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Abstract. Future exascale supercomputers will be composed of thou-
sands of nodes. In those massive systems, the search for physically close
nodes will become essential to deliver an optimal environment to execute
parallel applications. Schedulers manage those resources, shared by many
users and jobs, searching for partitions in which jobs will run. Significant
effort has been devoted to develop allocation strategies that maximize
system utilization, while providing partitions that are adequate for the
communication demands of applications. In this paper we evaluate a class
of strategies based on space-filling curves (SFCs) that search for parti-
tions in which nodes are physically close, compared to other alternatives
that relax this requirement (e.g. non-contiguous), or make it even more
strict (e.g. contiguous). Several metrics are used to assess the quality
of an allocation strategy, some based on system utilization, some others
measuring the quality of the resulting partitions. Contiguous allocators
suffer from severe degradation in terms of system utilization, while non-
contiguous allocators provide inadequate partitions. Somewhere in the
middle, SFC allocators offer good system utilization while using quite
compact partitions. The final metric to decide which allocator is the
best depend on the severity of the slowdown suffered by applications
when running in non-optimal partitions.

Keywords: Space-filling Curves - Scheduling * Allocation - Partitioning -
Contiguity - Non-contiguity

1 Introduction

In the coming years, supercomputer vendors will deliver massive exascale sys-
tems with many thousands of nodes (millions of computing cores) to execute
parallel jobs (applications). These jobs are composed of tasks that communicate
among them using an underlying fabric: an interconnection network (IN) which
determines the way compute nodes are connected.
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Most supercomputers are shared by many users, who request the execution
of jobs through a submission queue. The scheduler is in charge of selecting the
job or jobs to run, following a given policy. The most common scheduling policies
are First Come First Serve (FCFS) [6] and Backfilling [6]. Often, several jobs
can fit in the system simultaneously, as the size of a job is normally smaller than
the size of the complete system (in terms of compute cores).

Once a job is selected, an allocator must find a set of free nodes (a partition)
and perform the mapping of job tasks onto system nodes. An allocation strat-
egy is used to carry out the search. We can differentiate two broad classes of
strategies. Contiguous strategies look for convex sets of free nodes, normally with
hyper-rectangular shapes. Non-contiguous strategies remove this shape restric-
tion. Contiguous strategies try to reduce the execution time of jobs, as they
allocate partitions with very low inter-node distance, and free of interference
from other partitions in which other jobs run. However, they can cause internal
fragmentation, as they normally reserve for a job a set of nodes larger than the
number of job’s tasks. Fxternal fragmentation is also common, when enough
nodes are available to run a job, but they are not arranged with the required
shape. Thus, the price of contiguity is a low level of system utilization. For this
reason, non-contiguous strategies were developed [15,16,26]: jobs may run in
sub-optimal conditions, as inter-node distances are longer and communications
overlap (jobs are not isolated), but fragmentation is minimized (system utiliza-
tion is greatly improved) and, at the end, the overall system performance in
terms of throughput of jobs should be improved. Therefore, different allocation
strategies search for different trade-offs between job performance vs. system uti-
lization. Achieved job throughput depends on both factors. These issues, inter-
nal and external fragmentation, appear in the Blue Waters supercomputer as
reported in [14].

An issue that should not be ignored is the impact, in terms of performance, of
the way job tasks are mapped onto the nodes of the allocated partition [3,19,20].
The benefits of contiguous strategies are maximized only with good mappings
that optimize the inter-application communications [18]. Mappings in which
tasks are not physically close, and need to contend for channels with messages
of other jobs, are the reason behind the reduced performance of non-contiguous
allocation strategies.

We consider in this paper another class of allocation strategies that fit some-
where in the middle between contiguous and non-contiguous as defined above,
and are based on Space-filling Curves (SFC) [13]. These SFC strategies “see” the
supercomputer as a linear list of nodes, and perform contiguous allocation in this
1D space. Therefore, partitions are sub-lists of consecutive nodes [9,13]. Then
1D lists are mapped onto a higher-dimensional space, in a way that depends on
the selected space-filling curve [1,11]. These mappings do not guarantee that the
resulting partition in the nD space is consecutive and convex. However, they are
designed to keep locality between nodes: they are physically close. Compared
to pure contiguous mappings, SFC mappings are better in terms of utilization,
as internal fragmentation does not occur (the allocator can always search for a
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1D list with the required number of nodes) and external fragmentation is less
severe. It remains to be verified if the locality guaranteed by SFC allocation is
good enough to provide a good execution environment for parallel jobs, matching
(or getting close to) that of contiguous allocation.

In summary, in this paper we evaluate how SFC-based allocations trade-off
per-partition benefits (locality, isolation) with system-wide benefits (mainly, uti-
lization), when used in supercomputers built around interconnection networks
with nD-mesh shapes. To provide a context, we compare them with a convex,
contiguous strategy and with a non-contiguous strategy. For this study we use a
diverse collection of metrics. Some are indicators of the quality of the partitions,
hinting how well applications would run on them. Others measure the perfor-
mance of the system-wide scheduling process. The evaluation of all the strategies
has been performed using simulation, fed with a large collection of workloads
generated synthetically. Our experiments verify the intuitions outlined in this
introduction, showing how non-contiguous and SFC based strategies perform
very well in terms of system utilization but, for other metrics that consider fit-
ness of partitions to applications, contiguous allocation is better. In order to
provide an answer to the question “which strategy is the best in terms of job
throughput?”, we only provide a partial answer: it depends on the behavior
of the applications that constitute the workload, when executed in differently
shaped partitions.

The rest of the paper is organized as follows. Section 2 describes the metrics
used to compare allocation strategies. In Sect. 3 we describe the SFC strategy. In
Sect. 4 we describe more formally the scheduling, allocation and search strategies
under evaluation. The workloads used in the experiments are described in Sect. 5,
where we provide additional details about the experimentation set-up. In Sect. 6
we discuss system-wide results of the different strategies, and we continue in
Sect. 7 with an analysis of the quality of the delivered partitions. Section8 is
devoted to the search of a trade-off between application slowdown (due to the
use of non-optimal partitions) and system utilization. Section 9 closes the paper
with some conclusions and future lines of research.

2 Performance Metrics

We measure allocation strategies using two groups of metrics, the first focused
on system utilization, and the second focused on the quality of the partitions.

2.1 Scheduling-Focused Metrics

— Utilization indicates the average ratio of active nodes during a measuring
time of interest. A node is active if it has been allocated to a running job.
Using only utilization to assess system-wide performance can be deceptive, as
a strategy with low utilization but that allows faster execution of applications
can result in better job throughput [23]. However, it is an excellent indicator of
the overhead that results from the use of strategies that search for contiguity
or locality.
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— Makespan: It represents the total time required to process a given input
workload. If we do not take into account the effects of partition shape on
execution speed, as we do in our experiments, this metric also indicates the
cost of looking for contiguity or locality.

Note that these two metrics are related with others not included here, such as
fragmentation (internal and external). Higher degrees of fragmentation result
in lower utilization, and longer makespan.

2.2 Partition-Focused Metrics

The metrics described here depend strongly on the characteristics (topology) of
the underlying interconnection network. For the purpose of this evaluation, we
focus on nD meshes (they could be easily extended to tori). Given a partition P
(with an arbitrary shape, convex or not) composed of S = |P| compute nodes of
coordinates a = (al,--- ,a"), being n the number of dimensions of the network,
and being d(a;, a;) the Manhattan distance (number of hops) between nodes a;
and aj of the partition, we define the following metrics:

1. Average pairwise distance (APD): Average distance between all pairs of

nodes in P. s g
Zi:l Zj:i—i—l d(a;, a;j) (1)
(S+1)xS

2. Number of affected nodes: Size of the area covered by the partition, thus
the number of nodes that may be participating in the communications. If the
partition is not convex, the affected area may include nodes assigned to other
running applications.

APD =2 x

NA= };[1 (Iarllealg({ak} - gréig{ak} + 1) (2)

where maxacp{a*} and minacp{a*} are the maximal and minimal coordi-
nates in the k-th dimension of all nodes a in the partition.

In Fig.1 we have represented three partitions and the nodes that will be
affected by the communications. As we can see, in the fist contiguous partition
(Fig. 1a) all communications remain internal, without affecting neighboring jobs.
The second and third non-contiguous partitions (Figs. 1b and ¢) show how the
affected area extends outside the partition. In Fig. 1d, which represents the three
partitions put together, we can see how the affected areas of the three partitions
are overlapping.

Low values of APD are expected to correlate with reduced execution times of
applications running in the partition. However, as explained in [21], this corre-
lation is direct only if the application use an all-to-all communications pattern.
The extent of which jobs benefit from good distance-related metrics depends
strongly on the characteristics of the application and the applied mapping. Also,
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Fig. 1. Nodes affected by the communications of three applications allocated contigu-
ous and non-contiguously.

interference from other applications, that can be severe if all partitions have
large numbers of affected nodes, have an important bearing on the performance
of the communications [10]. The assessment of application run times falls outside
the scope of this paper.

3 Space-Filling Curves

A space-filling curve (SFC) maps a one-dimensional list of points onto a nD
hypervolume. The first of this kind of curves was discovered by Hilbert [7], but
others have been developed such as the Z-order curve. The first version of the
Hilbert curve performed only 1D to 2D mappings, but it was later extended to
higher dimensions [2]. The Z-order curve was able to perform multi-dimensional
mappings since the beginning.

The idea of using SFCs to map parallel jobs onto network nodes was first
introduced in [15]. With this approach, network nodes are ordered using a rank.
Allocation (search of partitions) is done in this 1D, rank-ordered list, instead of
using, for example, the 2D coordinates. A 1D partition is afterwards mapped onto
the actual nD space using the transformations defined by the chosen SFC. Two
are the main advantages of these SFC allocation strategies: the search is simple,
as it deals with 1D structures, and the resulting nD partitions are very compact,
keeping high levels of locality. In Fig.2 we have represented some examples of
mappings from a 1D space to 2D and 3D spaces, using the two different SFCs. In
the upper side of the figure, we show the consecutive sets of nodes (partitions)
resulted from a 1D allocation. Below we see the same partitions when mapped
to 2D and 3D, using the Z-order curve (left) and the Hilbert curve (right). Next
we explain how these mappings are performed.

— The Z-order curve [17] is a function that maps multi-dimensional points by
interleaving the binary representation of their coordinate values. For example,
the point (2,4) in 2D would be mapped to the point (1D) with z value 010-100
(010100). The use of this curve preserves locality between points, but does
not guarantee contiguity.

— The Hilbert curve is a function that traverses the polyhedron vertices of
an n-dimensional hypercube in Gray code order [25]. For example, in 2D the
sequence of gray codes (0,0), (0,1), (1,1), (1,0) corresponds to the 1D points:
0, 1, 3, 2. This curve preserves the contiguity and locality between the nodes.



Analyzing the Performance of Allocation Strategies 237

Z-order Hilbert

!
\

Fig. 2. Mappings of 1D consecutive partitions onto 2D and 3D spaces using Z-order
and Hilbert space filling curves.

Table 1. Locality, expressed as APD, for five sets of partitions that are consecutive
in 1D and then mapped to nD using the Z-order curve (Z) and the Hilbert curve (H).
The higher the set identifier, the smaller the average size of the partitions within.

1D 2D 3D 4D 5D 6D

- Z H Z H Z H |Z H |Z H
Set 1|337.24|27.58|22.08|12.35|10.40  8.69 | 7.64|7.42|6.45|6.55 | 6.00
Set 2| 148.81|19.51 | 14.50 | 9.54| 7.47|7.18/5.97|6.20|5.14 | 5.65 | 4.88
Set 3| 81.02|13.97|10.73| 7.89| 6.26 6.155.04|5.42|4.62|5.04  4.34
Set 4| 48.70|12.28| 8.66| 7.13| 5.46 5.59 4.57|5.03|4.22|4.70 | 3.93
Set 5| 21.88| 7.01| 5.55 4.73| 3.92|3.98/3.42|3.70|3.20 | 3.54 | 3.07

The objective of SFC allocation strategies is to obtain nD partitions with
good locality (to benefit inter-task communications in the interconnection net-
work). This locality has been evaluated in [13,24] for 2D and 3D networks.
Now we extend this study to higher dimensions. We have measured the locality
achieved by both curves when mapping to 2D (64 x 64), 3D (16 x 16 x 16), 4D
(8x8x8x%x8),5D (4x4x4x4x4)and 6D (4 x4 x4 x4 x4x4) meshes.
We generated five sets of 1D contiguous partitions, labeling each set as k=1..5.
Each set k contains thirty partitions of different sizes, being the maximum size
4826. This means that Set 1 contains much larger partitions than Set 5.

We first calculated the locality of these 1D sets in terms of APD. Next we did
the same after the mapping to nD, using both Z-order and Hilbert curves. Results
are summarized in Tablel. It is clear that locality in the mapped partitions
increases with the number of dimensions in the IN. This is due to the increased
degree of the network nodes. The results also indicate that the Hilbert curve
preserves locality better than the Z-order curve, mapping the points to closer
locations, for any number of dimensions. Note that these are static experiments,
that neither consider the complete scheduling process nor the way locality affects
job’s run times. We will explore these issues later in this paper. We want to
remark that Hilbert-based allocation is used in the SLURM scheduler [12].
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4 Scheduling Policies and Allocation Algorithms

In this section we further explore the scheduling process, with focus on allo-
cations algorithms. Scheduling consists of determining which queued job (sub-
mitted by a user) will be selected for execution. This is carried out following a
established policy [6] such as FCFS, backfilling, Shortest Job First (SJF), etc.
The most used policy is backfilling, which tries to avoid a “head-of-line block-
ing” problem of FCFS. While FCFS selects the jobs in strictly order of arrival,
backfilling allows to advance jobs when the job at the head of the queue can-
not be executed because the necessary resources are not available. However, a
job is allowed to be advanced only when its execution is not expected to delay
the starting time of the job at the head of the queue. A requisite to implement
backfilling is, thus, an estimation of the run time for the jobs. Normally, users
are expected to provide this estimation. Backfilling improves system utilization
while respecting submission order.

Once a job has been selected, the allocator is in charge of reserving the set of
nodes onto which the tasks of the job will be mapped. In this work we consider
contiguous strategies, non-contiguous strategies, and SFC-based strategies.

4.1 Contiguous Allocation with Hyper-rectangular Partitions

These kind of strategies look for convex partitions with shapes a x b, a X b X ¢,
a X b x ¢ x d, etc. depending on the dimensionality of the underlying IN. These
partitions result in optimal values of distance-related metrics. Furthermore, they
provide a very desirable property: isolation. This means that partitions do not
overlap, and inter-task communications in a job are implemented in the IN with-
out requiring the intervention of nodes in other partitions. In other words, com-
munications in different partitions do not interfere. Both properties together
make this kind of partitions the optimal place to execute communication-
intensive parallel applications — the ones expected to run in a supercomputer
[20,23]. However, looking for contiguous partitions is not cheap (due to external
fragmentation), and the overall system utilization is drastically reduced (when
compared with other alternatives).

Searching for a partition of a particular shape requires traversing the system
(a data structure representing it) in a particular order. The First-Fit (FF) policy
stops the search as soon as the suitable partition has been found — or when
the search ends unsuccessfully. In this work we use a search algorithm that
implements this policy, called Improved First Fit (IFF) [22]. It searches for hyper-
rectangles in multi-dimensional cube networks.

4.2 Allocation Strategies Based on Space-Filling Curves

These strategies are contiguous and consecutive in the 1D representation of the
system, but result in non-convex shapes when mapped to higher dimensions.
However, as shown in the previous section, they result in partitions with high
levels of locality: good values in terms of distance-related metrics. These values
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are not as good as those provided by the contiguous strategy, and resulting
partitions (communications) do overlap. The achieved benefit of SFC allocation
comes in terms of high levels of system utilization.

The search of partitions can be done using First Fit (FF), Best Fit (BF) or
other strategy. We consider in this work:

— Strategies based on Z-order curves, searching with FF (ZORD-FF) and BF
(ZORD-BF). Note that these strategies take into account locality, but may
result in non-contiguous, non-convex partitions.

— Strategies based on Hilbert curves, searching with FF (HILB-FF) and BF
(HILB-BF). The resulting partitions are contiguous, but convexity is not
guaranteed.

4.3 Non-contiguous Strategy

We have also evaluated a simple, non-contiguous allocation strategy with FF
search (NC-FF). It looks for free nodes using the node identifier, without any
special consideration. We will see that it results in excellent results in terms of
utilization, but bad per-partition, distance-related metrics.

4.4 Mapping Tasks onto Partitions

We insist in this point: once the scheduler has a job (collection of tasks) and a
partition (collection of nodes), it is necessary to map tasks onto nodes. This stage
has a huge impact on the performance of applications [3,20], but evaluating this
effect would be very costly and is beyond the scope of this paper. We leave this
as future work, and we use here a simple, consecutive mapping strategy: tasks
are assigned to nodes consecutively using their identifiers.

5 Experimental Set-Up and Workloads

In this section we describe the simulation-based evaluation environment used in
this work. A fundamental part of experiments with simulators is the collection
of workloads used to feed them. Thus, we start describing the workloads.

5.1 Workloads

We have used several, synthetically-generated, workloads. A workload is defined
as a sequence of (parallel) jobs submitted to the system, and includes the fol-
lowing per-job pieces of information:

1. Size: The number of nodes requested to run the job.

2. Shape: If the scheduler uses a contiguous allocation strategy, then the shape
of the requested hyper-rectangle must be supplied. If not specified, the sched-
uler use the job size and generate a valid hyper-rectangle. Note that if size
and shape do not match in terms of number of nodes, there will be internal
fragmentation.
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3. Duration: This value must be provided as part of the workload because we
are simulating only the scheduling mechanisms — but it should be the result of
the execution of the job in the assigned partition. Thus, for the experiments
reported in this work, it simply matches the estimated run time, and does not
reflect any effect of the partitioning (and mapping) strategies on execution
time.

4. Estimated run time: Required when using a scheduler implementing back-
filling. In this evaluation, we assume that this time is the real execution time
(duration).

As we can seen, we do not include in the workload the arrival time of jobs.
We consider a situation of maximum input load in which all jobs arrive simul-
taneously but ordered to the waiting queue, thus emulating a production system
in which there are always several jobs awaiting. This is to avoid situations of
low system utilization due to an empty queue. It also provides a meaning to the
makespan metric: the time to consume the full workload.

We use beta distributions with different parameters to generate sizes and/or
shapes. The generation of hyper-rectangles is not trivial because, for a given
job size, several shapes can be valid to contain it. For example, 16 nodes can
be arranged as a 4 x 4 or 8 x 2 [23]. Moreover, some sizes such as 7 can only
be arranged contiguously as a 7 x 1 partition if internal fragmentation is not
allowed. Considering this fact, we have defined two different types of workloads
(Fig. 3):

— Unshaped workloads: The workload includes job sizes, but does not specify
shapes. The contiguous scheduler generates a valid shape automatically, as
the smallest nD cube (shaped a X a X ... X a) able to host the job, where
n matches the dimensionality of the IN. Using this criterion, partitions are
symmetrical and compact, but internal fragmentation may be severe.

— Shaped workloads: The workload includes a per-job shape specification,
and the job size is just the number of nodes in this shape. Thus, there is
not internal fragmentation. This is assumed to be the best way of running
applications, as the user has selected a shape that, supposedly, optimizes
inter-task communications.

For each type of workload we have generated three sets of 150 jobs, using in
each of them a different average job size: small (S), medium (M) and large (L).
This has been carried out limiting the maximum size that a partition can have.
The resulting size distributions are represented in Figs.3a and b respectively.
Finally the duration of the jobs must be generated. In this case we generate 10
different durations for a job. Considering all together, we have managed 2 types
x 3 average sizes x 10 durations = 60 workloads of 150 jobs each.

5.2 Experimental Set-Up

We have analyzed the different schedulers using an in-house developed scheduling
simulator that takes as input parameters a workload, a scheduling policy (such as
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Fig. 3. Boxplot of the two types of workloads used to evaluate allocation strategies.
Each type is composed of three sets (large, medium and small) of 10 workloads each.
The figure shows the minimum, the maximum, the median and the fist and third
quartile.

FCFS or backfilling), an allocation strategy (contiguous, non-contiguous, SFC-
based, etc.) and, if required by the experiment, a slow-down factor to be applied
to the duration of the jobs specified in the input workload. We will see later the
usefulness of this parameter. The simulator’s output reports in a set of metrics,
including those explained in Sect. 2.

In all the experiments we use an implementation of backfilling called “con-
servative” [6]. Then we consider six different allocation strategies and the 60
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workloads defined above. Reported results are averages of the metrics obtained
for the 10 sets of job durations.

As underlying INs we consider a 3D (32 x 32 x 32) and 5D (8 x 8 x 8 x 8 X 8)
mesh, both with 32768 nodes. These dimensions have been chosen because they
are used by supercomputers currently operational i.e. Blue Gene P (3D) [8], Blue
Gene/Q [4] from IBM, Cray systems with the 3D Gemini interconnect [5], etc.
We evaluated both meshes and tori but, as the main results are not significantly
different, and for the sake of brevity, we only report results with meshes.

6 Analyzing System-Wide Results

Experiments were designed to understand to what extent the search of contiguity
or locality has a bearing on system utilization and makespan. In Fig. 4 we have
represented the results (utilization and makespan) obtained for the different
simulation configurations and workloads. Note that ZORD-FF and HILB-FF
are represented together as SFC-FF, because they yield identical results (the
same applies to ZORD-BF and HILB-BF, summarized as SFC-BF). This is a
direct consequence of the use of the same search strategy over the same 1D
space, and the topology of the IN is irrelevant — differences will appear when
evaluating the resulting nD partitions. Results labeled as NC-FF correspond
to the non-contiguous strategy and, again, do not depend on the IN topology.
CONT3D and CONTS5D correspond to the contiguous strategy in the 3D and
the 5D mesh respectively.

Let us start focusing on unshaped workloads: those in which the user specifies
only a job size. The contiguous scheduler tries to find a nD rectangular partition
for it. This process is expected to hurt performance severely, particularly for high
values of n, due to the effects of internal fragmentation. Results, summarized in
Fig. 4 show this effect very clearly. Utilization with hyper-rectangular partitions
is, in general, very poor, being negatively affected by the dimensionality of the
IN and the average job size. The first factor determines the internal fragmenta-
tion, and the second has a bearing on external fragmentation. Makespan values
confirm these findings. They are longer for workloads with larger average job
size, because each job requires more resources and, thus, fewer jobs can run
simultaneously.

At the other end of the spectrum, NC-FF yields excellent results, indepen-
dently of the underlying topology. When we relax all kinds of shape or locality
expectations in the partitions, the probability of finding a free set of nodes fitting
a job request is drastically increased. This is especially noticeable when dealing
with medium to large jobs.

Locality aware, SFC-based strategies show excellent results, close to those
of NC-FF for small jobs, although slightly worse for larger jobs. The search
strategy does not play a significant role, with FF and BF search performing
similarly. Thus, the increased cost of the exhaustive search done by BF does not
provide any benefit.

Finding specific shapes is more costly than finding arbitrary node sets, and
result in higher levels of external fragmentation. We have not measured this
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Fig. 4. Representation of the utilization and makespan obtained by the allocation
strategies using both unshaped and shaped workloads and both 3D and 5D networks.

Table 2. Number of allocation failures due to external fragmentation: enough free

nodes are available, but not in the required arrangement.

CONT3D CONT5D SFC-FF SFC-BF
Workloads | S M L S M L S M L s M L
Shaped 4649.80|10356.10|11870.20|7085.60|10791.00|11852.50| 94.20| 580.8 [257.30| 79.90|432.80|198.70
Unshaped |4575.50| 9835.80| 2956.50|5026.00|10656.20| 3706.00|126.20|1071.70|194.90|102.10|885.70|161.70

effect (fragmentation), but have characterized this cost by measuring how often
the scheduler tries to find a partition for a job, and fails. Results are summarized
in Table 2. Remember that a workload has 150 jobs. Clearly, the CONT3D and
CONTS5D schedulers work much harder than the others and fail too often. Not
because the required nodes are not there, but because they are not arranged as
requested. SFC alternatives have an easier job, as shape restrictions are limited
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to consecutiveness in a 1D space. The NC-FF strategy fails only when free con-
secutive nodes are not enough to match the size of the selected job.

The user submitting the job may know the best partition shape to run an
application, and we try to reflect this fact with the shaped workloads. The con-
tiguous scheduler will honor the request, searching for the specified shape. In
contrast, the non-contiguous scheduler will ignore this request totally, and the
SFC-based schedulers will simply look for a set of physically close nodes match-
ing the desired size. Note that, when jobs are specified with a shape, internal
fragmentation does not appear, as the size of the assigned partition will be the
same of the job. Additionally, note that the contiguous allocator will not neces-
sarily search for regular, nD hyper-rectangles (where n is the dimensionality of
the IN): they user may request a 2D, planar partition, even if the network is 5D.

Results with these workloads are also summarized in Fig. 4. Note that, with-
out the effect of internal fragmentation, the main factor affecting utilization
is external fragmentation (not finding the requested shape). The relative per-
formance of NC-FF against SFC-based schedulers remain, as both ignore the
requested shapes. However, contiguous strategies offer much better results.

7 Analysis of the Quality of the Partitions

Utilization metrics tell us only partial information about the performance of a
supercomputer - scheduler combination. Utilization may be low but, if appli-
cations run faster, at the end of the day the supercomputer is more produc-
tive. With the experiments carried out we cannot verify if SFC based strategies
are adequate to run communication-intensive parallel applications. But we can
obtain some metrics that can be used as indicators of that adequacy, see Sect. 2.2.

7.1 Average Pairwise Distance

A low value of APD for a partition indicates how compact that partition is. Com-
munications will use short paths, thus (presumably) benefiting communication-
intensive applications. We have summarized in Table 3 averages of these metrics
for the partitions used by the different schedulers, for both 3D and 5D (mesh-
shaped) INs. In all cases, partitions have better (lower) APD in 5D meshes than
in 3D meshes. This is due to the topological characteristics of the IN, with higher
degree for 5D, that results in shorter distances. Thus, this fact does not require
further discussion.

When job requests are unshaped, the cubic partitions used by the contiguous
scheduler are very compact, being this allocation strategy the absolute winner.
Partitions used by SFC-based allocators are very good, with Hilbert generating
partitions almost as compact as the cubes. Non-contiguous partitions exhibit
very poor distance-based metrics.

Results for the workload with shaped job requests may be misleading. In gen-
eral, the distance-based metrics obtained for all strategies except the contiguous
are the same seen for unshaped workloads, see again Table 3, as those strategies
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Table 3. Average pairwise distance of the partitions found by the allocation algorithms.
These results were obtained using two sets of workloads (see Sect. 5) simulated into two
cube-shaped network topologies (3D and 5D).

Unshaped workloads Shaped workloads

3D 5D 3D 5D

S M L S M L S M L S M L
CONT 6.56|11.34 | 18.80|4.77| 6.88 9.54| 9.42 |14.37 |21.96 |4.80| 6.76| 9.94

HILB-FF 7.10 | 12.35 | 20.30 |5.02 | 7.21 | 10.26 | 7.33|12.16|20.04|5.15 | 7.10 |10.15
ZORD-FF | 9.08 |14.88 |23.64 |5.92 | 8.29 | 11.07 | 9.34 |14.79 |22.68 |6.07 | 8.27 |10.80
HILB-BF 7.09 |12.37 |20.32 |5.01 | 7.21 |10.26 | 7.32|12.11|20.05|5.15 | 7.09 |10.15
ZORD-BF | 9.03 |15.05 |23.76 |5.89 | 836 |11.09 | 9.34 |14.71 |22.72 |6.07 | 8.23 |10.81
NC-FF 21.91 124.86 126.56 |9.79 | 11.04 |11.71 |22.46 |25.19 |27.06 9.94 |11.2 |11.82

ignore the shape request. This is not the case when the partitions are contigu-
ous. In fact, in the 3D mesh, the Hilbert-based SFC allocator provides “better”
partitions than those used by the contiguous allocator. In the description of the
workloads provided in Sect. 5, we clearly stated that it is assumed that the user
submitting a job will choose the best partition shape for it. It may happen that
the requested shape is not the same of the underlying IN. For example, a job of
size 1024 may request specifically a planar 32 x 32 partition, that fit perfectly
in a plane of the 3D network. If the scheduler does not honor the shape request,
it could be assigned to a partition with a 3D shape of size 11 x 11 x 11 (exactly
or approximately) with excellent distance metrics but that may not allow opti-
mal inter-task communications. This happens when the wvirtual topology of the
application differs from the physical topology of the partition [20]. As the Hilbert-
based allocator ignores shape requests, prioritizing compactness, this strategy is
the best performer in terms of distance-based metrics for 3D networks. For 5D
networks, the high degree of the topology shortens the distance-related metrics
for all strategies, making this effect less visible.

After seeing these results, we wonder if APD can be considered as a real indi-
cator of performance. As explained in [21], the answer is a clear “no”, because
a partition is good only if, after the mapping, it matches the communication
demands of the application, and APD does reflect this fact. Furthermore, we
should not ignore a side-effect of sharing a supercomputer: the possible inter-
ference between applications running simultaneously. However, in general, SFC
based strategies will provide compact partitions to execute parallel jobs.

7.2 Nodes Affected Metric

The nodes affected metric tries to reflect the degree of isolation of the parti-
tions. Low values (identical or close to the size of the partition) are indicators of
very isolated partitions that share few or none network resources (routers, links)
with other partitions. Larger values evidence partitions that require the use of
resources “belonging” to neighboring partitions. It is well known that isolation
is highly beneficial for parallel jobs [10,18,20,23].
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Fig. 5. % of nodes affected by the partitions obtained by the allocation strategies.
Results are normalized, being 100% the result achieved by the CONT strategy.

In Fig. 5 we have summarized the results of this metric for the partitions used
by the different allocators. They are normalized, being the 100% the results
achieved by the contiguous allocator (that guarantees isolation). The NC-FF
strategy uses partitions that cover almost the whole IN and, thus, the corre-
sponding numbers would distort the figure. For this reason, they have not been
included.

When job requests do not specify shape, SFC-based partitions result in larger
numbers of affected nodes, compared to the minimum provided by the cubic
partitions (see Fig.5a). In particular, the Hilbert mappings have on average
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50% more nodes. As an example, this means that a job of size 7000 (a typical
size in the large workload) may be interfering with around 3500 nodes belonging
to other applications. The Z-curve mapping is considerably worse, with affected
areas 125-350% larger than those corresponding to cubic partitions. Noticeably,
this excess area is smaller for larger jobs, and larger for 5D networks than for 3D
networks. When dealing with specified shapes, results show a similar pattern,
but are slightly worse for SFC-based allocators, see Fig. 5b.

In summary, Hilbert-based allocators do a decent job guaranteeing compact
and relatively isolated partitions, in addition to provide network utilization val-
ues close to those achieved with the non-contiguous allocator. The latter is the
winner in terms of utilization, but the cost to pay is the use of scattered parti-
tions with large distances between nodes and intense interference. At the other
end, the contiguous allocator provide the best execution environment for appli-
cations, but result in severe fragmentation.

8 Trading Off Costs and Benefits of Allocation Strategies

Without a detailed study of the applications executed by the jobs, and the
strategies used to map tasks to nodes, it is simply not possible to make a definite
statement about which allocator is the best one. We need to know if applications
running in nicely isolated, contiguous partitions do actually execute faster than
in scattered partitions. We have evidence that, in fact, they do [18,20,23], but the
degree of improvement depends greatly on the particular application — actually,
application set — that conform the workloads. We can take for granted, given
the measurements included in the previous sections, that SFC-based allocators
based on the Hilbert curve should be preferred to NC-FF, as it yields similar
utilization levels while providing much more compact partitions.

It is not clear, though, under which circumstances the contiguous allocator
could be the one of choice. Here we explore this issue. Let ¢ be the average job
duration in the contiguous and isolated partitions provided by CONT. Let s be
the average slowdown experienced by the same jobs when running in SFC-based
partitions that do not guarantee those properties. Thus, the average job duration
with HILB-FF would be ¢ x s. Note that we are assuming that s > 1.

Similarly, let Uy be the utilization of the system with HILB-FF, and U¢g the
utilization with CONT. Now, we are assuming that Uy > Ugc.

As our workload has w jobs of size n, its total computational demand (use of
resources) is Do = (wxmnxt) for CONT, and Dy = (wxnx (txs)) for HILB-FF.
The makespan for the workload can be computed as its computational demand
divided by the achieved system utilization (actually, utilization U is computed
as (D/M)) Thus MC = (Dc/Uc) and MH = (DH/UH)

Now we are ready to state that HILB-FF is the preferred choice over CONT
if its makespan for the applied workload is shorter, that is, when My < Mc.
This can be expanded as:

wxnxtxs<w><n><t
Uy Uc

3)
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Fig. 6. Makespan of CONT3D, CONT5D and HILB-FF for different slowdown factors.

The inequality can be simplified, expressing it as:

S 1
—_— < — 4

Therefore, to make a good choice of allocator we need to know its utilization
result (that depends mainly on the allocation strategy and the characteristics
of the network and, thus, is application-agnostic) and the average slowdown
experienced by applications (which can vary drastically with the specifics of the
applications forming the workload).

Equations 3 and 4 can be transformed to obtain answers to this question:
which values of slowdown are acceptable for an allocator (compared to CONT)
that compensate an increase in per-job run time with a higher utilization and,
therefore, a shorter makespan? We have represented this in Fig. 6. The horizontal
lines represents the baseline makespans for CONT, which are different for 3D
and 5D. The raising line corresponds to the makespans achievable by HILB-FF
for different values of slowdown s. These values correspond to the shaped, large
workload described before, but the trend is exactly the same for other workloads.

The crossing point is at s = 1.1 for 3D meshes. This means that when applica-
tions need on average less than 10% extra time to end when running on HILB-FF
generated partitions, then HILB-FF is a good choice of allocator. However, for
higher degrees of slowdown, the CONT allocator is the best choice, consuming
the workload faster even without fully utilizing all the resources available. For
5D meshes the crossing point is higher, at s = 1.2, or 20% allowed slowdown for
HILB-FF. This is because of the large penalty to pay in terms of fragmentation
when using networks of high dimensionality. An exhaustive exploration of the
actual values of s for different, realistic workloads is left as future work. Some
preliminary work carried out in [18,23] shows that for some applications we can
expect values of s exceeding 3.
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Fig. 7. Visual representation of the relative advantages of different allocation strategies,
based on system-level and partition-related metrics.

9 Conclusions and Future Work

In this work we have evaluated the quality of SFC based allocation strategies
for schedulers of supercomputers. This evaluation has been carried out using
synthetic workloads with different characteristics (size, duration, shape), sub-
mitted to systems with a 3D and 5D mesh topology. These strategies have been
compared with a contiguous (CONT) and a non-contiguous (NC-FF) strategy.

CONT prioritizes the utilization of contiguous and isolated partitions, opti-
mal for the execution of applications. The prize to pay is a large overhead due
to fragmentation, that results in low levels of system utilization. On the con-
trary, NC-FF prioritizes utilization, assigning nodes to partitions independently
of their positions in the network. The prize to pay is a collection of sparse and
overlapping partitions.

Allocators based on space filling curves have demonstrated excellent proper-
ties, in particular when Hilbert is the curve of choice. They perform allocation
in a linear (1D) space, which results in utilization levels close to those of non
contiguous approaches as represented in Fig. 7. The obtained 1D partitions are
then mapped to the nD topology of the actual system, resulting in very compact
sets of nodes (see again Fig. 7). The partitions achieved this way offer distance
metrics similar to those of CONT strategies, although they do not guarantee
isolation. However, SFC allocators have characteristics that are close to those of
a theoretical, optimum allocator.

The relative merit of the different allocators depends on factors such as the
search strategy (FF, BF), the topology of the IN (number of dimensions, related
to node degree) and the properties of the workloads submitted to the system. We
have studied “shaped” and “unshaped” workloads. The former assume that the
user knows and requests the most appropriate shape to run an application, and
the CONT scheduler honors this request — at a cost: in busy systems, it is difficult
to find a partition of a specific shape. None of the remaining strategies take this
request into consideration, using only the number of nodes in the request to
search for a partition.
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Finally we have seen that the benefits that SFC-based strategies obtain in
terms of utilization, may disappear if we consider the (relative) slowdown that
applications would suffer when running in non-optimal, overlapping partitions.
If the penalty is over 10% for 3D meshes (20% for 5D meshes), then the CONT
strategy is the best, even if utilization figures tell a different story. Otherwise,
for lower penalties, SFC based strategies should be the chosen.

As future lines of work, we plan to make a deeper analysis of the impact of
non contiguous partitions on applications’ slowdown. As we have focused on nD
meshes, we plan to extend this work to other kinds of IN, for example based on
trees. Finally, we want to propose and assess a hybrid allocation strategy, able
to provide contiguous and isolated partitions for those applications requiring
them, and other SFC based partitions for less demanding applications, with the
objective of achieving high system utilization without penalizing applications.
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