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Abstract. Most applications running on supercomputers achieve only a
fraction of a system’s peak performance. It has been demonstrated that
co-scheduling applications can improve overall system utilization. In this
case, however, applications being co-scheduled need to fulfill certain cri-
teria such that mutual slowdown is kept at a minimum. In this paper
we present a set of libraries and a first HPC scheduler prototype that
automatically detects an application’s main memory bandwidth utiliza-
tion and prevents the co-scheduling of multiple main memory bandwidth
limited applications. We demonstrate that our prototype achieves almost
the same performance as we achieved with manually tuned co-schedules
in previous work.

1 Introduction

Most applications running on supercomputers achieve only a fraction of a sys-
tem’s peak performance, even though carefully optimized applications are able to
get close to this limit. It seems unlikely that code written by non-experts will pro-
vide higher system utilization in the foreseeable future, especially with computer
architecture permanently evolving, making it a moving target for optimizations.
Furthermore, expected trends such as increased core counts, specialization and
heterogeneity will make it even more difficult to exploit available resources.

A possible way to increase overall system utilization without optimizing the
code itself is co-scheduling, i. e., running multiple applications with different
resource demands on the same node1. Such an approach may reduce single appli-
cation performance. However, it increases overall application throughput of the
whole system and thereby produces more results with a given time frame or
energy budget. A major challenge for efficient co-scheduling is the detection of
an application’s resource requirements and predicting the applications perfor-
mance when co-scheduled with another application.

It is obviously not feasible for HPC compute centers to run every possible
application combination to decide on optimal co-schedules. As a possible solu-

1 A node is one endpoint in the network topology of an HPC system. It consists of
general purpose processors with access to shared memory. Optionally, a node may
be equipped with accelerators such as GPUs.
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tion, we present a mechanism to detect application memory bandwidth require-
ments at runtime and use Linux control groups (cgroups2) to suspend appli-
cations if multiple applications require a high amount of main memory band-
width. These mechanisms are implemented in a prototype application scheduler.
We present a set of schedules with various applications and benchmarks and
demonstrate that for these applications our scheduler works as expected and
co-scheduling can increase performance and save energy. For energy measure-
ments we present measurements of a whole node using a node-external power
distribution unit (PDU). The PDU, a MEGWARE3 Clustsafe unit, takes the
complete system power consumption including power supply into account. The
results are almost identical to manually tuned co-scheduling results we presented
previously [1].

The paper is organized as follows: First, Sect. 2 gives a detailed overview of
the hardware used for our measurements, followed by an introduction to our test
applications in Sect. 3. Section 4 analyzes the used applications and shows that
depending on the application characteristics using all cores does not necessarily
guarantee an optimal result. The following section (Sect. 5) discusses shared
hardware resources in an HPC node. Sections 6 and 7 introduce our new library
and scheduler. The next section discusses the results achieved with our scheduler.
The paper finishes with an overview on related work and conclusions, in Sects. 9
and 10, respectively.

2 Hardware Overview

In this section we will give a brief overview of the hardware used in this paper
and how energy consumption measurements were carried out.

All benchmarks were run on a 2 socket NUMA system. The system is
equipped with two Intel Xeon E5-26704 CPUs, which are based on Intel’s Sandy
Bridge architecture. Each CPU has 8 cores, resulting in a total of 16 CPU cores
in the entire system. One CPU core has support for two hardware thread con-
texts (HTC, often called Hyperthreading) resulting in a total of 32 HTCs for the
whole system. The L3 cache is shared among all CPU cores. The base frequency
of the CPU is 2.6 GHz, however, the CPU typically changes the frequency of
its cores based on the load of the system. Therefore, clock frequencies can vary
between cores at the same time. When a core is idle, the operating system (OS)
puts it into sleep state, which significantly reduces power consumption. In case
only a fraction of its cores are used, the CPU can increase core clock frequencies
(Intel Turbo Boost) up to 3.3 GHz. This is typically done to increase the perfor-
mance of applications not being able to utilize all available CPU cores, as the
CPU is less power efficient at higher frequencies. The so-called thermal design

2 https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
3 http://www.megware.com/
4 http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2

60-GHz-8 00-GTs-Intel-QPI

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
http://www.megware.com/
http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
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power (TDP) of each CPU in our system is 115 W, i.e. the CPU consumes about
115 W on average when all 8 cores are active.

Each CPU has its own set of memory controller with its own dedicated
DRAM memory, yet there is only a single memory address space. Each core
can access every memory location. Accesses to memory of a remote CPU, how-
ever, have a higher latency and can lead to contention. Memory is distributed
among the CPUs by the OS using a first touch policy, which is the default on
Linux (i.e. a memory page is allocated as close as possible to the core first writ-
ing to it). The location of the memory page is not changed unless explicitly
requested by the OS or the user application. Our system is equipped with a
total of 128 GB of RAM (64 GB per CPU). Furthermore there are both a QDR
Infiniband network card and an Ethernet network card in the system, however
these were idle during our measurements. All data required for the benchmark
were stored on a local SSD.

Our energy measurements were carried out using a MEGWARE Clustsafe,
which measures the energy consumed by the entire system. Clustsafe is a PDU
developed by the MEGWARE company and typically used in their HPC system
installations to monitor and control the power consumed by the system. Fur-
ther, accumulated energy consumption can be provided to developers and sys-
tem administrators by one counter per PDU outlet which can be queried across
the network. According to MEGWARE, Clustsafe measures energy consumption
with an accuracy of ±2%. We use Clustsafe to measure the energy consumption
on the primary side comprising all components of the system including cooling,
network devices and storage.

3 Test Applications

We used two example applications and two benchmarks in this paper:

– a slightly modified version of MPIBlast 1.6.05,
– an example application using the CG solver algorithm provided by the

LAMA [2] library,
– the PRACE6 application proxy benchmark Hydro, and
– the heat benchmark developed at Technische Universität München.

3.1 MPIBlast

MPIBlast is an application from computational biology. Using MPI-only, it is
a parallel version of the original BLAST (Basic Local Alignment Search Tool)
algorithm for heuristically comparing local similarity between genome or pro-
tein sequences from different organisms. To this end, the program compares
input sequences to sequence databases and calculates the statistical significance

5 http://mpiblast.org/
6 http://www.prace-ri.eu/

http://mpiblast.org/
http://www.prace-ri.eu/
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of matches. BLAST is used to infer functional and evolutionary relationships
between sequences as well as help identify members of gene families.

Due to its embarrassingly parallel nature using a nested master-slave struc-
ture, MPIBlast allows for perfect scaling across tens of thousands of compute
cores [3]. The MPI master processes hand out new chunks of workload to their
slave processes whenever previous work gets finished. This way, automatic load
balancing is applied. MPIBlast uses a two-level master-slave approach with one
so-called super-master responsible for the whole application and possibly mul-
tiple masters distributing work packages to slaves. As a result, MPIBlast must
always be run with at least 3 processes of which one is the super-master, one
is the master, and one being a slave. The data structures used in the different
steps of the BLAST search typically fit into L1 cache, resulting in a low number
of cache misses. The search mostly consists of a series of indirections resolved
from L1 cache hits. MPIBlast was pinned using the compact strategy, i. e., the
threads are pinned closely together filling up CPU after CPU.

Our modified version of MPIBlast is available on GitHub7. In contrast to
the original MPIBlast 1.6.0 we removed all sleep() functions calls that were
supposed to prevent busy waiting. On our test-system, this resulted in underuti-
lization of the CPU. Removing sleeps increased performance by about a factor
of 2. Furthermore, our release of MPIBlast updated the Makefiles for the Intel
Compiler to utilize inter-procedural optimization (IPO) which also resulted in a
notable increase in performance.

In our benchmarks we used MPIBlast to search through the DNA of a fruit-fly
(Drosophila melanogaster)8. The DNA was queried with 4056 snippets created
from itself.

3.2 LAMA

LAMA is an open-source C++ library for numerical linear algebra, emphasizing
on efficiency, extensibility and flexibility for sparse and dense linear algebra
operations. It supports a wide range of target architectures including accelerators
such as GPUs and Intel MIC by integrating algorithm versions using OpenMP,
CUDA and OpenCL at a node level, and MPI to handle distributed memory
systems. We used the latest development version of LAMA committed to its
development branch on Sourceforge (commit 43a7ed9).

Our test application concentrates on LAMA’s standard implementation of
a conjugate gradient (CG) solver for x86 multi-core architectures. This purely
exploits multi-threading (no MPI), taking advantage of Intel’s MKL library for
basic BLAS operations within the step of the CG solver. Each solver iteration
involves various global reduction operations, resulting in frequent synchroniza-
tion of the threads. However, static workload partitioning is sufficient for load
balancing among threads. Due to the nature of a CG solver, there is no way

7 https://github.com/jbreitbart/mpifast
8 ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/drosoph.nt.gz
9 http://sourceforge.net/p/libama/git/ci/43a7ed

https://github.com/jbreitbart/mpifast
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/drosoph.nt.gz
http://sourceforge.net/p/libama/git/ci/43a7ed
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to exploit caches by tiling or blocking. As involved data structures (vectors and
sparse matrices) do not fit into processor caches for reasonable use cases (which is
also the case in our setting), performance is fundamentally limited by main mem-
ory bandwidth and inter-core/node bandwidth for reduction operations. Often,
off-chip bandwidth capacity of multi-core CPUs can already be fully exploited
by 2 or 3 cores. Thus, for a CG solver implementation for such a multi-core
CPU, we expect to obtain the best performance with only a few cores, as using
more, only would result in higher congestion regarding memory accesses. We
use scattered pinning for the CG solver, i. e., threads were distributed equally
among the CPUs. This allows the CG solver to use the memory bandwidth of
both CPUs with less threads.

The CG solver of LAMA was applied on a matrix generated with LAMA’s
matrix generator. The sparse matrix has a size of 2000 ∗ 2000 elements and is
filled with a 2-dimensional 5-point stencil.

3.3 HYDRO

HYDRO is not a low-level benchmark, but an application proxy benchmark that
is being used to benchmark European Tier-0 HPC systems. HYDRO serves as
a proxy for RAMSES10 [4], which is a Computational Fluid Dynamics applica-
tion developed by the astrophysics division in CEA Saclay. HYDRO contains
all performance relevant algorithms and communication patterns of the origi-
nal application, but it is simplified and trimmed down to only about 1500 lines
of code (compared to about 150,000 lines of code of the original RAMSES).
Subsequently, HYDRO was ported to various programming languages and par-
allel programming models including Fortran, C/C++, OpenMP, MPI, hybrid
MPI/OpenMP, CUDA, OpenCL and OpenACC [5]. Our experiments are based
on the hybrid MPI/OpenMP C99 implementation. HYDROS’ performance, sim-
ilarly that of LAMAs CG solver is limited by main memory bandwidth, as its
data typically does not fit into L3 cache. For our tests we use two processes, i. e.,
one per CPU package, and increase the number of threads for each process as
this results in optimal performance for the benchmark.

3.4 Heat

Heat is a benchmark providing various implementations of an iterative Jacobi
method for solving the heat dissipation problem on a regular 2-D square domain.
The basic parallel implementation (called algorithm 2) uses OpenMP and two
simple loops to iterate across the matrix. As a result, it is inherently main mem-
ory bandwidth limited. In contrast, algorithm 9, a more sophisticated version
of this benchmark, uses cache-oblivious diamond tiling [6] and as a result is not
limited by main memory bandwidth, but compute bound.

10 http://www.itp.uzh.ch/∼teyssier/ramses/RAMSES.html

http://www.itp.uzh.ch/~teyssier/ramses/RAMSES.html
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4 Application Analysis

Figure 1 shows the scalability of all applications/benchmarks on our test-system.
The figure shows that the CG solver provides the best performance with 11
threads (42.7 s), however there is hardly any benefit compared to running with
8 threads (44.0 s). Overall, the CG solver only scales linearly up to 2 threads.
Hydro and heat – algorithm 2 behave almost identical with a minimum runtime
at 12 cores (Hydro) and 10 cores (heat – algorithm 2), but both hardly increase
performance with more then 8 cores (Hydro) and 6 cores(heat – algorithm 2).
MPIBlast scales almost linearly up to 16 CPU cores and heat – algorithm 9
scales almost linear up to 11 cores, but than hardly increases performance any

Fig. 1. The scalability of our test applications. We only use one HTC per core.

Fig. 2. Power required while running MPIBlast (Watts) and the energy required for
one run (Joule).
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Fig. 3. Energy required for one LAMA CG solver run (Joule). We only use one HTC
per core.

Fig. 4. Energy required for one Hydro run (Joule). We only use one HTC per core.

further. We only show even number of CPU cores for Hydro, as we use two
processes with equal number of threads.

Figure 3 shows both the average power used during the scalability runs in
Watt and the energy required to complete a single run of the CG solver in Joule.
The Watts measured by the different sensors are indicated by lines, and the total
energy integrated over the time required to complete a single run of the CG solver
(often called energy-to-solution) is indicated by bars. It should be noted that the
minimum energy-to-solution is not obtained when the CG solver provides the
best performance, but with 8 cores, instead. Again Hydro (see Fig. 4) behaves
almost identically, as well as heat – algorithm 2 (see Fig. 5).

Figure 2 shows the same information for MPIBlast. MPIBlast scales well,
and the minimal energy-to-solution is obtained when using 16 CPU cores. Heat
– algorithm 9 again has an optimal energy-to-solution at the point where it
performs best. Figure 6 shows energy-to-solution for heat – algorithm 9.
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Fig. 5. The energy required for one heat – algorithm 2 run (Joule). We only use one
HTC per core.

Fig. 6. The energy required for one heat – algorithm 9 run (Joule). We only use one
HTC per core.

5 Shared Hardware Resources Within an HPC Node

In this section we discuss the various shared hardware resources that can limit
co-scheduling performance.

At core level, each HTC has its own set of registers, but shares the instruc-
tion pipeline and both L1 and L2 caches with the second HTC of the same core.
The instruction pipeline has dedicated hardware for floating point, integer and
SIMD instructions, which can be co-issued with various constrains. As a result,
co-scheduling an integer and floating point heavy application can potentially
increase the utilization of the CPU core, as we have demonstrated before [1].
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All cores on the same package share the L3 cache, the interconnect between
CPU packages and main memory bandwidth. Co-scheduling multiple applica-
tions with a large L3 cache working set results in a high number of L3 cache
misses and drastically reduces performance [7]. The same holds true for main
memory bandwidth. Co-scheduling multiple applications with high main mem-
ory bandwidth requirements drastically reduces the performance of both appli-
cations. Based on our experience, the inter-package interconnect is typically not
a limiting factor for co-scheduling.

Overall, based on our experience both main memory bandwidth and L3 cache
usage conflicts can degrade co-scheduling performance up to a point at which
overall system throughput is worse than dedicated scheduling. Co-scheduling
different applications on a single CPU core can increase performance further, but
is not essential. As a result, for all shown measurements in this paper we only use
one HTC per CPU core. We leave out L3 working set detection for future work,
as Intel has just recently introduced its Cache Allocation Technology (CAT)11

that can be used to detect L3 cache working sets via hardware support, but is
not supported at our test system. Main memory bandwidth usage is the main
topic of this paper moving forward.

6 Main Memory Bandwidth Utilization (libDistGen)

Unfortunately current x86 CPUs do not provide any direct way to measure
main memory bandwidth utilization, i. e., there is no performance counter that
provides this information. As a result, we must deduce this information from
other measurements. We leverage the fact that with co-scheduling an application
never uses all CPU cores and we can use the other cores to run small benchmarks.

In previous work [7], we showed that effective co-scheduling can be predicted
based on stack reuse histograms12. Stack reuse histograms can be used to (esti-
mate) the cache working set as well as if an application is main memory band-
width limited. However, computing such a histogram typically results in multi-
ple orders of application slowdown, as the we must simulate a whole application
and analyze every memory access. As a result, we introduced a micro-benchmark
called DistGen that can be used to get similar results. DistGen can be config-
ured to produce memory accesses with certain stack reuse patterns. When co-
scheduled with an application, we can detect peaks in the stack reuse histogram
of the application based on the slowdown of DistGen. A detailed analysis can be
found in [7], however all previous work was designed for off-line analysis.

Based on the original DistGen, we now introduce libDistGen, a library
designed to be incorporated into schedulers or agents that collect on-line infor-
mation to be used by the scheduler. libDistGen’s interface is simple and consists
of just three functions:
11 https://www-ssl.intel.com/content/www/us/en/communications/cache-monitoring

-cache-allocation-technologies.html
12 The Stack Reuse Distance, introduced in [8], is the distance to the previous access

to the same memory cell, measured in the number of distinct memory cells accessed
in between. For the first access to an address, the distance is infinity.

https://www-ssl.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
https://www-ssl.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
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distgen init() is called to initialize the library. The system must be idle when
this function is called, as we run various benchmarks to assess the maximum
performance of the system. Depending on the numbers of cores in the system
and the available memory bandwidth, this function call can take up to a few
minutes to complete.

distgen membw available() estimates the percentage of the currently avail-
able main memory bandwidth for a given set of CPU cores compared to
maximum available memory bandwidth of these CPU cores. The runtime of
this function call is less than a second.

distgen membw max() is mainly available for debugging purposes. It returns
the maximum available memory bandwidth for a given set of CPU cores of
the system in GB/s.

distgen membw available() is implemented by processing an array with the
CPU cores for which the available main memory bandwidth should be estimated.
The array is larger than the L3 cache of the CPUs, so all accesses go to main
memory. We measure the runtime of the accesses to the array and compare these
to measurements made during distgen init(). It is important to note, that these
memory accesses will eventually complete, even if all other cores are running
memory bandwidth limited code. As a result, we will never directly measure an
available memory bandwidth of 0%, but memory bandwidth is typically equally
distributed among the cores at hardware level if all cores execute memory band-
width limited code. distgen membw available() is designed to consume as much
main memory bandwidth as possible by doing hardly any computation and only
accessing one byte per cache-line. These characteristics have to be considered
when interpreting the return value of distgen membw available() in a scheduler.

libDistGen is available as open source on GitHub13.

7 Poor Mans Co-Scheduler (poncos)

The Poor Mans Co-Scheduler (poncos) is our scheduler prototype built on top
of libDistGen and libponci14, which is a small wrapper for Linux control groups
(cgroups). Cgroups can be used to limit which CPU cores a set of applications
are allowed to use as well as transparently freeze and restart these applications.
Cgroups provide plenteous of other options and are typically used to implement
containers (like e. g., Docker15), but we only use the functionality named before.

For now, poncos reads a job queue from a file using a straightforward co-
scheduling algorithm to run the applications listed in this file. Our algorithm
briefly follows a scheme of:

1. start the first application on a subset of the available CPU cores
2. wait until the initialization phase of that application has completed (see

description below)
13 https://github.com/lrr-tum/libdistgen
14 https://github.com/lrr-tum/ponci
15 https://www.docker.com/

https://github.com/lrr-tum/libdistgen
https://github.com/lrr-tum/ponci
https://www.docker.com/
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3. use distgen membw available() on the remaining free CPU cores to detect
the available memory bandwidth for the free cores

4. start the next application in the queue
5. wait until the initialization phase of the new application has ended
6. pause the old application (using cgroups)
7. use distgen membw available() on the CPU cores of the paused application

to detect of available memory bandwidth
8. restart the old application
9. decide if both applications can be co-scheduled based on the available mem-

ory bandwidth
(a) yes: wait until one application has completed
(b) no: pause the new application and resume it after the old one has been

completed
10. continue with 4. until the queue is empty

The current form of the algorithm expects a uniform behavior of the appli-
cation during runtime. This is not true for all HPC applications, but seemingly
for a large fraction of them, as other tools like for example [9] rely on the same
behavior and work fairly well. In general, phase detection in applications should
not be done via libDistGen as this requires the application to be paused, but
phase detection should be done using hardware performance counters as demon-
strated by Chetsa et al. [10]. However, libDistGen can also be used to provide
information per application phase (if the phase is long enough) and this infor-
mation can be used to decide if co-scheduling should be applied. For example,
one could decide to only co-schedule applications if at maximum one of them
has a memory bandwidth limited application phase.

We currently do not detect the end of the initialization phase, but rely on a
timer that fits well with our test applications. However, in general this can be
done via the mechanisms described by Chetsa et al. [10] as well.

As mentioned before, distgen membw available() will never return 0% mem-
ory bandwidth available and one has to be careful when interpreting the return
value. When calling distgen membw available() to estimate the available memory
bandwidth on half of the system’s CPU cores, 5016% means that there is memory
bandwidth limited code running on the other half of the available CPU cores and
one should not co-schedule another memory bandwidth limited application. Our
scheduler currently prevents co-scheduling if the sum of all applications’ memory
bandwidth estimations is above 90%. We use 90% instead of 100%, as we already
noticed a decrease in performance once congestion on main memory gets closer
to the maximum. However, this is expected behavior as the current hardware
does not guarantee fair resource distribution and slowing down a particular core
can decrease overall application performance due to synchronization.

Poncos is available as open source on GitHub17.

16 The theoretical minimum of distgen is at about 33%, as distgen only reads from
main memory and the other half can issue both reads and writes.

17 https://github.com/lrr-tum/poncos/tree/one-node-only

https://github.com/lrr-tum/poncos/tree/one-node-only
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8 Evaluation

For our evaluation we split our test system in two scheduling domains each
consisting of 4 CPU cores per socket, i. e., a total of 8 cores. We choose this setup,
as memory bandwidth limited applications can typically not efficiently use more
than half of the cores of a socket. More cores only adds to the congestion on the
memory controller and decreases performances, as discussed in Sect. 4.

In general, libDistGen works as expected with each possible pair of the appli-
cations and benchmarks listed in Sect. 3. Table 1 lists the estimated available
main memory bandwidth required for the application, and based on the algo-
rithm described in the previous section, we can deduce that poncos will prevent
the co-scheduling of

– Hydro
– Lama
– Heat with algorithm 9

with each other, whereas all other combinations are fine. The resulting schedules
based on our setup is rather straight forward and we only show the results of 2
input queues.

The first queue only consists of the two heat variants:

– heat – algorithm 2 (heat -r 9000 -i 5000 -a 2 -t 8)
– heat – algorithm 9 (heat -r 9000 -i 5000 -a 9 -t 8)
– heat – algorithm 9 (heat -r 9000 -i 5000 -a 9 -t 8)
– heat – algorithm 2 (heat -r 9000 -i 5000 -a 2 -t 8)
– heat – algorithm 9 (heat -r 9000 -i 5000 -a 9 -t 8)
– heat – algorithm 9 (heat -r 9000 -i 5000 -a 9 -t 8)

Figure 7 shows the runtime of queue one. In co-scheduling we only show the
critical path of the scheduling. The whole schedule was completes after both runs
of heat – algorithm 2 have ended, as all runs with heat – algorithm 9 could be co-
scheduled with an run of heat – algorithm 2. As we can see, co-scheduling in this
case increases overall application throughput, even though heat – algorithm 2
itself runs slower. The total energy consumption (see Fig. 8) of co-scheduling is

Table 1. The main memory bandwidth available for half of the cores according to
libDistGen, while the other half is running the listed application. Estimated usage for
the application is compute via 1 − (distgen membw available() − 0, 33)/(1 − 0, 33).

Application distgen membw available() Estimated usage for the application

Hydro 52.7 70.5

Lama 46.6 79,7

MPIBlast 92.5 11.1

Heat – Algorithm 2 41.0 88.1

Heat – Algorithm 9 76.5 35.1
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Fig. 7. The runtime of queue 1 with both dedicated scheduling and co-scheduling.

Fig. 8. The energy consumption of scheduling queue 1 with both dedicated scheduling
and co-scheduling.

also better than dedicating all 16 cores to the individual applications, but just
dedicating 8 cores provides a better energy-to-solution.

Our second example queue consists of:

– LAMA CG solver
– MPIBlast
– LAMA CG solver

The Figs. 9 and 10 show the total runtime and energy-to-solution of the
schedules of queue 2. In Fig. 9 we again only show the runtime of the critical
path, i. e., at the beginning LAMA is running by itself while we wait for the
initialization phase to be completed and than run our measurements. After that
MPIBlast is started and runs until the completion of the queue. Both LAMA
runs are finished before the MPIBlast run is complete. We see a notable decrease
in both runtime and energy consumption when co-scheduling MPIBlast and
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Fig. 9. The runtime of queue 2 with both dedicated scheduling and co-scheduling.

Fig. 10. The energy consumption of scheduling queue 2 with both dedicated scheduling
and co-scheduling.

LAMA. These results match well with our previous manual fine tuning of the
MPIBlast/LAMA co-schedule previously published in [1].

Both queues have been selected so that co-scheduling is possible. In case the
queue does not allow for co-scheduling, we expect to see a small decrease in
performance and a small increase in energy consumption due to the additional
measurements. However, these effects seem to be within the order of measure-
ments noise, as we could not directly measure any clear overhead.

9 Related Work

On server and desktop systems with multiple cores or hardware thread con-
texts simultaneous scheduling of different applications is the norm. However, in
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HPC systems, most larger compute centers hardly apply any co-scheduling. Co-
scheduling is typically used only for purely sequential jobs which cannot utilize
all cores in a single node.

A different approach with the same goal as co-scheduling is to use power
capping and dynamic voltage frequency scaling (DVFS) to reduce the power
consumption of existing systems. Such an approach can obviously not increase
the overall throughput of an HPC system, but increase its energy efficiency. For
example Wang et al. [11] discuss a scheduling heuristic that uses DVFS to reduce
overall system power consumption. The Adagio [12] tool uses DVFS to reduce
the idle time of the system by analyzing the time spent in blocking MPI function
calls and decreases the performance of CPU cores accordingly.

The Invasive Computing research project [13] works on an approach to have
applications dynamically react to changes of their resource requirements and
potential request additional resources or return resources that are no longer
used. Schreiber et al. [14] for example present applications that automatically
balance their work load.

Another approach to increase system efficiency is to work on the infrastruc-
ture used in the HPC centers. Auweter et al. [15] give an overview of this area
and describe how a holistic approach including monitoring the various jobs can
help to improve efficiency without modifying the applications itself.

Characterizing co-schedule behavior of applications by measuring their slow-
down against micro-benchmarks is proposed by different works. MemGen [16] is
focussing on memory bandwidth usage, similar to Bandwidth Bandit [17] which
is making sure not to additionally consume L3 space. Bubble-Up [18] is similar
tool accessing memory blocks of increasing size. All these tools are not designed
for optimizing the schedule at runtime.

10 Conclusions and Future Work

In this paper we presented a library for on-line application analysis to guide co-
scheduling and present a basic prototype scheduler implementation, which shows
that this information can actually be used to implement co-scheduling. Our
approach works well with all tested applications and overall system throughput
and energy consumption with co-scheduling varies based on the input.

In this paper, we only concentrated on main memory bandwidth, but other
resources like L3 cache usage are also important to identify if co-scheduling
should be applied. In future work, we will concentrate on L3 cache usage. Fur-
thermore, this work only explores co-scheduling on a single node. We plan to
extend our experiments to a multi-node setup.

As part of the FAST project18 we plan to integrated our approach with an
improved Slurm19 scheduler that uses predetermined application statistics and
runtime measurements to co-schedule applications.

18 http://www.fast-project.de/
19 http://slurm.schedmd.com/

http://www.fast-project.de/
http://slurm.schedmd.com/
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