
Topology-Aware Scheduling on Blue Waters
with Proactive Queue Scanning

and Migration-Based Job Placement

Kangkang Li1(B), Maciej Malawski2, and Jarek Nabrzyski1

1 Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN, USA

{kli3,naber}@nd.edu
2 Department of Computer Science,

AGH University of Science and Technology, Krakow, Poland
malawski@agh.edu.pl

Abstract. Modern HPC systems, such as Blue Waters, have multidi-
mensional torus topologies, which make it hard to achieve a high system
utilization and a high scheduling efficiency. The low system utilization
is majorly caused by system fragmentation, which includes both inter-
nal fragmentation due to convex prism shape requirement, and exter-
nal fragmentation resulted from contiguous allocation strategy. The low
scheduling efficiency comes from using a brute force search to find the
free block with a matching shape for each job, which is highly time con-
suming. In this paper, we address the topology-aware scheduling problem
on Blue Waters, with the objective of improving system utilization and
scheduling efficiency. To improve scheduling efficiency, we propose an
efficient free partition detection method. To improve system utilization,
we propose a job scheduling strategy with proactive queue scanning and
a migration-based job placement algorithm. Through extensive simula-
tions of modeled trace data, we demonstrate that our approach improves
the system utilization.

Keywords: Topology-aware scheduling · Proactive queue scanning ·
Free partition detection · Migration · Job placement

1 Introduction

Many high performance computing systems use various types of multidimen-
sional torus topologies for their interconnects. Four of the top ten supercom-
puters in the Top500 list (June 2016) have torus networks (one 3D, two 5D,
and one 6D). They are widely used in systems such as Blue Waters (3D) [6],
IBM’s Blue Gene/Q (5D) [15], and Fujitsu’s K computer (6D) [2]. In the Blue
Waters system for instance, the network consists of X,Y,Z 3D dimensions with
toroidal interconnect. Each dimension has 24 Gemini routers, making the system
24*24*24 torus interconnect structure. Each coordinate on X,Y,Z dimensions
c© Springer International Publishing AG 2017
N. Desai and W. Cirne (Eds.): JSSPP 2015/2016, LNCS 10353, pp. 217–231, 2017.
DOI: 10.1007/978-3-319-61756-5 12

218 K. Li et al.

is associated with a Gemini router. Each Gemini router is directly associated to
two computing nodes, and is connected to its six neighbour routers along X,Y,Z
dimensions (each dimension has two neighbour routers).

This torus topology influences the way jobs should be scheduled and placed
in the system. For example, BlueGene allows allocating network links exclusively
to the selected jobs to optimize their performance, but it can leave unused nodes
within the system partitions, which leads to a lower utilization. On Blue Waters,
a pre-defined Shape Table is adopted to accommodate each job’s request. In order
to allocate a job, the scheduler has to exhaustively search the entire system to
find the free block with a matching shape, which leads to a high time complexity
and a low scheduling efficiency.

In order to improve the application performance and runtime consistency,
Blue Waters system adopts a contiguous allocation strategy [4,5] and a con-
vex prsim shape is allocated to each job. This strategy degrades the system
utilization. On the other hand, non-contiguous allocation strategy [3,12] can
improve the system utilization, but it causes job performance to go down due to
communication interference and increased latency. These reasons motivate us to
investigate various topology-aware job scheduling strategies.

One key factor to low system utilization on Blue Waters is system fragmen-
tation, which includes both internal and external fragmentation. The internal
fragmentation results from the convex prism shape allocation, which allocates
more nodes to a job than it needs. The external fragmentation, on the other
hand, is caused by contiguous allocation strategy, which separates free system
resources into smaller, non-contiguous blocks interspersed by allocated resources.
This leads to the situation when sufficient number of free nodes cannot be con-
tiguously allocated for a job. In this paper, we focus on developing efficient job
scheduling strategies to reduce system fragmentation, hoping that it can improve
system utilization.

Blue Waters system is using Adaptive Computing’s Moab scheduler as system
scheduler [6]. The scheduler is in charge of assigning each waiting job a priority
and placing waiting jobs into the system. The ordered priority regulates the
schedule order for waiting jobs in the queue and determines which jobs to select
and when to allocate the selected jobs. In this paper, without loss of generality,
we assume the queue is never empty and is already ordered by assigned priority.
Each job is characterized by its own resource demand (number of nodes), and
estimated walltime. The objective is to design an efficient job scheduling strategy
to achieve a high system utilization and a high scheduling efficiency. Meanwhile,
we must preserve the performance of jobs and avoid communication interference.
Therefore, following the suggestions of system administrators of Blue Waters, we
still need to maintain contiguous allocation strategy and allocate convex prism
shape for input jobs.

The paper is organized as follows: In Sect. 2, we propose a scheduling strategy
with proactive queue and system scanning. In Sect. 3, we present the free parti-
tion detection method and the multiple knapsack model for the job placement
problem. In Sect. 4, we present our migration-based job placement algorithm for

Topology-Aware Scheduling on Blue Waters with Proactive Queue Scanning 219

solving the multiple knapsack problem. In Sect. 5, we conduct simulations to
validate the efficiency of our approach. The related work is discussed in Sect. 6
and we give our conclusions and future work in Sect. 7.

2 Scheduling with Proactive Queue and System Scanning

In this section, we present a scheduling strategy based on proactive queue and
system scanning. In our approach, the scheduler allocates waiting jobs in the
queue to the system in scheduling cycles. At each scheduling cycle, the scheduler
maintains a scan window to proactively scan the queue. In the meantime, the
scheduler also scans the system to detect a set of free partitions. The size of the
scan window is the depth of the scanning from the head of the waiting queue, as
shown in Fig. 1. This queue scanning generates a set of jobs in the scan window
ordered by priority.

 … … jD j2 j3 j1

 waiting queue

 scan window with depth D

queue head

placement … …

Fig. 1. Proactive queue and system scanning

The system scanning detects a set of free partitions in the system. This set
of free partitions represents all available contiguous resource areas. These areas
can be represented as a set of bins. Each bin is a 3D convex rectangular prism.
Once the set of jobs in the scan window is obtained, we will group these jobs and
try to place them together onto the set of free bins, all at once. This scheduling
strategy has the potential to improve system utilization as multiple jobs are
scheduled together, which leads to a better resource allocation. In the paper, we
use the two terms (bins and partitions) interchangeably.

As described in Algorithm 1, at one scheduling cycle, starting from current
queue head job, the scheduler scans the queue with depth D, and generates
the set J of D waiting jobs ordered by priority. Meanwhile, the scheduler scans
the system to obtain the set P of M free partitions. After that, the scheduler
places each job in J (waiting job set) into P (free bin set) until all jobs in J
are allocated or one job ji ∈ J is rejected. The detailed placement process will
be discussed in Sect. 4. As each job’s information (number of nodes, estimated
walltime) in the scan window is known to us, this job placement process is in
fact an off-line job placement.

If all jobs in J are allocated, we will wait until next scheduling cycle. Other-
wise, if one job ji ∈ J is rejected, we will perform backfilling and place “back-
filled” jobs into P . In order to implement backfilling, we need to first determine

220 K. Li et al.

Algorithm 1. Scheduling with Proactive System and Queue Scanning
1: if at one scheduling cycle then
2: scan the queue and generate the set J of D waiting jobs: J = {j1, ..., jD}
3: scan the system and generate the set P of M free partitions: P = {p1, ..., pM}
4: Job Placement (J , P) �Algorithm 5
5: if ji ∈ J is rejected then
6: calculate the start time of ji and reserve space for it
7: perform backfilling
8: else
9: wait until next scheduling cycle

the start time of ji and reserve space for it, which requires the following three
steps:

1. Obtain the list of running jobs in the system, and sort them increasingly by
their remaining completion time.

2. Starting from the time point of current scheduling cycle to the future, record
the time point upon each running job’s completion time, and put those time
points in the timeline.

3. Go through the timeline and calculate the largest free partition in the system
upon the time point of each running job’s completion time. Once one sufficient
largest free partition is found to accept ji at time point t, we stop the search.
Time point t is then recorded as the start time of job ji, and the corresponding
largest free partition is reserved for ji.

With the start time t determined and space reserved, we will perform back-
filling and allocate qualified backfilled jobs according to the ordered priority.
The qualified backfilled jobs are those in the queue which can finish execution
before the start time t of job ji. Once P cannot accept “backfilled” jobs, we will
terminate current scheduling cycle and wait until the start time of ji. If the start
time of ji stretches multiple scheduling cycles, we will keep using “backfilled”
jobs to fill in P at each scheduling cycle until the start time of ji.

3 Free Partition Detection and Multiple Knapsack Model

As mentioned before, Blue Waters currently uses a pre-defined Shape Table to
accommodate the request of each job. This Shape Table contains all topological
shapes of sub-torus for job allocation. For instance, for a job with 8 node request,
it corresponds to a shape of 2*2*2 in the Shape Table. In order to schedule such
a job, the scheduler has to exhaustively search the entire system to find the
free sub-torus block with a matching shape of 2*2*2, which is computational
expensive. As an improvement, we propose an efficient free partition detection
method to search the largest rectangular contiguous partition in the system.

The system is sliced into layers along the Y dimensions (X or Z dimension
is also applicable), as illustrated in Fig. 2. Each dimension has side length of M

Topology-Aware Scheduling on Blue Waters with Proactive Queue Scanning 221

(M = 24 in the case of Blue Waters). To obtain a maximum rectangular free
block on one layer, it takes time of O(M2) through the method of construction.
As for the entire 3D system, it takes another O(M2) to go through the combi-
nations of all the layers. Therefore, it takes total O(M4) to obtain the largest
free rectangular partition in the system. We can schedule multiple jobs into this
partition all at once instead of just one job.

L1

L2

L3

L4

...
L24

x

y

z

Fig. 2. Partitioning of the system into layers by Y axis

Given job shape, job placement into bins can be expressed as a 3D multiple
knapsack problem. Each bin can be considered as a knapsack and input jobs
are the items waiting to be put into the knapsacks. Let J = {j1, j2,, jD} be
the set of all D waiting jobs ordered by priority in the scan window. Each job
ji has weight wi, with profit pi. Let K = {k1, k2, k3, ..., kM} be the set of M
knapsacks, which comes from the free bin set P = {p1, p2, p3, ..., pM} obtained
in Algorithm 1. Each knapsack kj has capacity of Cj , which will be reduced as
more jobs are placed into the knapsack. We want to find a placement for the
D jobs together into the set P of free bins to maximize the total profit. The
mathematical formulation is as below:

Max :
D∑

i=1

M∑

j=1

xijpi (1)

Subject to :
M∑

j=1

xij ≤ 1, ∀i = 1, 2, ...,D (2)

D∑

i=1

xijwi ≤ Cj , ∀j = 1, 2, ...,M (3)

xij ∈ {0, 1}, ∀i = 1, 2, ...,D, ∀j = 1, 2, ...,M (4)
Cj ≥ 0, ∀j = 1, 2, ...,M (5)

xij = 1 means job i is put into knapsack j, and xij = 0 means job i is not
put into knapsack j. The physical meaning of both weight wi and profit pi is the

222 K. Li et al.

J1 J1 J1

J1 J1 J1

J1 J1 J1

J1 J1 J1 J1

J1 J1 J1 J1

Bin 1 Bin 2

Fig. 3. Illustration of difference in internal fragmentation from job placement

job size, which is the number of requested nodes of job i. The capacity of each
knapsack can never be negative, but it will be reduced as more jobs are put into
this knapsack.

Based on this multiple knapsack model, maximizing the system utilization
can be transformed into maximizing the objective of Eq. 1. As the sizes of input
jobs and capacities of free bins are heterogeneous, this multiple knapsack problem
is NP-hard and requires a heuristic algorithm, one example of which is presented
in the next section.

4 Migration-Based Job Placement

In this section, we propose a migration-based job placement heuristic algorithm
to solve the multiple knapsack problem. The intuition of this heuristic is to
minimize the internal fragmentation brought in by the job placement process.

Once the set J of waiting jobs in the scan window and the set P of free
partitions are obtained in one scheduling cycle, we will place each incoming job
in J into one of the bins in P . However, the extent of internal fragmentation
(the number of idle nodes due to using convex shape) is different if we place a
job in different bins. Figure 3 gives a 2D example.

As shown in Fig. 3, there is an incoming job J1 with 8 nodes request. If we
place it in Bin 1, it will lead to one idle node (the grey area), as the topological
layout of Bin 1 is 3*3. However, if we place it in Bin 2, it leads to no internal
fragmentation, as the layout of Bin 2 is 3*4. Therefore, Bin 2 is a better choice
and more preferable than Bin 1 in minimizing the internal fragmentation.

Thus, for each job, there are preference differences in placing it into different
bins. Each bin is ranked by the extent of the internal fragmentation this bin
can bring in. We are looking for the best bin that leads to the minimal internal
fragmentation. However, if the resources in the best bin are not sufficient for an
incoming job, we have two options.

1. Direct Placement: Among all the bins which have enough resources
to accept the incoming job, we select the one with minimal internal
fragmentation.

2. Migration-based Placement: We try to find one “victim” job on the best
bin, and migrate it into another bin, as shown in Fig. 4. In that case, we can
make some more room for accepting the incoming job.

Topology-Aware Scheduling on Blue Waters with Proactive Queue Scanning 223

Fig. 4. An illustration of the job placement. When using direct placement, the incoming
job is assigned to bin 1 with the enough remaining capacity C1. When using migration,
we can find an already placed job (“a victim”) to be migrated to another available bin
with enough capacity, such as bin 2 in the picture above

The first option is not optimal as it misses the opportunity to place the
incoming job on the best bin, especially when the internal fragmentation on the
best bin is much less than that on the other bins. Therefore, we want to take
advantage of migration to do the placement. However, migration has constraint.
For the migrated victim job, there might be an internal fragmentation increase
due to the change of host bin. As our objective is to reduce the overall internal
fragmentation from job placement, if the internal fragmentation increase of the
migrated victim job is too large, migration will be meaningless. In that case, we
would rather select direct placement without migration.

While implementing the migration, we need to find a qualified victim job
for migration, which is not always possible. There are three conditions that a
qualified victim job must meet:

1. it can make enough room to accept the incoming job.
2. it can find a new available bin with enough remaining capacity to accept the

victim job itself.
3. the migration constraint must be satisfied, i.e., despite the internal fragmen-

tation increase from the migrated victim job, the Migration-based Placement
is better than Direct Placement in minimizing the internal fragmentation.

If such a qualified victim job is found in the best bin, we will choose to apply
Migration-based Placement (Algorithm 2). If more than one qualified victim
jobs exist in the best bin, we choose the victim job with the minimal internal
fragmentation increase to migrate. However, if we cannot find a qualified victim
job in the best bin, we will try to place the job in the next-best bin. If the
incoming job still cannot be placed, we continue to try the next-next-best bin.
This search goes on until the incoming job is placed or all the bins have been
tried.

As shown in Algorithm 2, for the incoming job ji, we first sort all the bins
increasingly by the internal fragmentation of placing ji in each bin pj . The call
for Direct Placement (Algorithm 3) returns frag value, which is the minimal
value of the internal fragmentation among all the bins that are enough to accept

224 K. Li et al.

Algorithm 2. Migration-based Placement
1: Input: job ji, the set P of M bins: P = {p1, ..., pM}
2: sort and rank each bin pj increasingly by the extent of internal fragmentation of

placing job ji in pj

3: frag value = Direct Placement(ji, P)
4: for j = 1 to M do
5: if Cj is enough for accepting ji then
6: place ji in pj

7: else if Migration Test (ji, pj , frag value) == true then
8: perform migration and place ji on pj

9: else
10: continue

Algorithm 3. Direct Placement
1: Input: job ji, the set P of M bins: P = {p1, ..., pM}
2: sort and rank each bin pj increasingly by the extent of internal fragmentation of

placing job ji in pj

3: for j = 1 to M do
4: if Cj is enough for accepting ji then
5: return internal fragmentation of placing ji in pj

6: else
7: continue

ji. After that, starting from the first bin on the sorted list (the best bin), we try
each pj to place the job ji in it. If pj is enough for accepting ji, we just directly
place ji in pj . Otherwise, we use frag value to test the migration constraint (in
Algorithm 4). If migration constraint is satisfied and a qualified victim job is
found, we then perform migration and place ji in pj .

In Algorithm 4, first, for each already placed job jk on pj that can make
enough space for the incoming job ji, we try to find jk a new best available
bin, which is the one that has enough resources for jk and leads to the minimal
internal fragmentation increase among all the bins (except pj). After that, we
test migration constraint. If migration constraint is satisfied, we then mark jk
as a qualified victim job. If more than one qualified victim jobs exist, we select
the best victim job on bin pj which has the minimal internal fragmentation
increase. Notably, the migration here is one-hop migration, which means that
we only consider the migration of the victim job caused by the incoming job.
The re-placement of victim job will not trigger another migration.

With D jobs and M bins in one scheduling cycle, assuming the average num-
ber of already placed jobs on a bin is K, the time complexity of Algorithm 4
is O(KM), which is no more than O(D). With one loop, the time complex-
ity of Algorithm 3 is O(M). Therefore, the total complexity of Algorithm 2 is
O(MKM) + O(M), which is no more than O(MD) and pretty efficient.

The overall job placement algorithm presents in Algorithm 5 above, which
corresponds to line 4 of Algorithm 1. The input is the set J of D waiting jobs in

Topology-Aware Scheduling on Blue Waters with Proactive Queue Scanning 225

Algorithm 4. Migration Test
1: Input: job ji, bin pj , frag value
2: for each placed job jk on bin pj do
3: if jk’s migration save enough space for ji then
4: for all the bins (except pj) do
5: find jk a new best available bin (except pj)
6: calculate the internal fragmentation increase of migrating job jk
7: test migration constraint using frag value
8: if migration constraint is satisfied then
9: mark job jk as a qualified victim job

10: if one or more than one victim job exist on pj then
11: select the best victim job on bin pj which has minimal internal fragmentation

increase
12: return true
13: else
14: return false

Algorithm 5. Job Placement
1: Input: the set P of M bins: P = {p1, ..., pM}

the set J of D waiting jobs: J = {j1, ..., jD}
2: for i = 1 to D do
3: Migration-based Placement (ji, P) � Algorithm 2
4: if ji cannot be placed then
5: reject ji
6: break

the scan window and the set P of free bins in one scheduling cycle. For each job
ji ∈ J , we apply Migration-based Placement algorithm (Algorithm 2) to place
it into the set P of free partitions. When it comes to a job ji that cannot be
placed into P , we reject it and terminate this placement process.

As mentioned before, all jobs in the scan window are known to us, therefore,
this job placement process is in fact an off-line job placement, where migra-
tion is an emulated process with no migration overhead. As time complexity of
Algorithm 2 is O(MD), the total time complexity of Algorithm 5 is O(MD2)
with D input jobs, which is very efficient.

5 Performance Evaluation

In this section, we conduct simulations to evaluate our approach of improving
system utilization. According to the information from administrators of Blue
Waters, the current scheduling policy they use only achieves a system utilization
of around 50% to 60%. We will show that our approach can significantly improve
that utilization value.

The evaluation is performed using Blue Waters traces. For simplicity and
without loss of generality, we have used Blue Waters trace model, preserving the

226 K. Li et al.

0 0.5 1 1.5 2 2.5 3

job size 104

100

101

102

103

104

105

nu
m

be
r o

f j
ob

s

Fig. 5. Job size distribution

trace characteristics. Based on the study of trace data, we found that the largest
job can almost occupy the entire system’s capacity (only a few jobs like this).
The minimal size job is single node job, which constitutes around 70% of the
entire trace workload.

As convention, jobs with node request more than 3000 nodes are classified
as extra-large jobs, and jobs with node request between 1000 to 3000 are large
jobs. Jobs with node request between 100 to 1000 are medium jobs, and jobs
with node request below 100 nodes are small jobs. The extra-large jobs can cause
the system to drain for a long time until enough space is available to place such
a large job. This drainage brings the system utilization down for a long time. To
deal with these extra-large jobs, reducing system fragmentation is not enough as
extra-large jobs can require half or more of system’s capacity. Therefore, other
approaches such as relaxing priority order are necessary to deal with extra-large
jobs.

We focus on input workload that consists of small, medium and large jobs
for our simulation, which constitutes 99.8% of the entire trace workload. Even
if there are a few extra-large jobs, most jobs are below 3000 nodes, as shown in
Fig. 5. Similarly, we also present the distribution of job walltime throughout the
trace, as shown in Fig. 6. Although the dominant jobs are short, mid-length and
long jobs are taken into account as well.

Using random initial input, we start with the system around half occupied.
The simulation input workload has 2000 jobs, which is the approximate number
of new job submissions in one day. The scheduling cycle is set as 15 min. That
is, one iteration of scheduling repeats every 15 min. We allocate jobs and record
system utilization at each scheduling cycle (every 15 min). As the total input
workload has 2000 jobs, it requires many scheduling iterations to complete the
allocation of all input jobs.

Topology-Aware Scheduling on Blue Waters with Proactive Queue Scanning 227

0 500 1000 1500

job walltime /min

0

1

2

3

4

5

nu
m

be
r o

f j
ob

s

104

Fig. 6. Job walltime distribution

0 10 20 30 40 50 60 70 80 90 100

system utilization %

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f a
ll

ite
ra

tio
ns

 %

FCFS + Backfilling
Our Approach

Fig. 7. Histogram of our approach with scan window size of 1000

Moreover, to prevent the scenario that the system is in low utilization because
there are not enough “backfilled” jobs to be used for fully utilizing the system’s
capacity, we also have another set of “backfilled” jobs besides the input work-
load of 2000 jobs. This set of “backfilled” jobs are used for providing sufficient
“backfilled” jobs to maintain system utilization. This setting is practical as the
waiting queue usually has plenty of jobs for allocation.

We conduct three groups of simulations to find out the impact of scan window
size on the performance of our approach, which includes a scheduling strategy
using proactive queue scanning and a migration-based job placement algorithm.

In Figs. 7 and 8, the scan window size are 1000 and 500, respectively. We
can see that, in most time of the scheduling iterations, our approach achieves

228 K. Li et al.

0 10 20 30 40 50 60 70 80 90 100

system utilization %

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f a
ll

ite
ra

tio
ns

 %

FCFS + Backfilling
Our Approach

Fig. 8. Histogram of our approach with scan window size of 500

0 10 20 30 40 50 60 70 80 90 100

system utilization %

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f a
ll i

te
ra

tio
ns

 %

FCFS + Backfilling
Our Approach

Fig. 9. Histogram of our approach with scan window size of 100

a system utilization on the level of around 90%. On the other hand, the FCFS
+ Backfilling strategy leads to the utilization on the level of around 40% to
70%. This shows that, our approach can improve the system utilization greatly,
compared to both FCFS + Backfilling strategy and current strategy used on
Blue Waters.

However, when the scan window size is 100, there are some scheduling iter-
ations where the utilization is down to around 40% to 50%, as shown in Fig. 9.
This is due to the fact that the window size is small and the free bins in the
system are not fully filled. Based on this, we conclude that, large window size
leads to a better system utilization. However, despite these short periods of low
utilization, in most time of scheduling cycles, our approach still maintains a

Topology-Aware Scheduling on Blue Waters with Proactive Queue Scanning 229

system utilization of around 90% when scan window size is 100, which outper-
forms FCFS + Backfilling strategy and current strategy used on Blue Waters.
The source code of our approach is open to community [1].

6 Related Work

To improve the task placement of applications with 2D, 3D and 4D Cartesian
topologies and nearest-neighbor communication, a Topaware tool can be used [7].
There are tools such as Caypat for profiling an MPI application and to detect
Cartesian grid communication patterns. This information can be used to provide
runtime mapping of processes to the computing nodes using MPICH node order-
ing. The Topaware method requires the user to specify the required number of
nodes along each torus dimension and finds the ordering by allocating nodes on
subsequent XZ planes, taking into account the gaps resulting from service nodes.
For mapping the 2D virtual topology to the 3D torus, a folding method is used.
Topaware was evaluated using the WRF, VPIC, S3D and MILC applications.

An overview process of mapping techniques and algorithms [13] for HPC sys-
tems is presented in [8]. It discusses algorithmic strategies for topology mapping,
such as graph partitioning, mapping enforcement techniques (resource binding
and rank reordering), as well as existing solutions and their implementations.
This provides a formal definition of the mapping as an optimization problem,
and discusses the metrics such as dilation or congestion.

One of the reasons for system fragmentation lies in the discrepancy in job
length/execution time, which leads to a irregular hole/fragmentation between
neighbouring jobs with different finish time. In order to tackle this type of frag-
mentation, a walltime-aware scheduling strategy is designed in [14], which packs
jobs with similar length and places them near to each other. In particular, two
algorithms are developed: similar-length allocation and paired job filling. The
similar length allocation algorithm tries to match waiting jobs with running jobs
that share similar completion time. The paired job filling algorithm selects two
jobs with the same size and similar length from the queue and schedules both
jobs together. Notably, paired job filling algorithm is similar to our schedul-
ing strategy, where multiple waiting jobs in the queue are grouped and placed
together to reduce potential fragmentation.

Migration is an efficient resource management tool, which has been discussed
in [9–11]. In [9], the authors present the analysis and application of scheduling
algorithms that augment a baseline first come first serve (FCFS) scheduler. The
author presents simulation results for migration and backfilling techniques on
BlueGene/L. These techniques are explored individually and jointly to deter-
mine their impact on the system. An efficient Projection Of Partitions (POP)
algorithm for determining the size of the largest free rectangular partition in a
toroidal system is developed. The results demonstrate that migration may be
effective for a pure FCFS scheduler, but that backfilling produces even more
benefits. It is also shown that migration may be combined with backfilling to
produce more opportunities to better utilize a parallel machine.

230 K. Li et al.

7 Conclusions and Future Work

In this paper, we addressed the problem of improving system utilization and
scheduling efficiency on Blue Waters system that uses a 3D torus topology. To
improve the scheduling efficiency, we propose an efficient free partition detection
method. To improve the system utilization, we first propose a job scheduling
strategy based on proactive queue and system scanning. After that, we model the
job placement problem into a multiple knapsack model and design a migration-
based job placement algorithm to give a heuristic solution. The simulations
of modeled trace data demonstrate that our approach works well in terms of
improving system utilization. In our future work, we will extend our study on
reducing system fragmentation and improving system utilization. In particular,
we will focus on improving system’s capability to directly accept the incoming
large and extra-large jobs. We will investigate various strategies such as relaxing
priority order and migration to avoid the system drainage caused by the incom-
ing large and extra-large jobs and to maintain system utilization without the
backfilling process.

References

1. https://github.com/kangkangkenli/2016-jsspp-tas
2. Ajima, Y., Takagi, Y., Inoue, T., Hiramoto, S., Shimizu, T.: The tofu interconnect.

In: 2011 IEEE 19th Annual Symposium on High Performance Interconnects, pp.
87–94. IEEE, August 2011

3. Chang, C., Mohapatra, P.: Performance improvement of allocation schemes for
mesh-connected computers. J. Parallel Distrib. Comput. 52(1), 40–68 (1998)

4. Chiu, G.-M., Chen, S.-K.: An efficient submesh allocation scheme for two-
dimensional meshes with little overhead. IEEE Trans. Parallel Distrib. Syst. 10(5),
471–486 (1999)

5. Ding, J., Bhuyan, L.N.: An adaptive submesh allocation strategy for two-
dimensional mesh connected systems. In: International Conference on Parallel
Processing, ICPP 1993, vol. 2, pp. 193–200, August 1993

6. Enos, J., Bauer, G., Brunner, R., Islam, S.: Topology-aware job scheduling strate-
gies for torus networks. In: Proceedings of the Cray User Group Meeting (2014)

7. Fiedler, R., Whalen, S.: Improving task placement for applications with 2D, 3D,
and 4D virtual Cartesian topologies on 3D torus networks with service nodes. In:
Proceedings of Cray User’s Group (2013)

8. Hoefler, T., Jeannot, E., Mercier, G.: An overview of process mapping techniques
and algorithms in high-performance computing. In: Jeannot, E., Zilinskas, J. (eds.)
High Performance Computing on Complex Environments, pp. 75–94. Wiley, June
2014

9. Krevat, E.: Scheduling Algorithms to Improve Utilization in Toroidal Intercon-
nected Systems. Ph.D. thesis (2003)

10. Li, K., Zheng, H., Wu, J.: Migration-based virtual machine placement in cloud sys-
tems. In: 2013 IEEE 2nd International Conference on Cloud Networking (Cloud-
Net), pp. 83–90. IEEE (2013)

11. Li, K., Zheng, H., Jie, W., Xiaojiang, D.: Virtual machine placement in cloud
systems through migration process. Int. J. Parallel Emergent Distrib. Syst. 30(5),
393–410 (2015)

https://github.com/kangkangkenli/2016-jsspp-tas

Topology-Aware Scheduling on Blue Waters with Proactive Queue Scanning 231

12. Lo, V., Windisch, K.J., Liu, W., Nitzberg, B.: Noncontiguous processor allocation
algorithms for mesh-connected multicomputers. IEEE Trans. Parallel Distrib. Syst.
8(7), 712–726 (1997)

13. Mansour, N., Ponnusamy, R., Choudhary, A., Fox, G.C.: Graph contraction for
physical optimization methods: a quality-cost tradeoff for mapping data on parallel
computers. In: Proceedings of the 7th International Conference on Supercomput-
ing, ICS 1993, pp. 1–10. ACM, New York (1993)

14. Tang, W., Lan, Z., Desai, N., Buettner, D., Yu, Y.: Reducing fragmentation on
torus-connected supercomputers. In: Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium, IPDPS 2011, pp. 828–839. IEEE
Computer Society, Washington, DC (2011)

15. Zhou, Z., Yang, X., Lan, Z., Rich, P., Tang, W., Morozov, V., Desai, N.: Improv-
ing batch scheduling on blue Gene/Q by relaxing 5D torus network allocation
constraints. In: IPDPS 2015 (2015)

	Topology-Aware Scheduling on Blue Waters with Proactive Queue Scanning and Migration-Based Job Placement
	1 Introduction
	2 Scheduling with Proactive Queue and System Scanning
	3 Free Partition Detection and Multiple Knapsack Model
	4 Migration-Based Job Placement
	5 Performance Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

