
Planning and Metaheuristic Optimization
in Production Job Scheduler

Dalibor Klusáček(B) and Václav Chlumský

CESNET a.l.e., Brno, Czech Republic
{klusacek,vchlumsky}@cesnet.cz

Abstract. In this work we present our positive experience with a unique
advanced job scheduler which we have developed for the widely used
TORQUE Resource Manager. Unlike common schedulers using queuing
approach and simple heuristics, our solution uses planning (job schedule
construction) and schedule optimization by a local search-inspired meta-
heuristic. Using both complex simulations and practical deployment in
a real system, we show that this approach increases predictability, per-
formance and fairness with respect to a common queue-based sched-
uler. Presented scheduler has been successfully used in the production
infrastructure of the Czech Centre for Education, Research and Innova-
tion in ICT (CERIT Scientific Cloud) since July 2014.

Keywords: Scheduling · Planning · Performance · Fairness · Simulation

1 Introduction

The pros and cons of queuing vs. planning have been discussed in the past thor-
oughly [5]. Classical queuing approaches such as the well known EASY backfilling
algorithm provide limited predictability and thus employ additional mechanisms
in order to avoid certain unwanted features such as potentially (huge) starvation
of particular jobs, etc. Approaches based on full planning represent an oppo-
site approach. Instead of using “ad hoc”, aggressive scheduling, they build and
manage an execution plan that represents job-to-machine mapping in time. For
example, Conservative backfilling establishes reservation for every job that can-
not execute immediately, i.e., a guaranteed upper bound of its completion time
is always available [13]. This increases predictability but may degrade system
performance and requires more computational power. At the same time, the
accuracy of such predictions is typically quite low, as provided estimates con-
cerning job execution are typically very imprecise and overestimated.

In theory, the planning-based approach has been often combined with some
form of advanced scheduling approach using, e.g., a metaheuristic [20] to further
optimize the constructed execution plan. These works were often theoretical or
used a (simplified) model together with a simulator, while realistic implemen-
tations in actual resource managers were not available. Those promising results
were then rarely repeated in the practice and most of the mainstream production
c© Springer International Publishing AG 2017
N. Desai and W. Cirne (Eds.): JSSPP 2015/2016, LNCS 10353, pp. 198–216, 2017.
DOI: 10.1007/978-3-319-61756-5 11



Planning and Metaheuristic Optimization in Production Job Scheduler 199

systems like PBS Pro, SLURM or Moab/Maui have adopted the queuing app-
roach [1,6], focusing on performance and scalability while limiting the (theoreti-
cal) benefits of increased predictability related to the planning systems. Neither
metaheuristics nor other advanced optimization techniques are used in current
mainstream systems.

In this paper we bridge the gap between theory and practice and demonstrate
that planning supplied with a schedule-optimizing metaheuristic is a plausible
scheduling approach that can improve the performance of an existing comput-
ing system. We describe and evaluate newly developed job scheduler (compati-
ble with the production TORQUE Resource Manager) which supports planning
and optimization. The presented scheduler has been successfully used in practice
within a real computing infrastructure since July 2014. It constructs a prelimi-
nary job execution plan, such that an expected start time is known for every job
prior its execution. This plan is further evaluated in order to identify possible
inefficiencies using both performance as well as fairness-related criteria. A local
search-inspired metaheuristic is used to optimize the schedule with respect to
considered optimization criteria. The suitability and good performance of our
solution is demonstrated in two ways. First, we present real-life performance
results that are coming from the deployment of our scheduler in the CERIT
Scientific Cloud, which is the largest partition of the Czech national grid and
cloud infrastructure MetaCentrum, containing ∼5,200 CPUs in 8 clusters. Sec-
ond, we use several simulations to evaluate the solution against previously used
queuing approach. Importantly, we have adopted the novel workload adaptation
approach of Zakay and Feitelson [21] in order to overcome the shortcomings of
“classical” simulations with static workloads.

This paper is a significantly extended and updated version of our short-
paper presented at HPDC 2015 [8]. We have included more details concerning
the design of the scheduler (Sect. 3) and significantly extended the evaluation
(Sect. 4), adding more results from practical deployment as well as presenting
a set of newly performed detailed simulations using the model of Zakay and
Feitelson [21]. Theoretical background of this work has been described in our
earlier work [10] which has presented new methods for efficient use of meta-
heuristic algorithms for multi-criteria job scheduling. However, instead of a real
resource manager, this work only used a simulator with static historic workloads
while considering simplified problem models [10].

This paper starts with the related work discussed in Sect. 2. Next, we describe
the design and features of our new scheduler. Section 4 presents detailed evalu-
ation of the scheduler’s performance, while Sect. 5 concludes the paper.

2 Related Work

Nowadays, major production resource management systems such as PBS Pro
[14], SLURM or Moab/Maui [6] use (priority) queues when scheduling jobs
on available resources, applying some form of popular scheduling heuristics —
typically FCFS and backfilling. On the other hand, during the past two decades



200 D. Klusáček and V. Chlumský

many works have shown that the use of planning represents some advan-
tages [9,13]. Unlike the traditional “aggressive” queuing approach where schedul-
ing decisions are taken in an ad hoc fashion often disregarding previous and
future scheduling decisions, a planning-based approach allows to make plans
concerning job execution. The use of such a plan (job schedule) allows to make
a partial prediction of job execution, providing information concerning expected
start times of jobs to the users of the system, thus improving predictability [13].
Conservative backfilling [13] represents a typical baseline solution for planning
systems.

As far as we know, fully planning-based schedulers using, e.g., the Conserv-
ative backfilling algorithm, are less popular in practice than “classical” queue-
based solutions [12]. Typically, only few waiting jobs are usually planned ahead,
while no predictions are made for the remaining jobs. For example, PBS Pro-
fessional Administrator’s Guide recommends that at most 100 jobs should be
planned ahead (backfill depth parameter in [14]). Notable exceptions repre-
sent fully planning-based systems such as Computing Center Software (CCS) [7]
and its successor Open CCS1, that use planning and are used in practice.

Within the CERIT system, a form of Conservative backfilling has been used
prior our new scheduler has been adopted. The scheduler maintained several
queues with different maximal walltime limits (1h, 2h, 1d, 2d, 4d, 1w, 2w and
2m). Job queues were periodically reordered by fair-sharing algorithm. To reflect
aging, resource usage records (fair-share usage) were subject to decay [6] by the
aging factor of 0.5 which was applied each 72 h, i.e., each 3 days the current
user’s fair-share usage was dived by 2. To avoid excessive job starvation, waiting
jobs obtained a reservation when their waiting time reached a given threshold.
However, by default this threshold was equal to 0 s implying that every waiting
job obtained a reservation.

In many (theoretical) works, planning-based approach has been also used in
conjunction with further optimization. Simply put, a prepared execution plan
has been evaluated with respect to selected optimization criteria and further
optimized using some form of a metaheuristic [11,15,18,20]. As far as we know,
evaluation and/or metaheuristics are not applied in nowadays production sys-
tems. In the past, Global Optimising Resource Broker (GORBA) [17] repre-
sented an experimental planning-based system designed for scheduling sequen-
tial and parallel jobs as well as workflows. It was using Hybrid General Learning
and Evolutionary Algorithm and Method (HyGLEAM) optimization procedure,
combining local search with the GLEAM algorithm [16] which is based on the
principles of evolutionary and genetic algorithms. Sadly, this system was a pro-
prietary solution and it seems that it is no longer operational.

3 Planning and Optimizing Job Scheduler

This section describes the new planning-based job scheduler that uses a schedule-
optimizing metaheuristic. The scheduler is compatible with the TORQUE
1 https://www.openccs.eu/core/.

https://www.openccs.eu/core/


Planning and Metaheuristic Optimization in Production Job Scheduler 201

Resource Manager system, which is used in the Czech National Grid Infrastruc-
ture MetaCentrum. TORQUE is an advanced open-source product providing
control over batch jobs and distributed computing resources [1]. It consists of
three main entities — the server (pbs server), the node daemons (pbs mom) and
the job scheduler (pbs sched). The scheduler interacts with the server in order
to allocate jobs onto available nodes. While the server and the node daemons
are mostly unchanged, the default simple queue-based FCFS scheduler [1] has
been replaced in this case. When using TORQUE, it is a common practice to
use other than the default scheduler [1].

The new scheduler contains four major parts. The first part is the data
structure that represents the job schedule. The schedule is built and maintained
using schedule construction and maintenance routines that represent the default
scheduling algorithm, working similarly to the well known Conservative backfill-
ing [13]. Maintenance routines are used to adjust the schedule in time subject to
dynamic events such as (early) job completions, machine failures, etc. Remain-
ing parts perform the evaluation and the schedule optimization. We now closely
describe these major parts in detail.

3.1 Data Representation of Job Schedule

The schedule is represented by a rather complex data structure that keeps all
important information regarding planned job execution. In fact it consists of
three separate structures. First, there is the linear list of jobs (job list), where
each job in the list stores information regarding its allocation, e.g., CPU/GPU
IDs, the amount of RAM memory per node, amount of disk space, etc. Also the
planned start time and completion time is stored for each job. Second structure
(gap list) stores “gaps”, i.e., “unused” parts of the schedule. It is used to speed
up the scheduling algorithm during the backfilling phase. Each gap is associated
with its start time, duration and a list of available resources (CPUs, GPUs,
RAM, HDD, etc.). Both jobs and gaps are ordered according to their expected
start times. The third part of the schedule is called limits list and is used to
guard appropriate usage of resources. For example, it is used to guarantee per-
user limits concerning maximum CPU usage. Similarly, it is used to check that
a given class of jobs does not exceeds its maximum allowed allocation at any
moment in the planned future (e.g., jobs running for more than a week cannot
use more than 70% of all system resources).

All these structures and their parameters are kept up-to-date as the system
runs using methods described in Sect. 3.2. For practical reasons, independent
instances of job list, gap list and limits list are created for every cluster in the
system. First, such solution speeds up the computation of schedule as changes
and updates are often localized to a given cluster while it also allows to simplify
management of heterogeneous infrastructures, where different clusters may have
different properties and usage constraints. Although the job schedule in fact
consists of three major parts (job list, gap list and limits list), for simplicity
we will mostly use the term schedule in the following text when describing the
pseudo codes of the scheduler.



202 D. Klusáček and V. Chlumský

3.2 Scheduling Algorithms

The job schedule is built, maintained and used according to the dynamically
arriving events from the pbs server using the core method called Schedul-
ingCycle which is shown in Algorithm 1. SchedulingCycle invokes all nec-
essary actions and auxiliary methods in order to update the schedule and per-
form scheduling decisions. At first, all jobs that have been completed since the
previous check are removed from the schedule (Line 1). Next, the schedule is
updated (Line 2) using the Update function which is described in Algorithm 2.

During the update it is checked whether existing (planned) job start times are
still relevant (see Lines 1–6 in Algorithm 2). If not, those are adjusted according
to the current known status. There are several reasons why planned start times
may change. Commonly, jobs are finishing earlier than expected as the schedule
is built using processing time estimates which are typically overestimated. Also,
in some situations jobs are shifted into later time slots, e.g., due to fairness-
related constraints and/or via the optimization algorithm. In both cases, jobs
are checked one by one and a start time of each job is adjusted (see Line 3), i.e.,
it is moved into the earliest possible time slot with respect to previously adjusted
jobs while respecting existing usage limits. Next, limits list and gap list struc-
tures are updates accordingly (see Lines 4–5 in Algorithm 2). During the update
process, the relative ordering of job start times is kept, i.e., a later job can-
not start earlier than some previous job. This approach is a runtime-optimized
version of the schedule compression method used in Conservative backfilling [13].

Once the schedule is updated, all newly arrived jobs are inserted into the
existing schedule (Lines 3–7 in Algorithm 1) using the Conservative backfilling-
like approach. It founds the earliest gap in the initial schedule which is suitable
for the new job. This approach is identical with the method used in Conservative
backfilling for establishing job reservations [13]. It significantly increases system
utilization while respecting the start times of previously added jobs. In this
case, the applied data representation represents major benefit as all gaps in the
current schedule are stored in a separate list (gap list) which speeds up the whole
search procedure. When the suitable gap is found and the job is placed into it

Algorithm 1. SchedulingCycle

1: remove finished jobs from schedule;
2: schedule := Update(schedule);
3: while new jobs are available do
4: job := get new job from pbs server;
5: schedule := backfill job into the earliest suitable gap in schedule;
6: schedule := Update(schedule);
7: end while
8: notify pbs server to run ready jobs according to schedule;
9: if (timecurrent − timeprevious) ≥ 60 s then

10: schedule := ScheduleOptimization(schedule);
11: timeprevious := timecurrent;
12: end if



Planning and Metaheuristic Optimization in Production Job Scheduler 203

Algorithm 2. Update(schedule)

1: for i := 1 to number of jobs in schedule do
2: job := i-th job from schedule;
3: schedule := adjust job’s start time subject to limits list;
4: update limits list;
5: update gap list;
6: end for
7: return schedule;

(Line 5 in Algorithm 1) the schedule is appropriately updated and another
incoming job is processed.

Once all new jobs are placed into the schedule, the scheduler checks whether
some jobs are prepared to start their execution. Those jobs are immediately
scheduled for execution as depicted on Line 8 in Algorithm 1. Finally, the
schedule is periodically optimized (see Line 10 in Algorithm 1) by a metaheuris-
tic which we describe in the following section.

3.3 Evaluation and Metaheuristic

The real contribution of our scheduler is related to its ability to “control” itself
and adjust its behavior in order to better meet optimization criteria. This is
done by the periodically invoked metaheuristic optimization algorithm which is
guided by the schedule evaluation. We use a simple local search-inspired meta-
heuristic called Random Search (RS) [10] and focus both on the performance-
and the fairness-related criteria. We minimize the avg. wait time and the avg.
bounded slowdown to improve the overall performance [4]. User-to-user fairness
is optimized using the Normalized User Wait Time (NUWT) metric [10]. For a
given user, NUWT is the total user wait time divided by the amount of previ-
ously consumed system resources by that user. Then, the user-to-user fairness
is optimized by minimizing the mean and the standard deviation of all NUWT
values. It follows the classical fair-share principles, i.e., a user with lower resource
usage and/or higher total wait time gets higher priority over more active users
and vice versa [6]. The calculation of NUWT reflects consumptions of multi-
ple resources (CPU and RAM utilization), representing a solution suitable for
systems having heterogeneous workloads and/or infrastructures [6].

The Random Search (RS) optimization algorithm is implemented in the
ScheduleOptimization function (see Algorithm 3) that uses one input — the
schedule that will be optimized. In each iteration, one random job from the sched-
ule is selected and it is removed from its current position (Lines 3–4). Next, this
job is returned to the schedule on a randomly chosen position (Line 5) and the
new schedule is immediately updated (Line 6). The modified schedule is evalu-
ated with respect to applied optimization criteria. This multi-criteria evaluation
is performed using a simple weight function2 that has been successfully used
2 Our system uses equal weights (w = 1) for wait time and bounded slowdown while

the normalized user wait time (fairness) has ten times higher weight (w = 10).



204 D. Klusáček and V. Chlumský

Algorithm 3. ScheduleOptimization(schedule)

1: schedulebest := schedule;
2: while not interrupted do
3: job := select random job from schedule;
4: remove job from schedule;
5: move job into random position in schedule;
6: schedule := Update(schedule);
7: if schedule is better than schedulebest then
8: schedulebest := schedule;
9: end if

10: schedule := schedulebest; (reset candidate)
11: end while
12: return schedulebest;

in our previous works [9,10]. If the new schedule is better than the best so
far found schedulebest then the schedulebest is updated with this new, better
schedule. Otherwise, the schedulebest remains unchanged (Lines 7–9). Then the
schedule is updated/reset with the schedulebest (Line 10) and a new iteration
starts. Once the loop ends, the newly found schedulebest is returned (Line 12).

The metaheuristic is fully randomized and does not employ any “advanced”
search strategy. In fact, during the design process we have observed that this sim-
ple randomized optimization is very robust and produces good results, often beat-
ing more advanced methods such as Simulated Annealing or Tabu Search. The
beauty of RS is that it is simple (i.e., fast) and — unlike, e.g., Simulated Anneal-
ing — its performance does not rely on additional (hand-tuned) parameters.

Certainly, optimization is a potentially time consuming operation. There-
fore, the optimization is only executed if the last optimization ended at least
60 s ago (see Lines 9–12 in Algorithm 1). This interval has been chosen experi-
mentally in order to avoid frequent — thus time consuming — invocations of the
ScheduleOptimization function. Furthermore, several parameters are used
when deciding whether to interrupt the main loop of the optimization procedure
or not (Line 2 in Algorithm 3). We use the maximal number of iterations and the
given time limit. Currently, the time limit is 20 s and the number of iterations
is set to 300 in our system.

3.4 User Perspective: System Interfaces

From the user perspective, the newly developed scheduler does not introduce
any major difference with respect to other standard schedulers. It uses the same
syntax of the qsub command as a “normal” TORQUE-based system, so users
can use the same commands as they are used to from different systems. The
TORQUE’s pbs server have been slightly extended, such that it can read job-
related data from the schedule and then provide them to the users. For this
purpose, the pbs server queries the schedule and then displays the informa-
tion obtained, including currently planned start time and execution node(s).



Planning and Metaheuristic Optimization in Production Job Scheduler 205

We support both textual (qstat command) and graphical user interfaces using
a complex web application called PBSMon3 which monitors the whole infrastruc-
ture and workload.

4 Evaluation and Deployment

The developed scheduler and its optimization metaheuristic has been thoroughly
tested using various methodologies. In this section we present the results of three
different evaluation scenarios. First, Sect. 4.1 shows the comparison of system
performance before and after the new scheduler has been deployed in practice.
These results represent the actual behavior of the system, but include one major
but unavoidable drawback — the comparison is not based on the same workload,
since the results were obtained from a real system in two different consecutive
time periods. This problem can be avoided by testing the new scheduler (and
its predecessor) using a computer testbed, where the same set of jobs is submit-
ted to both schedulers and their resulting performance is compared. Although
this approach is quite realistic, such a comparison is very time consuming (see
discussion in Sect. 4.2), limiting the “size” of the data sets that can be used.
Therefore, we also include a third type of evaluation, where the major features
of both the original and the newly proposed scheduler have been implemented
within a job scheduling simulator and a large data set from the actual system
has been used. This comparison is presented in Sect. 4.3.

In all cases, the proposed planning-based scheduler using Random Search
metaheuristic (denoted as Plan-RS ) has been evaluated against the backfilling-
based algorithm (denoted as Orig-BF ) that was originally applied in the system
(see Sect. 2). Additional algorithms were not considered either because their
implementations within TORQUE were not available or their performance was
very poor (e.g., plain FCFS without backfilling). All experiments used the orig-
inal inaccurate runtime estimates.

4.1 Real-Life Deployment

First, we present real-life data that were collected in the Czech Centre for Edu-
cation, Research and Innovation in ICT (CERIT Scientific Cloud) [3], where
our new scheduler has been operationally used since July 2014. CERIT Scien-
tific Cloud provides computational and storage capacities for scientific purposes
and shares them with the Czech National Grid and Cloud Infrastructure Meta-
Centrum. Both MetaCentrum and CERIT use the same version of TORQUE
resource manager. Before July 2014, CERIT was using the same scheduler (Orig-
BF) as MetaCentrum. CERIT consists of 8 computer clusters with ∼5,200 CPU
cores that are managed by our new scheduler (Plan-RS) since July 2014.

Following comparative examples are based on the historic workload data that
were collected when either the original Orig-BF scheduler or the new Plan-RS

3 http://metavo.metacentrum.cz/pbsmon2/.

http://metavo.metacentrum.cz/pbsmon2/


206 D. Klusáček and V. Chlumský

scheduler were used respectively. In the former case (Orig-BF), the data come
from the January – June 2014 period. In the latter case the data are related to
the new scheduler (Plan-RS) and cover the July – December 2014 period4.

The first example in Fig. 1(left) focuses on the average system CPU utiliza-
tion. It was observed that — on average — the new scheduler was able to use
additional 10,000 CPU hours per day compared to the previous scheduler. This
represents 418 fully used CPUs that would otherwise remain idle and causes that
the avg. CPU utilization has increased by 9.3%.

Fig. 1. Real-life comparisons showing (from the left to right) the avg. system utiliza-
tion, the avg. wait time and the avg. bounded slowdown.

Although the increased utilization is beneficial, it may come at the cost of
decreased performance for selected classes of jobs, which is a known feature [13].
As users tend to watch how the system is processing their jobs, improved uti-
lization, i.e., higher throughput, may cause that users will send more jobs into
the system. As the total available computing power is limited, these “additional
jobs” may have to wait longer until resources become available. Moreover, reser-
vations established by backfilling often represent a pessimistic scenario as jobs
are typically completing earlier than their estimates suggest [19]. Even though
existing reservations are shifted to those appearing free time slots (see the dis-
cussion on schedule compression in Sect. 3.2), short/narrow jobs would still have
a higher chance to fill these gaps compared to long and/or highly parallel jobs.
Therefore, we have performed further analysis of the data focusing on additional
performance indicators.

First, we have compared the avg. wait time and the avg. bounded slowdown
as well as their standard deviations for the two considered schedulers. The results
are shown in Fig. 1 (2nd and 3rd chart from the left, respectively), where the
“error bar” depicts the standard deviation of the metric. As we have observed,
the original Orig-BF scheduler often produced very bad wait times and slow-
downs for many jobs, causing high average values and large deviations. From
4 Those two periods were chosen because the physical infrastructure was identical

during that time. Since January 2015, the system became larger (4,512 CPUs vs
5,216 CPUs) which would skew any direct comparison of system performance.



Planning and Metaheuristic Optimization in Production Job Scheduler 207

this point of view, Plan-RS was much more efficient, significantly decreasing
both the averages and the deviations. Given the increased utilization observed
in Fig. 1(left) this is a good news.

Furthermore, we have also analyzed the average job wait time with respect to
job parallelism (number of requested CPUs) as shown in Fig. 2(left). The results
for Plan-RS are again promising as most job classes now have better average wait
times compared to the former Orig-BF scheduler, i.e., Plan-RS is not causing
significant delays for (highly) parallel jobs.

Fig. 2. Real-life comparison of job wait times with respect to job parallelism (left) and
job walltime (right).

Also, job walltime (processing time estimate) is an important factor that has
some influence on job’s chances to obtain a good (early) reservation. Longer jobs
are less likely to obtain early reservations, i.e., their wait times may be (very)
large in some cases. Therefore we have compared average wait times of jobs with
respect to their walltime estimates as were specified by users. As can be seen in
Fig. 2 (right), there are no significant side effects associated with the use of Plan-
RS. Importantly, with a single exception (2–7 days), the average wait time of jobs
that have their runtime estimate larger than 4 h was always smaller compared
to the former Orig-BF scheduler. Furthermore, such jobs represent nearly 83%
of the whole workload, i.e., they are very frequent, yet they are not significantly
delayed by the new scheduler which is very important. To sum up, our new Plan-
RS scheduler has increased the utilization in CERIT system, without producing
any significant undesirable side effect. In fact, also the avg. wait time and the
avg. bounded slowdown have been significantly reduced compared to the original
Orig-BF scheduler.

As discussed in Sect. 3.3, user-to-user fairness is maintained by minimizing
the mean and the standard deviation of Normalized User Wait Times (NUWT).
Figure 3 shows the fairness-related results for both schedulers. The mean and
the standard deviation (shown by error bar) of NUWT values are very close for
Orig-BF and Plan-RS (see Fig. 3(left)). More detailed results are shown in Fig. 3
(middle and right), showing the NUWT values per user and the corresponding



208 D. Klusáček and V. Chlumský

Fig. 3. Fairness-related results showing the avg. Normalized User Wait Time (NUWT)
and its (per user) distribution as well as corresponding CDF.

cummulative distribution function (CDF) of NUWT values, respectively. The
results for both schedulers are quite similar — most users (∼97%) have their
NUWT below 1.0, meaning that they spent more time by computing than by
waiting which is beneficial and indicate that both Plan-RS and Orig-BF are
capable to maintain reasonable fairness level.

In order to demonstrate the capability of our metaheuristic to improve the
quality of the schedule in time we have also recorded all successful optimization
attempts during the October – December 2014 period. Then, we have plotted
the corresponding relative improvements (and deteriorations) of those criteria
with respect to the time. Figure 4 shows the results for wait time and fairness
criteria respectively. Commonly, the main reason that an attempt was accepted
is that the user-to-user fairness was improved. This is an expected behavior.
In the CERIT system, user-to-user fairness is not directly guaranteed by the
underlying Conservative backfilling-like algorithm, and it can only be improved
through the optimization. Without optimization, the only way to assert fair-
ness is to periodically re-compute the schedule from scratch, i.e., reinsert all
waiting jobs into the schedule following a new job ordering computed according
to updated user priorities. This is potentially very time consuming, thus non-
preferred option. Therefore, it is very common for the optimization algorithm to
find a schedule with improved fairness. Figure 4 also reveals that the majority of
accepted optimization attempts represents rather decent improvements, where
the relative improvement of a given criterion is less than 2% in most cases. Still,
several large improvements can be seen for both criteria during the time (and
few more are not shown since the y-axis is cropped for better visibility). These
rarer attempts are very important as they help to reduce those few extremely
inefficient assignments that can be seen in nearly every production workload.
As the optimization is continuously evaluating the schedule, it is able to detect
jobs having (very) high wait times, slowdowns, etc. Then, it can develop better
schedules where these extremes are reduced. These results help to explain the
large improvement of wait times and slowdowns observed in Fig. 1.



Planning and Metaheuristic Optimization in Production Job Scheduler 209

Fig. 4. Successful optimization attempts over the time.

We were also careful about the runtime requirements of our rather complex
solution. Therefore, we have measured how the size of the schedule (number
of jobs) affects the runtime of critical schedule-maintaining routines. For this
analysis, the runtime of the backfilling-like policy was measured as well as the
time needed to perform the subsequent schedule-update routine which updates
the schedule-related data structures subject to modifications (see Sect. 3.2). Also
the total runtime (backfilling + update) and the average runtime of one iteration
of Random Search metaheuristic were recorded. The results are presented in
Fig. 5, where the y-axis shows consumed runtime (in microseconds) and the
x-axis depicts the number of jobs in the schedule.

The results show that there is no simple correlation between the overall
size of the schedule and algorithm runtime. This is a natural behavior caused
by several factors. First of all, jobs being added to the schedule have different
requirements — some jobs are generally very flexible, i.e., they can be executed
on several clusters while other jobs can only use a small subset of system’s
clusters. Then the algorithm runtime may vary significantly depending whether
one, two, or more cluster schedules must be analyzed for a given job. Since we use
backfilling, if a suitable gap is found in an early time slot (close to the beginning
of the schedule), the runtime is lower as we do not have to traverse the whole
schedule, and vice versa. Moreover, the physical system consists of 8 different
clusters that have different types of nodes and amounts of system resources and
each such cluster has its own schedule instance. Naturally, schedule for larger



210 D. Klusáček and V. Chlumský

Fig. 5. Runtime requirements with respect to the number of jobs in the schedule.

cluster requires more runtime to be backfilled/updated. Still, some basic trends
are visible in the figures, such as approximately linear upper bound of requested
runtime. With the current typical backlog of CERIT system — where the number
of jobs in the schedule is usually bellow 2,200 — 61% of jobs require less than 0.2 s
to be placed in the schedule (backfill + update), most jobs (96%) then require
less than 1 s while 99% of jobs fit within 2 s. Clearly, schedule construction does
require nontrivial time, however we usually have <1,000 new job arrivals per day
which is well within the current capacity of our implementation and we have not
observed any delays/overheads so far.

The avg. runtime of one iteration of Random Search (RS) may be higher
than of previous routines (see the bottom right part of Fig. 5), which is natural.
First of all, the evaluation of the whole schedule requires some time. Second,
when an iteration is not improving, the schedule must be reset to its previous
state which requires an additional update. Therefore, the runtime of one RS
iteration is often at least twice as high as the corresponding runtime of the
update procedure. Finally, while the backfill + update part of the scheduler
is only executed upon new job arrival, RS is executed periodically (∼60 s). If
there is a “complicated schedule” at that time, the chart of RS runtime will
show a large peak, as this runtime-demanding schedule is repeatedly updated.
An example of such situation is visible in the chart, showing a rather large peak
of runtime for schedules having ∼700 jobs. This particular peak was caused
by a specific situation on one of the cluster’s schedules where a set of similar
jobs — all belonging to a single user — have remained for a couple of days. It



Planning and Metaheuristic Optimization in Production Job Scheduler 211

was basically impossible to optimize the schedule for such jobs, and frequent
time-demanding updates (schedule resets) were inevitable, producing a runtime
peak clearly visible as a clump of dots in the chart.

4.2 Comparison Using Testbed

Another possible way how to properly compare the proposed solution is to test
both the former Orig-BF and the new Plan-RS schedulers using a simulation
testbed, feeding both schedulers with identical workloads. The problem is that
such experiments are very time consuming. One cannot simply use a long, realis-
tic workload “as is” because the experiment would last for several weeks/months
depending on the original length of the workload. Instead, only several “promis-
ing” job intervals from a workload can be extracted. We have chosen those with a
significant activity and contention (using the number of waiting jobs at the given
time as a metric). Based on this information we have extracted those promis-
ing intervals that lasted for at least 5 days. Such intervals were more likely to
show differences between the two schedulers. Furthermore, all job runtimes and
all corresponding inter-arrival times between two consecutive jobs were divided
by a factor of 7. The resulting workload was then proportional to the original
one, exhibiting similar behavior but having 7-times shorter duration (makespan),
making the simulation possible within a reasonable time frame. For example, if
the original data covered one week then it took only 1 day to perform the whole
simulation. Eight such sub-workloads were then used — four of them based on
data from the CERIT’s Zewura cluster, two from the HPC2N log and the two
remaining came from the KTH-SP2 log. Detailed analysis and further descrip-
tion of this experiment have been already presented in [8], therefore we only
briefly recapitulate that the proposed Plan-RS scheduler dominated over Orig-
BF in all cases. Table 1 shows the relative decrease of the avg. wait time (WT)
and the avg. bounded slowdown (SD) achieved by the Plan-RS scheduler with
respect to the Orig-BF scheduler5.

Table 1. Achieved relative decrease (in %) of the avg. wait time (WT) and the avg.
bounded slowdown (SD) when using the new Plan-RS scheduler.

Zewura HPC2N KTH-SP2

Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 1 Set 2

WT −18.8% −40.0% −57.2% −41.1% −81.0% −26.6% −31.6% −7.2%

SD −32.6% −49.7% −84.7% −39.3% −89.6% −42.0% −64.0% −45.7%

5 The small size and short makespan of these experiments meant that there were few
distinctive users in the workload—most of them with just few jobs— making the
use of the fairness-related criterion rather impractical and inconclusive in this case.



212 D. Klusáček and V. Chlumský

4.3 Comparison Using Simulator

As explained in Sects. 4.1 and 4.2, evaluation based on practical deployment
as well as testbed-based comparison are somehow problematic (different work-
loads and time-related constraints, respectively). Therefore, we have also used
the Alea job scheduling simulator [2] where both Orig-BF and Plan-RS have
been emulated. Moreover, instead of using the classical static approach where
a given workload is “replayed” in the simulator, we have adopted the recently
proposed dynamic approach of Zakay and Feitelson [21], where job submission
times are not dictated by the workload but are the result of the (simulated)
scheduler-to-user interaction. As explained in [21], job submission times in a
real system depend on how users react to the performance of previous jobs.
Moreover, usually there are some logical structures of dependencies between
jobs. It is therefore not reasonable to use a workload “as is” with fixed (original)
job submission timestamps, as the subsequent simulation may produce unreal-
istic scenarios with either too low or too high load of the system, skewing the
final results significantly. Instead, dependency information and user behavior can
be extracted from a workload trace, in terms of job batches, user sessions and
think times between the completion of one batch and the submission of a subse-
quent batch. Then, each user’s workload is divided into a sequence of dependent
batches. During the simulation, these dependencies are preserved, and a new
user’s batch is submitted only when all its dependencies are satisfied (previous
“parent” batches are completed). This creates the desired feedback effect, as
users dynamically react to the actual performance of the system, while major
characteristics of the workload including job properties or per-user job ordering
are still preserved. More details can be found in [21,22] while the actual imple-
mentation of the model (using user agents instead of standard workload reader)
is available within the Alea simulator [2].

We have used a workload trace from the CERIT system that covered 102,657
jobs computed during January – April 20156. Again, we have compared the “his-
torical” Orig-BF with the newly proposed Plan-RS scheduler. All experiments
using Plan-RS have been repeated 20 times (and their results averaged) since
RS is not deterministic and uses a randomized approach. The results for the
avg. wait time and the avg. bounded slowdown are shown in Fig. 6, error bars
in the left chart shows the standard deviation of the 20 runs of Plan-RS. As
previously (see Sects. 4.1 and 4.2), Plan-RS decreases significantly the wait time
and the bounded slowdown. The explanation is quite the same as was in Sect. 4.1
and can be nicely demonstrated on the CDF of job wait times which we show
in Fig. 6(right). The mean wait time for Plan-RS is 1.6 h, while the CDFs for
both scheduler show that 85% of jobs wait shorter than 1.6 h. This can only
mean — and it is clearly visible in the CDF — that Plan-RS decreases some of
those excessive wait times of the remaining 15% of jobs.

Concerning the fairness, the Plan-RS performed much better than Orig-
BF as shown in Fig. 7. The mean and the corresponding standard deviation

6 This workload is available at: http://www.fi.muni.cz/∼xklusac/workload/.

http://www.fi.muni.cz/~xklusac/workload/


Planning and Metaheuristic Optimization in Production Job Scheduler 213

Fig. 6. Performance-related results showing (from left to right) the avg. wait time, the
avg. bounded slowdown and the CDF of job wait times.

Fig. 7. Fairness-related results showing (from left to right) the mean Normalized User
Wait Time (NUWT), NUWT histogram wrt. users and corresponding CDF.

of NUWT values were significantly lower compared to Orig-BF. When analyzed
on a detailed per-user basis (see the middle and the right chart in Fig. 7), the
results clearly show that Plan-RS decreases NUWT across the whole user base.

In the final experiment, we have developed a new experimental model to mea-
sure user (dis)satisfaction with the system performance. Here we were inspired
by the future work discussed in the recent Zakay and Feitelson paper [22], which
suggest that (in reality) users may leave if the performance is too poor. In our
case a user agent does not leave the system, instead it “reports” that it is not
satisfied with the current waiting time. Also, it measures “how large” this dis-
satisfaction is by calculating the actual to expected wait time ratio. In our sim-
ple model, a user agent expects that the system shall start its jobs in a time
which is proportional to job’s requirements. In other words, the longer a job
is (higher walltime estimate) and the more CPUs it requires the higher is the
tolerable wait time and vice versa. However, this dependence is not linear, since
our experience shows that real users usually have some “upper bound” of their
patience. For example, if a job requiring 1 CPU starts within an hour, then
users are usually satisfied. However, that does not imply that a job requiring
64 CPUs can wait for 64 h. We have similar experience concerning walltime,
i.e., user’s patience is not linear with respect to job duration, instead it quickly



214 D. Klusáček and V. Chlumský

Fig. 8. Acceptable wait time with respect to CPU and walltime requirments (left), the
number of dissatisfying events per user (middle) and all dissatisfying events ordered
by their seriousness (right).

runs out. Therefore, we have developed a simple formula to calculate “accept-
able wait time” for a given job which captures this nonlinearity7. Figure 8(left)
shows the non-linear distribution of acceptable wait times with respect to job
durations and their parallelism, as produced by the applied formula. Of course,
this simple “hand tuned” formula is just a rough approximation used for demon-
stration purposes and it certainly does not represent a truly realistic model of
user’s expectations.

During a simulation, job’s acceptable wait time is calculated upon each new
job arrival. If more jobs of a single user are present in the system we sum up
their acceptable wait times. Then, whenever a job is started, a corresponding
user agent checks whether the actual wait time was within the calculated overall
limit. If not, a user agent “reports dissatisfaction” and calculates the level of such
dissatisfaction, which is the actual wait time divided by the acceptable wait time.
Further details can be found in the AgentDynamicWithSatisfactionModel class
of the simulator [2]. The results of such experiment are shown in Fig. 8(middle)
and (left), showing the number of dissatisfying events per user and all dissatis-
fying events ordered by their seriousness, respectively. It shows superior perfor-
mance of Plan-RS, which is able to significantly minimize the number of “com-
plaining users”, the number of excessively waiting jobs, as well as the “size”, i.e.,
seriousness of such job delays.

5 Conclusion

In this paper we have provided a detailed analysis of the real production sched-
uler which uses planning and metaheuristic-based schedule optimization. Using

7 The formula is: acceptable wait = (ln(req CPUs) + 1) · (walltime/factor).
req CPUs denotes the number of requested CPUs and job’s walltime is divided
by an integer (factor ≥ 1) which increases as the walltime increases, emulating
the non-linear user’s wait time expectations. Currently, we use five factors 1, 2, .., 5,
which apply for walltimes <3h, 3h..7h, 7h..24h, 1d..7d, ≥1w, respectively.



Planning and Metaheuristic Optimization in Production Job Scheduler 215

various types of evaluation we have demonstrated that both planning and some
form of optimizing metaheuristic can be used in practice. In reality, the planning
feature is useful for users as well as for system administrators. On several occa-
sions, the constructed plan revealed problems long before someone else would
normally notice (e.g., suboptimal job specification leading to very large planned
start time). Also, system administrators often use prepared plan when recon-
sidering various system-wide setups, e.g., too strict limits concerning resource
usage. Certainly, this approach is not suitable for every system. Not surprisingly,
planning (in general) is more time-consuming approach compared to plain queu-
ing. The time needed for construction and maintenance of job schedules grows
with the size and complexity of the system and its workload (see Sect. 4.1).
Surely, our current implementation can be further improved. For example, all
schedule-related routines are currently sequential — running in a single thread —
and can be relatively easily parallelized. So far, this is not an issue within CERIT
system and no problems concerning scalability/speed were recorded so far. Our
scheduler is freely available at: https://github.com/CESNET/TorquePlanSched.

Acknowledgments. We kindly acknowledge the support and computational
resources provided by the MetaCentrum under the program LM2015042 and the
CERIT Scientific Cloud under the program LM2015085, provided under the programme
“Projects of Large Infrastructure for Research, Development, and Innovations”. We
also highly appreciate the access to CERIT Scientific Cloud workload traces. Last but
not least, we thank Dror Feitelson for his kind help and explanation concerning the
dynamic workload model presented in [21].

References

1. Adaptive Computing Enterprises, Inc., Torque 6.0.0 Administrator Guide, Febru-
ary 2016. http://docs.adaptivecomputing.com

2. Alea simulator, February 2016. https://github.com/aleasimulator
3. CERIT Scientific Cloud, February 2016. http://www.cerit-sc.cz
4. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory

and practice in parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.)
JSSPP 1997. LNCS, vol. 1291, pp. 1–34. Springer, Heidelberg (1997). doi:10.1007/
3-540-63574-2 14

5. Hovestadt, M., Kao, O., Keller, A., Streit, A.: Scheduling in HPC resource manage-
ment systems: queuing vs. planning. In: Feitelson, D., Rudolph, L., Schwiegelshohn,
U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 1–20. Springer, Heidelberg (2003).
doi:10.1007/10968987 1

6. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the maui scheduler. In:
Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102.
Springer, Heidelberg (2001). doi:10.1007/3-540-45540-X 6

7. Keller, A., Reinefeld, A.: Anatomy of a resource management system for HPC
clusters. Annu. Rev. Scalable Comput. 3, 1–31 (2001)

8. Klusáček, D., Chlumský, V., Rudová, H.: Planning and optimization in TORQUE
resource manager. In: 24th ACM International Symposium on High Performance
Distributed Computing (HPDC), pp. 203–206. ACM (2015)

https://github.com/CESNET/TorquePlanSched
http://docs.adaptivecomputing.com
https://github.com/aleasimulator
http://www.cerit-sc.cz
http://dx.doi.org/10.1007/3-540-63574-2_14
http://dx.doi.org/10.1007/3-540-63574-2_14
http://dx.doi.org/10.1007/10968987_1
http://dx.doi.org/10.1007/3-540-45540-X_6


216 D. Klusáček and V. Chlumský

9. Klusác̆ek, D., Rudová, H.: Performance and fairness for users in parallel job
scheduling. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.)
JSSPP 2012. LNCS, vol. 7698, pp. 235–252. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-35867-8 13

10. Klusáček, D., Rudová, H.: A metaheuristic for optimizing the performance and the
fairness in job scheduling systems. In: Laalaoui, Y., Bouguila, N. (eds.) Artificial
Intelligence Applications in Information and Communication Technologies. SCI,
vol. 607, pp. 3–29. Springer, Cham (2015). doi:10.1007/978-3-319-19833-0 1

11. Koodziej, J., Xhafa, F.: Integration of task abortion and security requirements in
GA-based meta-heuristics for independent batch grid scheduling. Comput. Math.
Appl. 63(2), 350–364 (2012)

12. Li, B., Zhao, D.: Performance impact of advance reservations from the Grid on
backfill algorithms. In: Sixth International Conference on Grid and Cooperative
Computing (GCC 2007), pp. 456–461 (2007)

13. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001)

14. PBS Works. PBS Professional 13.0, Administrator’s Guide, February 2016. http://
www.pbsworks.com

15. Pooranian, Z., Shojafar, M., Abawajy, J., Abraham, A.: An efficient meta-heuristic
algorithm for grid computing. J. Comb. Optim. 30(3), 413–434 (2015)

16. Stucky, K.-U., Jakob, W., Quinte, A., Süß, W.: Solving scheduling problems in grid
resource management using an evolutionary algorithm. In: Meersman, R., Tari, Z.
(eds.) OTM 2006. LNCS, vol. 4276, pp. 1252–1262. Springer, Heidelberg (2006).
doi:10.1007/11914952 14

17. Süß, W., Jakob, W., Quinte, A., Stucky, K.-U.: GORBA: a global optimising
resource broker embedded in a Grid resource management system. In: Interna-
tional Conference on Parallel and Distributed Computing Systems, PDCS 2005,
pp. 19–24. IASTED/ACTA Press (2005)

18. Switalski, P., Seredynski, F.: Scheduling parallel batch jobs in grids with evolu-
tionary metaheuristics. J. Sched. 18(4), 345–357 (2015)

19. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated pre-
dictions rather than user runtime estimates. IEEE Trans. Parallel Distrib. Syst.
18(6), 789–803 (2007)

20. Xhafa, F., Abraham, A.: Metaheuristics for Scheduling in Distributed Computing
Environments. SCI, vol. 146. Springer, Heidelberg (2008)

21. Zakay, N., Feitelson, D.G.: Preserving user behavior characteristics in trace-based
simulation of parallel job scheduling. In: 22nd Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), pp. 51–60 (2014)

22. Zakay, N., Feitelson, D.G.: Semi-open trace based simulation for reliable evaluation
of job throughput and user productivity. In: 7th IEEE International Conference on
Cloud Computing Technology and Science (CloudCom 2015), pp. 413–421. IEEE
(2015)

http://dx.doi.org/10.1007/978-3-642-35867-8_13
http://dx.doi.org/10.1007/978-3-642-35867-8_13
http://dx.doi.org/10.1007/978-3-319-19833-0_1
http://www.pbsworks.com
http://www.pbsworks.com
http://dx.doi.org/10.1007/11914952_14

	Planning and Metaheuristic Optimization in Production Job Scheduler
	1 Introduction
	2 Related Work
	3 Planning and Optimizing Job Scheduler
	3.1 Data Representation of Job Schedule
	3.2 Scheduling Algorithms
	3.3 Evaluation and Metaheuristic
	3.4 User Perspective: System Interfaces

	4 Evaluation and Deployment
	4.1 Real-Life Deployment
	4.2 Comparison Using Testbed
	4.3 Comparison Using Simulator

	5 Conclusion
	References


