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Abstract The environmental pollutions generated by human activities are impor-
tant concerns that environmental risk assessment procedures have the purpose to
evaluate and mitigate the effects. Microorganisms are among the first impacted by
human generated pollutions. Furthermore, because they are essential actors in
ecosystem functioning the evaluation of the pollution effects on microorganisms is
of paramount importance. Their response may serve as proxy to report the effects
on, and the recovering capacities of, the ecosystem. The behaviour of microor-
ganisms in response to chemical pollution has been largely studied. In this chapter,
we introduce the mechanisms underlying the microbial adaptation capacities
involved in response to pollutants. We also discuss the basic knowledge inspiring
microbial ecotoxicological tools reporting the pollutant effects that have been
developed at the different biological organization levels, from genes and cellular
processes to population and microbial community responses.
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4.1 Introduction

Modifications in microbial community structure and composition have been largely
reported after the addition of pollutant, whether organic (Bordenave et al. 2004,
2007; Hjorth et al. 2007; Vercraene-Eairmal et al. 2010; Chronopoulou et al. 2013;
Stauffert et al. 2013, 2014, Stauffert et al. 2015a, b; Cravo-Laureau and Duran
2014; Ben Said et al. 2015) or metallic/metalloid (Duran et al. 2003, 2008; Viret
et al. 2006; Dominique et al. 2007; Ramond et al. 2009). In agreement with these
studies, specific microbial communities have been described in polluted environ-
ments according to the nature of the pollutant (Bruneel et al. 2008; Paissé et al.
2008; Volant et al. 2014; Bargiela et al. 2015; Duran et al. 2015; Rodriguez-R et al.
2015; Misson et al. 2016). Such observations made at the microbial community
level are of ecological relevance providing information on the behaviour of
microbial communities in response to pollutants. The information indicating whe-
ther microbial community composition is resistant, resilient, or functionally
redundant is of primary importance at the ecotoxicological point of view. It has
been proposed to include the modification of microbial community composition
into ecosystem process models in order to predict the response of ecosystem to
disturbances (Allison and Martiny 2008). Actually, the modification of microbial
community structures translates the metabolic versatility of microorganisms that is
expressed at the cellular and population levels by the capacities to resist, transform
and/or degrade the different classes of pollutants (Parales and Haddock 2004).
However, it is noteworthy that the degradation and transformation capacities also
depend on the interactions between microorganisms resulting in microbial networks
performing complex task as demonstrated for the degradation of hydrocarbon
compounds in marine environments (for review, see Head et al. 2006; McGenity
et al. 2012). Several studies have demonstrated that assessing microbial activities at
work during a pollution event provides relevant knowledge on the metabolic
capacities affected by a pollutant and on the potential for ecosystem recovery in
presence of metals (Bruins et al. 2000), pharmaceuticals (Barra Caracciolo et al.
2015) and other organic pollutants (Diepens et al. 2014). The metabolic versatility
of microorganisms is related to genetic adaptation mechanisms that include muta-
tions and horizontal gene transfer (Pieper et al. 2004; Stokes and Gillings 2011;
Guieysse and Wuertz 2012; Puglisi et al. 2012). A large number of genotoxicity
tests have been developed using microorganisms (Kokkali and van Delft 2014; Ma
et al. 2014) for toxicity evaluation of polluted environmental sites.

As outlined in Fig. 4.1, the microbial processes involved in the response to
pollutants provide the opportunity to develop microbial ecotoxicological tools at the
different biological organization levels from gene to ecosystem, which at the aca-
demic point of view are relevant to assess microbial mechanisms and address
ecological considerations respectively. In this chapter we summarize the microbial
responses at different biological levels, which provide the basic knowledge of tools
now available allowing ecotoxicological observations from genotoxicity tests to the
development of ecosystem process models.
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4.2 Microbial Physiology and Metabolism

The physiological responses of microorganisms to pollutants have been initially
mainly addressed using culture-based approaches. Many pollutants could be
degraded or transformed by microbial action, microorganisms being adapted and
selected to xenobiotic compounds introduced into the environment. In most cases,
biodegradation capacities or metabolic pathways have been described in model
strains. Thereby, physiological, morphological, taxonomic, and metabolic charac-
teristics have been studied to better understand potential capacities and behaviour of
microorganisms face to pollutants.

Microbial pathways involved in the degradation of organic pollutants have been
intensively studied for decades. Microorganisms have developed diverse strategies
to degrade organic pollutants in presence and in absence of molecular oxygen.
Under aerobic conditions the oxygen could be not only the final electron acceptor
but also a co-substrate for some catabolic processes, as described for some aromatic
compounds (Fuchs et al. 2011; Diaz et al. 2013). For example, bacteria have the
capacity to use polycyclic aromatic hydrocarbons (PAHs) as carbon and energy
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Fig. 4.1 Microbial ecotoxicological observations and biological organisation levels. The
microbial ecotoxicological tools are based on microbial processes including genetic adaptation,
physiological modifications and community responses that translate mechanisms operating at cell,
population and ecosystem levels respectively
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sources (see Chap. 7). These bacteria possess dioxygenases (RHD) which introduce
hydroxyl groups into the aromatic nucleus allowing to open the cycle, and then
complete mineralization of the compound is carried out via the tricarboxylic acid
cycle (Cerniglia 1992). In contrast, eukaryotic microorganisms possess cytochrome
P450 monooxygenases involved in detoxification pathways rather than in assimi-
lation processes of PAHs (Cerniglia 1992; Doyle et al. 2008). Under anaerobic
conditions, microorganisms have developed a wide range of catabolic strategies
(Zhang and Bennett 2005). Two mechanisms have been described for PAHs acti-
vation, including direct carboxylation or methylation followed by addition to
fumarate, then the degradation pathway further proceeds via b-oxidation after
activation with coenzyme (Co)A (Heider and Schühle 2013; Meckenstock et al.
2016; Rabus et al. 2016). Further examples of microbial adaptation to organic
pollutants are provided by the degradation capacities for polychlorinated biphenyls
(PCBs) and pesticides. PCBs degradation includes anaerobic reductive dechlori-
nation, an energy-yielding process where PCBs serve as electron acceptor, and
aerobic breakdown of the biphenyl structure through an oxidation reaction (Field
and Sierra-Alvarez 2008; Sowers and May 2013; Passatore et al. 2014). Regarding
pesticides, microbial metabolic transformation could be classified as a catabolic
response where pesticides serve as energy sources, as a detoxification metabolism
or as incidental metabolism when pesticides do not serve as energy sources
(Matsumura 1989).

Coping with organic compounds involves a metabolic response, connecting the
specific catabolic pathway with the energetic/biosynthetic metabolism of the cell,
and a stress response for protection from the toxic effect of organic pollutants and
adaptation to suboptimal growth conditions. Although extended research has been
carried out focusing on degradation, other physiological responses may constitute
important events preceding catabolism of organic pollutants, as bioavailability,
chemotaxis, intracellular accumulation, tolerance mediated by physical and bio-
chemical barriers (Sardessai and Bhosle 2002; Jain et al. 2005; Zhang and Bennett
2005; Chavez et al. 2006; Murinova and Dercova 2014; Parales et al. 2015; Duran
and Cravo-Laureau 2016). Knowledge on metabolism of organic pollutants is still
rather fragmentary and the diversity of bacterial strategies is highly underestimated.

Regarding metals, transformations could be related to energetic metabolisms,
when used as electron donor or acceptor. Resistance and detoxification mechanisms
have been also developed by microorganisms to cope with toxic metals. In some
cases, oxidases or reductases are synthesized transforming metals into a volatile
compound (e.g. mercury, Barkay and Wagner-Dobler 2005) or in less toxic com-
pounds (e.g. arsenic, Cervantes et al. 1994). Incidental or indirect mechanisms
(biomethylation, indirect reduction), as well as the presence of metal carriers, or
even the formation of structures able to immobilize toxic compounds have been
described (Prabhakaran et al. 2016). Research on the fate and ecological effects of
some emerging pollutants, as nanoparticles, has become a focus of attention only
recently (Concha-Guerrero et al. 2014; Cervantes-Avilés et al. 2016; Simonin et al.
2017). The interaction of nanoparticles with microorganisms is addressed in
Chap. 5.
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The impact of pollutants and degradation capacities reported in laboratory
studies reflect only potential degradation that may occur in the natural environment.
Environmental parameters, as temperature, salinity and pH, physical-chemical
properties of pollutants, their concentration, as well as concentration and diversity
of microorganisms, are all factors that play an important role in the biodegradation
process (Pieper 2005; Shahgholi and Gholamalizadeh Ahangar 2014; Duran and
Cravo-Laureau 2016). Therefore it is essential to consider all these parameters to
characterize in-depth physiological and metabolic response of microorganisms to
pollutants. Nowadays the integration of all these parameters via in situ studies is
still difficult. Thus, experimental ecology approaches have been developed; mim-
icking as close as possible the environmental conditions. These approaches com-
bine the advantages of lab-controlled systems with the possibility of extrapolation
to the real situation found in complex ecosystems (Cravo-Laureau and Duran
2014).

The physiological and metabolic versatility of microorganisms is a key advan-
tage in the response and in the adaptation to pollutants. Although culture-dependent
methods generally recover a small portion of the diversity from environments, they
are still a critical component of research and bioremediation development
(Watanabe 2001). However, proteogenomic, metabolomic, transcriptomic and
metagenomic studies revealed novel degradation pathways, allowing to consider
metabolism of viable but non-cultivable microorganisms. The use of integrative
culture-dependant and culture-independent methods, including omics approaches,
has enabled an unprecedented view of metabolic pathways and clues to the evo-
lution of degradation pathways and physiological and metabolic adaptation
strategies to changing environmental conditions (Cravo-Laureau and Duran 2014;
Ufarte et al. 2015).

4.3 Microbial Community Responses

Recent cultivation-independent genome approaches and sampling of previously
unexamined environments have revealed the unsuspected huge diversity of
microorganisms, both eukaryotic and prokaryotic (Hug et al. 2016; Lennon and
Locey 2016). This considerable taxonomic diversity strongly echoes their capa-
bilities to thrive in a large range compartments on earth where they ensure through
their activities the sustainability and functioning of the ecosystems (Azam 1998;
Field et al. 1998; Guerrero and Berlanga 2006; Pomeroy et al. 2007; Falkowski
et al. 2008; Van Der Heijden et al. 2008; Bardgett and Van Der Putten 2014). In the
environment microorganisms are assembled in communities of various degrees of
complexity. These assemblages result of complex interactions that maintain the
cohesion of the communities. Interactions are of two orders:
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– biotic interactions, either trophic or non-trophic, among microorganisms of the
community and among microorganisms and surrounding or host macroorgan-
isms: plants and animals.

– abiotic interactions defined by physical-chemical conditions relevant to the
environment in which the communities thrive.

Determining and predicting the effect of contaminants in natural environments,
that are the ultimate goals of ecotoxicology, involves to address complex biological
organization, communities, ecosystems, or landscapes and necessitate to cover large
spatial scales (Beketov and Liess 2012; Newman 2015). Also a critical issue in
ecotoxicology studies consists in disentangling the part of the response that is due
to the contaminant (either chemical or physical properties), that can be termed as a
direct effect, from that due to biological interactions among organisms, thus an
indirect effect (see Chap. 14 for more development). Investigating the impact of
pollutants on microbial communities are often addressed by two main approaches,
namely in situ studies where polluted sites are compared to reference sites or
investigated along gradients of contamination (Païssé et al. 2008; Volant et al.
2014), and microcosm or mesocosm studies that aimed at approaching environ-
mental conditions similar to those of natural ecosystems while keeping under
control their fluctuations (Vercraene-Eairmal et al. 2010; Paule et al. 2013; Stauffert
et al. 2013; Bour et al. 2015).

Although microorganisms have developed tremendous ranges of metabolic
capacities and stress-related pathways and strategies (see previous section and
Chap. 5), environmental pollutants such as toxic metals and hazardous organic
compounds constitute nevertheless important environmental pressures that may
have adverse effects on the metabolism and the survival of several taxa. Indeed
taxon owns only a limited fraction of whole microorganism metabolic repertoire
even though some taxa may exhibit larger metabolic capacities. In this case such
ecological versatility frequently allows the strains to cope with several pollutants
and face large ranges of environmental conditions (Brazilian National Genome
Project Consortium 2003; Nelson and Fraser 2004; Mongodin et al. 2006). Impact
of pollutants on microbial communities depends greatly on their chemical proper-
ties, bioavailability and persistence (Calvet 1989; Bonnet et al. 2007; Spagnuolo
et al. 2010; Xiao et al. 2013), as well as their physical properties that, in turn, can
modify the properties of the milieu (e.g. crude oil pollution, Dachs et al. 2000).

On the other side physical and chemical properties of the milieu influence also
the time of residence and the bioavailability of the pollutant in the environment
(Barriuso et al. 1996), for instance several authors demonstrated a clear relationship
between organic matter content in soils and the sequestration of pesticides (Chung
and Alexander 2002; Bogan and Sullivan 2003; Moreno-Jiménez et al. 2013;
Woignier et al. 2013). Pollution history at site is also determinant because microbial
community previously exposed to pollutant may be promptly mobilised in subse-
quent exposure, and, when effective, biodegradation of the pollutant can be
enhanced and can occur faster compared to an environment exposed for the first
time (Walker 1987; Head et al. 2006; Baxter and Cummings 2008; Lauga et al. 2013).
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This memory effect may result of an increased tolerance of the community to
the pollutant as a consequence of physiological adaptations or community shifts
(Widenfalk et al. 2008; Azarbad et al. 2015; Mauffret et al. 2017). As a conse-
quence of differences in pollutants sensitivity among microbial species disruption
on microbial communities was evidenced. Studies conducted to investigate the
impact of pollutants on microbial communities demonstrated that both diversity
(richness and evenness) and function structures host by microorganisms might be
impaired under pollutants pressure. Several studies have reported shifts in the
community structure, decrease of richness or changes in abundance of some taxa
either at environmentally relevant or high concentrations of pollutants (Li et al.
2006; Foley et al. 2007; Johnston and Roberts 2009; Lubarsky et al. 2012; Pascault
et al. 2014; Ibekwe et al. 2016; Jiao et al. 2016; Misson et al. 2016; Mustafa et al.
2016; Wang et al. 2016). Interestingly in a study that aimed at investigate the
impact of diuron (an herbicide) on river epilithic biofilms, (Vercraene-Eairmal et al.
2010) demonstrated that bacterial communities at the most contaminated site were
less affected under realistic exposure to diuron than communities developing under
lower exposure in their native site. This result suggests that adaptation and resis-
tance may have emerged in the former community under selection pressure and
then spread in the communities or, alternatively, that the community was shaped
and stabilized in such contamination background allowing for resistance to sub-
sequent exposure. Cases of resistance and adaptation at the community level have
also been reported in different studies among which Acosta-González and Marqués
(2016) in oil-polluted marine coastal sediments or Mukherjee et al. (2014) in a
creosote-contaminated site. Resistance and adaptation may operate through over-
expression or higher frequency of genes conferring pollutant tolerance, by selective
growth of metal-tolerant microorganisms or via acquisition of new genetic
tolerance-related capabilities through mutation or horizontal gene transfer, this latter
aspect is presented in the following section and Chap. 6. In contrast some authors
did not observe any or poor impact on community structure. Albeit such result
could indeed correspond to a real situation revealing non-toxic effect of the pol-
lutant on microbial communities, it can also indicate the onset of resistance phe-
nomenon at the whole community level that may have occurred in the past.
Additionally it cannot be exclude that methods of investigation or data analysis may
have fail to detect a marginal effect of the pollutant (Wu et al. 2016).

Several studies indicated that the incidence of the pollutant on the microbial
community may be transient, i.e. that once the contaminant was removed, the
recovery of at least functional or even taxonomic diversity was observed
(Tobor-Kapłon et al. 2005; Boivin et al. 2006; Bordenave et al. 2007; Mertens et al.
2007; Ma et al. 2015). This resilience may by explain by manifold reasons among
which microorganism colonization from undisturbed site arising from the vicinity,
population dormancy, growth rate (r vs K strategies), short time of exposure and
functional redundancy.

As a consequence of shift in microbial diversity, it is important to research
impact of pollutants on functional traits in the microbial community since their
alteration may also seriously jeopardize ecosystem functioning or because they
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sustain community resistance, tolerance or resilience when traits are related to
biodegradation. Hence several authors showed that pollutants might impair bio-
mass, carbon mineralization, microbial respiration, nitrification and denitrification
(Monard et al. 2011; Kumar et al. 2012; Singh et al. 2014; Delgado-Baquerizo et al.
2016; Simonin et al. 2016; Wu et al. 2016) or biodegradation (Caliz et al. 2011;
Delgado-Baquerizo et al. 2016). However shifts in community structure could also
be neutral on ecosystems functioning demonstrating that functional redundancy
hold true in certain situation. This is conceivable if the loss of functionality bear by
sensitive microorganisms does not affect trophic structure and is compensated by
the functions of tolerant microorganisms still present in the community (Widenfalk
et al. 2008; Azarbad et al. 2015). As suggested under the insurance hypothesis, this
scheme is all the more likely if diversity is high in the ecosystem (Yachi and Loreau
1999).

The rise of high-throughput sequencing techniques contributes nowadays to
uncover the huge diversity of the microbial realm. Our knowledge on bacterial
community composition, functions and dynamics know since a decade unprece-
dented advances. Given this new development alongside other analytical tool
important research topics are open. Hence, in 2006, this technologies had shed light
on vast pool of low-abundance populations, the rare biosphere, that account for
most of the observed phylogenetic diversity in every environment (Sogin et al.
2006). Importantly, microorganisms that constitute this pool, although still
neglected in our investigation, may harbour ecologically critical functions in the
ecosystem as demonstrated by Pester et al. (2010). Also in the context of future
development in microbial ecotoxicology it would be worth asking what could be
the role of this rare populations in microbial communities that had to face toxic
agents. Additionally it seems necessary to develop new bioinformatics and statis-
tical tools to extract meaningful information and decipher the ecologically relevant
information from high-throughput sequencing data and more generally ‘omics’
technologies. Alongside to data collected at site, integrated approaches should
allow to gain important knowledge on ecosystem functioning and has to ultimately
lead to a better risk assessment and management of pollution at local but also
importantly global scales.

4.4 Microbial Genetic Adaptation

At genome scale, the adaptation is the consequence of genetic variability and
evolvability. Indeed, except the core genome involved in essential functions, a part
of the genome is suitable to strong variations (Baquero 2009). Three major ways
generate genome variations (Arber 2000). First, spontaneous mutations occur in a
regular manner at each generation allowing local genomic changes (Feldgarden
et al. 2003). Second, the rearrangement of segments of genomic sequences can be
mediated by mechanisms such as homologous recombination or transposition
(Thomas and Smalla 2000; Sota et al. 2006). Third, the fastest and powerful way to
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acquire new functions in bacteria and archaea is the acquisition of sequences from
other organisms by horizontal gene transfer (HGT) (Garcia-Vallve et al. 2000;
Ochman et al. 2000; Springael and Top 2004; Brochier-Armanet et al. 2011). At
least a part of the genes acquired by HGT have a role in adaptation (Lawrence
1999; Marri et al. 2006). The mechanisms that allow the entrance and the estab-
lishment of foreign DNA in a genome are well-known (see Chap. 6). The estab-
lishment of the new genetic material will be possible if it is autonomous for
replication in the recipient cell, or if it is capable of insertion in the chromosomal
DNA (without major damage for the integrity of the host genome). Then, numerous
genetic elements are involved in HGT, most of them are mobile genetic elements
(Smalla and Sobecky 2002; Koonin and Wolf 2008; Boyd et al. 2009; Sentchilo
et al. 2013; Darmon and Leach 2014). Moreover, mobile genetic elements are often
more abundant in bacterial genomes in extreme environments (Bickhart et al. 2009;
Lin et al. 2011), suggesting their role in the adaptation to unfavorable habitats. Thus
mobile genetic elements play a major role in the spread and even de novo con-
struction of new functions (Top and Springael 2003), and are thus central vectors
for diversification and adaptation (Frost et al. 2005).

It is well known that stress conditions enhance the processes of genetic adap-
tation (Matic et al. 1995; Beaber et al. 2004; Ubeda et al. 2005; Galhardo et al.
2007; Baquero 2009). Therefore, contamination by xenobiotics is one factor that
can stimulate microbial genomic adaptation (Top and Springael 2003; Springael
and Top 2004; Marri et al. 2006; Heuer et al. 2008; Monard et al. 2011). Numerous
characterized genetic elements, such as plasmids, transposons, genomic islands and
integrons, carry adaptive genes involved in the resistance of antibiotics (Stokes and
Hall 1991; Hansson et al. 2002; Del Grosso et al. 2007; Barraud et al. 2013;
Giakkoupi et al. 2015; Korona-Glowniak et al. 2015), metals (Ji and Silver 1992;
Liebert et al. 1999; Tuffin et al. 2005; Novais et al. 2010) and the degradation of
organic pollutants (Nakatsu et al. 1991; van der Meer et al. 1991; Romine et al.
1999; Fong et al. 2000; Top and Springael 2003; Chae et al. 2007; Yano et al. 2007;
Koenig et al. 2009; Ilori et al. 2015). Even some (e.g. integrons) are also able to
exchange these genes in accordance with the contamination pressure imposed in the
habitat (Stalder et al. 2012; Abella et al. 2015a). These observations support that all
these genetic elements are important actors in adaptive responses to chemical
contaminations.

The adaptation acquired by one organism is not only beneficial to the concerned
individual, but also advantages the entire community, as for example the acquisition
of a degradation function involved in the pollutant removal (Sentchilo et al. 2013).
Also, the adaptive function acquired by HGT can be transmitted again to other
members of the community. In this way, although the acquisition of new functions
can be to the detriment of other functions (Ferenci 2016), it is doubtless an asset for
the community. Our current knowledge on the adaptive genetic elements results
essentially from analyses of isolated bacterial strains. The analysis of microbial
complete-sequenced genomes allowed to estimate the part of sequences acquired by
HGT in a given genome (Ochman et al. 2000; Brochier-Armanet et al. 2011).
Nevertheless, we know that, within a community, microorganisms are organized in
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networks, sometimes showing strong interactions. Then the adaptation must be also
studied at the community level. The new techniques of high throughput sequencing
should give new information. On one hand, targeting directly the genetic elements
involved in HGT (Zaneveld et al. 2008, 2011; Jacquiod et al. 2014), they enable the
characterization of new adaptive genes acquired within the community (Huang
et al. 2009) as well as the hierarchization of the involvement of the genetic elements
in the adaptation mechanisms. On the other hand, metagenomic and metatran-
scriptomic studies may also contribute to better understand the mechanisms of
genetic adaptation within communities in response to chemical pollutants. In par-
ticular, the pollution history influences the spread of adaptive genes, which are
easily spread within a community subjected to an already experimented pollutant,
while it is slower when submitted to a recent pollution or to a new pollutant (Abella
et al. 2015a, b; Chessa et al. 2016). Research efforts must be undertaken in this
sense in order to complete our knowledge on the genetic mechanisms involved in
the adaptation of microbial communities.

4.5 Overview—Concluding Remarks

The metabolic versatility and genetic flexibility, together with community strategies
are crucial assets allowing microorganisms to withstand the presence of pollutants.
The microbial mechanisms discussed in this chapter provide the basic knowledge
for the development of ecotoxicological tools reporting environmental quality. In
contrast to chemical analysis methods, microbial ecotoxicological tools enable not
only to determine pollutant concentration (biosensors, Chaps. 12 and 13) but also to
assess the toxic effect at different biological levels including the genetic/genomic
levels (Chaps. 6 and 8), the metabolic level (biomarkers, Chap. 11; bioindicators,
Chap. 10) and the community level (Chaps. 8 and 9). Furthermore, microbial
ecotoxicological tools allow to determine the microbial capacities to remove pol-
lutants and represent thus useful tools for the implementation and the follow up of
bioremediation processes. Because microorganisms are ubiquitous, microbial eco-
toxicological tools can be potentially developed and exploited for every ecosystem
and for any pollutant. However, the future challenges for the microbial ecotoxi-
cology will be to propose integrated approaches to evaluate the impact of
multi-contamination, including emergent contaminants. For this purpose basic
knowledge on microbial ecology with a holistic point of view is of paramount
importance and therefore such basic research should be encouraged.
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