1.37E+01 6.03E+02±2.06E+02 9.55E+02±3.86E+01 6.95E+02±2.05E+02 8.25E+02±2.93E+02
CCSA11 9.15E+02±7.58E+00 9.16E+02±6.43E+00 5.66E+02±1.80E+02 9.88E+02±5.62E+01 7.59E+02±2.68E+02 7.05E+02±3.81E+02
CCSA12 9.16E+02±5.86E+00 9.19E+02±1.23E+01 5.89E+02±2.17E+02 9.66E+02±5.19E+01 7.03E+02±2.10E+02 8.23E+02±3.16E+02
MCCSA-P 9.03E+02±5.59E+00 9.03E+02±5.83E+00 5.62E+02±1.65E+02 9.70E+02±3.36E+01 6.85E+02±1.92E+02 8.20E+02±2.79E+02
MCCSA-R 9.16E+02±4.04E+00 9.17E+02±6.10E+00 6.90E+02±2.88E+02 9.59E+02±5.41E+01 6.59E+02±1.83E+02 6.33E+02±3.65E+02
MCCSA-S 9.16E+02±6.46E+00 9.16E+02±9.26E+00 6.16E+02±2.43E+02 9.51E+02±3.69E+01 6.73E+02±2.04E+02 6.84E+02±3.61E+02

Table 4. Experimental results of test functions (F25–F36).

F25 F26 F27 F28 F29 F30

CSA 1.67E+03±1.23E+01 2.88E-03±1.91E-03 7.48E-02±2.84E-02 2.64E+02±7.26E+01 8.54E+00±3.01E+00 7.00E+01±4.54E+01
CCSA1 1.67E+03±1.28E+01 2.25E-05±2.65E-05 6.95E-04±3.38E-04 7.13E+01±4.31E+01 1.21E+01±3.56E+00 7.01E+01±2.97E+01
CCSA2 1.67E+03±1.01E+01 2.42E-05±2.46E-05 8.66E-04±4.25E-04 7.27E+01±3.25E+01 1.24E+01±3.91E+00 6.80E+01±4.20E+01
CCSA3 1.67E+03±1.33E+01 2.73E-05±2.79E-05 5.34E-04±3.46E-04 7.57E+01±3.93E+01 1.24E+01±3.14E+00 6.18E+01±4.09E+01
CCSA4 1.67E+03±1.33E+01 2.81E-05±2.89E-05 6.50E-04±3.53E-04 9.09E+01±4.23E+01 1.15E+01±2.80E+00 6.65E+01±3.77E+01
CCSA5 1.67E+03±1.04E+01 2.83E-05±3.34E-05 5.50E-04±2.49E-04 9.35E+01±4.05E+01 1.26E+01±2.79E+00 6.06E+01±3.29E+01
CCSA6 1.67E+03±1.35E+01 5.50E-05±1.30E-04 8.08E-04±3.31E-04 9.37E+01±5.10E+01 1.16E+01±2.72E+00 7.52E+01±4.64E+01
CCSA7 1.67E+03±1.15E+01 2.60E-05±3.33E-05 7.44E-04±3.59E-04 7.72E+01±4.45E+01 1.17E+01±3.22E+00 8.10E+01±4.78E+01
CCSA8 1.66E+03±1.45E+01 5.71E-05±9.57E-05 5.66E-04±2.42E-04 7.90E+01±4.71E+01 1.17E+01±3.58E+00 6.53E+01±3.31E+01
CCSA9 1.66E+03±1.30E+01 3.80E-05±3.33E-05 8.36E-04±2.87E-04 7.77E+01±3.67E+01 1.17E+01±2.99E+00 7.00E+01±5.49E+01
CCSA10 1.67E+03±1.18E+01 2.15E-05±1.91E-05 8.29E-04±4.33E-04 8.73E+01±5.78E+01 1.17E+01±2.63E+00 6.44E+01±3.77E+01
CCSA11 1.67E+03±1.21E+01 1.46E-04±1.84E-04 1.61E-03±1.17E-03 9.74E+01±5.69E+01 1.17E+01±3.33E+00 6.88E+01±4.58E+01
CCSA12 1.66E+03±9.99E+00 2.79E-05±5.61E-05 5.66E-04±3.62E-04 9.60E+01±4.56E+01 1.28E+01±3.21E+00 7.13E+01±6.50E+01
MCCSA-P 1.64E+03±8.30E+00 1.82E-14±3.79E-14 5.21E-08±4.02E-08 2.22E+01±8.47E+01 1.65E-08±1.40E-08 1.55E-13±2.14E-13
MCCSA-R 1.66E+03±9.77E+00 1.90E-05±1.21E-05 5.45E-04±1.51E-04 6.86E+01±3.83E+01 1.17E+01±3.65E+00 6.08E+01±4.07E+01
MCCSA-S 1.66E+03±1.36E+01 2.14E-05±1.43E-05 4.99E-04±2.27E-04 7.30E+01±3.69E+01 1.10E+01±3.18E+00 6.21E+01±3.65E+01

F31 F32 F33 F34 F35 F36

CSA 2.67E-01±7.85E-01 6.41E-02±3.07E-02 -8.61E+03±3.42E+02 7.58E+01±1.16E+01 2.73E+00±1.35E+00 7.90E-02±6.42E-02
CCSA1 1.67E-01±3.79E-01 7.80E-02±3.65E-02 -9.26E+03±5.74E+02 5.05E+01±1.31E+01 2.71E+00±7.49E-01 1.52E-02±2.30E-02
CCSA2 0.00E+00±0.00E+00 7.79E-02±3.59E-02 -9.41E+03±5.08E+02 5.14E+01±1.32E+01 2.35E+00±8.69E-01 1.65E-02±1.86E-02
CCSA3 0.00E+00±0.00E+00 7.49E-02±3.21E-02 -9.16E+03±6.54E+02 5.07E+01±1.59E+01 2.63E+00±8.56E-01 1.18E-02±1.24E-02
CCSA4 3.33E-02±1.83E-01 7.57E-02±3.27E-02 -9.27E+03±5.52E+02 5.37E+01±1.89E+01 2.52E+00±8.91E-01 1.13E-02±1.49E-02
CCSA5 3.33E-02±1.83E-01 7.90E-02±3.31E-02 -9.15E+03±5.99E+02 5.14E+01±1.48E+01 2.56E+00±9.56E-01 1.70E-02±1.99E-02
CCSA6 6.67E-02±2.54E-01 7.38E-02±3.19E-02 -9.43E+03±4.88E+02 5.04E+01±1.43E+01 2.32E+00±6.56E-01 1.34E-02±1.51E-02
CCSA7 6.67E-02±2.54E-01 7.54E-02±2.55E-02 -9.51E+03±5.85E+02 5.27E+01±1.34E+01 2.60E+00±6.93E-01 1.34E-02±1.64E-02
CCSA8 6.67E-02±2.54E-01 7.39E-02±2.76E-02 -9.44E+03±5.28E+02 5.22E+01±1.37E+01 2.30E+00±1.10E+00 1.11E-02±1.47E-02
CCSA9 0.00E+00±0.00E+00 6.63E-02±3.91E-02 -9.45E+03±5.42E+02 5.04E+01±1.78E+01 2.29E+00±1.00E+00 1.26E-02±1.37E-02
CCSA10 6.67E-02±2.54E-01 7.31E-02±3.36E-02 -9.49E+03±5.30E+02 5.13E+01±1.11E+01 2.33E+00±5.62E-01 1.14E-02±2.24E-02
CCSA11 1.00E-01±4.03E-01 6.28E-02±2.10E-02 -9.56E+03±7.89E+02 5.00E+01±1.70E+01 2.32E+00±9.81E-01 8.77E-03±1.05E-02
CCSA12 3.33E-02±1.83E-01 7.47E-02±2.06E-02 -9.33E+03±5.22E+02 5.07E+01±1.40E+01 2.51E+00±7.32E-01 1.46E-02±1.19E-02
MCCSA-P 0.00E+00±0.00E+00 1.16E-04±1.30E-04 -1.24E+04±7.92E+02 9.22E+00±1.56E+01 3.10E-08±2.19E-08 4.66E-14±5.96E-14
MCCSA-R 6.67E-02±2.54E-01 6.77E-02±2.93E-02 -9.56E+03±6.59E+02 4.69E+01±1.43E+01 2.24E+00±7.66E-01 6.78E-03±1.01E-02
MCCSA-S 1.13E+00±1.31E+00 6.12E-02±3.23E-02 -9.53E+03±6.62E+02 4.78E+01±1.41E+01 2.49E+00±1.10E+00 9.41E-03±9.14E-03

The results of the records are shown in the form of Ave ± Dev, where Ave
is the average of the final best-so-far solution of 30 runs, and Dev represents
its standard deviation. The results in bold are the best result among all the
compared 16 algorithms for each function. For test functions F41–F48 and F39,
all 16 algorithms obtain the almost same results (i.e., the fmin of these test

Multiple Chaotic Cuckoo Search Algorithm 539

Table 5. Experimental results of test functions (F37–F48).

F37 F38 F39 F40 F41 F42

CSA 1.96E+00±8.35E-01 2.54E+00±4.06E+00 9.98E-01±0.00E+00 3.08E-04±6.60E-08 -1.03E+00±6.78E-16 3.98E-01±0.00E+00
CCSA1 9.58E-01±7.07E-01 6.80E+00±5.10E+00 9.98E-01±0.00E+00 3.07E-04±2.07E-19 -1.03E+00±6.71E-16 3.98E-01±0.00E+00
CCSA2 8.63E-01±9.26E-01 7.39E+00±6.31E+00 9.98E-01±0.00E+00 3.07E-04±8.10E-19 -1.03E+00±6.78E-16 3.98E-01±0.00E+00
CCSA3 9.61E-01±7.62E-01 1.01E+01±8.05E+00 9.98E-01±0.00E+00 3.07E-04±1.80E-19 -1.03E+00±6.71E-16 3.98E-01±0.00E+00
CCSA4 1.19E+00±9.46E-01 8.27E+00±6.70E+00 9.98E-01±0.00E+00 3.07E-04±7.33E-19 -1.03E+00±6.78E-16 3.98E-01±0.00E+00
CCSA5 1.32E+00±1.31E+00 7.75E+00±6.05E+00 9.98E-01±0.00E+00 3.07E-04±3.11E-19 -1.03E+00±6.78E-16 3.98E-01±0.00E+00
CCSA6 7.34E-01±7.97E-01 5.97E+00±6.38E+00 9.98E-01±0.00E+00 3.07E-04±1.24E-18 -1.03E+00±6.71E-16 3.98E-01±0.00E+00
CCSA7 8.85E-01±1.19E+00 5.97E+00±6.34E+00 9.98E-01±0.00E+00 3.07E-04±4.22E-19 -1.03E+00±6.78E-16 3.98E-01±0.00E+00
CCSA8 8.02E-01±9.97E-01 7.69E+00±6.05E+00 9.98E-01±0.00E+00 3.07E-04±2.76E-14 -1.03E+00±6.78E-16 3.98E-01±0.00E+00
CCSA9 9.59E-01±1.14E+00 4.72E+00±5.91E+00 9.98E-01±0.00E+00 3.07E-04±4.02E-19 -1.03E+00±6.71E-16 3.98E-01±0.00E+00
CCSA10 7.98E-01±6.79E-01 7.58E+00±6.38E+00 9.98E-01±0.00E+00 3.07E-04±6.64E-19 -1.03E+00±6.78E-16 3.98E-01±0.00E+00
CCSA11 7.95E-01±9.35E-01 6.49E+00±5.55E+00 9.98E-01±0.00E+00 3.07E-04±7.52E-19 -1.03E+00±6.78E-16 3.98E-01±0.00E+00
CCSA12 1.07E+00±1.15E+00 7.45E+00±5.11E+00 9.98E-01±0.00E+00 3.07E-04±3.17E-19 -1.03E+00±6.71E-16 3.98E-01±0.00E+00
MCCSA-P 1.04E-01±5.68E-01 1.13E-15±2.50E-15 9.98E-01±0.00E+00 3.07E-04±3.59E-09 -1.03E+00±6.78E-16 3.98E-01±0.00E+00
MCCSA-R 6.84E-01±6.92E-01 6.90E+00±5.22E+00 9.98E-01±0.00E+00 3.07E-04±2.19E-19 -1.03E+00±6.78E-16 3.98E-01±0.00E+00
MCCSA-S 6.78E-01±8.87E-01 5.29E+00±4.78E+00 9.98E-01±0.00E+00 3.07E-04±3.70E-19 -1.03E+00±6.78E-16 3.98E-01±0.00E+00

F43 F44 F45 F46 F47 F48

CSA 3.00E+00±1.12E-15 -3.86E+00±2.71E-15 -3.32E+00±2.92E-15 -1.02E+01±7.34E-14 -1.04E+01±2.40E-15 -1.05E+01±2.53E-13
CCSA1 3.00E+00±1.96E-15 -3.86E+00±2.71E-15 -3.32E+00±1.36E-15 -1.02E+01±6.51E-15 -1.04E+01±7.38E-16 -1.05E+01±1.36E-15
CCSA2 3.00E+00±1.89E-15 -3.86E+00±2.71E-15 -3.32E+00±1.34E-15 -1.02E+01±6.56E-15 -1.02E+01±9.63E-01 -1.05E+01±2.14E-15
CCSA3 3.00E+00±1.97E-15 -3.86E+00±2.71E-15 -3.32E+00±1.34E-15 -1.02E+01±6.96E-15 -1.04E+01±8.73E-16 -1.05E+01±8.73E-16
CCSA4 3.00E+00±1.85E-15 -3.86E+00±2.71E-15 -3.32E+00±2.17E-02 -1.02E+01±6.74E-15 -1.04E+01±9.33E-16 -1.05E+01±2.36E-15
CCSA5 3.00E+00±1.88E-15 -3.86E+00±2.71E-15 -3.32E+00±1.34E-15 -1.02E+01±6.74E-15 -1.04E+01±8.73E-16 -1.05E+01±2.36E-15
CCSA6 3.00E+00±1.23E-15 -3.86E+00±2.71E-15 -3.32E+00±1.36E-15 -1.02E+01±6.68E-15 -1.04E+01±9.33E-16 -1.05E+01±2.56E-15
CCSA7 3.00E+00±1.87E-15 -3.86E+00±2.71E-15 -3.32E+00±1.33E-15 -1.02E+01±6.45E-15 -1.04E+01±4.66E-16 -1.05E+01±1.36E-15
CCSA8 3.00E+00±1.09E-15 -3.86E+00±2.71E-15 -3.31E+00±3.02E-02 -1.02E+01±6.90E-15 -1.04E+01±6.60E-16 -1.05E+01±8.73E-16
CCSA9 3.00E+00±1.08E-15 -3.86E+00±2.71E-15 -3.32E+00±1.34E-15 -1.02E+01±6.51E-15 -1.04E+01±8.08E-16 -1.05E+01±9.33E-16
CCSA10 3.00E+00±2.08E-15 -3.86E+00±2.71E-15 -3.32E+00±1.36E-15 -1.02E+01±6.51E-15 -1.04E+01±4.66E-16 -1.05E+01±1.09E-15
CCSA11 3.00E+00±1.77E-15 -3.86E+00±2.71E-15 -3.32E+00±1.34E-15 -1.02E+01±7.17E-15 -1.04E+01±7.38E-16 -1.05E+01±2.14E-15
CCSA12 3.00E+00±1.08E-15 -3.86E+00±2.71E-15 -3.32E+00±2.17E-02 -1.02E+01±6.96E-15 -1.02E+01±9.70E-01 -1.05E+01±9.33E-16
MCCSA-P 3.00E+00±1.07E-15 -3.86E+00±2.71E-15 -3.32E+00±1.91E-14 -1.02E+01±6.51E-15 -1.04E+01±3.30E-16 -1.05E+01±2.93E-15
MCCSA-R 3.00E+00±1.86E-15 -3.86E+00±2.71E-15 -3.32E+00±2.17E-02 -1.02E+01±6.74E-15 -1.04E+01±8.08E-16 -1.05E+01±9.90E-16
MCCSA-S 3.00E+00±1.98E-15 -3.86E+00±2.71E-15 -3.32E+00±1.36E-15 -1.02E+01±6.68E-15 -1.04E+01±8.08E-16 -1.05E+01±2.21E-15

Table 6. Performance ranking of CSA, 12 variants of CCSAs, MCCSA-P, MCCSA-R,
and MCCSA-S obtained by Friedman statistical test.

CSA CCSA1 CCSA2 CCSA3 CCSA4 CCSA5 CCSA6 CCSA7

Average 10.85 8.58 8.58 8.54 8.5 8.53 8.31 8.54

Rank 16 14 13 12 9 10 5 11

CCSA8 CCSA9 CCSA10 CCSA11 CCSA12 MCCSA-P MCCSA-R MCCSA-S

Average 8.37 8.18 8.33 8.77 8.39 7.77 7.9 7.87

Rank 7 4 6 15 8 1 3 2

functions). It is because that these functions are very simple to be solved, and the
compared algorithms can find the global optimal solutions in almost all runs. In
addition, it is clear that the variants of CSA combined with chaotic local search
process are always outperform the traditional CSA, suggesting that the chaotic
local search definitely enhances the search ability of CSA. Moreover, compared
with single chaotic map embedded CCSAs, the multiple chaotic maps embedded
MCCSAs perform better for 37 out of 48 tested functions, which indicates that
the utilization of multiple chaotic maps is more effective than a single one. The
reason is that these multiple chaotic maps might contribute to different search
dynamics and thus make more fruitful results for optimization. Besides, the best
performance is achieved by MCCSA-P.

To further demonstrate the effectiveness and robustness of the proposed
MCCSA, the average rankings of the algorithms obtained by the Friedman test
[12,13] on all tested 48 benchmark optimization functions are summarized in
Table 6. The Friedman test is a nonparametric statistical test which applies the

540 S. Wang et al.

0 200 400 600 800 1000

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

4

Generation (t)

A
ve

ra
ge

 o
f b

es
t−

so
−

fa
r

F5

0 200 400 600 800 1000

20.4

20.5

20.6

20.7

20.8

20.9

21

21.1

21.2

21.3

21.4

Generation (t)

A
ve

ra
ge

 o
f b

es
t−

so
−

fa
r

F8

0 200 400 600 800 1000

13.2

13.4

13.6

13.8

14

14.2

14.4

14.6

Generation (t)

A
ve

ra
ge

 o
f b

es
t−

so
−

fa
r F14

0 200 400 600 800 1000

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

Generation (t)

A
ve

ra
ge

 o
f b

es
t−

so
−

fa
r F24

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

Generation (t)

A
ve

ra
ge

 o
f b

es
t−

so
−

fa
r

F34

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

10
5

Generation (t)

A
ve

ra
ge

 o
f b

es
t−

so
−

fa
r

F36

CCSA8 CCSA9 CCSA10 CCSA11 CCSA12 MCCSA−P MCCSA−R MCCSA−S

CSA CCSA1 CCSA2 CCSA3 CCSA4 CCSA5 CCSA6 CCSA7

Fig. 1. Convergence graphs of F5, F8, F14, F24, F34 and F36.

post hoc method of Iman-Davenport. It can rank the algorithms for each prob-
lem separately. The best performing algorithm among all compared algorithms
should have rank 1, the second best rank 2, and so on. From Table 6, it can
be found that MCCSA-P gets the smallest value of 7.77, which means that it
averagely performs the best for all functions. The second smallest value 7.87 is

Multiple Chaotic Cuckoo Search Algorithm 541

acquired by MCCSA-S, while MCCSA-R gets the third one. It is worth pointing
out that CSA gets the largest ranking value, indicating that all chaotic CCSAs
performs better than CSA. In addition, it is mostly desired that a general well-
performing algorithm should be designed. From this practical problem-solving
perspective, we can conclude that the proposed multiple chaos incorporation
scheme is effective for improving the performance of CSA.

To give some insights into the search dynamics of proposed algorithms, we
depict the convergence graphs for F5, F8, F14, F24, F34 and F36 in Fig. 1, where
the average of best-so-far versus the iteration number are illustrated. From this
figure, we also confirm that MCCSAs perform better than the others.

5 Conclusions

In this paper, we proposed a multiple chaotic cuckoo search algorithm for opti-
mization. Taking into account the abundant searching dynamics of different
chaos, the proposed MCCSA is demonstrated to be more powerful than tradi-
tional CSA and single chaotic map embedded cuckoo search algorithms through
an extensive experiments. In the experiment 48 widely used benchmark func-
tions are tested and statistical analysis is also performed. Experimental results
verify the effectiveness and robustness of the proposed MCCSA. Especially, the
parallelly embedding scheme for CSA is demonstrated to be the most effective
based on the Friedman test.

Acknowledgment. This research was partially supported by the National Natural
Science Foundation of China (Grant Nos. 11572084, 11472061, and 61472284), the
project of Talent Development of Taizhou University (No. QD2016061) and JSPS KAK-
ENHI Grant Number 17K12751, 15K00332 (Japan).

References

1. Osman, I.H., Kelly, J.P.: Meta-Heuristics: Theory and Applications. Springer Sci-
ence & Business Media, Berlin (2012)

2. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

3. Yang, X.S., Deb, S.: Cuckoo search via lévy flights. In: Proceedings of World
Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 210–
214. IEEE (2009)

4. Fister Jr., I., Yang, X.S., Fister, D., Fister, I.: Cuckoo search a brief literature
review. In: Yang, X.-S. (ed.) Cuckoo Search and Firefly Algorithm. SCI, vol. 516,
pp. 49–62. Springer, Cham (2014). doi:10.1007/978-3-319-02141-6 3

5. Ouyang, A., Pan, G., Yue, G., Du, J.: Chaotic cuckoo search algorithm for high-
dimensional functions. J. Comput. 9(5), 1282–1290 (2014)

6. Wang, G.G., Deb, S., Gandomi, A.H., Zhang, Z., Alavi, A.H.: A novel cuckoo
search with chaos theory and elitism scheme. In: 2014 International Conference on
Soft Computing and Machine Intelligence (ISCMI), pp. 64–69. IEEE (2014)

7. Wang, G., Deb, S., Gandomi, A.H., Zhang, Z., Alavi, A.H.: Chaotic cuckoo search.
Soft. Comput. 20, 3349–3362 (2016)

http://dx.doi.org/10.1007/978-3-319-02141-6_3

542 S. Wang et al.

8. Wang, L., Zhong, Y.: Cuckoo search algorithm with chaotic maps. Math. Probl.
Eng. 2015 (2015). Article ID 715635

9. Huang, L., Ding, S., Yu, S., Wang, J., Lu, K.: Chaos-enhanced cuckoo search
optimization algorithms for global optimization. Appl. Math. Model. 40(5), 3860–
3875 (2016)

10. Gao, S., Vairappan, C., Wang, Y., Cao, Q., Tang, Z.: Gravitational search algo-
rithm combined with chaos for unconstrained numerical optimization. Appl. Math.
Comput. 231, 48–62 (2014)

11. Shen, D., Jiang, T., Chen, W., Shi, Q., Gao, S.: Improved chaotic gravitational
search algorithms for global optimization. In: IEEE Congress on Evolutionary
Computation (CEC), pp. 1220–1226. IEEE (2015)

12. Garcia, S., Fernandez, A., Luengo, J., Herrera, F.: Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Inf. Sci. 180(10), 2044–2064
(2010)

13. Gao, S., Wang, Y., Cheng, J., Inazumi, Y., Tang, Z.: Ant colony optimization with
clustering for solving the dynamic location routing problem. Appl. Math. Comput.
285, 149–173 (2016)

Cuckoo Search Algorithm Approach for the IFS
Inverse Problem of 2D Binary Fractal Images

Javier Quirce1, Andrés Iglesias1,2(B), and Akemi Gálvez1,2

1 Department of Applied Mathematics and Computational Sciences,
University of Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain

iglesias@unican.es
2 Department of Information Science, Faculty of Sciences, Toho University,

Narashino Campus, 2-2-1 Miyama, Funabashi 274-8510, Japan
http://personales.unican.es/iglesias

Abstract. This paper introduces a new method to solve the IFS inverse
problem for fractal images, known to be a very difficult optimization
problem. Given a source binary fractal image, the method computes the
IFS code of an IFS fractal whose attractor approximates the input image
accurately. The proposed method is based on the cuckoo search algo-
rithm, a powerful swarm intelligence method for continuous optimization.
The good performance of the method is illustrated by its application to
two examples of 2D binary fractal images.

Keywords: Swarm intelligence · Cuckoo search algorithm · Fractal
images · Iterated function systems · Collage theorem

1 Introduction

Fractals have been widely used to recreate mountains, rivers, coastlines, and
other natural structures. The reason is their ability generate complex shapes
based on the repetition of simple pattern rules [2,5,12,14,15]. There are many
methods to obtain fractal images, e.g. escape-time fractals, L-systems, recursive
fractals, and so on [6,8–10]. One of the most popular is the Iterated Function
Systems (IFS), given by a finite system of contractive maps on a compact metric
space [2,16]. Any IFS system has a unique non-empty compact fixed set A called
the attractor of the IFS. The graphical representation of this attractor is a fractal
image. Conversely, each real-world image in 2D can be closely approximated by
an IFS. This result, proved by Barnsley and known as the collage theorem [2],
will be described in detail in Sect. 2. As a result, there has been a great interest in
obtaining the parameters of the IFS representing a given image. This issue, called
the IFS inverse problem, is the key component of the fractal image compression
technique, a lossy fractal-based compression method for digital images [4,13].

Unsurprisingly, the IFS inverse problem is extremely difficult. Previous
approaches to address this problem include Gröbner basis [1], wavelets trans-
form [3], and moment matching [19]. Unfortunately, they fail to solve the general
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 543–551, 2017.
DOI: 10.1007/978-3-319-61824-1 59

544 J. Quirce et al.

problem. One of the most promising approaches is based on the application of
evolutionary techniques, mostly genetic algorithms [11,18]. However, the poten-
tial of swarm intelligence for this problem has been ignored so far in the litera-
ture. To fill this gap, this work focuses on the IFS problem for the particular case
of 2D binary fractal images. Our approach applies a powerful swarm intelligence
technique called cuckoo search algorithm (see Sect. 3 for details).

The structure of this paper is as follows: Sect. 2 introduces the main concepts
and definitions about the IFS and the collage theorem. Then, Sect. 3 describes
the cuckoo search algorithm, the swarm intelligence approach used in this paper.
The proposed method is described in detail in Sect. 4, while the experimental
results are briefly discussed in Sect. 5. The paper closes with the main conclusions
and some ideas about future work in the field.

2 Mathematical Concepts and Definitions

2.1 Iterated Function Systems

An Iterated Function System (IFS) in R
2 is a finite set {wi}i=1,...,N of affine

contractive maps wi : R2 −→ R
2 with the Euclidean distance d2. We refer to the

IFS as W = {(R2, d2);w1, . . . , wN}. In that case, wi are of the form:

[
x∗

y∗

]
= wi

[
x
y

]
=

[
ai bi

ci di

]
.

[
x
y

]
+

[
ei

fi

]
⇔ x∗ = wi(x) = Ai.x + bi (1)

where bi is a vector and Ai is a 2 × 2 matrix with eigenvalues λ1, λ2 such that
|λi| < 1. In fact, si = |det(Ai)| < 1 meaning that wi shrinks distances between
points. The collection of 6-tuples {(ai, bi, ci, di, ei, fi)}i=1,...,N is called the IFS
code of the fractal; each fractal can be uniquely described by those coefficients.

Let us now define a transformation h on a compact set S ⊂ R
2 by: h(S) =

N⋃
i=1

wi(S). If all the wi are contractions, h is also a contraction with the induced

Hausdorff metric [2,16]. Then, h has a unique fixed point, A = h(A). A procedure
to generate this fixed point is to start with an initial compact set S0 and iterate

h as: Sn+1 = h(Sn) =
N⋃

i=1

wi(Sn). It can be proved that lim
n→∞ Sn = A. Such a

fixed point A is called the attractor of the IFS.
An important result is the collage theorem, which states that given a 2D

image I ⊂ R
2, a non-negative real threshold value ε ≥ 0, and an IFS W =

{(R2, d2); ;w1, . . . , wN} with contractivity factor 0 < s < 1, if H (I, h(I)) =

H

(
I,

N⋃
i=1

wi(I)
)

≤ ε, then H (I,A) ≤ 1
1 − s

H

(
I,

N⋃
i=1

wi(I)
)

for the Hausdorff

metric H. In short, any digital image I can be approximated by an IFS W.
The IFS inverse problem can now be stated as follows: suppose that we are

given a digital image I. The goal is to obtain an IFS whose attractor has a

CSA Approach for the IFS Inverse Problem of 2D Binary Fractal Images 545

graphical representation I ′ that approximates I accurately according to a given
metrics Ξ. Following the collage theorem, we can solve the IFS inverse problem
by means of the constrained optimization problem:

minimize
{Ai,bi}i=1,...,N

[
Ξ

(
I,

N⋃
i=1

wi(I)

)]
s.t. si = |det(Ai)| < 1 (2)

for all i = 1, . . . , N . The problem (2) is a constrained continuous optimization
problem. It is also multimodal, since there can be several global or local minima
of the fitness function. Therefore, we have to solve a difficult multimodal and
multivariate constrained continuous optimization problem. The problem is so
difficult that it still remains unsolved in the literature. In this paper, we apply
the cuckoo search method to solve it for the case of 2D binary fractal images.

3 The Cuckoo Search Algorithm

Cuckoo search (CS) is a powerful metaheuristic algorithm originally proposed
by Yang and Deb in 2009 [21] and applied to difficult optimization problems
[7,17,20,22]. It is inspired by the behavior of some cuckoo species that lay their
eggs in the nests of host birds of other species to escape from the parental
investment in raising their offspring. In the CS algorithm, the eggs in the nest
are seen as a pool of candidate solutions of an optimization problem while the
cuckoo egg represents a new coming solution. The method uses these new (and
potentially better) solutions associated with the parasitic cuckoo eggs to replace
the current solution associated with the eggs in the nest. This replacement,
carried out iteratively, will eventually lead to a very good solution of the problem.
In addition, the CS algorithm is also based on three idealized rules [21,22]:

1. Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
2. The best nests with high quality of eggs (solutions) will be carried over to

the next generations;
3. The number of available host nests is fixed, and a host can discover an alien

egg with a probability pa ∈ [0, 1]. In this case, the host bird can either throw
the egg away or abandon the nest and build a new one in a new location.
This assumption can be approximated by a fraction pa of the n nests being
replaced by new nests (with new random solutions at new locations).

The basic steps of the CS algorithm are shown in Table 1. It starts with
an initial population of n host nests and it is performed iteratively. The initial
values of the jth component of the ith nest are given by xj

i (0) = rand.(upj
i −

lowj
i) + lowj

i , where upj
i and lowj

i are the upper and lower bounds of that jth
component, respectively, and rand is a standard uniform random number on the
interval (0, 1). These boundary conditions are controlled in each iteration step.

546 J. Quirce et al.

Table 1. Cuckoo search algorithm via Lévy flights as originally proposed in [21,22].

begin
Objective function f(x), x = (x1, . . . , xD)T

Generate initial population of n host nests xi (i = 1, 2, . . . , n)
while (t < MaxGeneration) or (stop criterion)

Get a cuckoo (say, i) randomly by Lévy flights
Evaluate its fitness Fi

Choose a nest among n (say, j) randomly
if (Fi > Fj)

Replace j by the new solution
end
A fraction (pa) of worse nests are abandoned and new ones

are built via Lévy flights
Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while
Postprocess results and visualization

end

For each iteration g, a cuckoo egg i is selected randomly and new solutions
xi(g +1) are generated through a Lévy flight as: xi(g +1) = xi(g)+α⊕ levy(λ)
where α > 0 indicates the step size, the symbol ⊕ indicates the entry-wise
multiplication, and levy(λ) is a transition probability modulated by the Lévy
distribution as: levy(λ) ∼ g−λ, (1 < λ ≤ 3). The authors suggested to use the
Mantegna’s algorithm for symmetric distributions to compute the step length ς
(see [22] for details). Then, the stepsize ζ is computed as ζ = 0.01 ς (x − xbest).
Finally, x is modified as: x ← x + ζ.Ψ where Ψ is a normal random vector of
the dimension of the solution x. The CS method then evaluates the fitness of
the new solution and compares it with the current one. In case the new solution
brings better fitness, it replaces the current one. On the other hand, a fraction
of the worse nests (according to the fitness) are abandoned and replaced by new
solutions so as to increase the exploration of the search space looking for more
promising solutions. The rate of replacement is given by the probability pa, a
tuning parameter of the method. At each iteration step, all solutions are ranked
according to their fitness and the best solution so far is stored as xbest.

4 The Proposed Method

Our approach applies the CS with Lévy flights described above to solve the IFS
inverse problem for 2D binary fractal images. We assume that the images can
be approximated by a fixed number M of contractive functions, but the optimal
value for M is not computed; it will be part of our future work in the field.

CSA Approach for the IFS Inverse Problem of 2D Binary Fractal Images 547

We consider a population of size η, {Φ(k)
i }i=1,...,η, where Φ(k)

i is a vector of
M contractive functions Φ(k)

i = {w(k)
i,j }j=1,...,M , and the superscript (.)(k) is used

to indicate the generation. Each contractive function is uniquely determined by
its IFS code as: w(k)

i,j =
(
a
(k)
i,j , b

(k)
i,j , . . . , f

(k)
i,j

)
. This population is initialized with

uniform random values in the interval [−1, 1] for the variables in A(0)
i,j and in

the interval [−α, α] for the elements in b(0)
i,j , where α is determined according to

the size of the bounding box of the input fractal image. Then, we compute the
contractive factor s

(k)
i,j and remove all functions w

(k)
i,j with s

(k)
i,j ≥ 1 to ensure that

only contractive functions are included in the population for all generations.
Before applying the cuckoo search, we also need to define a suitable fitness

function. The most natural choice is the Hausdorff distance. However, it is com-
putationally expensive and inefficient for this problem. A more advisable option
is to use the Hamming distance instead, so we do so in this paper. We encode any
binary fractal image as a bitmap image on a grid of pixels for a given resolution
driven by a parameter called the mesh size, ms. Then, we generate its correspond-
ing template matrix with 0 s and 1s, where 1 means that the corresponding pixel
is drawn and 0 otherwise. Once the reconstructed image is obtained, it is also
encoded by a similar procedure. With this strategy, measuring the similarity
between the initial and the reconstructed fractal images is transformed into the
problem of comparing their associated binary template matrices.

The parameter tuning of swarm intelligence methods is usually troublesome
and problem-dependent. Fortunately, CS is specially advantageous, as it depends
on only two parameters: population size, np, and probability pa. We carried out
several trials for different values of these parameters, and finally set np = 100
and pa = 0.25. Each run is executed for niter = 2500 iterations, a proper value
to reach convergence in all cases without wasting too much time unnecessarily.
Our method needs two more parameters: number of contractive functions M and
mesh size, ms. In this work, they are set to 3 and 40, respectively.

5 Experimental Results

The proposed method has been applied to several examples of 2D binary fractal
images. We include only two here because of limitations of space: the spiral
fractal and the Christmas tree, depicted in Figs. 1 and 2, respectively. Both
figures show: the original fractal image in red (top-left); the best reconstructed
image in blue (top-right); the combination of both pictures for better visual
comparison between them (bottom-left) and the convergence diagram of the
error function for the three contractive maps of each IFS. From the figures, it
becomes clear that our method captures the underlying structure of the given
fractal images with good visual quality. This is a very valuable (even surprising)
result taking into account that our initial population is totally random, meaning
that the reconstructed images at the initial generations are very far from the

548 J. Quirce et al.

500 1000 1500 2000 2500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 1. Application of our method to the spiral fractal: (t-l) original image; (t-r) recon-
structed image; (b-l) combination of both images for better visual comparison; (b-r)
convergence diagram of the three contractive functions. (Color figure online)

target image. Even in this case, our method is able to select the best contractive
functions in each iteration and improve them over the generations until reaching
a final image that matches the source image pretty well. Note however, that
the matching is not really optimal yet. This fact becomes more evident from
our numerical results in Table 2 (expressed on a per unit basis). These results
indicate that our method is good enough to replicate the general shape of the
image, but there is still plenty of potential for further improvement.

Table 2. Matching error for the contractive functions of images in Figs. 1 and 2.

Example Matching error of w1 Matching error of w2 Matching error of w3

Spiral fractal 0.171484 0.490783 0.520755

Christmas tree 0.234398 0.244701 0.228202

CSA Approach for the IFS Inverse Problem of 2D Binary Fractal Images 549

500 1000 1500 2000 2500

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 2. Application of our method to the Christmas tree fractal: (t-l) original image; (t-
r) reconstructed image; (b-l) combination of both images for better visual comparison;
(b-r) convergence diagram of the three contractive functions. (Color figure online)

6 Conclusions and Future Work

This paper introduces a new method to solve the IFS inverse problem for 2D
binary fractal images. Given a fractal image, the goal is to determine the IFS
code of an IFS fractal whose attractor approximates the input image accurately.
The proposed method is based on the cuckoo search algorithm, a powerful swarm
intelligence method for continuous optimization. The method has been applied
to various examples of 2D binary fractal images with satisfactory results. The
method is able to recover the underlying shape of the input image with good
visual quality and acceptable numerical accuracy. However, the method is not
optimal yet and hence, it can be improved in several ways. We plan to hybridize
the method with a local search strategy for further improvement. We also plan to
analyze the different parameters of the method in order to derive optimal values
for parameter tuning, and to apply other error metrics for better performance.
Finally, we plan to extend this work to the case of general digital images.

Acknowledgements. This research has been kindly supported by the Computer Sci-
ence National Program of the Spanish Ministry of Economy and Competitiveness,
Project Ref. #TIN2012-30768, Toho University, and the University of Cantabria.

550 J. Quirce et al.

References

1. Abiko, T., Kawamata, M.: IFS coding of non-homogeneous fractal images using
Gröbner basis. In: Proceedings of the IEEE International Conference on Image
Processing, pp. 25–29 (1999)

2. Barnsley, M.F.: Fractals Everywhere, 2nd edn. Academic Press, San Diego (1993)
3. Berkner, K.: A wavelet-based solution to the inverse problem for fractal interpo-

lation functions. In: Lévy Véhel, J., Lutton, E., Tricot, C. (eds.) Fractals in Engi-
neering, pp. 81–92. Springer, London (1997). doi:10.1007/978-1-4471-0995-2 7

4. Barnsley, M.F., Hurd, L.P.: Fractal Image Compression. AK Peters, Wellesley
(1993)

5. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd
edn. Wiley, Chichester (2003)

6. Gálvez, A.: IFS Matlab generator: a computer tool for displaying IFS fractals. In:
Proceedings ICCSA 2009, pp. 132–142. IEEE CS Press, Los Alamitos (2009)

7. Gálvez, A., Iglesias, A.: Cuckoo search with Lévy flights for weighted Bayesian
energy functional optimization in global-support curve data fitting. Sci. World J.
2014, 11 (2014). Article ID 138760

8. Gálvez, A., Iglesias, A., Takato, S.: Matlab-based KETpic add-on for generating
and rendering IFS fractals. CCIS 56, 334–341 (2009)

9. Gálvez, A., Iglesias, A., Takato, S.: KETpic Matlab binding for efficient handling
of fractal images. Int. J. Future Gener. Commun. Netw. 3(2), 1–14 (2010)

10. Gálvez, A., Kitahara, K., Kaneko, M.: IFSGen4 : interactive graphical user interface

for generation and visualization of iterated function systems in LATEX. In: Hong,
H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 554–561. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44199-2 84

11. Goentzel, B.: Fractal image compression with the genetic algorithm. Complex. Int.
1, 111–126 (1994)

12. Gutiérrez, J.M., Iglesias, A.: A Mathematica package for the analysis and control
of chaos in nonlinear systems. Comput. Phys. 12(6), 608–619 (1998)

13. Gutiérrez, J.M., Iglesias, A., Rodŕıguez, M.A.: A multifractal analysis of IFSP
invariant measures with application to fractal image generation. Fractals 4(1), 17–
27 (1996)

14. Gutiérrez, J.M., Iglesias, A., Rodŕıguez, M.A., Burgos, J.D., Moreno, P.A.: Ana-
lyzing the multifractal structure of DNA nucleotide sequences. Chaos Noise Biol.
Med. 7, 315–319 (1998). World Scientific, Singapore

15. Gutiérrez, J.M., Iglesias, A., Rodŕıguez, M.A., Rodŕıguez, V.J.: Generating and
rendering fractal images. Math. J. 7(1), 6–13 (1997)

16. Hutchinson, J.E.: Fractals and self similarity. Indiana Univ. Math. J. 30(5), 713–
747 (1981)

17. Iglesias, A., Gálvez, A.: Cuckoo search with Lévy flights for reconstruction of
outline curves of computer fonts with rational Bézier curves. In: Proceedings of
Congress on Evolutionary Computation-CEC 2016. IEEE CS Press, Los Alamitos
(2016)

18. Nettleton, D.J., Garigliano, R.: Evolutionary algorithms and a fractal inverse prob-
lem. Biosystems 33, 221–231 (1994)

19. Vyrscay, E.R.: Moment and collage methods for the inverse problem of fractal
construction with iterated function systems. In: Peitgen, H.O., et al. (eds.) Fractals
in the Fundamental and Applied Sciences. Elsevier, Amsterdam (1991)

http://dx.doi.org/10.1007/978-1-4471-0995-2_7
http://dx.doi.org/10.1007/978-3-662-44199-2_84

CSA Approach for the IFS Inverse Problem of 2D Binary Fractal Images 551

20. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press,
Frome (2010)

21. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceedings World
Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214.
IEEE Press, New York (2009)

22. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math.
Model. Numer. Optim. 1(4), 330–343 (2010)

Solving the Graph Coloring Problem Using
Cuckoo Search

Claus Aranha1(B), Keita Toda2, and Hitoshi Kanoh1

1 Faculty of Engineering, Information and Systems, University of Tsukuba,
Tsukuba, Japan

{caranha,kanoh}@cs.tsukuba.ac.jp
2 Graduate School of Systems and Information, University of Tsukuba,

Tsukuba, Japan

Abstract. We adapt the Cuckoo Search (CS) algorithm for solving
the three color Graph Coloring Problem (3-GCP). The difficulty of this
task is adapting CS from a continuous to a discrete domain. Previous
researches used sigmoid functions to discretize the Lévi Flight (LF) oper-
ator characteristic of CS, but this approach does not take into account
the concept of Solution Distance, one of the main characteristics of LF.
In this paper, we propose a new discretization of CS that maintains
LF’s solution distance concept. We also simplify CS’s parasitism opera-
tor, reducing the number of evaluations necessary. We compare different
combinations of the proposed changes, using GA as a baseline, on a set of
randomly generated 3-GCP problems. The results show the importance
of a good discretization of the LF operator to increase the success rate
and provide auto-adaptation to the CS algorithm.

Keywords: Graph Coloring Problem · Cuckoo algorithm · Lévy flight

1 Introduction

Cuckoo Search (CS) is an swarm-based optimization meta heuristic developed
by Yang and Deb [1], inspired by the breeding behaviors of cuckoo birds. One of
its main characteristics is the use of the Lévy flight distribution as a variation
operator. The CS showed excellent results solving optimization problems in the
continuous domain. Recently there are efforts to adapt this approach to discrete
value domains as well, such as combinatory optimization and constraint satis-
faction problems. However, there is not yet an accepted general approach for the
application of CS to optimization problems on the discrete domain.

In this context, we are interested in solving the Graph Coloring Problem
(GCP) using CS. Former works such as Yongquan et al. [2] and Djelloul et al. [3]
used a Binary representation of the Lévy Distribution that does not take into
account the concept of solution distance, which we believe is a key characteris-
tic for the performance of this algorithm. Aoki et al. introduced a formulation
of PSO for the GCP which uses the Hamming distance to calculate the dis-
tance between solutions [4]. While we consider this to be a better modeling of
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 552–560, 2017.
DOI: 10.1007/978-3-319-61824-1 60

Solving the Graph Coloring Problem Using Cuckoo Search 553

discrete distance, Aoki’s model of Hamming distance is focused on the compar-
ison between two solutions, and not appropriate to calculating distances from a
single solution, making it difficult to apply it directly to CS.

In this work we propose a new discretization model of the Lévy flight distri-
bution, allowing us to use CS for the 3-GCP problem. Additionally, we propose
adjustments to the parasitism operator to obtain even better results in this
problem. We compare the effectiveness of the proposed operators with standard
formulations, and include GA as a baseline. Our experiment results show that
the proposed methods are an effective way to discretize CS for the 3-GCP.

2 Background

2.1 Lévy Flight Distribution

Various studies have showed that the flight and feeding behavior of animals
have the characteristics of the Lévy distribution [5–7]. A Lévy Flight (LF) is
a random walk which uses the Lévy distribution. Compared with the standard
random walk, the LF shows occasional long steps among the many short ones, as
illustrated in Fig. 1. It has been shown that this behavior allows the Lévy flight
to be more effective than the Random Walk when used in a variety of search
algorithms [8,9].

Fig. 1. Lévy flight (left) versus random walk (right) on a 2-D space.

2.2 Cuckoo Search Algorithm

The Cuckoo Search (CS) algorithm is a meta-heuristic search algorithm for opti-
mization problems in the continuous domain. In comparison with other meta-
heuristic search algorithms such as GA or PSO, it has fewer control parameters
which are simpler to fine-tune [10]. The CS algorithm can be described as follows.
Initially, a random population is generated. Then, at each generation, up to two
replacement candidates are generated for each individual xi:

1. A modified individual u1
i is generated using the Lévy Flight operator;

2. With probability pa ∈ {0, 1}, a second modified individual u2
i is generated;

The best among xi, u
1
i and u2

i is added to the following generation.

554 C. Aranha et al.

The Lévy Flight operator generates u1
i from xi as follows [11,12]:

ui = x
(t)
i + α × L(β), where L(β) =

p

|q|1/β
, (0.3 ≤ β ≤ 1.99). (1)

In Eq. 1, α and β are problem-dependent constants. p and q are random
variables sampled from the following normal distributions:

p ∼ N(0, σ2
p), q ∼ N(0, σ2

q), where σp =

{
Γ (1 + β) sin(πβ/2)

Γ ((1 + β)/2)β2(β−1)/2

1/β
}

, σq = 1

The second replacement candidate is generated on the Parasitism Operator
step. Random generation [1] and the Lévy flight operator [10] have both been
suggested for this purpose.

2.3 Graph Coloring Problem

Given a simple, adirected graph G = {V,E}, the Graph Coloring Problem (GCP)
is the problem of assigning a label (color) to every vertex vi ∈ V so that no two
vertices which share an Edge have the same label. In the n-GCP, the set of labels
is fixed with exactly n elements, while in the min-GCP, it is necessary to find
the smallest label set for a given graph. In this work, we focus on the 3-GCP
problem. The 3-GCP is a NP-complete problem, and often used as a benchmark
to evaluate constraint satisfaction algorithms.

2.4 Related Research

Zhou et al. applied CS to the 4-GCP [2]. Instead of the Lévy flight, they used
a binary expression obtained by a sigmoid function, which does not model the
concept of solution distance. They apply some hybridizations. They compare
this algorithm with PSO, MPSO and MTPSO, obtaining improvements against
the first two, but not the third. Also, the performance of their discretization of
CS without the hybridization was quite low.

Djelloul et al. applied CS to the min-GCP [3]. They also used a binary
expression obtained by a sigmoid function, as in the above work. However, their
solution encoding is based on the encoding for the knapsack problem, so it is
not applicable to the n-GCP.

Aoki et al. used PSO for solving the 3-GCP problem [4]. They proposed the
use of Hamming Distance to calculate the distance vectors between the PSO
candidate solutions. This approach showed better performance than the Binary
discretizations of previous works, however, their modeling of the hamming dis-
tance can only be applied between two candidate solutions, which makes it hard
to use in the Lévy Flight operator.

3 Proposed Method

Our implementation of the CS algorithm for solving the 3-GCP obeys the fol-
lowing structure:

Solving the Graph Coloring Problem Using Cuckoo Search 555

Fig. 2. Encoding of a GCP, each element
in the vector represents the color assign-
ment of one vertex in the graph. (Color
figure online)

Fig. 3. Distribution of M possible val-
ues based on the modified Lévy distri-
bution proposed

1. A candidate solution is represented using the encoding described in Fig. 2.
One solution is represented as an array where each element corresponds to
one vertex in the graph, and contains the color label for that vertex.

2. The Fitness of an individual is defined as the number of edges that end in
two vertices of the same color.

3. At every generation, the candidate solutions are modified by the Lévy Flight
operator followed by the Parasitism operator, as described below.

The resulting method is summarized in Algorithm 1.

3.1 Discrete Lévy Flight Operator

The Discrete Lévy Flight operator is used to modify each candidate xi in the
population. First, it determines a value M as follows:

M = �α × L(β)� + 1. (2)

Then, M vertices from xi are selected, and their values (colors) are randomly
changed, with 0.5 probability for each color. The size of M as selected by the
Lévi distribution models the solution distance behavior. In most cases, only a
few vertices will be modified. But occasionally, a larger number of vertices will
me changed at once. Figure 3 illustrates this behavior.

3.2 Modified Parasitism Operator

Originally, the parasitism operator replaces one individual from the population
with a modified one with probability pa, if the modified one has equal or better
fitness. In past works, the modified individual can be fully random [1] or a
modification of the original using the Uniform distribution [10]. In the 3-GCP
problem, there are multiple local optima, and a smaller range of fitness values,
when compared with continuous optimization problems. As a result, we observed
that the Parasitism operator rarely replaced existing candidates.

556 C. Aranha et al.

To improve the exploration power of the algorithm and reduce wasted eval-
uations, we change the Parasitism operator so that the new solution is always
adopted without comparison with the current one. To compensate for the ran-
domness of introducing new solutions to the population, we also drastically
reduce the value of parameter pa.

Additionally, we perform the modification in three different ways:
1-Modifying a random number of vertices drawn from a uniform distribution;
2-Modifying a random number of vertices drawn from the Lévy distribution; and
3-Modifying a fixed number of vertices, decided by a fine-tuning experiment.

Algorithm 1. Proposed Cuckoo Search Algorithm for 3-GCP
Generate random initial solution set S0

while Current Evaluations < Max Evaluations do
for Each candidate solution x

(t)
i ∈ S(t) do � Lévy Flight operator

Select M using the Discrete Lévi distribution
Generate u1

i by randomly changing the color of M vertices in x
(t)
i

if Fitness(u1
i) ≥ Fitness(x

(t)
i) then replace x

(t)
i with u1

i

end for
for Each candidate solution x

(t+1)
i ∈ S(t+1) do � Parasitism operator

if random uniform number ki ∈ (0, 1) ≤ pa then
Select M using one of {Uniform Distribution, Discrete Lévi, Fixed Value}
Generate u2

i by randomly changing the color of M vertices in x
(t)
i

if (parasitism comparison is “No”) or (Fitness(u2
i) ≥ Fitness(x

(t)
i)) then

Replace x
(t)
i with u2

i

end if
end if

end for
end while

4 Experiments

We perform a computational experiment to evaluate the contributions of the
various proposed changes. In this experiment we compare four algorithms com-
posed of different combinations of the modifications proposed in the previous
section, along with a GA to be used as a baseline. The four algorithms and their
descriptions are detailed in Table 1.

Each algorithm is tested on a set of random graphs generated based on the
formulation by Minton et al. [13]. In our formulation, the vertices in the graphs
are divided in three groups, and edges between the groups are randomly added
to the graphs until the necessary number is reached. Since the 3-GCP strongly
depends on the local structure of the graph, using random instances allows us to
avoid local optima. Note that this formulation guarantees that a solution exists
for the graph.

Each experiment is generated with a fixed number of vertices, n, and a fixed
edge density d = |E|/|V |. The edge density can be considered a difficulty index
for the 3-GCP problem. Hogg et al. showed that the 3-GCP is most difficult
when 2.0 ≤ d ≤ 2.5 [14].

Solving the Graph Coloring Problem Using Cuckoo Search 557

Table 1. Algorithm variations compared in the experiment.

Algorithm CS-R-Yes CS-R-NO CS-L-NO CS-CONST-NO

Parasitism variation operator Uniform dist. Uniform dist. Lévy flight Constant E

Parasitism comparison Yes No No No

4.1 Parameter Setting

To determine the parameter values for each algorithm we perform a preliminary
experiment to find the optimal value for each parameter independently. This
experiment was done on a problem set with n = 120, d = 2.5 and 100 random
graphs. The parameter value with highest proportion of successes was adopted.
The selected values for each parameter is listed on Table 2.

Table 2. Parameter values used for the comparison experiment

Algorithm CS-R-Yes CS-R-NO CS-L-NO CS-CONST-NO GA

Population size 200 10 10 10 40

pa 0.2 0.0001 0.0001 0.001 N/A

β 1.5 N/A

α 1 N/A

E N/A N/A N/A 3 N/A

Mutation probability N/A 0.011

Tournament size N/A 2

4.2 Evaluation Experiment

To compare the performance of the proposed methods, we execute them on a
series of 3-GCP data sets. The number of nodes in the graphs used are 90, 120,
150 and 180, and the edge density d goes from 1.5 to 9.0, at 0.5 intervals. For
each combination of vertex number and edge density, we test each algorithm on
a set of 100 random graphs, and report the proportion of solved graphs, and the
average number of evaluation functions until a solution was found.

The results of the experiment can be seen on Figs. 4, 5, 6, 7, 8, 9, 10 and 11.
From these results we can see that the CS variants normally outperform GA,
specially when the number of vertices in the graph is higher.

Among the proposed variants, CS-L-NO and CS-CONST-NO outperform
the CS-R variants, specially in terms of number of evaluations until a solution
is found. This shows that the use of Levy Flight when compared to the Random
mutation does indeed improve the performance of the CS.

At first glance, the similar results between the CS-L-NO and the CS-CONST-
NO may seem to imply that there is no benefit in using the Lévy Flight as
opposed to a constant mutation number. However, note that the preliminary

558 C. Aranha et al.

Fig. 4. Proportion of problems solved
by each method (n= 90)

Fig. 5. Average number of evaluations
to solve a problem (n= 90)

Fig. 6. Proportion of problems solved
by each method (n= 120)

Fig. 7. Average number of evaluations
to solve a problem (n= 120)

Fig. 8. Proportion of problems solved
by each method (n= 150)

Fig. 9. Average number of evaluations
to solve a problem (n= 150)

Fig. 10. Proportion of problems solved
by each method (n= 180)

Fig. 11. Average number of evalua-
tions to solve a problem (n = 180)

Solving the Graph Coloring Problem Using Cuckoo Search 559

experiment necessary to find the optimal constant E is a cost that is not nec-
essary for the Lévy Flight (the Lévy Flight showed very little sensitivity to the
choices of α and β. This means that the use of the Lévy Flight gives a degree of
self-adaptation to the algorithm.

5 Conclusion

In this paper, we proposed an adaptation of the Cuckoo Search (CS) algorithm
for the Graph Coloring Problem with Three colors (3-GCP). The CS is char-
acterized by the Lévy Flight mutation, so we paid special attention to the dis-
cretization of the Lévy distribution.

We compared the different proposed changes in a computational experiment
with a large variety of graph sizes and difficulties, using the GA as a baseline.
The results indicate that the proposed discretization of the Lévy flight allows us
to use CS for the 3-GCP without having to worry with fine-tuning parameter
values or hybridization with local search operators.

Acknowledgments. This work was supported by JSPS KAKENHI grand number
15K00296.

References

1. Yang, X.-S., Deb, S.: Cuckoo search via lévy flights. Nature Biol. Inspired Comput.
37, 210–214 (2009)

2. Zhou, Y., Zheng, H., Luo, Q., Jinzhao, W.: An improved cuckoo search algorithm
for solving planar graph coloring problem. Appl. Math. Inf. Sci. 7(2), 785–792
(2013)

3. Djelloul, H., Layeb, A., Chikhi, S.: A binary cuckoo search algorithm for graph
coloring problem. Int. J. Appl. Evol. Comput. 5(3), 42–56 (2014)

4. Aoki, T., Aranha, C., Kanoh, H.: PSO algorithm with transition probability based
on hamming distance for graph coloring problem. In: IEEE International Confer-
ence On Systems, Man, and Cybernetics, pp. 1956–1961 (2015)

5. Brown, C., Liebovitch, L.S., Glendon, R.: Lévy flights in Dobe Ju’hoansi foraging
patterns. Hum. Ecol. 35, 129–138 (2007)

6. Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Com-
put. Phys. 226, 1830–1844 (2007)

7. Reynolds, A.M., Frye, M.A.: Free-flight odor tracking in Drosophila is consistent
with an optimal intermittent scale-free search. PLoS ONE 2, e354 (2007)

8. Viswanathan, G.M., Raposo, E.P., da Luz, M.G.E.: Lévy flights and super diffusion
in the context of biological encounters and random searches. Phys. Life Rev. 5(3),
133–150 (2008)

9. Ali, A.F.: A hybrid gravitational search with lévy flight for global numerical opti-
mization. Inf. Sci. Lett. 4(2), 71–83 (2015)

10. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math.
Model. Numer. Optim. 1, 330–343 (2010)

11. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press,
Bristol (2010)

560 C. Aranha et al.

12. Mantegna, R.N.: Fast, accurate algorithm for numerical simulation of Lévy stable
stochastic processes. Phys. Rev. E 49(5), 4677–4683 (1994)

13. Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: a heuris-
tic repair method for constraint-satisfaction and scheduling problems. Artif. Intell.
58, 161–205 (1992)

14. Hogg, T., Williams, C.: The hardest constraint problems: a double phase transition.
Artif. Intell. 69, 359–377 (1994)

A Deep Learning-Cuckoo Search Method
for Missing Data Estimation
in High-Dimensional Datasets

Collins Leke(B), Alain Richard Ndjiongue, Bhekisipho Twala,
and Tshilidzi Marwala

School of Electrical and Electronic Engineering, University of Johannesburg,
Johannesburg, South Africa

{collinsl,arrichard,btwala,tmarwala}@uj.ac.za

Abstract. This study brings together two related areas: deep learning
and swarm intelligence for missing data estimation in high-dimensional
datasets. The growing number of studies in the deep learning area war-
rants a closer look at its possible application in the aforementioned
domain. Missing data being an unavoidable scenario in present day
datasets results in different challenges which are nontrivial for existing
techniques which constitute narrow artificial intelligence architectures
and computational intelligence methods. This can be attributed to the
large number of samples and high number of features. In this paper,
we propose a new framework for the imputation procedure that uses a
deep learning method with a swarm intelligence algorithm, called Deep
Learning-Cuckoo Search (DL-CS). This technique is compared to simi-
lar approaches and other existing methods. The time required to obtain
accurate estimates for the missing data entries surpasses that of existing
methods, but this is considered a worthy bargain when the accuracy of
the said estimates in a high dimensional setting are taken into consider-
ation.

Keywords: Missing data · Deep learning · Swarm intelligence · High-
dimensional data · Supervised learning · Unsupervised learning

1 Introduction

Datasets nowadays such as those that record production, manufacturing and
medical data may suffer from the problem of missing data at different phases
of the data collection and storage processes. Faults in measuring instruments
or data transmission lines are predominant causes of missing data. The occur-
rence of missing data results in difficulties in decision making and analysis tasks
which rely on access to complete and accurate data, resulting in data estimation
techniques which are not only accurate, but also efficient. Several methods exist
as a means to alleviate the problems presented by missing data ranging from
deleting records with missing attributes (list-wise and pair-wise data deletion)
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 561–572, 2017.
DOI: 10.1007/978-3-319-61824-1 61

562 C. Leke et al.

to approaches that employ statistical and artificial intelligence methods such
as those presented in the next paragraph. The problem though is, some of the
statistical and naive approaches more often than not produce biased approxi-
mations, or they make false assumptions about the data and correlations within
the data. These have an adverse effect on the decision making processes which
are data dependent.

The applications of missing data estimation techniques are vast and with
that said, the existing methods depend on the nature of the data, the pattern of
missingness and are predominantly implemented on low dimensional datasets.
The authors in [1] implemented a joint neural network-genetic algorithm frame-
work to impute missing values in one dimension while the authors in [2] used
a combination of particle swarm optimization, simulated annealing and genetic
algorithm with a multi-layer perceptron (MLP) autoencoder network yielding
good results in one dimension. Authors in [3] used MLP autoencoder networks,
principal component analysis and support vector machines in combination with
the genetic algorithm to impute missing variables. In papers such as [4–8], new
techniques to impute missing data and comparisons between these and existing
methods are observed. Recently in [9], a technique involving a deep network
framework and a swarm intelligence algorithm was proposed to handle missing
data in high dimensional datasets, a first of its nature, with promising outcomes.
It is as a result of this work that we conducted the research to investigate other
high dimensional missing data estimation approaches to observe whether the
accuracy obtained can be improved upon.

Investigating new techniques to address the previously mentioned drawbacks
led to the implementation of a deep autoencoder, which is by definition an unsu-
pervised learning technique that tries to recall the input space by learning an
approximation function which diminishes the disparity between the original data,
x, and the reconstructed data, x̃, the same as with Principal Component Analysis
(PCA). A deep autoencoder comprises of two symmetrical deep belief networks
with a couple of shallow layers representing the encoding section of the network,
while the second set of shallow layers represent the decoding section, with each of
the individual layers being a restricted Boltzmann machine (RBM). The RBMs
are stacked together to form the overall deep autoencoder network which is sub-
sequently fine-tuned using the back-propagation algorithm. These networks are
applicable in a variety of sectors, for example, deep autoencoders were used for
visuomotor learning in [10] while in [11], they were used with Support Vector
Machines (SVMs) to learn sparse features and perform classification tasks. The
authors in [12] used an autoencoder for HIV classification, and in [13], these net-
works were used to map small color images to short binary codes. Autoencoders
have several advantages such as being more flexible by introducing nonlinearity
in the encoding part of the network contrary to the likes of PCA, which is a key
property of the pretraining procedure, they require no prior knowledge of the
data properties and correlations, and also they are intuitive. The main drawback
of this network is its need for a significant amount of samples for training and
learning, which are not always readily available.

A Deep Learning-Cuckoo Search Method for Missing Data Estimation 563

In combination with a deep autoencoder network, the Cuckoo Search (CS)
algorithm is used. It is a population based stochastic optimization technique
inspired by the brood parasitism of cuckoo birds [14]. The algorithm is further
enhanced by the use of Lévy flights to introduce more randomness in the motion
of the birds. It has been used to minimize the generation and emission costs of a
microgrid while satisfying system hourly demands and constraints [15], while in
[16], it was used to establish the parameters of chaotic systems via an improved
cuckoo search algorithm. The authors in [17] presented a new hybrid algorithm
comprised of the cuckoo search algorithm and the nelder-mead method with
the aim being to solve the integer and minimax optimization problems. This
algorithm is selected due to its merits as observed in the literature, as well as
its wide range of applications as mentioned above.

In this paper, a deep autoencoder network is trained and in combination with
the CS algorithm (DL-CS), its performance is compared to that of an ordinary
Multilayer Perceptron (MLP) autoencoder and other schemes. A description
of the methodology is described followed by a presentation of the model perfor-
mance and analyses. Subsequently, results and the findings from the experiments
are presented, followed by concluding remarks.

2 Proposed Approach

In this section, information on the proposed approach is presented which uses a
combination of a deep learning regression model, a deep autoencoder network,
and an optimization technique, the CS algorithm, to approximate the missing
data. Figure 1 illustrates how the regression model and optimization method will
be used.

Fig. 1. Data imputation configuration.

Two predominant features of an autoencoder being; (i) its autoassociative
nature, and (ii) the butterfly-like structure of the network resulting from a bottle-
neck trait in the hidden layers, were the reasons behind the network being used.

564 C. Leke et al.

Autoencoders are also ideal courtesy of their ability to replicate the input data
by learning certain linear and non-linear correlations and covariances present in
the input space, by projecting the input data into lower dimensions. The only
condition required is that the hidden layer(s) have fewer nodes than the input
layer, though it is dependent on the application. Prior to optimizing the regres-
sion model parameters, it is necessary to identify the network structure where
the structure depends on the number of layers, the number of hidden units per
hidden layer, the activation functions used, and the number of input and out-
put variables. After this, the parameters can then be approximated using the
training set of data. The parameter approximation procedure was done for a
given number of training cycles, with the optimal number of this being obtained
by analysing the validation error. The aim of this was to avoid overfitting the
network and also to use the fastest training approach without compromising
on accuracy. The optimal number of training cycles was found to be 500. The
training procedure estimated weight parameters such that the network output
was as close as possible to the target output.

The CS algorithm was used to estimate the missing values by optimizing an
objective function which has as part of it the trained network. It used values from
the population as part of the input to the network, and the network recalled these
values which subsequently form part of the output. The complete data matrix
containing the estimated values and observed values was fed into the autoencoder
as input. Some inputs were considered as being known, with others unknown and
to be estimated using the regression method and the CS algorithm as described
at the beginning of the paragraph. The symbols Ik and Iu as used in Figs. 1 and
2 represent the known and unknown/missing values, respectively.

Fig. 2. Missing data estimator structure.

Considering that the approach made use of a deep autoencoder, it was imper-
ative that the autoencoder architecture match the output to the input. This trait
is expected when a dataset with familiar correlations recorded in the network is

A Deep Learning-Cuckoo Search Method for Missing Data Estimation 565

used. The error used is the disparity between the target output and the network
output, expressed as:

δ =
−→
I − f(

−→
W,

−→
I), (1)

where
−→
I and

−→
W represent the inputs and the weights, respectively.

The square of Eq. (1) was used to always guarantee that the error is positive.
This results in the following equation:

δ =
(−→

I − f(
−→
W,

−→
I)

)2

. (2)

Courtesy of the fact that the input and output vectors contain both Ik and
Iu, the error function is rewritten as:

δ =
([

Ik

Iu

]
− f

({
Ik

Iu

}
, w

))2

. (3)

Equation (3) is the objective function used and minimized by the CS algorithm
in order to estimate Iu, with f being the regression model function. The stop-
ping criteria of the CS algorithm were either a maximum of 40,000 function
evaluations being attained, or no change observed in the objective/error value
during the estimation procedure. From the above descriptions of how the deep
autoencoder and CS algorithm were used, the equation below summarizes the
function of the proposed approach, with fCS being the CS algorithm estimation
operation and fDAE being the function of the deep autoencoder.

y = fDAE(W, fCS(
−→
I)), (4)

where
−→
I =

[−→
Ik−→
Iu

]
represent the input space of known and unknown features.

3 Performance Analysis and Results

To investigate and validate the proposed model against other existing
approaches, the Mixed National Institute of Standards and Technology (MNIST)
dataset of handwritten digits was used. It consists of 60,000 training samples and
10,000 test samples, each with 784 features representing the pixel values of the
image. The black pixels are represented by 0, while the white pixels have val-
ues of 255, as such, all the variables could be considered as being continuous.
The data in its current form has been cleaned of outliers, therefore, each image
used in the dataset should contribute in generalizing the system. The data are
normalized to being in the range [0, 1], and randomized to improve the net-
work performance. The training set of data was further split into training and
validation sets (50,000 and 10,000, respectively).

The neural network architecture was optimized using the validation set of
data with the correctness in performance of the proposed system being tested
using the test data. It is worth mentioning that the objective of this research

566 C. Leke et al.

is not to propose a state-of-the-art classification model which rivals existing
methods, but rather to propose an approach to reconstruct an image in the
event of missing data (missing pixels). The individual network layers were pre-
trained using RBMs and the complete training set of data with no missing values,
to initialize the weights and biases in a good solution space. These are stacked
together and trained in a supervised learning approach using the stochastic gra-
dient descent (SGD) algorithm. The optimized deep network architecture used
is 784-1000-500-250-30-250-500-1000-784 as suggested initially by [18] and fur-
ther verified by performing cross-validations using the validation set of data with
complete records, with 784 input and output nodes, and seven hidden layers with
1000, 500, 250, 30, 250, 500 and 1000 nodes, respectively. The objective function
value (mean squared error) obtained after training was 1.96% which was close to
the lowest value obtained during cross-validation (2.12%). The Multilayer Per-
ceptron (MLP) autoencoder used for comparison purposes has the same number
of nodes in the input and output layer as the deep autoencoder, with a single
hidden layer consisting of 400 nodes which was determined by varying the num-
ber of nodes in the hidden layer, and determining which architecture produces
the lowest network error. It was experimentally observed that the 784-400-784
mlp autoencoder network architecture yielded a network error value of 2.5088%.
The sigmoid and linear activation functions were used for the hidden and out-
put layers of the mlp network, respectively. The sigmoid activation function was
used in each layer of the deep autoencoder except for the bottle-neck layer in
which the linear activation function was used. The training was done using the
scaled conjugate gradient (SCG) algorithm for the mlp and the stochastic gradi-
ent descent (SGD) algorithm for the deep autoencoder network, for 500 epochs.
Next, values were removed from the entire test set respecting the missing at ran-
dom (MAR) and missing completely at random (MCAR) mechanisms, as well as
the arbitrary missing data pattern. This was done by creating a binomial matrix
of the same size as the test set (10, 000 × 784) with zeros and ones adhering to
the stated mechanisms and pattern, and replacing every occurrence of one with
NaN (implying missingness). 100 samples were selected from the modified test
set obtained from this procedure, with missing values and were used to test the
performance of the missing data estimation scheme, which was then compared
against existing methods.

The effectiveness of the proposed approach was determined using the mean
squared error (MSE), the root mean squared logarithmic error (RMSLE), the
correlation coefficient (r) and the relative prediction accuracy (RPA). Also used
were the signal-noise ratio (SNR) and global deviation (GD). The mean squared
and root mean squared logarithmic errors as well as the global deviation yield
measures of the difference between the actual and predicted values, and provide
an indication of the capability of the estimation.

MSE =
Σn

i=1(Ii − Îi)2

n
, (5)

RMSLE =

√
Σn

i=1(log(Ii + 1) − log(Îi + 1))2

n
, (6)

A Deep Learning-Cuckoo Search Method for Missing Data Estimation 567

and

GD =

⎛
⎝Σn

i=1

(
Îi − Ii

)

n

⎞
⎠

2

. (7)

The correlation coefficient provides a measure of the similarity between the
predicted and actual data. The output value of this measure lies in the range
[−1, 1] where the absolute value indicates the strength of the link, while the sign
indicates the direction of said link. Therefore, a value close to 1(100%) signifies a
strong predictive capability while a value close to −1(−100%) signifies otherwise.
In the equation below, ‘¯’ represents the mean of the data.

r =
Σn

i=1(Ii − Īi)(Îi − ¯̂
Ii)[

Σn
i=1

(
Ii − Īi

)2
Σn

i=1

(
Îi − ¯̂

Ii

)2
]1/2

. (8)

The relative prediction accuracy on the otherhand measures the number of
estimates made within a specific tolerance, with the tolerance dependent on the
sensitivity required by the application. The tolerance was set to 10% as it seemed
favorable for the application domain. This measure is given by:

A =
nτ

n
∗ 100. (9)

The signal-noise ratio used in this paper is obtained by:

SNR =
var(I − Î)

var(Î)
. (10)

In Eqs. (5)–(8), n represents the number of samples, while I and Î represent
the real test set values and estimated missing output values from the modified
test set, respectively. In Eq. (9), nτ represents the number of correctly predicted
outputs. Taking into consideration the above mentioned metrics, the perfor-
mance of the estimation method was evaluated and compared against exist-
ing methods (refer to [1] (MLP-GA), [2] (MLP-GA, MLP-SA and MLP-PSO),
and [9] where a deep learning-swarm intelligence method was proposed, herein
denoted by DL-FA) by estimating the missing attributes concurrently, wher-
ever missing data may be ascertained. This led to scenarios whereby any sam-
ple/record could have at least 62, and at most 97 missing attributes (dimensions)
to be approximated. It will be seen that the approach proposed in this research
outperforms that implemented in [9] which was part of the aim of this work.

Figures 3, 4, 5, 6 and 7 show the performance and comparison of DL-CS with
DL-FA, MLP-PSO, MLP-SA and MLP-GA. Before analysing the results, MSE
is a deviation that measures the average of the squares of the errors. The opti-
mal performance of an estimator corresponds to a minimum MSE value. Another
measure is the RMSLE which measures the difference between samples predicted
by the models. Similar to MSE, an estimator gives better performance when the

568 C. Leke et al.

lowest RMSLE value is obtained. In evaluating data mining approaches, we also
look at the correlation coefficient. It quantifies the type of dependence between
samples. An estimator performs better when the correlation coefficient is higher.
As with the correlation coefficient, the RPA is also given in percentage and rep-
resents the mean absolute deviation with the optimum accuracy corresponding
to a 100%. Figures 3 and 4 are bar charts that show the MSE and RMSLE values
for DL-CS when compared to DL-FA, MLP-PSO, MLP-SA and MLP-GA.

Fig. 3. Mean squared error vs estimation approach.

Fig. 4. Root mean squared logarithmic error vs estimation approach.

We recorded 0.62%, 1.99%, 5.58%, 9.2% and 9.2% of MSE and 5.89%, 11.55%,
18.55%, 21.66% and 21.66% of RMSLE for DL-CS, DL-FA, MLP-PSO, MLP-
SA and MLP-GA, respectively. Both DL-CS and DL-FA yielded low MSE when

A Deep Learning-Cuckoo Search Method for Missing Data Estimation 569

compared to the others due to the fact that their algorithms are based on the
same principle. The DL-CS method showed better performance over DL-FA.
These results are validated by the correlation coefficient whose bar chart is given
in Fig. 5.

Fig. 5. Correlation coefficient vs estimation approach.

DL-CS, DL-FA and MLP-PSO yielded 96.19%, 89.16% and 71.57% corre-
lation values, respectively, while MLP-SA and MLP-GA showed no correlation.
MLP-SA and MLP-GA yielded 79% of RPA while DL-FA and MLP-PSO respec-
tively yielded 60.83% and 56.33%, as shown in Fig. 6. However, DL-CS remained
the approach that outperformed all the others as it exhibited an 87% of RPA.

Lastly, we consider the execution time. MLP-PSO, MLP-SA and MLP-GA
have always been outperformed by DL-CS and DL-FA. This was justified by

Fig. 6. Relative prediction accuracy vs estimation approach.

570 C. Leke et al.

Fig. 7. Time vs sample number.

their execution times which were relatively short when compared to DL-CS and
DL-FA as shown in Fig. 7. Nevertheless, this cannot be set as a rule owing to
the fact that the DL-CS approach, which presents better characteristics when
compared to DL-FA, recovers the same amount of data as DL-FA with less time,
better accuracy, better MSE and RMSLE, and higher correlation coefficient.

Table 1. Mean squared error objective value per sample.

Sample Dimensions DL-CS DL-FA MLP-PSO MLP-SA MLP-GA

1 73 0.71 2.05 6.02 7.62 7.62

2 75 0.44 1.78 5.77 2.97 2.97

3 78 1.59 2.86 7.01 12.94 12.94

4 78 1.03 2.22 4.75 8.82 8.82

5 84 1.21 2.21 4.42 10.16 10.16

6 97 0.93 1.75 5.44 6.35 6.35

7 83 0.69 2.42 4.69 5.32 5.32

8 75 2.02 3.12 8.49 13.63 13.63

9 85 0.84 2.62 6.15 9.07 9.07

10 74 2.39 3.42 9.91 11.25 11.25

In Table 1, the dimensions column refers to the number of missing values in
a sample/record.

Tables 1 and 2 further back the findings from Figs. 3, 4, 5 and 6 showing
that the proposed approach yielded the lowest objective function value in the
estimation of missing values in each sample, as well as the lowest SNR and GD
values.

A Deep Learning-Cuckoo Search Method for Missing Data Estimation 571

Table 2. Signal-noise ratio and global deviation values.

DL-CS DL-FA MLP-PSO MLP-SA MLP-GA

SNR 0.0836 0.2815 0.6035 ∞ ∞
GD 1.48E-04 0.0033 0.0123 0.0118 0.0118

4 Conclusion

This paper investigated the estimation of missing data via a novel approach.
The estimation method comprised of a deep autoencoder network to replicate
the input data, in combination with the cuckoo search algorithm to estimate
the missing data. The performance of the model was investigated and com-
pared against existing methods including an MLP autoencoder with Genetic
Algorithm, Simulated Annealing and Particle Swarm Optimization. The pro-
posed method was also compared to a recent technique suggested to estimate
missing data in high dimensional datasets which makes use of a deep autoen-
coder network in combination with the firefly algorithm. The results obtained
revealed that the proposed system yielded more accurate estimates not only
when compared against the MLP hybrid systems, but also when compared to
the recent deep autoencoder-firefly algorithm system. This was made evident
when the mean squared error, root mean squared logarithmic error, correlation
coefficient, relative prediction accuracy, signal-noise ratio and global deviation
were taken into account, with the proposed approach yielding the best values of
these. Also, when the objective function value was considered during the estima-
tion process, it was observed that the proposed approach resulted in the lowest
values for this for each sample. An obstacle faced was the computational time
required to estimate the missing data which can be addressed by parallelizing
the estimation procedure to observe whether this approach does speed up the
process while maintaining efficiency and accuracy. Generalization of the model
could also be achieved by implementing it on other datasets. It is also worth
experimenting with different proportions of missing data.

References

1. Abdella, M., Marwala, T.: The use of genetic algorithms and neural networks to
approximate missing data in database. In: 3rd International Conference on Com-
putational Cybernetics. (ICCC), pp. 207–212. IEEE (2005)

2. Leke, C., Twala, B., Marwala, T.: Modeling of missing data prediction: compu-
tational intelligence and optimization algorithms. In: International Conference on
Systems, Man and Cybernetics (SMC), pp. 1400–1404. IEEE (2014)

3. Vukosi, M.N., Nelwamondo, F.V., Marwala, T.: Autoencoder, principal compo-
nent analysis and support vector regression for data imputation. arXiv preprint
arXiv:0709.2506 (2007)

4. Jerez, J.M., Molina, I., Garćıa-Laencina, P.J., Alba, E., Ribelles, N., Mart́ın, M.,
Franco, L.: Missing data imputation using statistical and machine learning methods
in a real breast cancer problem. Artif. intell. Med. 50(2), 105–115 (2010). Elsevier

http://arxiv.org/abs/0709.2506

572 C. Leke et al.

5. Liew, A.W.-C., Law, N.-F., Yan, H.: Missing value imputation for gene expression
data: computational techniques to recover missing data from available information.
Brief. Bioinform. 12(5), 498–513 (2011). Oxford University Press

6. Myers, T.A.: Goodbye, listwise deletion: presenting hot deck imputation as an
easy and effective tool for handling missing data. Commun. Methods Meas. 5(4),
297–310 (2011). Taylor & Francis

7. Schafer, J.L., Graham, J.W.: Missing data: our view of the state of the art. Psychol.
Methods 7(2), 147 (2002). American Psychological Association

8. Van Buuren, S.: Flexible Imputation of Missing Data. CRC Press, Boca Raton
(2012)

9. Leke, C., Marwala, T.: Missing data estimation in high-dimensional datasets: a
swarm intelligence-deep neural network approach. In: Tan, Y., Shi, Y., Niu, B.
(eds.) ICSI 2016. LNCS, vol. 9712, pp. 259–270. Springer, Cham (2016). doi:10.
1007/978-3-319-41000-5 26

10. Finn C., Tan, X., Duan, Y., Darrell, T., Levine, S., Abbeel, P.: Deep spatial
autoencoders for visuomotor learning. In: International Conference on Robotics
and Automation (ICRA), pp. 512–519 (2016)

11. Ju, Y., Guo, J., Liu, S.: A deep learning method combined sparse autoencoder with
SVM. In: 2015 International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC), pp. 257–260, September 2015

12. Brain, L.B., Marwala, T., Tettet, T.: Autoencoder networks for HIV classification.
Curr. Sci. 91(11), 1467–1473 (2006)

13. Krizhevsky, A., Hinton, G.E.: Using very deep autoencoders for content-based
image retrieval. In: 19th European Symposium on Artificial Neural Networks
(ESANN), Bruges, Belgium, 27–29 April 2011

14. Yang, X.S., Debb, S.: Cuckoo search: recent advances and applications. Neural
Comput. Appl. 24(1), 169–174 (2014)

15. Vasanthakumar, S., Kumarappan, N., Arulraj, R., Vigneysh, T.: Cuckoo search
algorithm based environmental economic dispatch of microgrid system with distrib-
uted generation. In: International Conference on Smart Technologies and Manage-
ment for Computing, Communication, Controls, Energy and Materials (ICSTM),
pp. 575–580. IEEE (2015)

16. Wang, J., Zhou, B., Zhou, S.: An improved cuckoo search optimization algorithm
for the problem of chaotic systems parameter estimation. Comput. Intell. Neurosci.
2016, 8 (2016)

17. Ali, F.A., Mohamed, A.T.: A hybrid cuckoo search algorithm with Nelder Mead
method for solving global optimization problems. SpringerPlus 5(1), 473 (2016).
Springer International Publishing

18. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

http://dx.doi.org/10.1007/978-3-319-41000-5_26
http://dx.doi.org/10.1007/978-3-319-41000-5_26

Strategies to Improve Cuckoo Search Toward
Adapting Randomly Changing Environment

Yuta Umenai(B), Fumito Uwano, Hiroyuki Sato, and Keiki Takadama

The University of Electro-Communications, Tokyo, Japan
{umenai,uwano}@cas.hc.uec.ac.jp, sato@hc.uec.ac.jp,

keiki@inf.uec.ac.jp

Abstract. Cuckoo Search (CS) is the powerful optimization algorithm
and has been researched recently. Cuckoo Search for Dynamic Environ-
ment (D-CS) has proposed and tested in dynamic environment with
multi-modality and cyclically before. It was clear that has the hold capa-
bility and can find the optimal solutions in this environment. Although
these experiments only provide the valuable results in this environment,
D-CS not fully explored in dynamic environment with other dynamism.
We investigate and discuss the find and hold capabilities of D-CS on
dynamic environment with randomness. We employed the multi-modal
dynamic function with randomness and applied D-CS into this environ-
ment. We compared D-CS with CS in terms of getting the better fitness.
The experimental result shows the D-CS has the good hold capability
on dynamic environment with randomness. Introducing the Local Solu-
tion Comparison strategy and Concurrent Solution Generating strategy
help to get the hold and find capabilities on dynamic environment with
randomness.

Keywords: Dynamic environment · Cuckoo Search · Swarm intelligence

1 Introduction

Cuckoo Search (CS) [10] is a meta-heuristic algorithm inspired from a breed-
ing behavior of cuckoo. [11] shows that CS is one of the effective optimization
algorithm with a strong search capability as well as other modern meta-heuristic
algorithms such as Particle Swarm Optimization (PSO) [6], Artificial Bee Colony
Algorithm (ABC) [2,4]. CS employs Lévy flight as a search strategy, which usu-
ally enables CS to search solutions locally and globally with the same mechanism.
It is known that Lévy flight is more effective search strategy than a random walk
or the Gaussian distribution [11]. Lately, CS have been applied on many kind
of optimization problems, e.g., the scheduling problem [5,8], the steel frame
design problem [3], and the clustering problem [13]. Cuckoo Search for Dynamic
Environment (D-CS) proposed by Umenai et al. [9] in 2016 is introduced three
modification: (1) Short-range Searching strategy; (2) Local Solution Comparison
strategy; and (3) Concurrent Solution Generating strategy, in order to adapt to

c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 573–582, 2017.
DOI: 10.1007/978-3-319-61824-1 62

574 Y. Umenai et al.

the dynamic environment which the global optimum can be changeable with
passage of time. However the dynamic environment changes too simple to adapt
the real world problem, the environment change with the certain rules without
randomness. To tackle this issue, we test and discuss the search capability of the
D-CS in the dynamic environment with randomness. Concretely, we employ the
dynamic function, which is modified problem based on the multimodal function
employed in [9] has 3 features: cyclically, multi-modality and randomly (added
in this paper). The position of optimum solution moves randomly in this prob-
lem. In other words, we cannot predict the next position of optimum solution
correctly. In this paper, we study how D-CS can be working well for dynamic
environment with randomness. We compare D-CS with CS in terms of getting
better fitness in order to verify these modification help to search on this environ-
ment. If we can know the effective searching strategy on this environment, we
may apply to the other randomly environment and algorithms. Then we analyze
the capability of D-CS on dynamic environment with randomness in terms of the
distribution of candidate solutions and the combination of employed strategies.

This paper is organized as follows. We briefly explain the mechanism of CS in
Sect. 2. We describe the mechanisms of D-CS in Sect. 3. We explain the dynamic
optimization problem and the experimental settings in Sect. 4. Section 5 show
the experimental results on dynamic environments with randomness and discuss
how D-CS adapt dynamic environment and what mechanisms improve to find
and hold capabilities. Finally, we conclude this paper with future work in Sect. 6.

2 Cuckoo Search

CS is inspired from a breeding behavior of cuckoo consisting of the following
procedures; a new solution is stochastically generated from an current solution
with a distribution controlled by Lévy flight ; the best solution with the highest
fitness remains in the population to the next generation; to keep a number of
solutions (i.e., the population size) constant, worse solutions are deleted with
the deletion probability Pa.

In brief, CS generates a new solution xnew based on an current solution
xcurrent selected randomly;

xnew = xcurrent ⊕ α · cos(θ) · Levy(λ), (1)

where α represents a step size which should be set according to the scale of the
problem; θ (0 < θ < π) decides the moving direction to the new solution from the
current one; ⊕ represents the Hadamard product which multiples the elements
in the same entry in the same size matrixes (note that the α · cos(θ) · Lévy(λ) is
represented by the same size matrix of the solution x = (x1, x2, x3, . . . , xD)T);
and Levy(λ) is a Lévy distribution. The value of α is recommended to set to
L/100 for enhancing the search capability [12]. The parameter L is the char-
acteristic scale of the problem of interest. In this paper, L is set to the size of
problem as L = Domainmax −Domainmin, where Domainmax and Domainmin

Strategies to Improve Cuckoo Search Toward Adapting Randomly 575

indicate the maximum and minimum value of variables x defined by a problem
(see Sect. 4). Levy(λ) is represented by Eq. (2);

Levy(λ) ∼ step = t−λ (2)

where, t is a uniform random value. The Lévy distribution has an infinite variance
and an infinite mean. As described in [10], the steps form a random walk process
with a power-law step-length distribution with a heavy tail, which triggers an
intensive local search.

3 Cuckoo Search for Dynamic Environment

D-CS is modified in terms of the following three mechanisms: (i) Short-range
Searching strategy; (ii) Local Solution Comparison strategy; (iii) Concurrent Solu-
tion Generating strategy. We describe the detail of these modification and flow
of D-CS bellow.

3.1 Short-Range Searching strategy

It is known that adjusting stepsize promote precision of searching [1]. Here, we
suppose that the effect as same by shorting step length. The solutions with high
fitness value employ this strategy, we expect that good candidate solutions find
better solution by searching near the good solution. In this paper, we regard the
top 20% solutions in the population as good solutions. The new solutions are
generated from the selected solutions by Eq. (3);

xnew = xcurrent ⊕ α · cos(θ) · rnd/100, (0 ≤ θ ≤ π) (3)

where rnd ∈ [0, 1] is a random value. Equation (3) is designed so that the new
solution is slightly different (moved) from the existing solutions. We use the value
“100” in order to promote local search. Hence, the new solutions with Eq. (3) do
not employed the Lévy distribution and only search near the location of them.
Note that for the not-selected solutions, new solutions are generated with the
original mechanism (Eq. (1)).

3.2 Local Solution Comparison Strategy

In CS, the solution are replaced the current solution with new solution when the
new solution are generated. CS may delete the better fitness solutions because
CS must delete the current solution. CS mechanism decreases a diversify of the
solutions because the new solutions generated in the near of the optimum solu-
tion In other words, CS attempts to find the better solutions by exploring around
current search space but not the whole search space. In contrast, our modifica-
tion attempts to preserve where the solutions are located by comparing each
generated solution with the current ones. This modification attempts not only
to preserve the good solutions at the current time since it does not delete a solu-
tion with comparison of whole solutions (the inserted new solution is inherited
from a specific location of the existing one).

576 Y. Umenai et al.

3.3 Concurrent Solution Generating Strategy

In order to more effectively explore the search space near the preserved good
solutions, we generate n solutions from all current solution in 1 generation, where
n is population size. That is, each current solution is used to generate its own
new solution for each generation. Note that CS mechanism generates one new
solution based on the randomly-selected current solution for each generation.
This modification increases an opportunity of exploring the search space.

3.4 Flow of D-CS

We described the flow of D-CS in detail as follows. n, Pa and G indicate the
population size, the deletion probability and iteration respectively.

Step1: Initialize
The n number of solutions are generated in the search space and their fitness
are calculated.

Step2: Solution Generation
The top of X% solutions with high fitness value generate their new solutions
by Eq. (3), while the other solutions by Eq. (1). After all new solutions are
generated, their fitness are calculated.

Step3: Solution Comparison
Then we compared new solutions with current solutions, we preserve the
better solutions. In other words, the current solutions remain their place
when new solutions are worse than current solutions.

Step4: Solution Deletion
All solutions are deleted with Pa. If high fitness value solutions are deleted,
generate new solutions with Short-range Searching strategy. The others are
deleted as same and generate new solutions by using Lévy flight. Then we
compare the solutions same as Step3.

Step5: Ranking Solutions
All solutions are ranked to find the current best solution, and the current
best one is carried over to the next generation.

Step6: Judge the Completeness
G is increased by 1 and return to Step2 when G is less than max iteration.

4 Experiment

Here, we apply D-CS to dynamic environment with randomness. We introduce
the modification into the function employed in [7] in order to introduce random-
ness into this function.

4.1 Problem

We employ the function employed in [7]. In this problem, the optimal solution
locates on the circumference of circle decided with parameters.

Strategies to Improve Cuckoo Search Toward Adapting Randomly 577

Fig. 1. Function landscape of f2(x1, x2, k)

f1(x1, x2, k) =

1 −
N∑

n=0

[
cos(βk + 2nπ

N)
2

exp
{

−1
2

(
(x1 − r cos(2nπ

N))2

402
+

(x2 − r sin(2nπ
N))2

402

)}]
(4)

Equation (4) shows the definition of this function, where x1 and x2 are variables,
r decide the radius of the circle, β controls speed of function change, and N indi-
cates the number of negative peaks. When the β is set to large value, the value
of function f1(x1, x2, k) changes largely. If N is set 10, the number of local and
global optimal solutions is 10. Figure 1 shows the outline of this function when
r = 350, N = 10. This function has the N negative peaks. In this function,
the position of optimum solution can be changeable depending on the parame-
ter k. The parameter k set randomly in every generation in order to introduce
randomness into this function. In other words, optimum solution locate on the
predetermined peaks randomly. If the parameter k increase like as k = k+1, the
location of negative peaks are moving counterclockwise on circumference of this
circle. When β is set 0.01, the position of the global optimum changes cyclically
with the period of about 300 generations.

4.2 Experimental Settings

• Comparison.
We compare CS (described in Sect. 2) with D-CS. In order to fairly compare
all methods in terms of the generating solution procedure, we slightly modify
CS. Specifically, as explained in Sect. 2, CS generates one solution for each
generation; while D-CS generates n solutions based on all current n solutions
for each generation. Hence, in order to have the same opportunity of the
generating solution procedure, we modify CS so that it generates n solutions

578 Y. Umenai et al.

for each generation. The difference between CS and D-CS is the selecting
solution. In D-CS, all solution are selected and moving in one generation. On
the other hands, in CS, the solution may not be selected and moving in one
generation (the one solution may be selected twice or more).

• Evaluation criterion.
In this experiment, we evaluate utility of CS and D-CS by Eq. (5). In Eq. (5),
Foptimum indicates the fitness of the global optimum and Fbest indicates
the fitness of the best solution in the population. When difference between
Foptimum and Fbest is lower, the solution is evaluated as better solution.

ΔFitness = |Foptimum − Fbest| (5)

We experienced both method on this environment (indicates Eq. (4)) in 30
trials each. Here, comparing CS with D-CS in terms of transition of ΔFitness
through 1seed and average of 30 trials.

• Parameter settings.
For the parameter settings of CS and D-CS, we use the same parameter
settings [1] as follows; λ = 1.5 and Pa = 0.25. For the population size n,
we use values n = 15, 50, 100 in order to investigate the effect of popula-
tion size on searching performance. In Eq. (4), we use the parameter setting:
Domainmin = −800,Domainmax = 800, N = 10. We set the parameter
r = 350 and β = 0.01 Generationmax = 5000. Here, Generationmax repre-
sents the maximum iteration.

5 Results and Discussion

Figures 2 and 3 show the transition of ΔFitness from 1 seed and average of 30
trials. The vertical axis indicates the ΔFitness. The horizontal axis indicates
the iteration, where iteration means cycle of algorithm: the parameter G. The
gray straight lines indicate CS and the black dotted lines indicate D-CS. From
Fig. 2, we can say that D-CS keeps lower ΔFitness than CS through iterations
in all population size n. CS cannot find and hold the negative peaks since CS
cannot get the lower value of ΔFitness. The lager population size is, the per-
formance of D-CS better. Especially, when population size n is 100, D-CS keeps
lower ΔFitness than 0.1. Figure 3 shows that D-CS keeps low ΔFitness when
population size n is 15. Although CS also decline the ΔFitness as population
size increases, the ΔFitness of D-CS better than CS. From these result, D-CS
has the hold and find capabilities.

Next, we analyze and discuss the find and hold capabilities of D-CS. First, we
investigate why D-CS keeps lower ΔFitness. D-CS has the better performance to
get the optimum solution than CS from Figs. 2 and 3. We analyze this results in
terms of location of candidate solutions. Figure 4 shows the location of candidate
solutions and negative peaks of CS and D-CS when k = 5000 and n = 15.
In these figure, vertical axis and horizontal axis indicate the variables (x1, x2)
in (4). The circles indicate the candidate solutions and the diamonds indicate
the location of the negative peaks. From Fig. 4a, we can see that candidate

Strategies to Improve Cuckoo Search Toward Adapting Randomly 579

(a) n = 15 (b) n = 50 (c) n = 100

Fig. 2. The transition of ΔFitness (1 seed)

(a) n = 15 (b) n = 50 (c) n = 100

Fig. 3. The transition of ΔFitness (Average of 30 trials)

(a) CS (b) D-CS

Fig. 4. The location of candidate solutions and negative peaks

580 Y. Umenai et al.

Fig. 5. The average of ΔFitness of combinations of strategies

solutions do not locate near the location of optimum. We can see that most of
the candidate solutions locate lower left from Fig. 4a. This distribution of the
candidate solutions prevent from finding the optimum on dynamic environment
with randomness. On the other hand, not only candidate solutions locate the
near the optimum solution, D-CS also hold the most of the locations of negative
peaks. If the candidate solutions hold the negative peaks, the candidate solutions
find the global optima quickly when the global optima move randomly. Thus hold
capability is effective for random change (not sequential change).

Then, we investigate what strategy or combination of strategies are effective
for this environment. Figure 5 shows the average ΔFitness through iterations on
each combinations of strategies. The horizontal axis indicates the combinations
of strategies, where (i), (ii) and (iii) indicate the Short-range Searching strategy,
Local Solution Comparison strategy and Concurrent Solution Generating strategy
respectively. The vertical axis indicates the average of ΔFitness (average of 30
trials) through iterations. The lower value of average of ΔFitness indicates that
the combination of strategy contribute to keep the lower ΔFitness. From Fig. 5,
we can see the combination of (ii) and (iii) contribute to keep lower ΔFitness.
Although candidate solutions tend to hold the better solutions, this mechanism
prevent from candidate solutions searching globally when Local Solution Com-
parison strategy is introduced, While, Concurrent Solution Generating strategy
helps to search globally, however, do not have the mechanism to hold the good
solutions. Thus, the combination of both strategies mainly contribute to improve
the performance of D-CS.

Here, we focus on the difference of combination of (ii) + (iii) and (i) + (ii) + (iii)
in Fig. 5. The average of ΔFitness of both combinations different slightly: the
combination of (i) + (ii) + (iii) is better than the combination of (ii) + (iii). We
verified the significant difference of both combinations. Figure 6 shows the aver-

Strategies to Improve Cuckoo Search Toward Adapting Randomly 581

Fig. 6. The average of ΔFitness of both combinations on 30 trials

age of ΔFitness of both combination on 30 trials. The vertical axis indicate the
average of ΔFitness and the horizontal axis indicate the each trial. From Fig. 6,
shows the performance of the combination of (i) + (ii) + (iii) is better than com-
bination of (ii) + (iii). In addition, we conduct a t-test (one side test), which guar-
anteed the significant difference between both strategies (t(29) = 8.139, p < .01).
The candidate solutions are searching with short step when Short-range Search-
ing strategy with elite is introduced. This mechanism promote searching near the
location of optimum solutions. Hence, the combination of (i) + (ii) + (iii) is the
best combination of strategies from these combinations on this environment.

6 Conclusion

In this paper, we investigated the capability of D-CS on dynamic environments
with randomness. D-CS is introduced three strategies into CS for dynamic
environment. We analyzed the effective strategies toward the randomness as
dynamism. We employed the dynamic environment, the optimal solution moves
randomly on predetermined locations on the circle in order to verify the find
and hold capabilities of D-CS. This environment includes the two dynamism:
cyclically and randomness since this environment requires to find and hold the
locations of negative peaks. We compared the D-CS with CS on this environment
with various population size: n = 15, 50, 100 in order to investigate the effect of
population size on searching performance. From the experimental results, it is
clear that D-CS has find and hold capabilities on dynamic environment with
randomness. Moreover, D-CS has these capabilities in case of a small popula-
tion size (n = 15). Needless to say, the performance of D-CS is better with
large population size. We carried out t-test to combinations of three strategies.
This result suggests the most effective strategy is combinations of Local Solution
Comparison strategy and Concurrent Solution Generating strategy. Introducing

582 Y. Umenai et al.

these strategies into CS (possibly any other algorithm) can improve the perfor-
mance on dynamic environment with randomness. Furthermore, adding more
Short-range Searching strategy improve the performance more.

For future work, we should apply D-CS to different types of dynamic environ-
ment where is not cyclically and high dimensional problems in order to explore
the capability of this. Furthermore, we should investigate how the strategies
work effectively on the dynamisms, and proposed more effective other approach
for dynamic environment with previous results.

References

1. Jamil, M., Zepernick, H.J.: 3 levy flights and global optimization. In: Swarm Intel-
ligence and Bio-Inspired Computation: Theory and Applications, p. 49 (2013)

2. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3),
459–471 (2007)

3. Kaveh, A., Bakhshpoori, T.: Optimum design of steel frames using cuckoo search
algorithm with lévy flights. Struct. Design Tall Spec. Build. 22(13), 1023–1036
(2013)

4. Ong, P.: Adaptive cuckoo search algorithm for unconstrained optimization. Sci.
World J. 2014, 8 (2014)

5. Ouaarab, A., Ahiod, B., Yang, X.S.: Discrete cuckoo search algorithm for the
travelling salesman problem. Neural Comput. Appl. 24(7–8), 1659–1669 (2014)

6. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell.
1(1), 33–57 (2007)

7. Takano, R., Harada, T., Sato, H., Takadama, K.: Artificial bee colony algo-
rithm based on local information sharing in dynamic environment. In: Handa,
H., Ishibuchi, H., Ong, Y.-S., Tan, K.C. (eds.) Proceedings of the 18th Asia Pacific
Symposium on Intelligent and Evolutionary Systems. PALO, vol. 1, pp. 627–641.
Springer, Cham (2015). doi:10.1007/978-3-319-13359-1 48

8. Tein, L.H., Ramli, R.: Recent advancements of nurse scheduling models and a
potential path. In: Proceedings of the 6th IMT-GT Conference on Mathematics,
Statistics and its Applications (ICMSA 2010), pp. 395–409 (2010)

9. Umenai, Y., Uwano, F., Tajima, Y., Nakata, M., Sato, H., Takadama, K.: A mod-
ified cuckoo search algorithm for dynamic optimization problems. In: 2016 IEEE
Congress on Evolutionary Computation (CEC), pp. 1757–1764. IEEE (2016)

10. Xin-She, Y., Suash, D.: Cuckoo search via levy flight. In: World Congress on Nature
and Biologically Inspired Computing, NaBIC 2009, pp. 210–214 (2009)

11. Yang, X.S., Deb, S.: Cuckoo search: recent advances and applications. Neural Com-
put. Appl. 24(1), 169–174 (2014)

12. Yang, X.S., Karamanoglu, M.: Swarm intelligence and bio-inspired computation:
an overview. In: Swarm Intelligence and Bio-inspired Computation-Tehory and
Applications, pp. 3–23. Elsevier (2013)

13. Zaw, M.M., Mon, E.E.: Web document clustering using cuckoo search clustering
algorithm based on levy flight. Int. J. Innov. Appl. Stud. 4(1), 182–188 (2013)

http://dx.doi.org/10.1007/978-3-319-13359-1_48

Firefly Algorithm

Firefly Algorithm Optimized Particle Filter
for Relative Navigation of Non-cooperative

Target

Dali Zhang1(B), Chao Zhong2, Changhong Wang1, Haowei Guan3,
and Hongwei Xia1(B)

1 Harbin Institute of Technology, Harbin 150001, People’s Republic of China
15b904016@hit.edu.cn, simonxhw@163.com

2 Shanghai Institute of Spaceflight Control Technology,
Shanghai 201109, People’s Republic of China

zhongchao0327@163.com
3 Shanghai Institute of Satellite Engineering,
Shanghai 201109, People’s Republic of China

davyfeng@sina.com

Abstract. Particle filter (PF) has been proved to be an effective tool
in solving relative navigation problems. However, the sample impover-
ishment problem caused by resampling is the main disadvantage of PF,
which strongly affect the accuracy of navigation. To solve this prob-
lem, an improved PF based on firefly algorithm (FA) is proposed. Com-
bine with the operation mechanism of PF, the optimization mode of FA
is revised, and a new update formula of attractiveness is designed. By
means of firefly group’s mechanism of survival of the fittest and individual
firefly’s attraction and movement behaviors, this algorithm enables the
particles to move toward the high likelihood region. Thus, the number of
meaningful particles can be increased, and the particles can approximate
the true state of the target more accurately. Simulation results show that
the improved algorithm improves the navigation accuracy and reduces
the quantity of the particles required by the prediction of state value.

Keywords: Firefly algorithm · Particle filter · Relative navigation

1 Introduction

Relative navigation of spacecraft is the foundation of autonomous rendezvous,
on-orbit servicing and formation flying missions, which affect the accuracy of
control and guidance directly [1]. At present, research on relative navigation of
cooperative target is continuing to mature, while tracking non-cooperative target
like inactive satellites and space debris is the subject of active research [2].

Classical method is based on Extended Kalman Filter (EKF), which is the
best solution under the assumption of a linear system and Gaussian noise [3].
Using the feedback information from space based sensor, the true relative state
can be estimated precisely. However, the movement of the non-cooperation target
c© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 585–592, 2017.
DOI: 10.1007/978-3-319-61824-1 63

586 D. Zhang et al.

cannot be described by a linear model in the actual situation, and the measure-
ment noise usually doesn’t satisfy the Gaussian distribution. Given this, the
Unscented Kalman Filter (UKF) was present to deal with nonlinear filtering
problem, but still lack of adaptability to non-Gaussian noise [4].

Particle filter is considered to be one of the most powerful tools to estimate
Bayesain models with non-linear and non-Gaussian noise [5]. Based on the Monte
Carlo method, it approximates the posterior density of hidden state with par-
ticles, and no assumption on the functional form of the posterior density [6].
However, the standard particle filter using resampling strategy, which lead to
the sample impoverishment problem [7].

What is noteworthy is that, more and more researchers have started to use
intelligent optimization algorithm to prevent the sample impoverishment prob-
lem [8]. Oshman proposed a Genetic Algorithm (GA) embedded quaternion par-
ticle filter in attitude estimation from vector observations [9]. Saini improved the
particle filter with particle swarm optimization (PSO) for articulated 3D human
motion tracking [10]. Recent years, many new modern intelligence optimization
algorithms are being developed, and the Firefly Algorithm (FA) which is inspired
by the idealized behavior of the flashing characteristics of fireflies is one of the
best [11]. In this paper, FA is implemented to improve the resampling process of
PF by ensuring the effectiveness of the particle sets. Meanwhile, the navigation
performance of the proposed algorithm is studied comparatively.

The remainder of this paper is organized as follows: The process and mea-
surement model of relative navigation is presented in Sect. 2. In Sect. 3, the
shortcoming of PF is being analysis. Section 4 describes the firefly algorithm
and proposes an improved method. Section 5 presents simulation results and
subsequently concluded in Sect. 6.

2 Relative Navigation

2.1 Process Model

With reference to Fig. 1(a), suppose there is a chaser vehicle C in a circular orbit
of angular velocity n, and T is the non-cooperation target vehicle. Attached
to the vehicle center of mass o is a right-handed curvilinear coordinate frame
o − xyz with the x axis along the geocentric radius vector direction pointing to
the satellite, the y axis pointing at chaser velocity vector, while z axis completing
the right-handed frame.

In this paper, the distance between C and T is so small that the difference
between local vertical curvilinear (LV C) frame and the local vertical/local hor-
izontal (LV LH) can be ignored, less than the sensor noise [12]. Therefore, this
paper will not distinguish the two frames. In this frame, the motion of T located
at a station (x, y, z), where x, y, and z are much smaller than the target orbit
radius, is governed by the Clohessy-Wiltshire equations [13]. The discrete state
form can be written as Eq. 1:

X(k) = ΦX(k − 1) + ΓQ(k) (1)

FA Optimized PF for Relative Navigation of Non-cooperative Target 587

Fig. 1. Process and measurement model

where n is the angular velocity of C,Φ is the state transition matrix, Q(k) is the
process noise which is assumed to be Gaussian distributed. The concrete form
of Φ is:

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎣

4 − 3 cos nt 0 0 sin nt/n 2(1 − cos nt)/n 0
6(sin nt − nt) 1 0 2(cos nt − 1) 4 sin nt/n − 3t 0

0 0 cos nt 0 0 sin nt/nt
3n sin nt 0 0 cos nt 2 sin nt 0

6n(cos nt − 1) 0 0 −2 sin nt 4 cos nt − 3 0
0 0 −n sin nt 0 0 cos nt

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

The corresponding 6 × 6 discrete process noise matrix Γ can be shown to be

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
x(T 3/3) 0 0 σ2

x(T 2/2) 0 0
0 σ2

y(T
3/3) 0 0 σ2

y(T
2/2) 0

0 0 σ2
z(T

3/3) 0 0 σ2
z(T

2/2)
0 0 0 σ2

xT 0 0
0 0 0 0 σ2

yT 0
0 0 0 0 0 σ2

zT

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

2.2 Measurement Model

As is shown in Fig. 1(b), the Azimuth (A), Elevating (E) angle and relative
distance (ρ) between C and T are measured by optical angle measuring camera
and laser range finder. The measurement model can be written as Eq. 4:

H(k) =

⎡
⎣

A
E
ρ

⎤
⎦ =

⎡
⎣

arctan(x/y)
arcsin(z/

√
x2 + y2 + z2)√

x2 + y2 + z2

⎤
⎦ (4)

where H(k) is the observation matrix at t = k. In general, the standard obser-
vation equation can be written as:

Z(k) = H(k)X(k) + V (k) (5)

588 D. Zhang et al.

where V (k) is glint noise. It arises due to the interference between reflections
from the target surface and induces angular errors in line-of-sight measurement,
particularly for radar seekers [14]. The mixture distribution is represented as:

p(x) = (1 − ε)pG + εpL (6)

where ε is the glint probability. pG ∼ N(0, σ2) is zero-mean Gaussian distribu-
tion, and pL ∼ Laplace(0, b), b > 0 is the scaling parameter.

3 Particle Filter Analysis

Particle filter (PF) is based on the Monte-Carlo simulation technique. The key
idea of PF is using a cloud of particles to represent the system uncertainty
distributions [15]. The steps of standard PF contain importance sampling, weight
updating and resampling. {Xi

0}Ni=1 represents the set of N particles which are
sampling based on the prior probability distribution p(X0) at the beginning.
According to the importance sampling density function q(Xi

k|Xi
k−1), new particle

sets {Xi
0:k}Ni=1 are being established at time k. The particle weight updating

formula can be calculated as Eq. 7 [15]:

ωi
k = ωi

k−1

p(Yk|Xi
k)p(Xi

k|Xi
k−1)

q(Xi
k|Xi

k−1)
(7)

After resampling, the quantity of meaningful particles was reduced owing
to the high weighted particles’ over-replication, which leads to the information
capacity of new particle set seriously reduced. Although resampling can eliminate
the smaller weighted particles’ impact, it introduces a new negative issue, which
is known as sample impoverishment.

4 Firefly Algorithm Optimized Particle Filter

4.1 Firefly Algorithm

The Firefly Algorithm (FA) mimics the idealized behaviour of the flashing char-
acteristics of fireflies: points in the searching space are abstract as fireflies indi-
vidual. For simplicity, the attract and moving process is simulated by the opti-
mization process, and the optimization object is abstract to the merits of the
individual position. These flashing characteristics can be idealized by following
three rules:

(1) All fireflies are unisex so that one firefly will be attracted to other fireflies
regardless of their sex. (2) Attractiveness is proportional to their brightness. The
attractiveness is proportional to the brightness and they both decrease as their
distance increases. If there is no brighter one than a particular firefly, it will
move randomly. (3) The brightness or light intensity of a firefly is affected or
determined by the land-scape of the objective function.

FA Optimized PF for Relative Navigation of Non-cooperative Target 589

There are two important issues in FA: the variation of light intensity I and
the attractiveness β. In general, the brightness I at a particular location x can
be chosen as I(x) ∝ f(x), and β is vary with the distance rij between firefly
i and j. In the implementation, the actual form of attractiveness function can
be any monotonically decreasing functions. As it is often faster to calculate
1/(1 + r2) than an exponential function, the attractiveness can be defined as

β = β0/(1 + γr2ij) (8)

where β0 is the original attractiveness, γ is the light absorption coefficient. For
many cases, the parameter β0 = 1, and γ = 1.

The movement of firefly i attracted to another more attractive firefly j is
determined by

Xi = Xi + β(Xj − Xi) + αεi (9)

where the third term is randomization with α being the randomization parame-
ter, and εi is a vector of random numbers drawn form a uniform distribution [16].

4.2 Improved Particle Filter Based on FA

This paper adopts the FA algorithm to mitigate the particle impoverishment. It
is worth noting that FA algorithm have a lot in common with PF. The former
seeking the optimal value by updating the light intensity and position of fire-
fly, while the latter approximating the true posterior probability density of the
sample by updating the weights and location of particles.

The key idea of the improvement is using the attractiveness and position
updating formula of FA to simulate the movement process of particles with
different weights. Schematically, improved Particle Filter based on Firefly Algo-
rithm (FA-PF) can be summarised as the pseudo code.

5 Experiments and Discussions

In this section, the simulations based on the relative navigation scenario are
presented to illustrate the effectiveness of the proposed improving estimation
method. The chaser is assumed to be flying at a 780 km altitude. Tracking
filter starts at r = [−510, 0, 1], v = [0, 0, 0], while the real initial value is
r = [−520, 10, 20], v = [−0.0324,−0.02, 0.02]. According to a practical system,
the ranging accuracy is set to 0.6 m (3σ) and the standard deviation of angle
measurement is 0.3◦(3σ). The angle measurements are corrupted by glint noise.
With the glint probability ε = 0.05, the standard deviation of ranging and angle
measurement is 15m and 0.2◦, respectively. To demonstrate the ability of FA-
based particle filter algorithm in relative navigation, the results are compared
with EKF, UKF and PF of 1000 s with 200 particles.

Table 1 shows the Root-Mean-Square Error (RMSE) and simulation time of
four kinds of algorithms. Under the effect of glint noise, PF and FA-PF show
superior performance compared with EKF and UKF. The FA-PF has the highest
precision and it reduced by approximately 39% compared with PF. In addition,
the improved algorithm needs less computing time.

590 D. Zhang et al.

Initialization xi
k ∼ q(xi

k|xi
k−1, yk) = p(xi

k|xi
k−1)

for i = 1 to N do � calculate the state and observe value
X(k) = ΦX(k − 1) + Q(k)
Z = H(x) + V (k)
Ii = ωi

k = p(Zk|Xi
k)

end for
for i = 1 all nfireflies do � Firefly Algorithm module

for j = 1 : i all nfireflies do
Light intensity Ii at xi is determined by f(xi)
if Ij > Ii then

Move firefly i towards j in all d dimensions
end if
Evaluate new solutions and update light intensity

end for
end for
if Neff < Nthr then � Neff = 1/

∑N
i=1(ω

i
k)2

Conducting resampling process
end if
Obtain the optimized particle weights ω = I
Normalization ωi

k = ωi
k/
∑N

i=1 ωi
k

State output x̂k =
∑N

i=1 ωi
kxi

k

Table 1. RMSE and required time of different algorithms

Algorithm RMSE (m) Time (sec)

EKF 11.6100 0.1006

UKF 6.4285 0.7806

PF 2.6889 6.6527

FA-PF 1.6470 2.6947

Figures 2 and 3 show the results of different algorithms within 100 steps. It
demonstrate that FA-PF has faster convergence speed and better estimation per-
formance than other algorithms. Figure 4 presents the distribution of particles

Fig. 2. Position estimation error comparisons of different algorithms

FA Optimized PF for Relative Navigation of Non-cooperative Target 591

Fig. 3. Velocity estimation error comparisons of different algorithms

Fig. 4. Comparison of the number of meaningful particles

before state output. After simulation, the number of meaningful particles of FA-
PF remains at a higher level than PF, and does not have large fluctuations. It
is obvious that the firefly algorithm can restrain the problem of particle impov-
erishment effectively.

6 Conclusions

This paper proposes an improved particle filter based on firefly algorithm to
improve the accuracy of relative navigation. In this research, the process and
measurements model of relative navigation problem is given. Disadvantages of
PF are being analysed, and pointing out that the resampling strategy caused
the particle impoverishment. The firefly algorithm is introduced to solve this
problem, and the update mechanism of fluorescence intensity and attractive-
ness is being improved. In the improved algorithm, particles are considered as
fireflies and the fireflies exchange information frequently based on the current
observational information during the movement. Therefore, meaningful parti-
cles are increased and the particles approximate the true state more accurately.
Experimental results demonstrate that the FA-PF outperforms the standard PF
and other classical methods, and restrain the problem of particle impoverishment
phenomenon effectively. In general, the FA-PF improved the precision of relative
navigation significantly, and there are of great value of engineering application.

592 D. Zhang et al.

References

1. Wu, D., Wang, Z.: Strapdown inertial navigation system algorithms based on geo-
metric algebra. Adv. Appl. Clifford Algebras 22(4), 1151–1167 (2012)

2. Gaias, G., D’Amico, S., Ardaens, J.S.: Angles-only navigation to a noncooperative
satellite using relative orbital elements. J. Guid. Control Dyn. 37(2), 439–451
(2014)

3. Grewal, M.S., Henderson, V.D., Miyasako, R.S.: Application of Kalman filtering to
the calibration and alignment of inertial navigation systems. IEEE Trans. Autom.
Control 1(1), 65–72 (1991)

4. Tang, X., Yan, J., Zhong, D.: Square-root sigma-point Kalman filtering for space-
craft relative navigation. Acta Astronaut. 66(56), 704–713 (2010)

5. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal
Process. 50(2), 174–188 (2002)

6. Okuma, K., Taleghani, A., Freitas, N., Little, J.J., Lowe, D.G.: A boosted par-
ticle filter: multitarget detection and tracking. In: Pajdla, T., Matas, J. (eds.)
ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24670-1 3

7. Breitenstein, M.D., Koller-Meier, E., Reichlin, F., Leibe, B.: Robust tracking-by-
detection using a detector confidence particle filter. In: IEEE International Con-
ference on Computer Vision, pp. 1515–1522 (2009)

8. Park, S., Hwang, J.P., Kim, E., Kang, H.J.: A new evolutionary particle filter
for the prevention of sample impoverishment. IEEE Trans. Evol. Comput. 13(4),
801–809 (2009)

9. Oshman, A., Carmi, Y.: Attitude estimation from vector observations using
a genetic-algorithm-embedded quaternion particle filter. J. Guid. Control Dyn.
29(4), 879–891 (2006)

10. Saini, S., Rambli, D.R., Sulaiman, S.B., Zakaria, M.N.B.: Hierarchical approach
for articulated 3D human motion tracking using PF-based PSO. WIT Trans. Inf.
Commun. Technol. 59, 789–795 (2014)

11. Yang, X.S.: Firefly algorithm, stochastic test functions, design optimisation. Int.
J. Bio-Inspired Comput. 2(2), 78–84(7) (2010)

12. Li, J., Baoyin, H., Vadali, S.R.: Autonomous rendezvous architecture design for
lunar lander. J. Spacecr. Rockets 52(3), 1–10 (2015)

13. Jezewski, D.J., Donaldson, J.D.: An analytic approach to optimal rendezvous using
Clohessy-Wiltshire equations. J. Astronaut. Sci. 27(3), 293–310 (1979)

14. Siouris, G.M.: Missile Guidance and Control Systems. Springer, Berlin (2004).
57(6), B32

15. Li, H.W., Wang, J.: Particle filter for manoeuvring target tracking via passive radar
measurements with glint noise. IET Radar Sonar Navig. 6(3), 180–189 (2012)

16. Gao, M.L., He, X.H., Luo, D.S., Jiang, J.: Object tracking using firefly algorithm.
IET Comput. Vis. 7(4), 227–237 (2013)

http://dx.doi.org/10.1007/978-3-540-24670-1_3
http://dx.doi.org/10.1007/978-3-540-24670-1_3

An Improved Discrete Firefly Algorithm Used
for Traveling Salesman Problem

Liu Jie, Lin Teng(&), and Shoulin Yin

Software College, Shenyang Normal University, No. 253, HuangHe Bei Street,
HuangGu District, Shenyang 110034, China

nan127@sohu.com, 1532554069@qq.com, 352720214@qq.com

Abstract. In this paper, we propose a novel method based on discrete firefly
algorithm for traveling salesman problem. We redefine the distance of firefly
algorithm by introducing swap operator and swap sequence to avoid algorithm
easily falling into local solution and accelerate convergence speed. In addition,
we adopt dynamic mechanism based on neighborhood search algorithm. Finally,
the comparison experiment results show that the novel algorithm can search
perfect solution within a short time, and greatly improve the effectiveness of
solving the traveling salesman problem.

Keywords: Firefly algorithm � Traveling salesman problem � Swap operator �
Swap sequence � Neighborhood search algorithm

1 Introduction

Traveling salesman problem (TSP) [1] is a typical optimization problem in the area of
operational research. It belongs to Non-deterministic Polynomial (NP) problem and is
used in many areas such as PCB drilling, goods delivery routes and workshop
scheduling. Although there are some precise algorithms which can be used to solve the
problem, the principle of precise algorithms is complex. For small size TSP, Branch
and bound method, greedy method and cutting plane method are often used to solve
these problems. But for big size TSP, it is difficult to use above methods. Therefore, the
domestic and foreign scholars have been trying to seek a highly efficient and stable
algorithm for solving this complex problem. Firefly algorithm (FA) [2] is one of
heuristic search algorithms based on swarm intelligence, which was proposed by
YANG in 2010. FA [3] is based on the self-organization of the swarm simulation
model with the advantages of less setting parameters, strong robustness, and has been
applied in many fields. Li et al. [4] showed that firefly algorithm was introduced to
solve this problem, and a series of discrete operations were conducted to adapt to it.
Meng et al. [5] proposed discrete artificial bee colony algorithm for TSP. Zhang [6]
presented a novel firefly algorithm for solving the nonlinear equations problem.

The above methods almost are used for solving continuous domain optimization
problems. However, FA is relatively few used in the aspect of discrete domain appli-
cation. To improve the performance of TSP solution, we propose improved discrete FA
through redefining distance of firefly algorithm by introducing swap operator and swap
sequence which better coordinates and balances the search process of FA algorithm.

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 593–600, 2017.
DOI: 10.1007/978-3-319-61824-1_64

To facilitate the description, this paper also gives some definitions. We present a new
discrete FA for traveling salesman problem. This new scheme takes neighborhood
search algorithm into consideration. Finally, we conduct some experiments to verify its
performance. The results show that the new algorithm has a good effect on solving TSP.

2 The Firefly Algorithm

Fireflies emit fluorescence signal in the nature. From the point of biology view, its role
is to attract the opposite sex and get copulation, reproduction chance, sometimes for
predation. Firefly uses fluorescence signal within a certain range to attract companion
in FA, eventually it makes most fireflies gather in one or more locations, and realize the
position optimization.

Fireflies attract accompanies mainly depending on fluorescence intensity and
attraction degree. Fluorescence intensity depends on the target value of its own loca-
tion. The better target value is, the high fluorescence intensity is. Attraction degree has
closely relationship with fluorescence intensity. Brighter fireflies have higher attraction
intensity, which can attract weaker fireflies moving towards to it. In addition, it should
take physical properties into consideration in FA. Fluorescence intensity and attraction
degree are in inverse proportion of the distance among fireflies. Namely, fluorescence
intensity and attraction degree will decrease with the increase of distance.

Fireflies mainly obey the following rules:

• firefly moving direction is determined by the fluorescence intensity, it always move
towards to the brighter fireflies.

• the firefly moving distance is determined by the attraction degree.

This paper defines firefly fluorescence intensity and attraction degree as follows.

Definition 1. I: Fluorescent brightness of fireflies.

I ¼ I0e
�crij : ð1Þ

Where rij is the distance between firefly i and j. c is light intensity absorption
coefficient, it denotes that fluorescence gradually decreases with the increase of dis-
tance, it can be set as a constant. I0 is fluorescent brightness of firefly when r ¼ 0. I0 not
only is its own fluorescence intensity, but is the maximum fluorescence intensity,
which has relationship with function value.

Definition 2. bij: Attraction degree of fireflies.

bij ¼ b0e
�cr2ij : ð2Þ

Where b0 (maximum attraction degree) is attraction degree of firefly when r ¼ 0.
According to Definition 1, every firefly uses roulette method to move towards to the
individual with higher fluorescence intensity. On the basis of Definition 2, each firefly
can determine the movement distance. By constantly updating its location, it achieves
the purpose of optimization.

594 L. Jie et al.

Definition 3. Location updating formula of firefly i attracted by firefly j.

xi ¼ xi þ bðxj � xiÞþ aðrand � 0:5Þ: ð3Þ

This formula is composed of three parts. First part, xi denotes current position of
firefly i. Second part, bðxj � xiÞ denotes the distance firefly i moving to j. Third part,
there is disturbance mechanism when location updating to avoid fireflies prematurely
falling into local optimal solution. a 2 ½0; 1� is step length factor. rand 2 ½0; 1� is
random factor and obeys uniform distribution.

3 The Improved Firefly Algorithm for TSP

When we solve TSP by FA, we should know distance and light intensity absorption
coefficient. Then it updates location through formula (1, 2, 3) to realize optimizing. We
apply serial number coding method into FA to solve TSP in this paper. Because TSP is
a combinatorial optimization problem, we should first definite discrete variable dis-
tance, then we present discrete variable location updating formula and its disturbance
mechanism. Finally, we give the solution step based on discrete firefly algorithm for
solving TSP.

In this section, we introduce the following new definitions.

Definition 4. Assuming that solution sequence of n nodes TSP is S ¼ ðaiÞ, swap
operator S0ði1; i2Þ is the point ai1 and ai2 in swap solution S. So S0 ¼ Sþ S0ði1; i2Þ is the
new solution after operation with swap operator.

Definition 5. Ordered queue of one or multiple swap operators is called a swap
sequence. S0 ¼ ðSO1 ; SO2 ; . . .; SOnÞ; SO1 ; SO2 ; . . .; SOn is swap operator.

Definition 6. Different swap sequences act on the sane solution that may generate the
common new solution. Therefore, all the same effect swap sequences set is called
equivalent set of swap sequence.

Definition 7. In the equivalent set of swap sequence, the swap sequence with mini-
mum swap operators is the basic swap sequence in equivalent set.

Space distance between fireflies can be calculated by Euclidean distance when
solving optimization problems of continuous variables. However, when solving TSP,
solution is discrete variable, so it cannot use Euclidean distance. In this paper, we
definite space distance:

r ¼ A=N: ð4Þ

Where A is swap operator number of two fireflies in solution vector basic swap
sequence. N is the cities number. After getting r, fluorescent brightness of firefly can be
calculated by formula (1). Therefore, each firefly can move towards to other individuals
with higher fluorescent brightness based on roulette wheel method.

An Improved Discrete Firefly Algorithm Used for TSP 595

Firefly movement distance can be calculated according to attraction degree when
solving optimization problems of continuous variables. However, when solving TSP,
movement is discrete variable, so we definite the distance between firefly i and j:

bij ¼ rand intð0;AijÞ: ð5Þ

Where rand intð0;AijÞ is random integer. Aij is swap operator number of two
fireflies i and j in solution vector basic swap sequence. bij is random swap operator
number from 0 to Aij. Location updating by formula (6):

xi ¼ xi þ bij: ð6Þ

When solving the TSP, in order to avoid the firefly algorithm falling into local
optimum, this paper defines the disturbance mechanism of discrete variables based on
variable neighborhood search algorithm. It adopts several neighborhood structure
forms to search optimization solution, systematically changes its neighborhood so as to
expand the search scope, enhance the ability to jump out of local optimal.

In this paper, we adopt three neighborhood structures to solve TSP.

a. Insert neighborhood. We randomly select different position x and y in solution
sequence, and insert the city in x into y, as Insertðx; yÞ.

b. Swap neighborhood. We randomly select different position x and y in solution
sequence, and exchange the cities in x and y, as Swapðx; yÞ.

c. 2-opt neighborhood. We use side ði; jÞ and ðiþ 1; jþ 1Þ to replace ði; iþ 1Þ and
ðj; jþ 1Þ. This change will affect the direction of mid-edge ðiþ 1; jÞ.
The detailed process of the proposed discrete firefly algorithm is as follows:

• Step1. Initializing the swarm. Set parameter firefly number m, light intensity
absorption coefficient c, maximum iteration number Tmax.

• Step2. Randomly initializing solution sequence of each firefly. Calculating objec-
tive function Pi and maximum fluorescent brightness I0.

I0 ¼ Pg=Pi: ð7Þ

Where Pg is the current searched optimal solution.
• Step3. According to formula (1), (4), (5), (7), calculating relative brightness I of

firefly and attraction degree bij. So determine the movement direction and distance.
• Step4. According to formula (6), updating position of firefly.
• Step5. Choosing the three neighborhood in variable neighborhood search method

based on a certain probability. Repeat executing n iteration. Selecting position with
optimal objective function as the current position of firefly.

• Step6. According to updated position of firefly, re-compute objective function Pi

and make a comparison with current optimal position Pg. If function is better, then it
updates Pg.

• Step7. Whether the process satisfies termination conditions or not. If YES, then
finish and output results. If NO, return back step3.

596 L. Jie et al.

4 Experiments and Results

4.1 The Effect of Light Intensity Absorption Coefficient c on Firefly
Algorithm

The light intensity absorption coefficient c is the main parameter in firefly algorithm
(FA). We make simulation experiments to analyze the effect of c on performances of
algorithm solution under the MATLAB platform. We adopt different c to conduct
experiments under the other same parameters conditions. Setting maximum iterations
Tmax ¼ 500, number of firefly is m ¼ 50, the three neighborhood in variable neigh-
borhood search method are same: 1=3, algorithm runs 30 times independently. Table 1
records the results with different c.

From Table 1 we can know that when c gradually increases, the solution perfor-
mance is little-changed. When c = 0.01, 0.02, 0.03, 0.04, 0.06, 0.09 and 0.11, FA gets
the best solution, 7.54436 � 103. And c = 0.03, average value is 8.00774 � 103

and standard value 2.07446 � 102 which is the minimum value. But as a whole, when
c = 0.03, FA has a better solving performance, which is the best value for FA. The
effect of different c on FA is not obvious. So this is one of advantages for FA.

4.2 The Comparison Experiment

In order to further verify the feasibility and effectiveness of this paper’s method, we
choose multiple instances in international universal test library for testing, and use
testing results to make a comparison to spanning tree algorithm (STA) [7], Improved
Ant Colony Optimization [8] (IACO).

In the experiment, digit indicates number of cities. “O” shows calculation result of
the index is not given in the comparison literature. Experimental environment is the
same as above. Parameters set as follows: maximum number of iterations
Tmax ¼ 2000; c ¼ 0:03; k1 : k2 : k3 ¼ 2 : 1 : 2, number of firefly m ¼ 20 when city
number is less than 48, otherwise m ¼ 50. The two algorithms run 20 times. Calcu-
lation results are as shown in Table 2.

Table 1. Effect of different c on FA.

r Best
value � 103

Worst
value � 103

Average
value � 103

Standard
deviation � 102

0.01 7.54443 8.48821 8.01094 2.34474
0.03 7.54443 8.48449 8.00774 2.07446
0.05 7.54466 8.58599 8.10785 2.48271
0.07 7.67768 8.68004 8.07167 2.38243
0.09 7.54436 8.59042 8.10332 2.17915
0.11 7.54436 8.69427 8.22529 3.19748
0.13 7.74988 8.78536 8.17088 2.49888
0.15 7.79758 8.86203 8.35733 2.68301

An Improved Discrete Firefly Algorithm Used for TSP 597

From Table 2, STA algorithm gets the known optimal solutions in Berlin52,
Oliver30 and Eil51, which is close to FA. But iteration number of FA has reduced by
98%. What’s more, steps of FA are not complicated. The average value has increased
by 0.6% (Not exceed 0.6%). Compared with IABC algorithm, the best value and
average value is relatively small, and for Bays29, Oliver30 and Dantzig42, the standard
deviation is smaller. For the four instances, the running time of FA has saved by 97.1%,
98.2%, 98.8% and 98.99% respectively.

FA algorithm also can obtain the results closely to known optimal solutions for all
instances. For Oliver30 and Bays29, FA algorithm gets the same results as known
optimal solutions. For Dantzig42, calculation result of FA algorithm has decreased by
19.3% compared with IABC algorithm. Figures 1, 2 and 3 show the experimental
simulation diagram of Oliver30, Dantzig42 and Berlin52.

Table 2. Calculation results.

Instance Calculation index IABC STA FA

Bays29 Best value 30.8788 30.8788 30.8788
Average value 30.8788 30.8788 30.8788
Iteration number 2000 200 200
Running time 5.11 O O

Oliver30 Best value 73.987 73.9875 73.9875
Average value 74.0079 74.0077 74.0075
Iteration number 2000 200 200
Running time 5.36 O O

Dantzig42 Best value 76.1236 76.1149 75.9098
Average value 75.3069 75.3069 75.3069
Iteration number 2000 200 200
Running time 8.95 O O

Berlin52 Best value 7680.77 7554.38 7542.13
Average value 7941.26 7562.81 7573.49
Iteration number 2000 200 200
Running time 10.76 O O

(a) Optimal path (b) Best value evolution curve

Fig. 1. Experimental simulation diagram of Oliver30

598 L. Jie et al.

The average value of FA algorithm is relatively small compared with IABC
algorithm for Oliver30, Dantzig42 and Bays29. IABC algorithm is mainly based on the
STA algorithm and has combined with other operations. When the number of popu-
lation in IABC is equal to that in STA, the running time in IABC is closely to that of
STA at least. Nevertheless, the running time in IACO is relatively long. Therefor, FA
algorithm has the better solution performance in terms of solution time and solution
quality compared with STA and IABC algorithm.

5 Conclusions

This paper proposes a new discrete firefly algorithm for solving TSP problem. It
extends continuous artificial swarm (especially FA) optimization algorithm to discrete
domain. The new algorithm makes some definitions based on swap operator and swap
sequence. It also adopts disturbance strategy based on variable neighborhood search
method to increase search areas and improve the local refinement ability of the algo-
rithm and the optimal speed. The experimental results show that the algorithm can find
relatively satisfactory solution in a short time and improve the efficiency of solving the
TSP. In the future, we would find more effective firefly algorithms to improve optimum
searching method and solve other combinatorial optimization problems.

(a) Optimal path (b) Best value evolution curve

Fig. 2. Experimental simulation diagram of Dantzig42

(a) Optimal path (b) Best value evolution curve

Fig. 3. Experimental simulation diagram of Berlin52

An Improved Discrete Firefly Algorithm Used for TSP 599

References

1. Carrabs, F., Cordeau, J.F., Laporte, G.: Variable neighborhood search for the pickup and
delivery traveling salesman problem with LIFO loading. Informs J. Comput. 19(4), 2007
(2015)

2. Yang, X.S.: Cuckoo search and firefly algorithm. Eng. Optim. 516, 1–26 (2014)
3. Massan, S.U.R., Wagan, A.I., Shaikh, M.M., et al.: Wind turbine micrositing by using the

firefly algorithm. Appl. Soft Comput. 27(2), 450–456 (2014)
4. Li, M., Ma, J., Zhang, Y., et al.: Firefly algorithm solving multiple traveling salesman

problem. J. Comput. Theor. Nanosci. 12(7), 1277–1281 (2015)
5. Meng, M., Shoulin, Y., Xinyuan, H.: A new method used for traveling salesman problem

based on discrete artificial bee colony algorithm. TELKOMNIKA 14(1), 342–348 (2016)
6. Zhang, Y.F., Li, Y.G.: An improve firefly algorithm and its application in nonlinear equation

groups. Adv. Mater. Res. 1049(5), 1670–1674 (2014)
7. Iwata, S., Newman, A., Ravi, R.: Graph-TSP from Steiner cycles. In: Kratsch, D., Todinca, I.

(eds.) WG 2014. LNCS, vol. 8747, pp. 312–323. Springer, Cham (2014). doi:10.1007/978-3-
319-12340-0_26

8. Yu, L., Li, M., Yang, Y., et al.: An improved ant colony optimization for vehicle routing
problem. In: Logistics: The Emerging Frontiers of Transportation and Development in China,
ASCE, pp. 3360–3366 (2015)

600 L. Jie et al.

http://dx.doi.org/10.1007/978-3-319-12340-0_26
http://dx.doi.org/10.1007/978-3-319-12340-0_26

Firefly Clustering Method for Mining Protein
Complexes

Yuchen Zhang1, Xiujuan Lei1(&), and Ying Tan2

1 School of Computer Science, Shaanxi Normal University,
Xi’an 710119, China

xjlei@snnu.edu.cn
2 School of Electronics Engineering and Computer Science,

Peking University, Beijing 100871, China

Abstract. It is a hot research to explore protein complexes which are closely
related to biological processes from the biological network. As a novel swarm
intelligence optimization algorithm, the firefly algorithm (FA) has been verified
to solve many optimization problems. In this study, we transform the protein
clustering problem into an optimization problem in protein-protein interaction
(PPI) network. A new method for mining protein complexes based on the firefly
algorithm was proposed, called FC. A new objective function was proposed to
find the high cohesion and low coupling clusters. A thorough comparison
completed for different protein clustering methods has been carried out. The
clustering results show that FC method outperforms the other state-of-the-art
methods in accuracy of detecting complexes from PPI network.

Keywords: Firefly clustering � Protein complexes � Dynamic PPI network �
Clustering objective function

1 Introduction

Proteins play an important role in biological processes. Studying proteins helps us
understand genes, disease mechanisms, and so on. However, proteins usually work by
interacting with each other. The study of a single protein does not reflect its signifi-
cance in Biology. The proteins and interactions of proteins form a biological network,
protein-protein interaction network (PPI) [1]. At the same time, a group of proteins that
works in same space can be used as a protein complex. Protein complexes often have
specific functions that can reflect some of the protein properties. So, it is important to
explore and research protein complexes. In recent years, a large amount of
protein-protein interactions were generated by high-throughput experimental tech-
niques such as yeast two-hybrid and mass spectrometry [2, 3]. These techniques pro-
vide a basis for the identification of protein complexes.

Many scholars have proposed a lot of methods to identify the protein complexes.
Most of the methods are based on graph theory and dense region discovery. Bader and
Hogue proposed the molecular complex detection (MCODE) [4]. MCL [5] was also
used to identify protein complexes. There are two main operations, called expansion
and inflation. Wang et al. [6] used the gene expression data to establish the sequential

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 601–610, 2017.
DOI: 10.1007/978-3-319-61824-1_65

dynamic PPI network. The clustering result of MCL were optimized. Because of the
core-attachment characteristics of protein complexes, CORE [7] and COACH [8] were
proposed to predict protein complexes. In identifying overlapping protein complexes,
Nepusz et al. introduced ClusterONE [9]. In order to make clustering method take into
account the biological characteristics of protein complexes, some scholars considered
other biological information. Such as CSO [10], it used the gene ontology (GO) an-
notation data to find complex cliques.

With the development of swarm intelligence algorithm, more and more scholars
also begin to apply swarm intelligence algorithm to graph mining. Emad et al. try to
detect protein complexes by using genetic algorithm [11]. And FA algorithm [12] is
also applied to network clustering with significant performance. The algorithm simu-
lates the behaviors of the fireflies that the darker fireflies move to the bright fireflies to
solve the optimal solution. A community detecting algorithm [13] was proposed by
Amiri et al. based on a multi-objective enhanced firefly algorithm. In our previous
research, we also used FA to improve the parameters of the MCL algorithm [14].

In the paper, we used the FA algorithm to detect protein complexes from PPI
network. To find a corresponding relationship between the behaviors of fireflies and the
clustering process. And a new objective function is proposed to transform the PPI
clustering into an optimization problem. Finally, in order to verify the performance of
the proposed method, we compared it with other clustering methods on different PPI
datasets.

2 PPI Network Preprocessing

In most studies, the PPI network is used as an undirected graph G = (V, E), where V is
a set of proteins and E represents all interactions. Protein complexes are a set of dense
subgraphs with high cohesion and low coupling. Construction of protein network is
very important for identifying protein complexes. Wang et al. have proved that the
dynamic PPI network based on biological characteristics is better than the static PPI
network. Therefore, we also used protein gene expression data to construct a dynamic
PPI network. Using the 3-sigma method [6] to identify the activity of protein at the
different time points.

However, there are a lot of false positives and false negatives in high throughput
protein interaction data. So not all interaction relationships are reliable. In order to
optimize the network, we weighted the edges of the dynamic network to distinguish
their contribution for the task of detecting protein complexes. First, the topology score
of edge eij [15] is defined

topology scoreij ¼ jNi \Njj þ 1
max avgðGÞ; jNijf gþmaxfavgðGÞ; jNjjg ð1Þ

where Ni and Nj denote the neighbors of vi and vj. jNi \Njj denotes the number of
common neighbors of vi and vj. And avg(G) is the average degree of the network G.

602 Y. Zhang et al.

On the other hand, Gene Ontology annotations are also considered [10]. If there are
some common GO annotations between interacting proteins, the interaction is believed
to be reliable. They are expressed as follows:

GSMij ¼ jGSMi \GSMjj
jGSMij � jGSMjj ð2Þ

where the |GSMi|, |GSMj| represent the number of GO annotations for vi and vj,
respectively. |GSMi\GSMj| denotes the number of common GO annotations for both vi
and vj. Based on the topology score and GO annotations, the weight of an edge eij is
given as:

Wij ¼ topology scoreij � GSMij ð3Þ

The value range of Wij is [0, 1]. If weight of an edge is 0, it will be considered to be
false data and deleted from the dynamic network.

3 Firefly Clustering Method

3.1 Firefly Representation

In the process of clustering protein complexes, we first defined the representation of a
firefly. A firefly corresponds to a clustering result. In other words, a firefly contains a
set of clusters. Obviously, if a firefly is directly represented by a set of clusters, the
subsequent steps will be not east to operate. Therefore, the locus-based adjacency
representation [16] was used. In the graphic representation, a set of clusters (a firefly)
are considered to be a N-dimensional vector. N is the number of nodes in a timestamp
network. For a firefly X = {x1, x2, …, xN}, there is a set of possible range of values
based on the adjacency matrix of PPI network. For example in Fig. 1. the node v3
connect the nodes v2, v4, v5, so the possible range of values r* v3 for v3 is {2, 4, 5}.

A firefly represents a group of protein complexes. For a firefly, if the value of ith
element is j, node vi and node vj will be contained in same protein complex. In addition,
the existence of independent nodes as clusters in the process of clustering. We added
0 into the value range of each element. So the finally range r* v3 is {0, 2, 4, 5}. If the
value of an element is 0 and no other values of elements are equal to its corresponding
node, the corresponding node of the element is an independent cluster. After the
clustering results are expressed by fireflies, a decoding operation is used to identify all
the components in the timestamp network. We can build an adjacency matrix that
contained at most N edges according to a firefly. We used the breadth first traversal
method to find out connected subgraphs. This representation method does not need to
be given a number of clusters in advance. In Fig. 1, a firefly is decoded into two
clusters {v1, v2, v3, v4} and {v5, v6, v7, v8, v9}, v10 is an independent cluster and is
excluded. In the initial stage, we randomly generate m fireflies as initial population
according to the range of each element.

Firefly Clustering Method for Mining Protein Complexes 603

3.2 Clustering Objective Function

In order to translate the protein clustering problem into an optimization problem, the
method needs a reasonable objective function. In FA algorithm, the brightness of firefly
is the value of objection function. The objective function need to reflect the properties
of protein complexes. Therefore, the objective function should be able to distinguish
between high cohesion—low occasional clusters and generic clusters. For objective
clusters, there are many edges inside, and the edges between them are less. In this
paper, we given the following objective function by combing definition of the density
of the cluster and considering the appropriate number of clusters. We also used weight
sum of edges to replace the number of edges in clusters.

FðfC1;C2; . . .;CkgÞ ¼
Pk

i¼1

Ci
in

Ci
in þCi

out þWave�jCij�ðjCij�1Þ=2 � jCij
Pk

i¼1
jCij

ð4Þ

Ci
in ¼

X

p;q2Ci

Wpq ð5Þ

Ci
out ¼

X

p2Ci;q 62Ci

Wpq ð6Þ

where {C1, C2,…, Ck} represents a set of clusters determined by a firefly. |Ci| represents
the number of proteins in a cluster.

Pk
i¼1 Cij j is the total number of proteins found in

the protein complexes detected. Wave is the average weight in the network G. And
|Ci| � (|Ci|−1)/2 is the maximum possible number of edges in the cluster Ci. Ci

in is the

Fig. 1. Correspondence between a firefly and a set of clusters

604 Y. Zhang et al.

weight sum of all edges in the cluster Ci. Ci
out is the weight sum of edges whose one

endpoint is in Ci and another endpoint is not. The goal of proposed method is to find
the maximum value of F.

3.3 Firefly Movement Strategy

After generating the initial firefly population, fireflies will find adaptively the optimal
solution and generate a set of clusters. However, due to the complexity of the PPI
network and dimension of the problem, FC method is easy to fall into the local optimal
solution. In order to avoid such problems, we introduced some random search fireflies
to improve the method. The FC randomly selected r fireflies from the population, and
mutated randomly their some element value with mutation probability mp in each
iteration. After mutating, the fitness values of all new fireflies are calculated by clus-
tering objective function F. If the fitness values of new fireflies are greater the fitness
values of original fireflies, the new fireflies will replace the original fireflies. The
mutation probability mpi of firefly i is defined as follows:

mpi ¼ Fmax � Fi þ a
Fmax

ð7Þ

where Fi is fitness value of firefly i. Fmax is the fitness of the brightest firefly. a is a
constant to avoid that the probability is 0.

In each iteration, the fireflies will automatically move to the better solution through
the exchange of information between them. If the brightness of a firefly is greater, it
will attract the lesser brightness fireflies in the surrounding. In function optimization
problem, a firefly moves to all the higher brightness fireflies. However, in the processes
of mining protein complexes, the value range of each element is not continuous. So the
firefly can only move into one direction. Therefore, we can estimate the probabilities
that the firefly will move to the next positions to make the firefly close to the brightest
firefly (the optimum solution). Where Fireflyi_kth is kth element of firefly i. The cor-
responding probability of movement position is pi

*

k in the next generation. We used
roulette to determine the direction of movement of fireflies in next generation. For
example, in Fig. 2, the brightness of firefly 2, 3, 4 are greater than the brightness of
firefly 1. Firefly 1 will move to one of firefly 2, 3, 4. It can be found that is better
clustering results, when node v3 and v5 is not connected. The number of values in
r* v3 ¼ 0; 2; 4; 5f g that appear in Firefly2_3th, Firefly3_3th, Firefly4_3th are 0, 1, 2, 0,
respectively. FC used that the occurrences number of each value divided by number of
the brighter fireflies as occurrences probability of each value in next generation. It can
be found that 2 appeared one times, and 4 appeared two times. So the probability of
movement position p1

*

3 is ð0; 13 ; 23 ; 0Þ. The firefly will move in the brighter firefly with
the probability in each iteration.

For the brightest firefly, it will be randomly perturbed to jump out of the local
optimum. The process stops until the algorithm convergence or the maximum number
of iterations is reached. Finally, the set of clusters decided by the brightest firefly are
the predicted protein complexes. Since the method is run on the dynamic network,

Firefly Clustering Method for Mining Protein Complexes 605

there are overlapping protein complexes in results. We removed the protein complexes
that are contained by other complexes. Table 1 shows the corresponding relation
between firefly biological characteristics and FC method.

4 Experiment Results

In order to test the performance of the algorithm, we used three Saccharomyces
cerevisiae PPI datasets, DIP [17], Krogan [18], MIPS [19]. And the gene expression
data are provided by Gene Expression Omnibus (GEO) [20], accession number of the
data is GSE3431. Gene ontology data is the most commonly used data can represent
the functions of proteins. In this paper, we used GO-slims data. This data is cut-down
version of the GO ontology data [10], which can be acquired at (http://www.
yeastgenome.org/download-data/curation). And we used CYC2008 [21] as a known
protein complexes set. There are 408 protein complexes.

Fig. 2. Firefly movement strategy

Table 1. The corresponding relation of firefly biological characteristics in FC

Firefly characteristics and behavior Firefly clustering (FC) method

Firefly A group of protein complexes
Position of firefly (element) Two proteins in a same complex
Firefly brightness Clustering objective function value
Movement Detecting protein complexes
The brightest firefly Protein complexes (optimal solution)

606 Y. Zhang et al.

http://www.yeastgenome.org/download-data/curation
http://www.yeastgenome.org/download-data/curation

In the evaluations of predicted protein complexes, the algorithm used several
commonly evaluation methods. The Overlapping Score (OS), Sensitivity (Sn), Speci-
ficity (Sp), f-measure [4] and p-value [22] both are used commonly. According to
Literature [4], when OS is greater than 0.2, we considered that the predicted protein
complexes is matched. If OS is equal to 1, the predicted complexes is perfectly mat-
ched. The p-value denotes the probability that a predicted protein complex is enriched
by a given functional group with random chance. It is generally believed that the
smaller the p-value (less than 0.01) is, the more significant the predicted protein
complex is.

In order to verify the superiority of FC method, we compared with other method
such as MCODE [4], MCL [5], CORE [7], CSO [10], ClusterONE [9] and COACH [8]
in a same dynamic PPI network. The comparison results are showed in the Table 2. PC
denotes the total number of protein complexes by predicted. MPC represents the

Table 2. Performance comparsion with other methods

Dataset Method Sn Sp f-measure PC MPC MKC Perfect AS

DIP MCODE 0.2318 0.6182 0.3372 165 102 70 6 6.7212
MCL 0.7031 0.2505 0.3694 1541 386 245 14 4.4361
CORE 0.7381 0.2769 0.4027 1517 420 259 39 2.443
CSO 0.4403 0.6257 0.5169 342 214 136 11 4.652
ClusterONE 0.6093 0.3385 0.4352 972 329 197 15 3.5422
COACH 0.5009 0.5591 0.5284 474 265 144 13 4.9789
FC-best 0.655 0.4612 0.5413 774 357 220 39 3.4406
FC-worst 0.6345 0.4329 0.5147 790 342 211 31 3.4278
FC-ave 0.6359 0.4422 0.5217 778 344 211 36 3.4511

Krogan MCODE 0.2749 0.7937 0.4084 160 127 73 10 5.125
MCL 0.566 0.4559 0.5051 658 300 178 40 3.9544
CORE 0.5417 0.4121 0.4681 677 279 172 39 2.6041
CSO 0.3284 0.8254 0.4699 189 156 89 10 5.2646
ClusterONE 0.5232 0.4632 0.4914 585 271 161 28 3.935
COACH 0.3566 0.81 0.4952 221 179 85 11 5.3575
FC-best 0.4271 0.7537 0.5452 272 205 133 36 3.6765
FC-worst 0.4008 0.7559 0.5239 254 192 121 34 3.8307
FC-ave 0.4131 0.7493 0.5325 265 199 126 39 3.7542

MIPS MCODE 0.1714 0.5333 0.2595 135 72 60 4 5.437
MCL 0.5451 0.2017 0.2945 1259 254 196 17 4.7434
CORE 0.6235 0.249 0.3558 1217 303 225 29 2.5859
CSO 0.2835 0.5163 0.366 246 127 87 6 4.5528
ClusterONE 0.4483 0.2796 0.3444 744 208 152 17 3.1317
COACH 0.3145 0.3662 0.3384 396 145 92 5 6.5253
FC-best 0.51 0.4205 0.461 604 254 164 32 3.2897
FC-worst 0.4896 0.3865 0.432 608 235 163 27 3.2599
FC-ave 0.4989 0.4147 0.453 590 245 162 30 3.2989

Firefly Clustering Method for Mining Protein Complexes 607

number of matched predicted complexes. MKC is the number of matched known
protein complexes. AS denotes average size of predicted protein complexes. Since the
FC method has random characteristics, we run the FC method 10 times to analyze the
results. FC-best, FC-worst, and FC-ave represent the best result, the worst result, the
average result according to f-measure, respectively. On DIP data, the f-measure of FC-
best is the highest. And the f-measure of FC-ave is slightly lower than the value of
CSO. And the f-measure of FC is the highest on Krogan and MIPS data. In addition,
the number of perfect matched complexes is the largest.

Similarly, we compared the proposed method with other methods on function
enrichment analysis. We calculated the p-values of the protein complexes mined by the
algorithms in Biological Process (BP). The result are showed in Table 3. On the
Krogan data, percentage of protein complexes whose p-value are greater than 0.01 in
all complexes identified by FC is the smallest. And on DIP, MIPS data, the p-value of
FC-best are the smallest. And the p-value of FC-worst are slightly high than the value
of CSO and MCODE, respectively. Therefore, in the biological significance terms of
predicted proteins complexes, the performance of the proposed method also can be
accepted.

Table 3. Function enrichment analysis of predicted protein complexes from different methods

Dataset Algorithms PC
(size � 3)

<E-15 [E-15, E-10) [E-10, E-5) [E-5, 0.01) � 0.01

DIP MCODE 165 12 (7.27%) 17 (10.30%) 80 (48.48%) 38 (23.03%) 18 (10.91%)

MCL 1053 19 (1.80%) 47 (4.46%) 183 (17.38%) 362 (34.38%) 442 (41.98%)

CORE 344 1 (0.29%) 3 (0.87%) 78 (22.67%) 114 (33.14%) 148 (43.02%)

CSO 342 26 (7.6%) 42 (12.28%) 148 (43.27%) 90 (26.32%) 36 (10.53%)

ClusterONE 574 21 (3.66%) 52 (9.06%) 177 (30.84%) 184 (32.06%) 140 (24.39%)

COACH 474 33 (6.96%) 44 (9.28%) 205 (43.25%) 126 (26.58%) 66 (13.92%)

FC-best 393 23 (5.85%) 51 (12.98%) 179 (45.55%) 106 (26.97%) 34 (8.65%)

FC-worst 404 21 (5.20%) 49 (12.13%) 172 (42.57%) 119 (29.46%) 43 (10.64%)

Krogan MCODE 160 8 (5.00%) 28 (17.50%) 68 (42.50%) 46 (28.75%) 10 (6.25%)

MCL 403 16 (3.97%) 43 (10.67%) 103 (25.56%) 119 (29.53%) 122 (30.27%)

CORE 255 3 (1.18%) 10 (3.92%) 60 (23.53%) 102 (40.00%) 80 (31.37%)

CSO 189 20 (10.58%) 36 (19.05%) 79 (41.80%) 42 (22.22%) 12 (6.35%)

ClusterONE 399 13 (3.26%) 43 (10.78%) 98 (24.56%) 120 (30.08%) 125 (31.33%)

COACH 221 23 (10.41%) 37 (16.74%) 91 (41.18%) 54 (24.43%) 16 (7.24%)

FC-best 157 14 (8.92%) 27 (17.20%) 73 (46.50%) 36 (22.93%) 7 (4.46%)

FC-worst 155 14 (9.03%) 25 (16.13%) 75 (48.39%) 34 (21.94%) 7 (4.52%)

MIPS MCODE 135 5 (3.70%) 10 (7.41%) 70 (51.58%) 39 (28.89%) 11 (8.15%)

MCL 606 5 (0.83%) 13 (2.15%) 94 (15.51%) 220 (36.30%) 274 (45.21%)

CORE 340 0 (0.00%) 4 (1.18%) 65 (19.12%) 107 (31.47%) 164 (48.24%)

CSO 246 7 (2.85%) 27 (10.98) 110 (44.72%) 73 (29.67%) 29 (11.79%)

ClusterONE 372 7 (1.88%) 16 (4.30%) 117 (31.45%) 126 (33.87%) 106 (28.49%)

COACH 396 16 (4.04%) 46 (11.62%) 145 (36.62%) 149 (37.63%) 40 (10.10%)

FC-best 285 7 (2.46%) 25 (8.77%) 127 (44.56%) 106 (37.19%) 20 (7.02%)

FC-worst 290 8 (2.76%) 25 (8.62%) 133 (45.86%) 97 (33.45%) 27 (9.31%)

608 Y. Zhang et al.

5 Conclusion

In this paper, a novel protein complexes clustering method based on firefly algorithm
was proposed. The proposed method has high accuracy in predicting protein com-
plexes. Combined with the FA algorithm, the clustering problem is abstracted as an
optimization problem. Because of the adaptability of the algorithm, it is not necessary
to set the number of clusters in advance. In the clustering process, through the firefly
searching, the algorithm does not need to consider other aspects and its implementation
is simple. And the experiment results show that FC method outperforms the other
method for mining protein complexes.

Acknowledgments. This paper is supported by the National Natural Science Foundation of
China (61672334, 61502290, 61401263), Industrial Research Project of Science and Technology
in Shaanxi Province (2015GY016).

References

1. Zhang, A.: Protein Interaction Networks. Cambridge University Press, New York (2009)
2. Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D.,

Narayan, V., Srinivasan, M., Pochart, P.A.: Comprehensive analysis of protein–protein
interactions in Saccharomyces cerevisiae. Nature 403(6770), 623–627 (2000)

3. Gavin, A.C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick,
J.M., Michon, A.M., Cruciat, C.M.: Functional organization of the yeast proteome by
systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)

4. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large
protein interaction networks. BMC Bioinform. 4(1), 2 (2003)

5. Dongen, S.M.V.: Graph clustering by flow simulation. Ph.D. thesis. University of Utrecht,
The Netherlands (2000)

6. Wang, J., Peng, X., Li, M., Luo, Y., Pan, Y.: Active protein interaction network and its
application on protein complex detection. In: IEEE International Conference on Bioinfor-
matics and Biomedicine, Atlanta, pp. 37–42, November 2011

7. Leung, H.C., Xiang, Q., Yiu, S.M., Chin, F.Y.: Predicting protein complexes from PPI data:
a core-attachment approach. J. Comput. Biol.: J. Comput. Mol. Cell Biol. 16(2), 133–144
(2009)

8. Wu, M., Li, M., Kwoh, C.K., Ng, C.K.: A core-attachment based method to detect protein
complexes in PPI networks, BMC Bioinform., 10(1, article 169), 1–16 (2009)

9. Nepusz, T., Yu, H., Paccanaro, A.: Detecting overlapping protein complexes in
protein-protein interaction networks. Nat. Methods 9(5), 471–472 (2012)

10. Zhang, Y., Lin, H., Yang, Z., Wang, J, Li, Y., Xu, B.: Protein complex prediction in large
ontology attributed protein-protein interaction networks. IEEE/ACM Trans. Comput. Biol.
Bioinform. (TCBB) 10(3), 729–741 (2013)

11. Emad, R., Ahmed, N., Moataz, A.: Protein complexes predictions within protein interaction
networks using genetic algorithms. BMC Bioinform. 17(7), 269 (2016)

12. Yang, X.S.: Firefly Algorithm. Nature-Inspired Metaheuristic Algorithms, vol. 2. Luniver
Press, Bristol (2010)

13. Amiri, B., Hossain, L., Crawford, J.W., Wigand, R.T.: Community detection in complex
networks: multi–objective enhanced firefly algorithm. Knowl.-Based Syst. 46, 1–11 (2013)

Firefly Clustering Method for Mining Protein Complexes 609

14. Lei, X., Wang, F., Wu, F.X., Zhang, A., Pedrycz, W.: Protein complex identification through
Markov clustering with firefly algorithm on dynamic protein–protein interaction networks.
Inf. Sci. 329(6), 303–316 (2016)

15. Liu, G., Wong, L., Chua, H.N.: Complex discovery from weighted PPI networks.
Bioinformatics 25(15), 1891–1897 (2009)

16. Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Trans.
Evol. Comput. 11, 56–76 (2007)

17. Xenarios, I., Salwinski, L., Duan, X.J., Higney, P., Kim, S.M., Eisenberg, D.: DIP, the
database of interacting proteins: a research tool for studying cellular networks of protein
interactions. Nucleic Acids Res. 30(1), 303–305 (2002)

18. Krogan, N.J., Cagney, G., Yu, H., Zhong, G., Guo, X., Igatchenko, A., Li, J., Pu, S., Datta,
N., Tikuisis, A.P., et al.: Global landscape of protein complexes in the yeast Saccharomyces
cerevisiae. Nature 440(7084), 637–643 (2006)

19. Guldener, U., Munsterkotter, M., Oesterheld, M., Pagel, P., Ruepp, M., Mewes, H.W.,
Stumpflen, V.: MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res.
34(Suppl. 1), 436–441 (2006)

20. Tu, B.P., Kudlicki, A., Rowicka, M., McKnight, S.L.: Logic of the yeast metabolic cycle:
temporal compart mentalization of cellular processes. Science 310, 1152–1158 (2005)

21. Pu, S., Wong, J., Turner, B., Cho, E., Wodak, S.J.: Up-to-date catalogues of yeast protein
complexes. Nucleic Acids Res. 37(3), 825–831 (2009)

22. Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., Kanaya, S.: Development and
implementation of an algorithm for detection of protein complexes in large interaction
networks. BMC Bioinform. 7, 207–219 (2006)

610 Y. Zhang et al.

Improved Two-Dimensional Otsu Based
on Firefly Optimization for Low
Signal-to-Noise Ratio Images

Li Li1, Jianwei Liu2, Mingxiang Ling3, Yuanyuan Wang1(&),
and Hongwei Xia3

1 Harbin Institute of Technology (Weihai), Weihai 264209,
People’s Republic of China

wangyuanyuan@hitwh.edu.cn
2 Jiangsu Automation Research Institute, Lianyungang 222061,

People’s Republic of China
3 Harbin Institute of Technology, Harbin 150001, People’s Republic of China

Abstract. To improve two-dimensional (2D) Otsu thresholding’s performance
in both computation speed and segmentation quality, an improved 2D Otsu
algorithm is proposed for low Signal-to-noise Ratio (SNR) images. A new 2D
histogram is defined based onmedian gray-scale andGaussian average gray-scale.
By meeting better to the assumption of that the object’s probability and the
background’s probability sum up to 1, the new 2D histogram enhances the
thresholding algorithm’s robustness to severe noise. Then a scheme of calculating
the fitness function based on firefly optimization algorithm is employed to search
for optimal thresholds. The proposed algorithm is applied to typical low SNR
images–microscopic images of ocean plankton, and to Lenna test image. Exper-
iment results show that with better thresholding quality, the running time of the
proposed algorithm is reduced to 2.5% of the conventional 2D Otsu.

Keywords: Two dimensional Otsu thresholding � Firefly optimization �
Plankton microscopic image analysis

1 Introduction

Two-dimensional Otsu [1] is a robust thresholding technique combining both 2D
histogram of images and Otsu thresholding. In the last decades, many works have been
devoted to improving 2D Otsu’s speed and segmentation quality. Recursive techniques
[2–6] remove redundant computations by recursively evaluating the fitness function.
However, the exhaustive searching schemes still introduces many computation cost.
And dimension reduction [7, 8] causes a decline in quality for information lost. Swarm
intelligence methods [9–11] perform competitively to recursive techniques and
dimension reduction with quick convergence. Curve thresholding segmentation [12]
and local grid box filter [13] improves the segmentation quality by re-dividing the 2D
histogram. Besides that, image denoising [14] implies a valid approach to prompt 2D
Otsu’s robustness.

In this paper, to improve the segmentation quality of 2D Otsu thresholding, a 2D
histogram is established based on median filter and Gauss filter. To reduce the

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 611–617, 2017.
DOI: 10.1007/978-3-319-61824-1_66

computation cost, a scheme of evaluating the fitness function based on firefly opti-
mization algorithm [15] is employed. The proposed algorithm is tested on both
microscopic images of ocean planktons and Lenna test image. The algorithm is pre-
sented in Sect. 2. Section 3 shows the experiments and analysis.

2 The Proposed Algorithm

In an image f, with the size of H�W, suppose the median gray scale of pixel f ðx; yÞ is
denoted as the following:

hðx; yÞ ¼ med
Xðnþ 1Þ=2

i¼�ðnþ 1Þ=2

Xðnþ 1Þ=2

j¼�ðnþ 1Þ=2
f ðxþ i; yþ jÞ

8<
:

9=
;: ð1Þ

The Gaussian average gray scale of f ðx; yÞ is defined by the Gaussian filter as the
following:

gsðx; yÞ ¼
Xðnþ 1Þ=2

i¼�ðnþ 1Þ=2

Xðnþ 1Þ=2

j¼�ðnþ 1Þ=2
f ðxþ i; yþ iÞ 1

2pr2
e�

i2 þ j2

2r2

� �
: ð2Þ

Then a threshold vector (s,t) is obtained to denote the pair of hðx; yÞ and gsðx; yÞ,
and the number of its occurrences in the image f, is denoted as Ms;t. The joint prob-
ability can be defined by:

P s; tð Þ ¼ Ms;t

H�W
: ð3Þ

Two dimensional Otsu thresholding classifies pixels of an image into two groups:
the object and the background, by a threshold vector (s,t). The probabilities of the
object and the background are given by:

x0¼
Xs
i¼0

Xt
j¼0

pi;j;x1¼
XL�1

i¼sþ 1

XL�1

j¼tþ 1

pi;j: ð4Þ

Due to the introduction of median filter and Gaussian average filter, the sum of the
probability of both the object and the background can be assumed to be 1. The average
gray value vectors of two classes are:

l0¼ l0i; l0j
� �T ¼

Xs
i¼0

Xt
j¼0

i
pi;j
x0

;
Xs
i¼0

Xt
j¼0

j
pi;j
x0

 !T

l1¼ l1i; l1j
� �T ¼

XL�1

i¼sþ 1

XL�1

j¼tþ 1

i
pi;j
x1

;
XL�1

i¼sþ 1

XL�1

j¼tþ 1

j
pi;j
x1

 !T

:

ð5Þ

612 L. Li et al.

The total average gray value vector of the image is:

lT¼ lTi; lTj
� �T¼ XL�1

i¼0

XL�1

j¼0

ipi;j;
XL�1

i¼0

XL�1

j¼0

jpi;j

 !T

: ð6Þ

Then we have the 2D Otsu thresholding criterion as:

SBðs; tÞ ¼
X1
r¼0

xr ðlri � lTiÞ2 þðlrj � lTjÞ2
h i

: ð7Þ

The best threshold vector ðs�; t�Þ is determined by maximizing the fitness function
SBðs; tÞ.

To accelerate the searching procedure, firefly algorithm [15] is applied to determine
the best thresholds. As a heuristic searching strategy, firefly algorithm simulates that
brighter firefly has more attractiveness to draw other fireflies near. The attractiveness is
defined by:

b ¼ b0 � e�cr2ij : ð8Þ

Where c is the absorption coefficient of the optical transmission medium, r is the
spatial distance between firefly i and j, is the attractiveness when r ¼ 0. The movement
that firefly i was attracted to firefly j is defined by the formula:

xi ¼ xi þ b� xj � xi
� �þ aei: ð9Þ

Where ei is a random variable, a is the weight coefficient, xi and xj are firefly i and
j’s location. The searching procedure is specified by the following steps:

1. Initialize parameters of the firefly algorithm including: the number of fireflies
m = 20, initial location for every firefly xi ¼ si; tið Þ; i ¼ 1; 2; � � � ;m, attractiveness
b0 ¼ 1, the absorption coefficient c ¼ 1 and the weight coefficient a ¼ 0:2.

2. Calculate the fitness function SB for each firefly.
3. Sort all fireflies decently by results in step (2), and move the less bright firefly to the

brighter one by formula (9), while the brightest one has a random walk.
4. If the end condition is satisfied, the searching procedure is finished, and the optimal

threshold vector is the brightest firefly’s location s; tð Þ; if not, return to step 2.

3 Experiment Results and Analysis

To verify the performances of the proposed algorithm, experiments are implemented on
Windows 7 with 1.6 GHz CPU and 3G RAM. The algorithm is coded in C ++ of
Visual Studio 2010. Test images are a group of microscopic images of Prorocentrum
donghaiense and Lenna image with 512 � 512 pixels. Binarization is implied by
setting the pixels below the threshold to zero and the pixels above the threshold to 255.

Improved Two-Dimensional Otsu Based on Firefly Optimization 613

The proposed algorithm is applied to threshold microscopic images of Prorocen-
trum donghaiense, which is one of the dominant plankton in red tide bloom occurs in
China. And the results were compared with conventional 2D Otsu. The original
microscopic images of Prorocentrum donghaiense in Fig. 1 is collected by an optical
microscope connected to a CMOS camera with 576 � 768 resolution, and thresholded
by both the proposed algorithm and the conventional 2D Otsu.

Plankton images thresholded by the conventional 2D Otsu are hardly distinguished
from surroundings as shown in Fig. 2. But the results obtained by the proposed
algorithm show that plankton have distinct contours in contrast backgrounds as shown
in Fig. 3. Comparing results of two approaches, our method is more effective than the
conventional one, for plankton microscopic images.

Fig. 1. (a)–(c) Original microscopic images of planktons.

Fig. 2. (a)–(c) Thresholding results of plankton’s microscopic images by the 2D Otsu [1].

Fig. 3. (a)–(c) Results of plankton’s microscopic images by the proposed method.

614 L. Li et al.

Lenna images in Fig. 4 are all thresholded by both the conventional 2D Otsu (see
Fig. 5) and the proposed algorithm (see Fig. 6). Obviously, the proposed algorithm
presents more stable thresholding quality for both Gaussian noise and Salt&Pepper
noise, while the conventional 2D Otsu’s segmentation is badly influenced by the two
kinds noises in Fig. 5.

Table 1 gives the threshold results of two methods. The thresholds evidently show
that the proposed algorithm has more robust performance in searching the optimal
threshold under noise disturbance, no matter Gaussian noise or Salt&Pepper noise,
resulting from the 2D histogram based on the median gray-scale and the Gaussian
average gray-scale.

Fig. 4. (a) Original Lenna. (b) Gaussian noise. (c) Salt&Peppernoise.

Fig. 5. Thresholding results by the traditional 2D Otsu. (a) Original Lenna. (b) Gaussian noise.
(c) Salt&Pepper noise.

Fig. 6. Thresholding results by the proposed algorithm. (a) Original Lenna. (b) Gaussian noise.
(c) Salt&Pepper noise.

Improved Two-Dimensional Otsu Based on Firefly Optimization 615

Time consuming in Table 2 indicates that the proposed algorithm cuts the time cost
of thresholding to nearly 2.5% of the conventional 2D Otsu method, which is
significant.

4 Conclusion

An improved two-dimensional Otsu thresholding method is presented, through defining
a 2D histogram based on median gray-scale and Gaussian average gray-scale, and
employing firefly optimization in optimal thresholds searching. The algorithm is
applied to both microscopic images of ocean plankton and Lenna test image. Experi-
ment results show that the proposed algorithm has better and more stable thresholding
quality under noise disturbance compared with conventional 2D Otsu, and it cut the
time consuming to 2.5% of that of conventional 2D Otsu. Practical image thresholding
results for ocean plankton microscopic images give more accurate segmentation effect,
indicating that the approach has applicability in ocean microscopic image thresholding.

Acknowledgments. This work was supported by the National Scientific Foundation of China
(No. 61304108) and the Discipline Guidance Foundation of Harbin Institute of Technology
(Weihai) (No. IDOA 1000290131).

References

1. Liu, J.Z., Li, W.Q., Tian, Y.P.: Automatic thresholding of gray-level pictures using
two-dimension Otsu method. Acta Automatica Sinica 19(1), 101–105 (1993)

2. Gong, J., Li, L.Y., Chen, W.N.: Fast recursive algorithms for two-dimensional thresholding.
Pattern Recogn. 32(3), 295–300 (1998)

3. Wang, H.Y., Pan, D.L., Xia, D.S.: A fast algorithm for two-dimensional Otsu adaptive
threshold algorithm. Acta Automatica Sinica 33(9), 968–971 (2007)

4. Chen, Q., Zhao, L., Lu, L., Kuang, G., Wang, N., Jiang, Y.: Modified two-dimensional otsu
image segmentation algorithm and fast realization. IET Image Proc. 6(4), 426–433 (2012)

Table 1. Thresholds obtained by the proposed algorithm and the conventional 2D Otsu.

Original Gaussian Salt&Pepper

The conventional 2D Otsu (125, 71) (72, 128) (72, 126)
The proposed algorithm (130, 88) (130, 88) (130,88)

Table 2. Time consuming of the proposed algorithm and the conventional 2D Otsu.

Original Gaussian Salt&Pepper

The conventional 2D Otsu 28.398 s 28.409 s 28.461 s
The proposed algorithm 0.662 s 0.657 s 0.687 s

616 L. Li et al.

5. Zhang, X.M., Sun, Y.J., Zheng, T.B.: Precise two-dimensional Otsu’s image segmentation
and its fast recursive realization. Dianzi Xuebao (Acta Electronica Sinica) 39(8), 1778–1784
(2011)

6. Wu, Y.Q., Fan, J., Wu, S.H.: Fast iterative algorithm for image segmentation based on an
improved two-dimensional Otsu thresholding. J. Electron. Meas. Instrum. 25(3), 218–225
(2011)

7. Hao, Y.M., Zhu, F.: Fast algorithm for two-dimensional Otsu adaptive threshold algorithm.
J. Image Graph. 10(4), 484–488 (2005)

8. Chen, J.W., Wu, B.: An Otsu threshold segmentation method based on rebuilding and
dimension reduction of the two-dimensional histogram. J. Graph. 36(4), 570–575 (2015)

9. Suresh, S., Lal, S.: An efficient cuckoo search algorithm based multilevel thresholding for
segmentation of satellite images using different objective functions. Expert Syst. Appl. 58,
184–209 (2016)

10. Horng, M.H.: A multilevel image thresholding using the honey bee mating optimization.
Appl. Math. Comput. 215, 3302–3310 (2010)

11. Chen, K., Chen, F., Dai, M., Zhang, Z.S., Shi, J.F.: Fast image segmentation with multilevel
threshold of two-dimensional entropy based on firefly algorithm. Opt. Precis. Eng. 22(2),
517–523 (2014)

12. Fan, J.L., Zhao, F.: Two-dimensional Otsu’s curve thresholding segmentation method for
gray-level images. Acta Electron. Sinica 35, 751–755 (2007)

13. Guo, W., Wang, X., Xia, X.: Two-dimensional Otsu’s thresholding segmentation method
based on grid box filter. Optik 125, 5234–5240 (2014)

14. Sha, C.S., Hou, J., Cui, H.X.: A robust 2D Otsu’s thresholding method in image
segmentation. J. Vis. Commun. Image Represent. 41, 339–351 (2016)

15. Yang, X.S.: Firefly Algorithms for Multimodal Optimization. In: Nature-Inspired Meta-
heuristic Algorithms. Luniver Press, Frome (2010)

Improved Two-Dimensional Otsu Based on Firefly Optimization 617

3D-FOAdis: An Improved Fruit Fly
Optimization for Function Optimization

Kejie Wang, Huiling Chen, Qiang Li, Junjie Zhu, Shubiao Wu,
and Hui Huang(&)

College of Physics and Electronic Information,
Wenzhou University, Wenzhou, China

huanghui@wzu.edu.cn

Abstract. In fruit fly optimization algorithm (FOA), the search speed of each
fruit fly is fast, but when it traps into the local optimum, it is difficult to re-find a
better solution. In order to overcome this drawback, we propose an improved
version of FOA, termed as 3D-FOAdis. In the proposed method, three-
dimensional coordinates and the disturbance mechanism were both introduced.
We firstly extends the original two-dimensional coordinates to three-dimensional
coordinates, where fruit flies can fly more widely so that it is more likely to jump
out of the local optimum. Then we introduce a disturbance mechanism force the
FOA to find better solutions when the fruit flies fall into the local optimums. The
effectiveness of 3D-FOAdis has been rigorously evaluated against the nine
benchmark functions. The experimental results demonstrate that the proposed
approach outperforms the other two counterparts.

Keywords: Fruit fly optimization � Function optimization � Disturbance
mechanism

1 Introduction

Fruit fly optimization algorithm (FOA) [1] is a new method for global optimization
based on the foraging behavior of fruit flies. The fruit fly is superior to other species in
sensory perception, especially in the sense of smell and vision. The olfactory organs of
fruit fly can well collect all kinds of smell floating in the air, and even smell the food
source 40 km away. Then, after flying near the food location, the fruit fly can also use
sharp vision to find food and mates to gather and fly in that direction.

As a new member of the swarm intelligence algorithms, FOA has been applied to
many fields, such as model parameters optimization [2, 3], function optimization [4],
solving the multidimensional knapsack problem [5], building the financial distress
model [1], tuning of PID controller [6], constructing the operating performance of
enterprises model [7] and so on.

The location coordinates of each fruit fly are two-dimensional in the original FOA.
The FOA firstly determines the distance between the fruit fly and the origin through the
two-dimensional coordinates, and then puts the reciprocal of the distance as the fruit
fly’s smell, lastly inserts the smell as the intermediate element into the objective
function to obtain the smell concentration of the fruit fly. The dependent variable

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 618–625, 2017.
DOI: 10.1007/978-3-319-61824-1_67

(distance) is changed by the coordinates of the fruit fly, and the smell concentration of
each fruit fly is determined by establishing a two-dimensional plane. In the course of
searching for the optimal solution, each fruit fly shares information so that other fruit
flies fly to the current best fruit fly and update their positions around it. The search
speed of fruit fly is very fast, but if the FOA traps into the local optimum, it is difficult
to re-find a better solution. Through many tests, it is found that the original FOA is
trapped in local optimum, which makes it difficult to find the optimal solution. In order
to overcome this shortcoming of the FOA and further enhance its performance, this
paper firstly extends the original two-dimensional coordinates to three- dimensional
coordinates and then introduces a disturbance mechanism. In the three-dimensional
coordinates, fruit flies can fly more widely, which makes it more likely to jump out of
the local optimum. With the guidance of the disturbance mechanism, if the fruit flies
fall into the local optimums, the fruit flies will be forced to find better solutions.

The remainder of this paper is structured as follows. In Sect. 2 the detailed
implementation of the three-dimensional fruit fly algorithm with disturbance
(3D-FOAdis) is presented. Section 3 describes the experimental results. Finally, con-
clusions are summarized in Sect. 4.

2 Three-Dimensional Fruit Fly Algorithm with Disturbance
(3D-FOAdis)

Though the original FOA has fast speed but it runs in a two-dimensional coordinates,
which may hampered the fruit flies move freely. So we try to extend the two-
dimensional coordinates to three-dimensional coordinates where fruit flies are more
likely to shift freely. Additionally, in the searching process, fruit flies are inclined to
falling into the local minima. In order to deal with it, we have introduced a disturbance
mechanism, namely, if the current smell is no better than the previous one over a certain
number of times, the current positions of fruit flies will be changed with pulsing or
subtracting a given value. The 3D-FOAdis can be divided into several steps as follows.

Step 1. Parameters initialization.
Initialize the parameters of the FOA, such as the maximum iteration number, the
population size, the initial fruit fly swarm location (X_axis, Y_axis, Z_axis), the ran-
dom flight distance range and the time to record how long does the smell not change.

Step 2. Population initialization.
Give the random location (Xi, Yi, Zi) and distance for the food search of an individual
fruit fly, where i represents the population size.

Step 3. Population evaluation.
Firstly, calculate the distance of the food location to the origin (D). Then, compute the
smell concentration judgment value (S), which is the reciprocal of the distance of the
food location to the origin.

Step 4. Replacement.
Replace the smell concentration judgment value (S) with the smell concentration
judgment function (also called the Fitness function) so as to find the smell concen-
tration (Smelli) of the individual location of the fruit fly.

3D-FOAdis: An Improved Fruit Fly Optimization 619

Step 5. Find the maximal smell concentration.
Determine the fruit fly with the maximal smell concentration and the corresponding
location among the fruit fly swarm.

Step 6. Keep the maximal smell concentration.
Retain the maximal smell concentration value and coordinates X, Y and Z. Then, the
fruit fly swarm flies towards the location with the maximal smell concentration value. If
the current smell is not better than the last one, making the timer of disturbance (time)
plus one. Once time reaches to a certain value, the coordinates of fruit flies are forced to
change for achieving the purpose of disturbance.

Step 7. Iterative optimization.
Enter the iterative optimization to repeat the implementation of step 2 to 6. The circu-
lation stops when the smell concentration is no longer superior to the previous iterative
smell concentration or when the iterative number reaches the maximal iterative number.

Table 1. The pseudo code of the 3D-FOAdis

Randomly set the initial population position and set the time to 0;
Initialize X_axis,Y_axis,Z_axis;
time=0;
Caculate bestSmell;
X(bestIndex,:)= Optimum position X;
Y(bestIndex,:)= Optimum position Y;
Z(bestIndex,:)= Optimum position Z;
bestSmell= Optimum smell;
while(i <Max number of iterations)

for each search agent
if (smell concentration is better than that of the previous iteration)

 Update smell concentration values and fruit fly coordinates;
else

time=time+1;
if (time>=threshold)

 Disturb the fruit flies;
end if

end if
end for

end while
return bestSmell;

620 K. Wang et al.

3 Experimental Results and Discussions

In the experiments, the number of iterations and fruit flies was set to 500 and 50,
respectively. When the timer of disturbance reached 40, the course of iteration would
be disturbed. Three models including original FOA, three-dimensional fruit fly algo-
rithm (3D-FOA) and 3D-FOAdis were built in MATLAB R2014a. The experiments are
done on Windows 10 Operation System with i5-5200U Dual-Core CPU (2.7 GHZ) and
4 GB RAM.

In order to verify the effectiveness of the proposed algorithm, three methods were
employed to compared against nine commonly used multidimensional functions as
shown in Table 2, of which f1–f5 are unimodal benchmark functions and f6–f8 are the
multimodal benchmark functions. We tested each function for 10 times, and calculated
the average (Ave) and standard deviation (Std) respectively.

Table 3 shows the average and standard deviation of the nine benchmark functions
in the dimension 10, 20, 30, 50, 100 and 200, respectively. From the table we can see
that the proposed 3D-FOAdis not only performs better on unimodal functions than
3D-FOA and FOA, but also obtains better experimental results when it is aimed at
multimodal functions. It can be seen from Table 2 that the 3D-FOA and the
3D-FOAdis are better able to find the minimum value than the original FOA when the
function dimension is relatively low, such as f1, f3 and f7. When the dimension of the
benchmark function is increased, the 3D-FOA and the 3D-FOAdis will be more likely

Table 2. Benchmark functions

Function Range Minimum

f1ðxÞ ¼
Pn

i¼1 x
2
i [−100, 100] 0

f2ðxÞ ¼
Pn

i¼1 xij j þ Qn
i¼1 xij j [−10, 10] 0

f3ðxÞ ¼
Pn

i¼1

Pi
j�1 xj

� �2 [−100, 100] 0

f4ðxÞ ¼ maxi xij j; 1� i� nf g [−100, 100] 0

f5ðxÞ ¼
Pn

i¼1 ½xi þ 0:5�ð Þ2 [−100, 100] 0

f6ðxÞ ¼
Pn

i¼1 ½x2i � 10 cosð2pxiÞþ 10� [−5.12, 5.12] 0

f7ðxÞ ¼ p
n

10 sinðpy1Þþ
Xn�1

i¼1
ðyi � 1Þ2½1þ 10 sin2ðpyiþ 1Þ� þ ðyn � 1Þ2

n o

þ
Xn�1

i¼1
uðxi; 10; 100; 4Þ

yi ¼ 1þ xi þ 1
4

uðxi; a; k;mÞ ¼
kðxi � aÞm xi [a

0 �a\xi\a

kð�xi � aÞm xi\� a

8
><

>:

[−50, 50] 0

f8ðxÞ ¼ ½1þðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x21 � 14x2 þ 6x1x2 þ 3x22Þ�
� ½30þð2x1 � 3x2Þ2 � ð18� 32x1 þ 12x21 þ 48x2 � 36x1x2 þ 27x22Þ�

[−2, 2] 0

3D-FOAdis: An Improved Fruit Fly Optimization 621

Table 3. Results of testing benchmark functions

Function Dim FOA 3D-FOA 3D-FOAdis
Ave Std Ave Std Ave Std

f1 10 0.00015 7.753E−05 0.00013 5.930E−05 0.00012 4.709E−05
20 0.00015 0.00010 0.00011 5.658E−05 0.00012 6.228E−05
30 0.00015 9.484E−05 0.00013 6.723E−05 0.00013 5.568E−05
50 0.00014 7.578E−05 0.00012 6.943E−05 0.00013 6.457E−05
100 0.00015 9.251E−05 0.00012 5.813E−05 0.00013 7.795E−05
200 0.00016 8.057E−05 0.00012 6.103E−05 0.00012 7.007E−05

f2 10 0.04509 0.03566 0.04825 0.03676 0.01823 0.00420
20 0.03399 0.02860 0.05403 0.03698 0.01839 0.00365
30 0.05014 0.04056 0.04995 0.03291 0.01828 0.00517
50 0.04288 0.03798 0.05426 0.03324 0.01872 0.00478
100 0.04799 0.03611 0.05210 0.03521 0.01772 0.00399
200 0.05555 0.03661 0.04675 0.03456 0.01865 0.00392

f3 10 0.00052 0.00046 0.00039 0.00018 0.00041 0.00025
20 0.00050 0.00033 0.00047 0.00046 0.00038 0.00024
30 0.00056 0.00048 0.00050 0.00034 0.00039 0.00022
50 0.00047 0.00041 0.00035 0.00023 0.00036 0.00017
100 0.00057 0.00039 0.00051 0.00054 0.00036 0.00017
200 0.00054 0.00039 0.00039 0.00019 0.00039 0.00017

f4 10 0.01047 0.00229 0.00941 0.00172 0.00937 0.00163
20 0.01030 0.00172 0.00961 0.00184 0.00940 0.00211
30 0.01017 0.00220 0.00944 0.00191 0.00932 0.00187
50 0.01045 0.00210 0.00982 0.00212 0.00955 0.00143
100 0.01059 0.00221 0.00951 0.00184 0.00944 0.00194
200 0.01033 0.00215 0.00921 0.00195 0.00961 0.00192

f5 10 0.52963 0.02582 0.53930 0.03166 0.51810 0.00463
20 0.52947 0.02859 0.54468 0.03265 0.51848 0.00432
30 0.53576 0.03043 0.54700 0.03623 0.51883 0.00523
50 0.53334 0.02953 0.54018 0.03066 0.51788 0.00406
100 0.53372 0.02563 0.54138 0.03231 0.51840 0.00478
200 0.52759 0.02475 0.54105 0.03050 0.51871 0.00435

f6 10 0.07494 0.14846 0.02684 0.01367 0.02253 0.00930
20 0.05303 0.10173 0.02610 0.01572 0.02394 0.01001
30 0.02920 0.01401 0.02580 0.01598 0.02847 0.01391
50 0.03710 0.02401 0.02838 0.01677 0.02406 0.01234
100 0.06665 0.12623 0.02399 0.01081 0.02744 0.01418
200 0.07222 0.14275 0.02590 0.01448 0.02173 0.00990

f7 10 8.76910 0.14378 8.74606 0.08218 8.68973 0.04091
20 8.79768 0.15100 8.74864 0.10519 8.70688 0.04612
30 8.79177 0.12987 8.74119 0.09622 8.69905 0.04319

(continued)

622 K. Wang et al.

Table 3. (continued)

Function Dim FOA 3D-FOA 3D-FOAdis
Ave Std Ave Std Ave Std

50 8.78118 0.12435 8.75185 0.09837 8.69657 0.04233

100 8.75954 0.10604 8.75203 0.09818 8.70811 0.04878
200 8.76134 0.12022 8.71994 0.07522 8.69495 0.04593

f8 10 614.63085 7.39771 614.39719 9.17471 611.67830 2.86448
20 613.09317 5.84888 615.76907 11.87001 612.63875 3.86299
30 613.46286 13.56586 615.06322 11.07727 611.90166 3.51743
50 613.80883 7.02099 617.52934 13.91489 611.61879 3.26522
100 576.06481 95.71655 614.48933 22.14465 611.67610 2.67643
200 611.00024 25.60832 615.86818 12.31299 611.99624 2.64636

Fig. 1. Convergence curves of 8 benchmark functions for three methods when dimension = 10

3D-FOAdis: An Improved Fruit Fly Optimization 623

to go beyond the original FOA. Moreover, Table 2 also shows that the 3D-FOAdis has
better stability than the 3D-FOA, indicating that its probability of finding a better
solution is bigger than the 3D-FOA. The superiority results suggest that the third
dimension can make the FOA more likely to jump out of the local optimum, and the
introduced disturbance mechanism can force the fruit flies to fly away from their
current positions to find better smell.

Limited to the space, the example is taken only in the dimension of 10 to describe
the convergence of the function. Figure 1 records the convergence curve of each
function for above three methods. The 3D-FOAdis algorithm proposed in this paper has
much higher convergence speed than 3D-FOA and FOA as these graphs shown. The
3D-FOA inherits the characteristic of the FOA to find the optimal value quickly, and it
also avoids the situation of falling into a local optimum and never comes out.

4 Conclusions

This work has proposed an improved FOA, 3D-FOAdis for function optimization. The
main novelty of this paper lies in the proposed 3D-FOAdis approach, which aims at
obtaining the better solution quality and converging at a faster speed. In order to
achieve this purpose, we have introduced three-dimensional coordinates and distur-
bance mechanism into the original FOA. The empirical experiments on a set of mul-
tidimensional functions have demonstrated the superiority of the proposed method over
the other two counterparts. In future works, we plan to apply the proposed method to
optimize the parameters of machine learning methods such as support vector machines
and kernel extreme learning machine.

Acknowledgements. This research is funded by the Zhejiang Provincial Natural Science
Foundation of China (LY17F020012), the Science and Technology Plan Project of Wenzhou,
China (Y20160070).

References

1. Pan, W.-T.: A new Fruit Fly Optimization Algorithm: taking the financial distress model as an
example. Knowl.-Based Syst. 26, 69–74 (2012)

2. Shen, L., et al.: Evolving support vector machines using fruit fly optimization for medical data
classification. Knowl.-Based Syst. 96, 61–75 (2016)

3. Yu, Y., Li, Y., Li, J.: Parameter identification and sensitivity analysis of an improved LuGre
friction model for magnetorheological elastomer base isolator. Meccanica 50, 2691–2707
(2015)

4. Wu, L., Zuo, C., Zhang, H.: A cloud model based fruit fly optimization algorithm ☆. Knowl.-
Based Syst. 89, 603–617 (2015)

5. Wang, L., Zheng, X.-L., Wang, S.-Y.: A novel binary fruit fly optimization algorithm for
solving the multidimensional knapsack problem. Knowl.-Based Syst. 48, 17–23 (2013)

624 K. Wang et al.

6. Han, J., Wang, P., Yang, X.: Tuning of PID controller based on Fruit Fly Optimization
Algorithm. In: 2012 International Conference on Mechatronics and Automation (ICMA).
IEEE Press, New York (2012)

7. Wen-Chao, P.: Using Fruit Fly Optimization Algorithm optimized general regression neural
network to construct the operating performance of enterprises model. J. Taiyuan Univ.
Technol. (Soc. Sci. Edn.) 4, 2 (2011)

3D-FOAdis: An Improved Fruit Fly Optimization 625

Author Index

Akhmedova, Shakhnaz II-269
Akiyma, Hidehisa II-379
Ananthalakshmi Ammal, R. II-502
Aramaki, Shigeto II-379
Aranha, Claus I-552
Ayalew, Beshah I-266

Baek, Jaejong I-511, II-511
Bjerknes, Jan Dyre II-433
Bolaji, Asaju La’aro I-337
Bo-wei, Xu I-218
Brester, Christina II-23, II-49

Cai, Mingdai II-387
Cai, Tao II-242
Cai, Zhaoquan I-458
Cai, Zhennao I-99
Cao, Yulian I-148
Chang, Yu-Wei I-293
Chao, Ching-Hui II-445
Chaovalitwongse, W. Art I-148
Chen, Hui Chi II-538
Chen, Huiling I-99, I-618
Chen, Jinlong II-403, II-615
Chen, Lu II-242
Chen, Syuan-Yi I-466
Chen, Walter I-174
Chen, Wenjie II-242
Chen, Xianjun II-403
Chen, Yang II-40
Chen, Zhengpeng II-99
Chen, Zhenxiang I-166
Cheng, Jian II-371
Cheng, Ming Shien II-119, II-412, II-421,

II-538
Cheng, Shi I-3, I-106, I-180
Choudhary, Vedant II-597
Chu, Zhenzhong I-80, I-301
Chung, I-Fang II-225
Cruz, Edna II-519
Cui, Zhihua I-106
Çürüklü, Baran II-481

Dandan, Sun II-338
Dempster, Paul I-449
Deng, Xiangyang I-257
Deng, Yian II-559
Deng, Zhenqiang I-394
Díaz, Guillermo I-246
Diez, Matteo I-63
Ding, Gangyi II-608
Ding, Lu II-199
Ding, Sheng II-321
Dolicanin, Edin I-501
Drake, John H. I-449

Eberhard, Peter II-199
Ekström, Mikael II-481
El-Bizri, Sarah II-77
Engel, Ekaterina A. II-135
Engelbrecht, Andries P. I-119

Fang, Wei II-371
Feng, Jiawen I-257
Feng, Jiqiang I-180
Fu, Yulong I-519
Fujita, Shohei I-440
Fukuyama, Yoshikazu II-233, II-295

Gálvez, Akemi I-543, II-176
Gao, Chao II-99
Gao, Dongliang II-250
Gao, Shangce I-531
Ge, Jiaoju I-189
Goldman, Ron II-185
Gong, Dunwei II-475
Graven, Olaf Hallan II-433
Grigoryev, Anton S. II-586
Grobler, Jacomine I-119
Guan, Haowei I-585
Guillén, Pedro G. I-12
Guo, Jia I-158
Guo, Liyan II-109
Guo, Weian I-362, II-258
Guo, Yinan I-394
Guo, Yi-nan II-371

Hao, Guo-Sheng I-106
Hao, Jia II-15
Helbig, Mardé I-225, II-57
Hernández, Alberto II-519
Hsieh, Fu-Shiung I-201
Hsu, Ming Chia II-412, II-421
Hsu, Ming-Chia II-119
Hsu, Ping Yu II-412, II-421, II-538
Hsu, Ping-Yi II-445
Hsu, Ping-Yu II-119
Hu, Changzhen II-608
Huang, Hai I-394
Huang, Heyan II-547
Huang, Hui I-618
Huang, LiGuo II-158
Huang, Min I-88
Huang, Xiangyang II-158
Huo, Jiuyuan I-313
Hussain, Kashif I-3

Iglesias, Andrés I-246, I-543, II-176
Ikegami, Hiromitsu II-465
Ishiwatari, Naoya II-210
Ivutin, Alexey I-50, II-567

Ji, Xiaonan I-131
Jiang, Bin II-351
Jiang, I-Ming II-277
Jiang, Tao II-387
Jiao, Yuechao II-31
Jie, Liu I-593
Jirapanthong, Waraporn II-330
John, Vijay I-209
Juang, Chia-Feng II-225
Jun-jun, Li I-218

Kambayashi, Yasushi II-210
Kaneko, Tojiro II-379
Kang, Jingyan I-386
Kanoh, Hitoshi I-552
Kashima, Tomoko I-370
Kasprzok, Andreas I-266
Ke, Liangjun II-494
Keshk, Marwa II-624
Koeppen, Mario I-40
Kotov, Vladislav II-567
Kovalev, Igor V. II-135

Lai, Edmund M-K I-31
Lai, Guixiang I-180
Lai, Min-Ge II-225
Larkin, Eugene I-50, II-567
Lau, Chad I-266
Lee, Soojung I-378
Lee, Yunli II-395
Lei, Hong Tsuen II-119, II-412, II-421,

II-538
Lei, Xiujuan I-601
Leke, Collins I-561
Li, Bo II-321
Li, Dongyang I-362, II-258
Li, Jun I-99
Li, Kang I-71
Li, Lan I-458
Li, Li I-611
Li, Penghao I-449
Li, Qiang I-618
Li, Rui I-493
Li, Wenfeng I-148
Li, Xiang I-71
Li, Xianghua II-99
Li, Xianneng I-328
Li, Xiaomei II-109
Li, Ya II-69, II-511
Li, Yinghao I-394
Liang, Le I-394
Liaw, Rung-Tzuo I-293
Lili, I-189
Lin, Chia Hsun II-412
Lin, Mei Yu II-421
Ling, Mingxiang I-611
Liou, Cheng-Dar I-238
Liu, Bin II-615
Liu, Chang II-109
Liu, Fang I-88
Liu, Fanzhen II-99
Liu, Feng I-402
Liu, Jia I-511, II-69, II-511
Liu, Jianwei I-611
Liu, Liqun I-313
Liu, Qing I-386
Liu, Tianlin II-559
Liu, Xiangyu II-149
Liu, Xuemin I-189
Liu, Yu-Hong II-277
Liu, Yushuai II-304

628 Author Index

Liu, Zheng I-209
Lo, Chin-Chun II-119
Lo, Yao-Chung II-119
Long, Qian I-209
Lu, Hui I-131
Lu, Mingli II-312
Luo, Chaomin I-80, I-301
Luo, Dingsheng II-559
Luo, Jie I-99

Ma, Jing I-31
Ma, Zhujuan I-402
Mallipeddi, Rammohan I-140
Mansour, Nashat II-77
Mao, Feng I-88
Mao, Kefei I-131
Mao, Yanfen I-362
Margain, Lourdes II-519
Martinov, Georgi M. II-586
Martinova, Lilija I. II-586
Maruyama, Shohei II-3
Marwala, Tshilidzi I-561
Matsui, Tetsuro II-233
Michael, Ikechi I-337
Miloradović, Branko II-481
Mita, Seiichi I-209
Mo, Hongwei I-80, I-301
Mohd Salleh, Mohd Najib I-3
Mori, Hiroyuki II-465
Mullick, Dhruv II-597

Nagpal, Sushama II-597
Ndjiongue, Alain Richard I-561
Nehaniv, Chrystopher L. I-349
Ngo, David C.L. II-395
Nikishechkin, Petr A. II-586
Ning, Yi II-403, II-615
Niranatlamphong, Winyu II-330
Nishimura, Norihiro II-233
Niu, Ben I-511, II-69

Ochoa, Alberto II-519
Ohnishi, Kei I-40
Okano, Junya I-40
Orito, Yukiko I-370

Pamulapati, Trinadh I-140
Pan, Hang II-403, II-578
Pei, Yan II-15

Peng, Chao II-475
Phoa, Frederick Kin Hing II-87
Phon-Amnuaisuk, Somnuk I-349
Privalov, Alexander II-567

Qiao, Baihao II-31
Qin, Yong I-458
Qin-Qin, Fan I-218
Qu, Boyang II-31
Qu, Wei I-277
Quirce, Javier I-543

Ramos Landeros, Jacqueline II-519
Retchkiman Konigsberg, Zvi I-22
Riekert, Zühnja I-225
Ryzhikov, Ivan II-23, II-49

Sajimon, P.C. II-502
Sakai, Setsuko I-411
Salleh, Mohd Najib Mohd II-285
Samat, Nurul Ashikin II-285
Sato, Hiroyuki I-573
Sato, Mayuko II-295
Sato, Yuji I-158
Semenkin, Eugene II-23, II-49, II-269
Serani, Andrea I-63
Shannon, Peter David I-349
Shen, Furao I-301
Shen, Jianqiang I-420
Shen, Xiaoning II-371
Shen, Zhe-Ping I-174
Shi, Jian II-312
Shi, Jinhua I-131
Shi, Shumin II-547
Shi, Yuhui I-3
Shi, Zhixin II-529
Shirazi, Muhammad Zeeshan I-140
Shola, Peter Bamidele I-337
Si, Chengyong I-420
Snyman, Frikkie II-57
Sokolov, Sergey V. II-586
Someya, Hiroshi I-370
Song, Bo II-109
Song, Min-Han I-466
Song, Shuangyu I-531
Sørli, Jon-Vegard II-433
Stanovov, Vladimir II-269
Su, Rihai II-547
Suárez, Patricia II-176

Author Index 629

Suma, L.S. I-320
Sumikawa, Yasunobu II-210
Sun, Fengyang I-166
Sun, Xiaoyan II-40
Sun, Yifei I-180

Tagawa, Kiyoharu I-440
Takadama, Keiki I-573
Takagi, Hideyuki I-477
Takahama, Tetsuyuki I-411
Takimoto, Munehiro II-210
Tan, Lijing II-69
Tan, Ying I-493, I-601, II-149
Tang, Kun I-166
Tang, Qirong I-394, II-199
Tang, Rongjun I-386
Tao, Ming I-458
Tao, Yanyun II-351
Tatsukawa, Tomoaki II-3
Teng, Lin I-593
Ting, Chuan-Kang I-293
Toda, Keita I-552
Tong, Changfei I-99
Troshina, Anna I-50
Tsai, Meng-I II-277
Tuba, Eva I-501
Tuba, Milan I-501
Twala, Bhekisipho I-561

Umenai, Yuta I-573
Uwano, Fumito I-573

Veluvolu, Kalyana Chakravarthy I-140
Vinod Chandra, S.S. I-320, II-502
Vishnevskaya, Sophia II-269

Wang, Changhong I-585
Wang, Gai-Ge I-106
Wang, Hong I-511, II-69, II-511
Wang, Kejie I-99, I-618
Wang, Kuo-Hsiung I-238
Wang, Lei I-362, I-420, II-258
Wang, Lin I-166
Wang, Shi I-531
Wang, Tai-Chi II-87
Wang, Wenqing I-386
Wang, Xiaolei II-31
Wang, Xiaowei I-277

Wang, Xinrui I-519
Wang, Yipeng II-242
Wang, Yuanyuan I-611
Wang, Yue II-454
Wang, Yushan II-258
Wei, Tien-Hao II-119
Wei, Wenhong I-458
Weixu, Zhu II-141
Woo, Kam Tim II-167
Wu, Ching Fen II-538
Wu, Haihui II-109
Wu, Jiansheng II-359
Wu, Jinyan I-166
Wu, Qidi I-362
Wu, Shubiao I-618
Wu, Tsai-Hung II-445
Wu, Xihong II-559
Wu, Xingfang II-559
Wu, Xiuli II-250
Wu, Yali I-386, I-519

Xia, Hongwei I-585, I-611
Xiang, Dan II-351
Xiao, Junming II-31
Xiao, Qiong II-608
Xin, Bin II-242
Xinliang, Liu II-338
Xiong, Juan II-321
Xu, Benlian II-312
Xu, Lifang I-80
Xu, Yingruo I-519
Xu, Yuquan I-209
Xu, Zhe I-531

Yachi, Hanaki I-531
Yampray, Karuna II-330
Yang, Bo I-166
Yang, Chen II-511
Yang, Guangfei I-328
Yang, Huiyan I-328
Yang, Lingkai II-371
Yang, Minghao II-403, II-578, II-615
Yang, Weibo II-494
Yang, Zhile I-71
Yao, Chenglong I-402
Yao, Junliang I-386
Yating, Chen I-429
Yeom, Kiwon I-285

630 Author Index

Yi, Wenjie I-511, II-69
Yin, Peng-Yeng II-445
Yin, Shoulin I-593
Yong, Yoke Leng II-395
Yu, Fangchao II-199
Yu, Jun I-477
Yu, Yang I-531
Yuen, Cheuk Ho II-167

Zhan, Yongsong II-403, II-529, II-578,
II-615

Zhang, Dali I-585
Zhang, Feng I-180
Zhang, JunQi I-485
Zhang, Ke II-529
Zhang, Limin I-257
Zhang, Min-Xia II-454
Zhang, Naiqian II-529
Zhang, Pei II-371
Zhang, Pengfei II-40
Zhang, Shudong II-158
Zhang, Teng I-88
Zhang, Yong II-40, II-371
Zhang, Yuan II-199, II-387
Zhang, Yuchen I-601
Zhang, Yue II-304

Zhang, Yuzhen II-351
Zhang, Zili II-99
Zhao, Jiao I-80
Zhao, Meng II-547
Zhao, Xiaodong II-387
Zhao, Xinchao I-493
Zheng, Xiaomei II-258
Zheng, Yu-Jun II-454
Zhiyong, Yuan II-141
Zhong, Chao I-585
Zhou, Hui II-615
Zhou, Jin I-166
Zhou, Lijuan II-158
Zhou, MengChu I-485
Zhou, Qianlin I-131
Zhou, Yu II-185
Zhu, Erzhou I-402
Zhu, Jihong II-312
Zhu, Junjie I-618
Zhu, Peiyi II-312
Zhu, Qingjie II-529, II-578
Zhu, ShanWen I-485
Zhu, Yongsheng II-31
Zou, Xuan I-420
Zuo, Lulu II-511
Zuo, Xingquan I-493

Author Index 631

	Preface
	Organization
	Contents -- Part I
	Contents – Part II
	Theories and Models of Swarm Intelligence
	Comparative Analysis of Swarm-Based Metaheuristic Algorithms on Benchmark Functions
	1 Introduction
	2 Swarm-Based Metaheuristic Algorithms
	3 Experiments
	4 Results Analysis
	5 Conclusion
	References

	A Mathematical Model of Information Theory: The Superiority of Collective Knowledge and Intelligence
	Abstract
	1 Algebraic Structure of Knowledge
	2 The Dynamic System
	3 The Value of Knowledge
	4 Collective Knowledge
	5 Maximal Knowledge: The Hypersurface
	6 Through Knowledge: Intelligence
	7 Collective Intelligence
	8 Extending Intelligence: Wisdom
	9 Conclusions
	References

	Modelling and Verification Analysis of the Predator-Prey System via a First Order Logic Approach
	1 Introduction
	2 First Order Logic Background
	3 Unsatisfiability Methods
	3.1 Davis and Putnam Rules
	3.2 The Resolution Principle

	4 Predator-Prey System
	5 Conclusions
	References

	Flock Diameter Control in a Collision-Avoiding Cucker-Smale Flocking Model
	1 Introduction
	2 Preliminaries
	2.1 Definition of Flocking
	2.2 Collision Avoidance

	3 Flock Diameter Control
	3.1 Cohesive Force
	3.2 Modified Cucker-Smale System

	4 Simulation Results
	4.1 Effect of Cohesive Force Coefficient
	4.2 Effect of Initial Field Size
	4.3 Effect of Collision Distance

	5 Conclusions and Future Work
	References

	Building a Simulation Model for Distributed Human-Based Evolutionary Computation
	1 Introduction
	2 Simulation Model
	2.1 Fitness Function and Evolutionary Operators of Humans
	2.2 Information Sharing Method Using Identifiers Representing Human Interests
	2.3 Human Movement
	2.4 Timing of Human to Create a Solution Candidate

	3 Simulation
	3.1 Simulation Scenario
	3.2 Simulation Results

	4 Related Work
	5 Concluding Remarks
	References

	Model of Interruptions in Swarm Unit
	1 Introduction
	2 Time Characteristics Interruption-Free Algorithm
	3 Model of Algorithm Interpretation at the Presence of Interruptions
	4 Interruption Model as Semi-Markov Process
	5 Conclusion
	References

	Novel Swarm-Based Optimization Algorithms
	Dolphin Pod Optimization
	1 Introduction
	2 Dolphin Pod Optimization Algorithm
	3 DPO Setting Parameters
	4 Performance Metrics
	5 Numerical Results
	5.1 Analytical Benchmark Functions
	5.2 Hull-Form SBDO Problems

	6 Conclusions
	References

	Teaching-Learning-Feedback-Based Optimization
	1 Introduction
	2 Standard TLBO Algorithm
	2.1 Teacher Phase
	2.2 Learner Phase

	3 A Novel TLBO with Feedback Learning Phase (TLFBO) Algorithm
	4 Experiments and Test Results
	4.1 Benchmark Functions
	4.2 Parameters Determination
	4.3 Results and Discussion

	5 Conclusion
	References

	Magnetotactic Bacteria Optimization Algorithm Based on Moment Interaction Energy
	Abstract
	1 Introduction
	2 The Magnetotactic Bacteria Optimization Algorithm
	3 An Improved Magnetotactic Bacteria Optimization Algorithm
	4 Experimental Setting and Results Analysis
	5 Conclusions
	Acknowledgements
	References

	A Guide Sign Optimization Problem for an Added Road Based on Bird Mating Optimizer
	Abstract
	1 Introduction
	2 Problem Description
	2.1 Mathematical Model of Guide Signs
	2.2 Modeling of Guide Sign Optimization Problem for an Added Road

	3 Solution Based on BMO
	3.1 Coding for Feasible Solution
	3.2 Objective Function
	3.3 Mating Mode of BMO
	3.4 Mutation Mode of BMO

	4 Case Study
	5 Conclusion
	Acknowledgement
	References

	LGWO: An Improved Grey Wolf Optimization for Function Optimization
	Abstract
	1 Introduction
	2 Lévy-Flight Grey Wolf Optimization (LGWO)
	3 Experimental Results and Discussions
	4 Conclusions
	Acknowledgements
	References

	An Improved Monarch Butterfly Optimization with Equal Partition and F/T Mutation
	Abstract
	1 Introduction
	2 Related Work
	3 Monarch Butterfly Optimization
	4 Improving MBO with Equal Partition and F/T Mutation
	4.1 Equal Partition
	4.2 Mutation

	5 Simulation Results
	6 Discussion and Conclusions
	Acknowledgements
	References

	Particle Swarm Optimization
	A Scalability Analysis of Particle Swarm Optimization Roaming Behaviour
	1 Introduction
	2 Particle Swarm Optimization Algorithms
	2.1 The Gbest PSO Algorithm
	2.2 The Constriction PSO Algorithm
	2.3 The Barebones PSO Algorithm
	2.4 The Guaranteed Convergence PSO Algorithm

	3 Empirical Evaluation of PSO Roaming Behaviour
	3.1 Investigation of Particle Roaming Behaviour Outside of the Feasible Search Space
	3.2 Investigation of Particle Roaming Behaviour to Find Feasible Solutions Outside of the Initialization Space

	4 Conclusion
	References

	The Analysis of Strategy for the Boundary Restriction in Particle Swarm Optimization Algorithm
	Abstract
	1 Introduction
	2 The Boundary Restriction Strategy in PSO
	3 Experiment and Analysis
	3.1 The Analysis of the Strategy that Putting the Particles Beyond the Search Space on the Boundary
	3.2 The Analysis of the Random Updating Strategy
	3.3 Summary of the Experiments

	4 Conclusion
	Acknowledgments
	References

	Particle Swarm Optimization with Ensemble of Inertia Weight Strategies
	Abstract
	1 Introduction
	2 Literature Survey
	2.1 Standard PSO
	2.2 Different Inertia Weight Strategies

	3 Proposed Method
	4 Experimental Setup and Simulation Results
	5 Conclusion
	Acknowledgment
	References

	Hybrid Comprehensive Learning Particle Swarm Optimizer with Adaptive Starting Local Search
	Abstract
	1 Introduction
	2 The Proposed ALS-HCLPSO Algorithm
	2.1 PSO Algorithm and Local Search Method
	2.2 Motivation of Adaptive Starting LS
	2.3 Adaptive Strategy Based on Quasi-Entropy
	2.4 Framework of ALS-HCLPSO Algorithm

	3 Numerical Experiments and Analysis
	3.1 Benchmark Functions and Experimental Settings
	3.2 Convergence Precision
	3.3 Comparison with Other PSO Variants

	4 Conclusions
	Acknowledgements
	References

	A Bare Bones Particle Swarm Optimization Algorithm with Dynamic Local Search
	1 Introduction
	2 Related Work
	3 Proposal of Bare Bones Particle Swarm Optimization with Dynamic Local Search
	3.1 Initialization
	3.2 Dynamic Local Search System
	3.3 Evaluation

	4 Experiment
	4.1 Experimental Method
	4.2 Experimental Results and Discussion

	5 Conclusion
	References

	Improving Multi-layer Particle Swarm Optimization Using Powell Method
	1 Introduction
	2 Particle Swarm Optimization
	2.1 Related Works
	2.2 Challenge

	3 Methodology
	3.1 Strategy of MLPSO-Powell
	3.2 Details of MLPSO-Powell

	4 Experiments
	4.1 Benchmark Functions and Compared Algorithms
	4.2 Convergence Analysis

	5 Conclusions
	References

	On the Improvement of PSO Scripts for Slope Stability Analysis
	Abstract
	1 Introduction
	2 PSO and Slope Stability Analysis
	3 Improvement of PSO Scripts
	4 Results and Discussion
	5 Summary and Conclusions
	References

	A High-Dimensional Particle Swarm Optimization Based on Similarity Measurement
	1 Introduction
	2 Similarity Measure of High-dimensional Spatial Data
	3 High-Dimensional PSO Algorithm
	3.1 Definition of Lclose Distance
	3.2 PSO Algorithm Based on Lclose Distance Space

	4 Experimental Study
	4.1 Experimental Process and Parameter Setting
	4.2 Experimental Results

	5 Conclusions
	References

	A Center Multi-swarm Cooperative Particle Swarm Optimization with Ratio and Proportion Learning
	Abstract
	1 Introduction
	2 The Proposed MCPSO-RP
	2.1 Reinterpret Learning Process with HPST and CLT
	2.2 CMCPSO-RP

	3 Experiment and Result
	3.1 Benchmarks
	3.2 Experimental Setting
	3.3 Experimental Results

	4 Conclusions and Future Work
	References

	Applications of Particle Swarm Optimization
	A Discrete Particle Swarm Algorithm for Combinatorial Auctions
	Abstract
	1 Introduction
	2 Problem Formulation
	3 Particle Swarm Approach
	4 Discrete Particle Swarm Algorithm
	5 Numerical Results
	6 Conclusions
	Acknowledgments
	References

	Registration of GPS and Stereo Vision for Point Cloud Localization in Intelligent Vehicles Using Particle Swarm Optimization
	1 Introduction
	2 Literature Review
	3 Depth-Based Vehicle Localization in Point Cloud Maps
	3.1 Algorithm Components
	3.2 Algorithm: Sensor Fusion
	3.3 Algorithm: Online Phase

	4 Experimental Results
	4.1 Offline Phase
	4.2 Online Phase

	5 Conclusion and Future Works
	References

	Immersed Tunnel Element Translation Control Under Current Flow Based on Particle Swarm Optimization
	Abstract
	1 Introduction
	2 Translation Control of Tunnel Element
	2.1 Translation Velocity
	2.2 Resistance of Immersed Tunnel Element Translation
	2.3 Towing Force

	3 Translation Control Model
	4 Particle Swarm-Based Translation Control Optimization of Tunnel Element
	5 Simulation
	6 Conclusion
	Acknowledgment
	References

	Solving Inverse Kinematics with Vector Evaluated Particle Swarm Optimization
	1 Introduction
	2 Background
	2.1 Inverse Kinematics
	2.2 Multi-objective Optimization
	2.3 Particle Swarm Optimization Algorithms

	3 Solving Inverse Kinematics Using PSO
	3.1 PSO for Inverse Kinematics
	3.2 PSO with a CWA Fitness Function for Inverse Kinematics
	3.3 VEPSO for Inverse Kinematics

	4 Experimental Approach
	4.1 Algorithms
	4.2 General Configurations
	4.3 Algorithm Specific Configurations
	4.4 VEPSO
	4.5 Experimental Approach

	5 Results
	6 Conclusion
	References

	Particle Swarm Optimization for the Machine Repair Problem with Working Breakdowns
	Abstract
	1 Introduction
	2 Steady-State Equations
	2.1 Steady-State Equations
	2.2 Matrix-Analytic Method

	3 Cost Analysis
	3.1 Cost Function

	4 Numerical Results
	5 Conclusions
	References

	Intelligent Behavioral Design of Non-player Characters in a FPS Video Game Through PSO
	1 Introduction
	2 Particle Swarm Optimization
	3 Video Game and NPCs Design and Implementation
	4 Experimental Results
	5 Conclusions and Future Work
	References

	Ant Colony Optimization
	An Improved Ant Colony Optimization with Subpath-Based Pheromone Modification Strategy
	Abstract
	1 Introduction
	2 The Basic Model of SPB-ACO
	3 SPB-ACO with a Subpath-Based Pheromone Modification Strategy
	3.1 Rank Subpaths and Superimpose Pheromone
	3.2 Adaptive Adjustment of Involved Subpaths

	4 Experimental Tests
	4.1 Test of SPB Rule
	4.2 Test of Comparing the SPB-ACO with ACS

	5 Conclusion
	References

	Decentralized Congestion Control in Random Ant Interaction Networks
	1 Background
	2 Navigation
	3 Decentralized Congestion Avoidance Strategy
	4 Recruitment
	5 Results and Discussion
	6 Conclusions
	References

	An Energy-Saving Routing Strategy Based on Ant Colony Optimization in Wireless Sensor Networks
	Abstract
	1 Introduction
	2 The Energy-Saving Routing Strategy Based on ACO
	2.1 State Transition Optimization Rules
	2.2 The Reward and Punishment Mechanism
	2.3 Implementation Steps of DERS-ACO

	3 Simulation
	3.1 The Iterations Performance of First Time to Find the Best Path
	3.2 The Average Length of the Best Path Performance During N{\hbox{c}} Times Iterations
	3.3 The Performance of the Path Avenue Length and the Best Path Length that Every Ant Has Passed During 100 Times Iterations

	4 Conclusions
	Acknowledgements
	References

	Pheromone Inspired Morphogenic Distributed Control for Self-organization of Autonomous Aerial Robots
	1 Introduction
	2 Related Work
	3 Aerial Robot Model
	4 Self-organizing Formation Algorithm
	4.1 Robot Transition Cycle
	4.2 Hybrid Robot Positioning Algorithm
	4.3 Flocking Movement Control
	4.4 Pheromone Model for Density Control
	4.5 Density Control and Error Correction

	5 Discussion
	6 Conclusion and Future Work
	References

	Solving the Selective Pickup and Delivery Problem Using Max-Min Ant System
	1 Introduction
	2 Problem Formulation
	3 Methodology
	3.1 Route Construction
	3.2 Pheromone Distribution

	4 Experimental Results
	5 Conclusions
	References

	An Improved Ant-Driven Approach to Navigation and Map Building
	1 Introduction
	2 The HDS-Based ACO Algorithm
	3 Map Building and DWA-Driven Local Navigation
	4 Heading Direction Motion Based Navigation
	5 Simulation and Comparison Studies
	5.1 The Hybrid Model in a Bar-Like Environment
	5.2 The Hybrid Model in a Room-Like Environment

	6 Conclusion
	References

	Artificial Bee Colony Algorithms
	A Multi-cores Parallel Artificial Bee Colony Optimization Algorithm Based on Fork/Join Framework
	Abstract
	1 Introduction
	2 Java Fork/Join Framework
	3 Multi-cores Parallel Artificial Bee Colony (MPABC) Algorithm
	4 Experimental Analyses
	4.1 Benchmark Functions
	4.2 Parallel Performance Evaluation Indexes
	4.3 Experimental Results Analysis

	5 Conclusions
	Acknowledgement
	References

	Identification of Common Structural Motifs in RNA Sequences Using Artificial Bee Colony Algorithm for Optimization
	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Motif Generation Phase
	3.2 Optimization Phase-Artificial Bee Colony Algorithm

	4 Results and Discussion
	5 Conclusion
	References

	A Mixed Artificial Bee Colony Algorithm for the Time-of-Use Pricing Optimization
	1 Introduction
	2 Time-of-Use (TOU) Pricing Model
	3 Mixed Artificial Bee Colony (mABC) Algorithm
	3.1 Optimization Targets
	3.2 Mixed Artificial Bee Colony (mABC) in Details

	4 Experiments
	4.1 Experimental Scenario
	4.2 Experimental Results and Analysis

	5 Conclusion and Future Work
	References

	Optimization of Office-Space Allocation Problem Using Artificial Bee Colony Algorithm
	1 Introduction
	2 Office-Space Allocation Problem (OFA)
	3 Artificial Bee Colony Algorithm
	4 The Proposed ABC for Office-Space Allocation Problem (OFA)
	4.1 Initialize the ABC and OFA Parameters
	4.2 Initialize the Food Source Memory
	4.3 Send the Employed Bee to the Food Sources
	4.4 Send the Onlooker Bee to the Food Sources
	4.5 Send the Scout to Search for Possible New Food Sources
	4.6 Stopping Condition

	5 Computational Experiments, Results and Discussions
	5.1 Experimental Design
	5.2 Experimental Results
	5.3 Comparison with Other Approaches

	6 Conclusion
	References

	Genetic Algorithms
	Enhancing Exploration and Exploitation of NSGA-II with GP and PDL
	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Representation of a PDL Genetic Program
	2.2 Designing Objective Functions
	2.3 Initialisation, Termination and Parameters

	3 Modified NSGA-II
	3.1 Modifications to Enhancing Exploration
	3.2 Enhancing Exploitation Using a Modified to Promotion of Crowding Distance Outliers (MCDO)

	4 Experiment Design
	5 Results
	6 Conclusion and Future Work
	References

	A Novel Strategy to Control Population Diversity and Convergence for Genetic Algorithm
	Abstract
	1 Introduction
	2 Genetic Algorithm
	2.1 The Principle of Genetic Algorithm
	2.2 Implementation Steps of GA

	3 An Improved GA Based on Cooperative Game
	3.1 Cooperative Game
	3.2 CGGA

	4 Simulation and Discussion
	5 Conclusions
	References

	Consecutive Meals Planning by Using Permutation GA: Evaluation Function Proposal for Measuring Appearance Order of Meal's Characteristics
	1 Introduction
	2 Consecutive Meals Planning
	3 Evaluation Function
	4 Permutation GA
	4.1 Genetic Representation and Fitness Value
	4.2 Genetic Operations

	5 Numerical Experiments
	5.1 Experimental Setting and Parameters
	5.2 Results and Discussion

	6 Conclusion
	References

	Improving Jaccard Index Using Genetic Algorithms for Collaborative Filtering
	1 Introduction
	2 Related Work
	3 The Proposed Index
	4 Performance Experiments
	4.1 Design of Experiments
	4.2 Performance Results

	5 Conclusion
	References

	Optimizing Least-Cost Steiner Tree in Graphs via an Encoding-Free Genetic Algorithm
	Abstract
	1 Introduction
	2 Mathematical Model of Steiner Tree Problem
	3 Tree-Based Genetic Algorithm for Evolving Steiner Tree
	3.1 Representation of Candidate Steiner Trees
	3.2 Genetic Operators
	3.3 Primary Procedure During One Generation

	4 Simulation
	4.1 Comparison with Other Bio-Inspired Algorithms
	4.2 Comprehensive Investigation on Convergence

	5 Conclusion
	Acknowledgements
	References

	An Energy Minimized Solution for Solving Redundancy of Underwater Vehicle-Manipulator System Based on Genetic Algorithm
	1 Introduction
	2 Problem Description
	3 Constraints
	3.1 Dynamic Modeling of UVMS
	3.2 Solution for Kinematic Redundancy

	4 Solution Optimized by Genetic Algorithm
	5 Numerical Example
	6 Conclusion
	References

	Study of an Improved Genetic Algorithm for Multiple Paths Automatic Software Test Case Generation
	Abstract
	1 Introduction
	2 Algorithm Implementation
	2.1 Fitness Function Design
	2.2 Genetic Operator Construction

	3 Algorithm Steps
	4 Experiments and Results
	4.1 The Coverage of the Multi-path Algorithm
	4.2 Test Case Generation Efficiency

	5 Conclusion and Future Work
	Acknowledgments
	References

	Differential Evolution
	An Adaptive Differential Evolution with Learning Parameters According to Groups Defined by the Rank of Objective Values
	1 Introduction
	2 Related Works
	3 Optimization by Differential Evolution
	3.1 Optimization Problems
	3.2 Differential Evolution
	3.3 JADE

	4 Proposed Method: Group-Based Learning
	5 Numerical Experiments
	5.1 Test Problems and Experimental Conditions
	5.2 Experimental Results

	6 Conclusion
	References

	Comparison of Differential Evolution Algorithms on the Mapping Between Problems and Penalty Parameters
	Abstract
	1 Introduction
	2 Differential Evolution (DE)
	3 Comparison of Differential Evolution on the Mapping
	3.1 Basic Idea
	3.2 Penalty Parameter Setting

	4 Experimental Study
	4.1 Experimental Settings
	4.2 Experimental Results
	4.3 Comparison

	5 Conclusion
	Acknowledgments
	References

	Cooperation Coevolution Differential Evolution with Gradient Descent Strategy for Large Scale
	Abstract
	1 Introduction
	2 Background
	2.1 Cooperative Coevolution (CC)
	2.2 Cooperation Coevolution Differential Evolution Grouping (EACC-G)

	3 Proposed CCDE/GDS Algorithm
	3.1 Cooperative Coevolution (CC)
	3.2 Gradient Descent Strategy (GDS)
	3.3 CCDE/GDS

	4 Benchmark Tests and Comparisons
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusion
	References

	Chebyshev Inequality Based Approach to Chance Constrained Optimization Problems Using Differential Evolution
	1 Introduction
	2 Problem Formulation of CCOP
	3 Proposed Approach to CCOP
	3.1 Chebyshev Inequality from Samples
	3.2 Upper-Bound Constrained Optimization Problem (UCOP)

	4 Basic Differential Evolution for UCOP
	5 Three Sample-Saving Techniques
	5.1 Accumulative Sampling
	5.2 Reliability Relaxation
	5.3 Upper-Bound Cut

	6 Numerical Experiment
	6.1 Comprehensive Example of CCOP
	6.2 Effects of Sample-Saving Techniques

	7 Conclusion
	References

	Solving the Distributed Two Machine Flow-Shop Scheduling Problem Using Differential Evolution
	1 Introduction
	2 The Distributed Two Machine Flow-Shop Scheduling Problem (DTMFSP)
	3 Proposed Differential Evolution-Based Approach
	3.1 Encoding and Decoding Solutions to the DTMFSP

	4 Experimental Framework and Parameter Tuning
	5 Results
	6 Conclusions and Future Work
	References

	A Multi-objective Differential Evolution for QoS Multicast Routing
	Abstract
	1 Introduction
	2 Related Work
	3 Mobile Ad Hoc Networks Model and Problem Description
	4 MODEMR Algorithm
	4.1 Coding Scheme
	4.2 Initialization Scheme
	4.3 Mutation Scheme
	4.4 Crossover Scheme
	4.5 Selection Scheme

	5 Experimental Results and Analysis
	6 Conclusion
	Acknowledgement
	References

	Energy-Saving Variable Bias Current Optimization for Magnetic Bearing Using Adaptive Differential Evolution
	Abstract
	1 Introduction
	2 AMB Positioning System
	3 Adaptive DE Algorithm
	4 Proposed Control Strategy
	5 Experimental Results
	5.1 Experimental Setup
	5.2 Experimentation

	6 Conclusion
	References

	Fireworks Algorithm
	Acceleration for Fireworks Algorithm Based on Amplitude Reduction Strategy and Local Optima-Based Selection Strategy
	1 Introduction
	2 Improvements of Fireworks Algorithm
	2.1 Original Fireworks Algorithm
	2.2 Proposed Improvements

	3 Experimental Evaluations
	4 Discussions
	5 Conclusion
	References

	From Resampling to Non-resampling: A Fireworks Algorithm-Based Framework for Solving Noisy Optimization Problems
	1 Introduction
	2 Background
	2.1 Optimization Problems Subject to Noise
	2.2 Two Resampling Methods
	2.3 Fireworks Algorithms
	2.4 CoFFWA

	3 A Fireworks Algorithm-Based Framework for Noisy Optimization
	3.1 Resampling Methods
	3.2 The Consensus of Top Sparks
	3.3 From Resampling to Non-resampling

	4 Experiments
	4.1 Experimental Setting
	4.2 Experimental Results

	5 Conclusions
	References

	Elite-Leading Fireworks Algorithm
	Abstract
	1 Introduction
	2 dynFWA
	2.1 Calculate the Numbers of Explosion Sparks
	2.2 Calculate the Explosion Amplitude
	2.3 Generate the Explosion Sparks

	3 Elite-Leading Fireworks Algorithm (ELFWA)
	3.1 CF Operations
	3.2 Non-CFs Operations

	4 Experiment and Analysis
	4.1 Experimental Setup
	4.2 Experimental Results and Analysis

	5 Conclusion and Future Work
	Acknowledgments
	References

	Guided Fireworks Algorithm Applied to the Maximal Covering Location Problem
	1 Introduction
	2 Mathematical Formulation of the MCLP
	3 Guided Fireworks Algorithm
	4 The Proposed Algorithm
	5 Experimental Results
	6 Conclusion
	References

	Brain Storm Optimization Algorithm
	An Improved Brain Storm Optimization with Learning Strategy
	Abstract
	1 Introduction
	2 Original Brain Storm Optimization Algorithm
	3 Brain Storm Optimization with Learning Strategy
	4 Benchmark Tests and Experimental Results
	4.1 Test Problems
	4.2 Parameter Settings
	4.3 Results and Analysis

	5 Conclusions
	Acknowledgment
	References

	Difference Brain Storm Optimization for Combined Heat and Power Economic Dispatch
	Abstract
	1 Introduction
	2 The Formulation of Combined Heat and Power Economic Dispatch Problem
	2.1 The Objective Function of CHPED Problem
	2.2 The Constraints of CHPED Problem

	3 Difference Brainstorm Optimization Algorithm
	3.1 Brain Storm Optimization Algorithm
	3.2 Difference Brainstorm Optimization Algorithm

	4 DBSO Algorithm for Combined Heat and Power Economic Dispatch
	5 Experiments and Discussions
	6 Conclusions
	Acknowledgments
	References

	Cuckoo Search
	Multiple Chaotic Cuckoo Search Algorithm
	1 Introduction
	2 Cuckoo Search Algorithm
	3 Multiple Chaotic Cuckoo Search Algorithm
	4 Experimental Results and Discussions
	5 Conclusions
	References

	Cuckoo Search Algorithm Approach for the IFS Inverse Problem of 2D Binary Fractal Images
	1 Introduction
	2 Mathematical Concepts and Definitions
	2.1 Iterated Function Systems

	3 The Cuckoo Search Algorithm
	4 The Proposed Method
	5 Experimental Results
	6 Conclusions and Future Work
	References

	Solving the Graph Coloring Problem Using Cuckoo Search
	1 Introduction
	2 Background
	2.1 Lévy Flight Distribution
	2.2 Cuckoo Search Algorithm
	2.3 Graph Coloring Problem
	2.4 Related Research

	3 Proposed Method
	3.1 Discrete Lévy Flight Operator
	3.2 Modified Parasitism Operator

	4 Experiments
	4.1 Parameter Setting
	4.2 Evaluation Experiment

	5 Conclusion
	References

	A Deep Learning-Cuckoo Search Method for Missing Data Estimation in High-Dimensional Datasets
	1 Introduction
	2 Proposed Approach
	3 Performance Analysis and Results
	4 Conclusion
	References

	Strategies to Improve Cuckoo Search Toward Adapting Randomly Changing Environment
	1 Introduction
	2 Cuckoo Search
	3 Cuckoo Search for Dynamic Environment
	3.1 Short-Range Searching strategy
	3.2 Local Solution Comparison Strategy
	3.3 Concurrent Solution Generating Strategy
	3.4 Flow of D-CS

	4 Experiment
	4.1 Problem
	4.2 Experimental Settings

	5 Results and Discussion
	6 Conclusion
	References

	Firefly Algorithm
	Firefly Algorithm Optimized Particle Filter for Relative Navigation of Non-cooperative Target
	1 Introduction
	2 Relative Navigation
	2.1 Process Model
	2.2 Measurement Model

	3 Particle Filter Analysis
	4 Firefly Algorithm Optimized Particle Filter
	4.1 Firefly Algorithm
	4.2 Improved Particle Filter Based on FA

	5 Experiments and Discussions
	6 Conclusions
	References

	An Improved Discrete Firefly Algorithm Used for Traveling Salesman Problem
	Abstract
	1 Introduction
	2 The Firefly Algorithm
	3 The Improved Firefly Algorithm for TSP
	4 Experiments and Results
	4.1 The Effect of Light Intensity Absorption Coefficient \gamma on Firefly Algorithm
	4.2 The Comparison Experiment

	5 Conclusions
	References

	Firefly Clustering Method for Mining Protein Complexes
	Abstract
	1 Introduction
	2 PPI Network Preprocessing
	3 Firefly Clustering Method
	3.1 Firefly Representation
	3.2 Clustering Objective Function
	3.3 Firefly Movement Strategy

	4 Experiment Results
	5 Conclusion
	Acknowledgments
	References

	Improved Two-Dimensional Otsu Based on Firefly Optimization for Low Signal-to-Noise Ratio Images
	Abstract
	1 Introduction
	2 The Proposed Algorithm
	3 Experiment Results and Analysis
	4 Conclusion
	Acknowledgments
	References

	3D-FOAdis: An Improved Fruit Fly Optimization for Function Optimization
	Abstract
	1 Introduction
	2 Three-Dimensional Fruit Fly Algorithm with Disturbance (3D-FOAdis)
	3 Experimental Results and Discussions
	4 Conclusions
	Acknowledgements
	References

	Author Index

