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Preface

This volume contains the papers presented at the 19th and 20th Workshops on Job
Scheduling Strategies for Parallel Processing (JSSPP’2015 and JSSPP’2016). The
JSSPP Workshops take place in conjunction with the IEEE International Parallel
Processing Symposia.

The proceedings of previous workshops are also available from Springer as LNCS
volumes 949, 1162, 1291, 1459, 1659, 1911, 2221, 2537, 2862, 3277, 3834, 4376,
4942, 5798, 6253, 7698, 8429, and 8828. These volumes are available as printed books
and online.

In 2015, the workshop was help in Hyderabad, India, on May 26. In 2016, it took
place in Chicago, USA, on May 27. For each year, 4 papers were submitted, of which
we accepted seven. All submitted papers went through a complete review process, with
the full version being read and evaluated by an average of four reviewers. We would
like to especially thank the Program Committee members and additional reviewers for
their willingness to participate in this effort and their detailed, constructive reviews.
The Program Committee for 2015 and 2016 comprised:

– Henri Casanova, University of Hawaii at Manoa
– Julita Corbalan, Technical University of Catalonia
– Dick Epema, Delft University of Technology
– Hyeonsang Eom, Seoul National University
– Dror Feitelson, The Hebrew University
– Liana Fong, IBM T.J. Watson Research Center
– Eitan Frachtenberg, Facebook
– Alfredo Goldman, University of São Paulo
– Allan Gottlieb, New York University
– Alexandru Iosup, Delft University of Technology
– Morris Jette, SchedMD LLC (2015 only)
– Srikanth Kandula, Microsoft
– Rajkumar Kettimuthu, Argonne National Laboratory
– Dalibor Klusáček, Masaryk University
– Madhukar Korupolu, Google
– Zhiling Lan, Illinois Institute of Technology
– Bill Nitzberg, Altair Engineering
– P.-O. Östberg, Umeå University
– Larry Rudolph, MIT
– Uwe Schwiegelshohn, Technical University of Dortmund
– Leonel Sousa, Universidade Técnica de Lisboa
– Mark Squillante, IBM T.J. Watson Research Center
– Wei Tang, Google
– Ramin Yahyapour, GWDG, University of Göttingen



As a primary venue of the parallel scheduling community, the Job Scheduling
Strategies for Parallel Processors Workshop offers a good vantage point to witness its
evolution. During these two decades, we have seen parallel scheduling grow in scope
and importance, following the popularization of parallel systems. Fundamental issues
in the area remain relevant today (e.g., scheduling goal and evaluation, workload
modeling, performance prediction). Meanwhile, a new set of issues have emerged,
owing to the new workloads, increased scale, and differing priorities of cloud systems.
Together, the traditional and new issues make for a lively and discussion-rich work-
shop, where academic researchers and participants from industry meet and exchange
ideas and experiences.

The JSSPP Workshops traditionally start with a keynote talk. In 2015, Benjamin
Hindman from Mesosphere explored how to leverage multilevel schedulers to separate
concerns and better accommodate competing perspectives (e.g., scheduling goals for
the resource provider can differ substantially from those of the user) in parallel
scheduling. In 2016, we surveyed big challenges and open problems in modern parallel
scheduling. This volume includes a summary of the 2016 keynote.

Following the trend of previous years, we see parallel scheduling challenges arising
at multiple levels of abstractions. The days of shared-memory vs. message-passing
parallelism are definitely over. Parallelism today happens at all levels, including
combining different clusters or clouds at the user-level to support a target application.

For node-level parallelism, the driving forces are the simultaneous increase in
capacity and heterogeneity of a single node. As the number of cores sharing the same
memory increases (often introducing non-trivial communication topologies) and spe-
cial purpose parallel processors (like GPUs) become prevalent, new approaches and
research remain relevant.

Kang et al. show how to minimize energy consumption in task migration within a
many-core chip. Many-core chips are also the environment targeted by Chu et al., who
focus on how to space-share these chips among competing applications. Singh and
Auluck explore the judicious use of task replication in the real-time scheduling context.
Tsujita and Endo investigate a data-driven approach to schedule GPU load, using
Cholesky decomposition as a concrete, relevant use case. Negele et al. evaluate the use
of lock-free data structures in the OS scheduler. While requiring a complete reworking
of the operating system, their results show a promising payoff.

Cluster-level parallelisms are also driven by increases in scale and heterogeneity.
But their scale seems to expose more systemic effects on how people interact with
them, giving rise to the need for sophisticated user and workload modeling. Along
these lines, Schlagkamp investigates the relationship between user behavior (think
time, more precisely) and parallel scheduling. Emeras et al. describe Evalix, a predictor
for job resource consumption that makes novel use of user information. In such an
environment, sophisticated and realistic simulation is another clear need. Dutot et al.
present BatSim, a language-independent simulator that allows for different levels of
realism in the simulation (at different computational costs).

On distributed scheduling itself, Pascual et al. explore how space-filling curves can
lead to better scheduling of large-scale supercomputers. Li et al. also targeted large-
scale supercomputers, particularly on how to better leverage the multidimensional torus
topology of machines like Blue waters. Klusáček and Chlumsky rely on the multilevel

VI Preface



scheduler support of Torque to introduce a job scheduler based on planning and
metaheuristics, in opposition to simple queueing. Breitbart et al. explore which jobs can
be co-scheduled such that memory bandwidth does not become a bottleneck, therefore
negating the benefits of co-scheduling. Zhuang et al. focus on how to improve the
selection of a disruption time for a cluster, so as to reduce the impact on its users.

Another key part of the JSSPP experience is the discussion of real-life production
experiences, providing useful feedback to researchers, as well as refining best practices.
Klusáček et al. describe the reconfiguration of MetaCentrum, covering motivation,
process, and evaluation. Particularly interesting is the fact that such work “was sup-
ported by a significant body of research, which included the proposal of new
scheduling approaches as well as detailed simulations based on real-life complex
workload traces”, showcasing the productive synergy between top-notch research and
production practice that takes place at JSSPP.

Enjoy the reading!
We hope you can join us in the next JSSPP workshop, this time in Orlando, Florida,

USA, on June 2, 2017.

May 2017 Walfredo Cirne
Narayan Desai
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of Real-Time Precedence Tasks

on Heterogeneous Multiprocessors
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Abstract. Duplication based heuristics have been widely utilized for
scheduling communication intensive, precedence constrained tasks on
multiple processors. Duplicating the predecessor of a task on the proces-
sor to which the task is assigned can result in the minimization of the
communication cost. This helps in reducing the schedule length. How-
ever, this reduction comes at the cost of extra computing power required
to duplicate the tasks. We have tried to address this trade-off in this
paper. We propose “controlled” duplication algorithms for scheduling
real-time periodic tasks with end-to-end deadlines on heterogeneous mul-
tiprocessors. We observe that whether to duplicate tasks or not is decided
by the task deadlines. In the case that the deadline can be met without
duplication, more schedule holes are created. These holes can be used
to schedule other tasks. Simulations show that the proposed algorithms
efficiently utilize the holes and improve the success ratio by 15%–50%
versus comparable algorithms.

1 Introduction

The requirement of scientific and industrial applications to generate logical as
well as time bound results have posed various challenges, namely: exploiting the
parallelism offered by the current hardware and completing applications under
strict timing constraints. Due to these requirements, heterogeneous systems have
gained widespread popularity. These systems allow for the combination of high
performance, low cost and different capability hardware with the help of het-
erogeneous interconnections such as: Network on a chip (NoC) and Network of
Workstations (NoWs). The timing constraints are fulfilled by employing an effi-
cient real-time scheduler. The scheduling algorithm allocates and schedules jobs
to ensure that all the task instances in the task set meet their deadlines. If a
task set meets its deadlines, then it is said to be schedulable.

Definition 1 (Task Set). A task set (Fig. 1) models multiple real-time appli-
cations where each application (known as a task) is represented as a directed
c© Springer International Publishing AG 2017
N. Desai and W. Cirne (Eds.): JSSPP 2015/2016, LNCS 10353, pp. 3–21, 2017.
DOI: 10.1007/978-3-319-61756-5 1



4 J. Singh and N. Auluck

Fig. 1. A task set

acyclic graph (DAG) with release time, period and hard end-to-end deadline.
The nodes of each DAG represent subtasks1 and the edges represent the prece-
dence constraints, as well as the communication cost between the subtasks.

In real-time systems, scheduling algorithms can be broadly classified into two
categories: static and dynamic. In static algorithms, information about the tasks
is known in advance, which is not the case in dynamic algorithms. Heuristics for
real-time scheduling on heterogeneous multiprocessors have been proposed for
both the static [3,8,16] as well as the dynamic [15,23] environments. This paper
falls into the domain of static algorithms.

Scheduling a DAG on multiprocessors in real-time and non real-time systems
is a challenging problem [12,13]. It has become harder with the introduction of
heterogeneous processing and networking components. Basically, the problem
on these two systems differs because of the properties of the task graph and the
objective. The majority of the algorithms in non real-time systems consider a
single task graph with an objective of minimizing the maximum schedule length,
also known as the makespan [12]. On the other hand, in real-time systems, the
input to the algorithm is a task set (periodic or non-periodic) consisting of a
number of independent or dependent tasks with deadlines. The main objective
is to meet the hard deadlines and decrease the tardiness of the soft deadlines,
where tardiness is the subtraction of the deadline from the schedule length.

More often than not, the real-time algorithms are inspired from or are an
extension of a non-real time scheduling approach [3,4,15]. On the basis of the
design, these algorithms for scheduling a DAG on multiprocessors (homogeneous
& heterogeneous) are broadly classified into: list-based and clustering based, with
or without duplication. List-based scheduling [15] assigns priorities to all the
ready jobs, stores them in a list and later assigns to processors according to the
priorities to minimize a particular cost function. In clustering, the jobs are com-
bined to form clusters on the basis of communication delays, data dependencies
etc. After that, the clusters are allocated to processors [3,9].

Duplication has been widely used to achieve reliability and fault tolerance in
real-time and non real-time scheduling [15,21]. It has also proved to be a vital
heuristic for minimizing the makespan [1]. By duplicating the heavily commu-

1 (The terms node, job and subtask have been used interchangeably).
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)b()a(

Fig. 2. For task set in Fig. 1, (a) schedule with duplication that misses the deadline
(b) schedule without duplication that meets the deadlines

nicating jobs on a single processor, the interprocessor communication cost can
be minimized. The jobs are made to start earlier and hence, finish earlier, which
reduces the overall makespan of the task graph. Duplication is a well researched
heuristic for non real-time scheduling of a single task graph on heterogeneous
multiprocessors [4–6,18].

However, duplication in the context of meeting deadlines is still relatively
unexplored. We observe that, duplicating a job utilizes the extra computing
power (or a schedule hole) on a processing element (PE). This extra computing
power may be used to schedule jobs of other task instances. Therefore, although
using duplication can help a task graph instance to meet its deadline, it may
cause the other tasks to miss their deadlines because of the unavailability of
the appropriate schedule holes. Hence, an interesting tradeoff exists between
the number of duplicated jobs and the number of schedule holes available. This
article identifies this tradeoff and proposes controlled duplication based heuris-
tics. Simulations have shown that the proposed algorithms improve the success
ratio by 15% to 50% vs. the other known non-duplication and duplication based
algorithms, even under higher processor utilizations and communication costs.

2 Motivation-W 2H2

The design of a duplication heuristic has two steps: “where to duplicate jobs”
and “how to perform duplication”. Mainly, there are two strategies that are used
for the first step: duplicating subtasks in schedule holes [5] or allocating extra
space other than the holes [4]. The first approach, also known as an insertion
based approach, adds more to the computational complexity of the algorithm
to find an appropriate schedule hole for duplication, but is more effective than
the second non-insertion based approach. A number of approaches have been
used for the second step: (1) duplicate a single immediate predecessor (SIP) [5],



6 J. Singh and N. Auluck

(2) duplicate a chain of predecessors till the root node (COP) [4], (3) duplicate
the immediate predecessors, and then the ancestors (IPFA) [6].

Duplication in real-time systems adds two more challenges to the above:
“when to duplicate” and “how much duplication” is to be performed. Figure 2
demonstrates these challenges. It shows schedules of two task instances: T1
(r = 0, p = 10, d = 7) and T2 (r = 0, p = 10, d = 8) of Fig. 1, where r, p
and d are defined as release time, period and deadline of the tasks respectively.
Both tasks are required to be scheduled on 3 processing elements P1-P3 and
have the same execution cost on all PEs. Since task T1 has a lesser deadline, it
is given the higher priority and is scheduled first. If T1 is scheduled with duplica-
tion, it finishes before its deadline at 7. However, task T2 is unschedulable now
(Fig. 2(a)). In the other case, scheduling T1 without duplication leaves enough
schedule holes on P2 and P3 which are then used by T2 to meet its deadline
(Fig. 2(b)).

The first challenge: “when to duplicate” exists because of our objective of
meeting deadlines. In case, the deadline of a task is higher (as for T1), there are
enough chances to meet it without duplicating any job, which can create more
schedule holes for other tasks to use, hence, increasing the schedulability. Inter-
estingly, finding whether a task graph can be scheduled under a certain dead-
line is an NP-Complete problem [11]. Here, we make use of tentative scheduling
which refers to temporarily scheduling the jobs of the task graph without dupli-
cation on processors, to evaluate the upper bound on the makespan. If the upper
bound meets the deadline, then the temporary schedule for that task becomes
the final schedule, otherwise it is removed. This upper bound approach has been
proposed in RTCDA-W 2H heuristic to implement the “when to duplicate” chal-
lenge. To further enhance the performance, if we decide to perform duplication
in the first step, our motive is to control the amount of duplication according
to the deadline, which is the next challenge of finding how much duplication
is required. The proposed RTCDA-W 2H2 extends RTCDA-W 2H with steps to
control the amount of duplication to propose a controlled duplication algorithm.
Hence, RTCDA-W 2H2 addresses all the four proposed challenges with respect
to duplication: where, how, when and how much (W2H2).

Next, we discuss the related work (Sect. 3) followed by the assumptions and
the system model in Sect. 4. Algorithms RTCDA-W 2H and RTCDA-W 2H2 are
described in Sects. 5 and 6 respectively. Time complexities of the algorithms are
described in Sect. 7. Simulation results with a discussion are presented in Sect. 8.
Finally, Sect. 9 concludes the paper with possible future directions.

3 Related Work

Researchers have focused on developing heuristics driven by specific Quality
of Service (QoS) parameters such as Reliability [21], Fault-Tolerance [15] and
Security [22,24]. Qin et al. [15] have presented two dynamic list scheduling algo-
rithms: DASAP (Dynamic AS early As Possible) and DALAP (Dynamic As
Late As Possible) for scheduling task graphs. Stavrinides et al. [19] demonstrate
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a dynamic, list-based scheduling algorithm with a bin-packing heuristic. It has
been reported that exploiting schedule holes with bin-packing (First Fit, Best Fit
and Worst Fit) significantly improves the success ratio. Dave et al. [9] have used a
cluster-based algorithm named COSYN (CO-SYNthesis of Hardware-Software)
which is not only able to schedule the tasks, but also find an optimal hardware-
software architecture which involves the selection of processors, FPGAs, ASICs
and communication links.

S. Ranaweera et al. in [16] used duplication for enhancing the schedulability
of periodic time critical applications for pipelined execution on heterogeneous
systems. Auluck et al. in [2,3] proposed algorithms which are an extension of
the original duplication strategy proposed in [4]. The algorithm in [3], named
RT-DBA (real-time duplication based algorithm), is the closest to our work. RT-
DBA is a low complexity algorithm with a few shortcomings. This has motivated
the research in this paper. Firstly, it performs duplication for all the tasks in the
task set, which may not be always required, as our motive is not to minimize the
makespan, but to meet deadlines. A late deadline can be met without duplica-
tion. The over use of duplication can reduce possible schedule holes (created due
to precedence delays). These holes can be utilized by the other tasks in the task
set to meet their deadlines. Secondly, RT-DBA uses a very static approach for
scheduling and does not consider the current processor scheduling load. Lastly,
it does not utilize schedule holes for scheduling or duplication. Doing so can
help in achieving a better utilization of the computing power. We introduced
the idea of controlled duplication in [17]. The initial results of RTCDA were
presented with the upper bound evaluated using sequential scheduling of jobs of
a task on a single processor. This work enhances RTCDA [17] with an improved
upper bound using tentative scheduling and proposes an enhanced version of
the EDF algorithm to propose RTCDA-W 2H. In addition, we present one more
enhancement, RTCDA-W 2H2 that addresses the “how much” challenge.

4 System Model

The system consists of a set P of m heterogeneous processors and a task set T
of n precedence-constrained task graphs. All the processors p ∈ P are connected
with a fully connected, contention free network. It is assumed that the local
memory of a processor is used for data exchange between assigned subtasks.
A vector of the form <G(Vi, Ei, µi, ci), rt(i), pe(i), dl(i)> represents a task ti ∈
T . The first element of the vector is the directed acyclic graph G. The node set Vi

represents the jobs sijk (k is the instance, Vi remains the same during instances)
of ti and the edges in Ei represent the communication between the jobs. An edge
eij ∈ E represents the communication from node sijk to node silk. A positive
weight µi(j, pq) is associated with node sijk. This represents its computation cost
on processor pq ∈ P and the non-negative weight ci(j, l) associated with edge
eij ∈ E represents the communication cost from sijk to silk. The elements µi

and ci are matrices of the order vi × m and vi × vi (vi is the number of subtasks
in task ti). We further assume that the DAG has single entry and exit nodes.
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Table 1. Mathematical notations used for task parameters

Notation Task parameter

T Task set of independent periodic task graphs (DAGs)

P Set of available processors

n Number of tasks in the task set

m Number of processors

SQt & SQst Task and subtask schedule queues respectively

i, j, k Ids used for task, subtask and task instance respectively

q Processor id

ti ith task of T

Vi & vi Set & number of subtasks of task ti

pq & pub qth processor & the processor which gives the upper bound

sijk jth subtask of kth instance of task ti

si(entry)k and si(exit)k Entry and exit subtasks of kth instance of task ti

rti, pei, dli Release time, period and deadline of task ti

ci(j, l) Communication cost from sijk to silk for all k

µi(j, q) Execution cost of sijk on pq for all k

µi(j)
Average execution cost of sijk for all k

bl(sijk) & sl(sijk) b-level and s-level of sijk

aft(sijk) Actual minimum finish time of sijk after it is scheduled

pred(sijk) &succ(sijk) Predecessors and successors of sijk

Pz(sijk) Set of processors on which sijk is scheduled

HS
h (pq) &HF

h (pq) HS
h&HF

h are the start and finish times of a hole between sh & sh+1,
where s1, s2, · · · , sh are the subtasks already scheduled on pq

If a DAG has multiple entry (exit) nodes, then they are connected to zero-cost
pseudo entry (exit) nodes with zero-cost edges. Performing this operation does
not affect the final schedule. Next, rt(i) is the release time of the task ti and
pe(i) represents its period. Hence, each task graph has an instance after every
pe time units. The release time, rt(ik) of the kth task instance of ti is evaluated
as rt(i) + (k − 1) ∗ pe(i). The deadline dl(i) is the relative end-to-end deadline
of the task ti, i.e., the exit node si(exit)k of the kth invocation of task ti should
finish by the absolute time dl(ik) = rt(ik) + dl(i), where dl(ik) is the deadline
of the kth invocation of the task ti.

5 RTCDA-W2H: “when to Duplicate”

5.1 RTCDA-W2H Concept

RTCDA-W 2H (Algorithm 1) proposes a solution to the challenge of “when to
duplicate”. Notations and mathematical equations used in RTCDA-W 2H are
described in Tables 1 and 2 respectively. The central idea of the algorithm is to
evaluate a “without duplication” upper bound (UB) (step 5, Algorithm 1) on



Controlled Duplication Scheduling 9

Table 2. Mathematical equations for RTCDA and subtask parameters

(1) Release time of kth instance of ti rt(ik) = rt(i) + (k − 1) × pe(i)

(2) b-level and s-level of sijk

bl(si(exit)k) = µi(exit)

sl(si(entry)k) = zero

bl(sijk) = µi(j) + max
silk∈succ(sijk)

(
ci(j, l) + bli(silk)

)

sl(sijk) = max
silk∈pred(sijk)

(
ci(l, j) + sli(silk) + µi(l)

)

(3) Data Arrival Time (DAT) of si(entry)k and sijk (from its predecessors) on pq

DAT (sijk, pq) = max
silk∈pred(sijk)

(
min

p∈Pz(silk)

(
EFT

if p=pq
(silk, p)|| EFT

if p�=pq
(silk, p) +

ci(l, j)
))

DAT (si(entry)k, pq) = rt(ik)

(4) Schedule hole (SH) on pq, where sijk can be scheduled

SH(sijk, pq) = HS
h if

[
HF

h − max
(
DAT (sijk, pq), H

S
h

)]
> µi(j, q)

(5) Earliest Finish Time (EFT) of sijk on pq

EFT (sijk, pq) = max
(
DAT (sijk, pq), H

S
h

)
+ µi(j, q), where HS

h = SH(sijk, pq)

(6) Earliest Finish Time (EFT) of sijk
EFT (sijk) = min

pq∈P
EFT (sijk, pq)

(7) Earliest Tentative Start Time (ETST) of sijk on pub

ETST (sijk, pub) = max
⋂

(DAT (sijk, pub), H
S
h

)
, where HS

h = SH(sijk, pub) and

Pz(sijk) = pub for all sijk ∈ Vi

Algorithm 1. RTCDA-W 2H pseudocode
Data: Task Set T
Result: Return true if task set meets deadlines otherwise return false.

Schedule of Tasks on processors

1 Evaluate hyperperiod (hp);
2 Maintain task schedule queue (SQt) of all instances of tasks upto hp in T ;
3 while SQt is non empty do
4 Fetch the higher priority ready task instance (tik);

5 Evaluate Upper Bound (UBik) by calling

RTCDA-W 2H-Sched(tik, false, UBik);

6 if dl(ik) ≤ UBik then
7 Make tentative schedule from step 5 as the final schedule;

8 else
9 Schedule task graph with duplication, call

RTCDA-W 2H-Sched(tik, true, UBik);

10 if dl(ik) > UBik then Scheduling task set failed, return false;

11 return true;

the makespan of every task instance using tentative scheduling. If the deadline
of that instance is greater than or equal to the UB (step 6), then the tenta-
tive schedule obtained while evaluating the upper bound in step 5 becomes the
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final schedule (step 7), otherwise the task instance is scheduled with duplication
(step 8). RTCDA-W 2H is a combination of list-based and duplication scheduling
heuristics. It begins by calculating the hyper period (hp) of the task set T . The
hp is evaluated as the least common multiple of all tasks periods. The sched-
ule is generated from time unit zero till hp (steps 1–2). The same schedule is
repeated after hp. Each task ti has hp/pe(i) number of instances in the generated
schedule. The separate priority schemes for tasks ti ∈ T and subtasks sijk ∈ Vi

are used to generate schedule queues (step 2). These priority schemes direct
RTCDA-W 2H to select a task instance among all tasks and a further ordering
of subtasks for allocation to the processing elements (Sect. 5.2). A task tik, is
fetched from the head of SQt for processing. The next step is to evaluate the UB
using tentative scheduling (step 5) and scheduling with duplication if the UB
does not meet the deadline (Sect. 5.3). Algorithm 2 is used for both “without
duplication” and “duplication” scheduling by setting the dupl parameter to false
and true respectively.

5.2 Assigning Priorities

The tasks in the task set are considered for scheduling, one at a time and are
prioritized according to a modified version of the earliest deadline first (EDF)
algorithm [14]. Since the information of all the tasks is available in advance,
the task schedule queue SQt is generated before the actual scheduling. The kth

task instance of a task i is given higher priority than the lth instance of task
j if the deadline of the former task dl(ik) is lesser than the latter i.e., dl(jl),
irrespective of their release times, which is not the case in the original EDF. In
EDF, a task starts its execution after it is released (if a processor is available)
and is preempted if another task with a lesser deadline arrives. However, as
our algorithm is non-preemptive, we assign a higher priority to a task which
is released later but has a lesser deadline. If two task instances have the same
deadline, then the ties are broken by assigning a higher priority to the instance
with the earlier release time rt(ik) (Eq. 1, Table 2).

After the selection of a task instance tik for scheduling, all the subtasks
sijk of tik are inserted in the subtask schedule queue (SQst) according to a non-
increasing order of their b-level (bl(sijk)) values. The ties are broken using s-level
(sl(sijk)) values. The b-level (s-level) stands for the bottom (start) level, which
is evaluated recursively in a bottom-up (top-down) fashion, traversing the task
graph starting from the exit (entry) node as shown in Eq. 2 in Table 2 (step 1,
Algorithm 2).

In the equations above, bl(si(exit)k) = µi(exit) and sl(si(entry)k) = zero,
whereas succ(sijk) and pred(sijk) is the list of immediate successors and prede-
cessors of sijk and µi(j) represents the average execution cost of subtask sijk.
The bl(sijk) value is the critical path from the subtask sijk to si(exit)k. We have
used b− level as the primary priority parameter because the critical path based
algorithms are known to generate better schedules. Secondly, sl is the distance
of a subtask sijk from si(entry)k. The subtask with lower s-level is given higher
priority, as it is present at a higher level in the task graph. It is worth noting
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that sorting the nodes according to b-level also performs a topological sort on
all the sijk ∈ Vi, which satisfies the precedence constraints.

5.3 Scheduling a Task Instance with an Upper Bound

We define an upper bound (UBik) for every kth invocation of task ti. The UBik

is the time up to which the task instance tik can be scheduled without duplicat-
ing any of its jobs. This bound is computed at run time considering the release
time rt(ik) of tik. One straightforward way to evaluate the upper bound is to
use an already proposed “without duplication” heuristic to schedule a DAG on
heterogeneous multiprocessors. The heuristic will tentatively schedule all the
jobs of the task graph instance tik by considering the current load on all the
processors. Here, the upper bound is the actual finish time, aft(si(exit)k), of
the exit job si(exit)k. A well known “without duplication” low complexity inser-
tion based heuristic is Heterogeneous Earliest Finish Time (HEFT) [20]. HEFT
greedily allocates jobs to processors that give the earliest finish time. HEFT is
very effective for scheduling applications with low communication costs. How-
ever, in our experiments, we observed that as the communication cost among
jobs increases, the greedy approach of HEFT tends to generate schedule lengths
even greater than the sequential schedules or the trivial upper bound (TUB(ik)).
The TUB(ik) for a task instance tik is defined as the minimum schedule length
when all the jobs of tik are scheduled on a single processor. Again, we use ten-
tative scheduling to find TUB(ik). The processor which gives the TUB(ik) is
called the upper bound processor pub. RTCDA-W 2H uses a modified version
of HEFT (Algorithm 2) that generates schedules with a worst case length of
TUB(ik) i.e., UBik ≤ TUB(ik).

The subtasks sijk ∈ Vi are inserted into SQst (step 2) for processing accord-
ing to their b-level (bl(sijk)) and s-level (sl) values (step 1). Before scheduling,
RTCDA-W 2H calculates the TUB(ik) and tentative earliest start time of all
sijk ∈ Vi (Eq. 7, Table 2) on processor pub if they execute according to their
order in SQst on processor pub (step 3). The pub represents the processor on
which the current task instance tik has the UBik. A subtask sijk is fetched
from the head of SQst till all the jobs are processed (steps 4 and 5). Next, the
algorithm finds the earliest finish time of sijk with or without duplication, as
decided by the input parameter dupl using algorithm 3 (step 6 of Algorithm 2).
Algorithm 3 is called to evaluate EFT of sijk, where boolean parameter dupl
decides whether to duplicate jobs while calculating EFT or not. The parameter
pz in a call to Algorithm 3 stores the processor that gives the EFT (sijk).

Job sijk is tentatively scheduled on all the processors and pz is set to the
processor which gives that minimum finish time (steps 2 and 6, Algorithm 3).
Equation 5 in Table 2 describes the evaluation of EFT (sijk, pq) on a particular
processor pq. Since RTCDA-W 2H is an insertion based algorithm, we look for
an earliest available schedule hole of minimum size equal to the execution cost of
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Algorithm 2. RTCDA-W 2H-Sched(tik,dupl,UBik)
Data: Task instance : tik, bool dupl, UB,Processor pub
Result: Schedule of task tik

1 Evaluate sl(si(exit)k) and bl(si(entry)k) of tik;
2 Insert the subtasks sijk ∈ Vi in SQst in non-increasing values of bl(sijk),

breaking ties in non-decreasing values of sl(sijk);
3 Evaluate TUB(ik)(tik, pub) and ETST (sijk, pub) for all sijk ∈ Vi following their

order in SQst;
4 while there are unscheduled subtasks in SQst do
5 fetch the subtask sijk from the head of SQst;
6 Find EFTsijk ← EFT (sijk, dupl, pz); // processor pz gives EFT;

7 if pz �= pub then
8 shift = true;
9 foreach silk ∈ succ(sijk) do

10 if EFTsijk + ci(j, l) > ETST (sijk, pub) then shift ← false;

11 if shift then
12 Schedule(sijk, pz, dupl);

13 else Schedule(sijk, pub, dupl);

14 UBik = aft(si(exit)k);

Algorithm 3. EFT(sijk,dupl,pz)
Data: Subtask : sijk, duplication (true/false): dupl, Processor: pz
Result: Returns Earliest Finish Time of sijk, pz store the processor on which

sijk has EFT

1 EFT ← INFTY;
2 foreach pq ∈ P do
3 Temp ← EFT(sijk,pq);
4 if dupl then
5 Perform duplication (in schedule holes) of immediate predecessors in the

order that they delay silk the most, if it improves Temp;

6 if Temp < EFT then pz ← pq; EFT ← Temp;

7 return EFT;

sijk on pq i.e., µi(j, q) which can accommodate sijk. The start time of this hole
HS

h should be greater than the data arrival time of sijk from its predecessors on
pq (Eqs. 3–5 in Table 2).

During the evaluation of EFT (sijk) (Algorithm 3), we look for the possibility
of duplicating predecessors of sijk if it improves the EFT (sijk) on pz (steps 4–6).
RTCDA-W 2H is flexible in performing duplication. Here, we allow duplication
of immediate predecessors only and the predecessors are selected for duplication
according to a non-increasing order of the time that they delay sijk. Duplication
of a job is only performed if it improves the EFT (sijk).
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In case the processor on which sijk has the earliest finish time is the same as
that of pub, sijk is scheduled on pub (step 13, Algorithm 2). In the other scenario,
RTCDA-W 2H makes sure that scheduling sijk on any processor pz other than
pub does not increase the worst case schedule length i.e., TUB(ik) by satisfying
the following condition for all silk ∈ succ(sijk) (steps 8–13, Algorithm 2).

Condition − 1 : EFTsijk + ci(j, l) ≤ ETST (silk, pub)

If a subtask sijk satisfies the above equation, then it is scheduled on pz, other
wise on pub. Subroutine Schedule (steps 12 and 13, Algorithm 2) has a similar
pseudo code as Algorithm 2, except that it schedules the subtask after finding the
EFT . Condition-1 is the primary difference with the original HEFT algorithm.
Removing this condition will convert RTCDA-W 2H into HEFT. We call this
condition “selective duplication”, since it does not allow schedule lengths to be
greater than the trivial upper bound, TUB(ik). The results show that selective
duplication improves the performance of RTCDA-W 2H over the original HEFT
algorithm.

)b()a(

)d()c(

Fig. 3. (a) Example DAG showing precedence among jobs (b) Tentative schedule of
example DAG on upper bound processor P1 (c) Job 1 scheduled on P1 (d) Job 2
has EFT on P2. Duplication of Job 1 leads to updation in the tentative schedule of
remaining jobs and hence of UBold
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6 RTCDA-W 2H2: How Much to Duplicate

RTCDA-W 2H2 proposes an extension to RTCDA-W 2H (when duplicating) by
inculcating an approach to dynamically improve the upper bound UBik after a
subtask is scheduled on a processor other than the upper bound processor pub.
After every update in UBik, we again determine if dlik ≥ UBik, if it’s true,
then the remaining subtasks are scheduled without duplication. Thus, even after
deciding that a task instance will be scheduled with duplication, RTCDA-W 2H2

controls the amount of duplication and hence solves the “how much to duplicate”
problem.

The concept of RTCDA-W 2H2 is elaborated with the scheduling of jobs with
precedence relations on two processing elements as depicted in an example DAG
shown in Fig. 3(a). All eight jobs of the task graph are assumed to be processed
in the order of their values from 1–8. Let’s say processor P1 gives the trivial
upper bound (UBold) of the task instance as shown in Fig. 3(b). The actual
scheduling starts with job 1 and EFT (job1) is evaluated. Let’s say Job 1 has an
EFT on the upper bound processor P1 and is scheduled on P1 (refer to 3(c)).
The unfilled boxes on P1 represent the tentative schedule where as the grey filled
boxes refer to the actual scheduling of jobs. The next job in the schedule queue
is job 2. Figure 3(d) shows a state when job 2 has an EFT on processor P2 with
the help of a replicated copy of job 1. Job 2 can be scheduled on P2, which is
not an upper bound processor, only if both of it’s successor jobs 5 and 6 satisfy
the selective duplication Condition-1, i.e.,

EFT (2) + c(2, 5) ≤ ETST (5, P1)
EFT (2) + c(2, 6) ≤ ETST (6, P1)

If the above conditions are satisfied, job 2 is scheduled on P2. According
to the above procedure, RTCDA-W 2H continues with the scheduling of the
remaining jobs. However, in RTCDA-W 2H2, an additional step is performed
to update the value of the upper bound. It is observed that with the actual
scheduling of job 2 on P2, which is not the upper bound processor, three of
the unscheduled jobs have been affected in the tentative trivial upper bound
schedule on P1. Two of these jobs are the successors of job 2 i.e., job 5 and job
6 and the third is the next job in the schedule queue, job 3. We define a set AF
of all these affected jobs as follows:

Definition 2. Set of Shift Affected Jobs (AF). If a job sijk is scheduled
on a processor other than the upper bound processor, then the set of succ(sijk)
and the next job in the schedule queue is defined as the set AF .

For all the jobs silk ∈ AF , we evaluate a parameter shift(silk) as shown in
Eq. 1.

shift(silk) = ETST (silk, pub) − DAT (silk, pub) (1)
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The parameter shift describes the maximum improvement in the ETST of the
affected jobs on pub in the tentative upper bound schedule considering available
schedule holes. The overall improvement in the upper bound is evaluated as:

min shift = min
silk∈AF

(
shift(silk)

)
(2)

UBik
new = UBik

old − min shift (3)

RTCDA-W 2H2 keeps improving the UBik whenever a job is scheduled on
a processor other than pub. As soon as dlik ≤ UBik

new, the remaining jobs are
scheduled without duplication, hence, controlling the amount of duplication. The
above discussed steps to update UBik should be added to the if -condition at step
11 of Algorithm 2 to implement the required functionality of RTCDA-W 2H2.
Hence, RTCDA-W 2H2 includes schemes to handle all W 2H2 challenges.

7 Time Complexity

The time complexity of RTCDA-W 2H2 and RTCDA-W 2H has been found to be
O(n2I2maxv

2
maxmdmax), where Imax, vmax and dmax are defined as the maximum

number of instances of a task in a task set, maximum subtasks in a task and
maximum in-degree of a task in a task set respectively. This time complexity is
higher than that of RTDBA [3] O(nImaxv

2
max) because both the proposed algo-

rithms are insertion based and take O(nImaxvmax) time in finding a particular
hole for scheduling jobs. However, the increase in the time complexity is reflected
in the performance of RTCDA-W 2H2 as described by better results. Since this
is a static variation of the scheduling problem, the increase in complexity has
been compensated with increasing performance of the heuristics.

For an instance of a task tik, the algorithm evaluates bl(sijk), sl(sijk) for all
the jobs. These two parameters can be found by a breadth-first search on the
DAG. It visits every vertex exactly once, so the time taken is O(vi). RTCDA-
W 2H2 spends a significant amount of time in searching for a valid schedule hole
for a subtask on a processor. Therefore, the time required to find a valid hole
is proportional to the number of holes present on a processor, which is further
equal to the number of jobs already scheduled on it. In the worst case, before
scheduling tn, all of the other tasks and their instances may have finished. Hence,
the total number of the scheduled jobs are as given by the equation:

nholes ≤
(hp

p1
× v1 +

hp

p2
× v2 + · · · +

hp

pn−1
× vn−1

)

≤ vmax

(hp

p1
+

hp

p2
+ · · · +

hp

pn−1

)

≤ vmax

(
I1 + I2 + · · · + In−1

)

≤ nImaxvmax (4)

In evaluating the upper bound UB of a task, we schedule all jobs on all the
processors with schedule holes, which gives O(nImaxv

2
maxm). While scheduling
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Table 3. Simulation parameters

Parameter Range Parameter Range

Number of tasks in a task set 2–100 Number of subtasks in a task 10–2000

Subtask execution cost 1–100 Communication to Computation
Ratio (CCR)

0.5, 1, 5, 10

Utilization (UT) 0.3–1.0 Heterogeneity Factor (HF) 5–40

a job, we find the EFT of the job on all the processors. Therefore, schedul-
ing all the jobs takes O(nImaxv

2
maxm) time. Each task duplication also consid-

ers the schedule holes between all previously scheduled tasks for the processor.
Therefore, each task duplication has a time complexity of O(nImaxvmax). The
maximum number of duplications would be dmax which gives the complexity
O(nImaxv

2
maxmdmax). The controlled duplication step can be done on O(vi)

time. Therefore, the total time becomes O(n2I2maxv
2
maxmdmax) for scheduling a

maximum of nImax instances.

8 Simulation Results

The proposed algorithms RTCDA-W 2H and RTCDA-W 2H2 have been com-
pared with RTDBA [3] and three real-time variants of the HEFT scheduling
algorithm viz. RTHEFT, RTHEFTD and RTHEFTUB. RTHEFT is the real-
time version of HEFT proposed in [20]. This algorithm schedules jobs of every
task instance with the earliest finish time heuristic without duplicating any
job. RTHEFTD, a “duplication” version of HEFT has been proposed by [5].
This algorithm always uses duplication for scheduling task instances. RTHEF-
TUB is essentially our RTCDA-W 2H, without doing the selective duplication
step proposed in Condition-1 i.e., RTHEFTUB can generate schedules more
than the trivial upper bound. The parameters used for the simulation are sum-
marized in Table 3. The number of processors are varied by keeping the ratio(
average subtasks in taskset

number of processors

)
as constant [7].

Total utilization UT of a task set is the summation of the utilization of all the
tasks in the task set. For a single task, UT is defined as UT = average computation

m∗period ,
whereas average computation is the summation of the averages of jobs execu-
tion costs in the task. Parameters CCR, HF are averaged over all the tasks in
the task set. CCR of a task is defined as total communication

average computation . HF of a task cor-
responds to the average standard deviation of the job execution costs. For a job

sijk of a task ti, it is evaluated as
√ ∑

pq∈P

(µi(j) − µi(j, pq))2. For every combina-

tion of CCR and UT, 1000 task sets were generated by uniformly selecting the
remaining parameters using a well known real-time benchmark, Task Graphs
For Free (TGFF) [10]. The task deadlines have been set equal to their periods.
All the algorithms have been implemented in C++. Schedulability or Success
Ratio (SR) is used as the primary performance metric.
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Definition 3 (Success Ratio). It is defined as the ratio of the number of task
sets that meet their deadlines to the total number of task sets considered [3] i.e.
SR = number of tasksets meeting deadlines

total number of tasksets .

8.1 Effects of CCR and UT

Figures 4 and 5 show the effect of varying CCR and UT on the algorithms.
The results show that RTCDA-W 2H2 and RTCDA-W 2H improve the SR more
than the others in every combination of CCR and UT. Among all algorithms,
RTHEFTD and RTDBA achieved the lowest SR values, even lesser than those
of RTHEFT, which is a “without duplication” algorithm. The primary reason
for this is that they “always” perform duplication of the jobs. Also, RTDBA
is not an insertion based algorithm. This reflects in its SR being lower than
RTHEFTD. All three proposed upper bound algorithms managed to improve the
SR by >15% for UT >= 0.7 across all CCR values (Figs. 4 and 5). Hence, these
algorithms make an efficient use of schedule holes by switching between “without
duplication” and “duplication” scheduling algorithms at run time. In Fig. 4(a),
for a low CCR of 0.5, “without duplication” RTHEFT scheduled all task sets with
UT ≤ 0.5. However, for higher utilizations and higher CCR values, upper bound

5=RCC)b(5.0=RCC)a(

(c) CCR=10

Fig. 4. Effect of UT with fixed CCR
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9.0=TU)b(8.0=TU)a(

(c) UT=1.0

Fig. 5. Effect of CCR with fixed UT

based algorithms improved the SR by performing duplication for the tasks which
can not be scheduled without duplication. The gap in SR values of RTHEFT
and proposed duplication algorithms increases with increase in CCR (Fig. 5).
Importantly, duplications are less effective at a low CCR value = 0.5, however,
upper bound algorithms first tentatively schedule tasks without duplication and
then try duplication, only when the “without duplication” approach fails. This
helps in increasing the SR by 10–20%.

Generally, the SR for all the algorithms decreases with an increase in UT at all
CCRs. This scenario is a combined effect of increasing the demand of computing
power with an increase in UT and the delay caused by communication costs.
However, duplications helps in achieving an SR close to 70% for UT = 0.9. At
maximum UT = 1.0, all the algorithms perform poorly. However, RTCDA based
algorithms are able to schedule 20% of the task sets. The UT = 1.0 describes a
case when the CPU is 100% utilized. However, heterogeneity in the computation
costs help scheduling 20% of the task sets (refer to Sect. 8.2 for details). RTCDA-
W 2H and RTCDA-W 2H2 have performed slightly better than RTHEFTUB by
making use of selective duplication that bounds their schedule lengths to the
trivial upper bound at higher CCR values. The major difference in their SR
can be seen at CCR value = 10 across different utilizations (Fig. 5), due to
RTHEFTUB generating schedules larger than the trivial upper bound. RTCDA-
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W 2H2 is able to schedule 5–10% more task sets than RTCDA-W 2H due to a
control in the amount of duplication while scheduling.

8.2 Effects of Heterogeneity

To study the effect of heterogeneity, task sets are generated by keeping CCR
and UT fixed to 1.0 and 0.8 respectively and by varying the execution costs in
a range of 1–50. The parameter HF is varied from 1 to 20 as shown in Fig. 6.
A low value of HF = 1, depicts less variation in the execution costs of jobs on
multiprocessors. Hence, for a UT = 0.8, a task set will require approximately
80% of the total CPU computing power to meet all deadlines, because each
job will execute almost for its average execution cost. The remaining 20% of the
computing power is only utilized by duplicated copies of jobs to reduce the delay
caused by the higher communication cost. Hence, more jobs are delayed. This
reduces the success ratio. With the increase in HF, the SR has been found to
increase, because more variation in execution costs causes jobs to schedule on
processors with execution cost less than their averages hence, providing more
computing power for duplication.

Fig. 6. Effect of heterogeneity

9 Conclusion

We have observed that duplication is not always required for the scheduling of
real-time static tasks. Whether to duplicate or not depends on the task dead-
lines. In addition, the controlled duplication strategy has addressed the W 2H2

duplication challenges. Increasing the simulation time using RTMIP and local
search techniques further improves the success ratio by >20% for a maximum
utilization of 1.0. In the future work, we will look to decrease the time complexity
of the algorithms. Also, energy consumption of computation and communication
resources can be optimized for the cases where 100% SR is achieved.
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Abstract. Schedulers for symmetric multiprocessing (SMP) machines
use sophisticated algorithms to schedule processes onto the available
processor cores. Hardware-dependent code and the use of locks to protect
shared data structures from simultaneous access lead to poor portability,
the difficulty to prove correctness, and a myriad of problems associated
with locking such as limiting the available parallelism, deadlocks, starva-
tion, interrupt handling, and so on. In this work we explore what can be
achieved in terms of portability and simplicity in an SMP scheduler that
achieves similar performance to state-of-the-art schedulers. By strictly
limiting ourselves to only lock-free data structures in the scheduler, the
problems associated with locking vanish altogether. We show that by
employing implicit cooperative scheduling, additional guarantees can be
made that allow novel and very efficient implementations of memory-
efficient unbounded lock-free queues. Cooperative multitasking has the
additional benefit that it provides an extensive hardware independence.
It even allows the scheduler to be used as a runtime library for appli-
cations running on top of standard operating systems. In a comparison
against Windows Server and Linux running on up to 64 cores we analyze
the performance of the lock-free scheduler and show that it matches or
even outperforms the performance of these two state-of-the-art sched-
ulers in a variety of benchmarks.

Keywords: Lock-free scheduling · Cooperative multitasking · Run-time
environments · Multicore architectures

1 Introduction

For several decades now, operating systems have provided native support for
symmetric multiprocessing (SMP). One of their key functions is to schedule
active processes (or tasks) onto available logical cores. State-of-the-art schedulers
of modern operating systems such as the completely fair scheduler (CFS) [24] in
the Linux kernel implement complex algorithms and - together with the scheduler
framework - comprise many thousand lines of code.
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A significant part of the complexity of state-of-the-art schedulers stems from
guaranteeing mutual exclusion in parts of the code that access shared data struc-
tures. This form of blocking synchronization is typically implemented with locks
in one of the different variants such as spinlocks, mutexes, semaphores, or mon-
itors [11]. Despite its conceptual simplicity, mutual exclusion has many well
documented and understood drawbacks. For instance, mutual exclusion limits
the progress of all contending tasks to a single one, effectively preventing any
parallelism amongst the contenders for as long as the lock is held. In addition,
synchronization primitives that ensure mutual exclusion traditionally suffer from
well-known problems such as deadlocks, livelocks, starvation or the failure to
release resources.

Yet another issue is the design decision of what amount of shared data is to
be protected by the same lock. Coarse-grained locking reduces the overhead of
acquiring the lock but greatly decreases the available parallelism. The common
practice of fine-grained locking, on the other hand, enables more parallelism but
leads to more complicated implementations and a bigger overhead of acquiring
and releasing the locks. To make matters worse, great care has to be taken that
locks acquired during interrupt service routines do not lead to deadlocks. This
can be a problem especially for operating system schedulers that are typically
invoked as a result of either blocking system calls or timer interrupts. As a result,
it is often difficult if not impossible to prove the correctness of algorithms that
use locks to achieve mutual exclusion, but whose correct operation is essential
to the reliability of an operating system.

The prevalent form of multitasking, preemptive multitasking, is based on
timer interrupts. Since interrupts can occur at any point in a user program, it is
necessary to save and restore the entire volatile state of the processor core while
handling the interrupt. This not only introduces an overhead but also ties an
implementation of the operating system kernel to a certain hardware platform.
As a result, operating systems supporting a wide range of hardware platforms
contain different implementations of hardware-dependent functionality for each
platform.

Our experience in porting our own kernel to different platforms has resulted
in the quest for developing a runtime kernel that is as simple yet parallel and
hardware-independent as possible. In this paper, we describe one part of this
experiment, the design and implementation of the task scheduler.

In order to avoid the difficulties associated with blocking synchronization
and interrupt-based preemptive multitasking, we have made the following two
guiding principles

– exclusively employ non-blocking algorithms and
– use implicit cooperative multitasking.

Several kernels exist that employ either one of the above principles [5,12,19,29],
but only the combination of non-blocking algorithms with cooperative multi-
tasking allows for certain optimizations and guarantees that render the imple-
mentation of a lock-free runtime and scheduler viable.
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In cooperative multitasking tasks relinquish control of the core voluntarily by
issuing a call to the scheduler. Some of the most obvious advantages are that task
switches only occur at well-known points in the program and are thus extremely
light-weight. In addition, a runtime based on cooperative multitasking can run
on hardware without any interrupt support which is an important property for
certain embedded systems. On top of all that, it improves portability of the code.
The main problem with cooperative multitasking is where to place the calls to
the scheduler. In order to keep the application code as portable as possible,
we have opted for implicit cooperative multitasking, that is, the calls to the
scheduler are inserted automatically by the compiler.

Non-blocking algorithms have been researched as an alternative to block-
ing synchronization since the early 1990s [14,19,21,28]. The general principle
of accessing shared data is not based on waiting for exclusive access but rather
relies on atomic test-and-set or fetch-and-add operations. It has been shown [6]
that compare-and-swap (CAS) is the most versatile and only necessary atomic
operation that needs to be provided by the underlying hardware. Lock-free pro-
gramming by itself is usually difficult to get right because it comes with its very
own set of shortcomings. Probably the most prominent problem is the so-called
ABA problem [15], a hidden update of a variable by one task that goes unde-
tected by a second task. The standard solutions, like hazard-pointers [22] or the
Repeat Offender Problem [9], suffers from a linear increase in execution time in
the number of threads accessing the data structure. This is obviously a serious
drawback for a lock-free scheduler. We show how the guarantees of cooperative
scheduling can be used to implement an unbounded and lock-free queue that
accesses hazard pointers in constant time.

Kernels of today’s operating systems such as Windows or Linux are heav-
ily optimized with respect to performance, which comes at the price of a high
complexity. But admittedly such systems also implement many more features.
For example, our runtime system does not support protection features such as
process isolation. These arguments make a comparison of our system with today’s
standard operating systems unfair in both directions. In order to still be able
to assess its performance, the cooperative scheduler based on lock-free program-
ming has been implemented and tested against schedulers of Windows Server
2008R2 and Linux operating systems. A wide range of microbenchmarks and
real-world application shows that the lock-free cooperative scheduler matches or
even outperforms the performance of these two state-of-the-art schedulers.

The remainder of this paper is organized as follows: Sect. 2 gives some back-
ground information and discusses related work. Section 3 describes our imple-
mentation of cooperative multitasking, and in Sect. 4 the design of our efficient
unbounded and lock-free queue and its application to the scheduler are dis-
cussed. Sections 5 and 6 describe the experimental setup and discuss the results.
Section 7 concludes the paper.
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2 Background and Related Work

Lock-free programming has been an active research topic since the early 1990s.
The prerequisite for lock-free programming is the availability of an atomic update
operation such as compare-and-swap (CAS). The CAS operation was introduced
with the IBM System 370 hardware architecture [15]. It atomically reads a shared
memory location, compares its contents with an expected value and replaces it
with another value if there was a match. Its return value is the original con-
tents of the shared memory location. This operation has been proved by Herlihy
to be universal, which implies that it can actually implement all other atomic
operations such as test-and-set or fetch-and-add [7]. Hwang and Briggs belong
to the earliest researchers who have presented non-blocking queues based on the
compare-and-swap operation [14]. Further examples include the works by Mellor-
Crummey [21], Herlihy [6,10], Massalin and Pu [19], and Valois [28]. Michael and
Scott also provide an algorithm and give a good overview and comparison with
existing implementations [23]. Their implementation draws ideas from the work
by Valois, is simple and one of the fastest to date. In contrast to others, their
lock-free queue is also practical because it explicitly allows empty queues and
concurrent dequeue and enqueue operations. In addition, it does not require a
double compare-and-swap instruction operating on two, potentially discontigu-
ous memory locations instead of a single one. This particular lock-free queue is
therefore very popular and adopted widely in the literature.

Lock-free queue implementations typically allocate memory during enqueue
operations. We find it surprising that memory allocations have always been
considered necessary in order to implement non-blocking synchronization
[5,8,9,23,28]. But the fact that memory has to be allocated for each synchroniza-
tion operation has never been considered an issue in itself. Applied to the task
scheduler, a memory allocation is clearly not desirable. Even more so, when it
triggers a full garbage collection run. While the Michael and Scott queue [23] sup-
ports explicit memory deallocation, it employs modification counters in order to
deal with the ABA or hidden-update problem [15]. The ABA problem describes
situations when a thread modifying a queue fails to recognize that its contents
has been changed temporarily. This often results in a corrupted linked list and
occurs with a high probability when nodes are reused heavily. In addition to the
ABA problem, there is also an issue when concurrent dequeue operations deal-
locate memory that is still referenced and about to be used by other operations.
Without any further precaution, any memory deallocation must be considered to
render memory references of contending processes invalid. These references are
generally known as hazard pointers, a term coined by Michael [22]. He invented
the methodology of hazard pointers in order to deal with the safe memory recla-
mation of lock-free objects in general. His idea was to provide for every par-
ticipating thread a list of those pointers which are about to be dereferenced
in non-blocking algorithms. The set of all hazard pointers is made accessible
to other threads in order to recognize if the reclamation of memory has to be
deferred because it is potentially still in use. We improve on Michel’s solution by
combining the guarantees provided by cooperative multitasking with lock-free
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queues. This enables us to store the hazard pointers with constant space- and
time-overhead in processor-local storage, thus rendering the task switch time
constant.

Using non-blocking algorithms and data structures for implementing multi-
processor operating systems has been investigated for over twenty years now.
Massalin and Pu were amongst the earliest to deliver a non-blocking imple-
mentation of an operating system kernel [19]. The kernel of their multiprocessor
operating system called Synthesis included support for threads and virtual mem-
ory as well as a file system. They showed that operating system kernels using
non-blocking synchronization are practical and achieve at least the same perfor-
mance as conventional systems. Similar conclusions have later been confirmed
many times, for example by Greenwald and Cheriton [5]. However, the imple-
mentations of the resulting non-blocking operating system kernels relied on an
atomic double compare-and-swap operation called DCAS. This operation is an
extended version of the more common single compare-and-swap operation known
as CAS that allows to atomically compare and exchange the values of two dis-
contiguous memory locations instead of one. Based on their results, the authors
argue that this operation in contrast to its simpler variant is sufficient for prac-
tical non-blocking operating systems. Unfortunately, the hardware support for
this particular operation is still very limited and most modern hardware archi-
tectures do not provide it at all. For portability reasons, in this work we rely
only on the single compare-and-swap operation in order to achieve the broadest
hardware support available.

There are several other implementations of non-blocking operating systems
that followed the very same approach. Hohmuth and Härtig for example focused
on non-blocking real-time systems by utilizing only the single compare-and-swap
operation in order to improve portability [12]. None of these approaches, however,
combine lock-free programming with the prevention of task switches during the
execution of a lock-free algorithm; only the combination of which allows the
implementation of constant time- and space-overhead scheduling queues.

3 Implicit Cooperative Multitasking

When it comes to multitasking, the designer of a scheduler has to decide how
tasks are preempted or have to relinquish their execution control respectively.
The available possibilities basically narrow down to choosing preemptive or coop-
erative multitasking. Our decision was against preemptive multitasking because
its implementation requires special hardware support in order to transfer the
control of execution from a task back to the scheduler. Usually, this form of
preemption is implemented using hardware interrupt handlers and is therefore
completely transparent to the preempted task. Generally speaking, interrupts
and external devices that trigger them, demand a deep understanding of the
underlying hardware architecture and are inherently not portable at all. When
cooperative multitasking is applied, the transfer of execution control is com-
pletely software driven and requires no special hardware support. Using this
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approach, we were able to write the scheduler in a high-level programming lan-
guage rendering its implementation completely portable across various hardware
architectures. Threads resemble user-level threads, or ‘Green threads’ known
from other runtime systems and can therefore run on top of other operating
systems.

Cooperative multitasking used to be prevalent in the design of most operat-
ing systems but has now been superseded to quite some extent. One reason is
that the integrity of the whole system depends on user-level tasks to actually
behave cooperatively. In practice, this requires programmers of applications to
periodically perform a call to the scheduler in order to give it a chance to pass the
execution control on to another task. Wrongly uncooperative or even malicious
code compromises the correctness of the whole system and has to be validated
carefully. It is hard to prove that arbitrary programs are indeed cooperative in
this respect even if their source code is available for inspection. In our case,
we only demand programmers to compile their code using our scheduler-aware
compiler such that we can employ what we call implicit cooperative multitasking.

3.1 Implicit Task Switches

Instead of requiring programmers to scatter several calls to the scheduler all over
their code, we use a modified compiler that generates these calls automatically
behind the scenes. This approach guarantees the cooperativeness of arbitrary
programs by instrumentalizing their binary code with automatically inserted
task switches into the translated machine code. Our approach is therefore highly
suitable for embedded systems because their whole code base including operating
system and application code is often built using a cross compiler anyway. Using
compiler-generated calls to the scheduler, the user code does not have to call the
scheduler explicitly and looks exactly the same as with preemptive multitasking.
All functions are therefore turned automatically into coroutines according to
Conway and Knuth [3].

Software instrumented instruction counters have been shown to provide a
bearable overhead [20]. So, in order to implement implicit task switches effi-
ciently, we modified our compiler to reserve a dedicated general-purpose register
which stores a pointer to the descriptor of the currently running task. This
descriptor contains a counter called the quantum, which specifies how long the
current task is allowed to run until the next task switch is necessary. In order
to stay portable and keep the check for a necessary task switch as small as pos-
sible, the compiler does not measure the time between two consecutive checks
but rather the amount of generated instructions. The actual duration of hard-
ware operations usually varies amongst different instructions and is obviously
machine-dependent. Counting the number of instructions has the advantage that
the result is always constant and statically known while translating the code.
This could provide a certain time-inaccuracy. But the counter granularity can
be specified to provide even very low scheduling latencies for a practical realtime
system. The quantum is therefore not related to actual execution time but rather
stores the number of instructions an activity is allowed to execute until the next
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cooperative task switch. Since the task switches are always synchronous, the
quantum can be chosen to be rather small and does not need to be time specific.

The compiler generates a special sequence of instructions at various places
in the machine code in order to update the quantum and call the scheduler
whenever this number reaches zero. The policy used to identify optimal places
for the insertion of these instructions is quite simple. For each procedure in the
code, the compiler keeps track of the number of instructions it generated so far.
Whenever this number exceeds an upper limit or there is a potential branch
backwards in the instruction sequence, the compiler decrements the quantum
by the number of instructions generated since the last implicit task switch. This
strategy is portable and can be applied to virtually any programming language.
It effectively handles all kinds of loops and even indirect recursions, if the task
switch is also inserted in the beginning of the procedure. However, the purpose
of the quantum is not to satisfy strict deadlines but rather to ensure that each
thread will eventually switch to another one.

An example of an implicitly generated instruction sequence of a task switch
check in-between ten instructions targeting the AMD64 hardware architecture [1]
looks as follows. Here, the dedicated general-purpose register is called rcx and
the check requires only three simple instructions.

sub [rcx + 88], 10 ; decrement quantum by 10

jge skip ; check if it is negative

call Switch ; perform task switch

skip:

If the decremented quantum is zero or below, the code notifies the scheduler
using a call to Switch. With the exception of the immediate value for the sub-
traction instruction, each instruction sequence looks the same and its impact on
performance and space overhead is in general marginal. In addition, the memory
access in the first instruction almost always results in a cache hit because this
sequence is performed quite regularly.

The idea of implicitly inserting calls to the task scheduler has been imple-
mented by many programming languages in the form of coroutines or variations
thereof [2,25]. Since these calls are always inserted in-between programming lan-
guage statements, they are in general as efficient as explicit synchronous task
switches. One advantage of this approach is that tasks or coroutines respec-
tively can be represented in a very light-weight fashion. Since the compiler is
in charge of when the control of execution is yielded, the amount of processor
state that has to be associated with the current task during a task switch can
be minimized. Most often, the processor state that must be restored after a task
switch is already covered by the underlying calling convention implemented by
the compiler. In the simplest case, the compiler temporarily stores the required
registers on the stack when calling a function and the remaining context informa-
tion consists only of the program counter and the stack pointers. In comparison,
preemptive multitasking can seldom determine the part of the processor state
that is actually in use, because the preemption can happen anytime during the
execution of the code. A preemptive scheduler has therefore to be prepared for
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Fig. 1. Algorithm for task switches

the worst case and consequently stores and restores the complete processor state.
In comparison to cooperative task switches, the cost for hardware preemption
might therefore be quite expensive.

The actual cost for a single task switch is shown in Fig. 1. The real code
of the scheduler is as compact as the pseudo-code given in this paper. It is
encompassed by an uncooperative statement block in order to ensure that the
compiler does not generate implicit task switches therein in order to prevent
unwanted recursion. This is similar to the “do not preempt” flag employed by
other schedulers such as in Sun Solaris [27].

In the beginning, the procedure makes use of two compiler-intrinsic functions
called GetActivity and GetFramePointer which allow to query the current
activity and the address of the current stack frame in a portable manner. In a
second step, it prepares the given activity for the task switch by resetting its
quantum to a default value and forwarding the index of the currently executing
processor and the procedure arguments. Dynamic scheduling adaptation features
like quantum stretching for example could be easily adopted by varying the
default value for each task. The actual task switch is performed in the last
step, where the context of the new activity is restored using the corresponding
intrinsic procedures SetActivity and SetFramePointer. The only context
information that is necessary to be restored in our case is the frame pointer,
since every other piece of information is already stored on the stack. As the
actual stack pointer and the program counter of the function caller are already
pushed on the stack by the compiler upon entering the function, it suffices to
store the address of the current stack activation frame. The stack pointer and
the program counter are finally restored by returning from the procedure which
pops the corresponding values from the stack automatically. Context switching
is therefore as cheap as a standard function call.

3.2 Task Switch Finalizers

Figure 2 shows the procedure Switch which is implicitly called by the compiler.
The scheduler currently supports a limited number of priorities and maintains
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Fig. 2. Algorithm for basic task scheduling

a global ready queue for each priority. Starting with the highest priority, the
scheduler tries to select a task from the corresponding ready queue. If there is a
task, the scheduler performs the actual switch to that task.

This simple scheduling mechanism is potentially executed on all processors at
the same time. As discussed in Sect. 4, our queue implementation is lock-free and
because of that, there is no need to protect this code from concurrent access.
However, there is a subtle problem whenever an actual task switch happens.
While a next task has already been selected and removed from a ready queue, the
currently executing task still has to be put on the corresponding queue in order
to be available for the subsequent task switch. If this is done prior to the actual
task switch, there might be a race condition concerning the task descriptor.
Another processor concurrently performing a task switch could remove the task
from the queue and switch to it. The first processor that is still in the progress
of task switching and the second one both operate in the context of the same
task with disastrous consequences.

The solution to this problem are task switch finalizers, which are function
pointers passed as argument to the Switch function. Task switch finalizers are
always executed by the resumed task by calling the FinalizeSwitch shown in
Fig. 3 after returning from the task switch but before continuing its interrupted
work. In this particular case, the task switch finalizer passed to the SwitchTo
function is called EnqueueSwitch as shown in Fig. 2. It basically just enqueues
the suspended task into the corresponding ready queue and resumes any idling
processor if necessary. Since this code is executed by the resumed task, it is now
safe to enqueue the suspended task into the ready queue.

This technique can be extended in order to allow arbitrary operations to be
executed on behalf of the previously executed task. The possibility of executing
code after a task switch happened provides a certain entanglement of processes
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Fig. 3. Algorithm of a the task switch finalizer

and is extremely useful in this context and probably unique to cooperative mul-
titasking. In addition, task switch finalizers are very important for implementing
synchronization primitives like mutexes and monitors. In these cases, a task is
not enqueued in a ready queue but rather in a queue associated with the primi-
tive in order to dequeue it again whenever the primitive gets signaled. However,
due to the non-blocking nature of their implementation, the condition why a
task got enqueued might already have changed in-between checking the con-
dition and enqueueing the task. Task switch finalizers allow to reevaluate this
condition a second time after inserting the task into the queue in order to prevent
lost wakeup calls. Task switch finalizers are represented as function pointers in
order to provide a generic framework for implementing arbitrary synchronization
primitives on top of our lock-free scheduler. They are not intended to be used
by the application programmer.

3.3 Protection and Usability

The discussed system does not support protection mechanisms such as process
isolation. We see and understand the point of protecting processes for general
purpose operating systems. But apart from the fact that our work was primarily
motivated by researcher’s curiosity, we have also evidence of the commercial need
for simple systems where process protection does not play the primary role. If
we had to implement process protection for our system, we would try to support
software isolated processes [13].

Porting our runtime system from one architecture to the next is very simple
by design. Moreover, the process model of the scheduler can be supported on
top of other operating systems where the offered threads play the role of virtual
processors for a native machine implementation. Therefore the restriction to use
the special compiler is, for such cases, only given on a per-application basis.

4 Unbounded Lock-Free Scheduler Queues

The several known implementations of unbounded lock-free FIFO queues, for
example [23,28], which have in common that they use separately allocated node
data structures to store the actually enqueued elements in a singly linked list. A
sentinel node at the beginning of the list eases the handling of empty queues.

Unbounded queues inevitably need to allocate new nodes to accommodate
newly enqueued elements. It is this handling of the nodes of newly enqueued
or dequeued elements that poses one of the major obstacles with unbounded



32 F. Negele et al.

lock-free queues. In a first approach, a new node is allocated every time a node
is enqueued and deallocated as soon as the element is removed from the queue.
The frequent allocations and deallocations constitute a significant overhead com-
pared to the relatively simple Enqueue and Dequeue operations. To reduce
the number of these clearly undesirable dynamic memory operations we have
investigated some form of node reuse. The reuse of nodes, however, triggers the
ABA problem.

4.1 The ABA Problem

The ABA problem describes a situation in lock-free algorithms where an update
of a value goes unnoticed by a thread which as a consequence corrupts the
lock-free data structure. Due to the explicit use of atomic operations for syn-
chronization it is impossible to protect an update of the data structure involving
several operations from concurrent access. Lock-free algorithms therefore first
query and store a value of the global data structure, for example the tail node of
a queue, and later compare the locally stored value with the global one to detect
modifications by another thread. If values are reused, the same value may appear
due to an operation on the data structure by another thread but go unnoticed
by the original contender. It is important to note that the ABA problem also
occurs when nodes are not explicitly reused because in a series of memory allo-
cations and deallocations with a bounded amount of memory it is impossible to
guarantee that all allocations return different starting addresses.

The ABA problem can be solved by using a double-word compare-and-swap
(DCAS) operation which can atomically access and modify to separate values.
The DCAS operation can be used to pair values with a version counter that
is incremented with every modification of the value [18]. The limited support
of DCAS on contemporary hardware limits the applicability of this solution.
We would like to mention that employing pointer tagging is of limited value,
particularly in a scheduler with a high traffic on queues. Even a significant
number of bits for tagging does not solve the problem, not in theory and even
not in practice as experiments revealed to us. We employ a different approach
known as hazard pointers.

4.2 Hazard Pointers

Without any further precaution, any memory deallocation must be considered to
render memory references of contending processes invalid. These references are
generally known as hazard pointers [22]. If deallocated memory is reclaimed too
early, any subsequent dereferencing of pointers to this memory region is unsafe
and therefore called hazardous. Hazard pointers store the references of nodes
that are about to be accessed by a thread; per thread up to two hazard pointers
are required for the implementation of our queue. Hazard pointers solve the ABA
problem but suffer from two problems: first, hazard pointers are associated with
the thread accessing the lock-free queue and typically allocated in thread-local
storage. Before deallocating a node, each thread must thus access and search
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the hazard pointers stored in the thread-local storage of other threads which is
against all principles of distributed and parallel programming. Second, the space-
and time-overhead of comparing all hazard pointers is linear in the number of
participating threads. In the context of a task scheduler this is clearly not ideal:
the more threads are active the longer the Enqueue and Dequeue operations
during a task switch will take. Our contribution here is to make use of the
guarantees provided by cooperative multitasking. By not releasing control of the
processor core during context switches, the maximum number of active threads
executing a task switch is bounded by the number of cores. We can thus associate
the hazard pointers with the cores instead of the threads, thereby achieving
a constant space- and time-overhead to search through the hazard pointers,
independent of the number of currently active threads. In addition, this also
allows us to store the hazard pointers in processor-local storage, thus eliminating
the need for threads to access other threads’ local storage.

4.3 Implementation

The basic data structure of a concurrent and unbounded lock-free queue is pre-
sented in Fig. 4. The queue is implemented using a linked list of nodes. The very
first node is called the head and is always a dummy element whose sole purpose
is to unify the operations on empty and non-empty lists. tail always references
the last node in the list or one of its predecessors. This reference is intentionally
allowed to lag behind because queue operations potentially modify head and tail
nodes at the same time which cannot be done simultaneously using independent
CAS operations.

The actual data of an element is represented by extensions of a separate
data structure called Item. Users can enqueue elements of arbitrary values by
extending this base type and using instantiations thereof as arguments for the
corresponding procedure. An item is assumed to be either owned by the user or
the queue and may not be enqueued twice.

The global data structure processors stores the hazard pointers and two
pooled nodes that are used to hold references to nodes that are not an element of
any queue at the moment and may be reused by any processor. The guarantees
of the cooperative scheduler (no context switches within an uncooperative block)
limits the number of threads accessing the queue concurrently to N , the number
of processors. The index of the processor core the contending thread is running
on is used as the index into the processors array. This constant-size global
data structure simplifies the process of searching for hazard pointers and also
yields constant-time complexity when searching for hazardous references.

Figure 5 shows the operations Acquire and Release which query the set
of all hazard pointers in order to safely reuse pooled nodes from the global
processors array. As for all subsequent operations, the assumption is that
the corresponding code is executed without any intervening task switches as
indicated by the uncooperative statement block in lines 2 and 16 for example.
The Acquire operation checks if a node associated with an item is hazardous by
comparing it against the complete set of hazard pointers. This operation returns
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Fig. 4. Data structures and global variables of a lock-free queue for a system with N
processors

either the same node if it is safe to be reused or it returns a pooled node if
the latter is still potentially used by another processor. A return value of null
indicates that there is no node available for reuse. Because the resulting node
could be referenced by another processor, the reference has to be rechecked for all
remaining processors. Acquire must only be called for items that are owned by
the calling process; the item and its associated node are therefore not part of any
other queue. A potentially hazardous node is atomically exchanged against the
value of the pooled node that corresponds to the hazard pointer of the processor
in question. The set of pooled nodes always contains pairwise different entries,
and because the node in question is also different from all pool entries there is at
least one more node than nodes referenced by hazard pointers. As a consequence
at most N exchanges are required until a node is found that is not referenced
by any hazard pointer, that is, the loop always terminates in constant time
and renders the whole operation wait-free. The Release operation is called by
users of the queue to deallocate an item. This operation simply reclaims either
the node associated with the item or a previously pooled one if the former is
hazardous. Release calls Acquire and contains no loops; it is therefore also
wait-free.

The lock-free Enqueue and Dequeue operations are shown in Fig. 6. The
code is similar to the implementations of Valois [28] and Michael and Scott
[22,23]. Lines 3–5 enable node reuse, and the handling of hazard pointers as
described by Michael [22] are implemented by lines 9–12, 18, 23–30, 32–33, and
38–39. As stated above, in the absence of context switches during execution of
these operations the ID of the currently executing processor core can be used



Combining Lock-Free Programming with Implicit Cooperative Multitasking 35

Fig. 5. Wait-free acquire and release procedures for safe node reuse

as an index into the global processors array. In addition, since each processor
core accesses only its own elements in the global array, the hazard pointers do
not have to be modified using atomic operations.

Another contribution regarding these algorithms is the improved handling of
retired nodes at the end of the Dequeue operation. Michael adds all retired nodes
into a thread-local list which is scanned for candidates to be reclaimed every once
in a while. We associate the retired node with the item that is returned by the
Dequeue operation. In case this item is appended to the same or another queue,
the Enqueue operation will first try to reuse the node by calling the Acquire
operation on the item. The node is therefore guaranteed to be reused and the
algorithm does not need to acquire more nodes than items in the queues. As
a consequence, the sum of all allocated nodes is bounded by the number of all
elements in all used queues plus 2N nodes which are potentially pooled.

4.4 Use in the Scheduler

The unbounded lock-free queue as shown in this section is used by the coopera-
tive scheduler. A thread is implemented as an extension of a queue Item. When
a new thread is created, a queue Node is allocated along with the task control
structure. During a task switch, the currently executing thread is enqueued in
a queue and another one is dequeued. Our approach ensures that this operation
is fast and only in exceptional cases needs to allocate a new node, namely in the
unlikely event that all pooled nodes are currently hazardous. As shown above,
the number of additionally allocated nodes is limited to 2N . These additional
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Fig. 6. Lock-free enqueue and dequeue operations with hazard pointers and node reuse

nodes are accumulated over the course of the whole runtime of the scheduler and
their allocation overhead is therefore compensated.

The total number of allocated nodes is thus at least T and at most T + 2N
where T and N denote the number of active threads and the number of available
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processor cores, respectively. In other words, the presented scheduler ensures that
the number of allocations does not depend on the number of task switches.

In the current implementation, no private run queues with load-balancing is
used. All threads are stored in a number of global scheduler queues to provide
several levels of priority. Scheduling of ready-to-run threads of identical priority
is performed in a round robin fashion.

5 Performance Metrics and Experimental Setup

The unbounded lock-free scheduler only constitutes one part of a lock-free run-
time that also features a lock-free garbage collector. Our main motivation for
the lock-free runtime is to avoid the difficulties associated with blocking synchro-
nization and interrupt-based preemptive multitasking. We therefore compare the
scheduler and its supporting routines in terms of simplicity and portability. Sim-
plicity and portability are not exact measures, and at the end of the day, raw
performance still matters.

Although our work is designed to be portable across several hardware archi-
tectures, we do not intend to contrast its performance on different architectures.
There are several mechanisms like caching, branch prediction, and out-of-order
execution that increase the performance but are typically implemented directly
in hardware and are therefore completely transparent to the programmer [4].
Even though they do speed up the execution of code in general, they often ren-
der the performance of processors as well as code non-deterministic at the same
time. In order to be able to minimize their effect and to concentrate on the per-
formance of the actual code, we conducted all of our experiments on identical
hardware. However, this approach makes it difficult to reason about the absolute
execution time of our algorithms in general and to compare it to performance
numbers presented in other work. Instead, our focus is on relating our work to
existing solutions when executed under high contention.

All our experiments to measure performance have been conducted on an x86
machine running with 128 GB main memory and four AMD Opteron 6380 G34
processors each featuring 16 cores and running in 64-bit mode at 2.5 GHz. This
setup provides a total of 64 logical processors and allows us to evaluate and
compare the performance of our system under high contention. Time is provided
by a built-in high precision hardware timer which has an accuracy of at least
10 MHz.

The experiments consist of several concurrent programs designed to let us
compare the performance of the schedulers and synchronization primitives under
heavy load. We conducted each experiment on three different 64-bit platforms,
namely Windows Server 2008 R2, a Linux based system with kernel version
2.6.32, and our native runtime that employs our lock-free scheduler. All pro-
grams have been compiled using the same compiler in order to execute the same
machine code on each platform. If not stated otherwise, the only difference of the
generated machine code lies within the libraries used to create and synchronize
threads. On Windows we use the API functions for creating threads and critical
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sections whereas on Linux we call the PThreads library with the correspond-
ing functions. On our native kernel we use the corresponding synchronization
primitives provided by our lock-free scheduler.

The benchmarks comprise of micro-benchmarks and real-world programs.
The micro-benchmarks are crafted after other benchmarks used in related
work [16,17,26]. The micro-benchmarks measure the time to create a certain
number of threads, the overhead of a context switch, and local and global lock-
ing performance.

The real-world applications were taken from an existing test suite for concur-
rent programs [2]. The benchmarks include of the following full-blown programs:
[16,17,26].

City. A simulation of a city that has N houses. Each house has its own thread
that continuously consumes K units of electricity from a power plant and K
units of water from a river. The power plant is a concurrent thread which can
store up to C units of energy produced from water.

Eratosthenes. This programs employs the Sieve of Eratosthenes in order to
computes all prime numbers within the range 1..N . Each sieve is a concurrent
thread that removes the multiples of one prime number.

Mandelbrot. This program computes Mandelbrot fractal in parallel by parti-
tioning a plane of C points into N parts. The number of iterations per point
is limited by K.

Matrix. This program distributes the multiplication of a matrix with size N to
a set of M threads which all run in parallel and are not dependent on each
other.

News. A simulation of a broadcasting agency having N customers and M
reporters. Each reporter publishes K different news messages which are read
concurrently by all customers.

ProducerConsumer. A simulation of N pairs of producers and consumers
which all use a single global buffer of size C in order to exchange K messages
in total.

TokenRing. This program simulates a game with N players designed as con-
current thread which pass a token K times around.

6 Experimental Results

We compare our cooperative scheduler against two state-of-the-art contenders on
shared-memory multiprocessors, namely the Linux and Windows Server operat-
ing systems. In all graphs and tables, Native refers to our cooperative runtime,
and Linux and Windows refer to the respective server operating systems.

Microbenchmarks. The first microbenchmark measures the time required to
create, schedule, and destroy a thread for the three platforms. The benchmark
creates between one and 10’000’000 threads consisting of an empty thread body.
The effect is that the threads are created, enqueued in the scheduler queue, ter-
minated when scheduled for the first time, and then destructed. The benchmark
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ends when the last thread has been stopped. Figure 7 shows the average time
per thread for the three systems. Thanks to the extremely light-weight imple-
mentation of threads, the lock-free runtime clearly outperforms the other two
operating systems. The figure also reveals that our runtime manages to create
up to 10 million threads without a significant performance degradation, while
the benchmark fails for Linux (at 100’000) and Windows (at 1’000’000 threads).
The fact that our runtime can manage much more threads than Linux and Win-
dows is due to the usage of micro stacks with a granularity finer than a page
size.
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Figure 8 shows the average time required to complete a context switch for
Native and Linux. In this benchmark, the compiler generates no implicit calls
to the scheduler. Instead, the threads contain a loop that consists only of an
explicit call to the scheduler. We observe that Native preforms much worse
than Linux. Since the lock-free scheduler contains only global ready queues for
the threads, the contention on the queue caused by the atomic CAS operations
of the lock-free algorithm is severe. Note, however, that the context switching
time quickly stabilizes and then remains constant.
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In Fig. 9, the performance of local and global locks is shown. In the former
case, each thread repeatedly locks and unlocks a dedicated lock. In the latter
case, all threads compete to lock and unlock the same lock. The local lock bench-
mark reveals that – while the differences are minimal – our runtime implements
the most efficient locks; this may be thanks to less sophisticated book-keeping
and statistics. In the global lock benchmark on the other hand, the relative cost
per lock in our runtime system increases which we attribute to the high memory
contention surrounding the shared lock.

Real-world applications. A matrix multiplication benchmark is used to
measure speedup in dependence of the number of threads (Fig. 10(a)). The
matrix multiplication is not optimized for good cache performance; the indi-
vidual threads each compute one or several, but separate rows of the result
matrix. In this benchmark, we compare Linux and Windows against our run-
time system. All platforms show the typical close-to-linear speedup until all
logical cores are fully utilized. For slightly more threads than available cores,
we observe that the relative speedup drops. This is caused by the compar-
atively long scheduling epochs or, in other words, uneven progress of the
threads. As soon as more threads are available, the amount of work per
thread is reduced and the speedup recovers. The absolute total run-time of
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the matrix multiplication for the different platforms is shown in Fig. 10(b).
We observe that at one thread the differences between the platforms are the
most significant, ranging from 12.5 s (Linux) to 14.7 s (Native). This is caused
by the different initialization of the memory system. Our native runtime does not
enable any special performance enhancing measures; Linux seems most mature
in this respect. The overall difference between our system and the best perform-
ing system, Linux in this case, is caused by the overhead of the check of the
quantum and call to the scheduler inserted by our compiler. The compiler does
not (yet) contain any optimizations; we expect that gap to vanish almost com-
pletely with an optimizing compiler. With more threads, this overhead becomes
less of an issue since the limiting factor is not the raw computational power but
the memory system.

Table 1. Runtime comparison between the cooperative lock-free scheduler, denoted
Native, and the Linux and Windows kernels.

Benchmark Native Linux Windows

City (N = 1000, K = 10, C = 100) 61 ms 63ms 138ms

Eratosthenes (N = 10000) 3’629 ms 4’750ms 6’347 ms

Mandelbrot (N = 100, C = 2000, K = 5000) 4’066 ms 5’287ms 5’040 ms

News (N = 1000, M = 10, K = 10) 1’260 ms 374ms 280ms

Producer (N = 1, C = 10, K = 10000) 1’382 ms 269ms 225ms

Producer (N = 64, C = 10, K = 10000) 54’495 ms 105’08 6 ms 31’032 ms

Token Ring (N = 1000, K = 1000) 4’506 ms 15’672ms 8’759 ms

Table 1, finally, compares the runtime of various real-world benchmarks on
the different platforms. City perform comparably on Linux and our system but



42 F. Negele et al.

runs twice as long on Windows. Eratosthenes and Mandelbrot show a similar
result in favor of our runtime system. News contains a tight innermost loop
and suffers from the overhead of the implicit calls to the cooperative scheduler.
Also here we expect the performance gap to be reduced with an optimizing
compiler. In the case of Producer with N = 1, only one thread locks the shared
resource. Linux and Windows seem to detect and optimize for this case whereas
our runtime is not optimized. Producer (N = 64), and Token Ring are very
lock-intensive; the fast locks and light-weight thread implementation provides a
significant advantage in comparison to Linux.

Overall, the results from microbenchmarks and real-world applications show
that the lock-free cooperative scheduler and its runtime perform surprisingly well
over a wide range of performance measures compared to Linux and Windows;
and this despite (or thanks to) its simple design.

7 Conclusion and Future Work

In this paper we demonstrated that implicit, compiler-supported cooperative
multitasking can be ideally combined with lock-free programming in order to
implement a lightweight, efficient lock-free scheduler. Our key contributions are

1. The observation that the number of processes executing in uncooperative
blocks is limited by the number of cores. This implies that thread-local storage
conventionally used for storing hazard-pointers can be replaced by processor-
local storage, making a highly efficient solution of the ABA problem feasible.

2. A very efficient implementation of a lock-free queue with node-reuse.
3. The newly introduced task switch finalizers: task switch finalizers are an ele-

gant way to deal in a scheduler with the omnipresent challenge of lock-free
programming, namely the fact that in principle at any point in time one
process can invalidate the data of another.

4. The design and implementation of a simple, lightweight, reliable and portable
scheduler.

We compared our implementation of the runtime kernel with that of two con-
temporary general purpose operating systems. A qualitative comparison, code
complexity measured in lines of code, indicates the extreme simplicity of the
discussed scheduler in comparison to other approaches.

Runtime comparisons of real-world programs and Micro-benchmarks showed
overall comparable performance for the three systems. The lock-free scheduler
outperforms partially where expected, namely for thread creation time and lock-
ing. The relatively poor result with regards to context switch times can be
explained with the very frequent use of locking instructions.

Of course our approach has not only advantages. Cooperative scheduling
comes with the price that a special compiler has to be used or a compiler has
to be adapted in order to support the implicit scheduling. Moreover, there is
computing time wasted for something that can in principle be done in hardware.
However, we could not really observe a considerable overhead by the quantum
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checking code. In any case this could be improved by compiler optimizations
and a proper register allocator. All significant overheads that we observed could
basically explained with heavy use of locking instructions. Ideally, dedicated
hardware would support cooperative multitasking with a managed instruction
counter and a procedure that would be called when the counter reaches zero.
Quite similar to timer interrupts but only at defined points in the code in order
to support synchronous behavior.

Beyond the scope of this paper are our lock-free implementation of remaining
features of a complete runtime kernel including process synchronization features
such as mutexes, semaphores and monitors and a garbage collector.

The compiler used for this work was written from scratch and does not yet
contain an optimizing phase. The compiler could be equipped with optimizations
that remove a considerable portion of the quantum checks, making the sched-
uler coarser grained overall. At the moment tiny loops imply a huge number of
quantum checks that could so be avoided.

The biggest obstacle for an efficient implementation of lock-free data struc-
tures is the CAS instruction that has to be executed at each access to a shared
data structure. Such locked operations are known for their slowness due to the
cross-core synchronization, already with a limited number of cores. Usage of
such operations is thus particularly prohibitive in a scheduler when extremely
short context switching times are pursued. Therefore it would be interesting to
adopt processor-local ready queues for the scheduler and perform – lock-free –
load balancing between cores only now and then. A dramatic speed increase in
particular for context switches is expected.
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Abstract. Many-core chips are especially attractive for data center
operators providing cloud computing service models. With the advance
of many-core chips in such environments energy-conscious scheduling of
independent processes or operating systems (OSes) is gaining impor-
tance. An important research question is how the scheduler of such a
system should assign the cores to the OSes in order to achieve a better
energy utilization. In this paper, we demonstrate that many-core chips
offer new opportunities for extremely light-weight migration of indepen-
dent processes (or OSes) running bare-metal on the many-core chip. We
then show how this intra-chip migration can be utilized to achieve a bet-
ter performance per watt ratio by implementing a hierarchical power-
management scheme on top of dynamic voltage and frequency scaling
(DVFS). We have implemented and tested the proposed techniques on
the Intel Single Chip Cloud Computer (SCC). Combining migration with
DVFS we achieve, on average, a 25–35% better performance per watt
over a DVFS-only solution.

Keywords: Scheduling · Process migration · DVFS · Performance per
watt

1 Introduction

The recent trend to integrate more and more cores onto a single chip, so called
chip multiprocessors or CMPs [2,19], has led to chip-level power and thermal
constraints becoming one of the primary design constraints and performance
limiters [1]. A higher power consumption not only leads to increased energy cost
but the higher die temperatures adversely affect chip reliability and lifetime.

Dynamic voltage and frequency scaling (DVFS) allows to lower the operat-
ing voltage and frequency of a core to meet its required performance. For cur-
rent multi-core systems, each core can be controlled individually, however, for
CMPs the required logic for individually controlling the voltage and frequency
for each core is becoming too costly [12]. Cores are logically clustered into volt-
age and frequency domains that share a common setting [8,21]. Researchers
have proposed numerous techniques for individually-controllable and clustered
cores [4,5,10,20].
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With the ongoing server consolidation, an ever increasing number of cores
per chip, and the overhead associated with maintaining a coherent global shared
memory, it is more and more common to run several completely independent
(sequential or parallel) applications alongside each other on the same physical
many-core chip without a common underlying OS [3]. Instead, the independent
OSes or applications have full control over the assigned hardware resources and
are responsible for scheduling the work on the assigned cores and managing the
allocated physical memory. Hosting providers, for example, providing access to
bare-metal hosts can execute independent OSes on the different physical cores
of a CMP. Existing power management solutions for CMPs are built for a single
operating system kernel managing all running (groups of) tasks. To the best
of our knowledge, no solutions for CMPs running independent OSes have been
proposed.

In this paper, we propose an extremely light-weight OS migration method
for independent OSes running on CMPs and show that the scheduler can exploit
this OS migration to significantly increase the effectiveness of DVFS policies
for CMPs. We have implemented an energy-aware scheduler exploiting light-
weight OS migration in the Linux operating system running on the Intel Single-
chip Cloud Computer (SCC) [9]. Compared to a state-of-the-art hierarchical
power management with DVFS but no OS migration [10], the proposed app-
roach achieves 25–35% better performance per watt ratio over a wide range of
workloads.

The remainder of this paper is organized as follows: Sect. 2 presents related
work. Section 3 introduces the many-core architecture. Section 4 describes the
implementation of the light-weight OS migration in detail. In Sect. 5, the inte-
gration of OS migration into an energy-aware scheduler with hierarchical power
management for many-core chips is discussed. Section 6 presents the experimen-
tal setup, and Sect. 7 discusses the experimental results. Section 8, finally, con-
cludes the paper.

2 Related Work

There is a significant amount of work focusing on the design and implementation
of power management techniques for CMPs. Our focus lies on independent OSes
executing directly on the hardware in a space-shared manner on the CMP and
on exploiting the hardware capabilities of existing and future many-core systems
with regard to coarse-grained voltage and/or frequency domains.

One line of related work considers heterogeneous CMP designs in order to
consume less power with no or minimal performance loss. Kumar et al. [13]
propose heterogeneous CMPs composed of cores supporting the identical ISA
but consuming more or less energy depending on the core architecture. Ghiasi [7]
proposes CMPs with cores executing at different frequencies. Both works show
that such systems offer improved power consumption and thermal management.
Our work differs in that our approach modifies the voltage/frequency of cores
dynamically, without being bound to certain hardware heterogeneity.
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Another line of research has focused on exploiting idle periods. Meisner et al.
propose PowerNap [16] and DreamWeaver [17]. Both assume hardware support
for quick transitions between on- and off-states; the latter work batches wake-up
events to increase the sleep periods. Our work is orthogonal to such approaches,
with one limitation: applying DVFS may lead to a longer execution time which
in turn reduces the potential to sleep.

A number of researchers have proposed heterogeneous power management
techniques for CMPs [5,10,11,14,15,18,20]. Li et al. [14] provide an analytical
model and experiments to show to what extent parallel applications can be par-
allelized given a power-budget. Isci et al. [11] apply different DVFS policies under
a given power budget and show that their best policy performs almost as good
as an oracle policy having limited knowledge of the future. Meng et al. [18] pro-
poses an adaptive power saving strategy that adheres to a global chip-wide power
budget through run-time adaptation of configurable processor cores. Rangan
et al. [20] propose ThreadMotion, a technique that moves threads around in
order to improve power consumption. Their approach requires hardware sup-
port to quickly move threads from one core to another. Our approach is similar,
but can be implemented on available CMPs without extra hardware support. Cai
et al. [5] propose to identify critical threads by measuring the slack of threads at
fork-join barriers; non-critical threads can then be executed at reduced speed. In
our work, we focus on independent OSes as opposed to threads within parallel
applications. Ma et al. [15] propose a scalable solution aiming at a mixed group
of single-threaded and multi-threaded applications. Unlike our approach with
is best-effort, they aim at minimal performance reduction while maintaining a
global power budget.

The work most closely related to ours is a hierarchical power manager for
the Intel SCC presented by Ioannou et al. [10]. We show that by adding OS
migration a significantly improved performance/watt ratio can be achieved.

3 Many-Core Architectures

Many-core architectures exhibit a number of typical characteristics [22] in order
to effectively manage and utilize the large number of cores. In particular, many-
core architectures feature an interconnection network to enable on-chip com-
munication between the cores. This network is also employed when accessing
shared resources such as memory. Atomic operations are provided to enable effi-
cient synchronization of multiple cores.

The technique described in this paper does not require any special hard-
ware support and is thus in principle applicable to any many-core architecture.
We provide a working implementation on Intel’s Single-Chip-Cloud Computer
(SCC) [9] as a proof of concept. We leverage the SCC’s two-level address transla-
tion (see next section) to implement zero-copy OS migration, but the same effect
can be achieved – although with some additional overhead – by directly modify-
ing a core’s memory translation tables. The remainder of this section describes
the architecture of the Intel SCC in more detail.
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3.1 The Intel Single-Chip Cloud Computer

Architecture Overview. The Intel SCC is a concept vehicle created by Intel
Labs as a platform for many-core research. It consists of 48 independent cores
interconnected by a routed network-on-chip (NoC). The cores are Intel P54C
Pentium R© cores with bigger L1 caches (16 KB) and additional support for
managing the on-chip scratchpad memory, the so-called message passing buffer
(MPB). The Intel SCC provides no cache coherence for the core-local L1 and
L2 caches. Always two cores are grouped together to form a tile; the 24 tiles are
organized on a 6 by 4 grid. Four memory controllers in the four corners of the
chip provide access to up to 64 GBs of memory. A system FPGA provides the
interface between the CMP and the management-console PC (MCPC). Figure 1
shows the SCC block diagram. For better readability, not all cores are shown.

Memory Addressing. Each core provides the standard virtual-physical mem-
ory translation; all addresses leaving the core are 32-bit physical addresses. 32-bit
addresses are not wide enough to address the entire 64-GB address range; to
allow access to a total of 4 GB of memory located somewhere in the SCC’s 64
GB address space, an additional address translation takes place.

The address translation from core (physical) addresses to system addresses
is provided by a core-local lookup table (LUT). Each LUT has 256 entries and is
indexed by the top eight bits of the 32-bit core address. Without going into much
detail, a LUT entry contains an 8-bit destination ID destID designating one of
the four memory controllers (MC), and 10 address bits that are prepended to the
remaining 24 bits of the core address to form a 34-bit address. One LUT entry
thus maps 16 GB of memory. Together with the memory controller designation,
this translation allows to access the entire 64 GB memory space of the SCC.

Fig. 1. Intel SCC block diagram
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Fig. 2. Voltage and clock domains on the Intel SCC

DVFS Capabilities. The SCC provides voltage and frequency control over the
cores and the NoC. The frequency can be controlled per tile, that is, the two
cores located on the same time always run at the same frequency and constitute
a clock domain (CD). The voltage can be regulated for a group of four tiles, i.e.,
a voltage domain (VD) comprises a total of eight cores. Figure 2 illustrates the
clock and voltage domains on the SCC. Voltage domains 2 and 6 are not shown
in the figure; they are logically the same and regulate the NoC and the system
interface.

Voltage and frequency are controlled and queried through registers. Each tile
has specific registers to set/read the tile’s frequency; voltage changes are simi-
larly controlled through a register interface. Frequency changes happen almost
immediately, however, measurements on the SCC revealed that voltage changes
may take up to 100ms to complete (this value was obtained by comparing the
progress of two cores, one control core running on a unchanged voltage domain,
and one running on the domain whose voltage was changed). In addition, volt-
age change requests can only affect a single domain; requests for several domains
must be serialized.

The SCC supports seven different supply voltage levels, however, only four
are of practical interest: 1.1V to run at a frequency of 800 MHz, 0.9V to run
at 533 MHz, 0.8V for 400 MHz, and 0.7V for frequencies below 400 MHz. The
frequency is set by writing a divisor between 2 and 16 for the 1600 MHz clock
resulting in core frequencies from 800 to 100 MHz.

Power Measurement. The SCC provides a number of voltage and ampere
meters on-board. The total power consumed by the SCC chip is obtained by
multiplying the (constant) supply voltage with the supply current for the entire
SCC chip. The power consumption of individual voltage domains cannot be
computed because only the per-domain supply voltage is available but not the
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current consumed by the domain. We thus always report the total chip power in
our experiments in Sect. 7.

The sensors and meters can be read by the management console via telnet
from the system FPGA or by directly querying the system FPGA from a core
in the SCC. We chose the latter approach because of its comparatively low
overhead.

4 Zero-Copy OS Migration

In order to optimize the execution of workloads on a CMP towards a specific
goal, the scheduler is often required to move workloads from one core to another.
Such goals include but are not limited to even heat dissipation and adherence to
a given power budget. In the first case, busy and idle workloads are distributed
evenly over the cores of the CMP to even out the sources of the heat generation.
The second case is motivated by the need to cluster workloads with similar per-
formance requirements in voltage and/or frequency domains to achieve optimal
results when applying DVFS.

A workload in this context can refer to anything from a thread of a par-
allel application to an entire operating system running exclusively on a core.
Clustering threads or processes in the presence of an operating system with
shared memory amounts to re-scheduling them on a different core is straight-
forward. For applications exhibiting periodic behavior and fork-join parallel pro-
grams, special techniques allow accurate estimation of the expected performance
requirements and thus more aggressive DVFS policies [10,15,20].

For independent programs (such as a Linux kernel) running bare-metal on
the assigned cores, migration is not trivial. In this section, we describe the tech-
nical details on how such kernels can be migrated from one core to another, the
scheduler’s migration policies are discussed in the section on power management
(Sect. 5).

4.1 Cooperative vs. Transparent Guest OS Migration

Moving an OS from one physical core to another can be implemented with or
without cooperation of the migrated OS. In a co-operative setting, the OS enters
a safe state in which it is moved to the newly assigned core and then resumed.
The OS itself takes care of changed memory mappings and the like. Transparent
OS migration, on the other hand, happens without any interaction or knowledge
of the migrated OS.

The main caveat is how to deal with the volatile state, i.e., the assigned
memory of the workload and values currently held in registers inside the CPU
core. If the CMP implements a global shared address space, the assigned mem-
ory does not have to be moved physically; the same physical addresses are still
valid on the new core. Since such designs cannot provide total isolation of inde-
pendently running workloads, CMPs often implement an additional step in the
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memory translation process from physical to system addresses. The physical-to-
system address translation operates in almost the same way virtual-to-physical
translation works: instead of per-process page tables, the CMP provides per-core
translation tables indexed by the higher part of the core address (see Sect. 3.1).
We exploit this additional translation step to realize an extremely light-weight
migration of OSes.

The volatile state of the OS also includes the data values kept in the registers
of the CPU core. Similar to a preemptive task switch, these register values need
to be saved on the source core and restored on the destination core. If the
CMP provides the means to read and write the register file of physical cores,
migration can be implemented without any cooperation from the migrated OS.
To this day, however, no many-core chip we are aware of provides such a feature.
As a consequence, a minimal amount of cooperation from the OS is necessary.

The following sections describe the necessary steps and the implementation
on the SCC in more detail.

4.2 Migration Steps

In the proposed implementation, zero-copy OS migration is orchestrated by a
migration manager that is part of the global scheduler. The steps are illustrated
in Fig. 3. It reveals that migration is, in fact, rather a circular swap of two (or
more) OSes rather than a unidirectional migration from one core to another.
Since we require a minimal amount of cooperation from all involved cores, we
assume that a cooperative OS runs on all (including the currently unused) cores.
The migration signal is sent by the migration manager in form of an interrupt
to the affected cores. This interrupt is handled by the cooperative OS’ interrupt
handler which saves the necessary registers into a per-core designated memory
area. After all registers have been saved, the affected cores signal completion to
the migration manager and completely flush their caches. The migration manager

 

 

 

 

 

 

Fig. 3. OS migration steps
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then stops all cores involved in the migration by gating their clock, and swaps the
cores’ register values and the memory mappings. Next, the migration manager
signals completion of the migration by resuming the clock on the migrated cores.
The cores proceed by restoring the (new) register values from memory, exit
the interrupt handler and resume operation. In addition, all cores, including
the MCPC need to update internal network routing tables to reflect the new
locations of the cores (see Sect. 4.4 below).

4.3 Migrating Volatile State

The migrated cores save/restore register values to a designated memory area in
a custom interrupt handler. In principle, exactly the same registers need to be
saved/restored as when performing a context switch in a preemptive multitasking
system. After saving the registers, the migrated cores flush all caches and enter
a busy loop. It is impossible to flush a core’s cache externally; as a consequence
the code of the busy loop will reside in a migrated core’s instruction cache. In
addition, it is impossible to set the program counter immediately after resuming
the clock since we do not know what instruction of the busy loop the core
was executing when the clock was gated. However, we can ignore this technical
difficulty by assuring that the busy loop, including the code to save and restore
the registers, is located at identical virtual addresses on all migrated cores. Since
we currently only use a modified version of the sccLinux OS, this condition
is always met. If several different OSes are involved in migration, it may be
necessary to turn off virtual-to-physical memory translation temporarily and
re-enable it once the new page table base register has been set.

4.4 Networking

Cores on a CMP communicate with other cores through the NoC. IP addresses
are translated to the destination core’s x/y coordinates on the grid in the data
link layer of the network stack. Migrated OSes keep their IP addresses, hence
additional steps are necessary to update the IP to link-layer translation tables
in all cores on the chip.

On the SCC, two separate networks exist: one network for on-chip network-
ing, and a subnet for communication with the MCPC. Data packets sent on-chip
from one core to another are first stored in the MPB (see Sect. 3.1) on the sender
side. The sender then signals the receiver with an interrupt, and the receiver
fetches the message data directly from the sender’s buffer. For migrated cores
the location of their MPB remains unchanged; storing/retrieving network pack-
ets from the buffer is thus unaffected by migration. However, the target core of a
network interrupt is identified by its physical core ID which corresponds to the
x/y-coordinates of the core on the grid. In the original sccLinux the interrupt
target ID is computed from the core ID. In order to support migration, a table
containing the IP-to-coreID mappings is added and kept up-to-date by each core.
After each migration, the migration manager thus notifies all cores about the
changes to the IP-to-coreID mapping table.
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A very similar data structure is maintained by the MCPC to route data pack-
ets from external sources to each of the individual cores. The migration manager
notifies the MCPC through the system interface about migrations taking place
such that the MCPC can keep an up-to-date list of IP-to-coreIDs.

These two simple modifications are enough to keep networking, including
open connections, alive across migrations. DMA is not supported, and no other
devices exist on the SCC; input/output, including access to permanent storage,
are routed through the network.

5 Hierarchical Power Management

In order to remain scalable, power management techniques for many-core CMPs
are either organized in a hierarchical manner [10,11,15] or operate with inde-
pendent local agents [6]. Our goal is to apply OS migration in order to improve
the effectiveness of DVFS which necessitates a hierarchical design. This section
describes the organization of the hierarchical power manager and the DVFS and
migration policies in detail.

5.1 Organization

The structure of the hierarchical power manager reflects the structure of the
SCC with its different voltage and frequency domains. At the lowest level in the
hierarchy is a single core because individual cores exhibit different performance
values. The next level represents a tile which comprises two cores and represents
a clock domain. Decisions about which clock frequency to run at are made at
this level. One level up is the voltage domain. A voltage domain consists of four
tiles and represents the unit where voltage changes can be initiated. The highest
level models the entire chip.

5.2 Local Performance Monitoring and Prediction

On each active core, a local agent monitors the current performance of the
core. Depending on the load factor, it requests a higher, the same, or a lower
frequency from the next-higher level in the hierarchy. The local agent uses the
core’s performance monitoring unit (PMU) to gather statistics about the number
of executed and memory-bound instructions. At regular intervals the local agent
predicts the load of a core based on a weighted average of sampled PMU data.
When the core is not fully utilized, the optimal operating frequency can be
analytically computed. For purely CPU-bound benchmarks, for example, and
a utilization of 50% at 800 MHz we expect 100% load at 400 MHz. Frequency
values are discreet, the computed frequency is thus always rounded up to the
next higher available frequency.

If the core is fully utilized, however, it is not clear by how much the fre-
quency should be increased. We have experimented with three policies: step-up
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one, step-up two, and half-way step-up. The first two policies increase the oper-
ating frequency by one and two steps, respectively, while the half-way step-up
computes the requested frequency by adding half the difference of the current
frequency to the maximal frequency. Experiments have shown that in our frame-
work the performance and power consumption are indifferent in regard to the
three policies.

Performance is measured periodically; experiments have shown that values
between 0.5 and one second are short enough to quickly react to changing per-
formance requirements, but long enough to avoid too much noise in the signal.

5.3 Domain Managers

Each domain, clock, voltage, and global, maintains its own domain manager.
Each level only communicates directly with the level above or below, i.e., the
clock domain manager interacts with the voltage domain manager, the voltage
domain manager interacts downstream with the clock domain, and upstream
with the global domain manager. The functionality of the different domain man-
agers is elaborated in more detail in the following sections.

Clock Domain Manager. For each clock domain, its clock domain manager
computes and sets the appropriate frequency. The frequency of a clock domain
is constrained by the current voltage level of the corresponding voltage domain
and computed based on the performance counters reported by the local agents
and the currently active DVFS policy (see Sect. 5.4 below). Each clock domain
manager maintains sorted lists of the current and requested frequencies for all of
its cores. The clock domain managers communicate with their voltage domain
manager by periodically sending the list of requested frequencies. The voltage
domain manager signals changes in the voltage level.

Voltage Domain Manager. The voltage domain manager computes and sets
the operating voltage of a voltage domain. Due to the nature of DVFS, volt-
age changes must happen in close collaboration with frequency changes: before
lowering the voltage, all frequencies must be lowered to a values supported by
the lower voltage. Similarly, for higher voltages, the voltage must be increased
before the frequencies can be raised. Similar to the clock domain managers,
voltage domain managers also maintain sorted lists of the current and requested
voltages per clock domain. The voltage domain managers communicate with
the global manager by periodically sending the list of requested frequencies and
voltages upstream.

Global Domain Manager. The global manager gathers the sorted voltage/
frequency requests from the domain managers and determines which cores to
migrate based on the migration policy. After migration has completed, the global
domain managers informs the voltage domain managers of the migration such
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that the voltage may be changed immediately. This is not absolutely necessary
since the information will eventually be sent from the local agents to the voltage
domain managers, however, giving the voltage domain managers a chance to
react immediately to migration leads to better results.

5.4 Scheduler Power Management Policies

The goal of the scheduler’s power management policy is to optimize the perfor-
mance per watt ratio of the overall chip. Other policies, such as, for example,
even heat dissipation or adhering to a given power budget, are part of future
work.

The power management policy is implemented in the global domain manager.
The core migration and DVFS algorithms are invoked at regular intervals by the
scheduler. The DVFS and migration policy, though the former depends on the
latter, are completely separated in order to be able to freely combine different
migration and DVFS policies. The following sections describe our DVFS and
migration policies in detail.

OS Migration Policy. Without migration OSes are pinned to their cores.
For voltage domains containing both very busy cores and idle cores there is no
optimal voltage setting: if the voltage is too low, idle cores run at the optimal
frequency but the performance of busy cores is severely affected because the
low voltage prevents the frequency domain manager from selecting the required
frequency. On the other hand, if the voltage is set high enough to satisfy the
performance needs of busy cores, idle cores waste energy because they operate
at a higher than necessary voltage.

OS migration enables consolidation of cores with similar performance
requirements into one voltage/frequency domain. This allows setting the volt-
age/frequency of the domain to a value that is close to the optimal value for
most involved cores.

A näıve algorithm is to sort the OSes by their performance requirements
and then assign them in order to the voltage and frequency domains. While
the resulting allocation of cores to domains is optimal for one time quantum,
this algorithm fails to consider the overhead of OS migration. The actual live
migration of an OS is very quick (≤ 3ms), each time an OS is migrated it will
experience a lot of cold misses in the local instruction and data caches which will
lead to both a performance reduction as well as increased memory traffic. The
migration algorithm must thus also consider the current positions of the OSes
and minimize the number of migrations.

We currently employ a buyer-seller heuristic where domain managers for
a given target frequency put up cores for sale that are expected to require a
lower than the given target frequency. A market manager then matches the
sellers to buyers. At the moment, the market manager has knowledge of all volt-
age domains; however, a hierarchical model is possible if the number of voltage
domains prohibits a global analysis. A limitation of the current heuristic is that



Scheduling for Better Energy Efficiency on Many-Core Chips 57

   

  

 

 
 

  
 

  

 

 
 

  

 
  

 

 
 

  
 

  
 

   
  

  

Fig. 4. Buyer-seller algorithm: (a) initial configuration, (b) configuration after running
the first round for v = 8, (c) configuration after running the second round for v = 5,
(d) final configuration after running the last round for v = 4. Bold values represent
tiles/cores migrated in that iteration.

it does not consider the location of a core’s data. Developing a memory-location
and contention aware OS migration policy is part of future work.

Figure 4 shows the effect of our heuristic. Figure 4 (a) displays the esti-
mated frequencies for each core before the buyer-seller algorithm starts. Figures 4
(b)-(d) show the layout after each repetition for vi = 8, 5 and 4, respectively;
(d) represents the final configuration.

The heuristic returns the instructions to perform the actual migration in
form of several circular lists of cores that are to be migrated. This list is then
processed by the migration manager as discussed in Sect. 4.2.

DVFS Policies. We implement two DVFS policies that are similar to policies
used in the hierarchical power manager for CMPs proposed by Ioannou et al. [10].
Their work has been implemented on the Intel SCC chip and thus provides a
good reference point. The policies proposed in [10] and reproduced here are:

– Allhigh: this policy runs all cores within a voltage domain at the highest
requested frequency.

– Tile: grants the requested frequency to each clock domain and sets the volt-
age accordingly. Within each clock domain, the higher of the requested fre-
quencies is chosen. Note: in [10] this policy is denoted Simple.

We have not implemented the Alllow and Allmean policies since they sacrifice
too much performance in return for power savings.

For both policies the voltages of the voltage domains are computed such
that all clock frequencies of the associated clock domains can be satisfied, i.e.,
vV D = maxi v(fCDi). v(f) for a given frequency f is a simple table lookup.
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Phase Ordering and Frequency Considerations. In order to achieve max-
imum power savings, migration should occur before applying DVFS. The fre-
quency of migration, voltage, and frequency changes is determined by the cost
of these operations: the time for migration is largely unaffected by the number
of cores being migrated because all involved cores can store/restore the volatile
state in parallel. Migrated cores are stopped and have their caches flushed while
unaffected cores continue to run during migration operations. Voltage changes
are quite expensive because the clock of all affected cores is stopped during
the rather long voltage adjustment. Frequency changes, on the other hand, are
almost instantaneous and can thus be performed often. On the SCC specifically,
we have measured the following latency: ≤ 3 ms for migration and ≤ 10 ms for
voltage changes. On this particular architecture, migration is cheaper than volt-
age changes. In addition, the SCC only supports one voltage change at a time;
i.e., different domains cannot change the voltage in parallel. Nevertheless, for
our server/desktop benchmark scenarios with rather slow changes in the CPU
load, migration and voltage changes can be performed at every step. Section 7
discusses the benchmarks and results in more detail.

6 Experimental Setup

All experiments were conducted on an Intel Single-chip Cloud Computer. The
scheduler runs on a dedicated core in voltage domain 3 on the SCC itself. All
cores from the other voltage domains run a modified version of the sccLinux.

In addition to the scheduler we also run a few monitoring and logging
processes on dedicated cores in voltage domain 3. In order not to pollute the
migration algorithm with these processes, voltage domain 3 is excluded from the
hierarchical power management. However, the reported results show the total
chip power and therefore also include the power consumed by vdom3.

A benchmark scenario comprises a number of OSes with distinct workloads
and an initial placement of the different OSes onto the SCC’s cores.

The workloads running on the cores are either synthetic workloads used to
demonstrate the operation of the proposed scheduler or represent profiled work-
loads that we have gathered by profiling 20 desktop and development computers
of graduate students over a period of several months.

The baseline of the experiments is obtained by running the benchmark sce-
nario on the SCC at full speed (800 MHz) with no power management enabled.
Unlike the work in [10] we do not use a phase-detector based on message passing
since we are aiming at independent OSes running on a CMP. Instead, we apply
the workload prediction method based on a weighted average. We compare the
DVFS policies of [10] without OS migration, Allhigh and Tile, against the
same policies with OS migration.

7 Results

We have conducted a wide range of experiments on the proposed scheduler.
To show the effect of OS migration on DVFS, we first present the results of a
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synthetic periodic workload. The second example details the results of applying
the proposed method on a workload pattern obtained from desktop machines of
our graduate students. We conclude this section with the overall results over all
benchmark scenarios.

Synthetic Periodic Workload. The setup and the results of this workload
are shown in Fig. 5. The load pattern is shown in Fig. 5(a) and consists of two
simple periodic synthetic workloads that alternate between 10% and 90% CPU
load. The second workload s2 is slightly time-shifted compared to s1. The initial
OS distribution onto the different voltage domains of the SCC is shown in the
left chart of Fig. 5(b). Each domain initially contains three or four OSes running
one of the load patterns.
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Fig. 5. Results for a simple alternating synthetic load

The results of running this benchmark scenario are shown in Fig. 5(b) and (c).
The right-hand of Fig. 5(b) and (c) show the normalized power consumption,
performance, and performance per watt, respectively, for the Allhigh and the
Tile policy, denoted AH and T, without and with (appended +M postfix) OS
migration.

We observe that both DVFS only and DVFS+migration suffer from a per-
formance loss. In the case of DVFS only, there are two reasons for this loss: first,
a voltage change operation of an island stops execution on all cores, adjusts the
voltage, and then resumes the core clock. This process is implemented in hard-
ware and takes about 10ms per voltage change. The second reason for reduced
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performance is observed when the workload prediction model fails to predict a
sudden raise in the load and selects a too low operating frequency for a work-
load. OS migration incurs additional overhead: migration requires stopping and
resuming all involved cores. Additionally, the changes in the routing tables are
propagated to all active OSes through external interrupt; processing these inter-
rupts on the individual cores also causes a minimal performance overhead.

Nonetheless, as can be seen from the normalized power consumption in
Fig. 5(b) on the right-hand side, the reduction in power by far outweighs the
loss in performance. In terms of performance per watt (right-hand of Fig. 5(c)),
both DVFS only and DVFS+migration show better results. In particular, the
proposed method of combining DVFS with OS migration achieves about a 30%
improved performance per watt compared to DVFS-only policies.

Figures 5(d) and (e), finally, visualize the effect of DVFS only and DVFS+
migration on the individual voltage domains’ frequency settings for the two
DVFS policies Allhigh and Tile. The frequency over time is shown for each
voltage domain for DVFS only (upper part) and DVFS+migration (middle part
of the figure). Higher frequency (and thus voltage) settings are represented by
darker levels of gray. The lower part of the chart shows the number of migrations
over time.

Comparing DVFS and DVFS+migration with the Allhigh DVFS policy
(Fig. 5(d)) clearly shows how migration is able to group OSes with similar per-
formance characteristics together and thus select voltages that are closer to the
optimal value. In the Allhigh policy in particular, if only one core in a particular
voltage domain requests a frequency of 800 MHz and thus the highest voltage set-
ting, the entire domain will run at 1.1V . Since in this artificial example the OSes
are evenly spread over all voltage domains, without OS migration all domains
run at maximum voltage most of the time. In comparison to DVFS+migration,
we clearly observe that the migration policy first migrates all OSes into the
first two domains, vdom0 and vdom1. About 30 s into the benchmark, the OSes
running load pattern s1 drop to 10% load which causes another batch of migra-
tions and results in grouping the OSes running the same load pattern together.
After this, the OSes running in the same voltage domain observe similar load
patterns and no more migrations are necessary. The DVFS policy can select the
appropriate voltage and frequency for the first two domains.

For the Tile DVFS policy we observe a similar pattern (Fig. 5(e)). Here, the
frequency can be set on a tile-basis. Again, DVFS only cannot consolidate OSes
with similar load patterns, resulting in voltage settings that are too high for
most cores in a domain. DVFS+migration, on the other hand, groups all OSes
into vdom1 and vdom4. We see that migration fails to group the OSes running
identical load patterns into distinct domains at first which causes some migration
activity after about one third of the benchmark’s runtime. From then on, the two
load patterns are nicely separated. Even though the load patterns are perfectly
synchronized at the beginning of the run, the overhead of DVFS and migration
causes them to drift apart slowly which then again triggers migrations.
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Profiled Workload. Figure 6 shows the results of a scenario based on actual,
measured workloads patterns. Seven different load patterns obtained from pro-
filing data of graduate students’ computers, s1 to s7, are assigned to a total of
40 OSes and initially placed onto the different voltage domains.
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Fig. 6. Results for a profiled load pattern

Compared to the synthetic workload, the performance loss (left-hand in
Fig. 6(c)) is much less severe (1% and 2.5% for AH and AH+M, and 3% and 8%
for T and T+M, respectively). This is because profiled workloads exhibit smoother
workload changes; the local performance prediction is thus much more accurate.
The DVFS-only policies cannot group OSes with similar workload characteris-
tics together, and all voltage domains run at maximal voltage during most of the
benchmark (upper-hand VDOM charts in Figs. 6(d) and (e)). As a consequence
only minimal total energy savings are obtained (1% and 7% for AH and T).

With OS migration, however, the scheduler is able to group workloads
exhibiting similar load patterns into voltage domains as shown by the lower-
hand VDOM charts in Figs. 6(d) and (e). The total energy savings are significant
(23% and 26% for AH+M and T+M) and lead to a much better performance per
watt increase compared to DVFS only (1% and 4% for DVFS only, 26% and
26% for DVFS+migration).

Overall Results. Table 1, finally, displays the normalized power, performance,
and performance per watt over the baseline, respectively, for the Allhigh and
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the Tile policy, denoted AH and T, without and with (appended +M postfix) OS
migration for three different benchmark scenarios all based on profiled workload
patterns (details the benchmark scenarios are given in AppendixA).

Independent of the workload at hand, migration OSes before applying a
DVFS policy results in a significantly reduced power consumption at the expense
of a very moderate performance degradation. Taking the DVFS-only policy as
the baseline, Allhigh+Migration achieves a 36% better power-per-watt energy
efficiency than Allhigh at a relative performance loss of only 1.3%. Similarly,
Tile+Migration outperforms Tile by 28.4% at a performance loss of 3.4%.
We observe that Tile outperforms Allhigh without migration whereas with
migration they achieve similar performance. The reason is that OS migration is
able to group OSes with similar performance requirements into voltage domains
such that the superior Tile DVFS policy has less effect.

Table 1. Normalized power, performance, and performance per watt (PPW)

BM AH AH+M T T+M

Power Perf PPW Power Perf PPW Power Perf PPW Power Perf PPW

1 99.2 99.9 100.8 77.2 97.7 126.5 73.6 97.4 104.0 74.2 93.5 126.0

2 88.2 98.8 112.0 62.6 96.3 153.8 80.3 96.6 120.2 62.2 94.0 151.2

3 92.1 99.5 108.0 63.7 100 157.2 84.9 97.8 115.3 62.5 96.4 154.1

4 98.1 99.9 101.9 77.1 98.6 127.9 91.9 96.5 105.0 71.7 90.7 126.6

Avg. 94.4 99.5 105.7 70.2 98.2 141.4 82.7 97.1 111.1 67.7 93.7 139.5

8 Conclusion

In this work, we show that energy-aware space-shared scheduling of independent
programs running on a CMPs is feasible and the potential to achieve significantly
energy savings. We provide a working implementation on the Intel Single-chip
Cloud Computer where the individual OSes run bare-metal on the assigned cores,
and the global scheduler communicates with cores through interrupts.

Techniques for reducing power consumption of CMPs rely on well-known
DVFS techniques. The special organization of CMPs into frequency and voltage
domains makes direct application of previous work difficult. We employ zero-
copy OS migration implemented in a energy-aware scheduler to consolidate OSes
with similar workloads onto the same frequency and voltage domains, thereby
allowing DVFS policies to achieve a larger power reduction at the cost of a
minimal performance penalty.

The proposed energy-aware scheduler with its integrated hierarchical power
management supporting intra-core live migration is put to a test with a wide
range of workloads. Experimental results conducted on a real system show that,
on average, the proposed techniques achieve an improvement of the performance
per watt by 25–35% over previous DVFS approaches.
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Appendix

A Profiled Workload Benchmark Scenarios

This appendix describes the details of the benchmarks evaluated in this work.
Each benchmark scenario consists of two parts:

– Two or more workload pattern that describe how the workload changes over
time.

– An initial assignment of the workloads to the 48 cores of the exercised Intel
SCC.

Each workload pattern (WL), denoted S{1–7} in the tables below, lists the
CPU workload for every epoch (10 or 15 s, depending on the benchmark) for the
duration of one period (300 s). A workload never stops, it keeps repeating the
workload pattern period after period. Note that all workloads are pure CPU-
based workloads; memory-based workloads are part of future work.

The core assignment tables below show what workload pattern are assigned
to which cores when the experiment starts. In our setup, voltage domain 3 runs
various logging and monitoring services and is thus not available for user bench-
marks. The power measurements include the power consumed by vdom3 because
power is only reported for the entire chip and not for individual voltage domains.

A benchmark ends after a predefined number of seconds (in our example
after 300 s). The total progress of each workload is measured externally and
thus includes all overheads caused by migration, voltage changes or slowdowns
cause by too low frequency settings.

A.1 Synthetic Benchmark Scenario based on Periodic Workloads

The synthetic benchmark consists of two identical workload patterns shifted in
time. Each voltage domain contains workloads of both patterns. The purpose
of this benchmark is to demonstrate the potential of combining DVFS with OS
migration. The results of this benchmark are shown in Fig. 5.
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Workload patterns:

WL Epoch (1 epoch = 15 s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S1 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10 10

S2 10 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10

Core assignment:

vdom0 vdom1 vdom3 vdom4 vdom5 vdom7

- - - - n/a n/a - - - - - -

S2 - S2 - n/a n/a S2 S2 S2 - S2 -

- - - - n/a n/a - - - - -

S1 S2 S1 S1 n/a n/a S1 S1 S1 S2 S1 S1

A.2 Benchmark Scenarios based on Profiled Workloads

The following four benchmarks are based on the usage patterns of Linux and
Windows desktop computers. Initially, each voltage domain is loaded with differ-
ent workload patterns. These benchmarks demonstrate the effect of the proposed
technique when applied to a multi-user setup (i.e., virtual desktops of employees
on a server machine).

The detailed result of the first benchmark are shown in Fig. 6, and Table 1
lists the combined results for all four benchmark scenarios shown here.

Benchmark 1 (BM1)

Workload patterns:

WL Epoch (1 epoch = 10 s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S1 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 46 27 86 63

S2 69 57 68 60 55 66 61 63 69 58 56 57 63 59 62 58 57 67 68 64 61 71 78 63 71 82 69 14 0 2 4

S3 28 84 41 12 83 48 55 0 35 69 42 59 17 46 59 49 51 2 46 47 80 40 4 73 41 53 47 18 100 42 45

S4 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 80 66 56 32

S5 71 53 26 9 34 25 23 38 37 26 96 92 34 41 89 100 100 12 17 30 27 21 31 35 41 84 89 63 100 96 84

S6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 96 63 100 27 0 0 0 0 0 0 0 0 0 0 0

S7 5 4 5 7 2 4 5 6 6 4 100 6 2 4 1 1 0 1 2 2 4 2 2 4 6 6 6 5 2 10 5
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Core assignment:

vdom0 vdom1 vdom3 vdom4 vdom5 vdom7

S4 S6 S4 S4 n/a n/a S5 S5 S5 S6 S5 S5

S3 S3 S3 S7 n/a n/a S3 S3 S4 S4 S2 S2

S2 S5 S2 S2 n/a n/a S2 S6 S2 S7 S3 S4

S1 S1 S1 S5 n/a n/a S1 S4 S1 S3 S1 S1

Benchmark 2 (BM2)

Workload patterns:

WL Epoch (1 epoch = 10 s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S1 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 46 27 86 63

S2 82 39 55 42 96 42 100 33 53 20 20 10 11 14 13 11 13 13 1 5 1 0 23 45 61 42 83 83 20 15 3

S3 28 84 41 12 83 48 55 0 35 69 42 59 17 46 59 49 51 2 46 47 80 40 4 73 41 53 47 18 100 42 45

S4 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 10 15 30 27

S5 71 53 26 9 34 25 23 38 37 26 96 92 34 41 89 100 100 12 17 30 27 21 31 35 41 84 89 63 100 96 84

S6 53 21 52 48 33 92 89 100 39 38 29 41 48 4 64 45 36 31 42 41 42 35 15 80 93 62 10 23 48 32 0

Core assignment:

vdom0 vdom1 vdom3 vdom4 vdom5 vdom7

- - - - n/a n/a - - - - - -

S5 S6 S5 S6 n/a n/a S3 S6 S4 S5 S4 S5

- - - - n/a n/a - - - - - -

S1 S4 S1 S2 n/a n/a S1 S2 S2 S3 S1 S3

Benchmark 3 (BM3).

Workload patterns:

WL Epoch (1 epoch = 10 s)

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S1 42 77 25 11 34 36 30 14 33 26 22 58 100 52 30 13 15 0 21 39 48 43 40 41 40 42 41 40 39 36 35

S2 45 15 6 27 25 9 64 55 27 28 18 51 46 100 56 20 25 25 12 0 0 0 0 0 0 0 0 0 0 0 0

S3 71 53 26 9 34 25 23 38 37 26 30 23 34 41 39 29 29 12 17 30 27 21 31 35 41 84 89 63 100 96 2

S4 11 22 20 10 27 12 45 100 22 9 4 14 9 43 19 6 17 18 14 21 5 5 5 6 25 16 7 0 0 0 0

S5 42 66 40 67 57 67 66 71 75 72 31 38 59 54 86 80 68 55 95 100 89 85 86 77 64 0 0 0 0 0 0
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Core assignment:

vdom0 vdom1 vdom2 vdom4 vdom5 vdom7

S5 - - - n/a n/a S5 - S5 - S5 -

- - S5 - n/a n/a S4 - S4 - S4 -

S2 S4 S2 S4 n/a n/a - S3 S2 S3 S2 -

S1 S3 S1 S3 n/a n/a S1 S2 S1 - S1 S3

Benchmark 4 (BM4).

Workload patterns:

WL Epoch (1 epoch = 10 s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S1 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 46 27 86 63

S2 82 39 55 42 96 42 100 33 53 20 20 10 11 14 13 11 13 13 1 5 1 0 23 45 61 42 83 83 20 15 3

S3 8 20 21 30 80 100 24 50 36 54 83 92 91 73 27 1 0 1 1 1 1 0 1 1 10 1 21 17 33 5 7

S4 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 10 15 30 27

S5 53 21 52 48 33 92 89 100 39 38 29 41 48 4 64 45 36 31 42 41 42 35 15 80 93 62 10 23 48 32 0

Core assignment:

vdom0 vdom1 vdom2 vdom4 vdom5 vdom7

- - - - n/a n/a - - - - - -

S3 S4 S3 S4 n/a n/a S3 S4 S3 S4 S3 S4

- S5 - S5 n/a n/a - S5 - S5 - S5

S1 S2 S1 S2 n/a n/a S1 S2 S1 S2 S1 S2
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Abstract. Recently large scale scientific computation on heterogeneous
supercomputers equipped with accelerators is receiving attraction. How-
ever, traditional static job execution methods and memory management
methods are insufficient in order to harness heterogeneous computing
resources including memory efficiently, since they introduce larger data
movement costs and lower resource usage. This paper takes the Cholesky
decomposition computation, which is an important linear algebra kernel,
as the target for optimization. And we describe a scalable data-driven
scheduling method and a heterogeneous memory management method in
order to improve resource utilization and reduce amount of data move-
ment. Through the performance evaluation on TSUBAME2.5, which is a
heterogeneous supercomputer with NVIDIA GPUs, we demonstrate the
efficiency of the proposed task scheduling method and data replacement
strategies considering data reusability.

1 Introduction

Recently general purpose graphic processing unit (GPGPU) computing, tech-
nology that harnesses GPUs for generic computation including scientific com-
puting, is gathering attraction in high performance computing area, for GPUs’
high computation throughput and memory bandwidth. In the latest Top 500
supercomputers ranking [1], the Titan supercomputer ranked as world No. 2 is
equipped with 18,688 GPUs to accelerate its performance and improve the power
performance ratio. Also the TSUBAME2.5 supercomputer [2] at Tokyo Institute
of Technology embodies 4,224 NVIDIA K20X GPUs.

GPGPU has been used for applications from various areas, including numer-
ical optimization applications. In this paper, we take SDPARA software [12],
a high performance solver for semi-definite programs (SDP) as the target for
optimization. SDPARA’s important computation kernel is the Cholesky decom-
position for a dense large matrix, which already harnesses multiple GPUs in the
recent version. It has achieved peta-scale computation speed of 1.7 PFlops by
using 4,080 GPUs on TSUBAME2.5 [10,11]. For this application, it is required
to support larger scale problems, which produces the larger matrix to be decom-
posed. In order to support larger matrix than the aggregate capacity of device
c© Springer International Publishing AG 2017
N. Desai and W. Cirne (Eds.): JSSPP 2015/2016, LNCS 10353, pp. 69–82, 2017.
DOI: 10.1007/978-3-319-61756-5 4
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memory among GPUs, we put the matrix on host memory, which has larger
capacity. On the other hand, a typical, synchronous implementation suffers from
larger amount of data movement between GPUs and CPUs. Although this issue
is partially mitigated by parameter tuning such as block sizes [9], we will require
further optimization toward future supercomputer architectures on which data
movement will be more expensive relatively.

In this paper, we introduce data driven scheduling approach for the optimiza-
tion of the multi-node multi-GPU Cholesky decomposition. Unlike the synchro-
nous approach, the algorithm is expressed as a task dependency graph, where a
single task corresponds to an update kernel of a small block of the matrix, which
takes approximately 1 to 10 ms. The matrix is distributed among the multi-
ple nodes, and the task graph includes dependencies between tasks on different
nodes. Our distributed fine-grained task scheduling method has the following
properties:

– The scheduling method is scalable in order to support more than 1 M tasks
– The scheduling method is aware of memory hierarchy that consists of GPU

device memory, local host memory and remote host memory. It is designed
to minimize the data movement between the hierarchy.

– Our implementation supports overlapping of computation and data movement
to improve the overall performance.

Through the performance evaluation on TSUBAME2.5 supercomputer, we
demonstrate that the amount of data movement between CPUs and GPUs are
reduced largely, and we have achieved 13.9 TFlops on 16 nodes.

2 Background

2.1 GPGPU and PCIe Communication

GPGPU(General Purpose Graphics Processing Unit) is a technique to use com-
puting resources of GPU (Graphics Processing Unit) for a general-purpose cal-
culation as well as image processing. GPUs are processors originally designed
for image processing, and mainly equipped by video cards and connected to the
host computer via the PCI Express (PCIe) bus. Current GPUs can not work
by themselves but works under the control of the host CPUs. Compared with
CPUs, GPUs are designed to make throughput of computation higher; thus, they
have been successful in parallel computations with regular structures, including
matrix operations. Programmers can use GPGPU with dedicated programming
tools, such as CUDA, OpenCL and OpenACC. In this paper, we use CUDA
programming environment designed for NVIDIA GPUs, however, the proposed
techniques are applicable to other environments.

While GPUs have higher computation throughput and memory bandwidth,
they have limitations on memory size. The memory region that is directly acces-
sible from GPU cores is called device memory, which is attached on the graphic
card. Currently the device memory size is limited to several gigabytes (6 GB on
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NVIDIA K20X GPUs, used in our evaluation), while the host memory can be
expanded more easily (54 GB on the TSUBAME nodes).

Therefore in order to support larger scale computation, we can harness the
capacity of host memory in addition to device memory. However, we should
consider the amount of data movement between CPUs and GPUs (hereafter we
call it PCIe communication). Since the bandwidth of PCIe, 8 GB/s in our case, is
much smaller than device memory bandwidth (250 GB/s on K20X), we have to
reduce the amount of PCIe communication in order to achieve high performance.
We take the Cholesky decomposition as the target computation, and introduce
task scheduling methods that are aware of memory access locality, in order to
reduce PCIe communication cost.

2.2 Cholesky Decomposition

The Cholesky decomposition takes a symmetric positive definite matrix A, whose
size is N × N . We assume A is a dense matrix. Then it decomposes A into the
product of a lower triangle matrix L and its transposition, where A = LLT .

Here we describe a typical parallel algorithm in the ScaLAPACK parallel
linear algebra library [7]. The matrix A is divided into blocks with a uniform
size nb × nb, and the blocks are distributed among processes in two-dimensional
block cyclic method. The algorithm consists of an outermost loop; at the k-th
iteration of the loop, the sub matrix A(k) of size n × n, where n = N − k × nb,
is transformed into L(k) in place as follows.(
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)
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Here A11 is a single block of the nb × nb size, A21 is a (n − nb) × nb matrix
and A22 is a (n− nb) × (n− nb) matrix as shown in Fig. 1. In a single iteration,
we calculate the Cholesky decomposition of A11, L11 first. Then the rest part of
L(k) is obtained as follows.

L21 ←− A21(Lt
11)

−1

Ã22 ←− A22 − L21L
t
21 = L22L

t
22

The ScaLapack routine executes this decomposition as follows.

1. PDPOTF2: The process which has A11 performs the Cholesky decomposition.

A11 −→ L11L
t
11

2. PDTRSM: L11 is send to all the processes which have A21 and they calcu-
late L21.

L21 ←− A21(Lt
11)

−1
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3. PDSYRK: L21 is sent to all the processes and transposed. Then each process
has L21 and Lt

21. They update a part of A22 using them.

Ã22 ←− A22 − L21L
t
21

Fig. 1. The snapshot of the block Cholesky decomposition from Fig. 5 in J. Choi
et al. [7]

2.3 Simple Implementation on GPUs and Its Problem

The existing SDPARA GPU version uses a simple extension of this ScaLapack
algorithm [11]. In order to support matrix larger than the aggregated capacity of
device memory of GPUs, the matrix A is distributed among the compute nodes
and allocated on host memory. In order to accelerate computation, each process
executes the following work at each kernel routine. We copy the partial matrix,
which is divided so that it fits in the device memory, from host to device via
PCIe. And then we let the GPU compute for it by using high performance BLAS
routines, and the copy back the result into the host memory. The computation
on GPUs and PCIe communication are overlapped with each other.

This GPU implementation has the following problems:

Lower utilization of computing resources: The current ScaLapack based
implementation is based on a synchronous style. For example, while a single
process is calculating L11, other processes tend to be idle, which degrades
the total performance. We could improve the GPU utilization by introducing
asynchronous execution, while we need to keep necessary data dependency.

More PCIe communication: The current implementation assumes that all
the matrix data is available on host memory after each kernel finishes. With
this method, we suffer from the cost of PCIe communication; the amount is
O(N3/nb). We could reduce it if the matrix data can reside in device memory
over several iterations of the outer loop.

Larger memory consumption: ScaLapack uses the rectangular matrix data
format, although only a triangular part is necessary for Cholesky decomposi-
tion. Thus memory consumption on host memory is twice than that is really
required. We could support larger matrices by changing the data format.
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2.4 Motivation for Data Driven Execution

The above discussion motivates us to adopt the data driven implementation sim-
ilar to DAGuE [5] or StarPU [3]. Here we describe the basic execution method.
First, we change the data format for the matrix. Instead of the rectangular for-
mat, we let each process maintain several blocks, each of which is an array of
nb × nb size. Thus we can reduce memory consumption.

Fig. 2. Direct Acyclic Graph(DAG) of the Cholesky decomposition from Fig. 2 in G.
Bosilca et al. [6]

Next, when we consider the data dependency in the block level, we could
harness more parallelism than in the synchronous style. Therefore we consider
the computation of a single block as a task, and we consider the dependency
among the tasks. Also we introduce task scheduling methods of these fine grained
tasks, while conforming the dependency, as described later. If a task execution
requires input blocks that resides on remote processes, MPI communication is
involved. Also we have to consider the memory hierarchy of device memory and
host memory. If the input block is not available on the device memory, PCIe
communication is involved. After all the input blocks are available on the device
memory, we can execute the task. If the device memory is already full, some
blocks are swapped out to the host memory. Also our scheduler is designed so
that computation, MPI communication and PCIe communication are overlapped
with each other.

By using this method, the utilization of computing resources is expected to
be improved, and the PCIe communication amount is reduced.
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Fig. 3. Tile division

3 Our Scheduling Method

This section explains the implementation of the block Cholesky decomposition.
After describing the basic data driven scheduling method, we discuss strategies
for selecting runnable tasks and for GPU memory sweeping.

First, we divide the input matrix data A into the units called “tiles”, each
of which has nb × nb size. The tiles are distributed among MPI processes (we
do not distinguish MPI processes and computing nodes in this discussion) in a
two-dimensional block cyclic style. Instead of holding all the tiles included in A,
we hold only tiles for the lower triangular part of A as shown in Fig. 3, because
Cholesky decomposition assumes A as a symmetric matrix. In the initial state,
the tile data is put on the host process.

We regard each computation kernel for a tile as a task, which is executed by
the owner process of the target tile (owner computing rule). Each task can be
executed if all the precedent tasks in the task graph has been finished. Unlike the
synchronous execution method, tiles may be updated step by step independently.
Thus each tile maintains a variable to express its current running step.

Also each tile is in one of the following three states:

RUNNABLE: The next task for this tile is runnable, since all the precedent
tasks are finished.

SLEEP: In order to proceed the next task for this tile, we have to wait for
precedent tasks.

FINISHED: All tasks for this tile have been finished. No more update is
required.

In our implementation, an MPI process consists of several (two or three
typically) worker threads and a ignition thread. We introduce multiple calcula-
tion threads in order to achieve overlapping of calculation, PCIe communication
and MPI communication in a simple implementation. Each process has its task
queue, shared by all its threads, in order to manage the runnable tasks on the
process.

Each worker thread performs the following steps, task select, localize, execute,
and finalize, continuously.
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Task select: It takes out a runnable task from the task queue if exists; we let
T be the target tile of the task. If the task queue is empty, the calculation is
blocked.

Localize: Generally, execution of a task requires the result data of the precedent
tasks as inputs. We let Ti1, Ti2 be the result tiles of the precedent tasks1.
Then the worker thread checks the state of tiles T, Ti1, Ti2 and executes the
corresponding operations as follows.
1. if the tile data is on device memory, nothing is required.
2. if the tile data is not on device memory, but on the local host memory,

the tile data is copied to device memory via PCIe bus. This may involve
swapping out operation, as described below.

3. if the tile data is neither on device memory nor on local host memory,
the thread issues MPI Recv in order to receive the tile data from its owner
process. After the data arrival, we execute as in Case 2.

Execute: Now all the required tile data are available on GPU; thus we execute
the calculation task, which is typically invocation of a BLAS function on
GPU.

Finalize: When a task is finished, the worker thread performs operations for
the following tasks, which need the result of this task. The operations involve
inter-process messages of two types as shown in Fig. 4. First, the calculation
thread sends notice messages to processes that have following tasks, which
may eventually make the following tasks runnable. In the current implementa-
tion, we send the data of tile T to the receiver immediately. To avoid blocking
the worker thread long, we use non-blocking communication, MPI Isend, for
sending notice messages and tile data.

Fig. 4. MPI Communication pattern when a task is finalized

1 In Cholesky decomposition, each task depends on two tasks or less.
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Fig. 5. The association state of CPU memory and GPU memory

The ignition thread continuously checks arrivals of notice messages that
notify information of finishing tasks. If the ignition thread finds the notice mes-
sage makes a local task runnable, it adds the task into the process’s task queue2.

With this described method, we can execute the whole computation in a
data driven style. This method reuse data of tile on the GPU device memory if
possible; this can reduce PCIe communication between CPUs and GPUs.

3.1 Memory Management

In our implementation, each process put data of all the tiles owned by the process
on the host memory. On the other hand, the smaller GPU device memory is used
like a “cache” of the host memory.

When a process copies a tile data to GPU, it needs to evict other tile if the
capacity is full. In this time, the data on GPUs has to be copied back if it is newer
than data on host memory (the data is dirty). In order to maintain consistency,
each tile has an additional variable expressing the state of the cached data on
GPU as shown in Fig. 5. Each tile is in one of the following three states.

DIRTY: The tile has a copy on GPU memory, which may be different from
data on host memory.

CLEAN: The tile has a copy on GPU memory, and consistent with host
memory.

NOGPU: There is no copy on GPU memory.

When the DIRTY tile is swapped out from the GPU, the process copies back
the tile to host memory, copies the data of the new tile from host memory to
device memory. When the CLEAN tile is swapped out, copying back can be
omitted.

When the process replaces the data of the device memory, it chooses a tile
to be swapped out as the victim. The strategy for selecting the victim can affect
the performance of following processes. In the evaluation of this paper, we use
LRU strategy. In LRU strategy, we select a tile that has not been used for a long
time. To implement this, we maintain a list of tiles and move tiles that are used
for task execution into the tail of the list.
2 Note that the input tile data is received by a work thread, not by the ignition thread.
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3.2 Task Selection Strategies

As previously described, we manage the runnable tasks by using the task queue
per process. Since a task queue may contain several runnable tasks, we need to
make strategies to select a task to be executed. We compare the following four
strategies.

FIFO strategy: We take the oldest task from the queue.
Random strategy: We take one of runnable tasks randomly.
Greed strategy: We prefer a task that can be executed with less data move-

ment. When a worker thread is going to take a task, we traverse tasks in the
task queue to see how much data movement will be required in the “Local-
ized” step described above. If we find a task whose required tiles data are
already available on the device memory, we take the task for execution imme-
diately. This strategy is expected to improve the access locality and reduce
total PCIe communication costs.

ByIJ strategy: This strategy is also expected to improve the access locality,
and takes the property of the Cholesky decomposition into account. In this
computation, the tiles that reside in the same row or the same column tend
to have strong relations with each other. In this strategy, we track a last task
that has been finished. When the task of T (i, j), a tile in the i-th row and
j-th column, finishes, the next task is chosen as follows.
1. If the queue has a task of the tile in the same column T (·, j), it is taken

out. If not, we proceed the next step.
2. If the queue has a task of the tile in the same row T (i, ·), it is taken out.

If not, we proceed the next step.
3. A task of the top of the queue is taken out.

4 Performance Evaluation

To evaluate the performance of our implementation (called “NEW”) with data
driven scheduling, we have conducted the performance measurement. The NEW
implementation includes several strategies for task selection in memory swapping
as described in the previous section. Our implementation is compared with a
synchronous implementation used in the existing SDPARA version [10,11], which
is called “OLD” in this section. OLD has recorded 1.7 PFlops on the TSUBAME
2.5 supercomputer with 4080 GPU.

4.1 Experimental Condition

For the experiment we have used the TSUBAME 2.5 supercomputer at the
Global Scientific Information and Computing Center at Tokyo Institute of Tech-
nology. TSUBAME 2.5 is a GPU-accelerated supercomputer, and its total peak
performance reaches 5.7 PFlops. Table 1 represents the hardware specification
of the node used in the evaluation.
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Table 1. Hardware specification of TSUBAME 2.5 node

CPU Memory Intel Xeon X5670 2.93 GHz (6 cores) x 2 54 GiB

GPU NVIDIA Tesla K20X x 3

GPU Peak Performance 1.31 TFlops per GPU

GPU Memory 6GiB per GPU

Fig. 6. Relative communication amount
of PCIe on one node

Fig. 7. Relative communication amount
of PCIe on four nodes

We have used a GPU per node and conducted all the performance evaluation
with four work threads. We have fixed the tile size at 2048 × 2048. For GPU
management, we used NVIDIA CUDA 6.0, and used CUBLAS 6.0 as basic linear
algebra library on each GPU.

4.2 PCIe Communication Amount

First we have measured the amount of data movement between CPUs and GPUs.
We have performed it with the OLD implementation and several versions of
NEW implementation. For NEW implementation, we measured with each task
selection strategy. The measurement is done with varying matrix sizes; with
the smallest case, the matrix data can be fully allocated on (aggregated) GPU
memory, and the other matrix sizes are larger than the GPU memory capacity.
The results are shown in Fig. 6 (one node cases) and Fig. 7 (four nodes cases). The
PCIe communication amounts are normalized to one with OLD implementation.

The figures exhibits the communication amount between CPU and GPU
greatly decreased in NEW implementations, for all the combinations of strate-
gies. If the matrices are small, we have reduced it to about 17% on one node and
15% on four nodes. Here the strategies do not affect the performance, since data
reuse is fully successful if the matrix data fits the GPU memory. PCIe commu-
nication is limited to the beginning and the end of the Cholesky decomposition.
On the other hand, OLD invokes PCIe communication on every kernel routine
that causes redundant communication.

With larger matrices than GPU memory, we also observe the reduction of
PCIe communication, though the reduction is mitigated as the matrix gets larger.
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Fig. 8. Weak scalability

On four nodes, NEW with BYIJ strategy reduces it to 37% with matrix size of
88,641. Among the task selection strategies, the BYIJ strategy greatly reduces
the communication amount by using the reusability of data, as expected.

4.3 Weak Scalability

Figure 8 represents the weak scalability study. This matrix size is scaled up
accordingly to the number of nodes to keep the data size per a node constant.
The minimum matrix size is 58,843 with one node and the maximum one is
247,131 with 16 nodes. We observe that all the implementations exhibits good
scalability. Among them, BYIJ achieves the best performance, 13.92 TFlops with
16 nodes (16 GPUs). We observe the every NEW versions shows better perfor-
mance than OLD version. We consider the reason is as follow; the reduction
of the PCIe communication amount improved performance as planned. But,
with LIFO strategy, we cannot get much performance for PCIe communication
amount. We will further investigate this point in future.

4.4 Strong Scalability

Figure 9 represents the strong scalability study. The matrix size is fixed at 47142,
and the number of nodes varies from one to 16. Compared with weak scalability

Fig. 9. Strong Scalability
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Fig. 10. Performance with varying matrix sizes on 16 nodes

case, the scalability is milder, especially with FIFO and RAND strategy. But
BYIJ and LIFO strategy are a little better scalability than other strategies. As
the number of nodes increases, the NEW strategies give much better performance
than the OLD strategy. This seems due to the followings; increase of the number
of the nodes cause the matrix data assigned to the node to be smaller than the
GPU memory capacity.

4.5 Varying Matrix Sizes

We have conducted the performance evaluation with varying matrix sizes from
58,843 to 247,131. The number of nodes is fixed at 16, and the results are shown
in Fig. 10. When we compare the various strategies, we see similar results to
Fig. 8; the ByIJ strategies show the best performance and the RAND version
comes next. The BYIJ strategy achieves 13.92 TFlops with the 247131 × 247131
matrix.

5 Related Work

Our data driven scheduling method is strongly influenced by DAGuE/PaRSEC
by Bosilca et al. [4,5]. They have presented a direct acyclic graph (DAG) sched-
uler for distributed environments with GPUs, and demonstrated that the sched-
uler can execute applications including the Cholesky decomposition efficiently.
We also use their methodology of tiling algorithm. On the other hand, to our
knowledge, it is not clear how DAGuE/PaRSEC treats memory objects when
GPU memory is full. Our focus is to reduce the amount of data movement
between host and GPUs, by introducing task selection strategy that is aware
of data locality and memory swapping strategy. In future, we are planning to
compare our methods and DAGuE/PaRSEC in detail. Also we could embed our
strategies in their implementation.

StarPU [3] is a DAG scheduling framework for heterogeneous environments.
It allows for each task to run either on CPUs or GPUs according to the resource
utilization, in order to improve the performance of execution of the whole
task graph. It also maintains data consistency, while mitigating data movement
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between CPUs and GPUs. However, StarPU has been basically designed for a
single node, while our target is distributed environments. Although the recent
version is integrated to MPI communication, the programming model for dis-
tributed task dependency is different from local dependency.

In order to harness memory hierarchy of GPU memory and CPU memory
in a transparent style, authors have proposed a runtime library called hybrid
hierarchical runtime (HHRT) [8]. HHRT uses an oversubscription model; each
GPU is shared by multiple processes, and when GPU memory is full, data of
some processes are automatically swapped out. This methodology is successful
for stencil based applications, however, we did not adopt it for the Cholecky
decomposition. One of the reasons is that using MPI communication between
processes on the same node degrades the overall performance for this computa-
tion. Also the memory consumption would be increased because of the lack of the
mechanism for sharing memory objects among processes. After these problems
are solved, we could integrate HHRT and the scheduling methods in this paper.

6 Conclusion and Future Work

We have described data driven scheduling approach for the optimization of the
multi-node multi-GPU Cholesky decomposition. With our implementation, the
communication amount between CPU and GPU is reduced by scheduling tasks
appropriately and replacing the data considering its reusability. Compared with
the synchronous implementation, the amount of PCIe communication is reduced
by more than 80% with smaller matrices than GPU memory size, and for larger
matrices, it is reduced by 40 to 60% with the best strategies. The implementation
is scalable and achieved 13.9 TFlops with 16 GPUs on 16 nodes.

Among the described strategies, the “BYIJ” task selection strategy shows
the best performance both for communication reduction and the speed perfor-
mance. It shows we can get better performance by adopting the property of the
computation for scheduling.

Also we are going to measure the performance with O(1000) nodes of TSUB-
AME, in order to evaluate the scalability in peta-scale environments in order to
accelerate the solution of large scale SDP problems with more than 2,000,000
constraints.
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Abstract. This work describes the goals and impacts of a large recon-
figuration of the job scheduling system, used in the Czech National Grid
and Cloud infrastructure MetaCentrum, which was implemented in early
2014. MetaCentrum, as a “long-tail” oriented provider, serves a varied
user-base consisting of both individual users and research groups. This
imposes strict requirements on the robustness of job scheduling algo-
rithms being employed, as the system must be capable of assigning a
highly heterogeneous set of workloads to a similarly heterogeneous set of
computational resources. Primary goals for MetaCentrum were always
to provide efficient and fair resource utilization with respect to different
users in the system. During the last few years, MetaCentrum has gone
through a period of rapid growth (1,500 CPU cores in 2009 vs. 10,600
CPU cores in 2014) forcing us to re-evaluate our scheduling approaches,
as the “old” configuration no longer satisfied our utilization and fair-
ness demands. This re-evaluation was supported by a significant body of
research, which included the proposal of new scheduling approaches as
well as detailed simulations based on real-life complex workload traces.
First of all, a new multi-resource aware fair-sharing algorithm (based
on our recent research) was deployed, with the goal of improving fair-
ness with respect to the growing heterogeneity of resources and users’
workloads. Second, the queue configuration of the entire system was com-
pletely reworked in order to decrease resource fragmentation and improve
the utilization and the impact of fairness policies. This paper summa-
rizes the effects of these changes using real-life data from the production
system. Moreover, we publish complex workload traces from MetaCen-
trum that were used in this paper, since they represent a valuable source
of data concerning a highly heterogeneous production system. Last but
not least, we also present our advanced job scheduling simulator which is
routinely used for testing of new scheduling strategies prior their deploy-
ment in the real system.

Keywords: Scheduling · Fairness · Queue · Workload · Heterogeneity

c© Springer International Publishing AG 2017
N. Desai and W. Cirne (Eds.): JSSPP 2015/2016, LNCS 10353, pp. 83–101, 2017.
DOI: 10.1007/978-3-319-61756-5 5



84 D. Klusáček et al.

1 Introduction

MetaCentrum serves various users and research groups. During the last 5 years,
MetaCentrum has grown from approximately 1,500 CPU cores (2009) to almost
11,000 CPU cores (2014), with the number of processed jobs matching this
growth curve (see Fig. 1). The system is divided into two separate pools of
resources, each managed by a different job scheduler. The smaller pool (∼4, 900
CPUs) is managed by a custom-developed scheduler which uses planning (instead
of queues) [7] while the larger pool (∼6, 100 CPUs) is managed by a queue-based
scheduler based on TORQUE resource manager. While the plan-based sched-
uler has been heavily optimized in the past, the original “historic” scheduling
approaches used in the queue-based scheduler—which remained mostly the same
for a decade—were becoming clearly inefficient and had to be revised to better
reflect growing heterogeneity of both hardware resources and users’ workloads.
In this work, we focus on the queue-based scheduler which manages the major
part of MetaCentrum computing resources.

The goal of this work is to share our real-life experience with a major recon-
figuration of a production system as it was a unique opportunity to apply “the-
oretical” results in practice. Therefore, we summarize our previous efforts and
describe how the newly proposed modifications were evaluated and applied in
practice, i.e., we provide new results showing the improvement of system perfor-
mance achieved through a newly defined scheduling setup.

In case of MetaCentrum, there were two main issues with the historical setup:
an obsolete (unfair) fair-sharing mechanism and a rather inefficient queue con-
figuration. When solving these issues, we are building upon our earlier “theoret-
ical” works where new multi-resource aware fair-sharing mechanisms were pro-
posed [9] and the impact and interactions of various system-specific policies were
described [10]. It is worth noticing that the improvement was solely achieved by
the newly configured queues and new fair-sharing mechanism, while the actual
scheduling algorithm remained unchanged. Furthermore, we also provide detailed
information concerning MetaCentrum infrastructure and users’ workloads that
were used both for the development of the new system configuration as well
as for later analysis of the suitability of the new solution [13]. They represent
valuable source of data, especially in terms of heterogeneity of system resources
and users’ workloads. Last but not least, we have prepared a largely extended

Fig. 1. Available CPU cores (left) and the number of jobs and used CPU years (right).



Real-Life Experience with Major Reconfiguration of Job Scheduling System 85

version of our jobs scheduling simulator Alea [2], which was heavily used when
developing the new system setup and provides advanced simulation capabilities
compared to its previous releases [8].

This paper is organized as follows. Applied modifications of the schedul-
ing system are presented in the following section. Section 2.1 describes the queue
reconfiguration, discussing differences between previous and current queue setup.
Section 2.2 presents the new mechanism used to guarantee user-to-user fairness
subject to heterogeneous users’ requests. Next, the impact of queue reconfigu-
ration on the overall performance is analyzed and the influence and suitability
of the new fair-sharing mechanism is discussed in Sect. 3. Complex MetaCen-
trum workloads and the advanced job scheduling simulator Alea are presented
in Sects. 4 and 5 respectively. Section 6 concludes the paper and discusses the
future work.

2 Reconfiguration of MetaCentrum Scheduling System

Production resource management systems need to satisfy the constraints
imposed by resource providers, the expectations of users and must be robust
enough to deal with short term fluctuations in the user base, its workloads and
resource outages. In our previous work [10], we have discussed the complexi-
ties of configuring a production resource management system, such as PBS Pro
and Torque, to satisfy all three of these requirements. The issue at the root of
this problem is that production software is generally configured in a bottom-up
fashion, meaning that the desired behavior is achieved through a combination
of various policies.

The search for a new efficient setup of a resource management system is
then particularly problematic as relatively straightforward configuration changes
can have highly unexpected side effects arising from the interactions between
individual policies. The choice of queue configuration can have significant effect
on the way the scheduling algorithm selects jobs for execution [11], fair-sharing
mechanisms that establish fair job order may be seriously diluted by both the
scheduling algorithm [5] and the queue configuration [10], and too generous or
too restrictive queue limits may either cause resource fragmentation or excessive
resource saturation [16].

In this section we describe how we established the new queue configuration to
enable higher job throughput and fairer scheduling (Sect. 2.1). Also, we briefly
describe the newly applied multi-resource aware fair-sharing mechanism that
reflects heterogeneity of resources and users’ requests (Sect. 2.2).

2.1 Queue Reconfiguration

Detailed description of the queue reconfiguration, including the analysis of the
historical setup, design and verification of a new configuration was already pre-
sented in our previous work [10]. Therefore, in this section we will only provide
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a summary of the core ideas that are required for the remainder of this paper
and we kindly invite the reader to seek out our previous work for more details.

Mainstream resource management systems generally utilize the concept of
queues to allow fine control over the systems behavior. Queue specific policies
include per-user, per-group and per-queue limits [1,17] concerning the maximum
number of running jobs and/or utilized amount of a particular resource type (e.g.,
CPU cores). Queues can also be configured to have access to only a subset of
available resources, e.g., limiting a queue to a particular cluster of machines. This
allows the establishment of resource pools, in which several queues compete for a
limited set of resources, thus preventing a (potentially dangerous) saturation of
the entire system. Of course, queues and their configuration can increase resource
fragmentation [5] as each job is limited to a single pool of resources. This may
however be necessary to deal with different classes of users and/or jobs accessing
the system. We need to be very careful and avoid saturating the system with
single class of jobs, as for example, saturating the system with long running jobs
(i.e., jobs with expected runtime of several weeks) will lead to great deterioration
in performance characteristics of the system, e.g., huge wait times for shorter
jobs will be inevitable since they would have to wait until those long jobs would
complete and free some resources.

Historical Queue Configuration. For nearly a decade, MetaCentrum used
one configuration, that only underwent small tweaks through the years. This
configuration was originally designed manually by experts to fit the users’ work-
loads at the time. The configuration was designed in a self-balancing manner,
using overlapping resource pools with different sizes that were balanced out by
queue priorities, with the highest priority queue having access to only the small-
est resource pool. To achieve this, the system utilized three major queues (long,
normal, short) each with a different maximum walltime limitation (30 days, 24
h, 2 h), different priorities (70, 50, 60) and different limits defining the maximum
allowed number of concurrently running jobs of one user (70, 300, 250). Later
(2010), a low priority (20) queue called backfill has been introduced, that only
accepted single node jobs (max limit per user is 1000) that run up to 24 h. It
was designed for undemanding jobs and increases system utilization during off-
peak hours. To provide a fair access to the system, jobs in these queues were
dynamically ordered using priorities based on fair-share [5]. Next, queues were
traversed one-by-one by the scheduling policy, starting with the highest priority
queue (long). The scheme of the historical setup is shown in Fig. 2 (left).

After analyzing the behavior of this setup under the current users’ workloads,
we have determined that the major problem with this setup is the congestion
of the long queue. To understand the reason we first must understand the self-
balancing nature of the original setup. The long queue had to be limited to a
relatively small pool of resources (1440 CPU cores) as increasing this pool would
immediately lead to complete saturation of these resources with long jobs due
to the high priority of the long queue. It was the combination of the small
resource pool and the fact that the long queue was the only one accepting jobs
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Fig. 2. Historical setup of queues (left) and the newly applied configuration (right).

longer than 1 day, that lead to the new inefficiency observed in the system. The
users’ workloads have shifted enough that the majority of the CPU time was
now consumed by the long queue, despite the resource pool limitation. Shorter
jobs are much more frequent, as can be seen in Fig. 3, which shows job arrivals
(top) and CPU time distribution (bottom) with respect to queues and time (on
a weekly basis)1. As was observed, long queue only contained 2.75% of all jobs
but produced 51.5% of overall CPU utilization. It was then very clear, that it
should not have the smallest pool of available CPUs, but at the same time we
could not simply increase the resource pool (for reasons mentioned above).

Applied Queue Reconfiguration. Several proposals of new queue configu-
ration have been considered and experimentally evaluated in a simulator [10].
The main goal was to increase the pool of available CPUs for longer jobs in a
safe fashion. In the first step, long queue has been refined into 5 queues. The
one with the longest maximum job walltime limit is called q 2w plus (up to 30
days) and has the maximum priority. Next, there are q 2w, q 1w, q 4d, q 2d with
decreasing priorities and walltime limits (2 weeks, 1 week, 4 days and 2 days,
respectively). Normal and short queues are now called q 1d and q 2h while
q 4h is a new queue with walltime limit being 4 h. Once the long queue has
been replaced with several new queues it was possible (and safe) to increase the
number of available CPUs for selected newly created queues.

When setting up the new per-queue limits, several rules were applied that
were based either on simulation results or our empirical knowledge. The first
rule was that the number of available CPUs for a given queue should be—
in general—inversely proportional to the maximum walltime limit of a given
queue. In another words, it is safe to assign a large pool of resources to a queue

1 Only major queues in the main system pool are considered. Auxiliary and specialized
queues are omitted as well as all results coming from the second scheduler.
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Fig. 3. Job arrivals (top) and used CPU time (bottom) per week and queue.

that only executes short jobs, since those CPUs—if necessary—will be free soon
(short jobs completes early). Also, the actual workload indicates that short jobs
having their walltime ≤1 day are in fact the most common jobs in MetaCentrum
(see Fig. 4 (top)). On the other hand, it is very important to choose a rather con-
servative limit for long jobs as those may execute for weeks or even months, thus
blocking resources over a long time period. Still, this “conservative” limit should
be as high as acceptable, since long jobs are responsible for the majority of sys-
tem utilization, at least this is the case in MetaCentrum (see Fig. 4 (bottom)).
Last but not least, it is known that excessive number of queues with dedicated
resources may cause resource fragmentation [5], leading to a low system utiliza-
tion and large wait times. Therefore, whenever it was possible, resources were
not dedicated exclusively to a given queue. Instead, several queues were allowed
to compete for the same set of resources as their pools were overlapping. In
such cases, it was observed that per-queue limits and fair-share are sufficient to
balance “queue-sharing” of resources.

At the same time, the effect of newly added queues on fairness was considered
as well. Using our complex workloads, we have performed detailed simulations
which revealed that multiple queues with fixed ordering are very unfair and
practically eliminate the impact of the fair-sharing algorithm. For example, if
a job has a low priority (due to the fair-share) but ends up in a high priority
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Fig. 4. Number of jobs according to their requested walltime (top) and corresponding
used CPU time (bottom) wrt. to requested walltime during 2013–2014 period.

queue (due to its expected walltime) it will often start much earlier than a
high priority job residing in a low priority queue. Clearly, this is highly unfair.
Therefore, the applied solution uses a little trick, where the queues are only used
to (1) maintain resource limits and (2) provide information on job’s maximum
walltime (if not specified directly by a user). Otherwise, all (major) queues have
the same priority, i.e., the ordering in which a job is being selected for execution
is now solely based on the priority of a given user which is established by fair-
share. Therefore, those queues are now only “virtual” and the actual scheduling
process is performed over one single queue ordered by fair-share, which contains
all jobs from those “virtual” queues. Figure 2 (right) depicts the new setup of
queues.

2.2 Multi-resource Aware Fair-Sharing

MetaCentrum serves the scientific community and provides its resources for free.
Therefore, money cannot be used to define the order in which users and their
(pending) workload will use the resources [19]. Instead, user-to-user fairness
is maintained by the well known fair-sharing [5] approach, which dynamically
establishes fair user ordering.

Historical Fair-Sharing Algorithm. Originally, the fair-sharing algorithm
considered only single resource (allocated CPU time) and then calculated users
priorities using the popular max-min approach [4], i.e., it assigned high priority



90 D. Klusáček et al.

to a user with low CPU time utilization and vice versa. As discussed in the
literature, single-resource based fair-sharing is (highly) unfair for (highly) het-
erogeneous systems and workloads [4,6,9], which is the case of MetaCentrum.
The most critical problem regarding the original CPU time-based fair-sharing
was that users with memory demanding workloads (and small CPU demands)
were constantly favored by the scheduler, causing serious blocking of memory-
heavy machines, poor fairness and low CPU utilization of large machines [9].
Therefore, the original single-resource aware fair-sharing algorithm was reply a
newly developed multi-resource aware solution that also reflects the consumption
of RAM memory.

Applied Multi-resource Aware Fair-Sharing Algorithm. Technical
details as well as a detailed comparison with other existing techniques has been
already published in our recent work [9]. Therefore, we will only briefly mention
the main features of the newly applied solution. The new mechanism determines
a user priority Fu based on CPU and RAM requirements of that user’s (previ-
ously completed) jobs. Fu is computed by aggregating weighted walltimes of all
jobs (Ju) of given user u (see Formula 1). Each job walltimej is weighted by so
called job penalty Pj and machine speed factor Sj , which is used to reflect the
influence of machine speed on resulting walltime of a completed job. Sj normal-
izes a job walltime such that job executed on a slow machine is not additionally
penalized by its longer walltime (execution time), and vice versa. Job penalty
Pj expresses the amount of allocated CPU and RAM resources (see Formula 2).

Fu =
∑

j∈Ju

Pj · walltimej · Sj (1)

Pj = min
m∈Mj

(
max

(
cpuj

cpum
,

ramj

ramm

)
· cpum

)
(2)

Pj penalty extends the well known Processor Equivalent (PE) metric [5],
eliminating some serious problems related to job and resource heterogeneity. The
major difference is that instead of calculating the penalty according to machines
assigned to a given job (actual “price”), it calculates what is the minimal possi-
ble price (ideal price) according to the set of all suitable machines (Mj) and job
requests (cpuj , ramj). Simply put, for each job the set of all suitable machines
is constructed (Mj) and the “price” of executing that job is calculated for each
machine in Mj . Finally, Pj is set to the minimal found price. Then Pj is indepen-
dent of scheduler decisions and users have no reason to complain or cheat as they
are guaranteed to obtain the best price. Once Fu priorities are calculated for all
users, they are then ordered in the lowest Fu first order2. The actual implemen-
tation also reflects aging [5] by periodically decreasing all recorded consumption
using the so called decay factor [1]. Using it we put higher emphasis on a more
recent resource consumption.
2 To be more precise, not users but their jobs in a queue are then ordered according

to corresponding Fu values.
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3 Results

This section analyzes the impact of queue reconfiguration on the overall perfor-
mance of the MetaCentrum system and the influence and suitability of the new
multi-resource aware fair-sharing mechanism.

3.1 Impact of Queue Reconfiguration

The new queue setup has been evaluated by comparing several statistical indi-
cators using historical workload data from two consecutive time periods. The
first period (October–December 2013) represented the old queue configuration
while January–March 2014 period represented the new configuration. Both time
periods lasted 92 days and the underlying infrastructure was identical during
that time. We could not have used longer time periods, since those would con-
tain several occasions when either old clusters were removed from the system or
new ones were included. Obviously, such resource fluctuation would make the
analysis less reliable. On the other hand, we do acknowledge that by comparing
two setups of a production system in two distinct time periods, we inherently
include differences in the underlying workloads, which could skew the presented
results. Yet, we believe that the presented results are representative, as not only
the metrics have shown improvements but also user feedback was positive.

We start with a comparison of the number of processed jobs which has
increased significantly. During the October–December 2013 period, 513,976 jobs
have been completed in MetaCentrum while in the January–March 2014 period
(new queue configuration) 854,972 jobs were completed, representing an increase
of 66.3%. At the same time, the overall CPU utilization has increased signifi-
cantly (43.2%) as can be seen by the naked eye in Fig. 5, which shows the utilized
CPU hours before and after queue reconfiguration. For simplicity, the average
CPU time usage in those two periods is highlighted in the figure using dashed
lines.

Figure 6 (top) presents a closer look on the distribution of utilized CPU
time. It reveals that the largest increase in utilized CPU time is visible for jobs
having their walltime in the interval of 4 h–14 days. It confirms that the newly
introduced queues are being used regularly and users of the system are able
to recognize their benefits, e.g., larger pools of resources associated with these
shorter queues3.

Beside the overall utilization we have also analyzed job wait times which
are an important factor, especially for the users of the system. It would not be
surprising if the higher throughput and utilization caused that jobs are actually
waiting longer. This is a real-life phenomenon originating from the fact that
the system is more saturated, while users submit more jobs as they see the
improved performance. However, as we have observed, even with a significantly
larger throughput and utilization, job wait times remained decent. In fact, they

3 As was explained in Sect. 2.1, q 2w, q 1w, q 4d, q 2d, etc. queues now have larger
pools of available resources compared to the original long queue.
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Fig. 5. Comparison of used CPU days (in a given week) before and after queue recon-
figuration (left axis) and the average wait time per week (right axis).

Fig. 6. Comparison utilized CPU hours wrt. to job walltime (top) and the distribution
of job wait times before/after queues were reconfigured (bottom).

were—on average—decreased by 17.9% (4.4 vs. 3.6 h). A more detailed view is
available in Fig. 5, where the average job wait time per week is shown (with the
scale on the right side of the chart) along with the previously discussed average
used CPU time. As we can see, the average wait time is bellow 5 h on 11 occa-
sions during January–March 2014. At the same time, there were only six weeks
during October–December 2013 when the average wait time was bellow 5 h.
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Fig. 7. The distribution of jobs requirements during January–March 2014 (top) and
the corresponding jobs affected by the new fair-sharing mechanism (bottom).

Certainly, this is a important finding which shows that the new configuration
allows for higher throughput and utilization while keeping the wait times in an
acceptable level. Another detailed view is presented in Fig. 6 (bottom). It shows
how jobs are distributed with respect to their wait times. As we can see, the new
queue configuration leads to a shorter wait times for majority of the jobs.

3.2 Impact of Multi-resource Aware Fair-Sharing

In the next step, we have analyzed the influence of the new fair-sharing mech-
anism. Again, we have used historical workload traces from the October–
December 2013 (old, single-resource fair-sharing) and January–March 2014 (new,
multi-resource aware fair-sharing) periods.

First of all, we have plotted all jobs coming from the January–March 2014
period according to their CPU and memory requirements, as shows Fig. 7 (top).
For better visibility, both the x-axis and the y-axis are in log. scale. As can be
seen, the workload from MetaCentrum is truly heterogeneous. For example, a job
requesting 1 CPU may have its memory requirements anywhere between 1 GB
and 2 terabytes of RAM4. Figure 7 (top) demonstrates the huge heterogeneity

4 Jobs requesting less than 1 GB of RAM are not shown in Fig. 7 as they would end
up “bellow” the baseline of the log. scale-shaped graph.
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Fig. 8. The CDF showing the increase of penalty value (Pj) for affected jobs according
to the new fair-sharing mechanism.

of job requirements, which was the reason why the historic single-resource based
fair-sharing was impractical, i.e., extremely unfair.

In the second step, we have analyzed the workload from January–March 2014
period and selected all jobs that were affected by the new fair-sharing algorithm,
i.e., their “fair-sharing penalty” Pj was different when computed according to
the new multi-resource aware scheme. Those affected jobs are shown in Fig. 7
(bottom). As we can see, the new multi-resource aware penalty function works
as ones intuition would suggest, i.e., higher penalties are assigned to those jobs
that request large amounts of RAM compared to their CPU requirements. With
a few exceptions5, the new fair-sharing algorithm targets jobs lying “above the
main diagonal”, i.e., those that have high RAM to CPU ratio, which is the
expected behavior.

We have also analyzed the increase of penalty values. For this purpose we took
jobs affected by the new penalty P (j) and measured the resulting percentage
increase of P (j) value with respect to the old, CPU-based version. Figure 8
shows the resulting distribution using the cumulative distribution function (the
x-axis is in log. scale). In this case, the CDF is a f(x)-like function showing the
probability that the percentage increase of P (j) for a given job j is less than
or equal to x. In another words, the CDF represents the fraction of jobs having
their P (j) increased by at most x percents. As can be seen, the improvement
is often significant. For example, nearly 60% of affected jobs have their P (j) at
least two times higher (penalty increase ≥100%).

In the next step, we have analyzed the impact of the new multi-resource aware
fair-sharing mechanism on the performance of affected jobs. This time, we have
compared those two time periods: October–December 2013 (old fair-sharing)
and January–March 2014 (new fair-sharing). Again, we have selected those jobs
5 Those exceptions are jobs lying under the main “diagonal”, i.e., in the lower cen-

tral/right part of the plot. Such exceptions were expected as the new fair-sharing
scheme may also (rarely) assign smaller penalties compared to the original single-
resource aware mechanism.
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Fig. 9. Comparison of avg. wait times wrt. the old and the new fair-sharing mechanism.

that were affected by the new multi-resource aware fair-sharing scheme6. Then
we have computed the average wait time (and its standard deviation) of such
affected jobs for both periods, i.e., before and after the new fair-sharing was
deployed.

Figure 9 shows the results of such a comparison. Apparently, with the new
multi-resource aware fair-sharing algorithm the average wait time of affected jobs
is significantly larger (18.3 vs. 11.4 h). At the same time, standard deviations of
wait times are similar in both situations which indicates that the overall increase
of wait times is not accidental (a result of few extremes), instead it is a common
tendency. It means that the new fair-sharing is working as intended, appropri-
ately assigning higher penalties to (memory) demanding jobs, thus prolonging
their wait times.

3.3 Summary

The evaluation presented above was based on real-life data coming from Meta-
Centrum. So far, the results indicate that the two applied modifications, i.e.,
queue reconfiguration and new fair-sharing algorithm work as intended. First of
all, thanks to the newly configured queues the overall throughput and utiliza-
tion have increased significantly. At the same time, the average wait times were
decreased. Also, the new multi-resource aware fair-sharing mechanism works
better than the original mechanism, since RAM demanding jobs now obtain
appropriate penalties as the consumption of RAM memory is considered when
computing a user priority. Unlike in the old fair-share, RAM intensive jobs are
now penalized similarly to CPU demanding jobs, resulting in a more fair behav-
ior of the system. So far, no significant comments concerning the new fair-sharing
approach were recorder from either the users or the management team of Meta-
Centrum.

6 In case of the earlier period (October–December 2013)—which did not use the
new fair-sharing mechanism—these affected jobs were detected using the Alea job
scheduling simulator which is capable of emulating the new fair-sharing method.
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4 MetaCentrum Workload Traces

One of the contributions of this paper is that we are offering the scientific com-
munity a complex workload trace from the MetaCentrum system. This workload
starts in January 2013 and represents 2 years of job execution in MetaCentrum,
containing 5.8 millions jobs.

We believe that this workload may be valuable for several reasons. First
of all, MetaCentrum is a very heterogeneous environment. It contains vari-
ety of resources, starting with small nodes (8 cores with 16 GB of RAM per
node) and going up through moderate nodes (16–64 cores with 64–256 GB of
RAM per node) to large and RAM-heavy machines (80–384 cores with 0.5–6.0
TB of RAM). Beside common clusters, MetaCentrum also provides 3 GPU-
enabled clusters (konos, doom and gram) for CUDA-like computations. We
have prepared a detailed resource description file, which contains information
about each cluster. Here we specify the number of nodes, number of CPU
cores per node, the amount of RAM per node and the results of the Standard
Performance Evaluation Corporation’s SPEC CPU2006 benchmark (CFP2006
suite/fp rate base2006). Furthermore, the availability of MetaCentrum’s clus-
ters is provided too.

Similarly, jobs in the workload vary accordingly. The majority of jobs (71%)
is sequential while parallel jobs represent 29% of all jobs. On the other hand,
sequential jobs represent only 10% of used CPU time as parallel jobs use 90%
of CPU time. A more detailed view showing how jobs and CPU time are spread
over existing queues with respect to job parallelism is presented in Fig. 10, where
x-axis represents job parallelism and y-axis represents number of jobs and used
CPU time, respectively. The y-axis is in log scale in both cases. Figure 10 (top)
shows that the “shape” of distribution of job parallelism is similar for all queues,
and most jobs (88%) belong to “short” queues (walltime ≤ 24 h). On the other
hand, Fig. 10 (bottom) shows that “long” (walltime > 24 h), parallel jobs are
those that are responsible for the majority of used CPU time. The distribution
of jobs and CPU time with respect to walltimes (i.e., queues) can be found
in Fig. 4, showing that “long” jobs—which represent only 12% of all jobs—are
responsible for 80% of used CPU time. Finally, an example of the variability of
job CPU and RAM requirements is shown in Fig. 7 (top).

The job workload is presented in more than usual detail. Beside common
parameters that are routinely provided, e.g., in the Standard Workload Format
(SWF) [3], we provide additional job specifications that influence job scheduling
and allow for more detailed simulations and analysis. Here we use input parame-
ters of the qsub command. For example, 2:ppn=4:x86:linux:cl minos input
parameters mean that the job is requesting 2 nodes, with 4 processors per node
(ppn). Both nodes must be operated by linux-like OS, lie within minos cluster
and have x86 architecture. Similarly, 1:ppn=1:gpu=1:cl gram means that the
job can only be executed on cluster gram and requires 1 node with 1 CPU and
1 GPU card7.
7 A detailed description of qsub semantics is available at: https://wiki.metacentrum.

cz/wiki/Running jobs in scheduler.

https://wiki.metacentrum.cz/wiki/Running_jobs_in_scheduler
https://wiki.metacentrum.cz/wiki/Running_jobs_in_scheduler
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Fig. 10. The number of jobs per queue (top) and the utilized CPU time per queue
(bottom) with respect to job parallelism.

Last but not least, information about queues, their priorities and per-user
CPU limits are provided as well. The whole job workload formatted in an
extended SWF format as well as related information concerning resources and
queues can be obtained at: http://www.fi.muni.cz/∼xklusac/jsspp/.

5 Job Scheduling Simulator

Designing a well working scheduler for HPC, Cloud or a Grid-like system is a
complex task. One needs not only to consider the workloads the system will
need to process, but is also constrained by the requirements of the resource
providers and users. Simulators can simplify this task by allowing fast iterations
over different system configurations.

In MetaCentrum, simulations are used regularly for testing new setups and
features of the scheduling system as well as for designing new scheduling algo-
rithms. For this purpose, Alea job scheduling simulator [8] based on GridSim [21]

http://www.fi.muni.cz/~xklusac/jsspp/
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Fig. 11. The structure of the Alea simulator.

has been developed and is continuously upgraded [18]. It provides advanced fea-
tures that allow for detailed simulations. A high-level scheme of the structure of
the simulator is shown in Fig. 11.

The major role is played by the scheduler entity which represents the central-
ized scheduler. The scheduler holds current simulation data, handles communica-
tion and delegates scheduling decisions to a chosen scheduling algorithm. Variety
of scheduling algorithms is provided, including trivial First Come First Served
and its prioritized versions such as Shortest Job First, Earliest Deadline First,
etc. Also policies using backfilling are supported, including aggressive backfilling
(no reservations), EASY backfilling [20] and Conservative backfilling [15].

Of course, a simulator cannot work properly unless it is supplied with an
appropriate workload. Therefore, parsers for common workload formats are pro-
vided. However getting access to a historical workload that fits the expected
workload of the system is often a complicated process. One possible solution
to the problem of finding a matching workload is to simply generate one. Solu-
tions for generating workloads, with varying degrees of complexity, have been
available for some time [14]. From models based on statistical analysis [12] that
generate jobs fitting a particular parameter distribution to dynamic models that
react to the behavior of the evaluated scheduler [22]. Alea takes a step ahead
and provides a dynamic workload generator which extends existing approaches
further and concentrates on modeling the behavior of users in the system using
user agents. Agents have access to scheduling information and therefore react
to stimuli, such as a completion of a job. This allows us to model different
user behavior from very batch-oriented users that submit sets of jobs and wait
for the entire batch to complete, to interactive users that submit one job at a
time, wait for its completion, process the results and then submit a new job.
Realistic modeling of day-night and week-weekend cycles is matter of course.
This approach allows for more thorough testing of scheduling setups, but also
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enables testing of hypothetical scenarios. Determining how the system will
behave if we add, e.g., another user, becomes a matter of modifying a con-
figuration file.

During the simulation, the result collector entity collects the data and—
using either default or user-provided metrics—stores results into CSV files and
(optionally) uses them for visualization. Importantly, Alea supports various fair-
sharing policies allowing for simulations where fairness is of importance. Also,
various queues including limits as well as complex job specifications (see Sect. 4)
are supported, resulting in much more realistic simulations.

This complexity of simulation capabilities resulted in a newly designed con-
figuration system [18]. In a user-friendly fashion, it allows to adjust parameters
of simulations by providing an intuitive way how to choose different data sets,
scheduling algorithms, measured metrics as well as additional features, e.g., the
type of fair-sharing algorithm. Alea is freely available at GitHub [2].

6 Conclusion and Future Work

In this paper we are sharing our experience with a major reconfiguration of the
job scheduling system in MetaCentrum. Our analysis measures the impact of
two major modifications—the queue reconfiguration and the new multi-resource
aware fair-sharing algorithm. Both the results and the feedback from the users
of the system indicate that the reconfigured system is more efficient than it
was previously. First of all, thanks to the new queue setup the throughput is
now much larger while job wait times remained decent. Concerning the new
fair-sharing algorithm, the results revealed that it works as intended, assigning
higher penalties to jobs with large requirements concerning RAM. The effect
of increased penalties was observed as well, i.e., wait times of RAM-heavy jobs
have increased compared to the period when single-resource based fair-sharing
was used. Last but not least, we are presenting our jobs scheduling simulator and
the complex workload traces from MetaCentrum to the scientific community.

Still, our work has some limitations. Although we have mentioned some gen-
eral rules (see Sect. 2.1), values of several (important) parameters such as queue-
related limits are currently based on an empirical knowledge or an (hand-tuned)
expert assessment. In the future we would like to develop more rigorous meth-
ods that would allow for a (semi)automatic identification of proper and effi-
cient system setups. For starters, it would be very helpful to have some method
that—given a current workload—would perform a dynamic adaptation of various
queue-related limits.
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Abstract. At the advent of a wished (or forced) convergence between
High Performance Computing HPC platforms, stand-alone accelerators
and virtualized resources from Cloud Computing CC systems, this arti-
cle unveils the job prediction component of the Evalix project. This
framework aims at an improved efficiency of the underlying Resource
and Job Management System RJMS within heterogeneous HPC facili-
ties by the automatic evaluation and characterization of the submitted
workload. The objective is not only to better adapt the scheduled jobs
to the available resource capabilities, but also to reduce the energy costs.
For that purpose, we collected the resource consumption of all the jobs
executed on a production cluster for a period of three months. Based
on the analysis then on the classification of the jobs, we computed a
resource consumption model. The objective is to train a set of predictors
based on the aforementioned model, that will give the estimated CPU,
memory and IO used by the jobs. The analysis of the resource con-
sumption highlighted that different classes of jobs have different kinds
of resource needs and the classification of the jobs enabled to charac-
terize several application patterns of the users. We also discovered that
several users whose resource usage on the cluster is considered as too
low, are responsible for a loss of CPU time on the order of five years
over the considered three month period. The predictors, trained from a
supervised learning algorithm, were able to correctly classify a large set
of data. We evaluated them with three performance indicators that gave
an information retrieval rate of 71% to 89% and a probability of accurate
prediction between 0.7 and 0.8. The results of this work will be partic-
ularly helpful for designing an optimal partitioning of the considered
heterogeneous platform, taking into consideration the real application
needs and thus leading to energy savings and performance improvements.
Moreover, apart from the novelty of the contribution, the accurate clas-
sification scheme offers new insights of users behavior of interest for the
design of future HPC platforms.
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1 Introduction

Many organizations have departments and workgroups that benefit (or could
benefit) from High Performance Computing HPC resources to analyze, model,
and visualize the growing volumes of data they need to run their business.
The size of the largest HPC platforms has dramatically evolved to attain hun-
dreds of thousands of processors nowadays. Providing the energy and the cooling
infrastructure to sustain such large systems is now more than ever a challenge.
These tasks are becoming even more complex, as most of the current facilities
comprise heterogeneous resources nowadays, either due to acquisitions at diverse
period of time, or by the completion of the existing nodes with specialized hard-
ware (GPU or CPU accelerators, FPGAs etc.) to achieve superior throughput
for some specific workloads. Moreover, with the advent of the Cloud Computing
CC paradigm and the widespread availability of virtualized computing resources,
the classification and prediction of the most appropriate target for a given job
is key to achieve a better efficiency and reduced energy costs. In this context,
this paper presents the basic brick of the Evalix project, which aims at the
automatic evaluation and characterization of HPC workload and user patterns
to identify the jobs that may benefit from the underlying heterogeneity of the
platform. For that purpose, we collected the resource consumption of all the
jobs from a production HPC system operated within the University of Luxem-
bourg UL on a period of three months. The analysis of these traces permitted to
develop a model that link the profile of the submitted jobs with their actual usage
pattern, whether in terms of CPU, memory or IO load. Another contribution of
this article is the definition and implementation of a supervised machine-learning
approach based on Support Vector Machines SVM to characterize incoming jobs
according to that model.

This paper is organized as follows: Sect. 2 reviews the context and motiva-
tions in the origin of the Evalix project. In particular, we demonstrate from
the analysis of Resource and Job Management System RJMS logs within a pro-
duction HPC platform the necessity to carry on a deeper characterization of
users’ jobs resource consumption. Then, the method used to collect and classify
these usage patterns is presented in Sect. 3.1. A supervised learning approach is
detailed in Sect. 4 to deduce the above classification for incoming jobs. A perfor-
mance evaluation of the designed predictors is also provided. Section 5 reviews
the related works. Finally, Sect. 6 concludes the paper and provides some future
directions and perspectives opened by this study.

2 Context and Motivations

The performance of an HPC system is obviously determined by the unitary per-
formance of the subsystems that compose it, but also by the efficiency of their
interactions and management by the middleware. In these kind of systems, a
central component called the RJMS is in charge of managing the users’ jobs
on the system’s computing resources. The RJMS has a strategic position in the
whole HPC software stack as it has a constant knowledge of both workload
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Fig. 1. Platform yearly utilization and top users contributions.

and resources. In order to improve the scheduling and resource management
strategies, the workload of such systems has been widely studied and led to the
construction of various models, as proposed by Lublin et al. in [1] and Feitel-
son in [2]. These models, were later used as a basis in scheduling techniques
evaluations and optimization studies, such as [3,4]. However the aforementioned
works were based on the study of the resources allocation to the jobs and not on
their actual usage. We already discovered that allocation and usage often mis-
match [5]. In order to have a more efficient scheduling of the jobs and a better
resource management, it becomes necessary to get a better insight of the actual
resource usage of the jobs. We have once again observed this divergence on a
production HPC facility operated since 2007 by the UL. Users of this facility
are people from three faculties and two Interdisciplinary centers within the UL,
which cover various research topics such as bio-medicine, material science or
security. An overview of the platform, its configuration together with its man-
agement is proposed in [6]. In this paper we study the usage of the Gaia cluster,
the largest and most used of the UL HPC facilities. Composed of 151 nodes
for a total of 2004 computing cores at the time of writing, it provides to more
than 200 users a total computing power of 21.178 TFlops and relies upon the
OAR [7] RJMS. During the last two years, i.e. between 2012 and end of 2013,
almost three million jobs were launched, which gives an average throughput of
one job every 23 s. Still in the same period, the average run time of jobs was
about 33 min and many of them have a run time below the minute. The most
frequent requested allocations are, by order of frequency: 1 core, 1 node, half
a node (i.e. one socket) for single node allocations and 4 nodes, 2 nodes and
3 nodes for multi-node allocations. An average user has submitted more than
5,000 jobs to the RJMS and 9 users have more than 10,000 jobs.

As suggested in a previous study on user behavior [8], not all users have the
same impact on an HPC infrastructure. In this work the authors classified users
in three groups regarding their level of importance based on their utilization
of the platform, assuming that top users were the most productive ones. This
difference of importance between users on the UL HPC platform is well visible in
Fig. 1, which presents the yearly CPU time allocated to jobs. For each year, the
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3 largest users in terms of job area (number of resources × run time) and their
relative usage are presented. What is very remarkable is that since the launch of
the platform the computational area of these large users is very large regarding
the total year’s area. For example in 2013, 3 users from the same laboratory are
responsible for 41% of the whole platform utilization. This confirms the previous
idea [8] of the existence of a class of a few top users who consume a large part of
the computing power. In the study by Feitelson et al. [9] of nine logs taken from
the Parallel Workload Archive PWA [10], it was found that in many cases the
activity of a few individual users can dominate all other activity in the system.
e.g. in the HPC2N log, one single user was responsible for 57.8% of the whole log
activity and in the SDSC and LANL logs, the number of jobs produced by few
users could be 5 to 10 times the average weekly total, but this only for a short
period. However one might wonder if these really use the platforms in reasonable
ways and if their jobs are efficient enough or if they waste some computational
power. Indeed, the time consumed by them is the CPU time allocated to the jobs
and not their actual CPU usage. In a previous work [5], we showed that the jobs’
actual CPU usage was in many cases very different from the CPU allocation,
even for jobs that are supposed to be CPU intensive.

In order to verify what is the actual CPU utilization, we reconstruct the CPU
usage of the jobs in function of CPU allocation on the UL HPC platform. From
RJMS logs, we compute the percentage of platform’s CPU resources allocated
to the jobs (taking into account failures and resource absence). To estimate the
actual CPU usage on the computing nodes at this level, the data collected by the
Ganglia monitoring system were used1. We measured the average system noise
generated on the nodes by the Ganglia daemon as being negligible, i.e. less than
0.05% over one hour. Information retrieved this way is thus well representative of
jobs CPU usage on the nodes. This information is retrieved at node level, so when
several jobs share the same node we cannot say much about their respective CPU
usage. However, this gives us a general tendency of the utilization vs. allocation.
Figures 2 and 3 present the difference between CPU allocation by the RJMS and

1 Later on, another monitoring tool named Colmet [11] will be used.
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the actual CPU usage of the jobs. The darkest curve presents the percentage of
CPU allocated by the RJMS regarding the total number of resources available
in the system at this time. The lightest curve presents the aggregated CPU
usage as reported by Ganglia. Thus the height difference between the two curves
gives the relative CPU usage, which is frequently far from being 100% of what
is allocated. Also, there exists periods with different CPU usage patterns. For
instance in Fig. 2, two users are responsible for 38% of job area, for a CPU
usage of about 30%. These users belong to the top 3 users of the year 2013. If
we take shorter time periods with different CPU usage patterns, for example
in Fig. 3 from 2014-01-01 to 2014-01-15 and 2014-02-01 to 2014-02-15, we can
observe the impact of the presence of particular users. In the first time period
we have two peaks of high CPU allocation (around 80% of the full platform)
with a CPU usage around 40%. During this period, two users are responsible for
45% of total job area. These are the same users that were predominant in Fig. 2.
On the contrary in the second time period the CPU allocation is lower (varying
between 20% to 40%) for a high relative CPU usage. During this time period
the two users account for 34% of total job area and a single user accounts for
more than 43%. Not surprisingly these two are still the same ones as before and
the user who has the largest job area is also one of the year 2013 top 3 users.
This phenomenon is not isolated and other periods where these 3 top users are
present have the same pattern (e.g. beginning vs. end of March 2014).

In the light of this observation, it seems that the presence of some particular
users can have a strong impact on the platform usage pattern. Moreover it is also
well visible that users have different resource consumption patterns, depending
on the applications they run. This raises the following questions: are there some
typical user profiles that we could extract from the observation of the jobs? and
could we benefit from this knowledge to predict users’ future needs in terms of
resources depending on the jobs they run?

Answering these questions is central in the Evalix project, which aims at the
automatic evaluation and characterization of HPC workload and user patterns
to better adapt to heterogeneous resources. Detailing this project is clearly out of
the scope of this paper. Here, we propose to look deeper into job’s internals and
measure what they use in terms of physical resources. Then based on the history
of jobs consumption, a machine-learning approach is proposed to predict the
expected resource consumption from incoming jobs upon submission. Obviously,
the proposed supervised algorithm is the first step in the design of a framework
able to cover Evalix goals. We now detail the analysis performed to classify the
jobs consumption of the Gaia cluster over the considered 3-month period.

3 Job Consumptions Data Collection and Classification

3.1 Data Collection

Following the previous work on jobs consumption collection initiated in [5], we
choose a monitoring of all the jobs processes, managed at the node level. In our
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previous work, we used the Linux /proc virtual filesystem to gather informa-
tion of resource consumption of all the processes that composed a job. Carefully
polling the filesystem for collecting counters information at a one minute fre-
quency enabled us to capture and analyze a 9 month trace on two production
clusters at little cost. In this paper, we perform the monitoring of jobs consump-
tion with a dedicated tool named Colmet [11], provided as a testing software by
the OAR RJMS development team. Unlike Ganglia which is designed for moni-
toring a whole machine, Colmet is able to evaluate a set of processes. More pre-
cisely, it relies on Linux taskstats accounting feature coupled with the cgroup [12]
kernel isolation mechanism to retrieve at low cost jobs consumption counters.
Collected data is stored on a dedicated node in a file structured in Hierarchical
Data Format v5 HDF5. This storage type enables to process large volumes of
data easily. The evaluation of this tool is not the topic in this work. However to
give an insight, we measured the overhead induced by Colmet when monitoring
resources by running some carefully selected benchmarks representative of HPC
workloads (NAS Parallel Benchmarks NPB [13] version 3.3.1 for instance). Our
evaluation demonstrates a performance overhead below 0.1% for the considered
benchmarks, even with a frequency of 1 s between each data collection step. This
is by far the least intrusive tool we are aware of, for monitoring a given set of
processes at a few seconds frequency and that provides such a large file storage
capability. We collected a 3-month trace on Gaia cluster, from 2014-05-22 to
2014-08-19. This trace is composed of 51859 jobs, belonging to 84 different users.
The size of the trace stored in compressed HDF5 is about 10 GB and contains
6.05 × 10−9 values from the different metrics retrieved by taskstats.

In order to compare Gaia’s workload with what is observable in other HPC
sites we analyzed 8 of the most recent cluster logs of various size from the
PWA. In Table 1, we present some of their characteristics along with our clus-
ter’s 3-month trace characteristics. We also provide the robust data dispersion
indicators: Median Absolute Deviation MAD and Inter-Quartile Range IQR, to
estimate the differences between Gaia and these other systems. Despite its hum-
ble size when compared to large platforms such as CEA Curie or ANL Intrepid,
we can see that Gaia still has a good job throughput and a relatively fair core
utilization. Moreover its job mix is relatively close to what is visible in other
systems and we can assume that our analysis and learning approach could also
benefit to such other systems.

3.2 Analysis of Jobs Consumption

As Colmet collects temporal data, it would be possible to analyze job patterns
during their execution. This kind of analysis is definitely worth doing, however
due to the complexity of performing the learning with time series data, we will
first focus on the average job consumption patterns. Thus, this work aims at
the coarse grain analysis of jobs resource consumption and does not focus on
temporal data for the moment. The analysis of the time series shall be done
in further works. To process and analyze this large amount of data, we first
aggregate it on the job duration and allocated resources. This means that for each
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Table 1. Comparison of the UL HPC Platform 3-month trace statistics with various
other systems listed in the PWA [10].

Platform #cores #users Throughput
(jobs/h)

Job size mode
(cores)

Avg. utilization
(%)

ULHPC Gaia 2,004 84 32.3 12 45.4

Metacentrum 806 147 25 1 36.3

LLNL-uBGL 2,048 62 21.1 1024 56.1

PIK IPLEX 2,560 225 25.6 1 38

LLNL-Thunder 4,008 283 35.7 4 87.9

RICC 8,192 176 122 1 87.2

LLNL-Atlas 9,216 132 12.7 8 64.1

CEA Curie 93,312 722 82.2 1 29.3

ANL intrepid 163,840 236 12 2048 59.6

Median 25.6 4 56.1

MAD 15 4.4 26.8

IQR 14.6 11 26.1

General statistics

job we have its average CPU and memory usage, maximum memory reached,
average disk IO reads and writes per second. The averages are given per allocated
core. Thanks to the use of lightweight isolation mechanism,Colmet monitoring
takes into account all the processes and threads that belong to a given job and
thus ensures the completeness of the job’s usage data. In OAR RJMS, depending
on the user application needs, a job can belong to one of the following classes:

– besteffort jobs are preemptible, low constrained multi-parametric jobs that
are supposed to be CPU-intensive. A besteffort job will always be considered
as being part of the besteffort class, regardless its number of allocated core.

– interactive jobs are for debugging purpose, they provide to the user a direct
shell to his allocated machines.

– serial jobs are jobs requesting only one core.
– parallel jobs are traditional HPC jobs that request several cores.

In order to visualize jobs that may be comparable, Fig. 4 exhibits jobs con-
sumption statistics grouped by class of job. Figure 4a presents the jobs average
consumption for each metric: CPU, memory (average and maximum) and IO
(reads and writes) along with the proportion of jobs per class. If we focus on
this last metric (bottom right figure), we can see that most of the jobs are par-
allel or besteffort. However, even though besteffort jobs account for 30% of total
number of jobs, their area is much lower. In fact, they represent only 4.05% of
the total job area while interactive jobs account for a relative area of 1.04% and
the area of serial job is 5%. Thus Gaia workload is mainly composed of parallel
jobs.
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Fig. 4. Jobs consumption analysis for the workload scheduled on the Gaia cluster
between May 22th, 2014 and August 19th, 2014.

Figures 4b, c, d and e present violin plots, i.e. box plots with jobs probability
densities. Violins are given per consumption metric and for each job class. The
plot relative to the maximum memory usage is not shown as its data distribu-
tion is quite similar to the average memory usage. In Fig. 4b, we observe that
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besteffort and serial jobs consume the most the CPU power. We also remark three
distinct patterns in besteffort jobs corresponding to the largest job densities:
around 25%, 75% and 100%. These patterns most probably come from different
types of application. As expected, interactive jobs tend to have a very low CPU
utilization. However what we were not suspecting is the low CPU utilization of
parallel jobs. Almost all jobs have an average CPU utilization under 15%. Above
that are only some outliers. In Fig. 4c, we note that only interactive jobs have a
low memory usage. In this figure, the average memory usage is given per allocated
core thus the global memory used by the job is depending on its size. We also
observe that besteffort jobs have a very stable and predictable memory usage (on
the order of 100MiB per core) while parallel and serial jobs have more variations.
Finally from Figs. 4d and e, we can spot that disk IO and in particular reads
accesses have a very wide scale and spread distribution. We also witness that
parallel jobs have the higher IO write values for median and density but lower
IO read values. Thus parallel jobs tend to write more than others but read less.

Overall, the jobs that use the most the resources belong to the serial class.
A very high proportion of these use around 100% of CPU but also a fairly high
amount of memory (on the order of the GiB). What is quite surprising is the
relatively low CPU utilization of parallel jobs. For a vast majority of the jobs,
this value is around 5%. This is counterbalanced by a relatively high memory
usage (on the order of the 100th of MiB per core) and for a lot of them, a
high rate of disk writes. Moreover, this analysis exhibits the importance of the
user factor: as little as 8 users among the 56 that ran parallel jobs during the
considered period, account for an area of 80% of parallel jobs.

3.3 Classification of Jobs Consumption

As job consumption values distribution takes various forms from centered around
the median to really sparse and with a wide range, we prefer here to adopt first a
classification approach instead of using regression techniques to train the Evalix
predictor. This preliminary step is expected to make the training easier with a
better accuracy of the predictions. Each consumption metric will be divided into
several classes of values and thus, the learning will be done on these classes and
not on the continuous values. For the clustering of data, we chose to divide each
consumption metric into four classes as depicted in Table 2.

Table 2. Clustering classes for consumption metrics.

CPU Memory Disk IO

Class 1 0 to 25% Up to 10 MiB Up to 10 KiB/s

Class 2 25 to 50% From 10 to 100MiB From 10 to 100KiB/s

Class 3 50 to 75% From 100 to 1GiB From 100 to 1MiB/s

Class 4 75 to 100% Above 1 GiB Above 1 MiB/s
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The CPU consumption data was clustered linearly regarding its level CPU
usage. For memory consumption, we applied a logarithmic clustering of the
average and maximum memory usage; same for disk IO consumption (reads
and writes) but given on average per second. Moreover, an expert knowledge
based approach was chosen instead of automatic clustering algorithms since it
was giving a stronger semantic meaning to classes. In particular, the logarith-
mic approach enables to compare the jobs based on their order of magnitude for
memory usage or disk access, which is more suitable regarding the distribution of
the resource usages. We compared our approach with three unsupervised learn-
ing classification methods: k-means, hierarchical trees clustering and gaussian
mixtures. None of them was satisfying enough compared to our naive manual
clustering approach: Hierarchical trees clustering gives although too much (over
10, leading to poor prediction results in the learning phase) or too few classes
(only 2), depending on the level of intra-class heterogeneity chosen. Gaussian
mixtures led to similar problem and when the number of classes is limited to a
reasonable number (between 4 to 8), a few very dense classes are produced while
others are very sparse. Finally, the k-means clustering also reproduces the same
problem with very sparse classes.

To get back at our first initial question: are there some typical user profiles
that we could extract from the observation of the jobs? It is now easy to detect
some classes of users that have always the same usage pattern. We define that,
if on average a user belongs to classes 3 or 4 for a given consumption metric, he
uses intensively the resource. However, if the maximum class attained in all this
user’s jobs is 1 or 2, we define his use of the resource as low. Thus a user highly
relying on several resources will be marked as so and a user consuming lowly all
the resources will be categorized as having a low resource usage. We have to be
careful not to take into account interactive jobs, these being debugging or setup
jobs, they do not reflect an application behavior. Applying this methodology on
the jobs consumption classes gives us the user classification presented in Table 3.
What is satisfying is that among 84 active users, 30 of them have a stable
behavior and can be classified very simply. It is also interesting that a total of 10
users were identified as lowly using all the resources. The area of their jobs only
accounts for 3.12% of the total job area but with an average CPU usage of 18%
which cause a loss in CPU time of more than 5 years. As for the 54 users that
could not be classified with the above methodology, either they have a stable
behavior but their jobs are mixed between different resources consumptions or
they run applications with different resource usage patterns. For instance, the
top 3 users on the year 2013 fall into this “Unclassified” category yet we are
now able to better understand their profile. Concerning the first two users who
had an overall low CPU usage, one of them has most of his jobs being composed
of a medium to low consumption on all the metrics and few jobs with a high
CPU usage. On the data observed from this user’s jobs we could not see any
correlation between the CPU usage and memory or disk usage. What is the most
probable is that his jobs are not belonging to one particular class but correspond
to a mixed usage patterns. The second user seems to have two kinds of jobs, one
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Table 3. User classification based on average resource usage over the jobs monitoring
period (84 active users) excl. interactive jobs.

User average consumption # of users

CPU intensive 11

CPU and memory intensive 7

CPU and IO intensive 1

Memory intensive 15

Memory and IO intensive 3

IO intensive 4

All resources intensive 1

Low resource usage 10

Medium usage – unclassified users 54

with a very high CPU usage and a moderately high memory usage, and another
type, which represent most of his workload, shows a very low CPU and memory
usage pattern. In all his jobs, the volume of disk reads and writes is very small.
What is very interesting with this user’s jobs profile is that their memory usage
is directly correlated with their CPU usage. We can be quite confident that we
are in presence of a user whose workload is composed of two distinct types of
jobs. For the third user who was showing a high CPU usage on Fig. 3, there
are probably more than two job classes. For the CPU usage, 60% of his jobs
belong to class 1 and 32% of his jobs are of class 4, but despite the CPU class
we also witness different memory usage patterns (with low and high usage) that
are not correlated with the CPU usage. However, what is well visible for this
user is the temporal correlation of the consumption. Indeed, this user’s jobs that
are submitted within a short time frame tend to have a very similar CPU or
memory usage. This is a very interesting property that could be useful in an
online classification. More generally, we need a more advanced mechanism to
assort the Unclassified jobs consumption, in particular to take into account not
only the user name but also all the job input parameters. That’s the object of
the machine-learning approach proposed in the next section, with the idea that
by perusing the history, we will be able to predict all future job consumption
classes based on user query to the RJMS.

4 A Supervised Learning Algorithm for the Complete
Prediction of Job Resource Consumption

Several supervised learning techniques coexist in the literature. Among the most
used ones are Neural Networks and SVM algorithm [14]. Although they differ
in their mechanism, they can both be used for data classification and regression
analysis. In [15], the comparison between both techniques revealed that SVM
is generally more efficient. More precisely, at the price of a higher computation
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time, SVM is able to compute models that generate predictions with a lower
error rate. As the training of our models is done offline from a trace extraction,
models computing time is not a constraint and we prefer the approach that gives
the best results. To perform the supervised learning and train the SVM-based
predictors on jobs consumption data, we choose the reference implementation
proposed in the libsvm [16] library (version 2.6).

4.1 Metrics for Machine Learning Performance Assessment

In our previous classification of jobs consumption, a classification of data within
four classes has been chosen to have a finer evaluation of the consumption.
Indeed, a two-class classification seemed too restrictive as it would only tell if
a given resource usage was either high or low. With four classes we have the
possibility to express more precisely at which level is the resource consumption.
Nevertheless, SVM is originally designed for binary classification problems. In
consequence, our considered multiclass classification problem needs to be trans-
formed to a form of binary classification. Generally this is done either with a
one-against-one or a one-against-all voting scheme. The first method decom-
poses the original problem into several two-class classification problems. The
second one treats each class separately and data either belongs to the class
or not the class (i.e. any of the other classes). In a study comparing multiclass
SVM problems for machine learning [17], it was shown that among several voting
scheme, the one-against-one technique is commonly seen as the most suitable.
Consequently, this approach has been considered for Evalix predictors. Also,
the usual classification performance indicators are not useful. For example sensi-
tivity, specificity and likelihood are meant to be calculated for two classes only.
In [18], the authors proposed three performance indicators that can be used for
the evaluation of multiclass classifiers:

1. Accuracy, which gives the proportion of observations that were correctly
classified. Derived from the confusion matrix, the multiclass accuracy is the
average of the accuracies obtained from each class. This metric provides the
information retrieval rate performed by the learning.

2. Area Under the ROC Curve (AUC) which comes from the radiologic
community to judge the discrimination ability of statistical methods. The
AUC measures the probability to correctly classify a random sample.

3. Cohen’s kappa measure of agreement. This indicator aims to compensate
for classifications that may be due to chance. In [19], the use of Kappa is
proposed as a standard meter for measuring the accuracy of all multi-valued
classification problems. A kappa value over 40% is generally considered to be
a moderate agreement and over 60% a good agreement.

In the context of Evalix predictors, the above three metrics were considered
as complementary performance measures. On the one hand, while the accuracy
remains the most widely used indicator due to its simplicity, it was showed in
[20] that this metric alone can be misleading under skewed class distribution,
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which is the case for some data in the present study. On the other hand, the
kappa metric suffers from several undesirable effects: first, kappa may be low
even though there are high levels of agreement and that individual ratings are
accurate [21]. Then, and that’s more problematic in our case, its value is influ-
enced by data distribution and as a result, kappa values should not be compared
across studies [22]. As regards the AUC evaluation, we use a generalized pairwise
comparison approach as proposed in [23]. Given the inherent advantages of this
metric [24] (better standard error as the number of test samples increases etc.),
AUC will remain our most important evaluation criterion with precedence over
the accuracy and kappa indicators.

4.2 Training and Evaluating the Models

Input Data Selection. Mandatory information to submit a job in OAR RJMS
is: user name, submission queue, number of resources asked, maximum time
requested (or walltime), type of job (interactive or batch). Using the information
on OAR configuration on the cluster, we are able to determine also the class of
the job (besteffort, interactive, parallel or serial) so we can add this information
in the training. Iteratively we tested the prediction results in function of the job
characteristics used as input in the learning. The best results obtained, which
are presented later in this article, used as learning input the user name, the job
submission queue, the number of resources reserved, the job walltime,
the job type, whether the job was an advance reservation or not and the job
class. For instance, the job name (which is optional in OAR) was of no interest
for the training. Actually we got worse results with the trainings that included
this information than the ones that did not. The explanation is quite simple:
26% of the jobs have no name, and for those who have, these names reflect for
many user either the version of the code run or the application input parameters.
This means that many jobs have different names that slightly differ but actually
correspond to the same job with different input parameters. In consequence, this
information disrupts the learning process. Based on the information given by the
user at submission time, we train one predictor per consumption metric. This
means that from the history of the input parameters of each job, associated with
their resource consumption, we compute the support vectors and the models that
will describe this relationship. Thus we will have five consumption models: CPU
utilization, average memory, maximum memory, disk IO reads and writes; each
computed from jobs input parameters.

Finding the Best Training Parameters. The performance of SVM is very
dependent on the choice of parameters [25]. To ensure a good learning of the
consumption data we evaluated two of the most used kernels: polynomial and
RBF (radial), and for each of them using a grid search to determine the best
hyper-parameter set. For both kernels we evaluated the error rate and dispersion
with a gamma between 10(−3:3) and a cost between 1 to 5. For polynomial kernel
we tested a degree between 1 to 3. With the best parameter sets for each kernel
and for each model, we found that the polynomial kernel performed better than
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Fig. 5. Test data confusion matrices.

Table 4. Accuracy values of trained models and test data prediction scores.

Test data

Model 10-fold accuracy Accuracy AUC kappa

CPU 79.4% 78.5% 75.6% 60.8%

Mem. Avg 83.4% 87.3% 81.1% 73.2%

Mem. Max 88.3% 93.8% 78.4% 68.8%

Writes 71.3% 72.9% 78.1% 57.5%

Reads 87.0% 87.3% 70.6% 53.4%

RBF during the prediction evaluation (slightly better Accuracy, but 1 to 2%
better AUC and Kappa). Thus we present only the results for the polynomial
kernel. The best parameter set for our classification problem was thus a degree 3
polynomial kernel, with a gamma value of 1 and a cost of 2. This set gave us an
error rate of 0.179 and a dispersion of 0.007. Since our data sample is relatively
large (over 50,000 samples), a test set of 10% of data size and a cross-validation
technique at training phase is recommended [26] to ensure a low variance of the
results. Thus for the training of our models we first extract randomly 10% of
data that will be used as test data. Then, using the best parameters we train our
models on the remaining 90% using a 10-fold cross validation with a validation
set of 10% at each fold, then we also compute the predictive accuracy of the
models on their respective test sets. This gives the results presented in Fig. 5
and Table 4. The 10-fold cross validation ensures statistically stronger results
than the test evaluation itself as the process of selecting a test data set and
comparing it with a train data set is done 10 times on disjoint sets.
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Models Evaluation. Figure 5 presents the confusion matrices of the classifica-
tion of test data for each of the five consumption models. On the x-axis are the
actual classes values. On the y-axis are the predictions. The diagonal in the con-
fusion matrices represent the jobs that were correctly classified by the predictor
while off-diagonal elements are those that are misclassified by the predictor. The
higher the diagonal values of the confusion matrix the better it is, since it indi-
cates many correct predictions. The prediction level presents in a scale of grey,
for a given class the rate of job classifications. What we observe is that generally
the predictions are accurate: the darker cells of the matrix (corresponding to
the higher classification rates) are located on the diagonal. However, we can also
observe that even though the successful classification rate is high, the reverse is
not always true. This means that for a given predicted class, the proportion of
jobs that actually were belonging to this class can be low. For example, in the
Disk Writes model, over all the jobs predicted as class 2, 179 were belonging to
class 1, 212 to class 2, 888 to class 3 and 6 to class 4. In this example, only 16.5%
of the jobs that were predicted as class 2 were actually belonging to class 2.

In order to perform the evaluation of the models taking into account this
phenomenon, instead of simply looking at the confusion matrices, we also use
the earlier defined performance indicators, with the results depicted in Table 4. It
shows the model accuracies of the 10-fold cross validations along with test data
evaluation. Even though the 10-fold cross validation is statistically stronger, the
evaluation on test data is also interesting as it enables to compute not only the
model accuracies but also the other performance indicators AUC and kappa.
The cross validation shows a good accuracy for the five models, around 80 to
88% of the jobs are correctly classified. The best accuracies are for the Memory
and disk Reads models, while the CPU and disk Writes show a slightly worse
accuracy. The accuracies computed from test data are, for all the models except
CPU, seemingly higher than the ones obtained from the cross validation, this
illustrates why the cross validation is very important for a stronger evaluation
of the model. Test data AUC values are quite good, the probability to correctly
classify a sample from this set is around 80% for Memory and Disk Writes, 75%
for CPU and 70% for disk Reads. It could be counter-intuitive that disk Reads
has the lowest probability even though it has one of the highest accuracies.
In fact this comes from many jobs from the test data set belong to class 1
and were actually classified as class 1, this gives a very good diagnostic rate
for the class 1. However this is not necessarily the case for the other classes,
in particular class 2 and class 3. This is an example of the influence of data
distribution skewness on the accuracy value. It is the same phenomenon for CPU
that also shows a high density of jobs in class 1 correctly classified but class 4
shows a less good diagnostic rate. This perfectly highlights the interest of AUC
over the sole accuracy as a performance indicator. For the kappa indicator, the
best performance is obtained from the CPU and Memory models. Performance
indicators for the different models evaluated on test data showed quite good
results. Accuracy, AUC and kappa were giving fair to good scores for each model
and the 10-fold cross validation accuracies were still remaining good. As the
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statistical properties of the cross validation ensures a more reliable accuracy
evaluation, we will compute the others indicators with the same method from
the full data set.

4.3 Evaluating the Predictions on the Full Data Set

To evaluate deeper the performance of the models computed in the previous
section and to ensure a stronger statistical result, we split the initial data set
into 10 extracts of 10% of its size.

Each of these extracts will be used as different test sets to evaluate the
prediction performance. By this means we will mimic the 10-fold cross validation
process that was used in the predictor training phase. Thus the performance
evaluation of the predictions is not computed from a test set extract as was
done for the training validation, but on different subsets that cover the full data.
For each test set and for each metric we compute the Accuracy, AUC and kappa.
The result of the performance indicator averages along with the 95% confidence
intervals obtained are presented in Fig. 6. On average the model accuracies are
very good: either close to or above 80%, except for Disk Writes model that
shows a lower accuracy of 71%. This corresponds to an information retrieval
of 71% to 89%, computed solely from the information given at the submission
time of the job. For CPU and Memory models the Cohen’s kappa indicator is
above 60% which is considered as a good value. For Disk Reads and Writes,
the value is lower than for the others but is still over 40% which is considered
as an acceptable kappa value. In the same time for each of the five models,
the AUC indicator shows a fair to good probability to correctly predict the
resource consumption class of the jobs. We remind that, for multiclass problems
the AUC shows interesting statistical properties and lower dispersion regarding
other indicators. This holds particularly when dealing with large samples, as is
our case. This is why we chose this indicator as our main evaluation criterion.

For the CPU, Memory and disk Writes models the multiclass AUC is larger
than 75% which corresponds to a good prediction score. For the disk Reads
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model the AUC is 70% which is still a fair value. Considering the fact that we
are dealing with a multiclass problem and that we have four possible classes,
a random prediction would give a probability of 0.25 for each class. Thus, a
probability of having an accurate prediction being between 0.7 and 0.8 is a
good score. We evaluated our five multiclass models with three different criteria:
the accuracy which gives the amount of information correctly predicted, Cohen’s
kappa that compensates for predictions made by chance and the AUC which gives
the probability to correctly classify a random sample. The three performance
indicators gave us a good overall performance of our consumption models. The
Disk Reads model in spite of a high accuracy is the one that shows the lowest
prediction score considering the AUC (71%) and kappa (54%) values but is still
considered as having a fair prediction score. Based on these observations we can
say that the information provided by the user at job submission time is already
a reliable source of information to predict the resource consumption of a job,
which raises many scheduling optimization possibilities.

5 Related Work

The idea of using machine learning techniques, regressions and history analysis
to predict the jobs characteristics based on their input parameters as already
been addressed in several works.

In [27], two bioinformatics applications were used as benchmarks for an
empirical assessment of the suitability of several machine learning techniques
for the prediction of the size and time used by the jobs. In [28], Tsafrir et al.
used predictions of job runtimes to correct user estimations. They showed that
using the user estimated runtime of the job as a kill-time and using their pro-
posed predictions as a runtime estimate, enabled to propose a simple scheduler
respecting FCFS and EASY properties but with significant improvements in per-
formance, predictability and accuracy. The generated prediction of job runtime
was simply an average of the runtimes of the last two jobs by the same user.
They also highlighted the importance of using recent data for predictions rather
than a long history. In a similar work by Smith et al. [29], four workloads from
the PWA were used to study the characteristics of the jobs resource requirements
to the RJMS to predict application runtimes. The jobs characteristics used for
the predictions were the job type (batch or interactive), submission queue, user
name, number of nodes requested, among others, then used a genetic algorithm
to find job templates used for the predictions. This method resulted in prediction
errors of 40 to 60 percent of mean run times on the four workload studied which
was a good improvement (14 to 60% lower error) regarding previous works [30]
where classifying jobs characteristics used for the predictions were user name,
parallelism level and submission queue. The approach used by Smith et al. using
more criteria for the predictions was more efficient.

However, in spite of a wide literature on job runtimes prediction based on the
jobs characteristics at submission time, very few job address the study of the pre-
diction of jobs resource consumption. In [31], the authors used four application
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benchmarks, each corresponding to a particular resource consumption pattern:
CPU, Memory, IO, Network. With the profiling of these applications, using the
Ganglia monitoring system and ran within a Virtual Machine VM, they trained
a 3-Nearest Neighbor classifier. This classifier is to be used later to categorize
a given application into CPU-bound, IO-bound, Network-bound or Idle. Based
on this, around ten real world applications and benchmarks are classified and
this classification is used as an input to an ad-hoc scheduler on a small cluster
of workstation. They showed that the knowledge of the applications resource
requirements enabled the scheduler to perform a better system throughput of
about 22% by not scheduling applications with the same consumption pattern
on the same nodes. Our work differs from this as we did not use a set of few
benchmarks for the training of the predictor but we analyzed a real 3-month
trace of our own users’ job consumption. To the best of our knowledge, the only
analysis of the jobs resource consumption on a large trace from a production
HPC cluster was from our previous work [5]. By using the analysis of the work-
load coming from our own facility instead of using benchmarks, we remove the
bias of training with applications unadapted to our users’ workloads. We also
guarantee that data used for classification and prediction is realistic while more
accurate predictions of the future jobs consumption are ensured.

6 Conclusion

In this work and in the context of the Evalix project, we collected, analyzed and
classified a trace of all the jobs resource consumptions during a period of three
months on a production HPC cluster. The outcome of this work is threefold.
First, the analysis of the resource usage by the jobs depending on their class
enabled to differentiate different kind of resource needs. Interactive jobs have a
very low CPU and memory usage but can have high IO usage, besteffort jobs
are very CPU intensive with few IO and medium memory usage and serial jobs
are using the resources quite intensively.

Then, the classification of the jobs regarding the CPU, memory and disk
IO consumption enabled to characterize the activity of 20 of the users active
at that period (24% of the total number), whose applications are always of the
same type. We classified these users as being intensive in one or several of these
metrics: CPU, memory, disk IO. We also identified 10 users (or 12% of the total
number) that always use very few resources. The CPU time loss caused by the
activity of these accounts is in terms of years.

Last, we build a consumption model based on the classification and trained a
set of predictors based on the jobs input parameters. We validated our prediction
models with the comparison of three criteria and showed that the information
retrieval rate is between 71% and 89%, and the probability of predicting the
correct class is quite high: from 0.7 to 0.8.

These results lead to several optimizations of the RJMS and the scheduling.
Firstly, the most immediate optimization is to benefit from the knowledge of the
class of the job to make a scheduling aware of jobs resource needs, as proposed
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in [31]. The principle was simply to not schedule applications with the same
consumption pattern on the same nodes and this enabled to perform a better
system throughput. By not scheduling several serial jobs on the same resources,
or by mixing on the same resources interactive and besteffort jobs (which show
complementary patterns), this will positively impact the jobs. Moreover, the
preliminary classification of the jobs is done based on an expert knowledge app-
roach, however it will be interesting as a future direction to evaluate fuzzy logic
algorithms to better handle uncertainties that come from the data dynamics.

Secondly, the prediction of the consumptions at job submission time will
enable to refine the scheduling aware of jobs resource needs. With the predic-
tion, the scheduling will be able to load balance the jobs on the heterogeneous
resources to obtain a better performance and energy efficiency. The predictor
needs to be updated frequently and integrate a two-level prediction. First com-
pute a prediction from a consumption model derived from the recent activity
on the cluster, i.e. from the last months or weeks. Then for jobs that cannot be
predicted by this means, to use a larger model containing an annual history of
jobs consumptions.

Finally, with the analysis of the job resource consumptions, one can com-
pute the real cost of the jobs of the users on the platform. Moreover, most
recent schedulers embedded in the RJMS use fair-sharing strategies to avoid the
monopoly of the resources by the largest users or to grant more resource hours
or higher priorities to a certain group of users. This real usage cost must be
balanced by the resource request provided by the user at submission time. This
would give usage information that, integrated into the fairness score, will enable
the user to pay the right price for his computation and to get a feedback of his
behavior on the platform.

With the ability to automatically evaluate and characterize HPC workload
and user patterns, and with a model of the cost of jobs, the Evalix framework
will provide a highly efficient usage in terms of resources and infrastructure
costs, along with a better adaptation of the jobs to heterogeneous resources.
More precisely, our study offers new insights to guide the future partitioning
of the computing platform: it is now possible to define in an accurate man-
ner several sets of computing resources that will fit the analyzed heterogeneous
usage patterns. Coupled with a wrapper at the RJMS level that schedules the
incoming jobs according to their corresponding partition, substantial gains can
be obtained, whether at the level of the computing of energy efficiency. Our first
experiments based on a naive trace replay simulator reveal a potential energy
efficiency improvement between 5 to 10%. Part of our short-term perspective for
this work consists in consolidating these results and integrating the proposed
classification/prediction scheme within the RJMS of our HPC platform to eval-
uate experimentally its effectiveness. Another mid-term objective is related to
the extension of our work to a more accurate temporal analysis of the collected
traces, to better take into account the user pattern changes over sliding period
of time.
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Abstract. The performance of parallel schedulers is a crucial factor
in the efficiency of high performance computing environments. Sched-
uler designs for practical application focusing on improving certain met-
rics can only be achieved, if they are evaluated in realistic testing envi-
ronments. Since real users submit jobs to their respective system, spe-
cial attention needs to be spent on their job submission behavior and
the causes of that behavior. In this work, we investigate the impact of
dynamic user behavior on parallel computing performances and analyze
the significance of feedback between system performance and future user
behavior. Therefore, we present a user-based dynamic workload model for
generative simulations, which we use to analyze the impact of dynam-
ically changing think times on simulations. We run several such sim-
ulations with widely known scheduling techniques FCFS and EASY,
providing first insights on the influence of our approach on scheduling
performances. Additionally, we analyze the performances by means of
different metrics allowing a discussion on user satisfying performance
measures.

Keywords: Workload · Generative simulation · User behavior ·
Feedback

1 Introduction and Related Work

So far, a common technique to compare performances of different schedulers
is achieved by simulations using previously recorded workload traces. There are
many studies on analyzing properties of workloads, e.g., [9], resampling workload,
e.g., [16], or prediction of future workload, e.g. [2].

According to Schwiegelshohn, this technique does not suffice to gain practi-
cal performance measures. Schwiegelshohn describes a gap between scheduling
in theory and its practical application [10]. According to him, there is a need
to “prevent misunderstanding between researchers and practitioners”, e.g., by
comprehensible interpretations and conclusions from analyses. Additionally, he
describes the necessity of workload models including a simulation of interaction
c© Springer International Publishing AG 2017
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of users and the system due to the spreading of the parallel computing con-
cept. In this work, we address both discussed aspects: We develop a simulation
framework for generative simulations of users interacting with a parallel comput-
ing system giving the opportunity to test schedulers in a real world simulation
environment.

We present and analyze the results of a generative simulation and argue why
such simulations must be of dynamic fashion. Since the process of users submit-
ting jobs to a computing environment and receiving a response once their job
was computed is based on user behavior. Users may react to sparse resources
changing the workload or submit times, which are then faced by a certain sched-
uler. Testing scheduler performances by using earlier recorded workload traces
suffers from a lack of these interactive effects. Shmueli and Feitelson investi-
gated a crucial impact in performance measure when applying feedback in form
of statistically sampled think times [11].

Since Feitelson describes a correlation between response times and think
times [4], we model a dynamic and interactive simulation environment focusing
on such user behavior. The system performance is an outcome of a generative
process. Regarding this idea, each recorded workload trace is only one instanti-
ation of a dynamic interaction process.

We can think of many different forms of feedback between users and a parallel
computing environment:

– People could start their daily work earlier or finish later, if the system does
not offer satisfying performances.

– Contrary, they could begin their work later, or finish earlier, if the respon-
siveness of the system is good.

– In a system with poor performances, people could tend to work on weekends,
to find it less utilized, assuming that they prefer working on weekdays.

– Users could tend to change the characteristics of jobs they submit. Job para-
meters (size, length, etc.) may be adapted to get results faster or to use
resources more efficiently.

– In case further resources advance the system, job characteristics might be
adjusted accordingly.

– Runtime estimates can have a major influence on scheduling performances
[14]. We can also think of them being tuned by users, to receive more satisfying
results.

So far, little or none dynamic simulations were conducted in the context of
parallel scheduler evaluations. Although we discussed different possible forms of
feedback, we want to focus on think times, which is the interval between response
and submission of two consecutive jobs. This form of feedback is analyzed in
different works, e.g., [4].

Feitelson describes the reaction of users to system performances as “a mys-
tery” [6, p. 414]. The workload submitted by users and the system performance
should meet in a stable state. A growing demand leads to poorer system per-
formance (cf. Fig. 1). This result can be obtained in a performance test with
increasing workload. Nevertheless, the actual user reaction is an open question.
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Fig. 1. Supply-and-demand curves crossing in stable state [6, p. 414].

Our simulations are based on the teikoku Scheduling framework [1] which is
extended by a workload generation module simulating dynamic user behavior.
Future work can adapt this model to simulate further forms of feedback. We
measure the performance by four different metrics, which we interpret to have
an impact on user satisfaction. Results from simulations as provided in this paper
can justify certain goals of optimization in applied scheduling strategies to make
results more comprehensible for practitioners.

This work is structured as follows. In the next section, we present the dynamic
user model as the basis of the simulation and discuss different feedback functions
in Sect. 2. In Sect. 3, we present the simulation setup and discuss the influence
of dynamic think times. We close this study with a conclusion in Sect. 4.

2 User Model and Feedback

To develop our simulation environment, we make three a priori assumptions.
First, submission times and working habits are based an a weekly pattern, e.g.,
described in [6, p. 394]. Regularly, people work from Monday to Friday followed
by the weekend from Saturday to Sunday. We assume that this observation holds
for the work with HPC environments to some extend, as well. Second, users do
not work all day long. We suppose that they start at a certain point in time
and finish work later, according to different days of the week. Third, we choose
to model submission behavior as a submission of consecutive batches. Feitelson
gives an overview of different works, which analyze or model user activity as
sessions and batches [6, p. 396ff].

These assumptions lead to the framework of our simulation. Given a weekly
structure as the global frame of user behavior, our simulation can run for an
adjustable number of nw weeks. Furthermore, we model nu individual users
u ∈ U in the set of all users U participating in a simulation run. Users might be
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more or less active, as Feitelson and Shmueli have analyzed [12]. We take care
of this fact by introducing the activity ratio

pa,u ∈ [0, 1], (1)

which is the percentage chance of a user being active in a certain week.
After describing this main structure of the simulation, we can now focus on

attributes describing the submission behavior of a single user. To model different
activity at different days of the week, we introduce a distribution describing this
activity

pd,u ∈ [0, 1] ∀d ∈ D = {mon, tue, . . . , sun},∀u ∈ U,
∑

d∈D

pd,u = 1 ∀u ∈ U. (2)

Every user has a certain point in time to start and to end his or her day. Addi-
tionally, we introduce variables

tb,u ∈ [0, 86400], (3)
te,u ∈ [0, 86400] ∀u ∈ U, (4)
tb,u < te,u

describing an individual start and end of their working day in seconds. In case
the submit time of a new job is not between tb,u and te,u, it is delayed until the
next day begins. Additionally, we focus on job characteristics. We restrict the
number of processors per job to powers of two, as other numbers of requested
processors are fairly uncommon [4]. The number of requested processors of a job
and its running time are not correlated over different systems [4]. However, we
assume that jobs in different applications tend to have the same characteristics
regarding their sizes and running times, or that the same user submits jobs of the
same type. Therefore, we model a correlation of job characteristics according to
each user. For each user u, we give the probability of choosing a certain number
of processors for his job

pu,mj
∈ [0, 1],

∑

mj

pu,mj
= 1 ∀u ∈ U,mj ∈ {2i | i ∈ N}. (5)

The normal distributions of running times for a given number of processors

μu,mj
, (6)

σu,mj
∀u ∈ U,mj ∈ {2i | i ∈ N}, (7)

are set for each user respectively.
We add a parallelity factor, to respect batch-wise job submissions. After a

job is sampled, another job is sampled with probability

pp,u ∈ [0, 1].
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Furthermore, we model interarrival time tin to be the time between submissions
of jobs of the same batch.

Keeping the model simple, we introduce a linear think time function. Two
variables represent each user’s specific think time behavior. Variables ttu,m and
ttu,b are used in the linear function

ttu(rji) = ttu,m · rji + ttu,b, (8)

giving the think time according to the response time rji of the last finishing job
of the current batch named ji submitted by user u. Note that we do not model
user sessions in detail, due to the difficulty of extracting session information
from workload traces [15]. In this work, sessions are an implicit outcome of the
described behavior. Figure 2 depicts an overview of the described process.

User u System s

submit bi handle bi

completion bi

submit bi+1

. . .

. . . . . .think time tt

. . .

tin

wji−1

tin

wji
wji−2

Fig. 2. Job submission workflow of user u.

Now we can analyze some situations for which we set up a set of users in a
certain system. Therefore, we consecutive extract data from existing workload
traces to run feedback-aware simulations. Although not all users might fit in
the proposed model due to different working habits, e.g., there might be people
starting their work one day and working over midnight to finish next day, we
hope that the simulation is a first step towards user-aware simulation.

We arbitrarily choose six workload traces to learn parameters ttu,m, and ttu,b.
Traces LANL CM5, KTH-SP2, OSC Cluster, HPC2N, ANL Intrepid, and SDSC
SP2 range from 213–437 users with 28, 489–527, 371 jobs, and 100–163, 840 cores
[5]. Figure 3 depicts a plot of the think times in the chosen traces. Only jobs ji
having a subsequent job ji+1 of the same user are considered. They must not
overlap, i.e., the beginning of ji+1 must be after ji finished. Furthermore, only
think times of less than 8 h are considered: 0 < si+1 − ri < 28,800 s, with submit
time si+1 of job ji+1 and response time ri of job i. Fitting a linear function to the
provided data, we receive ttu,m = 0.4826, and ttu,b = 1779, when least-squares
is applied.
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Fig. 3. Linear fit of think times in different workload traces.

3 Generative Simulations

We are interested in the effect on the following different measurements of per-
formances (cf. [3]). We consider the following four metrics.

– Average Response Time (ART): The sum of all response times (time passing
from job submission to receiving of the result) divided by the number of jobs

ART =

∑
j∈J rj

|J | .

– Average Weighted Response Time (AWRT): The response time of each job is
weighted by its size and divided by the number of jobs submitted in total,

AWRT =

∑
j∈J pj · mj · rj∑

j∈J pj · mj
.

– Average Waiting Time (AWT): All waiting times (time passing from job
submission to actual processing) are normalized by the number of jobs

AWT =

∑
j∈J wj

|J | .

– Average Slowdown (ASD): The slowdown is defined as the response time
normalized by the running time. We sum up all slowdowns and take the
average

ASD =

∑
j∈J

rj
pj

|J | .
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We choose these metrics for the following reasons. Since we model the think time
as a function of response time, we implicitly assume that different time measures
of a job have a certain impact on users. The ART is the time a user has to wait
in total for a result and is therefore considered. Furthermore, the AWRT takes
the size of a job into consideration and might also be of interest for certain user
behavior. Additionally, we focus on the waiting time. While AWT expresses the
waiting times users face, SD expresses the proportional running time accord-
ing to the processing time (and therefore indicates on the proportional waiting
time).

In this work, we choose two commonly known scheduling techniques for
comparison.

– First Come First Serve (FCFS): Using FCFS, jobs are computed in order of
arrival at the system.

– EASY backfilling (EASY) [8]: If running times of jobs are known or at least
an estimation is given, queued jobs are preferred iff jobs will not violate the
reservation made for the first queued job.

In our simulations, EASY has an optimal working environment due to per-
fectly known running times at forehand. Clearly, this is an advantage for the
performance of this scheduling technique. Future analyses may also consider
mistakes in runtime estimations, as they are not necessarily of good quality in
practice [7].

3.1 Simulation Setup

We want to analyze potential differences and finding out how far the performance
of scheduling strategies is influenced according to the previously discussed met-
rics. Therefore, we find parameters to the introduced user model. Instead of
clustering users into certain groups, e.g. suggested by Talby [13], we choose an
averaging user model in this study. We analyze the KTH SP2 trace [5] and
generate the following user archetype:

We suppose that each user would regularly work from 9 a.m. to 5 p.m. (ub =
32400, ue = 61200). In the KTH trace, we find the following activity distribution
regarding the number of submitted job

pmon,u = 0.15624, ptue,u = 0.17744,

pwed,u = 0.18432, pthu,u = 0.18625,

pfri,u = 0.15536, psat,u = 0.06560,

psun,u = 0.07480.

Analyzing the distributions of cores and runtimes, the trace provides the
following averages.
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p1 = 0.33 μ1 = 10232.73
p2 = 0.18 μ2 = 5053.17
p4 = 0.18 μ4 = 5982.80
p8 = 0.17 μ8 = 12364.73
p16 = 0.08 μ16 = 10668.04
p32 = 0.04 μ32 = 9582.56
p64 = 0.02 μ64 = 8870.41

Furthermore, we find an interarrival time ti of 240.73 s, a probability of a further
job submission of pp = 0.54 and an activity ratio of pa = 0.18.

As we want to investigate whether there is a difference when linear think
time is present, we compare it to constant behavior. Therefore, we choose the
following four different think time functions:

– Constant: 20 min, ttu,c20(rj) = 1200
– Constant: 120 min, ttu,c120(rj) = 7200
– Constant: 240 min, ttu,c240(rj) = 14400
– Linear: linear think time model,

ttlin(rj) = mu · rj + bu, mu = 0.4826, bu = 1779 (cf. Sect. 2)

Furthermore, we define three setups, named less, regular and more. The regular
setup contains 60 users, which is the number of users responsible for 80% of
the workload plus an estimation of the users responsible for the other 20%. The
KTH trace contains 214 users, of which 165 users (72.9%) only submit 20% of
workload, i.e., 49 users represent 80% of the workload. We replace these 165
users by 11 users representing the otherwise missing 20%. To simulate different
load situations, we decrease the number of users by one third, for the more setup
we add one third of users, i.e., 40 are in the less and 80 users are in the more
simulation, respectively. Each setup is repeated for 150 consecutive weeks.

These users submit jobs to a system s of size ms = 100, which is the size
of KTH. Job sampling and submission is fulfilled according to the described
parameters and one certain think time function. Whenever a user would sample
a job, which is greater than the currently simulated system size, the job size is
reduced to system size, i.e., mj ← min{ms,mj}. Furthermore, each simulation
is performed with schedulers FCFS and EASY (cf. Sect. 2).

Summarizing, one simulation run has the following attributes:

– System size ms = 100
– Scheduler: FCFS or EASY
– Think time model: ttc20, ttc120, ttc240, or ttlin
– Simulation of 150 weeks

All parameters describing a single user are summarized in Table 1. To create
convincing data, which is less affected by outliers, we repeat each simulation
configuration for 25 times.
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Table 1. Basic parameters defining all users in the artificial simulation setup.

Parameter Value

Start of day tb 32400

End of day te 61200

Interarrival time ti 240.73

Parallelity factor pp 0.54

Activity ratio pa 0.18

Activity within week mon tue wed thu fri sat sun

0.16 0.18 0.18 0.19 0.16 0.07 0.07

Job attributes

Cores mj 1 2 4 8 16 32 64

Dist. pmj 0.33 0.18 0.18 0.17 0.08 0.04 0.02

µmj 10232.73 5053.17 5982.80 12364.73 10668.04 9582.56 8870.41

Think times Parameter tt c20 c120 c240 lin

Think time ttu,m 0.0 0.0 0.0 0.48

Think time ttu,b 1200.0 7200.0 14400.0 1779.0

Influence of Different Think Time Functions. We cannot distinguish
whether the working habits and type of work performed by users cause the
length of think times or if there is some psychological reason for such behavior.
However, these experiments will give arguments on positive or negative effects
on the metrics considered. Furthermore, we can analyze which metrics are influ-
enced more than others, which might allow us to draw conclusions on the effects
of user behavior in parallel computing environments. Comparing the four differ-
ent think time models we also have to take the processed workload into account.
Taking the workload into consideration allows clearer comparisons as of the
nature of the analyzed problem: in a less utilized system the chance of better
scheduling results according to certain metrics might be easier. We measure the
workload in processor hours, which describe the amount of workload processed
on the system. All running times of all cores are summed up.

The results of each simulation are presented in Figs. 4 and 5. Each row of box
plot charts represents one user population (less, regular, more). Each row depicts
the values for the three metrics AWRT, AWT, and ASD, as well as the processed
workload for all four different think time functions named c20, c120, c240, and
lin. The figure does not consider ART, because of the job sampling process. The
average job size converges and ART and AWT differ by almost a constant. A
single box plot is the graphical representation of all metric or workload values
gained at the 25 simulation runs.

At the first glance, we can see that the processed workload decreases for
increasing constant think times. The longer a user waits between job submissions,
the less workload must be handled by the system in the simulated 150 weeks
interval.



132 S. Schlagkamp

For both schedulers, FCFS and EASY, the metric values decrease accord-
ing to the decrease in workload for constant think times c20, c120, and c240.
Furthermore, we see an expectable outcome that the metric values increase for
the increase of load, e.g., for c120 AWRT increases from 16290 (less), to 20395
(regular), and 24594 (more) for FCFS and from 15769 (less), to 19099 (regular),
and 22360 (more) for EASY. Comparing the results for the linear think time
to constant think times, the median of workload is located between the median
workload of c20 and c120.

Interestingly, the results of the considered metrics are not always located
between the results of c20 and c120. The influence of the linear think time
model is significant, as the following detailed analyses show.

Fig. 4. Results for simulation setups less, reg, and more with FCFS

We compare the results gained for both schedulers for all three different load
conditions. Since the median workload of the linear think time is greater than
c120, but smaller than c20, we compare the result from simulations with linear
think time to the results of c120 to eliminate positive effects from less handled
workload. We use Table 2 to analyze differences in performances.

In this table, the median value depicts the performance of different runs of
simulations for two different think time models. Additionally, we highlight the
difference in percentage between both simulations. We use three different ways
to emphasize this difference in percentage: In case the first think time model is
better than the second, the percentage value is bold. We use italic writing in
case the difference is less than the processed workload, e.g., 2% more workload
is processed but the value for a certain metric is only larger by 1%. Otherwise,
the value is not emphasized.
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Fig. 5. Results for simulation setups less, reg, and more with EASY

The differences in all metric values are at least relatively better for the linear
think time model compared to c120, except for ASD when FCFS is applied to
regular workload, which is worse by 6.78% at an increase of workload of only
0.77%.

For FCFS we see a decrease in workload from less to more and performances
measured by AWRT and AWT increases. The increase ranges from −1.03%
to −4.56% for AWRT and from −3.27% to −8.34% for AWT. This means, the
impact of feedback in form of linear think time does not seem to be much different
for different load situations.

For ASD, the results are different. Performances range between −6.63% to
6.78% compared to c120. In comparison, we do not see such diverging results for
EASY, where ASD ranges between −2.91% to 1.82% in different load situations.

Performance of AWRT and AWT decrease for increasing load. For AWT
we see the greatest difference between the less and more setup from −15.85%
to 4.70% at almost the same workload. The result for the more setup is still
relatively better, but EASY does not seem to be affected as much as FCFS for
AWRT and AWT when workload increases.

Summarizing, a linear think time model seems to influence system perfor-
mance more for a FCFS strategy, than an EASY strategy. Nevertheless, both
scheduling strategies are significantly influenced.

Comparison FCFS and EASY. The results allow a comparison between
FCFS and EASY. Again, we choose the results obtained with the linear and the
c120 think time model. Regarding the workload submitted by the user model,
we see that when choosing EASY, 1.61% to 7.72% more workload was handled
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Table 2. Performances of FCFS and EASY with constant think time c120 and linear
think time.

FCFS EASY

Less Regular More Less Regular More

AWRT lin 16288.70 20095.50 23560.10 15103.71 18633.92 22694.13

c120 16456.53 20385.91 24634.64 15581.23 19023.41 22402.40

−1.03% −1.45% −4.56% −3.16% −2.09% 1.29%

AWT lin 5591.77 9182.48 12625.58 3230.84 5835.65 8992.57

c120 5774.56 9432.35 13678.10 3742.86 6166.18 8570.19

−3.27% −2.72% −8.34% −15.85% −5.66% 4.70%

ASD lin 267.98 384.44 437.01 269.94 356.78 415.25

c120 285.74 358.37 436.85 274.14 350.30 427.32

−6.63% 6.78% 0.04% −1.56% 1.82% −2.91%

WL lin 288544.95 404789.29 544911.61 293323.09 431047.95 590471.88

c120 271372.21 401689.01 542332.83 275815.78 417931.71 559622.24

5.95% 0.77% 0.47% 5.97% 3.04% 5.22%

underlining the overall influence of performance on workload submitting in the
designed model. The difference in performance according to the three metrics is
also significant.

Regarding AWRT, the difference between EASY and FCFS drops from
−7.85% to −3.82% with a linear think time model. While workload increases
at the same scale from 1.63% to 7.72%, we cannot reason whether the greater
user population causes the difference or not. For c120, we see that EASY out-
performs FCFS by up to 9.96%. The more users submit jobs to the system, the
greater the difference becomes.

For AWT a similar analyses holds. The gap between performance decreases
for the linear model, while it increases when constant think time is applied. We
observe the greatest differences of up to 73.07%. For the analyzed user model
and the chosen parameters, EASY outperforms FCFS most.

Applying linear think time, we cannot see a clear tendency in the influence of
the user model on the difference in performance of FCFS and EASY. Besides, all
values are at least relatively better ranging from −7.75% to 0.73%. For constant
think time, we see a slight increase from −4.23% to −2.23%.

We conclude, that AWT is the most significantly affected metric comparing
FCFS and EASY in the analyzed setup. The influence of linear think time seems
to decrease for an increase of the size of the user population (Table 3).

Resulting Think Times. We also report on the resulting think times, since
this is a main feature of this simulation. Figure 6 shows the think times in the
KTH SP2 log, as well as in two simulations. The simulations cover a regular setup
with FCFS an EASY scheduler. A moving averages filter (window size = 50)
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Table 3. Comparison of results obtained for FCFS and EASY.

FCFS/EASY lin FCFS/EASY c120

Less Regular More Less Regular More

AWRT 16288.70 20095.50 23560.10 16456.53 20385.91 24634.64

15103.71 18633.92 22694.13 15581.23 19023.41 22402.40

−7.85% −7.84% −3.82% −5.62% −7.16% −9.96%

AWT 5591.77 9182.48 12625.58 5774.56 9432.35 13678.10

3230.84 5835.65 8992.57 3742.86 6166.18 8570.19

−73.07% −57.35% −40.40% −54.28% −52.97% −59.60%

ASD 267.98 384.44 437.01 285.74 358.37 436.85

269.94 356.78 415.25 274.14 350.30 427.32

0.73% −7.75% −5.24% −4.23% −2.30% −2.23%

WL 288544.95 404789.29 544911.61 271372.21 401689.01 542332.83

293323.09 431047.95 590471.88 275815.78 417931.71 559622.24

1.63% 6.09% 7.72% 1.61% 3.89% 3.09%

Fig. 6. Think times in different traces: Original KTH log, simulation with FCFS (reg-
ular), and simulation with EASY (regular).

smoothens the plots to improve the readability. The horizontal line indicates the
mean value in each plot.

We find that the KTH plot is more volatile than the simulated ones. One
main reason for this probably is the fixed runtimes in the simulation setup.
Greater variance in runtimes should lead to greater volatility in think times,
since think time is linearly dependent on these runtimes. Beside different volatil-
ity, the resulting average think times differ significantly from the original trace.
While the average think time in the KTH SP2 log is 7841.4 s, it is 6697.2 s for
the FCFS setup. The average reduces for the EASY setup to 5644.7 s, which is
15.7% less. Choosing more complex parameter sets and modeling different users
independently will decrease the gap between observed think times and the orig-
inal trace. Furthermore, the batch sampling process might influence the results.
Applying a strategy, which analyzes user- or batch-wise correlations between job
characteristics will probably lead to further changes in results.
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Discussion. A linear think time model impacts the performances of both
scheduling strategies, FCFS and EASY, significantly. We investigated an increase
in performance compared to constant think times regarding AWRT, AWT, and
ASD when comparable workload is processed. Dynamic think times seem to have
a balancing influence on the distribution of workload, since we investigated not
just an overall increase in performance, but impacts on performance are greater
for simulations using FCFS than for simulations using EASY.

Nevertheless, metrics are affected differently. We suggest to always consider-
ing different types of ways to rate a system quality, when performing feedback-
aware simulations.

The resulting think times already show some volatility, but they are not close
to those of the KTH trace. This is probably due to the simplifying assumptions
made for both, model and parameters.

In a situation of high demand and many queued jobs, favoring certain jobs
and delaying others allows to influence the think time function and therefore
manipulation of the balancing effect. This would mean that some users are
treated less fair than others compared to a first come first serve based policy,
but the metrics considered would be affected in a positive way. In how far this
is an appropriate outcome remains discussable. Choosing think time as a metric
of performance prevents such strategy.

4 Conclusion

We introduced a generative simulation environment to analyze feedback effects.
We modeled user reactions to system performances in form of dynamic think
times. In several analyses, we showed that the dynamic reaction leads to results,
which outperform the results obtained with static behavior. We conclude, that
modeling feedback effects is essential for simulation of user-system interaction
in high performance computing. The resulting think times are not as volatile
as from the original trace. Future work should consider more sophisticated job
sampling processes. The results must be verified in further studies and more work
of this type is important to simulate feedbacks appropriately. Even psychological
research should focus on the presented aspects to understand human behavior
in HPC environments more deeply.
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Abstract. Most applications running on supercomputers achieve only a
fraction of a system’s peak performance. It has been demonstrated that
co-scheduling applications can improve overall system utilization. In this
case, however, applications being co-scheduled need to fulfill certain cri-
teria such that mutual slowdown is kept at a minimum. In this paper
we present a set of libraries and a first HPC scheduler prototype that
automatically detects an application’s main memory bandwidth utiliza-
tion and prevents the co-scheduling of multiple main memory bandwidth
limited applications. We demonstrate that our prototype achieves almost
the same performance as we achieved with manually tuned co-schedules
in previous work.

1 Introduction

Most applications running on supercomputers achieve only a fraction of a sys-
tem’s peak performance, even though carefully optimized applications are able to
get close to this limit. It seems unlikely that code written by non-experts will pro-
vide higher system utilization in the foreseeable future, especially with computer
architecture permanently evolving, making it a moving target for optimizations.
Furthermore, expected trends such as increased core counts, specialization and
heterogeneity will make it even more difficult to exploit available resources.

A possible way to increase overall system utilization without optimizing the
code itself is co-scheduling, i. e., running multiple applications with different
resource demands on the same node1. Such an approach may reduce single appli-
cation performance. However, it increases overall application throughput of the
whole system and thereby produces more results with a given time frame or
energy budget. A major challenge for efficient co-scheduling is the detection of
an application’s resource requirements and predicting the applications perfor-
mance when co-scheduled with another application.

It is obviously not feasible for HPC compute centers to run every possible
application combination to decide on optimal co-schedules. As a possible solu-

1 A node is one endpoint in the network topology of an HPC system. It consists of
general purpose processors with access to shared memory. Optionally, a node may
be equipped with accelerators such as GPUs.
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tion, we present a mechanism to detect application memory bandwidth require-
ments at runtime and use Linux control groups (cgroups2) to suspend appli-
cations if multiple applications require a high amount of main memory band-
width. These mechanisms are implemented in a prototype application scheduler.
We present a set of schedules with various applications and benchmarks and
demonstrate that for these applications our scheduler works as expected and
co-scheduling can increase performance and save energy. For energy measure-
ments we present measurements of a whole node using a node-external power
distribution unit (PDU). The PDU, a MEGWARE3 Clustsafe unit, takes the
complete system power consumption including power supply into account. The
results are almost identical to manually tuned co-scheduling results we presented
previously [1].

The paper is organized as follows: First, Sect. 2 gives a detailed overview of
the hardware used for our measurements, followed by an introduction to our test
applications in Sect. 3. Section 4 analyzes the used applications and shows that
depending on the application characteristics using all cores does not necessarily
guarantee an optimal result. The following section (Sect. 5) discusses shared
hardware resources in an HPC node. Sections 6 and 7 introduce our new library
and scheduler. The next section discusses the results achieved with our scheduler.
The paper finishes with an overview on related work and conclusions, in Sects. 9
and 10, respectively.

2 Hardware Overview

In this section we will give a brief overview of the hardware used in this paper
and how energy consumption measurements were carried out.

All benchmarks were run on a 2 socket NUMA system. The system is
equipped with two Intel Xeon E5-26704 CPUs, which are based on Intel’s Sandy
Bridge architecture. Each CPU has 8 cores, resulting in a total of 16 CPU cores
in the entire system. One CPU core has support for two hardware thread con-
texts (HTC, often called Hyperthreading) resulting in a total of 32 HTCs for the
whole system. The L3 cache is shared among all CPU cores. The base frequency
of the CPU is 2.6 GHz, however, the CPU typically changes the frequency of
its cores based on the load of the system. Therefore, clock frequencies can vary
between cores at the same time. When a core is idle, the operating system (OS)
puts it into sleep state, which significantly reduces power consumption. In case
only a fraction of its cores are used, the CPU can increase core clock frequencies
(Intel Turbo Boost) up to 3.3 GHz. This is typically done to increase the perfor-
mance of applications not being able to utilize all available CPU cores, as the
CPU is less power efficient at higher frequencies. The so-called thermal design

2 https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
3 http://www.megware.com/
4 http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2

60-GHz-8 00-GTs-Intel-QPI

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
http://www.megware.com/
http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
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power (TDP) of each CPU in our system is 115 W, i.e. the CPU consumes about
115 W on average when all 8 cores are active.

Each CPU has its own set of memory controller with its own dedicated
DRAM memory, yet there is only a single memory address space. Each core
can access every memory location. Accesses to memory of a remote CPU, how-
ever, have a higher latency and can lead to contention. Memory is distributed
among the CPUs by the OS using a first touch policy, which is the default on
Linux (i.e. a memory page is allocated as close as possible to the core first writ-
ing to it). The location of the memory page is not changed unless explicitly
requested by the OS or the user application. Our system is equipped with a
total of 128 GB of RAM (64 GB per CPU). Furthermore there are both a QDR
Infiniband network card and an Ethernet network card in the system, however
these were idle during our measurements. All data required for the benchmark
were stored on a local SSD.

Our energy measurements were carried out using a MEGWARE Clustsafe,
which measures the energy consumed by the entire system. Clustsafe is a PDU
developed by the MEGWARE company and typically used in their HPC system
installations to monitor and control the power consumed by the system. Fur-
ther, accumulated energy consumption can be provided to developers and sys-
tem administrators by one counter per PDU outlet which can be queried across
the network. According to MEGWARE, Clustsafe measures energy consumption
with an accuracy of ±2%. We use Clustsafe to measure the energy consumption
on the primary side comprising all components of the system including cooling,
network devices and storage.

3 Test Applications

We used two example applications and two benchmarks in this paper:

– a slightly modified version of MPIBlast 1.6.05,
– an example application using the CG solver algorithm provided by the

LAMA [2] library,
– the PRACE6 application proxy benchmark Hydro, and
– the heat benchmark developed at Technische Universität München.

3.1 MPIBlast

MPIBlast is an application from computational biology. Using MPI-only, it is
a parallel version of the original BLAST (Basic Local Alignment Search Tool)
algorithm for heuristically comparing local similarity between genome or pro-
tein sequences from different organisms. To this end, the program compares
input sequences to sequence databases and calculates the statistical significance

5 http://mpiblast.org/
6 http://www.prace-ri.eu/

http://mpiblast.org/
http://www.prace-ri.eu/
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of matches. BLAST is used to infer functional and evolutionary relationships
between sequences as well as help identify members of gene families.

Due to its embarrassingly parallel nature using a nested master-slave struc-
ture, MPIBlast allows for perfect scaling across tens of thousands of compute
cores [3]. The MPI master processes hand out new chunks of workload to their
slave processes whenever previous work gets finished. This way, automatic load
balancing is applied. MPIBlast uses a two-level master-slave approach with one
so-called super-master responsible for the whole application and possibly mul-
tiple masters distributing work packages to slaves. As a result, MPIBlast must
always be run with at least 3 processes of which one is the super-master, one
is the master, and one being a slave. The data structures used in the different
steps of the BLAST search typically fit into L1 cache, resulting in a low number
of cache misses. The search mostly consists of a series of indirections resolved
from L1 cache hits. MPIBlast was pinned using the compact strategy, i. e., the
threads are pinned closely together filling up CPU after CPU.

Our modified version of MPIBlast is available on GitHub7. In contrast to
the original MPIBlast 1.6.0 we removed all sleep() functions calls that were
supposed to prevent busy waiting. On our test-system, this resulted in underuti-
lization of the CPU. Removing sleeps increased performance by about a factor
of 2. Furthermore, our release of MPIBlast updated the Makefiles for the Intel
Compiler to utilize inter-procedural optimization (IPO) which also resulted in a
notable increase in performance.

In our benchmarks we used MPIBlast to search through the DNA of a fruit-fly
(Drosophila melanogaster)8. The DNA was queried with 4056 snippets created
from itself.

3.2 LAMA

LAMA is an open-source C++ library for numerical linear algebra, emphasizing
on efficiency, extensibility and flexibility for sparse and dense linear algebra
operations. It supports a wide range of target architectures including accelerators
such as GPUs and Intel MIC by integrating algorithm versions using OpenMP,
CUDA and OpenCL at a node level, and MPI to handle distributed memory
systems. We used the latest development version of LAMA committed to its
development branch on Sourceforge (commit 43a7ed9).

Our test application concentrates on LAMA’s standard implementation of
a conjugate gradient (CG) solver for x86 multi-core architectures. This purely
exploits multi-threading (no MPI), taking advantage of Intel’s MKL library for
basic BLAS operations within the step of the CG solver. Each solver iteration
involves various global reduction operations, resulting in frequent synchroniza-
tion of the threads. However, static workload partitioning is sufficient for load
balancing among threads. Due to the nature of a CG solver, there is no way

7 https://github.com/jbreitbart/mpifast
8 ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/drosoph.nt.gz
9 http://sourceforge.net/p/libama/git/ci/43a7ed

https://github.com/jbreitbart/mpifast
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/drosoph.nt.gz
http://sourceforge.net/p/libama/git/ci/43a7ed
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to exploit caches by tiling or blocking. As involved data structures (vectors and
sparse matrices) do not fit into processor caches for reasonable use cases (which is
also the case in our setting), performance is fundamentally limited by main mem-
ory bandwidth and inter-core/node bandwidth for reduction operations. Often,
off-chip bandwidth capacity of multi-core CPUs can already be fully exploited
by 2 or 3 cores. Thus, for a CG solver implementation for such a multi-core
CPU, we expect to obtain the best performance with only a few cores, as using
more, only would result in higher congestion regarding memory accesses. We
use scattered pinning for the CG solver, i. e., threads were distributed equally
among the CPUs. This allows the CG solver to use the memory bandwidth of
both CPUs with less threads.

The CG solver of LAMA was applied on a matrix generated with LAMA’s
matrix generator. The sparse matrix has a size of 2000 ∗ 2000 elements and is
filled with a 2-dimensional 5-point stencil.

3.3 HYDRO

HYDRO is not a low-level benchmark, but an application proxy benchmark that
is being used to benchmark European Tier-0 HPC systems. HYDRO serves as
a proxy for RAMSES10 [4], which is a Computational Fluid Dynamics applica-
tion developed by the astrophysics division in CEA Saclay. HYDRO contains
all performance relevant algorithms and communication patterns of the origi-
nal application, but it is simplified and trimmed down to only about 1500 lines
of code (compared to about 150,000 lines of code of the original RAMSES).
Subsequently, HYDRO was ported to various programming languages and par-
allel programming models including Fortran, C/C++, OpenMP, MPI, hybrid
MPI/OpenMP, CUDA, OpenCL and OpenACC [5]. Our experiments are based
on the hybrid MPI/OpenMP C99 implementation. HYDROS’ performance, sim-
ilarly that of LAMAs CG solver is limited by main memory bandwidth, as its
data typically does not fit into L3 cache. For our tests we use two processes, i. e.,
one per CPU package, and increase the number of threads for each process as
this results in optimal performance for the benchmark.

3.4 Heat

Heat is a benchmark providing various implementations of an iterative Jacobi
method for solving the heat dissipation problem on a regular 2-D square domain.
The basic parallel implementation (called algorithm 2) uses OpenMP and two
simple loops to iterate across the matrix. As a result, it is inherently main mem-
ory bandwidth limited. In contrast, algorithm 9, a more sophisticated version
of this benchmark, uses cache-oblivious diamond tiling [6] and as a result is not
limited by main memory bandwidth, but compute bound.

10 http://www.itp.uzh.ch/∼teyssier/ramses/RAMSES.html

http://www.itp.uzh.ch/~teyssier/ramses/RAMSES.html
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4 Application Analysis

Figure 1 shows the scalability of all applications/benchmarks on our test-system.
The figure shows that the CG solver provides the best performance with 11
threads (42.7 s), however there is hardly any benefit compared to running with
8 threads (44.0 s). Overall, the CG solver only scales linearly up to 2 threads.
Hydro and heat – algorithm 2 behave almost identical with a minimum runtime
at 12 cores (Hydro) and 10 cores (heat – algorithm 2), but both hardly increase
performance with more then 8 cores (Hydro) and 6 cores(heat – algorithm 2).
MPIBlast scales almost linearly up to 16 CPU cores and heat – algorithm 9
scales almost linear up to 11 cores, but than hardly increases performance any

Fig. 1. The scalability of our test applications. We only use one HTC per core.

Fig. 2. Power required while running MPIBlast (Watts) and the energy required for
one run (Joule).
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Fig. 3. Energy required for one LAMA CG solver run (Joule). We only use one HTC
per core.

Fig. 4. Energy required for one Hydro run (Joule). We only use one HTC per core.

further. We only show even number of CPU cores for Hydro, as we use two
processes with equal number of threads.

Figure 3 shows both the average power used during the scalability runs in
Watt and the energy required to complete a single run of the CG solver in Joule.
The Watts measured by the different sensors are indicated by lines, and the total
energy integrated over the time required to complete a single run of the CG solver
(often called energy-to-solution) is indicated by bars. It should be noted that the
minimum energy-to-solution is not obtained when the CG solver provides the
best performance, but with 8 cores, instead. Again Hydro (see Fig. 4) behaves
almost identically, as well as heat – algorithm 2 (see Fig. 5).

Figure 2 shows the same information for MPIBlast. MPIBlast scales well,
and the minimal energy-to-solution is obtained when using 16 CPU cores. Heat
– algorithm 9 again has an optimal energy-to-solution at the point where it
performs best. Figure 6 shows energy-to-solution for heat – algorithm 9.
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Fig. 5. The energy required for one heat – algorithm 2 run (Joule). We only use one
HTC per core.

Fig. 6. The energy required for one heat – algorithm 9 run (Joule). We only use one
HTC per core.

5 Shared Hardware Resources Within an HPC Node

In this section we discuss the various shared hardware resources that can limit
co-scheduling performance.

At core level, each HTC has its own set of registers, but shares the instruc-
tion pipeline and both L1 and L2 caches with the second HTC of the same core.
The instruction pipeline has dedicated hardware for floating point, integer and
SIMD instructions, which can be co-issued with various constrains. As a result,
co-scheduling an integer and floating point heavy application can potentially
increase the utilization of the CPU core, as we have demonstrated before [1].
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All cores on the same package share the L3 cache, the interconnect between
CPU packages and main memory bandwidth. Co-scheduling multiple applica-
tions with a large L3 cache working set results in a high number of L3 cache
misses and drastically reduces performance [7]. The same holds true for main
memory bandwidth. Co-scheduling multiple applications with high main mem-
ory bandwidth requirements drastically reduces the performance of both appli-
cations. Based on our experience, the inter-package interconnect is typically not
a limiting factor for co-scheduling.

Overall, based on our experience both main memory bandwidth and L3 cache
usage conflicts can degrade co-scheduling performance up to a point at which
overall system throughput is worse than dedicated scheduling. Co-scheduling
different applications on a single CPU core can increase performance further, but
is not essential. As a result, for all shown measurements in this paper we only use
one HTC per CPU core. We leave out L3 working set detection for future work,
as Intel has just recently introduced its Cache Allocation Technology (CAT)11

that can be used to detect L3 cache working sets via hardware support, but is
not supported at our test system. Main memory bandwidth usage is the main
topic of this paper moving forward.

6 Main Memory Bandwidth Utilization (libDistGen)

Unfortunately current x86 CPUs do not provide any direct way to measure
main memory bandwidth utilization, i. e., there is no performance counter that
provides this information. As a result, we must deduce this information from
other measurements. We leverage the fact that with co-scheduling an application
never uses all CPU cores and we can use the other cores to run small benchmarks.

In previous work [7], we showed that effective co-scheduling can be predicted
based on stack reuse histograms12. Stack reuse histograms can be used to (esti-
mate) the cache working set as well as if an application is main memory band-
width limited. However, computing such a histogram typically results in multi-
ple orders of application slowdown, as the we must simulate a whole application
and analyze every memory access. As a result, we introduced a micro-benchmark
called DistGen that can be used to get similar results. DistGen can be config-
ured to produce memory accesses with certain stack reuse patterns. When co-
scheduled with an application, we can detect peaks in the stack reuse histogram
of the application based on the slowdown of DistGen. A detailed analysis can be
found in [7], however all previous work was designed for off-line analysis.

Based on the original DistGen, we now introduce libDistGen, a library
designed to be incorporated into schedulers or agents that collect on-line infor-
mation to be used by the scheduler. libDistGen’s interface is simple and consists
of just three functions:
11 https://www-ssl.intel.com/content/www/us/en/communications/cache-monitoring

-cache-allocation-technologies.html
12 The Stack Reuse Distance, introduced in [8], is the distance to the previous access

to the same memory cell, measured in the number of distinct memory cells accessed
in between. For the first access to an address, the distance is infinity.

https://www-ssl.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
https://www-ssl.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
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distgen init() is called to initialize the library. The system must be idle when
this function is called, as we run various benchmarks to assess the maximum
performance of the system. Depending on the numbers of cores in the system
and the available memory bandwidth, this function call can take up to a few
minutes to complete.

distgen membw available() estimates the percentage of the currently avail-
able main memory bandwidth for a given set of CPU cores compared to
maximum available memory bandwidth of these CPU cores. The runtime of
this function call is less than a second.

distgen membw max() is mainly available for debugging purposes. It returns
the maximum available memory bandwidth for a given set of CPU cores of
the system in GB/s.

distgen membw available() is implemented by processing an array with the
CPU cores for which the available main memory bandwidth should be estimated.
The array is larger than the L3 cache of the CPUs, so all accesses go to main
memory. We measure the runtime of the accesses to the array and compare these
to measurements made during distgen init(). It is important to note, that these
memory accesses will eventually complete, even if all other cores are running
memory bandwidth limited code. As a result, we will never directly measure an
available memory bandwidth of 0%, but memory bandwidth is typically equally
distributed among the cores at hardware level if all cores execute memory band-
width limited code. distgen membw available() is designed to consume as much
main memory bandwidth as possible by doing hardly any computation and only
accessing one byte per cache-line. These characteristics have to be considered
when interpreting the return value of distgen membw available() in a scheduler.

libDistGen is available as open source on GitHub13.

7 Poor Mans Co-Scheduler (poncos)

The Poor Mans Co-Scheduler (poncos) is our scheduler prototype built on top
of libDistGen and libponci14, which is a small wrapper for Linux control groups
(cgroups). Cgroups can be used to limit which CPU cores a set of applications
are allowed to use as well as transparently freeze and restart these applications.
Cgroups provide plenteous of other options and are typically used to implement
containers (like e. g., Docker15), but we only use the functionality named before.

For now, poncos reads a job queue from a file using a straightforward co-
scheduling algorithm to run the applications listed in this file. Our algorithm
briefly follows a scheme of:

1. start the first application on a subset of the available CPU cores
2. wait until the initialization phase of that application has completed (see

description below)
13 https://github.com/lrr-tum/libdistgen
14 https://github.com/lrr-tum/ponci
15 https://www.docker.com/

https://github.com/lrr-tum/libdistgen
https://github.com/lrr-tum/ponci
https://www.docker.com/
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3. use distgen membw available() on the remaining free CPU cores to detect
the available memory bandwidth for the free cores

4. start the next application in the queue
5. wait until the initialization phase of the new application has ended
6. pause the old application (using cgroups)
7. use distgen membw available() on the CPU cores of the paused application

to detect of available memory bandwidth
8. restart the old application
9. decide if both applications can be co-scheduled based on the available mem-

ory bandwidth
(a) yes: wait until one application has completed
(b) no: pause the new application and resume it after the old one has been

completed
10. continue with 4. until the queue is empty

The current form of the algorithm expects a uniform behavior of the appli-
cation during runtime. This is not true for all HPC applications, but seemingly
for a large fraction of them, as other tools like for example [9] rely on the same
behavior and work fairly well. In general, phase detection in applications should
not be done via libDistGen as this requires the application to be paused, but
phase detection should be done using hardware performance counters as demon-
strated by Chetsa et al. [10]. However, libDistGen can also be used to provide
information per application phase (if the phase is long enough) and this infor-
mation can be used to decide if co-scheduling should be applied. For example,
one could decide to only co-schedule applications if at maximum one of them
has a memory bandwidth limited application phase.

We currently do not detect the end of the initialization phase, but rely on a
timer that fits well with our test applications. However, in general this can be
done via the mechanisms described by Chetsa et al. [10] as well.

As mentioned before, distgen membw available() will never return 0% mem-
ory bandwidth available and one has to be careful when interpreting the return
value. When calling distgen membw available() to estimate the available memory
bandwidth on half of the system’s CPU cores, 5016% means that there is memory
bandwidth limited code running on the other half of the available CPU cores and
one should not co-schedule another memory bandwidth limited application. Our
scheduler currently prevents co-scheduling if the sum of all applications’ memory
bandwidth estimations is above 90%. We use 90% instead of 100%, as we already
noticed a decrease in performance once congestion on main memory gets closer
to the maximum. However, this is expected behavior as the current hardware
does not guarantee fair resource distribution and slowing down a particular core
can decrease overall application performance due to synchronization.

Poncos is available as open source on GitHub17.

16 The theoretical minimum of distgen is at about 33%, as distgen only reads from
main memory and the other half can issue both reads and writes.

17 https://github.com/lrr-tum/poncos/tree/one-node-only

https://github.com/lrr-tum/poncos/tree/one-node-only
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8 Evaluation

For our evaluation we split our test system in two scheduling domains each
consisting of 4 CPU cores per socket, i. e., a total of 8 cores. We choose this setup,
as memory bandwidth limited applications can typically not efficiently use more
than half of the cores of a socket. More cores only adds to the congestion on the
memory controller and decreases performances, as discussed in Sect. 4.

In general, libDistGen works as expected with each possible pair of the appli-
cations and benchmarks listed in Sect. 3. Table 1 lists the estimated available
main memory bandwidth required for the application, and based on the algo-
rithm described in the previous section, we can deduce that poncos will prevent
the co-scheduling of

– Hydro
– Lama
– Heat with algorithm 9

with each other, whereas all other combinations are fine. The resulting schedules
based on our setup is rather straight forward and we only show the results of 2
input queues.

The first queue only consists of the two heat variants:

– heat – algorithm 2 (heat -r 9000 -i 5000 -a 2 -t 8)
– heat – algorithm 9 (heat -r 9000 -i 5000 -a 9 -t 8)
– heat – algorithm 9 (heat -r 9000 -i 5000 -a 9 -t 8)
– heat – algorithm 2 (heat -r 9000 -i 5000 -a 2 -t 8)
– heat – algorithm 9 (heat -r 9000 -i 5000 -a 9 -t 8)
– heat – algorithm 9 (heat -r 9000 -i 5000 -a 9 -t 8)

Figure 7 shows the runtime of queue one. In co-scheduling we only show the
critical path of the scheduling. The whole schedule was completes after both runs
of heat – algorithm 2 have ended, as all runs with heat – algorithm 9 could be co-
scheduled with an run of heat – algorithm 2. As we can see, co-scheduling in this
case increases overall application throughput, even though heat – algorithm 2
itself runs slower. The total energy consumption (see Fig. 8) of co-scheduling is

Table 1. The main memory bandwidth available for half of the cores according to
libDistGen, while the other half is running the listed application. Estimated usage for
the application is compute via 1 − (distgen membw available() − 0, 33)/(1 − 0, 33).

Application distgen membw available() Estimated usage for the application

Hydro 52.7 70.5

Lama 46.6 79,7

MPIBlast 92.5 11.1

Heat – Algorithm 2 41.0 88.1

Heat – Algorithm 9 76.5 35.1
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Fig. 7. The runtime of queue 1 with both dedicated scheduling and co-scheduling.

Fig. 8. The energy consumption of scheduling queue 1 with both dedicated scheduling
and co-scheduling.

also better than dedicating all 16 cores to the individual applications, but just
dedicating 8 cores provides a better energy-to-solution.

Our second example queue consists of:

– LAMA CG solver
– MPIBlast
– LAMA CG solver

The Figs. 9 and 10 show the total runtime and energy-to-solution of the
schedules of queue 2. In Fig. 9 we again only show the runtime of the critical
path, i. e., at the beginning LAMA is running by itself while we wait for the
initialization phase to be completed and than run our measurements. After that
MPIBlast is started and runs until the completion of the queue. Both LAMA
runs are finished before the MPIBlast run is complete. We see a notable decrease
in both runtime and energy consumption when co-scheduling MPIBlast and
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Fig. 9. The runtime of queue 2 with both dedicated scheduling and co-scheduling.

Fig. 10. The energy consumption of scheduling queue 2 with both dedicated scheduling
and co-scheduling.

LAMA. These results match well with our previous manual fine tuning of the
MPIBlast/LAMA co-schedule previously published in [1].

Both queues have been selected so that co-scheduling is possible. In case the
queue does not allow for co-scheduling, we expect to see a small decrease in
performance and a small increase in energy consumption due to the additional
measurements. However, these effects seem to be within the order of measure-
ments noise, as we could not directly measure any clear overhead.

9 Related Work

On server and desktop systems with multiple cores or hardware thread con-
texts simultaneous scheduling of different applications is the norm. However, in
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HPC systems, most larger compute centers hardly apply any co-scheduling. Co-
scheduling is typically used only for purely sequential jobs which cannot utilize
all cores in a single node.

A different approach with the same goal as co-scheduling is to use power
capping and dynamic voltage frequency scaling (DVFS) to reduce the power
consumption of existing systems. Such an approach can obviously not increase
the overall throughput of an HPC system, but increase its energy efficiency. For
example Wang et al. [11] discuss a scheduling heuristic that uses DVFS to reduce
overall system power consumption. The Adagio [12] tool uses DVFS to reduce
the idle time of the system by analyzing the time spent in blocking MPI function
calls and decreases the performance of CPU cores accordingly.

The Invasive Computing research project [13] works on an approach to have
applications dynamically react to changes of their resource requirements and
potential request additional resources or return resources that are no longer
used. Schreiber et al. [14] for example present applications that automatically
balance their work load.

Another approach to increase system efficiency is to work on the infrastruc-
ture used in the HPC centers. Auweter et al. [15] give an overview of this area
and describe how a holistic approach including monitoring the various jobs can
help to improve efficiency without modifying the applications itself.

Characterizing co-schedule behavior of applications by measuring their slow-
down against micro-benchmarks is proposed by different works. MemGen [16] is
focussing on memory bandwidth usage, similar to Bandwidth Bandit [17] which
is making sure not to additionally consume L3 space. Bubble-Up [18] is similar
tool accessing memory blocks of increasing size. All these tools are not designed
for optimizing the schedule at runtime.

10 Conclusions and Future Work

In this paper we presented a library for on-line application analysis to guide co-
scheduling and present a basic prototype scheduler implementation, which shows
that this information can actually be used to implement co-scheduling. Our
approach works well with all tested applications and overall system throughput
and energy consumption with co-scheduling varies based on the input.

In this paper, we only concentrated on main memory bandwidth, but other
resources like L3 cache usage are also important to identify if co-scheduling
should be applied. In future work, we will concentrate on L3 cache usage. Fur-
thermore, this work only explores co-scheduling on a single node. We plan to
extend our experiments to a multi-node setup.

As part of the FAST project18 we plan to integrated our approach with an
improved Slurm19 scheduler that uses predetermined application statistics and
runtime measurements to co-schedule applications.

18 http://www.fast-project.de/
19 http://slurm.schedmd.com/

http://www.fast-project.de/
http://slurm.schedmd.com/
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Abstract. Space-sharing is regarded as the proper resource manage-
ment scheme for many-core OSes. For today’s many-core chips and par-
allel programming models providing no explicit resource requirements,
an important research problem is to provide a proper resource allocation
to the running applications while considering not only the architectural
features but also the characteristics of the parallel applications.

In this paper, we introduce a space-shared scheduling strategy for
shared-memory parallel programs. To properly assign the disjoint set
of cores to simultaneously running parallel applications, the proposed
scheme considers the performance characteristics of the executing (par-
allel) code section of all running applications. The information about the
performance is used to compute a proper core allocation in accordance
to the goal of the scheduling policy given by the system manager.

We have first implemented a user-level scheduling framework that
runs on Linux-based multi-core chips. A simple performance model based
solely on online profile data is used to characterize the performance scal-
ability of applications. The framework is evaluated for two scheduling
policies, balancing and maximizing QoS, and on two different many-core
platforms, a 64-core AMD Opteron platform and a 36-core Tile-Gx36
processor. Experimental results of various OpenMP benchmarks show
that in general our space-shared scheduling outperforms the standard
Linux scheduler and meets the goal of the active scheduling policy.

1 Introduction

Modern operating systems (OSes) are still based on time-shared scheduling tech-
niques originally developed for single-core machines where – despite local run
queues – one system kernel maintains the entire information about the system
and manages all running tasks in the same manner. At the same time, cur-
rent parallel programming models such as OpenMP [11], TBB [23], Cilk [7], or
OpenCL [16] assume that each application can utilize all physically available
hardware resources without considering the current system workload.

In such a disjoint runtime model, OSes lack good scheduling policies when
multiple parallel programs are executed simultaneously. Averse effects of this
approach include not only a low cache utilization caused by cache cold misses

c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-61756-5 9
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due to context switches of an oversubscription of threads to single cores but also
performance interference caused by scheduling threads in a time-shared man-
ner. For example, the standard Linux scheduler, the Completely Fair Scheduler
(CFS), provides the same execution chances for each task [21]. Each task’s virtual
(execution) time is accumulated in proportion to the task priority. This per-task
resource management can cause severe performance interference between appli-
cations comprising a large number of threads.

A promising approach to address this issue is space-shared resource alloca-
tion [28]. In the OS community, several research groups have introduced exper-
imental OS prototypes [5,18,30]. The presented prototypes commonly follow
the principle of space-partitioning for scalable many-core resource management.
In this new model, the role of the OS is divided into two parts. The coarse-
grained resource manager provides space-shared resource multiplexing while
the application-specific fine-grained resource manager manages an application’s
resource management such as, for example, assigning the application’s tasks to
the allocated cores. Although the space-shared OSes introduced new OS design
principles, the scheduling and resource allocation schemes have lots of open
issues to be solved. For traditional parallel job scheduling, a lot of space-shared
scheduling schemes such as First-come First-served or Backfilling [14,17,20] have
been proposed. However, the prior art mostly focuses on supercomputers or dis-
tributed systems where the resource requirements of parallel jobs are typically
explicit. For today’s many-core chips and parallel programming models that
provide no explicit resource requirements, an important research issue of space-
shared scheduling is thus to provide a proper resource allocation to the running
applications while considering not only the architectural features but also the
characteristics of the parallel applications.

In this paper, we introduce a space-shared scheduling strategy for shared-
memory parallel programs. Many parallel applications exhibit varying resource
requirements and performance characteristics during the execution lifetime of
the application. It is therefore increasingly important to consider an application’s
dynamically changing workload. The proposed scheduling scheme considers all
parallel code section of an application. To properly assign the core resources, the
scheduler considers the performance characteristics of the currently executing
parallel code sections of all running applications. Based on profiled performance
information, the scheduler allocates the core resources in accordance with the
active scheduling policy which is given by the system manager.

We have first implemented a user-level scheduling framework that performs
the proposed scheduling strategy for OpenMP programs on Linux-based many-
core systems. In shared-memory systems, the memory access contention is one
of the major limiting factor of performance scalability. By extracting the shared-
memory access patterns, a simple performance model is used to characterize the
performance scalability of running applications. In this work, we implement two
Quality-of-Service (QoS) based scheduling policies: Equalizing QoS, and Maxi-
mizing QoS. The scheduling framework is evaluated for various OpenMP bench-
mark scenarios on two different many-core platforms, a 64-core AMD Opteron
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NUMA system and a 36-core Tile-Gx36 processor. The empirical studies in this
paper show that our space-sharing scheme outperforms the current Linux stan-
dard scheduler and confirm space-sharing has potential as a resource manage-
ment scheme for current and future many-core systems.

The remainder of this paper is organized as follows. Section 2 discusses related
work. In Sect. 3, we introduce our approach to dynamic space-shared scheduling.
Section 4 describes our scheduler framework including the performance model
and the scheduling algorithm. In Sect. 5, we evaluate our scheduling and show
how our performance model and scheduling scheme meet the requirements of
the active scheduling policy. Section 6 discusses where we see additional room
for further performance improvement and the research direction towards better
scheduling. Finally, we conclude this paper in Sect. 7.

2 Related Work

For shared-memory many-core systems several empirical scheduling techniques
have been proposed that consider applications’ performance characteristics.

Moore and Childers [19] introduce a utility model to characterize an appli-
cation’s scalability and performance interference between multi-threaded appli-
cations based on offline training. Their model finds the performance plateau of
an application and uses the information to choose the thread counts for multi-
threaded applications. Grewe et al. [15] decide thread counts of OpenMP appli-
cations based on prediction. The prediction relies on machine learning for the
selected performance features. Both works decide the proper thread count when
a parallel program is launched, but they do not consider varying workloads in an
application, and their techniques rely on additional efforts for offline training.

For more fine-grained resource management, Raman et al. [22] propose Par-
cae, a compiler-assisted dynamic tuning system. Their compiler generates flexible
codes for data- and pipeline-parallelism such that they can change the degree of
parallelism at runtime. They find the proper thread count by iteratively trying
different thread configurations based on a hill-climbing algorithm. However, the
hill-climbing approach often fails to find globally optimal thread counts. Emani
et al. [13] use a machine learning technique and compiler-assisted information
to predict better OpenMP thread counts. On the other hand, Creech et al. [10]
introduce SCAF that decides the proper thread count of OpenMP parallel appli-
cations when it enters a parallel region. The scalability of an OpenMP applica-
tion is determined by creating and running a serial process concurrently with
the parallel section. An online profiler then compares the progress of the ser-
ial process to that of the multi-threaded process based on the instructions per
cycle count. Since SCAF does not change the parallelism once the number of
threads has been determined, their method is useful for iterative programs in
that the serial process is executed once when a parallel section is first executed.
These works aim at improving system performance by dynamically tuning the
parallelism, but the techniques require application runtime support to dynami-
cally manage the degree of parallelism. For HPC (High Performance Computing)
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systems, Breitbart et al. [8] perform co-scheduling of multiple applications on
a multi-core node. To maximize system throughput their scheduler automati-
cally detects an application’s main memory bandwidth utilization. On the other
hand, we focus on a spatial mapping of parallel programs for managing QoS of
applications and do not consider changing active thread counts of applications.

Sasaki et al. [24] consider the scalability of multiple multi-threaded applica-
tions and perform a spatial partitioning without offline information. The work
also focuses on balancing performance of co-located applications via spatial par-
titioning. To understand the performance scalability of applications, they run the
same application on three different core allocations at runtime and measure how
the application’s IPS (Instructions Per Second) changes for the different resource
configurations. In addition, they detect applications’ phases to deal with vary-
ing workload characteristics. Our scheduling scheme, on the other hand, require
a communication API between the space-shared scheduler and the application
runtimes. We also aim to characterize the application’s performance scalabil-
ity without runtime reconfiguration and adaptively change the scheduling goals
according to the input given by the system manager.

3 The Space-Shared Scheduling Strategy

In this section, we introduce a space-shared scheduling strategy for schedul-
ing multiple shared-memory parallel applications. It is obvious that, even when
strictly adhering to a space-shared resource allocation scheme, the allocations
are of temporal nature and must be re-evaluated in order to efficiently utilize
the given hardware and achieve satisfactory performance. In general, applica-
tions can start and end at any given time which will require a re-computation
of the current resource allocation. More importantly, the resource requirements
of a parallel application are likely to vary over the course of its execution. For
example, in sequential sections, one core should be sufficient whereas the different
parallel regions of the application may each exhibit divergent characteristics and
will thus require a different resource allocation. Assigning the correct amount of
resources to all applications at any given time while satisfying both the overall
system’s and each application’s performance goals is thus undoubtedly a chal-
lenging problem.

3.1 Interaction with Application Runtimes

Parallel applications consist of several parallel and sequential regions, and the
different parallel applications typically posses divergent characteristics [4]. To
consider the varying performance characteristics of parallel applications, we pro-
pose an approach in which the space-shared scheduler interacts directly with the
parallel programming model runtimes of the applications.

A näıve but easy approach is to use synchronous communication between
the scheduler and the application runtimes. Figure 1(a) illustrates the approach.
System-wide resource re-allocation is performed whenever an application enters
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(a) Synchronous scheduling (b) Asynchronous scheduling

Fig. 1. Adaptive space-shared scheduling scheme.

or exits a parallel region. However, this synchronous scheduling model suffers
from a number of problems. The synchronous communication model serializes
accesses of parallel applications to the scheduler, thereby effectively limiting
parallelism. In addition, re-evaluating the resource allocations whenever one of
the concurrently executing parallel applications enters or exits a (possibly very
short) parallel region leads to an unacceptably high overhead of the scheduler.

A better approach is to perform asynchronous communication and scheduling
as illustrated in Fig. 1(b). In this scheme, parallel applications communicate with
the scheduling runtime by sending their status (i.e., events about entering and
exiting parallel regions) to the scheduler and asynchronously execute their jobs.
The scheduler periodically wakes up to re-evaluate the current resource allocation
of the simultaneously running application. Since re-scheduling and re-allocating
resources to applications are comparatively expensive operations, re-scheduling
is not performed at every wake-up but only if the system state is stable for a long
enough period of time. Without that condition, an application executing a short
parallel regions in a loop might trigger a system-wide re-scheduling of resources.
Section 5 discusses the wake-up frequency and defines what we consider to be a
stable system state. The proposed scheduling approach does not limit progress
of parallel applications thanks to the asynchronous communication model and,
at the same time, is able to reduce frequent inefficient resource re-allocations.

We need to define a method to communicate with the applications or the
application-specific runtimes. Applications have to notify the global scheduler
about their state. A parallel application is either executing a sequential code
section or in one of its parallel sections. We do not distinguish between different
sequential code sections, however, the scheduler considers the different parallel
sections of an application. The execution state of an application from the view-
point of the scheduler is defined as (a) sequential or (b) by the unique identifier
of a parallel section.
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The calls to the scheduler can be inserted manually or automatically in to the
source code, made by a customized parallel programming runtime library, or by
intercepting the application’s calls to the runtime through dynamic library inter-
positioning. In this paper, we have implemented the last approach for OpenMP
applications, dynamic library interpositioning, because it is automatic and nei-
ther requires access to the application’s source code nor modifications to the
parallel runtime library. An easy way to uniquely label parallel sections is to use
the address of the parallel code section. Section 4.2 elaborates the details of this
approach.

3.2 Application Runtimes and Programming Malleability

Since no application shares core resources with any other application in a space-
shared approach, we first need to reclaim the cores from an application before re-
distributing them to other applications. This functionality has to be implemented
without much runtime overhead in order to be beneficial.

To add or reclaim cores from an application, we need to consider what pro-
gramming model is used. The most prominent parallel programming models are
thread-based fork-join model (e.g., OpenMP), task-parallel models (e.g., Cilk,
TBB, or OpenMP 3.0) and data-parallelism (e.g., OpenCL, CUDA).

In the OpenMP fork-join model, it is impossible to reduce or increase the
number of parallel threads once the worker threads have been created and
assigned with a portion of the workload at the entrance of a parallel region
unless additional compiler or runtime support is provided. On the other hand,
task-parallel models and data-parallel models present opportunities to reclaim
and reassign resources during the execution of a parallel section. For example,
task-parallel programming models such as Cilk or TBB have a scheduler which
distributes tasks for all cores. Also, data parallel programming models such as
OpenCL, a possibly large number of work units (termed work groups in the
OpenCL model) are distributed to a pool of worker threads by the OpenCL
work group scheduler. For those programming models, increasing or decreasing
the number of active worker threads is easily achieved.

In this paper, we tackle the OpenMP programming model and thus focus on
scheduling a fixed number of threads. Instead of adjusting the number of threads,
we employ a thread-migration based approach. We allow different applications
to share core resources temporarily during a migration phase until the required
migrations have finished. Changing the thread count during execution is outside
of the scope of this paper and part of future work.

3.3 Performance Model and Scheduling Policies

A space-shared scheduler needs to provide sufficient resources to all running
applications while considering each application’s characteristics and hardware
features at the same time. Also, the resource manager should be able to compute
a proper resource allocation according to the specific scheduling policy. In order
to do so, the scheduler needs information about the applications’ runtime profiles.
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There are some important features that affect an application’s performance
scalability. Memory access patterns, inter-core communication patterns, and the
(dynamic) working set input size can all affect the scalability of an applica-
tion. To understand the performance characteristics of parallel applications, prior
works usually employ offline training, [19], machine learning [13,15], extracted
information through static program analysis [29], runtime resource reconfigu-
ration [10,22,24], or analytical approaches such as, for example, resource con-
tention modeling [26,27].

In this work, we implement a performance model that solely relies on online
profile data. The model assumes that the memory access contention is the major
limiting factor of performance scalability. Section 4.3 shows this assumption is
valid to capture the trend of an application’s scalability. More sophisticated
shared resource contention modeling and additional performance information
from applications’ annotation or static analysis can potentially obtain more
accurate and versatile performance models and allow implementation of more
sophisticated scheduling policies. Better analysis techniques and policies are part
of future work.

4 The Scheduling Framework

In this section, we discuss the details of the proposed scheduling framework that
performs dynamic space-shared resource allocation as outlined in Sect. 3. The
framework is implemented on Linux-based many-core platforms and performs
scheduling for GNU-OpenMP applications. Other parallel programming mod-
els can be easily supported by defining and implementing the communication
interface into the respective parallel programming library.

Figure 2 illustrates the system software stack of the framework. We explain
each component in the subsections below.

Fig. 2. The scheduling framework.
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4.1 Core Mapping Scheme

In our scheduling framework, the scheduler allocates a cluster (a set of comput-
ing cores that share a common last-level cache (LLC)) as the default scheduling
granularity. Exceptions are allowed in two cases: (1) when a serial section is
scheduled or (2) when the number of running applications is bigger than the
number of clusters in the system. This is sensible because each application can
benefit from cluster-level management in terms of LLC sharing.

Furthermore, the core allocator tries to maintain shapes of minimal perimeter
inside each cluster. This has a positive effect on inter-core communication
and also reduces the number of migrations at runtime caused by resource re-
allocations. For some architectures, especially mesh-style NoCs, the overhead of
the cache coherence protocol is high if the communication distance is long.

4.2 Communication Library

The runtime environment manager is implemented in a component called moni-
tor (Fig. 2). This monitor module runs as a daemon and interacts with the appli-
cation runtimes, the space-shared scheduler and the online profiler. The monitor
periodically tries to perform system-wide scheduling if all running applications
execute in a specific parallel/serial code region for a sufficiently long enough
time. The wake-up frequency of the scheduler is an parameter that depends on
the target architecture platform.

Our scheduler needs to keep track of the contexts of all running applications.
In other words, the scheduler requires information whether a given application
is currently executing in a sequential or a parallel section. Since different parallel
sections exhibit different performance characteristics, it also needs to distinguish
between the different parallel sections.

In our implementation, the current context of an application is stored to a
global memory region that is shared with the scheduler. An OpenMP application
calls GOMP parallel start and GOMP parallel end when it enters and exits a
parallel region, respectively. Our framework intercepts these calls through library
interpositioning. The function pointer of the parallel section provided to the
GOMP parallel start upon entering a parallel code section is used to distinguish
between different parallel sections.

4.3 Online Profiler

A proper performance model is required in order to compute resource allocations
to the different parallel applications with respect the current scheduling policy.
Our online profiler collects important performance features by monitoring the
hardware’s performance counters and computes a performance model for each
encountered parallel code section of every application.

Our model is based on the idea that shared resource contention among
threads is one of important factors that affect applications’ performance scala-
bility. Tudor et al. [27] introduced an analytical memory contention model for
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shared-memory parallel programs. In their work, the authors show that shared-
memory resource contention can be modeled using an M/M/1 queue. We apply
this idea to efficiently characterize the performance characteristics of the con-
currently executing applications.

Memory Contention Performance Model. The performance (i.e., speedup)
model is organized as follows. The specific amount of work that a parallel section
of an application performs is denoted by the work cycles W . If a parallel section
uses N cores then the work cycles are divided by N . If the threads are com-
pletely independent, i.e., in the absence of inter-core communication or access to
shared resources, the application’s parallel section speedup becomes N . Most
applications, however, access shared resources such as memory. The shared-
resource contention is denoted by C(N). In our model, we currently consider only
memory-level contention. We also don’t take into account other features such
as load-imbalance and data dependencies because experiments with OpenMP
benchmarks (especially in a parallel section) exhibit a much larger sensitivity to
the contention in memory accesses C(N).

To estimate the speedup, we measure the per-core last-level cache miss rate
of each application, denoted LLC. In addition, we compute LLC ALL, the sum
of the total LLC miss rates from all applications running in parallel. If N cores
are assigned to an application, the speedup model is given as follows:

SpeedUp(N,LLC,LLC ALL) =
W + C(1)

W/N + C(N)
(1)

To compute the shared memory contention overhead C(N), we first estimate
how many memory accesses happen during the given work cycles (W/N ∗LLC).
Then we can compute the total number of cycles required to finish the given work
cycles by multiplying the expected memory service time (T (N)) (i.e., latency
cycles) as shown below:

C(N) =
W

N
∗ LLC ∗ T (N) (2)

The service time is modeled by an M/M/1 queuing model. In this work, we
assume that if the system contains a number of memories, the memory accesses
are evenly distributed (interleaved) to each memory. We further assume that the
memory service times are the same regardless of the distance between memory
controllers and cores in the interleaved allocation scheme. The memory latency
cycles without any contention are modeled as L and the number of memories is
represented by M .

T (N) =
1

service rate − request rate
= 1/(

1
L

− LLC ALL

M
) (3)

This model efficiently generates a logarithmic scalability curve by modeling
the increased contention overhead. However, this model is not theoretically valid
for our problem. Foremost, the model assumes an infinite number of resource
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competitors, but we only have a finite number of cores. This possibly incurs neg-
ative or impractically large estimated latency cycles because the simple regres-
sion (LLC ∗N in Eq. 3) increases LLC without considering the service response
(the response time reduces the LLC miss rate of a queuing competitor). In addi-
tion, in modern memory architectures, there are a number of distributed con-
tention points. To overcome this limitation, we use a threshold for the delay.
Once the estimated latency reaches the pre-determined threshold in memory-
intensive applications, the estimated latency is fixed to the threshold and the
scalability curve becomes linear.

Examples of the Performance Model. Figure 3 shows some examples of the
model. The baseline in Fig. 3(a) is obtained by running the applications with
a varying number of cores on the target machine, a 64-core AMD architecture.
Each benchmark is then executed standalone on all available cores and the LLC
miss-rate is obtained by monitoring the performance counters. The modeled
performance scalability is depicted in Fig. 3(b). Linear performance scalability
in the graph is caused by the capping the maximum service delay with a threshold
as outlined above.
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Fig. 3. Examples of the performance model. EP is taken from NPB3.3 [25], the others
(BP-backpropagation, HOT-hotspot, STREAM-streamcluster) are from Rodinia [9].
We show the results of benchmarks containing one or two parallel sections (PS).

The performance model does not capture various performance features such
as data dependencies, inter-core communication or synchronization patterns.
However, as long as the relation between the different applications’ scalabilities
are predicted correctly, the absolute error of the model is not of great importance
in order to compute a resource allocation.

Performance Counter Measurement. The performance indicators required
by the performance model are obtained by monitoring the hardware performance
counters. We measure LLC miss events and total cycles.
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Our framework is tested on a 64-core AMD Opteron platform and the Tile-
Gx36 platform. For the AMD platform [3], the LLC miss event counters are
provided on the AMD NorthBridge and we can obtain the count using the
“NBPMCx4E1 L3 Cache Misses” [12] as an event descriptor. The total num-
ber of cycles is a generalized CPU event which is already defined and measured
in the Linux kernel. On the other hand, the Tile-Gx36 does not have a spe-
cific last-level cache. Instead, the architecture uses DDC (Dynamic Distributed
Cache) techniques [2] in which local cache misses try to fetch their data from
distributed caches. For the Tile-Gx36 NoC architecture, we consider local cache
misses (from local cache to memory) and remote cache misses (from remote
cache to memory) at the same time. LLC is computed as the sum of the two.

4.4 Scheduling Algorithm

The main advantage of the performance model is that we can design differ-
ent scheduling algorithms to accommodate for specific scheduling policies. In
this work, our scheduling policies are based on the QoS which we define as the
normalized speedup compared to executing the application on fully-available
hardware resources without co-located applications. QoS is computed as follows:

QoS =
SpeedUp On Given Resources

SpeedUp Executed Standalone
(4)

To maintain a polynomial-time algorithm, the scheduler implements greedy-
pareto policies (e.g., maximize QoS, balancing QoS). The algorithm first reserves
at least one allocation unit to each application. Whenever the scheduler reserves
a new allocation unit, it takes the best (pareto) solution according to the schedul-
ing policy.

Algorithm 1 decides the proper amount of core resources based on the balanc-
ing QoS policy. The computational complexity is O(N2M) where N is the num-
ber of applications and M is the number of allocation units. This is an acceptable
overhead because the number of executed applications is usually small. Also,
we allocate cluster as a default allocation granularity (refer Sect. 4.1) which
reduces the complexity as well.

After the core resources for all applications have been reserved, we consider
core clustering among applications when more than two applications are packed
into one cluster. For example, the Tile-Gx36 has 36 tiles in a single chip because
the machine has no specific LLCs. In addition, on the tiled architecture, the
clustering benefits from dynamic distributed caching technique because it can
reduce the cost of maintaining cache coherence.

Another important consideration is to reduce the number of thread migra-
tions (i.e., re-assignment to a different core) caused by the system-wide reschedul-
ing. In this work, we have implemented a rather simplistic approach in which
the scheduler always allocates the cluster/core resources to applications in the
same order in order to minimize the number of migrations.
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Algorithm 1. Scheduling Policy: Balancing QoS
N = # of applications in the system
M = # of computing cores in the system
CPU[N] = # of reserved cores for each application, initialized to 1
LLC[N] = per-core LLC miss rate of each application

while sum(CPU) < M do
best app = −1
min variance = ∞
for i = 0 to N − 1 do

QoS[N] = estimated QoS for each applications
LLC ALL = summation of LLC miss rate from all applications
for j = 0 to N − 1 do

if i == j then
LLC ALL += LLC[j]*(CPU[j]+1)

else
LLC ALL += LLC[j]*CPU[j]

for j = 0 to N − 1 do
if i == j then

QoS[j] = SpeedUp(CPU[j]+1, LLC[j], LLC ALL) / SpeedUp(M, LLC[j], LLC[j]*M)
else

QoS[j] = SpeedUp(CPU[j], LLC[j], LLC ALL) / SpeedUp(M, LLC[j], LLC[j]*M)

if variance(QoS) < min variance then
min variance = variance(QoS)
best app = i

CPU[best app] += 1

4.5 Task Manager

Another important consideration is the application of internal task scheduling
in the application-specific runtime. To assign an application’s tasks to specific
cores, the framework comprises a special kernel module. As our main concern
is not application-specific resource management but space-shared mapping, we
utilize the Linux kernel’s processor affinity mask to define the set of cores that
can be utilized by the threads of an application. The standard Linux scheduler is
responsible for thread allocation to the assigned cores and load-balancing. In this
way, we can focus on coarse-grained resource allocation techniques and leave the
application-specific fine-grained thread-to-core assignment to the Linux kernel.

5 Evaluation

5.1 Target Architectures

The scheduling framework has been evaluated on a 64-core AMD Opteron 6380
server platform [3] and the Tile-Gx36 platform [1]. The AMD Opteron server
represents a multi-socket multi-core NUMA system, and the Tile-Gx36 platform
is a representative of a mesh-style many-core processor. The main features for
performance evaluation of the two architectures are shown in Table 1.

5.2 Target Applications

For the evaluation, we selected several OpenMP applications which have specific
characteristics from known benchmark suites. The three OpenMP applications
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Table 1. Target Architecture.

Architecture AMD64 Tile-Gx36

Processor Opteron6380 Tile-Gx8036

Clock frequency 2.5 GHz 1.2 GHz

Memory size 128 GB 32GB

Total cores 64 36

# of cores per processor 8 36

# of NUMA nodes 8 2

Linux kernel 3.13 2.6.40

Scheduling frequency 33 Hz 13Hz

Scheduling steady state 2 periods 2 periods

(EP, CG, MG) from SNU-NPB3.3 [25], Freqmine from Parsec 3.0 [6] and Stream-
cluster from the Rodiana [9] benchmark suite all exhibit different characteristics:
EP is CPU intensive, CG issues irregular memory accesses, MG is a memory-
intensive benchmark, Freqmine is CPU-intensive with a long sequential part,
and Streamcluster is also a memory-intensive benchmark. Execution informa-
tion about each benchmark is shown in Table 2. The standalone execution and
speedup values in the table are obtained by executing the benchmarks standalone
on the AMD Opteron platform. For Tile-Gx36, we use the same benchmarks but
adjust the working set sizes because the Tile-Gx8036 processor has less process-
ing power than the AMD Opteron6380 processor.

Table 2. Target application (A-AMD64, T-Tile-Gx36).

Application Description Serial time Standalone execution (Speed Up)

EP Embarrassingly parallel - A-21.4s(47.1) T-43.6(34.1)

CG Conjugate gradient - A-11.6s(9.3) T-40.1(34.2)

MG Multi-grid - A-17.2s(10.7) T-32.2(23.9)

F.M (Freqmine) FP-growth method A-5.8s T-7.1s A-25.5s(17.8) T-34.0(4.4)

S.C (Streamcluster) clustering - A-15.8s(7.7) T-34.7(15.2)

One benchmark scenario comprises several parallel application benchmarks
executed simultaneously. The 10 benchmark scenarios are composed of different
application benchmarks representing different workload patterns in order to show
the broad applicability of the proposed method.

There are some considerations of the applications’ executions with respect to
evaluation of performance. First of all, the working set size (execution time) is
an important factor for performance evaluation. For example, if the working set
sizes are too different between applications, then the normalized performance
may vary too much. Therefore, we manually adjust the working set sizes for the
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target applications to have a similar turnaround time when they are executed
standalone on the target architecture. We further use the system’s memory inter-
leaving option (using numactl tool to manage NUMA settings) such that memory
allocations are evenly distributed across the available memory controllers.

To evaluate the scheduling performance for simultaneous applications, we
measure the performance for each application and compute the summation of
the performance metrics (QoS, speedup, and turnaround time) from simultane-
ous applications. We also compute the standard deviation for each performance
metric to quantify how balanced the applications’ performances are.

5.3 Scheduling Policies

To evaluate the space-shared scheduling policies, we compare the schedul-
ing performance with not only the time-shared scheduler but also other sim-
ple space-shared scheduling policies. In these experiments, the different sched-
ulers/scheduling policies are as follows.

• CFS - the Linux standard time-shared scheduler.
• Static Equal Partition - static equal core partitioning for each application. In

this scheme, system resource re-allocation is not performed (not even when
an application finishes execution).

• Dynamic Equal Partition - dynamic equal core partitioning: perform dynamic
scheduling whenever an application starts or finishes execution.

• Dynamic Equal QoS - our space-shared scheduling scheme where we per-
form fine-grained resource management and strive to balance the QoS among
applications whenever a core resource is reserved.

• Dynamic Max QoS - our space-shared scheduling scheme. The scheduling
policy is set to maximize the sum of the QoS of all applications.

5.4 Scheduling Scenario

We execute every combination of three applications from the five target applica-
tions as shown in Table 2 for each scheduling policy. Thus, the overall scheduling
runs comprise ten sets of applications. We provide the benchmark results of
the scheduling set for five different policies both on AMD64 and the Tile-Gx36
platform. In each scenario, each application creates as many threads as physical
cores are available in the system, and the thread count is not changed during an
application’s lifetime.

64-Core AMD Opteron Platform. Figure 4 shows the performance of the
framework on the 64-core AMD Opteron platform. The first graph in the figure
represents the summation of QoS among applications. The second graph shows
its speedup, and the last graph shows the turnaround time among applications.

An important consideration is the variance of the three target applications’
performances. We show the standard deviation of the performance of three simul-
taneous applications on the top of each bar. Longer lines indicate a bigger stan-
dard deviation; a good scheduler should provide low standard deviations.
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QoS improvement (Normalized stdev): 0.3%(0.58) / 5.0%(0.42) / 9.2%(0.40) / 6.5%(0.92)
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Fig. 4. Benchmark result: 64 core AMD Opteron platform. The five bars for each
scheduling scenario represent the results in the order CFS, Static Equal Partition,
Dynamic Equal Partition, Equal QoS, and Max QoS. The four values on the top of
each graph compare the performance (and standard deviation) of each scheduling policy
to CFS in terms of the performance metric from left (Static Equal Partition) to right
(Max QoS).

For the QoS analysis, higher is better. QoS is an important metric, because
if a scheduler only considers maximum speedup then the scheduler may allocate
a large number of cores to the application which has the best scalability while
starving the others. In such a scenario, only one application would achieve a good
scalability and a high QoS. To increase the overall QoS among applications, the
scheduler eventually needs to be aware of the application’s scalability in advance.

For example, consider the first scenario (app1: CG, app2: EP, app3: MG):
In the QoS graph, CFS provides a good QoS for EP, the most CPU-intensive
application in our target application set. However, the other applications starve
and fail to get a good QoS. This effect is also visible in the second (SpeedUp)
graph. Here, EP achieves the biggest speedup, whereas MG and CG do not
achieve satisfactory performance. On the other hand, the Equal QoS policy or the
Equal Partition policy provide more CPU time (physical cores) for CG and MG,



Adaptive Space-Shared Scheduling for Shared-Memory Parallel Programs 173

QoS improvement (Normalized stdev): 26.6%(1.10) / 33.9%(0.79) / 29.9%(1.06) / 27.0%(2.28)
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Fig. 5. Benchmark result: 36 core Tile-Gx36 platform. The layout of the benchmark
results is equal to that in Fig. 4.

and as a consequence, the speedup of the two applications CG and MG increases.
Since CG and MG are less scalable than EP, the overall speedup of the Equal-
QoS policy is smaller than that of CFS. However, the overall QoS is increased
and the QoS becomes more balanced. We observe that the Equal-Partition and
the Equal-QoS policies manage to reduce the variance (i.e., standard deviation)
of the results.

The static policy provides a static allocation of cores to each application for
its entire lifetime and thus achieves a good resource isolation. As a consequence,
cores that become available when one of the application finishes early cannot
be reallocated to the running ones, which in turn causes a reduced overall per-
formance. The last scheduling policy, Max-QoS shows similar characteristics as
the Linux scheduler. The reason is that the Max-QoS policy determines that EP
achieves the best increase in QoS.

Across the scheduling scenarios, there is no scheduling policy that always
achieves the best performance; each scheduling policy shows a slightly different
behavior. However, in the general case, the space-shared scheduling schemes
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outperform the Linux scheduler in terms of our performance metrics. The last
five bars in each graph show the average (geometric mean for QoS and speedup,
arithmetic mean for turnaround time) of the summation of three application
performances. We have found that in general the equal QoS policy is well suited
to meet the requirements of QoS among parallel applications on our 64-core
AMD Opteron machine.

The third graph in Fig. 4 shows the sum of the turnaround times of each
application, i.e., lower is better. We observe that all space-shared policies out-
perform the CFS scheduler with Equal QoS performing best.

36-Core Tile-Gx36 Platform. Figure 5 shows the performance of scheduling
policies on the Tile-Gx36 platform for the same experimental scenarios.

Overall, all space-shared policies outperform the standard Linux scheduler
with the dynamic Equal partition policy performing best. This is in contrast to
the AMD64 NUMA platform where our scheduling policies performed better.

The reason is twofold: first, the lower computational power of the Tile-Gx36
platform causes less contention, and the speedups of the different applications
become similar. Second, while the overhead caused by the periodic re-allocation
of the resources is not an issue on the AMD machine, the effect is notice-
able on the slower Tile-Gx36 chip. Dynamic equal partition policy requires re-
computations only when an application starts or finishes.

An interesting observation is that Tile-Gx36 benefits by a significantly larger
performance improvement from space-partitioning compared to the results from
AMD64. The reason is that each core in the AMD system is a highly-efficient
super-scalar processor on which multiple threads from multiple applications can
be efficiently scheduled by using advanced hardware technologies. However, the
trend of many-core architectures suggests that future many-core chips will com-
prise simpler but many more cores in a single chip. Therefore, we believe that
space sharing will be an indispensable scheduling component for future many-
core resource management.

6 Discussion

Although the evaluations show that our scheduling policies can outperform
Linux’s time-shared scheduling in terms of QoS, speedup, and turnaround time
for simultaneous parallel applications, there are still lots of issues to be solved
and room for improvement. Here we discuss our research direction for improved
space-shared scheduling based on the experience of this work.

First, for scheduling OpenMP applications, our evaluation is fixed to the
default setting where every (OpenMP) parallel application is executed with the
same default number of threads (i.e., #threads = #cores). However, Linux and
OpenMP runtime systems may apply different resource management schemes in
dependence of the number of an application’s internal tasks. We also need to
consider other situations where application thread counts are not equal to the
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number of physical cores in the system (e.g., when an application requests a
bigger number of threads than physically available cores, or vice-versa).

Second, although a space-shared scheduler requires sophisticated perfor-
mance models to characterize various performance features with high accuracy,
the performance model used in this paper is not accurate and captures only the
scalability trend. In addition, we used multi-socket multi-core NUMA systems
for the evaluation but did not consider NUMA-related performance issues in this
work. The advanced performance modeling and understanding how application’s
performance is varied according to the active NUMA policy are our future work.

Third, an important issue of space-shared resource allocation is how to man-
age the degree of parallelism (thread counts). Especially for data-parallel pro-
gramming models (OpenCL, Hadoop) or task-parallel runtimes (Intel TBB, Cilk)
we can reclaim and reassign resources in a more flexible way. We expect that
by avoiding thread overcommitment, we can achieve additional performance
improvements. The mechanism for efficiently changing the parallelism from an
application runtime is our research consideration. We also further consider to
dynamically manage the parallelism even for the thread-based OpenMP pro-
gramming model by exploiting runtime and compiler support.

Lastly, our scheduling framework aims at providing (fine-grained) resource
allocation while considering a dynamically changing workload. However, known
parallel application benchmarks are usually based on a monotonous workload,
i.e., their behavior does not change enough for the benefits from a fine-grained
resource management scheme to become apparent. We consider to use various
real-world applications composed of several phases exhibiting different perfor-
mance characteristics.

7 Conclusion

In this paper, we introduce an adaptive space-shared scheduling strategy for
shared-memory parallel applications to efficiently handle dynamically chang-
ing workload characteristics. We have implemented a space-shared scheduling
framework with several scheduling policies such as achieving balanced or maxi-
mal performance when simultaneously executing several OpenMP applications.
Based on a simple performance model that uses the last-level cache miss rates as
its main metric, our scheduler dynamically recomputes core resource allocations.

The analysis of the results on our implementations for two different many-
core platforms, a 64-core AMD architecture and the Tile-Gx36, shows that, in
general, space-shared scheduling schemes provide better QoS compared to the
standard Linux time-shared scheduler. As a the main contribution of this work,
we show that the space-shared scheduling approach has a lot of potential on
current and future many-core systems.

The experiences gained from this work provide important guidelines towards
better space-sharing. As part of our future work we plan to investigate other
space-shared scheduling policies and to improving the performance model in
order to capture various application and architecture characteristics better. Also,
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in this work, we have only focused on coarse-grained scheduling issues and left the
fine-grained task-to-core mapping to the Linux scheduler. To increase the per-
formance further, dynamically managing the active thread counts (i.e., control
the amount of parallelism) of applications is a logical next step of this research.
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Abstract. As large scale computation systems are growing to exascale,
Resources and Jobs Management Systems (RJMS) need to evolve to
manage this scale modification. However, their study is problematic since
they are critical production systems, where experimenting is extremely
costly due to downtime and energy costs. Meanwhile, many scheduling
algorithms emerging from theoretical studies have not been transferred
to production tools for lack of realistic experimental validation. To tackle
these problems we propose Batsim, an extendable, language-independent
and scalable RJMS simulator. It allows researchers and engineers to test
and compare any scheduling algorithm, using a simple event-based com-
munication interface, which allows different levels of realism. In this
paper we show that Batsim’s behaviour matches the one of the real
RJMS OAR. Our evaluation process was made with reproducibility in
mind and all the experiment material is freely available.

Keywords: RJMS · Scheduling · Simulation · Reproducibility

1 Introduction

Resources and Jobs Management Systems (RJMSs) play a critical role in modern
high performance computing (HPC) infrastructures, simultaneously maximizing
the efficiency of the platform and fairly sharing its capacities among all their
users. Thus, the job scheduling algorithms that are used need to be effective in
multiple domains. On the way to exascale computing, large scale systems become
harder to study, to develop or to calibrate because of the costs in both time and
energy of such processes. It is often impossible to convince managers to use a
production cluster for several hours simply to test modifications in the RJMS.
Moreover, as the existing RJMS production systems need to be highly reliable,
each evolution requires several real scale test iterations. The consequence is that
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scheduling algorithms used in production systems are mostly outdated and not
customized correctly.

The most efficient way to tackle these problems is coarse-grained simulation.
Simulation of these large scale systems is faster by multiple orders of magnitude
than real experiments. The savings in computing time and energy consumption
allow a much larger variety of scenarios to be tested. This unlocks new research
avenues to explore, and possibly leads to scientific discoveries and industrial
innovations.

Furthermore, recent algorithms developed in scheduling theory are impossi-
ble to compare in realistic conditions, because of the lack of simple and extensi-
ble simulators. There is a vast literature on possible theoretical improvements,
proved in different theoretical job and platform models which are generally not
yet transferred to production schedulers in real environments.

The research field around RJMS and scheduling in large scale systems in
general would greatly benefit from a simple – yet realistic – validated scheduling
simulator that is modular enough to be used with any theoretical or production
algorithm implementation in order to truly compare all of them in a scientific
way. Currently existing RJMS simulators are based on too simple models. Most
of them only rely on delays for job modeling or on network models that are
either minimalistic or not scalable enough to test really large scale systems.

From this assessment, we propose Batsim (for BATch scheduler SIMulator).
It is based on SimGrid [7], a state-of-the-art distributed platform simulator
with realistic network and computation models. Batsim allows different levels
of realism depending on the user’s needs, uses a simple message interface to
achieve language independence, uses an easily expandable workload input format
and provides readable and analysable outputs with jobs and scheduling details.
For comprehension’s sake, a simple Gantt chart visualisation tool is provided
separately.

Batsim was also created to achieve experiment reproducibility. We are well
aware that hardware suffers from a great variability. This is the main barrier
to achieve experiment reproducibility in computer science. But in the case of
simulation, those constraints do not exist anymore because the result of the
simulation can be deterministic with respect to the simulation’s inputs (para-
meters and input data). That is why simulation experiments are much easier to
reproduce if the simulation environment and inputs are provided by the authors,
which is rarely the case [29]. There can be several reasons for this, as explained
in [31]:

– Restrictive licence or any intellectual property problem
– Complexity of the usually homemade simulation tool
– Missing experimental plan: used parameters are not provided
– Input data and/or results are not provided
– No access to the experimental environment (like the testbed or computer

Grid)
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Despite the intellectual property problem, which by definition prevents the
reproducibility, all the aforementioned problems could be addressed by some
good practice and appropriate tools:

1. Use reusable and proven simulators
2. Provide environments
3. Provide experiment plan, design and workflow
4. Provide inputs and results

Batsim was made to implement the first of these solutions. In fact, most
published articles use ad hoc simulators which are not expected to be used
after the articles’ publications. Furthermore, simulators kept on-the-shelf are not
proven to be accurate. In order to validate simulation results, the simulator must
be assessed theoretically, and also experimentally if possible. Batsim aims at
improving repeatability in this domain which is widely affected by the problems
mentioned above.

The rest of this paper is organised as follows. Section 2 presents related work
in the field of RJMS simulation. Section 3 gives an overview of how Batsim works.
Section 4 develops the underlying models of Batsim. Section 5 gives more detailed
explanations on Batsim’s mechanics. Batsim’s evaluation process is presented in
Sect. 6, and its results in Sect. 7. Section 8 gives technical details on how to
repeat our evaluation process. Section 9 concludes the paper and outlines our
future work.

2 Related Work

Many simulators can be found in the literature which can be used to simulate a
RJMS. Unfortunately, most implementations are either not available online or
depend on outdated softwares and libraries which are themselves not available
anymore. Thus, we chose to focus on simulators whose source code could be
found.

To the best of our knowledge, most scheduling simulators are either very
specific to one domain (e.g. Realtss) or do not primarily focus on realism of
results, since comparisons to real existing systems are hardly ever done. This
can be easily explained by the financial and ecological cost of such evaluations.

The approach which is closest to ours may be Alea [21]. This simulator is
based on the GridSim simulation toolkit and allows to compare different schedul-
ing algorithms. We chose the same approach of building our scheduling simula-
tor on top of a simulation framework. However, Batsim’s approach and Alea’s
differ in their modularity since Batsim allows to connect any scheduling algo-
rithm, written in any programming language, whereas the supplied Alea API
only allows new schedulers to be written in Java inside the project source code,
with a queue-oriented API. Moreover, at the best of our knowledge, this simu-
lator has not been validated in a real environment yet.

Another interesting approach can be found in article [26]. This approach
consists in using the INSEE [27] fine-grained network simulator offline, in order
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to obtain the execution time of any configuration the job can run in. Article [26]
proposes job placement policies that guarantee that no network interference can
occur between the jobs, allowing to use offline execution times while simulating
an online workload. However, this approach cannot be used accurately when jobs
can interfere with each other.

A previous initiative of building a scheduling simulator on top of SimGrid
has been done in Simbatch [5]. However, as far as we know, the project has been
left unmaintained since 2007 and cannot be used easily with current SimGrid
versions. Moreover, Simbatch has not been developed in the perspective of con-
necting real RJMSs into it, nor to allow separation of concerns regarding system
simulation and scheduling algorithms.

3 Batsim General Description

Batsim is an open source platform simulator that allows to simulate the behav-
iour of a computational platform on which a workload is executed according to
the rules of a scheduling algorithm. In order to obtain sound simulation results
and to broaden the scope of the experiments that can be done thanks to Batsim,
we did not choose to build it from scratch but on top of the SimGrid simulation
framework instead.

Batsim allows separation of concerns since it decouples the platform simula-
tion and the decisions in two clearly separated components, represented in Fig. 1.
The Batsim component is in charge of simulating the computational resources
behaviour whereas the Decision component is in charge of taking scheduling
or energy-related decisions. The scheduling decisions include executing a job or
rejecting it. The energy-related decisions include changing the power state of a
machine – i.e. to change its DVFS mode – or switching a machine ON or OFF.

Fig. 1. The two real processes involved in a Batsim simulation, their network commu-
nication pattern and their inputs and outputs.

The components are instantiated as processes (within the meaning of
Operating System processes) and communicate via a Unix Domain Socket.
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The communication protocol used is a simple synchronous one which follows the
request-reply pattern. The simulation runs in the Batsim component and as soon
as an event occurs, Batsim stops the simulation and reports what happened to
the Decision component. Batsim then waits for the Decision component’s reply,
then continues the simulation by applying the Decision component’s choices.
Protocol details can be found in [34].

Splitting the simulation workflow into two separated components in this way
allows the Decision component to be implemented in any programming language
which can communicate through a Unix Domain Socket. Thus, existing event-
based scheduling algorithm implementations would not be hard to adapt in order
to connect them with the Batsim component.

4 Models

This section describes the simulation models used by Batsim by giving a sim-
plified overview of SimGrid in Sect. 4.1 then by detailing the models specific to
Batsim in Sect. 4.2.

4.1 SimGrid Models

Since Batsim uses SimGrid internally, a brief – and simplified – overview of the
SimGrid models that were used is given for sake of clarity. A host is a resource
that can compute floating-point operations (flop). Hosts are connected via a
network whose links have a latency (in seconds) and a bandwidth (in bytes
per second). Links are hyperedges which can either represent a network link
(a connection between two nodes) or a network node (a switch or a router).
Hosts and links compose a platform that can be of virtually any topology.

Several SimGrid processes can be run on any SimGrid host. A SimGrid
process can only be on one host at a time. These SimGrid processes – which will
simply be called processes from now on – are user-given source code executed
within the simulation. These processes can execute tasks and communicate with
each other with messages. For simplicity’s sake, we will assume that such mes-
sages are sent to processes.

Hence, a SimGrid-based simulator is composed by a set of processes which
compute user-given functions. The user-given functions are executed within the
simulator whereas the execution of tasks and the communications are simulated.
Please note that user-given functions can spawn processes on which user-given
functions are executed. SimGrid orchestrates, at any time, which processes are
executed and which ones are not. SimGrid may change the running processes
whenever they enter a state that implies a simulation time increase. For example,
computing a task, sending a message or entering a sleep state implies a simulation
time increase.

SimGrid allows us to create parallel tasks which combine computations and
communications. To do so, we can build tasks with a computation vector (or row
matrix) c where each ck represents the amount of computation (in number of
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floating-point operations) that must be computed on the kth host on which the
parallel task is run and a square communication matrix C in which each element
C[r, c] represents the amount of communication (in number of bytes) from the
rth to the cth hosts involved in computing the task.

The SimGrid energy consumption model only takes computation hosts into
account at the moment and is described in the following paragraph. Each host
h has a set of power states Ph where each power state p ∈ Ph has a computa-
tional power cpp (in number of floating-point operations per second), a minimum
electrical power consumption ep∧

p (in W) and a maximum electrical power con-
sumption ep∨

p (also in W). The SimGrid model which simulates the execution
of activities on simulated resources computes the computational load lh(t) of
each host h at any simulation time t. The load is a real number in [0, 1] where
0 represents an idle host and 1 a host computing at maximum computational
power. Let ph(t) be the power state in which host t is at simulation time t. The
instant electrical consumption of host h at time t is noted Ph(t) and is deter-
mined by ph(t) and lh(t). Ph(t) is computed as the linear interpolation between
ep∧

ph(t)
and ep∨

ph(t)
in function of lh(t) : Ph(t) = ep∧

ph(t)
+(ep∨

ph(t)
− ep∧

ph(t)
) · lh(t)

and is expressed in watts. The energy consumption of host h is then given by
Eh =

∫
Ph(t)dt and is expressed in joules.

4.2 Batsim Models

The computation platforms used by Batsim are theoretically as broad in scope
as SimGrid ones and can be of virtually any topology. However, only a subset of
SimGrid platforms are valid Batsim platforms. Indeed, we chose to use a dedi-
cated SimGrid host – that may be also be referred to as computational resource
from now on – referred as the Master host to compute the resource manage-
ment processes. In order to be able to run a job on computational resources,
the platform must allow messages to be exchanged between the Master host
and the other computational resources. Moreover, if jobs are parallel and must
be run on different computational resources, the platform must allow the set of
computational resources allocated to the job to communicate with each other.

Moreover, we enhanced the SimGrid energy model by adding explicit sleep
and transition power states. We chose to split the set Ph of power states of the
host h into three disjoint sets: P c

h is the set of computation power states, P s
h

is the set of sleep power states and P t
h is the set of transition power states.

The computation power states are the only ones which can be used to compute
jobs. A sleep power state represents the state of one machine which cannot
instantaneously compute something e.g. ACPI S1, S3, S4 or S5 states. A Batsim
host can switch from one computation power state to another instantaneously.
However, entering into one sleep power state s or leaving it can take some time
and cost some energy. Transition power states are virtual power states which
are only used to simulate the transition into and from sleep power states. To do
so, the amount of computation done in one transition is fixed to 1 flop. If one
transition t should take time tt (in seconds) and consume et energy (in joules),
the corresponding virtual power state pt should have a computational power
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cppt
= 1

tt
and electrical power consumption bounds ep∧

pt
= ep∨

pt
= et

tt
. If Batsim

is run with energy enabled, the platform used must fulfill all SimGrid energy
requirements and define, for each host h each sleep power state sh ∈ P s

h , the
transition power state v↓

sh
used to switch into sh and the transition power state

v↑
sh

used to leave sh.
Batsim workloads are divided into two parts: one set J of jobs and one set P

of profiles. Each job j ∈ J must have a unique job number idj , a submission time
subj (the time at which the job is submitted into the system), a walltime wallj
(the user-specified execution time bound such that j is killed if its execution time
exceeds wallj), the number of requested resources resj (rigid at the moment but
moldable jobs can trivially be added into our architecture if needed) and the
profile profj the job executes. One profile describes how a job is computed.
The profile information has been separated from the jobs because 1. it avoids
data duplication when many jobs are computed in the same way 2. it makes
workload generation easier and more modular.

At the moment several atomic profile types are available: Delay profiles are
fixed amounts of time, msg profiles compute a vector c and a communication
matrix C and smpi profiles simulate the execution of one SimGrid MPI time-
independent trace within Batsim. Moreover, non-atomic profile types exist such
as the msg homogeneous profile type that wraps the msg profile type and
simplifies its usage by forcing homogeneity to the underlying computation vector
and communication matrix. As another non-atomic profile type, we can think of
the sequence profile type, which is composed of a list of other profiles it must
execute in sequence a certain number of times. The sequence profile type can
be used to model Bulk Synchronous Parallel jobs for example. Our architecture
allows to implement new profile types quite easily and the JSON format used in
workload description allows modularity since any user can add any field to jobs
or profiles to match their needs. For example, we used the same workloads to
compare Batsim’s behaviour to a real platform’s by simply specifying how each
profile should be run on the real platform.

5 Batsim Inner Mechanics

Batsim is a C++ program developed using the SimGrid C library. SimGrid allows
us to simulate the behaviour of a computation platform on which concurrent
SimGrid processes are run. We will use the phrase “real process” to talk about
a process which is directly run by the user on a given Operating System. For
example, the Batsim real process and the Decision real process. A SimGrid
process (which will simply be referred to as a process from now on) is a process
simulated within Batsim. The main Batsim processes and their interactions are
shown in Fig. 2.

The Jobs Submitter process is in charge of reading one workload and sub-
mitting the jobs at the right simulation time. To do so, it simply iterates over
the jobs in ascending submission time order and sends a message to the Server
process as soon as a job has been submitted. If the next job submission time is
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Fig. 2. The different processes within Batsim. The Job Launcher, Job Killer, and
ON/OFF Switcher processes are executed on the computational resources whereas the
other processes are run on a dedicated resource called the Master host. Filled arrows
represent message transmissions and hollow arrows stand for a process execution.

strictly after the current simulation time, this process enters a sleep phase until
the aforementioned job is submitted. Once all the jobs of its appointed workload
have been submitted, the Jobs Submitter process tells the Server it has finished
then ends. Several Jobs Submitters may be instantiated in the same simula-
tion, which can be useful to simulate internally (within Batsim) the behaviour
of concurrent users. These processes are executed on the Master host.

The Request Reply process’s role is to manage the Unix Domain Socket to
communicate with the Decision real process. Its lifespan is short: It is launched
by the Server process on the Master host, it sends a network message to the
Decision real process, then waits for its reply. It then parses the received mes-
sage according to the Batsim protocol. The received message is composed of a
sequence of events. In order to simulate the impact of real decision algorithms,
which may take some decisions before returning the control flow, a simulation
time is associated to each event (potentially the same for all events). The Request
Reply process parses and transmits those events to the Server process one by one
in the given chronological order. Just as the Jobs Submitter process, the Request
Reply process enters a sleep phase between events to respect the received simu-
lation times at which the events should have occured. Once all events have been
sent to the Server, the process tells the Server the message has been managed,
then ends.

The Server is the main Batsim process. It orchestrates the simulation: It
knows when jobs are submitted, chooses when the Decision real process should
be requested – ensuring that only one Request Reply process can be executed
at the same time – and follows the orders dictated by the Decision real process
(received from the Request Reply process). Depending on the received order, the
Server process might launch a Job Launcher process to run a job, or launch a
ON/OFF Switcher process to either boot or shutdown a computational resource,
or launch a Waiter process if the Decision real process wants to be awaken at a
specific time. The Server process ends its execution if and only if the following
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conditions are met. 1. All Jobs Submitters must have finished their executions. 2.
All submitted jobs must have been either processed or rejected. 3. The Request-
Reply process must not be running at the current time. 4. All ON/OFF Switch-
ers must have finished their executions. 5. There should be at least one Jobs
Submitter connected – to ensure that the simulation starts.

The Waiter process is used to wake the Decision real process at a specific
time. To do so, it is launched by the Server on the Master host, sleeps for the
right amount of time, tells the Server it is time to wake the Decision real process
then ends.

The ON/OFF Switcher process is in charge of simulating what happens
when a computational resource is booted or shut down. It is executed on the
computational resource whose state is requested to change.

The Job Launcher process is in charge of executing a job on a set of com-
putational resources R. The process is executed on one computational resource
r ∈ R. Jobs are then computed according to their profiles. If the profile type is
Delay, the process is simply put into a sleep state for the right amount of time. If
the profile type is MSG, the computation vector and the communication matrix
are generated into memory then computed on the given set of computational
resources R. If the profile type is Sequence, the different subjobs are computed
sequentially according to previously given rules for the requested number of
times. Finally, if the profile type is SMPI, the given MPI trace is replayed on R.
To respect the walltime of non-SMPI jobs, the Job Launcher process executes
the Job Killer process. The Job Killer process is in charge of waiting for the
walltime amount of time. For each walltime-constrained job j there is a double
pj = (launchj , killj) where launchj is the Job Launcher process in charge of job
j and killj is the Job Killer process associated to launchj . The first process to
finish its task in pj (either the job computation or the sleep) cancels the other
process’s task. This leads to killj finishing its execution and launchj sending
a message to the Server process to tell it j has been computed (successfully or
not) then finishing its execution too.

6 Batsim Evaluation Experiment

In order to evaluate whether Batsim’s behaviour is similar to real RJMSs’, we
set up an experiment comparing Batsim to OAR [6]. OAR is a RJMS – or batch
scheduler – notably known for being used in the Grid’5000 [1] infrastructure.
We chose OAR over other RJMSs – e.g. SLURM – because the modular design
of OAR allows its scheduling part to be decoupled from the other parts of the
system very easily. We tested Kamelot [35], a conservative backfilling scheduling
algorithm implemented in OAR by executing it on real OAR-managed resources
on Grid’5000 and by plugging it to Batsim. Since the same scheduling algo-
rithm is used both in reality and in simulation, this allows us 1. to demonstrate
that Batsim’s architecture can be used to test production schedulers 2. to check
Batsim’s behaviour’s soudness.
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Our experimental process can be simplified in two major parts: 1. workload
generation 2. schedule comparison between real and simulated workload execu-
tions. The first major part requires real programs, their instrumentation and
a methodology to create jobs in our different job models. This is detailed in
Sect. 6.1. Subsequently, the way the jobs are put together to form workloads is
explained in Sect. 6.2. The second major part is described in Sects. 6.3 and 6.4.

Using a realistic simulator means using a realistic platform. Fortunately, the
Graphene cluster situated in the Nancy Grid’5000 site [13] has already been
calibrated so we chose to use this cluster for our real and simulated experiments.
Thus, all our real experiments were done on the Grid’5000 Graphene cluster,
reserving the nodes below one switch each time.

6.1 Profile Generation

In order to execute a scheduling algorithm, workloads must be generated. How-
ever, the jobs of our workloads must fulfill some requirements to be executed
both in a real platform and in simulation. Batsim allows different levels of realism
depending on the profile models used in the workload, which makes the work-
load generation process more complex. Indeed, the msg model needs realistic
computation vectors and communication matrices to make sense. Furthermore,
the smpi model requires MPI traces in order to be used.

In order to obtain realistic values for our profile models, we chose to execute
real jobs from the MPI version of the NAS Parallel Benchmarks (NPB)1 and to
instrument them to obtain execution traces. We have selected the three bench-
marks IS, FT and LU. We chose to compile and execute them for all available
processor sizes – powers of two from 1 to 32 – and for tiny to medium data
sizes – B to D depending on the benchmark. Considering NPB limitations, we
were able to compile 47 different MPI programs.

First, in order to obtain the real execution times of our programs, we run
them in a sequence (one by one, to avoid network influence of one program to
another) without instrumentation. This allowed us to directly generate delay
profiles.

We then instrumented the jobs using Extrae [2], which gave us heavy exe-
cution traces. In order to get time-independent traces – required by SimGrid –
from the format used by Extrae, we used a script, courtesy of Lucas Schnorr [33].
Time-independent traces contain, for each processor, a sequence of events
describing how many flops the processor computed or the MPI functions it called
with the associated data amount. Unfortunately, the conversion script we used
is a work in progress and was not able to capture all MPI messages, which added
a profile calibration phase in our experiment process.

Since SimGrid does not allow – at the moment – the concurrent execution
of several SMPI applications at the same time, we were not able to validate the
smpi profile type in the present article. On the other hand, we aggregated the
time-independent traces into computation vectors and communication matrices

1 NPB 3.3.1 available here [25].
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to obtain msg profiles. These msg profiles have been calibrated such that their
execution times match those of the previously obtained delay profiles. The main
advantage of the calibrated msg profiles over the delay ones is that their exe-
cution time may vary depending on resources’ computational power, network
bandwidth or network contention. On the contrary, delay profiles have a fixed
execution time that strongly depends on the platform they were executed on,
and cannot take network contention into account. This difference makes this
type of profile more appropriate for heterogeneous experiments.

6.2 Workload Generation

The workload generation algorithm that we decided to use is described in this
paragraph and was inspired by Chap. 9.6 of book [12]. Please note that our work-
load generation method is not intended to be sound for comparing scheduling
heuristics, but only to evaluate how Batsim behaves compared to a real RJMS.
The algorithm generates N = 800 jobs iteratively. The interarrival submission
times of the jobs is computed randomly with a Weibull distribution of shape
parameter k = 2 and scale parameter λ = 15. Since the job sizes (the rigid
number of resources a job requests) of the real jobs at our disposal are powers
of 2 (from 1 to 32), the size of each job is computed with the formula 2�u� where
u is a lognormal variate of parameters μ = 0.25 and σ = 0.5. Only variates such
that �u� is in [0, log2(32) = 5] are used to match the sizes at our disposal. The
generation of those workloads depends on a random seed, simply referred as seed
in the remainder of this article.

We chose to generate nine different workloads and to execute each of them
once below two different switches of the Graphene cluster. We chose two dif-
ferent switches to obtain more representative simulation results. Indeed, both
the computation nodes and the switches are homogeneous in Graphene and are
described in the exact same way in the simulated platform. However, in practice,
little differences exist between nodes that are supposed to be identical and we
hope that these differences will be more noticeable this way.

6.3 Executing Workloads in a Real Platform

In order to execute the workloads we generated on Graphene, we used a repro-
ducible methodology which is described in Sect. 8. This methodology includes
the installation and the configuration of OAR within the nodes we reserved in
Graphene. We configured OAR such that it uses the Kamelot scheduler and
implemented a replay tool that reads a Batsim workload, then launches real
OAR submissions at the times dictated by the workload. The OAR submissions
launch the MPI programs which were previously generated.

6.4 Executing Workloads in Simulation

Executing the workloads in simulation simply consists in running the Kamelot
scheduler on Batsim with the aforementioned calibrated platform file. To do so,
we created an adaptor between Batsim and OAR which will be used later to test
the different algorithms implemented in OAR.
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7 Results

The nine different workloads we generated have been executed twice on a
real platform (on identical machines and network, but not on the exact same
machines), and twice in simulation (with Delay and MSG profile types). This
section presents the different results and analyses them.

An overview of the execution of all the workloads can be found on Fig. 3.
First of all, Fig. 3 shows that the MSG and the Delay simulation results are
very close to each other. The execution times of MSG jobs depends on where
the jobs are allocated and depends on the network saturation. However, in this
experiment, the platform is highly homogeneous and very low contention has
been observed during the jobs’ execution, which explains why the results are so
close. Furthermore, Fig. 3 shows that the difference between two real executions
of the same workload is not negligible.

7.1 Similarities

Many similarities exist between the schedules resulting from the simulated and
real executions of the workloads we defined.

Figure 3 allows to see the makespan and the mean bounded stretch of real and
simulated executions of all the workloads we generated. The closer the points of
a given color, the more similar the real and simulated executions are. For most
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difference from the simulated execution with respectively MSG and Delay profiles.

workloads, the points are tightly clustered. Workloads 6, 7 and 8 seem to be
unstable in both makespan and mean bounded stretch when they are executed
with this scheduling algorithm. For these three workloads, we can see that the
points are less tightly clustered. Furthermore, the distance between the points
resulting from real and simulated execution is of the same order of magnitude
as the one resulting from two real experiments.

Figures 4 and 5 shows the differences in mean stretch between real and sim-
ulated executions of all the workloads. The mean stretch of real different execu-
tions is in range [1.492, 5.876]. Figure 5 shows that the mean stretch difference
is centered a little bit after zero if we look at all the workloads at once. Figure 4
shows that the mean stretch of the simulated execution of each workload is
not necessarily between the two values coming from real executions, but that
the mean stretch difference between the real and the simulated executions of
one workload is of the same order of magnitude as the mean stretch difference
between the two real executions of the same workload.

7.2 Differences

Figure 6 shows that simulated workload executions are almost always below real
executions, which means that Batsim underestimates the waiting time of jobs.
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This underestimation can be explained by the OAR’s ssh-based job launching
procedure and the OAR’s job cleaning procedure. Indeed, these procedures take
a non-negligible amount of time and have not been modeled into Batsim. The
way the jobs are launched and cleaned is highly RJMS-dependent and we chose
not to overfit any RJMS for the moment.

Furthermore, differences can be observed if we look at each workload at a finer
grain. For example, the Gantt charts of the real and the simulated executions
of the same workload differ, but this is also true for two real executions of the
same workload, as seen in Fig. 7.

8 Reproducing Our Work

One of our main goal while creating Batsim was to foster reproducibility in the
field of jobs and resources scheduling, by providing the tools needed to make more
reproducible science. The aim of this section is to explain how all our evaluation
process – or only a part of it – can be reproduced. To do so, we provide a
complete environment to use Batsim and the different schedulers which run on
top of it.

All the experiment tools mentioned below (Batsim, Kameleon, Execo,
Grid’5000) are necessary to repeat the experiments we done. Of course, other
tools exist to achieve reproducibility but we describe the ones we chose for our
experiments.

Environments. An environment can be seen as an object that fixes a software
context. Such an environment typically regroups an Operating System and a set
of programs and libraries, specifying which version is used for each component.
To build our environments we used Kameleon [30]. This tool allows its users to
build environments from template recipes and to extend them. It also allows a
user to write their own environment recipes from scratch. Such environments
handle failures thanks to a breakpoint mechanism. Recipes can be shared using
Git, and Kameleon comes with the possibility to rebuild the environment from
cache to achieve full re-constructibility. The software appliance produced by
Kameleon can be exported to many formats, including a virtual machine, a
docker container or a tarball, in order to be deployed anywhere.

The Batsim complete environment, as the workload generation environment
recipes, are both available in the Git repository [17].

Experiment Design and Workflow. Most of the time the experiment design con-
sists in one or more documents that describe the purpose and the experiment
with some details and some dedicated scripts. Some domain specific tools exist
to compute the experiment on a grid from a user-defined workflow [37], but it
is not well suited for computer science experiments, which also need to select
the underlying software stack and OS. Hopefully, computer scientists dedicated
testbeds exist, like Grid’5000 which allows this level of management.

Batsim’s evaluation experiment has been made using Execo [19], a tool which
completely automates the experiment workflow. Execo is a tool which allows
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Fig. 7. Final section of the Gantt charts of the executions of workload seed = 6. The
uppermost gantt chart is a simulated execution while the other two are real executions.
Workload seed = 6 is the least stable workload in makespan.
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Grid’5000 users to programmatically describe their experiment workflows in
order to compute them on the grid. It is a Python toolbox library that allows to
run local and remote processes easily. It also provides an engine to manage the
parameters sweeping and an interface to the Grid’5000 testbed, which allows to
design fully automated sets of experiments.

Moreover, the scripts and tools used to generate all the figures present in this
paper are provided in our Git repository [18]. The Gantt chart visualisation and
comparison tools named Evalys is available independently [15].

The complete experiment workflow made to conduct this paper’s experiment
is also available in our Git repository [18].

Inputs and Results. The original input data are crucial in the process of repro-
ducibility. Most of the inputs and results of the experiments we have done are
available in the aforementioned Git repository. The results that do not fit in
the repository because of their size – notably the MPI instrumentation traces
(�20Go) – are shared using Academic Torrent [24].

9 Conclusion and Future Work

In this paper we presented Batsim, a modular RJMS simulator that provides dif-
ferent levels of realism, on which scheduling algorithms can be easily connected
and compared. Batsim JSON-formatted workloads are extensible and allow pain-
less workload generation. Batsim CSV outputs provide clear information about
scheduling metrics, job placement and energy consumption, and can be easily
linked with standard data analysis tools.

We used the OAR RJMS to check whether Batsim’s behaviour is close to
real RJMSs’ in our experiment. In this experiment, the execution times of the
jobs in the delay and msg profile models were almost identical because no con-
tention has been observed during the experiment, and because the platform that
we used was completely homogeneous both in computing power and in network
bandwidth. As a future work, we can think of a validating process concerning
the msg profile type, which may focus on conducting experiments on real het-
erogeneous platforms for example. Furthermore, the Batsim energy model has
not been validated in real machines yet, which opens a door for future work.

We are well aware that the workloads used in our evaluation process remain
small in their number of resources, their number of different jobs and in their
duration. We would like to do larger scale experiments but finding funding to
conduct this kind of study becomes problematic, as the energy and financial
costs of reservations for such experiments would skyrocket.

We chose not to overfit the behaviour of a given RJMS, which may impact
result realism on different metrics such as the mean waiting time, as seen in
Sect. 7.2. Since our architecture allows to model finely the different RJMS’s pro-
cedures, it would be beneficial to allow Batsim’s users to parametrize how the
different procedures should be done in order to improve accuracy.

At the moment, Batsim allows a production scheduler to be used in sim-
ulation. To do so, Batsim is in charge of simulating the RJMS whereas the
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scheduling component of the real RJMS makes the decisions. An interesting
future work would be to allow the opposite type of connection: The real RJMS
would run normally but it would communicate with a Batsim-compatible algo-
rithm to make scheduling decisions. This would simplify greatly the production
launch of theoretical scheduling algorithms.

Even if Batsim is fully operational as we wrote this article, we would like to
improve its capabilities in several way. For example, we would like to implement
the possibility to concurrently run several SMPI application within SimGrid in
order to use those applications within Batsim. Moreover, we are also interested
in IO-related problems for big data workload simulation. Eventually, we want to
implement a user model to take user reactions into account during the ongoing
scheduling execution.

As we want to promote experiment reproducibility, all the materials necessary
to understand and reproduce our evaluation experiments are provided online.

Batsim is an open source [16] project and we encourage any researcher or
engineer that has to deal with resources and jobs scheduling to use it. Besides,
we would be pleased to collaborate with anyone who wants to port an existing
scheduling algorithm to Batsim. This would enhance the list of supported algo-
rithms which may be studied and compared in the same context, in order to
make more reproducible and better science.
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Abstract. In this work we present our positive experience with a unique
advanced job scheduler which we have developed for the widely used
TORQUE Resource Manager. Unlike common schedulers using queuing
approach and simple heuristics, our solution uses planning (job schedule
construction) and schedule optimization by a local search-inspired meta-
heuristic. Using both complex simulations and practical deployment in
a real system, we show that this approach increases predictability, per-
formance and fairness with respect to a common queue-based sched-
uler. Presented scheduler has been successfully used in the production
infrastructure of the Czech Centre for Education, Research and Innova-
tion in ICT (CERIT Scientific Cloud) since July 2014.

Keywords: Scheduling · Planning · Performance · Fairness · Simulation

1 Introduction

The pros and cons of queuing vs. planning have been discussed in the past thor-
oughly [5]. Classical queuing approaches such as the well known EASY backfilling
algorithm provide limited predictability and thus employ additional mechanisms
in order to avoid certain unwanted features such as potentially (huge) starvation
of particular jobs, etc. Approaches based on full planning represent an oppo-
site approach. Instead of using “ad hoc”, aggressive scheduling, they build and
manage an execution plan that represents job-to-machine mapping in time. For
example, Conservative backfilling establishes reservation for every job that can-
not execute immediately, i.e., a guaranteed upper bound of its completion time
is always available [13]. This increases predictability but may degrade system
performance and requires more computational power. At the same time, the
accuracy of such predictions is typically quite low, as provided estimates con-
cerning job execution are typically very imprecise and overestimated.

In theory, the planning-based approach has been often combined with some
form of advanced scheduling approach using, e.g., a metaheuristic [20] to further
optimize the constructed execution plan. These works were often theoretical or
used a (simplified) model together with a simulator, while realistic implemen-
tations in actual resource managers were not available. Those promising results
were then rarely repeated in the practice and most of the mainstream production
c© Springer International Publishing AG 2017
N. Desai and W. Cirne (Eds.): JSSPP 2015/2016, LNCS 10353, pp. 198–216, 2017.
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systems like PBS Pro, SLURM or Moab/Maui have adopted the queuing app-
roach [1,6], focusing on performance and scalability while limiting the (theoreti-
cal) benefits of increased predictability related to the planning systems. Neither
metaheuristics nor other advanced optimization techniques are used in current
mainstream systems.

In this paper we bridge the gap between theory and practice and demonstrate
that planning supplied with a schedule-optimizing metaheuristic is a plausible
scheduling approach that can improve the performance of an existing comput-
ing system. We describe and evaluate newly developed job scheduler (compati-
ble with the production TORQUE Resource Manager) which supports planning
and optimization. The presented scheduler has been successfully used in practice
within a real computing infrastructure since July 2014. It constructs a prelimi-
nary job execution plan, such that an expected start time is known for every job
prior its execution. This plan is further evaluated in order to identify possible
inefficiencies using both performance as well as fairness-related criteria. A local
search-inspired metaheuristic is used to optimize the schedule with respect to
considered optimization criteria. The suitability and good performance of our
solution is demonstrated in two ways. First, we present real-life performance
results that are coming from the deployment of our scheduler in the CERIT
Scientific Cloud, which is the largest partition of the Czech national grid and
cloud infrastructure MetaCentrum, containing ∼5,200 CPUs in 8 clusters. Sec-
ond, we use several simulations to evaluate the solution against previously used
queuing approach. Importantly, we have adopted the novel workload adaptation
approach of Zakay and Feitelson [21] in order to overcome the shortcomings of
“classical” simulations with static workloads.

This paper is a significantly extended and updated version of our short-
paper presented at HPDC 2015 [8]. We have included more details concerning
the design of the scheduler (Sect. 3) and significantly extended the evaluation
(Sect. 4), adding more results from practical deployment as well as presenting
a set of newly performed detailed simulations using the model of Zakay and
Feitelson [21]. Theoretical background of this work has been described in our
earlier work [10] which has presented new methods for efficient use of meta-
heuristic algorithms for multi-criteria job scheduling. However, instead of a real
resource manager, this work only used a simulator with static historic workloads
while considering simplified problem models [10].

This paper starts with the related work discussed in Sect. 2. Next, we describe
the design and features of our new scheduler. Section 4 presents detailed evalu-
ation of the scheduler’s performance, while Sect. 5 concludes the paper.

2 Related Work

Nowadays, major production resource management systems such as PBS Pro
[14], SLURM or Moab/Maui [6] use (priority) queues when scheduling jobs
on available resources, applying some form of popular scheduling heuristics —
typically FCFS and backfilling. On the other hand, during the past two decades
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many works have shown that the use of planning represents some advan-
tages [9,13]. Unlike the traditional “aggressive” queuing approach where schedul-
ing decisions are taken in an ad hoc fashion often disregarding previous and
future scheduling decisions, a planning-based approach allows to make plans
concerning job execution. The use of such a plan (job schedule) allows to make
a partial prediction of job execution, providing information concerning expected
start times of jobs to the users of the system, thus improving predictability [13].
Conservative backfilling [13] represents a typical baseline solution for planning
systems.

As far as we know, fully planning-based schedulers using, e.g., the Conserv-
ative backfilling algorithm, are less popular in practice than “classical” queue-
based solutions [12]. Typically, only few waiting jobs are usually planned ahead,
while no predictions are made for the remaining jobs. For example, PBS Pro-
fessional Administrator’s Guide recommends that at most 100 jobs should be
planned ahead (backfill depth parameter in [14]). Notable exceptions repre-
sent fully planning-based systems such as Computing Center Software (CCS) [7]
and its successor Open CCS1, that use planning and are used in practice.

Within the CERIT system, a form of Conservative backfilling has been used
prior our new scheduler has been adopted. The scheduler maintained several
queues with different maximal walltime limits (1h, 2h, 1d, 2d, 4d, 1w, 2w and
2m). Job queues were periodically reordered by fair-sharing algorithm. To reflect
aging, resource usage records (fair-share usage) were subject to decay [6] by the
aging factor of 0.5 which was applied each 72 h, i.e., each 3 days the current
user’s fair-share usage was dived by 2. To avoid excessive job starvation, waiting
jobs obtained a reservation when their waiting time reached a given threshold.
However, by default this threshold was equal to 0 s implying that every waiting
job obtained a reservation.

In many (theoretical) works, planning-based approach has been also used in
conjunction with further optimization. Simply put, a prepared execution plan
has been evaluated with respect to selected optimization criteria and further
optimized using some form of a metaheuristic [11,15,18,20]. As far as we know,
evaluation and/or metaheuristics are not applied in nowadays production sys-
tems. In the past, Global Optimising Resource Broker (GORBA) [17] repre-
sented an experimental planning-based system designed for scheduling sequen-
tial and parallel jobs as well as workflows. It was using Hybrid General Learning
and Evolutionary Algorithm and Method (HyGLEAM) optimization procedure,
combining local search with the GLEAM algorithm [16] which is based on the
principles of evolutionary and genetic algorithms. Sadly, this system was a pro-
prietary solution and it seems that it is no longer operational.

3 Planning and Optimizing Job Scheduler

This section describes the new planning-based job scheduler that uses a schedule-
optimizing metaheuristic. The scheduler is compatible with the TORQUE
1 https://www.openccs.eu/core/.

https://www.openccs.eu/core/
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Resource Manager system, which is used in the Czech National Grid Infrastruc-
ture MetaCentrum. TORQUE is an advanced open-source product providing
control over batch jobs and distributed computing resources [1]. It consists of
three main entities — the server (pbs server), the node daemons (pbs mom) and
the job scheduler (pbs sched). The scheduler interacts with the server in order
to allocate jobs onto available nodes. While the server and the node daemons
are mostly unchanged, the default simple queue-based FCFS scheduler [1] has
been replaced in this case. When using TORQUE, it is a common practice to
use other than the default scheduler [1].

The new scheduler contains four major parts. The first part is the data
structure that represents the job schedule. The schedule is built and maintained
using schedule construction and maintenance routines that represent the default
scheduling algorithm, working similarly to the well known Conservative backfill-
ing [13]. Maintenance routines are used to adjust the schedule in time subject to
dynamic events such as (early) job completions, machine failures, etc. Remain-
ing parts perform the evaluation and the schedule optimization. We now closely
describe these major parts in detail.

3.1 Data Representation of Job Schedule

The schedule is represented by a rather complex data structure that keeps all
important information regarding planned job execution. In fact it consists of
three separate structures. First, there is the linear list of jobs (job list), where
each job in the list stores information regarding its allocation, e.g., CPU/GPU
IDs, the amount of RAM memory per node, amount of disk space, etc. Also the
planned start time and completion time is stored for each job. Second structure
(gap list) stores “gaps”, i.e., “unused” parts of the schedule. It is used to speed
up the scheduling algorithm during the backfilling phase. Each gap is associated
with its start time, duration and a list of available resources (CPUs, GPUs,
RAM, HDD, etc.). Both jobs and gaps are ordered according to their expected
start times. The third part of the schedule is called limits list and is used to
guard appropriate usage of resources. For example, it is used to guarantee per-
user limits concerning maximum CPU usage. Similarly, it is used to check that
a given class of jobs does not exceeds its maximum allowed allocation at any
moment in the planned future (e.g., jobs running for more than a week cannot
use more than 70% of all system resources).

All these structures and their parameters are kept up-to-date as the system
runs using methods described in Sect. 3.2. For practical reasons, independent
instances of job list, gap list and limits list are created for every cluster in the
system. First, such solution speeds up the computation of schedule as changes
and updates are often localized to a given cluster while it also allows to simplify
management of heterogeneous infrastructures, where different clusters may have
different properties and usage constraints. Although the job schedule in fact
consists of three major parts (job list, gap list and limits list), for simplicity
we will mostly use the term schedule in the following text when describing the
pseudo codes of the scheduler.
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3.2 Scheduling Algorithms

The job schedule is built, maintained and used according to the dynamically
arriving events from the pbs server using the core method called Schedul-
ingCycle which is shown in Algorithm 1. SchedulingCycle invokes all nec-
essary actions and auxiliary methods in order to update the schedule and per-
form scheduling decisions. At first, all jobs that have been completed since the
previous check are removed from the schedule (Line 1). Next, the schedule is
updated (Line 2) using the Update function which is described in Algorithm 2.

During the update it is checked whether existing (planned) job start times are
still relevant (see Lines 1–6 in Algorithm 2). If not, those are adjusted according
to the current known status. There are several reasons why planned start times
may change. Commonly, jobs are finishing earlier than expected as the schedule
is built using processing time estimates which are typically overestimated. Also,
in some situations jobs are shifted into later time slots, e.g., due to fairness-
related constraints and/or via the optimization algorithm. In both cases, jobs
are checked one by one and a start time of each job is adjusted (see Line 3), i.e.,
it is moved into the earliest possible time slot with respect to previously adjusted
jobs while respecting existing usage limits. Next, limits list and gap list struc-
tures are updates accordingly (see Lines 4–5 in Algorithm 2). During the update
process, the relative ordering of job start times is kept, i.e., a later job can-
not start earlier than some previous job. This approach is a runtime-optimized
version of the schedule compression method used in Conservative backfilling [13].

Once the schedule is updated, all newly arrived jobs are inserted into the
existing schedule (Lines 3–7 in Algorithm 1) using the Conservative backfilling-
like approach. It founds the earliest gap in the initial schedule which is suitable
for the new job. This approach is identical with the method used in Conservative
backfilling for establishing job reservations [13]. It significantly increases system
utilization while respecting the start times of previously added jobs. In this
case, the applied data representation represents major benefit as all gaps in the
current schedule are stored in a separate list (gap list) which speeds up the whole
search procedure. When the suitable gap is found and the job is placed into it

Algorithm 1. SchedulingCycle

1: remove finished jobs from schedule;
2: schedule := Update(schedule);
3: while new jobs are available do
4: job := get new job from pbs server;
5: schedule := backfill job into the earliest suitable gap in schedule;
6: schedule := Update(schedule);
7: end while
8: notify pbs server to run ready jobs according to schedule;
9: if (timecurrent − timeprevious) ≥ 60 s then

10: schedule := ScheduleOptimization(schedule);
11: timeprevious := timecurrent;
12: end if
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Algorithm 2. Update(schedule)

1: for i := 1 to number of jobs in schedule do
2: job := i-th job from schedule;
3: schedule := adjust job’s start time subject to limits list;
4: update limits list;
5: update gap list;
6: end for
7: return schedule;

(Line 5 in Algorithm 1) the schedule is appropriately updated and another
incoming job is processed.

Once all new jobs are placed into the schedule, the scheduler checks whether
some jobs are prepared to start their execution. Those jobs are immediately
scheduled for execution as depicted on Line 8 in Algorithm 1. Finally, the
schedule is periodically optimized (see Line 10 in Algorithm 1) by a metaheuris-
tic which we describe in the following section.

3.3 Evaluation and Metaheuristic

The real contribution of our scheduler is related to its ability to “control” itself
and adjust its behavior in order to better meet optimization criteria. This is
done by the periodically invoked metaheuristic optimization algorithm which is
guided by the schedule evaluation. We use a simple local search-inspired meta-
heuristic called Random Search (RS) [10] and focus both on the performance-
and the fairness-related criteria. We minimize the avg. wait time and the avg.
bounded slowdown to improve the overall performance [4]. User-to-user fairness
is optimized using the Normalized User Wait Time (NUWT) metric [10]. For a
given user, NUWT is the total user wait time divided by the amount of previ-
ously consumed system resources by that user. Then, the user-to-user fairness
is optimized by minimizing the mean and the standard deviation of all NUWT
values. It follows the classical fair-share principles, i.e., a user with lower resource
usage and/or higher total wait time gets higher priority over more active users
and vice versa [6]. The calculation of NUWT reflects consumptions of multi-
ple resources (CPU and RAM utilization), representing a solution suitable for
systems having heterogeneous workloads and/or infrastructures [6].

The Random Search (RS) optimization algorithm is implemented in the
ScheduleOptimization function (see Algorithm 3) that uses one input — the
schedule that will be optimized. In each iteration, one random job from the sched-
ule is selected and it is removed from its current position (Lines 3–4). Next, this
job is returned to the schedule on a randomly chosen position (Line 5) and the
new schedule is immediately updated (Line 6). The modified schedule is evalu-
ated with respect to applied optimization criteria. This multi-criteria evaluation
is performed using a simple weight function2 that has been successfully used
2 Our system uses equal weights (w = 1) for wait time and bounded slowdown while

the normalized user wait time (fairness) has ten times higher weight (w = 10).
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Algorithm 3. ScheduleOptimization(schedule)

1: schedulebest := schedule;
2: while not interrupted do
3: job := select random job from schedule;
4: remove job from schedule;
5: move job into random position in schedule;
6: schedule := Update(schedule);
7: if schedule is better than schedulebest then
8: schedulebest := schedule;
9: end if

10: schedule := schedulebest; (reset candidate)
11: end while
12: return schedulebest;

in our previous works [9,10]. If the new schedule is better than the best so
far found schedulebest then the schedulebest is updated with this new, better
schedule. Otherwise, the schedulebest remains unchanged (Lines 7–9). Then the
schedule is updated/reset with the schedulebest (Line 10) and a new iteration
starts. Once the loop ends, the newly found schedulebest is returned (Line 12).

The metaheuristic is fully randomized and does not employ any “advanced”
search strategy. In fact, during the design process we have observed that this sim-
ple randomized optimization is very robust and produces good results, often beat-
ing more advanced methods such as Simulated Annealing or Tabu Search. The
beauty of RS is that it is simple (i.e., fast) and — unlike, e.g., Simulated Anneal-
ing — its performance does not rely on additional (hand-tuned) parameters.

Certainly, optimization is a potentially time consuming operation. There-
fore, the optimization is only executed if the last optimization ended at least
60 s ago (see Lines 9–12 in Algorithm 1). This interval has been chosen experi-
mentally in order to avoid frequent — thus time consuming — invocations of the
ScheduleOptimization function. Furthermore, several parameters are used
when deciding whether to interrupt the main loop of the optimization procedure
or not (Line 2 in Algorithm 3). We use the maximal number of iterations and the
given time limit. Currently, the time limit is 20 s and the number of iterations
is set to 300 in our system.

3.4 User Perspective: System Interfaces

From the user perspective, the newly developed scheduler does not introduce
any major difference with respect to other standard schedulers. It uses the same
syntax of the qsub command as a “normal” TORQUE-based system, so users
can use the same commands as they are used to from different systems. The
TORQUE’s pbs server have been slightly extended, such that it can read job-
related data from the schedule and then provide them to the users. For this
purpose, the pbs server queries the schedule and then displays the informa-
tion obtained, including currently planned start time and execution node(s).
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We support both textual (qstat command) and graphical user interfaces using
a complex web application called PBSMon3 which monitors the whole infrastruc-
ture and workload.

4 Evaluation and Deployment

The developed scheduler and its optimization metaheuristic has been thoroughly
tested using various methodologies. In this section we present the results of three
different evaluation scenarios. First, Sect. 4.1 shows the comparison of system
performance before and after the new scheduler has been deployed in practice.
These results represent the actual behavior of the system, but include one major
but unavoidable drawback — the comparison is not based on the same workload,
since the results were obtained from a real system in two different consecutive
time periods. This problem can be avoided by testing the new scheduler (and
its predecessor) using a computer testbed, where the same set of jobs is submit-
ted to both schedulers and their resulting performance is compared. Although
this approach is quite realistic, such a comparison is very time consuming (see
discussion in Sect. 4.2), limiting the “size” of the data sets that can be used.
Therefore, we also include a third type of evaluation, where the major features
of both the original and the newly proposed scheduler have been implemented
within a job scheduling simulator and a large data set from the actual system
has been used. This comparison is presented in Sect. 4.3.

In all cases, the proposed planning-based scheduler using Random Search
metaheuristic (denoted as Plan-RS ) has been evaluated against the backfilling-
based algorithm (denoted as Orig-BF ) that was originally applied in the system
(see Sect. 2). Additional algorithms were not considered either because their
implementations within TORQUE were not available or their performance was
very poor (e.g., plain FCFS without backfilling). All experiments used the orig-
inal inaccurate runtime estimates.

4.1 Real-Life Deployment

First, we present real-life data that were collected in the Czech Centre for Edu-
cation, Research and Innovation in ICT (CERIT Scientific Cloud) [3], where
our new scheduler has been operationally used since July 2014. CERIT Scien-
tific Cloud provides computational and storage capacities for scientific purposes
and shares them with the Czech National Grid and Cloud Infrastructure Meta-
Centrum. Both MetaCentrum and CERIT use the same version of TORQUE
resource manager. Before July 2014, CERIT was using the same scheduler (Orig-
BF) as MetaCentrum. CERIT consists of 8 computer clusters with ∼5,200 CPU
cores that are managed by our new scheduler (Plan-RS) since July 2014.

Following comparative examples are based on the historic workload data that
were collected when either the original Orig-BF scheduler or the new Plan-RS

3 http://metavo.metacentrum.cz/pbsmon2/.

http://metavo.metacentrum.cz/pbsmon2/
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scheduler were used respectively. In the former case (Orig-BF), the data come
from the January – June 2014 period. In the latter case the data are related to
the new scheduler (Plan-RS) and cover the July – December 2014 period4.

The first example in Fig. 1(left) focuses on the average system CPU utiliza-
tion. It was observed that — on average — the new scheduler was able to use
additional 10,000 CPU hours per day compared to the previous scheduler. This
represents 418 fully used CPUs that would otherwise remain idle and causes that
the avg. CPU utilization has increased by 9.3%.

Fig. 1. Real-life comparisons showing (from the left to right) the avg. system utiliza-
tion, the avg. wait time and the avg. bounded slowdown.

Although the increased utilization is beneficial, it may come at the cost of
decreased performance for selected classes of jobs, which is a known feature [13].
As users tend to watch how the system is processing their jobs, improved uti-
lization, i.e., higher throughput, may cause that users will send more jobs into
the system. As the total available computing power is limited, these “additional
jobs” may have to wait longer until resources become available. Moreover, reser-
vations established by backfilling often represent a pessimistic scenario as jobs
are typically completing earlier than their estimates suggest [19]. Even though
existing reservations are shifted to those appearing free time slots (see the dis-
cussion on schedule compression in Sect. 3.2), short/narrow jobs would still have
a higher chance to fill these gaps compared to long and/or highly parallel jobs.
Therefore, we have performed further analysis of the data focusing on additional
performance indicators.

First, we have compared the avg. wait time and the avg. bounded slowdown
as well as their standard deviations for the two considered schedulers. The results
are shown in Fig. 1 (2nd and 3rd chart from the left, respectively), where the
“error bar” depicts the standard deviation of the metric. As we have observed,
the original Orig-BF scheduler often produced very bad wait times and slow-
downs for many jobs, causing high average values and large deviations. From
4 Those two periods were chosen because the physical infrastructure was identical

during that time. Since January 2015, the system became larger (4,512 CPUs vs
5,216 CPUs) which would skew any direct comparison of system performance.
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this point of view, Plan-RS was much more efficient, significantly decreasing
both the averages and the deviations. Given the increased utilization observed
in Fig. 1(left) this is a good news.

Furthermore, we have also analyzed the average job wait time with respect to
job parallelism (number of requested CPUs) as shown in Fig. 2(left). The results
for Plan-RS are again promising as most job classes now have better average wait
times compared to the former Orig-BF scheduler, i.e., Plan-RS is not causing
significant delays for (highly) parallel jobs.

Fig. 2. Real-life comparison of job wait times with respect to job parallelism (left) and
job walltime (right).

Also, job walltime (processing time estimate) is an important factor that has
some influence on job’s chances to obtain a good (early) reservation. Longer jobs
are less likely to obtain early reservations, i.e., their wait times may be (very)
large in some cases. Therefore we have compared average wait times of jobs with
respect to their walltime estimates as were specified by users. As can be seen in
Fig. 2 (right), there are no significant side effects associated with the use of Plan-
RS. Importantly, with a single exception (2–7 days), the average wait time of jobs
that have their runtime estimate larger than 4 h was always smaller compared
to the former Orig-BF scheduler. Furthermore, such jobs represent nearly 83%
of the whole workload, i.e., they are very frequent, yet they are not significantly
delayed by the new scheduler which is very important. To sum up, our new Plan-
RS scheduler has increased the utilization in CERIT system, without producing
any significant undesirable side effect. In fact, also the avg. wait time and the
avg. bounded slowdown have been significantly reduced compared to the original
Orig-BF scheduler.

As discussed in Sect. 3.3, user-to-user fairness is maintained by minimizing
the mean and the standard deviation of Normalized User Wait Times (NUWT).
Figure 3 shows the fairness-related results for both schedulers. The mean and
the standard deviation (shown by error bar) of NUWT values are very close for
Orig-BF and Plan-RS (see Fig. 3(left)). More detailed results are shown in Fig. 3
(middle and right), showing the NUWT values per user and the corresponding



208 D. Klusáček and V. Chlumský

Fig. 3. Fairness-related results showing the avg. Normalized User Wait Time (NUWT)
and its (per user) distribution as well as corresponding CDF.

cummulative distribution function (CDF) of NUWT values, respectively. The
results for both schedulers are quite similar — most users (∼97%) have their
NUWT below 1.0, meaning that they spent more time by computing than by
waiting which is beneficial and indicate that both Plan-RS and Orig-BF are
capable to maintain reasonable fairness level.

In order to demonstrate the capability of our metaheuristic to improve the
quality of the schedule in time we have also recorded all successful optimization
attempts during the October – December 2014 period. Then, we have plotted
the corresponding relative improvements (and deteriorations) of those criteria
with respect to the time. Figure 4 shows the results for wait time and fairness
criteria respectively. Commonly, the main reason that an attempt was accepted
is that the user-to-user fairness was improved. This is an expected behavior.
In the CERIT system, user-to-user fairness is not directly guaranteed by the
underlying Conservative backfilling-like algorithm, and it can only be improved
through the optimization. Without optimization, the only way to assert fair-
ness is to periodically re-compute the schedule from scratch, i.e., reinsert all
waiting jobs into the schedule following a new job ordering computed according
to updated user priorities. This is potentially very time consuming, thus non-
preferred option. Therefore, it is very common for the optimization algorithm to
find a schedule with improved fairness. Figure 4 also reveals that the majority of
accepted optimization attempts represents rather decent improvements, where
the relative improvement of a given criterion is less than 2% in most cases. Still,
several large improvements can be seen for both criteria during the time (and
few more are not shown since the y-axis is cropped for better visibility). These
rarer attempts are very important as they help to reduce those few extremely
inefficient assignments that can be seen in nearly every production workload.
As the optimization is continuously evaluating the schedule, it is able to detect
jobs having (very) high wait times, slowdowns, etc. Then, it can develop better
schedules where these extremes are reduced. These results help to explain the
large improvement of wait times and slowdowns observed in Fig. 1.
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Fig. 4. Successful optimization attempts over the time.

We were also careful about the runtime requirements of our rather complex
solution. Therefore, we have measured how the size of the schedule (number
of jobs) affects the runtime of critical schedule-maintaining routines. For this
analysis, the runtime of the backfilling-like policy was measured as well as the
time needed to perform the subsequent schedule-update routine which updates
the schedule-related data structures subject to modifications (see Sect. 3.2). Also
the total runtime (backfilling + update) and the average runtime of one iteration
of Random Search metaheuristic were recorded. The results are presented in
Fig. 5, where the y-axis shows consumed runtime (in microseconds) and the
x-axis depicts the number of jobs in the schedule.

The results show that there is no simple correlation between the overall
size of the schedule and algorithm runtime. This is a natural behavior caused
by several factors. First of all, jobs being added to the schedule have different
requirements — some jobs are generally very flexible, i.e., they can be executed
on several clusters while other jobs can only use a small subset of system’s
clusters. Then the algorithm runtime may vary significantly depending whether
one, two, or more cluster schedules must be analyzed for a given job. Since we use
backfilling, if a suitable gap is found in an early time slot (close to the beginning
of the schedule), the runtime is lower as we do not have to traverse the whole
schedule, and vice versa. Moreover, the physical system consists of 8 different
clusters that have different types of nodes and amounts of system resources and
each such cluster has its own schedule instance. Naturally, schedule for larger
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Fig. 5. Runtime requirements with respect to the number of jobs in the schedule.

cluster requires more runtime to be backfilled/updated. Still, some basic trends
are visible in the figures, such as approximately linear upper bound of requested
runtime. With the current typical backlog of CERIT system — where the number
of jobs in the schedule is usually bellow 2,200 — 61% of jobs require less than 0.2 s
to be placed in the schedule (backfill + update), most jobs (96%) then require
less than 1 s while 99% of jobs fit within 2 s. Clearly, schedule construction does
require nontrivial time, however we usually have <1,000 new job arrivals per day
which is well within the current capacity of our implementation and we have not
observed any delays/overheads so far.

The avg. runtime of one iteration of Random Search (RS) may be higher
than of previous routines (see the bottom right part of Fig. 5), which is natural.
First of all, the evaluation of the whole schedule requires some time. Second,
when an iteration is not improving, the schedule must be reset to its previous
state which requires an additional update. Therefore, the runtime of one RS
iteration is often at least twice as high as the corresponding runtime of the
update procedure. Finally, while the backfill + update part of the scheduler
is only executed upon new job arrival, RS is executed periodically (∼60 s). If
there is a “complicated schedule” at that time, the chart of RS runtime will
show a large peak, as this runtime-demanding schedule is repeatedly updated.
An example of such situation is visible in the chart, showing a rather large peak
of runtime for schedules having ∼700 jobs. This particular peak was caused
by a specific situation on one of the cluster’s schedules where a set of similar
jobs — all belonging to a single user — have remained for a couple of days. It
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was basically impossible to optimize the schedule for such jobs, and frequent
time-demanding updates (schedule resets) were inevitable, producing a runtime
peak clearly visible as a clump of dots in the chart.

4.2 Comparison Using Testbed

Another possible way how to properly compare the proposed solution is to test
both the former Orig-BF and the new Plan-RS schedulers using a simulation
testbed, feeding both schedulers with identical workloads. The problem is that
such experiments are very time consuming. One cannot simply use a long, realis-
tic workload “as is” because the experiment would last for several weeks/months
depending on the original length of the workload. Instead, only several “promis-
ing” job intervals from a workload can be extracted. We have chosen those with a
significant activity and contention (using the number of waiting jobs at the given
time as a metric). Based on this information we have extracted those promis-
ing intervals that lasted for at least 5 days. Such intervals were more likely to
show differences between the two schedulers. Furthermore, all job runtimes and
all corresponding inter-arrival times between two consecutive jobs were divided
by a factor of 7. The resulting workload was then proportional to the original
one, exhibiting similar behavior but having 7-times shorter duration (makespan),
making the simulation possible within a reasonable time frame. For example, if
the original data covered one week then it took only 1 day to perform the whole
simulation. Eight such sub-workloads were then used — four of them based on
data from the CERIT’s Zewura cluster, two from the HPC2N log and the two
remaining came from the KTH-SP2 log. Detailed analysis and further descrip-
tion of this experiment have been already presented in [8], therefore we only
briefly recapitulate that the proposed Plan-RS scheduler dominated over Orig-
BF in all cases. Table 1 shows the relative decrease of the avg. wait time (WT)
and the avg. bounded slowdown (SD) achieved by the Plan-RS scheduler with
respect to the Orig-BF scheduler5.

Table 1. Achieved relative decrease (in %) of the avg. wait time (WT) and the avg.
bounded slowdown (SD) when using the new Plan-RS scheduler.

Zewura HPC2N KTH-SP2

Set 1 Set 2 Set 3 Set 4 Set 1 Set 2 Set 1 Set 2

WT −18.8% −40.0% −57.2% −41.1% −81.0% −26.6% −31.6% −7.2%

SD −32.6% −49.7% −84.7% −39.3% −89.6% −42.0% −64.0% −45.7%

5 The small size and short makespan of these experiments meant that there were few
distinctive users in the workload—most of them with just few jobs— making the
use of the fairness-related criterion rather impractical and inconclusive in this case.
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4.3 Comparison Using Simulator

As explained in Sects. 4.1 and 4.2, evaluation based on practical deployment
as well as testbed-based comparison are somehow problematic (different work-
loads and time-related constraints, respectively). Therefore, we have also used
the Alea job scheduling simulator [2] where both Orig-BF and Plan-RS have
been emulated. Moreover, instead of using the classical static approach where
a given workload is “replayed” in the simulator, we have adopted the recently
proposed dynamic approach of Zakay and Feitelson [21], where job submission
times are not dictated by the workload but are the result of the (simulated)
scheduler-to-user interaction. As explained in [21], job submission times in a
real system depend on how users react to the performance of previous jobs.
Moreover, usually there are some logical structures of dependencies between
jobs. It is therefore not reasonable to use a workload “as is” with fixed (original)
job submission timestamps, as the subsequent simulation may produce unreal-
istic scenarios with either too low or too high load of the system, skewing the
final results significantly. Instead, dependency information and user behavior can
be extracted from a workload trace, in terms of job batches, user sessions and
think times between the completion of one batch and the submission of a subse-
quent batch. Then, each user’s workload is divided into a sequence of dependent
batches. During the simulation, these dependencies are preserved, and a new
user’s batch is submitted only when all its dependencies are satisfied (previous
“parent” batches are completed). This creates the desired feedback effect, as
users dynamically react to the actual performance of the system, while major
characteristics of the workload including job properties or per-user job ordering
are still preserved. More details can be found in [21,22] while the actual imple-
mentation of the model (using user agents instead of standard workload reader)
is available within the Alea simulator [2].

We have used a workload trace from the CERIT system that covered 102,657
jobs computed during January – April 20156. Again, we have compared the “his-
torical” Orig-BF with the newly proposed Plan-RS scheduler. All experiments
using Plan-RS have been repeated 20 times (and their results averaged) since
RS is not deterministic and uses a randomized approach. The results for the
avg. wait time and the avg. bounded slowdown are shown in Fig. 6, error bars
in the left chart shows the standard deviation of the 20 runs of Plan-RS. As
previously (see Sects. 4.1 and 4.2), Plan-RS decreases significantly the wait time
and the bounded slowdown. The explanation is quite the same as was in Sect. 4.1
and can be nicely demonstrated on the CDF of job wait times which we show
in Fig. 6(right). The mean wait time for Plan-RS is 1.6 h, while the CDFs for
both scheduler show that 85% of jobs wait shorter than 1.6 h. This can only
mean — and it is clearly visible in the CDF — that Plan-RS decreases some of
those excessive wait times of the remaining 15% of jobs.

Concerning the fairness, the Plan-RS performed much better than Orig-
BF as shown in Fig. 7. The mean and the corresponding standard deviation

6 This workload is available at: http://www.fi.muni.cz/∼xklusac/workload/.

http://www.fi.muni.cz/~xklusac/workload/


Planning and Metaheuristic Optimization in Production Job Scheduler 213

Fig. 6. Performance-related results showing (from left to right) the avg. wait time, the
avg. bounded slowdown and the CDF of job wait times.

Fig. 7. Fairness-related results showing (from left to right) the mean Normalized User
Wait Time (NUWT), NUWT histogram wrt. users and corresponding CDF.

of NUWT values were significantly lower compared to Orig-BF. When analyzed
on a detailed per-user basis (see the middle and the right chart in Fig. 7), the
results clearly show that Plan-RS decreases NUWT across the whole user base.

In the final experiment, we have developed a new experimental model to mea-
sure user (dis)satisfaction with the system performance. Here we were inspired
by the future work discussed in the recent Zakay and Feitelson paper [22], which
suggest that (in reality) users may leave if the performance is too poor. In our
case a user agent does not leave the system, instead it “reports” that it is not
satisfied with the current waiting time. Also, it measures “how large” this dis-
satisfaction is by calculating the actual to expected wait time ratio. In our sim-
ple model, a user agent expects that the system shall start its jobs in a time
which is proportional to job’s requirements. In other words, the longer a job
is (higher walltime estimate) and the more CPUs it requires the higher is the
tolerable wait time and vice versa. However, this dependence is not linear, since
our experience shows that real users usually have some “upper bound” of their
patience. For example, if a job requiring 1 CPU starts within an hour, then
users are usually satisfied. However, that does not imply that a job requiring
64 CPUs can wait for 64 h. We have similar experience concerning walltime,
i.e., user’s patience is not linear with respect to job duration, instead it quickly
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Fig. 8. Acceptable wait time with respect to CPU and walltime requirments (left), the
number of dissatisfying events per user (middle) and all dissatisfying events ordered
by their seriousness (right).

runs out. Therefore, we have developed a simple formula to calculate “accept-
able wait time” for a given job which captures this nonlinearity7. Figure 8(left)
shows the non-linear distribution of acceptable wait times with respect to job
durations and their parallelism, as produced by the applied formula. Of course,
this simple “hand tuned” formula is just a rough approximation used for demon-
stration purposes and it certainly does not represent a truly realistic model of
user’s expectations.

During a simulation, job’s acceptable wait time is calculated upon each new
job arrival. If more jobs of a single user are present in the system we sum up
their acceptable wait times. Then, whenever a job is started, a corresponding
user agent checks whether the actual wait time was within the calculated overall
limit. If not, a user agent “reports dissatisfaction” and calculates the level of such
dissatisfaction, which is the actual wait time divided by the acceptable wait time.
Further details can be found in the AgentDynamicWithSatisfactionModel class
of the simulator [2]. The results of such experiment are shown in Fig. 8(middle)
and (left), showing the number of dissatisfying events per user and all dissatis-
fying events ordered by their seriousness, respectively. It shows superior perfor-
mance of Plan-RS, which is able to significantly minimize the number of “com-
plaining users”, the number of excessively waiting jobs, as well as the “size”, i.e.,
seriousness of such job delays.

5 Conclusion

In this paper we have provided a detailed analysis of the real production sched-
uler which uses planning and metaheuristic-based schedule optimization. Using

7 The formula is: acceptable wait = (ln(req CPUs) + 1) · (walltime/factor).
req CPUs denotes the number of requested CPUs and job’s walltime is divided
by an integer (factor ≥ 1) which increases as the walltime increases, emulating
the non-linear user’s wait time expectations. Currently, we use five factors 1, 2, .., 5,
which apply for walltimes <3h, 3h..7h, 7h..24h, 1d..7d, ≥1w, respectively.
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various types of evaluation we have demonstrated that both planning and some
form of optimizing metaheuristic can be used in practice. In reality, the planning
feature is useful for users as well as for system administrators. On several occa-
sions, the constructed plan revealed problems long before someone else would
normally notice (e.g., suboptimal job specification leading to very large planned
start time). Also, system administrators often use prepared plan when recon-
sidering various system-wide setups, e.g., too strict limits concerning resource
usage. Certainly, this approach is not suitable for every system. Not surprisingly,
planning (in general) is more time-consuming approach compared to plain queu-
ing. The time needed for construction and maintenance of job schedules grows
with the size and complexity of the system and its workload (see Sect. 4.1).
Surely, our current implementation can be further improved. For example, all
schedule-related routines are currently sequential — running in a single thread —
and can be relatively easily parallelized. So far, this is not an issue within CERIT
system and no problems concerning scalability/speed were recorded so far. Our
scheduler is freely available at: https://github.com/CESNET/TorquePlanSched.
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Abstract. Modern HPC systems, such as Blue Waters, have multidi-
mensional torus topologies, which make it hard to achieve a high system
utilization and a high scheduling efficiency. The low system utilization
is majorly caused by system fragmentation, which includes both inter-
nal fragmentation due to convex prism shape requirement, and exter-
nal fragmentation resulted from contiguous allocation strategy. The low
scheduling efficiency comes from using a brute force search to find the
free block with a matching shape for each job, which is highly time con-
suming. In this paper, we address the topology-aware scheduling problem
on Blue Waters, with the objective of improving system utilization and
scheduling efficiency. To improve scheduling efficiency, we propose an
efficient free partition detection method. To improve system utilization,
we propose a job scheduling strategy with proactive queue scanning and
a migration-based job placement algorithm. Through extensive simula-
tions of modeled trace data, we demonstrate that our approach improves
the system utilization.

Keywords: Topology-aware scheduling · Proactive queue scanning ·
Free partition detection · Migration · Job placement

1 Introduction

Many high performance computing systems use various types of multidimen-
sional torus topologies for their interconnects. Four of the top ten supercom-
puters in the Top500 list (June 2016) have torus networks (one 3D, two 5D,
and one 6D). They are widely used in systems such as Blue Waters (3D) [6],
IBM’s Blue Gene/Q (5D) [15], and Fujitsu’s K computer (6D) [2]. In the Blue
Waters system for instance, the network consists of X,Y,Z 3D dimensions with
toroidal interconnect. Each dimension has 24 Gemini routers, making the system
24*24*24 torus interconnect structure. Each coordinate on X,Y,Z dimensions
c© Springer International Publishing AG 2017
N. Desai and W. Cirne (Eds.): JSSPP 2015/2016, LNCS 10353, pp. 217–231, 2017.
DOI: 10.1007/978-3-319-61756-5 12



218 K. Li et al.

is associated with a Gemini router. Each Gemini router is directly associated to
two computing nodes, and is connected to its six neighbour routers along X,Y,Z
dimensions (each dimension has two neighbour routers).

This torus topology influences the way jobs should be scheduled and placed
in the system. For example, BlueGene allows allocating network links exclusively
to the selected jobs to optimize their performance, but it can leave unused nodes
within the system partitions, which leads to a lower utilization. On Blue Waters,
a pre-defined Shape Table is adopted to accommodate each job’s request. In order
to allocate a job, the scheduler has to exhaustively search the entire system to
find the free block with a matching shape, which leads to a high time complexity
and a low scheduling efficiency.

In order to improve the application performance and runtime consistency,
Blue Waters system adopts a contiguous allocation strategy [4,5] and a con-
vex prsim shape is allocated to each job. This strategy degrades the system
utilization. On the other hand, non-contiguous allocation strategy [3,12] can
improve the system utilization, but it causes job performance to go down due to
communication interference and increased latency. These reasons motivate us to
investigate various topology-aware job scheduling strategies.

One key factor to low system utilization on Blue Waters is system fragmen-
tation, which includes both internal and external fragmentation. The internal
fragmentation results from the convex prism shape allocation, which allocates
more nodes to a job than it needs. The external fragmentation, on the other
hand, is caused by contiguous allocation strategy, which separates free system
resources into smaller, non-contiguous blocks interspersed by allocated resources.
This leads to the situation when sufficient number of free nodes cannot be con-
tiguously allocated for a job. In this paper, we focus on developing efficient job
scheduling strategies to reduce system fragmentation, hoping that it can improve
system utilization.

Blue Waters system is using Adaptive Computing’s Moab scheduler as system
scheduler [6]. The scheduler is in charge of assigning each waiting job a priority
and placing waiting jobs into the system. The ordered priority regulates the
schedule order for waiting jobs in the queue and determines which jobs to select
and when to allocate the selected jobs. In this paper, without loss of generality,
we assume the queue is never empty and is already ordered by assigned priority.
Each job is characterized by its own resource demand (number of nodes), and
estimated walltime. The objective is to design an efficient job scheduling strategy
to achieve a high system utilization and a high scheduling efficiency. Meanwhile,
we must preserve the performance of jobs and avoid communication interference.
Therefore, following the suggestions of system administrators of Blue Waters, we
still need to maintain contiguous allocation strategy and allocate convex prism
shape for input jobs.

The paper is organized as follows: In Sect. 2, we propose a scheduling strategy
with proactive queue and system scanning. In Sect. 3, we present the free parti-
tion detection method and the multiple knapsack model for the job placement
problem. In Sect. 4, we present our migration-based job placement algorithm for
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solving the multiple knapsack problem. In Sect. 5, we conduct simulations to
validate the efficiency of our approach. The related work is discussed in Sect. 6
and we give our conclusions and future work in Sect. 7.

2 Scheduling with Proactive Queue and System Scanning

In this section, we present a scheduling strategy based on proactive queue and
system scanning. In our approach, the scheduler allocates waiting jobs in the
queue to the system in scheduling cycles. At each scheduling cycle, the scheduler
maintains a scan window to proactively scan the queue. In the meantime, the
scheduler also scans the system to detect a set of free partitions. The size of the
scan window is the depth of the scanning from the head of the waiting queue, as
shown in Fig. 1. This queue scanning generates a set of jobs in the scan window
ordered by priority.

        …  …  jD   j2  j3   j1

   waiting queue

    scan window with depth D

queue head

placement   …  …

Fig. 1. Proactive queue and system scanning

The system scanning detects a set of free partitions in the system. This set
of free partitions represents all available contiguous resource areas. These areas
can be represented as a set of bins. Each bin is a 3D convex rectangular prism.
Once the set of jobs in the scan window is obtained, we will group these jobs and
try to place them together onto the set of free bins, all at once. This scheduling
strategy has the potential to improve system utilization as multiple jobs are
scheduled together, which leads to a better resource allocation. In the paper, we
use the two terms (bins and partitions) interchangeably.

As described in Algorithm 1, at one scheduling cycle, starting from current
queue head job, the scheduler scans the queue with depth D, and generates
the set J of D waiting jobs ordered by priority. Meanwhile, the scheduler scans
the system to obtain the set P of M free partitions. After that, the scheduler
places each job in J (waiting job set) into P (free bin set) until all jobs in J
are allocated or one job ji ∈ J is rejected. The detailed placement process will
be discussed in Sect. 4. As each job’s information (number of nodes, estimated
walltime) in the scan window is known to us, this job placement process is in
fact an off-line job placement.

If all jobs in J are allocated, we will wait until next scheduling cycle. Other-
wise, if one job ji ∈ J is rejected, we will perform backfilling and place “back-
filled” jobs into P . In order to implement backfilling, we need to first determine
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Algorithm 1. Scheduling with Proactive System and Queue Scanning
1: if at one scheduling cycle then
2: scan the queue and generate the set J of D waiting jobs: J = {j1, ..., jD}
3: scan the system and generate the set P of M free partitions: P = {p1, ..., pM}
4: Job Placement (J , P ) �Algorithm 5
5: if ji ∈ J is rejected then
6: calculate the start time of ji and reserve space for it
7: perform backfilling
8: else
9: wait until next scheduling cycle

the start time of ji and reserve space for it, which requires the following three
steps:

1. Obtain the list of running jobs in the system, and sort them increasingly by
their remaining completion time.

2. Starting from the time point of current scheduling cycle to the future, record
the time point upon each running job’s completion time, and put those time
points in the timeline.

3. Go through the timeline and calculate the largest free partition in the system
upon the time point of each running job’s completion time. Once one sufficient
largest free partition is found to accept ji at time point t, we stop the search.
Time point t is then recorded as the start time of job ji, and the corresponding
largest free partition is reserved for ji.

With the start time t determined and space reserved, we will perform back-
filling and allocate qualified backfilled jobs according to the ordered priority.
The qualified backfilled jobs are those in the queue which can finish execution
before the start time t of job ji. Once P cannot accept “backfilled” jobs, we will
terminate current scheduling cycle and wait until the start time of ji. If the start
time of ji stretches multiple scheduling cycles, we will keep using “backfilled”
jobs to fill in P at each scheduling cycle until the start time of ji.

3 Free Partition Detection and Multiple Knapsack Model

As mentioned before, Blue Waters currently uses a pre-defined Shape Table to
accommodate the request of each job. This Shape Table contains all topological
shapes of sub-torus for job allocation. For instance, for a job with 8 node request,
it corresponds to a shape of 2*2*2 in the Shape Table. In order to schedule such
a job, the scheduler has to exhaustively search the entire system to find the
free sub-torus block with a matching shape of 2*2*2, which is computational
expensive. As an improvement, we propose an efficient free partition detection
method to search the largest rectangular contiguous partition in the system.

The system is sliced into layers along the Y dimensions (X or Z dimension
is also applicable), as illustrated in Fig. 2. Each dimension has side length of M
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(M = 24 in the case of Blue Waters). To obtain a maximum rectangular free
block on one layer, it takes time of O(M2) through the method of construction.
As for the entire 3D system, it takes another O(M2) to go through the combi-
nations of all the layers. Therefore, it takes total O(M4) to obtain the largest
free rectangular partition in the system. We can schedule multiple jobs into this
partition all at once instead of just one job.

L1

L2

L3

L4

...
L24

x

y

z

Fig. 2. Partitioning of the system into layers by Y axis

Given job shape, job placement into bins can be expressed as a 3D multiple
knapsack problem. Each bin can be considered as a knapsack and input jobs
are the items waiting to be put into the knapsacks. Let J = {j1, j2, ...., jD} be
the set of all D waiting jobs ordered by priority in the scan window. Each job
ji has weight wi, with profit pi. Let K = {k1, k2, k3, ..., kM} be the set of M
knapsacks, which comes from the free bin set P = {p1, p2, p3, ..., pM} obtained
in Algorithm 1. Each knapsack kj has capacity of Cj , which will be reduced as
more jobs are placed into the knapsack. We want to find a placement for the
D jobs together into the set P of free bins to maximize the total profit. The
mathematical formulation is as below:

Max :
D∑

i=1

M∑

j=1

xijpi (1)

Subject to :
M∑

j=1

xij ≤ 1, ∀i = 1, 2, ...,D (2)

D∑

i=1

xijwi ≤ Cj , ∀j = 1, 2, ...,M (3)

xij ∈ {0, 1}, ∀i = 1, 2, ...,D, ∀j = 1, 2, ...,M (4)
Cj ≥ 0, ∀j = 1, 2, ...,M (5)

xij = 1 means job i is put into knapsack j, and xij = 0 means job i is not
put into knapsack j. The physical meaning of both weight wi and profit pi is the
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J1 J1 J1

J1 J1 J1

J1 J1 J1

J1 J1 J1 J1

J1 J1 J1 J1

Bin 1   Bin 2

Fig. 3. Illustration of difference in internal fragmentation from job placement

job size, which is the number of requested nodes of job i. The capacity of each
knapsack can never be negative, but it will be reduced as more jobs are put into
this knapsack.

Based on this multiple knapsack model, maximizing the system utilization
can be transformed into maximizing the objective of Eq. 1. As the sizes of input
jobs and capacities of free bins are heterogeneous, this multiple knapsack problem
is NP-hard and requires a heuristic algorithm, one example of which is presented
in the next section.

4 Migration-Based Job Placement

In this section, we propose a migration-based job placement heuristic algorithm
to solve the multiple knapsack problem. The intuition of this heuristic is to
minimize the internal fragmentation brought in by the job placement process.

Once the set J of waiting jobs in the scan window and the set P of free
partitions are obtained in one scheduling cycle, we will place each incoming job
in J into one of the bins in P . However, the extent of internal fragmentation
(the number of idle nodes due to using convex shape) is different if we place a
job in different bins. Figure 3 gives a 2D example.

As shown in Fig. 3, there is an incoming job J1 with 8 nodes request. If we
place it in Bin 1, it will lead to one idle node (the grey area), as the topological
layout of Bin 1 is 3*3. However, if we place it in Bin 2, it leads to no internal
fragmentation, as the layout of Bin 2 is 3*4. Therefore, Bin 2 is a better choice
and more preferable than Bin 1 in minimizing the internal fragmentation.

Thus, for each job, there are preference differences in placing it into different
bins. Each bin is ranked by the extent of the internal fragmentation this bin
can bring in. We are looking for the best bin that leads to the minimal internal
fragmentation. However, if the resources in the best bin are not sufficient for an
incoming job, we have two options.

1. Direct Placement: Among all the bins which have enough resources
to accept the incoming job, we select the one with minimal internal
fragmentation.

2. Migration-based Placement: We try to find one “victim” job on the best
bin, and migrate it into another bin, as shown in Fig. 4. In that case, we can
make some more room for accepting the incoming job.
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Fig. 4. An illustration of the job placement. When using direct placement, the incoming
job is assigned to bin 1 with the enough remaining capacity C1. When using migration,
we can find an already placed job (“a victim”) to be migrated to another available bin
with enough capacity, such as bin 2 in the picture above

The first option is not optimal as it misses the opportunity to place the
incoming job on the best bin, especially when the internal fragmentation on the
best bin is much less than that on the other bins. Therefore, we want to take
advantage of migration to do the placement. However, migration has constraint.
For the migrated victim job, there might be an internal fragmentation increase
due to the change of host bin. As our objective is to reduce the overall internal
fragmentation from job placement, if the internal fragmentation increase of the
migrated victim job is too large, migration will be meaningless. In that case, we
would rather select direct placement without migration.

While implementing the migration, we need to find a qualified victim job
for migration, which is not always possible. There are three conditions that a
qualified victim job must meet:

1. it can make enough room to accept the incoming job.
2. it can find a new available bin with enough remaining capacity to accept the

victim job itself.
3. the migration constraint must be satisfied, i.e., despite the internal fragmen-

tation increase from the migrated victim job, the Migration-based Placement
is better than Direct Placement in minimizing the internal fragmentation.

If such a qualified victim job is found in the best bin, we will choose to apply
Migration-based Placement (Algorithm 2). If more than one qualified victim
jobs exist in the best bin, we choose the victim job with the minimal internal
fragmentation increase to migrate. However, if we cannot find a qualified victim
job in the best bin, we will try to place the job in the next-best bin. If the
incoming job still cannot be placed, we continue to try the next-next-best bin.
This search goes on until the incoming job is placed or all the bins have been
tried.

As shown in Algorithm 2, for the incoming job ji, we first sort all the bins
increasingly by the internal fragmentation of placing ji in each bin pj . The call
for Direct Placement (Algorithm 3) returns frag value, which is the minimal
value of the internal fragmentation among all the bins that are enough to accept
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Algorithm 2. Migration-based Placement
1: Input: job ji, the set P of M bins: P = {p1, ..., pM}
2: sort and rank each bin pj increasingly by the extent of internal fragmentation of

placing job ji in pj

3: frag value = Direct Placement(ji, P )
4: for j = 1 to M do
5: if Cj is enough for accepting ji then
6: place ji in pj

7: else if Migration Test (ji, pj , frag value) == true then
8: perform migration and place ji on pj

9: else
10: continue

Algorithm 3. Direct Placement
1: Input: job ji, the set P of M bins: P = {p1, ..., pM}
2: sort and rank each bin pj increasingly by the extent of internal fragmentation of

placing job ji in pj

3: for j = 1 to M do
4: if Cj is enough for accepting ji then
5: return internal fragmentation of placing ji in pj

6: else
7: continue

ji. After that, starting from the first bin on the sorted list (the best bin), we try
each pj to place the job ji in it. If pj is enough for accepting ji, we just directly
place ji in pj . Otherwise, we use frag value to test the migration constraint (in
Algorithm 4). If migration constraint is satisfied and a qualified victim job is
found, we then perform migration and place ji in pj .

In Algorithm 4, first, for each already placed job jk on pj that can make
enough space for the incoming job ji, we try to find jk a new best available
bin, which is the one that has enough resources for jk and leads to the minimal
internal fragmentation increase among all the bins (except pj). After that, we
test migration constraint. If migration constraint is satisfied, we then mark jk
as a qualified victim job. If more than one qualified victim jobs exist, we select
the best victim job on bin pj which has the minimal internal fragmentation
increase. Notably, the migration here is one-hop migration, which means that
we only consider the migration of the victim job caused by the incoming job.
The re-placement of victim job will not trigger another migration.

With D jobs and M bins in one scheduling cycle, assuming the average num-
ber of already placed jobs on a bin is K, the time complexity of Algorithm 4
is O(KM), which is no more than O(D). With one loop, the time complex-
ity of Algorithm 3 is O(M). Therefore, the total complexity of Algorithm 2 is
O(MKM) + O(M), which is no more than O(MD) and pretty efficient.

The overall job placement algorithm presents in Algorithm 5 above, which
corresponds to line 4 of Algorithm 1. The input is the set J of D waiting jobs in
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Algorithm 4. Migration Test
1: Input: job ji, bin pj , frag value
2: for each placed job jk on bin pj do
3: if jk’s migration save enough space for ji then
4: for all the bins (except pj) do
5: find jk a new best available bin (except pj)
6: calculate the internal fragmentation increase of migrating job jk
7: test migration constraint using frag value
8: if migration constraint is satisfied then
9: mark job jk as a qualified victim job

10: if one or more than one victim job exist on pj then
11: select the best victim job on bin pj which has minimal internal fragmentation

increase
12: return true
13: else
14: return false

Algorithm 5. Job Placement
1: Input: the set P of M bins: P = {p1, ..., pM}

the set J of D waiting jobs: J = {j1, ..., jD}
2: for i = 1 to D do
3: Migration-based Placement (ji, P ) � Algorithm 2
4: if ji cannot be placed then
5: reject ji
6: break

the scan window and the set P of free bins in one scheduling cycle. For each job
ji ∈ J , we apply Migration-based Placement algorithm (Algorithm 2) to place
it into the set P of free partitions. When it comes to a job ji that cannot be
placed into P , we reject it and terminate this placement process.

As mentioned before, all jobs in the scan window are known to us, therefore,
this job placement process is in fact an off-line job placement, where migra-
tion is an emulated process with no migration overhead. As time complexity of
Algorithm 2 is O(MD), the total time complexity of Algorithm 5 is O(MD2)
with D input jobs, which is very efficient.

5 Performance Evaluation

In this section, we conduct simulations to evaluate our approach of improving
system utilization. According to the information from administrators of Blue
Waters, the current scheduling policy they use only achieves a system utilization
of around 50% to 60%. We will show that our approach can significantly improve
that utilization value.

The evaluation is performed using Blue Waters traces. For simplicity and
without loss of generality, we have used Blue Waters trace model, preserving the
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trace characteristics. Based on the study of trace data, we found that the largest
job can almost occupy the entire system’s capacity (only a few jobs like this).
The minimal size job is single node job, which constitutes around 70% of the
entire trace workload.

As convention, jobs with node request more than 3000 nodes are classified
as extra-large jobs, and jobs with node request between 1000 to 3000 are large
jobs. Jobs with node request between 100 to 1000 are medium jobs, and jobs
with node request below 100 nodes are small jobs. The extra-large jobs can cause
the system to drain for a long time until enough space is available to place such
a large job. This drainage brings the system utilization down for a long time. To
deal with these extra-large jobs, reducing system fragmentation is not enough as
extra-large jobs can require half or more of system’s capacity. Therefore, other
approaches such as relaxing priority order are necessary to deal with extra-large
jobs.

We focus on input workload that consists of small, medium and large jobs
for our simulation, which constitutes 99.8% of the entire trace workload. Even
if there are a few extra-large jobs, most jobs are below 3000 nodes, as shown in
Fig. 5. Similarly, we also present the distribution of job walltime throughout the
trace, as shown in Fig. 6. Although the dominant jobs are short, mid-length and
long jobs are taken into account as well.

Using random initial input, we start with the system around half occupied.
The simulation input workload has 2000 jobs, which is the approximate number
of new job submissions in one day. The scheduling cycle is set as 15 min. That
is, one iteration of scheduling repeats every 15 min. We allocate jobs and record
system utilization at each scheduling cycle (every 15 min). As the total input
workload has 2000 jobs, it requires many scheduling iterations to complete the
allocation of all input jobs.
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Fig. 7. Histogram of our approach with scan window size of 1000

Moreover, to prevent the scenario that the system is in low utilization because
there are not enough “backfilled” jobs to be used for fully utilizing the system’s
capacity, we also have another set of “backfilled” jobs besides the input work-
load of 2000 jobs. This set of “backfilled” jobs are used for providing sufficient
“backfilled” jobs to maintain system utilization. This setting is practical as the
waiting queue usually has plenty of jobs for allocation.

We conduct three groups of simulations to find out the impact of scan window
size on the performance of our approach, which includes a scheduling strategy
using proactive queue scanning and a migration-based job placement algorithm.

In Figs. 7 and 8, the scan window size are 1000 and 500, respectively. We
can see that, in most time of the scheduling iterations, our approach achieves
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Fig. 9. Histogram of our approach with scan window size of 100

a system utilization on the level of around 90%. On the other hand, the FCFS
+ Backfilling strategy leads to the utilization on the level of around 40% to
70%. This shows that, our approach can improve the system utilization greatly,
compared to both FCFS + Backfilling strategy and current strategy used on
Blue Waters.

However, when the scan window size is 100, there are some scheduling iter-
ations where the utilization is down to around 40% to 50%, as shown in Fig. 9.
This is due to the fact that the window size is small and the free bins in the
system are not fully filled. Based on this, we conclude that, large window size
leads to a better system utilization. However, despite these short periods of low
utilization, in most time of scheduling cycles, our approach still maintains a
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system utilization of around 90% when scan window size is 100, which outper-
forms FCFS + Backfilling strategy and current strategy used on Blue Waters.
The source code of our approach is open to community [1].

6 Related Work

To improve the task placement of applications with 2D, 3D and 4D Cartesian
topologies and nearest-neighbor communication, a Topaware tool can be used [7].
There are tools such as Caypat for profiling an MPI application and to detect
Cartesian grid communication patterns. This information can be used to provide
runtime mapping of processes to the computing nodes using MPICH node order-
ing. The Topaware method requires the user to specify the required number of
nodes along each torus dimension and finds the ordering by allocating nodes on
subsequent XZ planes, taking into account the gaps resulting from service nodes.
For mapping the 2D virtual topology to the 3D torus, a folding method is used.
Topaware was evaluated using the WRF, VPIC, S3D and MILC applications.

An overview process of mapping techniques and algorithms [13] for HPC sys-
tems is presented in [8]. It discusses algorithmic strategies for topology mapping,
such as graph partitioning, mapping enforcement techniques (resource binding
and rank reordering), as well as existing solutions and their implementations.
This provides a formal definition of the mapping as an optimization problem,
and discusses the metrics such as dilation or congestion.

One of the reasons for system fragmentation lies in the discrepancy in job
length/execution time, which leads to a irregular hole/fragmentation between
neighbouring jobs with different finish time. In order to tackle this type of frag-
mentation, a walltime-aware scheduling strategy is designed in [14], which packs
jobs with similar length and places them near to each other. In particular, two
algorithms are developed: similar-length allocation and paired job filling. The
similar length allocation algorithm tries to match waiting jobs with running jobs
that share similar completion time. The paired job filling algorithm selects two
jobs with the same size and similar length from the queue and schedules both
jobs together. Notably, paired job filling algorithm is similar to our schedul-
ing strategy, where multiple waiting jobs in the queue are grouped and placed
together to reduce potential fragmentation.

Migration is an efficient resource management tool, which has been discussed
in [9–11]. In [9], the authors present the analysis and application of scheduling
algorithms that augment a baseline first come first serve (FCFS) scheduler. The
author presents simulation results for migration and backfilling techniques on
BlueGene/L. These techniques are explored individually and jointly to deter-
mine their impact on the system. An efficient Projection Of Partitions (POP)
algorithm for determining the size of the largest free rectangular partition in a
toroidal system is developed. The results demonstrate that migration may be
effective for a pure FCFS scheduler, but that backfilling produces even more
benefits. It is also shown that migration may be combined with backfilling to
produce more opportunities to better utilize a parallel machine.
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7 Conclusions and Future Work

In this paper, we addressed the problem of improving system utilization and
scheduling efficiency on Blue Waters system that uses a 3D torus topology. To
improve the scheduling efficiency, we propose an efficient free partition detection
method. To improve the system utilization, we first propose a job scheduling
strategy based on proactive queue and system scanning. After that, we model the
job placement problem into a multiple knapsack model and design a migration-
based job placement algorithm to give a heuristic solution. The simulations
of modeled trace data demonstrate that our approach works well in terms of
improving system utilization. In our future work, we will extend our study on
reducing system fragmentation and improving system utilization. In particular,
we will focus on improving system’s capability to directly accept the incoming
large and extra-large jobs. We will investigate various strategies such as relaxing
priority order and migration to avoid the system drainage caused by the incom-
ing large and extra-large jobs and to maintain system utilization without the
backfilling process.
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Abstract. Future exascale supercomputers will be composed of thou-
sands of nodes. In those massive systems, the search for physically close
nodes will become essential to deliver an optimal environment to execute
parallel applications. Schedulers manage those resources, shared by many
users and jobs, searching for partitions in which jobs will run. Significant
effort has been devoted to develop allocation strategies that maximize
system utilization, while providing partitions that are adequate for the
communication demands of applications. In this paper we evaluate a class
of strategies based on space-filling curves (SFCs) that search for parti-
tions in which nodes are physically close, compared to other alternatives
that relax this requirement (e.g. non-contiguous), or make it even more
strict (e.g. contiguous). Several metrics are used to assess the quality
of an allocation strategy, some based on system utilization, some others
measuring the quality of the resulting partitions. Contiguous allocators
suffer from severe degradation in terms of system utilization, while non-
contiguous allocators provide inadequate partitions. Somewhere in the
middle, SFC allocators offer good system utilization while using quite
compact partitions. The final metric to decide which allocator is the
best depend on the severity of the slowdown suffered by applications
when running in non-optimal partitions.

Keywords: Space-filling Curves · Scheduling ·Allocation ·Partitioning ·
Contiguity · Non-contiguity

1 Introduction

In the coming years, supercomputer vendors will deliver massive exascale sys-
tems with many thousands of nodes (millions of computing cores) to execute
parallel jobs (applications). These jobs are composed of tasks that communicate
among them using an underlying fabric: an interconnection network (IN) which
determines the way compute nodes are connected.

J.A. Pascual is currently with the APT group in The University of Manchester.

c© Springer International Publishing AG 2017
N. Desai and W. Cirne (Eds.): JSSPP 2015/2016, LNCS 10353, pp. 232–251, 2017.
DOI: 10.1007/978-3-319-61756-5 13



Analyzing the Performance of Allocation Strategies 233

Most supercomputers are shared by many users, who request the execution
of jobs through a submission queue. The scheduler is in charge of selecting the
job or jobs to run, following a given policy. The most common scheduling policies
are First Come First Serve (FCFS) [6] and Backfilling [6]. Often, several jobs
can fit in the system simultaneously, as the size of a job is normally smaller than
the size of the complete system (in terms of compute cores).

Once a job is selected, an allocator must find a set of free nodes (a partition)
and perform the mapping of job tasks onto system nodes. An allocation strat-
egy is used to carry out the search. We can differentiate two broad classes of
strategies. Contiguous strategies look for convex sets of free nodes, normally with
hyper-rectangular shapes. Non-contiguous strategies remove this shape restric-
tion. Contiguous strategies try to reduce the execution time of jobs, as they
allocate partitions with very low inter-node distance, and free of interference
from other partitions in which other jobs run. However, they can cause internal
fragmentation, as they normally reserve for a job a set of nodes larger than the
number of job’s tasks. External fragmentation is also common, when enough
nodes are available to run a job, but they are not arranged with the required
shape. Thus, the price of contiguity is a low level of system utilization. For this
reason, non-contiguous strategies were developed [15,16,26]: jobs may run in
sub-optimal conditions, as inter-node distances are longer and communications
overlap (jobs are not isolated), but fragmentation is minimized (system utiliza-
tion is greatly improved) and, at the end, the overall system performance in
terms of throughput of jobs should be improved. Therefore, different allocation
strategies search for different trade-offs between job performance vs. system uti-
lization. Achieved job throughput depends on both factors. These issues, inter-
nal and external fragmentation, appear in the Blue Waters supercomputer as
reported in [14].

An issue that should not be ignored is the impact, in terms of performance, of
the way job tasks are mapped onto the nodes of the allocated partition [3,19,20].
The benefits of contiguous strategies are maximized only with good mappings
that optimize the inter-application communications [18]. Mappings in which
tasks are not physically close, and need to contend for channels with messages
of other jobs, are the reason behind the reduced performance of non-contiguous
allocation strategies.

We consider in this paper another class of allocation strategies that fit some-
where in the middle between contiguous and non-contiguous as defined above,
and are based on Space-filling Curves (SFC) [13]. These SFC strategies “see” the
supercomputer as a linear list of nodes, and perform contiguous allocation in this
1D space. Therefore, partitions are sub-lists of consecutive nodes [9,13]. Then
1D lists are mapped onto a higher-dimensional space, in a way that depends on
the selected space-filling curve [1,11]. These mappings do not guarantee that the
resulting partition in the nD space is consecutive and convex. However, they are
designed to keep locality between nodes: they are physically close. Compared
to pure contiguous mappings, SFC mappings are better in terms of utilization,
as internal fragmentation does not occur (the allocator can always search for a
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1D list with the required number of nodes) and external fragmentation is less
severe. It remains to be verified if the locality guaranteed by SFC allocation is
good enough to provide a good execution environment for parallel jobs, matching
(or getting close to) that of contiguous allocation.

In summary, in this paper we evaluate how SFC-based allocations trade-off
per-partition benefits (locality, isolation) with system-wide benefits (mainly, uti-
lization), when used in supercomputers built around interconnection networks
with nD-mesh shapes. To provide a context, we compare them with a convex,
contiguous strategy and with a non-contiguous strategy. For this study we use a
diverse collection of metrics. Some are indicators of the quality of the partitions,
hinting how well applications would run on them. Others measure the perfor-
mance of the system-wide scheduling process. The evaluation of all the strategies
has been performed using simulation, fed with a large collection of workloads
generated synthetically. Our experiments verify the intuitions outlined in this
introduction, showing how non-contiguous and SFC based strategies perform
very well in terms of system utilization but, for other metrics that consider fit-
ness of partitions to applications, contiguous allocation is better. In order to
provide an answer to the question “which strategy is the best in terms of job
throughput?”, we only provide a partial answer: it depends on the behavior
of the applications that constitute the workload, when executed in differently
shaped partitions.

The rest of the paper is organized as follows. Section 2 describes the metrics
used to compare allocation strategies. In Sect. 3 we describe the SFC strategy. In
Sect. 4 we describe more formally the scheduling, allocation and search strategies
under evaluation. The workloads used in the experiments are described in Sect. 5,
where we provide additional details about the experimentation set-up. In Sect. 6
we discuss system-wide results of the different strategies, and we continue in
Sect. 7 with an analysis of the quality of the delivered partitions. Section 8 is
devoted to the search of a trade-off between application slowdown (due to the
use of non-optimal partitions) and system utilization. Section 9 closes the paper
with some conclusions and future lines of research.

2 Performance Metrics

We measure allocation strategies using two groups of metrics, the first focused
on system utilization, and the second focused on the quality of the partitions.

2.1 Scheduling-Focused Metrics

– Utilization indicates the average ratio of active nodes during a measuring
time of interest. A node is active if it has been allocated to a running job.
Using only utilization to assess system-wide performance can be deceptive, as
a strategy with low utilization but that allows faster execution of applications
can result in better job throughput [23]. However, it is an excellent indicator of
the overhead that results from the use of strategies that search for contiguity
or locality.
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– Makespan: It represents the total time required to process a given input
workload. If we do not take into account the effects of partition shape on
execution speed, as we do in our experiments, this metric also indicates the
cost of looking for contiguity or locality.

Note that these two metrics are related with others not included here, such as
fragmentation (internal and external). Higher degrees of fragmentation result
in lower utilization, and longer makespan.

2.2 Partition-Focused Metrics

The metrics described here depend strongly on the characteristics (topology) of
the underlying interconnection network. For the purpose of this evaluation, we
focus on nD meshes (they could be easily extended to tori). Given a partition P
(with an arbitrary shape, convex or not) composed of S = |P | compute nodes of
coordinates a = (a1, · · · , an), being n the number of dimensions of the network,
and being d(ai,aj) the Manhattan distance (number of hops) between nodes ai

and aj of the partition, we define the following metrics:

1. Average pairwise distance (APD): Average distance between all pairs of
nodes in P.

APD = 2 ×
∑S

i=1

∑S
j=i+1 d(ai,aj)

(S + 1) × S
(1)

2. Number of affected nodes: Size of the area covered by the partition, thus
the number of nodes that may be participating in the communications. If the
partition is not convex, the affected area may include nodes assigned to other
running applications.

NA =
n∏

i=1

(

max
a∈P

{ak} − min
a∈P

{ak} + 1
)

(2)

where maxa∈P {ak} and mina∈P {ak} are the maximal and minimal coordi-
nates in the k -th dimension of all nodes a in the partition.

In Fig. 1 we have represented three partitions and the nodes that will be
affected by the communications. As we can see, in the fist contiguous partition
(Fig. 1a) all communications remain internal, without affecting neighboring jobs.
The second and third non-contiguous partitions (Figs. 1b and c) show how the
affected area extends outside the partition. In Fig. 1d, which represents the three
partitions put together, we can see how the affected areas of the three partitions
are overlapping.

Low values of APD are expected to correlate with reduced execution times of
applications running in the partition. However, as explained in [21], this corre-
lation is direct only if the application use an all-to-all communications pattern.
The extent of which jobs benefit from good distance-related metrics depends
strongly on the characteristics of the application and the applied mapping. Also,
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(a) C. (b) NC1. (c) NC2. (d) Together.

Fig. 1. Nodes affected by the communications of three applications allocated contigu-
ous and non-contiguously.

interference from other applications, that can be severe if all partitions have
large numbers of affected nodes, have an important bearing on the performance
of the communications [10]. The assessment of application run times falls outside
the scope of this paper.

3 Space-Filling Curves

A space-filling curve (SFC) maps a one-dimensional list of points onto a nD
hypervolume. The first of this kind of curves was discovered by Hilbert [7], but
others have been developed such as the Z-order curve. The first version of the
Hilbert curve performed only 1D to 2D mappings, but it was later extended to
higher dimensions [2]. The Z-order curve was able to perform multi-dimensional
mappings since the beginning.

The idea of using SFCs to map parallel jobs onto network nodes was first
introduced in [15]. With this approach, network nodes are ordered using a rank.
Allocation (search of partitions) is done in this 1D, rank-ordered list, instead of
using, for example, the 2D coordinates. A 1D partition is afterwards mapped onto
the actual nD space using the transformations defined by the chosen SFC. Two
are the main advantages of these SFC allocation strategies: the search is simple,
as it deals with 1D structures, and the resulting nD partitions are very compact,
keeping high levels of locality. In Fig. 2 we have represented some examples of
mappings from a 1D space to 2D and 3D spaces, using the two different SFCs. In
the upper side of the figure, we show the consecutive sets of nodes (partitions)
resulted from a 1D allocation. Below we see the same partitions when mapped
to 2D and 3D, using the Z-order curve (left) and the Hilbert curve (right). Next
we explain how these mappings are performed.

– The Z-order curve [17] is a function that maps multi-dimensional points by
interleaving the binary representation of their coordinate values. For example,
the point (2,4) in 2D would be mapped to the point (1D) with z value 010-100
(010100). The use of this curve preserves locality between points, but does
not guarantee contiguity.

– The Hilbert curve is a function that traverses the polyhedron vertices of
an n-dimensional hypercube in Gray code order [25]. For example, in 2D the
sequence of gray codes (0,0), (0,1), (1,1), (1,0) corresponds to the 1D points:
0, 1, 3, 2. This curve preserves the contiguity and locality between the nodes.
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Fig. 2. Mappings of 1D consecutive partitions onto 2D and 3D spaces using Z-order
and Hilbert space filling curves.

Table 1. Locality, expressed as APD, for five sets of partitions that are consecutive
in 1D and then mapped to nD using the Z-order curve (Z) and the Hilbert curve (H).
The higher the set identifier, the smaller the average size of the partitions within.

1D 2D 3D 4D 5D 6D

- Z H Z H Z H Z H Z H

Set 1 337.24 27.58 22.08 12.35 10.40 8.69 7.64 7.42 6.45 6.55 6.00

Set 2 148.81 19.51 14.50 9.54 7.47 7.18 5.97 6.20 5.14 5.65 4.88

Set 3 81.02 13.97 10.73 7.89 6.26 6.15 5.04 5.42 4.62 5.04 4.34

Set 4 48.70 12.28 8.66 7.13 5.46 5.59 4.57 5.03 4.22 4.70 3.93

Set 5 21.88 7.01 5.55 4.73 3.92 3.98 3.42 3.70 3.20 3.54 3.07

The objective of SFC allocation strategies is to obtain nD partitions with
good locality (to benefit inter-task communications in the interconnection net-
work). This locality has been evaluated in [13,24] for 2D and 3D networks.
Now we extend this study to higher dimensions. We have measured the locality
achieved by both curves when mapping to 2D (64 × 64), 3D (16 × 16 × 16), 4D
(8 × 8 × 8 × 8), 5D (4 × 4 × 4 × 4 × 4) and 6D (4 × 4 × 4 × 4 × 4 × 4) meshes.
We generated five sets of 1D contiguous partitions, labeling each set as k=1..5.
Each set k contains thirty partitions of different sizes, being the maximum size
4096
2k

. This means that Set 1 contains much larger partitions than Set 5.
We first calculated the locality of these 1D sets in terms of APD. Next we did

the same after the mapping to nD, using both Z-order and Hilbert curves. Results
are summarized in Table 1. It is clear that locality in the mapped partitions
increases with the number of dimensions in the IN. This is due to the increased
degree of the network nodes. The results also indicate that the Hilbert curve
preserves locality better than the Z-order curve, mapping the points to closer
locations, for any number of dimensions. Note that these are static experiments,
that neither consider the complete scheduling process nor the way locality affects
job’s run times. We will explore these issues later in this paper. We want to
remark that Hilbert-based allocation is used in the SLURM scheduler [12].
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4 Scheduling Policies and Allocation Algorithms

In this section we further explore the scheduling process, with focus on allo-
cations algorithms. Scheduling consists of determining which queued job (sub-
mitted by a user) will be selected for execution. This is carried out following a
established policy [6] such as FCFS, backfilling, Shortest Job First (SJF), etc.
The most used policy is backfilling, which tries to avoid a “head-of-line block-
ing” problem of FCFS. While FCFS selects the jobs in strictly order of arrival,
backfilling allows to advance jobs when the job at the head of the queue can-
not be executed because the necessary resources are not available. However, a
job is allowed to be advanced only when its execution is not expected to delay
the starting time of the job at the head of the queue. A requisite to implement
backfilling is, thus, an estimation of the run time for the jobs. Normally, users
are expected to provide this estimation. Backfilling improves system utilization
while respecting submission order.

Once a job has been selected, the allocator is in charge of reserving the set of
nodes onto which the tasks of the job will be mapped. In this work we consider
contiguous strategies, non-contiguous strategies, and SFC-based strategies.

4.1 Contiguous Allocation with Hyper-rectangular Partitions

These kind of strategies look for convex partitions with shapes a× b, a× b× c,
a× b× c× d, etc. depending on the dimensionality of the underlying IN. These
partitions result in optimal values of distance-related metrics. Furthermore, they
provide a very desirable property: isolation. This means that partitions do not
overlap, and inter-task communications in a job are implemented in the IN with-
out requiring the intervention of nodes in other partitions. In other words, com-
munications in different partitions do not interfere. Both properties together
make this kind of partitions the optimal place to execute communication-
intensive parallel applications – the ones expected to run in a supercomputer
[20,23]. However, looking for contiguous partitions is not cheap (due to external
fragmentation), and the overall system utilization is drastically reduced (when
compared with other alternatives).

Searching for a partition of a particular shape requires traversing the system
(a data structure representing it) in a particular order. The First-Fit (FF) policy
stops the search as soon as the suitable partition has been found – or when
the search ends unsuccessfully. In this work we use a search algorithm that
implements this policy, called Improved First Fit (IFF) [22]. It searches for hyper-
rectangles in multi-dimensional cube networks.

4.2 Allocation Strategies Based on Space-Filling Curves

These strategies are contiguous and consecutive in the 1D representation of the
system, but result in non-convex shapes when mapped to higher dimensions.
However, as shown in the previous section, they result in partitions with high
levels of locality: good values in terms of distance-related metrics. These values
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are not as good as those provided by the contiguous strategy, and resulting
partitions (communications) do overlap. The achieved benefit of SFC allocation
comes in terms of high levels of system utilization.

The search of partitions can be done using First Fit (FF), Best Fit (BF) or
other strategy. We consider in this work:

– Strategies based on Z-order curves, searching with FF (ZORD-FF) and BF
(ZORD-BF). Note that these strategies take into account locality, but may
result in non-contiguous, non-convex partitions.

– Strategies based on Hilbert curves, searching with FF (HILB-FF) and BF
(HILB-BF). The resulting partitions are contiguous, but convexity is not
guaranteed.

4.3 Non-contiguous Strategy

We have also evaluated a simple, non-contiguous allocation strategy with FF
search (NC-FF). It looks for free nodes using the node identifier, without any
special consideration. We will see that it results in excellent results in terms of
utilization, but bad per-partition, distance-related metrics.

4.4 Mapping Tasks onto Partitions

We insist in this point: once the scheduler has a job (collection of tasks) and a
partition (collection of nodes), it is necessary to map tasks onto nodes. This stage
has a huge impact on the performance of applications [3,20], but evaluating this
effect would be very costly and is beyond the scope of this paper. We leave this
as future work, and we use here a simple, consecutive mapping strategy: tasks
are assigned to nodes consecutively using their identifiers.

5 Experimental Set-Up and Workloads

In this section we describe the simulation-based evaluation environment used in
this work. A fundamental part of experiments with simulators is the collection
of workloads used to feed them. Thus, we start describing the workloads.

5.1 Workloads

We have used several, synthetically-generated, workloads. A workload is defined
as a sequence of (parallel) jobs submitted to the system, and includes the fol-
lowing per-job pieces of information:

1. Size: The number of nodes requested to run the job.
2. Shape: If the scheduler uses a contiguous allocation strategy, then the shape

of the requested hyper-rectangle must be supplied. If not specified, the sched-
uler use the job size and generate a valid hyper-rectangle. Note that if size
and shape do not match in terms of number of nodes, there will be internal
fragmentation.
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3. Duration: This value must be provided as part of the workload because we
are simulating only the scheduling mechanisms – but it should be the result of
the execution of the job in the assigned partition. Thus, for the experiments
reported in this work, it simply matches the estimated run time, and does not
reflect any effect of the partitioning (and mapping) strategies on execution
time.

4. Estimated run time: Required when using a scheduler implementing back-
filling. In this evaluation, we assume that this time is the real execution time
(duration).

As we can seen, we do not include in the workload the arrival time of jobs.
We consider a situation of maximum input load in which all jobs arrive simul-
taneously but ordered to the waiting queue, thus emulating a production system
in which there are always several jobs awaiting. This is to avoid situations of
low system utilization due to an empty queue. It also provides a meaning to the
makespan metric: the time to consume the full workload.

We use beta distributions with different parameters to generate sizes and/or
shapes. The generation of hyper-rectangles is not trivial because, for a given
job size, several shapes can be valid to contain it. For example, 16 nodes can
be arranged as a 4 × 4 or 8 × 2 [23]. Moreover, some sizes such as 7 can only
be arranged contiguously as a 7 × 1 partition if internal fragmentation is not
allowed. Considering this fact, we have defined two different types of workloads
(Fig. 3):

– Unshaped workloads: The workload includes job sizes, but does not specify
shapes. The contiguous scheduler generates a valid shape automatically, as
the smallest nD cube (shaped a × a × ... × a) able to host the job, where
n matches the dimensionality of the IN. Using this criterion, partitions are
symmetrical and compact, but internal fragmentation may be severe.

– Shaped workloads: The workload includes a per-job shape specification,
and the job size is just the number of nodes in this shape. Thus, there is
not internal fragmentation. This is assumed to be the best way of running
applications, as the user has selected a shape that, supposedly, optimizes
inter-task communications.

For each type of workload we have generated three sets of 150 jobs, using in
each of them a different average job size: small (S), medium (M) and large (L).
This has been carried out limiting the maximum size that a partition can have.
The resulting size distributions are represented in Figs. 3a and b respectively.
Finally the duration of the jobs must be generated. In this case we generate 10
different durations for a job. Considering all together, we have managed 2 types
×3 average sizes ×10 durations = 60 workloads of 150 jobs each.

5.2 Experimental Set-Up

We have analyzed the different schedulers using an in-house developed scheduling
simulator that takes as input parameters a workload, a scheduling policy (such as
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Fig. 3. Boxplot of the two types of workloads used to evaluate allocation strategies.
Each type is composed of three sets (large, medium and small) of 10 workloads each.
The figure shows the minimum, the maximum, the median and the fist and third
quartile.

FCFS or backfilling), an allocation strategy (contiguous, non-contiguous, SFC-
based, etc.) and, if required by the experiment, a slow-down factor to be applied
to the duration of the jobs specified in the input workload. We will see later the
usefulness of this parameter. The simulator’s output reports in a set of metrics,
including those explained in Sect. 2.

In all the experiments we use an implementation of backfilling called “con-
servative” [6]. Then we consider six different allocation strategies and the 60
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workloads defined above. Reported results are averages of the metrics obtained
for the 10 sets of job durations.

As underlying INs we consider a 3D (32× 32× 32) and 5D (8× 8× 8× 8× 8)
mesh, both with 32768 nodes. These dimensions have been chosen because they
are used by supercomputers currently operational i.e. Blue Gene P (3D) [8], Blue
Gene/Q [4] from IBM, Cray systems with the 3D Gemini interconnect [5], etc.
We evaluated both meshes and tori but, as the main results are not significantly
different, and for the sake of brevity, we only report results with meshes.

6 Analyzing System-Wide Results

Experiments were designed to understand to what extent the search of contiguity
or locality has a bearing on system utilization and makespan. In Fig. 4 we have
represented the results (utilization and makespan) obtained for the different
simulation configurations and workloads. Note that ZORD-FF and HILB-FF
are represented together as SFC-FF, because they yield identical results (the
same applies to ZORD-BF and HILB-BF, summarized as SFC-BF). This is a
direct consequence of the use of the same search strategy over the same 1D
space, and the topology of the IN is irrelevant – differences will appear when
evaluating the resulting nD partitions. Results labeled as NC-FF correspond
to the non-contiguous strategy and, again, do not depend on the IN topology.
CONT3D and CONT5D correspond to the contiguous strategy in the 3D and
the 5D mesh respectively.

Let us start focusing on unshaped workloads: those in which the user specifies
only a job size. The contiguous scheduler tries to find a nD rectangular partition
for it. This process is expected to hurt performance severely, particularly for high
values of n, due to the effects of internal fragmentation. Results, summarized in
Fig. 4 show this effect very clearly. Utilization with hyper-rectangular partitions
is, in general, very poor, being negatively affected by the dimensionality of the
IN and the average job size. The first factor determines the internal fragmenta-
tion, and the second has a bearing on external fragmentation. Makespan values
confirm these findings. They are longer for workloads with larger average job
size, because each job requires more resources and, thus, fewer jobs can run
simultaneously.

At the other end of the spectrum, NC-FF yields excellent results, indepen-
dently of the underlying topology. When we relax all kinds of shape or locality
expectations in the partitions, the probability of finding a free set of nodes fitting
a job request is drastically increased. This is especially noticeable when dealing
with medium to large jobs.

Locality aware, SFC-based strategies show excellent results, close to those
of NC-FF for small jobs, although slightly worse for larger jobs. The search
strategy does not play a significant role, with FF and BF search performing
similarly. Thus, the increased cost of the exhaustive search done by BF does not
provide any benefit.

Finding specific shapes is more costly than finding arbitrary node sets, and
result in higher levels of external fragmentation. We have not measured this
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Fig. 4. Representation of the utilization and makespan obtained by the allocation
strategies using both unshaped and shaped workloads and both 3D and 5D networks.

Table 2. Number of allocation failures due to external fragmentation: enough free
nodes are available, but not in the required arrangement.

CONT3D CONT5D SFC-FF SFC-BF

Workloads S M L S M L S M L S M L

Shaped 4649.80 10356.10 11870.20 7085.60 10791.00 11852.50 94.20 580.8 257.30 79.90 432.80 198.70

Unshaped 4575.50 9835.80 2956.50 5026.00 10656.20 3706.00 126.20 1071.70 194.90 102.10 885.70 161.70

effect (fragmentation), but have characterized this cost by measuring how often
the scheduler tries to find a partition for a job, and fails. Results are summarized
in Table 2. Remember that a workload has 150 jobs. Clearly, the CONT3D and
CONT5D schedulers work much harder than the others and fail too often. Not
because the required nodes are not there, but because they are not arranged as
requested. SFC alternatives have an easier job, as shape restrictions are limited
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to consecutiveness in a 1D space. The NC-FF strategy fails only when free con-
secutive nodes are not enough to match the size of the selected job.

The user submitting the job may know the best partition shape to run an
application, and we try to reflect this fact with the shaped workloads. The con-
tiguous scheduler will honor the request, searching for the specified shape. In
contrast, the non-contiguous scheduler will ignore this request totally, and the
SFC-based schedulers will simply look for a set of physically close nodes match-
ing the desired size. Note that, when jobs are specified with a shape, internal
fragmentation does not appear, as the size of the assigned partition will be the
same of the job. Additionally, note that the contiguous allocator will not neces-
sarily search for regular, nD hyper-rectangles (where n is the dimensionality of
the IN): they user may request a 2D, planar partition, even if the network is 5D.

Results with these workloads are also summarized in Fig. 4. Note that, with-
out the effect of internal fragmentation, the main factor affecting utilization
is external fragmentation (not finding the requested shape). The relative per-
formance of NC-FF against SFC-based schedulers remain, as both ignore the
requested shapes. However, contiguous strategies offer much better results.

7 Analysis of the Quality of the Partitions

Utilization metrics tell us only partial information about the performance of a
supercomputer - scheduler combination. Utilization may be low but, if appli-
cations run faster, at the end of the day the supercomputer is more produc-
tive. With the experiments carried out we cannot verify if SFC based strategies
are adequate to run communication-intensive parallel applications. But we can
obtain some metrics that can be used as indicators of that adequacy, see Sect. 2.2.

7.1 Average Pairwise Distance

A low value of APD for a partition indicates how compact that partition is. Com-
munications will use short paths, thus (presumably) benefiting communication-
intensive applications. We have summarized in Table 3 averages of these metrics
for the partitions used by the different schedulers, for both 3D and 5D (mesh-
shaped) INs. In all cases, partitions have better (lower) APD in 5D meshes than
in 3D meshes. This is due to the topological characteristics of the IN, with higher
degree for 5D, that results in shorter distances. Thus, this fact does not require
further discussion.

When job requests are unshaped, the cubic partitions used by the contiguous
scheduler are very compact, being this allocation strategy the absolute winner.
Partitions used by SFC-based allocators are very good, with Hilbert generating
partitions almost as compact as the cubes. Non-contiguous partitions exhibit
very poor distance-based metrics.

Results for the workload with shaped job requests may be misleading. In gen-
eral, the distance-based metrics obtained for all strategies except the contiguous
are the same seen for unshaped workloads, see again Table 3, as those strategies
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Table 3. Average pairwise distance of the partitions found by the allocation algorithms.
These results were obtained using two sets of workloads (see Sect. 5) simulated into two
cube-shaped network topologies (3D and 5D).

Unshaped workloads Shaped workloads

3D 5D 3D 5D

S M L S M L S M L S M L

CONT 6.56 11.34 18.80 4.77 6.88 9.54 9.42 14.37 21.96 4.80 6.76 9.94

HILB-FF 7.10 12.35 20.30 5.02 7.21 10.26 7.33 12.16 20.04 5.15 7.10 10.15

ZORD-FF 9.08 14.88 23.64 5.92 8.29 11.07 9.34 14.79 22.68 6.07 8.27 10.80

HILB-BF 7.09 12.37 20.32 5.01 7.21 10.26 7.32 12.11 20.05 5.15 7.09 10.15

ZORD-BF 9.03 15.05 23.76 5.89 8.36 11.09 9.34 14.71 22.72 6.07 8.23 10.81

NC-FF 21.91 24.86 26.56 9.79 11.04 11.71 22.46 25.19 27.06 9.94 11.2 11.82

ignore the shape request. This is not the case when the partitions are contigu-
ous. In fact, in the 3D mesh, the Hilbert-based SFC allocator provides “better”
partitions than those used by the contiguous allocator. In the description of the
workloads provided in Sect. 5, we clearly stated that it is assumed that the user
submitting a job will choose the best partition shape for it. It may happen that
the requested shape is not the same of the underlying IN. For example, a job of
size 1024 may request specifically a planar 32 × 32 partition, that fit perfectly
in a plane of the 3D network. If the scheduler does not honor the shape request,
it could be assigned to a partition with a 3D shape of size 11× 11× 11 (exactly
or approximately) with excellent distance metrics but that may not allow opti-
mal inter-task communications. This happens when the virtual topology of the
application differs from the physical topology of the partition [20]. As the Hilbert-
based allocator ignores shape requests, prioritizing compactness, this strategy is
the best performer in terms of distance-based metrics for 3D networks. For 5D
networks, the high degree of the topology shortens the distance-related metrics
for all strategies, making this effect less visible.

After seeing these results, we wonder if APD can be considered as a real indi-
cator of performance. As explained in [21], the answer is a clear “no”, because
a partition is good only if, after the mapping, it matches the communication
demands of the application, and APD does reflect this fact. Furthermore, we
should not ignore a side-effect of sharing a supercomputer: the possible inter-
ference between applications running simultaneously. However, in general, SFC
based strategies will provide compact partitions to execute parallel jobs.

7.2 Nodes Affected Metric

The nodes affected metric tries to reflect the degree of isolation of the parti-
tions. Low values (identical or close to the size of the partition) are indicators of
very isolated partitions that share few or none network resources (routers, links)
with other partitions. Larger values evidence partitions that require the use of
resources “belonging” to neighboring partitions. It is well known that isolation
is highly beneficial for parallel jobs [10,18,20,23].
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(a) Unshaped workloads

(b) Shaped workloads

Fig. 5. % of nodes affected by the partitions obtained by the allocation strategies.
Results are normalized, being 100% the result achieved by the CONT strategy.

In Fig. 5 we have summarized the results of this metric for the partitions used
by the different allocators. They are normalized, being the 100% the results
achieved by the contiguous allocator (that guarantees isolation). The NC-FF
strategy uses partitions that cover almost the whole IN and, thus, the corre-
sponding numbers would distort the figure. For this reason, they have not been
included.

When job requests do not specify shape, SFC-based partitions result in larger
numbers of affected nodes, compared to the minimum provided by the cubic
partitions (see Fig. 5a). In particular, the Hilbert mappings have on average
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50% more nodes. As an example, this means that a job of size 7000 (a typical
size in the large workload) may be interfering with around 3500 nodes belonging
to other applications. The Z-curve mapping is considerably worse, with affected
areas 125–350% larger than those corresponding to cubic partitions. Noticeably,
this excess area is smaller for larger jobs, and larger for 5D networks than for 3D
networks. When dealing with specified shapes, results show a similar pattern,
but are slightly worse for SFC-based allocators, see Fig. 5b.

In summary, Hilbert-based allocators do a decent job guaranteeing compact
and relatively isolated partitions, in addition to provide network utilization val-
ues close to those achieved with the non-contiguous allocator. The latter is the
winner in terms of utilization, but the cost to pay is the use of scattered parti-
tions with large distances between nodes and intense interference. At the other
end, the contiguous allocator provide the best execution environment for appli-
cations, but result in severe fragmentation.

8 Trading Off Costs and Benefits of Allocation Strategies

Without a detailed study of the applications executed by the jobs, and the
strategies used to map tasks to nodes, it is simply not possible to make a definite
statement about which allocator is the best one. We need to know if applications
running in nicely isolated, contiguous partitions do actually execute faster than
in scattered partitions. We have evidence that, in fact, they do [18,20,23], but the
degree of improvement depends greatly on the particular application – actually,
application set – that conform the workloads. We can take for granted, given
the measurements included in the previous sections, that SFC-based allocators
based on the Hilbert curve should be preferred to NC-FF, as it yields similar
utilization levels while providing much more compact partitions.

It is not clear, though, under which circumstances the contiguous allocator
could be the one of choice. Here we explore this issue. Let t be the average job
duration in the contiguous and isolated partitions provided by CONT. Let s be
the average slowdown experienced by the same jobs when running in SFC-based
partitions that do not guarantee those properties. Thus, the average job duration
with HILB-FF would be t× s. Note that we are assuming that s > 1.

Similarly, let UH be the utilization of the system with HILB-FF, and UC the
utilization with CONT. Now, we are assuming that UH > UC .

As our workload has w jobs of size n, its total computational demand (use of
resources) is DC = (w×n×t) for CONT, and DH = (w×n×(t×s)) for HILB-FF.
The makespan for the workload can be computed as its computational demand
divided by the achieved system utilization (actually, utilization U is computed
as (D/M)). Thus MC = (DC/UC) and MH = (DH/UH).

Now we are ready to state that HILB-FF is the preferred choice over CONT
if its makespan for the applied workload is shorter, that is, when MH < MC .
This can be expanded as:

w × n× t× s

UH
<

w × n× t

UC
(3)
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Fig. 6. Makespan of CONT3D, CONT5D and HILB-FF for different slowdown factors.

The inequality can be simplified, expressing it as:

s

UH
<

1
UC

(4)

Therefore, to make a good choice of allocator we need to know its utilization
result (that depends mainly on the allocation strategy and the characteristics
of the network and, thus, is application-agnostic) and the average slowdown
experienced by applications (which can vary drastically with the specifics of the
applications forming the workload).

Equations 3 and 4 can be transformed to obtain answers to this question:
which values of slowdown are acceptable for an allocator (compared to CONT)
that compensate an increase in per-job run time with a higher utilization and,
therefore, a shorter makespan? We have represented this in Fig. 6. The horizontal
lines represents the baseline makespans for CONT, which are different for 3D
and 5D. The raising line corresponds to the makespans achievable by HILB-FF
for different values of slowdown s. These values correspond to the shaped, large
workload described before, but the trend is exactly the same for other workloads.

The crossing point is at s = 1.1 for 3D meshes. This means that when applica-
tions need on average less than 10% extra time to end when running on HILB-FF
generated partitions, then HILB-FF is a good choice of allocator. However, for
higher degrees of slowdown, the CONT allocator is the best choice, consuming
the workload faster even without fully utilizing all the resources available. For
5D meshes the crossing point is higher, at s = 1.2, or 20% allowed slowdown for
HILB-FF. This is because of the large penalty to pay in terms of fragmentation
when using networks of high dimensionality. An exhaustive exploration of the
actual values of s for different, realistic workloads is left as future work. Some
preliminary work carried out in [18,23] shows that for some applications we can
expect values of s exceeding 3.
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Fig. 7. Visual representation of the relative advantages of different allocation strategies,
based on system-level and partition-related metrics.

9 Conclusions and Future Work

In this work we have evaluated the quality of SFC based allocation strategies
for schedulers of supercomputers. This evaluation has been carried out using
synthetic workloads with different characteristics (size, duration, shape), sub-
mitted to systems with a 3D and 5D mesh topology. These strategies have been
compared with a contiguous (CONT) and a non-contiguous (NC-FF) strategy.

CONT prioritizes the utilization of contiguous and isolated partitions, opti-
mal for the execution of applications. The prize to pay is a large overhead due
to fragmentation, that results in low levels of system utilization. On the con-
trary, NC-FF prioritizes utilization, assigning nodes to partitions independently
of their positions in the network. The prize to pay is a collection of sparse and
overlapping partitions.

Allocators based on space filling curves have demonstrated excellent proper-
ties, in particular when Hilbert is the curve of choice. They perform allocation
in a linear (1D) space, which results in utilization levels close to those of non
contiguous approaches as represented in Fig. 7. The obtained 1D partitions are
then mapped to the nD topology of the actual system, resulting in very compact
sets of nodes (see again Fig. 7). The partitions achieved this way offer distance
metrics similar to those of CONT strategies, although they do not guarantee
isolation. However, SFC allocators have characteristics that are close to those of
a theoretical, optimum allocator.

The relative merit of the different allocators depends on factors such as the
search strategy (FF, BF), the topology of the IN (number of dimensions, related
to node degree) and the properties of the workloads submitted to the system. We
have studied “shaped” and “unshaped” workloads. The former assume that the
user knows and requests the most appropriate shape to run an application, and
the CONT scheduler honors this request – at a cost: in busy systems, it is difficult
to find a partition of a specific shape. None of the remaining strategies take this
request into consideration, using only the number of nodes in the request to
search for a partition.
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Finally we have seen that the benefits that SFC-based strategies obtain in
terms of utilization, may disappear if we consider the (relative) slowdown that
applications would suffer when running in non-optimal, overlapping partitions.
If the penalty is over 10% for 3D meshes (20% for 5D meshes), then the CONT
strategy is the best, even if utilization figures tell a different story. Otherwise,
for lower penalties, SFC based strategies should be the chosen.

As future lines of work, we plan to make a deeper analysis of the impact of
non contiguous partitions on applications’ slowdown. As we have focused on nD
meshes, we plan to extend this work to other kinds of IN, for example based on
trees. Finally, we want to propose and assess a hybrid allocation strategy, able
to provide contiguous and isolated partitions for those applications requiring
them, and other SFC based partitions for less demanding applications, with the
objective of achieving high system utilization without penalizing applications.

Acknowledgments. This work has been partially supported by the Research Groups
2013–2018 (IT-609-13) program (Basque Government), TIN2013-41272P (Ministry of
Science and Technology). Jose A. Lozano is also supported by BERC program 2014–
2017 (Basque government) and Severo Ochoa Program SEV-2013-0323 (Spanish Min-
istry of Economy and Competitiveness). Jose Miguel-Alonso is member of the HiPEAC
European Network.

References

1. Alber, J., Niedermeier, R.: On multi-dimensional hilbert indexings. Theory Com-
put. Syst. 33, 195–392 (2000)

2. Alber, J., Niedermeier, R.: On multidimensional curves with hilbert property. The-
ory Comput. Syst. 33(4), 295–312 (2000)

3. Balzuweit, E., Bunde, D.P., Leung, V.J., Finley, A., Lee, A.C.S.: Local search to
improve coordinate-based task mapping. Parallel Comput. 51, 67–78 (2016)

4. Chen, D., Eisley, N.A., Heidelberger, P., Senger, R.M., Sugawara, Y., Kumar, S.,
Salapura, V., Satterfield, D.L., Steinmacher-Burow, B., Parker, J.J.: The IBM
Blue Gene/Q interconnection network and message unit. In: Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–10. ACM, New York (2011)

5. Cray Inc. http://www.cray.com/assets/pdf/products/xe/idc 948.pdf
6. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel job scheduling — a sta-

tus report. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004.
LNCS, vol. 3277, pp. 1–16. Springer, Heidelberg (2005). doi:10.1007/11407522 1
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Abstract. Stateless clusters such as Hadoop clusters are widely
deployed to drive the business data analysis. When a cluster needs to
be restarted for cluster-wide maintenance, it is desired for the adminis-
trators to choose a maintenance window that results in: (1) least dis-
turbance to the cluster operation; and (2) maximized job processing
throughput. A straightforward but naive approach is to choose main-
tenance time that has the least number of running jobs, but such an
approach is suboptimal.

In this work, we use Hadoop as an use case and propose to deter-
mine the optimal cluster maintenance time based on the accumulated
job progress, as opposed the number of running jobs. The approach can
maximize the job throughput of a stateless cluster by minimizing the
amount of lost works due to maintenance. Compared to the straightfor-
ward approach, the proposed approach can save up to 50% of wasted
cluster resources caused by maintenance according to production cluster
traces.

1 Introduction

With the rapidly growing scale of data volume, data processing is increasingly
being handled by clusters that consist of multiple machines. A data processing
job may take certain time to finish, hence the intermediate state (e.g., what input
data are processed, what are the partial output) of the job may change over the
course of the processing. The intermediate states can be persisted as the job
processing runs, and the persisted intermediate state can serve useful purposes
such as progress tracking. However, persisting such states also incur additional
design complexity and storage overhead. Depending on whether the intermedi-
ate state can be persisted or not, data processing clusters can be characterised
into two categories: stateful and stateless. Stateful clusters are able to persist
intermediate state of varying granularity (e.g., percentages of processed input
data), while stateless clusters do not persist such state. Examples of stateless
clusters are web server clusters and Hadoop clusters.

The distinction between stateful clusters and stateless clusters goes beyond
progress tracking and design complexity. One particular aspect is the impact
c© Springer International Publishing AG 2017
N. Desai and W. Cirne (Eds.): JSSPP 2015/2016, LNCS 10353, pp. 252–273, 2017.
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on cluster maintenance. When cluster-level maintenance is needed, the cluster
temporarily goes offline to perform hardware/software upgrade or change. After
maintenance is done, the cluster goes online again and begins to serve data-
processing jobs. An interesting question is what happens to disrupted jobs due
to maintenance, that is, can these jobs be resumed seamlessly? Being able to
resume disrupted jobs has the advantage of avoiding repeated data processing
and hence saving cost. For stateful clusters, job resuming is possible, and the
degree of the saving depends on the granularity of the saved state. On the other
hand, stateless clusters are unable to resume disrupted jobs. These jobs have to
be started from scratch after cluster maintenance.

For stateless clusters, since cluster maintenance has to disrupt ongoing jobs
and the partially finished jobs have to redo their work after the maintenance,
choosing appropriate cluster maintenance time is critical for the purpose of sav-
ing computing resources. Choosing the most appropriate maintenance time is not
as straightforward as people typically think. Instead, we found that the naive and
straightforward approach is far from being optimal in terms of resource saving.
In this work, we address this problem of choosing optimal cluster maintenance
time for stateless clusters. For easy grasping the design, we use Hadoop as the
use case to present our design.

Hadoop [1] clusters, being part of the data pipeline that drives many of
today’s business, are commonly used to carry out various types of data process-
ing. A Hadoop cluster typically consists of one or two NameNodes, one Resource
Manager1 and up to thousands of DataNodes. The NameNode maintains the
name space of the entire underlying HDFS [2], and serves as the central point
of control for client interactions. Depending on Hadoop versions and configura-
tions, the NameNodes can be configured as primary/secondary, active/standby
or high availability (HA). Nevertheless, the NameNode is the single point of fail-
ure of the Hadoop cluster for non-HA setup. The Resource Manager keeps the
state of Hadoop cluster resource usage (e.g., Memory and CPU) and schedules
the running of submitted Hadoop jobs. Each MapReduce-based Hadoop job typ-
ically consists of a set of mapper tasks and another set of reducer tasks2. The
mapper tasks will be scheduled first; and towards completing, the reducer tasks
will be invoked to take over the data output from mappers and continue the
data processing.

Hadoop cluster may occasionally need maintenance for various reasons
including software upgrade (e.g., NameNode or Resource Manager upgrade),
hardware failures, configuration change, and problem debugging. In this work,
the notion of “Hadoop cluster maintenance” is defined as the entire cluster is
not being able to run Hadoop jobs during maintenance; and we do not differen-
tiate the causes of cluster maintenance, be it NameNode or Resource Manager.
Whenever such cluster-wide maintenance is performed, all the running Hadoop
jobs are destroyed and outstanding works are forfeited. Due to current limitations

1 The previous version of Hadoop 1 does not have Resource Manager.
2 There are other frameworks such as Spark based, but they are not gaining significant

popularity at this time.



254 Z. Zhuang et al.

of Hadoop implementation, the job state is not persisted and hence the jobs
cannot be resumed from last state. Once the cluster maintenance is completed,
unfinished jobs require resubmission after the NameNode is started again. As
a result, all unfinished jobs before maintenance will have to lose the partially
done work, and the corresponding Hadoop resources (e.g., CPU, Networking)
are wasted. Note that for a unfinished job, both completed and uncompleted
map/reduce tasks will have to rerun.

Though it is invariably true that an unfinished Hadoop job requires a resub-
mission regardless of the maintenance time chosen before it is completed, the
amount of forfeited work varies with different maintenance time. The more for-
feited work due to maintenance, the less Hadoop throughput will be expected
since the lost work will be redone. The amount of forfeited work is directly
affected by the number of mapper/reducer tasks the job has invoked and their
running time between the job startup time and the maintenance starting time.
In this work, we aim at improving Hadoop cluster throughput by minimizing
the forfeited work caused by cluster maintenance.

Assuming the maintenance window length is fixed (e.g., 1 h), the key ques-
tion is when the maintenance should start. We further assume the maintenance
is not urgent enough for an immediate maintenance, hence any maintenance
window suffices as long as it is before some deadline (e.g., 1 day). This assump-
tion in general holds for typical software-upgrade caused maintenance. Though a
straightforward approach of determining the maintenance time is to look at the
number of running jobs (or tasks) and choose the time when minimum number
of jobs/tasks are running before the allowed deadline, as we will demonstrate
later, this approach is rather naive and hence not optimal.

To improve Hadoop cluster throughput, we propose to determine cluster
maintenance time based on the accumulated job progress instead of the number
of running jobs. The main objective is to minimize the forfeited work while
improving Hadoop throughput. We take into account the maintenance urgency
and observe the amount of accumulated work in order to choose the moment to
make the maintenance. Hadoop throughput is the critical performance metric
analyzed. By using historical traces of a busy Hadoop cluster, we evaluate the
proposal and present the significant improvements when comparing the proposal
with the one where the maintenance time is chosen when the least number of
jobs are running (CL-based). Based on the data, the improvement can be up to
42% in saving the wastage of Hadoop resource usage.

To summarize our work, we make the following contributions with this
writing:

1. We consider the problem of determining optimal maintenance time for a state-
less cluster such as Hadoop cluster. We have explained that the naive app-
roach of “number of running jobs” is sub-optimal;

2. We propose to use accumulated job progress as the maintenance criteria for
determining cluster maintenance time;
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3. We perform experimentation and instrumentation to validate the proposal;
4. We provide analysis of key Hadoop job statistics based on one of our busiest

Hadoop clusters.

For the remainder of the paper, after providing some necessary technical
background in Sect. 2, we then motivate the problem being addressed in this
paper using an example scenario in Sect. 3. We propose the design and solution
in Sect. 4 and perform performance evaluation and show the results in Sect. 5.
We discuss several issues/scenarios relevant to cluster maintenance in Sect. 6 and
present related works in Sect. 7. And finally Sect. 8 concludes the work.

2 Background and Scope

We begin by providing background information regarding Hadoop architecture
and Hadoop job workflow.

2.1 Hadoop Architecture and Hadoop EcoSystem

Inspired by Google File System [3], BigTable [4] and MapReduce [5], Hadoop is
designed to provide distributed data storage (via HDFS [2]) and distributed data
processing (via MapReduce [5]) at a massive scale. Hadoop has evolved from the
core components of HDFS [2] and MapReduce to a plethora of products and tools
including [6,7]. In addition to MapReduce framework, other frameworks such as
Spark [8] are also being used. Our work considers how to determine the Hadoop
cluster maintenance time. Though with a focus on MapReduce framework, the
problem and proposed solution also apply to other frameworks.

Hadoop has two versions as of today. In the latest version of V2, a Hadoop
cluster consists of one or two NameNode, one Resource Manager Node and up to
thousands of DataNodes. The NameNode manages the HDFS namespace, while
Resource Manager does the job scheduling. Resource Manager works with appli-
cation masters and node managers running on each DataNode to schedule and
run Hadoop jobs.

2.2 Hadoop Job Workflow

Hadoop jobs are submitted by Hadoop clients. Once a job is submitted, Resource
Managers will initiate an Application Master on a DataNode and collaborate
with node managers of DataNodes to invoke a set of containers as required by
the Hadoop job. Each container can run a single mapper or reducer. Mappers
are firstly scheduled to run, and towards the completion, the reducers will be
invoked to fetch the data output from mappers and perform reducing tasks.
The data exchange between mappers and reducers are typically referred to as
“shuffling”.

Each container requests certain amount of memory (e.g., heap size) from the
node manager. Since the memory size of the entire Hadoop cluster is typically
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fixed and quite limited for commodity hardware based Data Nodes, the number
of concurrently running containers is also limited.3

The submitted Hadoop jobs will leave a state in Hadoop Job History server
for later retrieval. There is typically a limit on the number of job states kept by
Job History server.

3 Problem Definition and Motivation Scenarios

We provide a motivating scenario to illustrate the problem and the impact of
choosing different maintenance time on Hadoop performance.

3.1 Hadoop Throughput Is the Critical Performance Metric

Current Hadoop implementations do not persist the job state during cluster
maintenance4. When the Hadoop cluster is restarted from maintenance, all unfin-
ished jobs will need to be re-submitted and start over.

In Fig. 1 we plot 21 days memory usage of a busy Hadoop cluster. This clus-
ter has two NameNodes being configured with primary/secondary setup, and it
consists of about 2000 data nodes and totally 40 TB of available memory for
running Hadoop jobs. Each Hadoop container running in this cluster on average
takes about 2 GB of memory. We can see that most of the time the cluster is
saturated with memory usage, hence the throughput is one of the critical per-
formance metric we want to optimize. We also see that cluster maintenance is
occasionally performed, which can be seen from the close-to-zero memory usage
period.
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Fig. 1. Memory usage of a Hadoop cluster.

3 Due to performance concerns, the total JVM heap size allocated to all containers on
a Data Node should not exceed the physical RAM size of the node.

4 Efforts are going on to allow job state persistence [9], however facing the challenges
of implementation complexity, usability and adoption cost.
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Hadoop clusters are typically deployed for batch data processing and used by
multiple clients. Thanks to the exploding size of today’s data and the increas-
ing demand for data processing driven by various business requirements, the
throughput of Hadoop clusters (i.e., number of jobs completed in an unit of
time) is the primary performance metric we should optimize.

3.2 Problem We Are Addressing in This Work

Without careful considerations of the impact of different cluster maintenance
time, a poorly selected maintenance window will result in suboptimal Hadoop
performance in the forms of low job throughput and wasted computing resources.
We have seen cases that the Hadoop cluster maintenance window is chosen by
Hadoop administrators in a rather ad hoc fashion. Though urgent remedies of
the cluster require immediate maintenance, most of the maintenance requests
including minor software upgrade are non-urgent, hence we can afford a delayed
maintenance up to certain deadline.

In this work we assume the cluster maintenance duration (i.e., the amount
of time when the cluster is down for maintenance) is fixed (e.g., 1 h), which
is typically true for most software updates5. So the question that needs to be
answered is when the maintenance should start. Maintenance time determination
answers this question. The goal of determining optimal maintenance time is
maximizing the throughput (i.e., the number of completed jobs) of the Hadoop
cluster.

A straightforward but naive approach we can easily come up with is choosing
the maintenance starting time with the minimum number of running jobs (or
tasks). However, as we elaborate later, such an approach is not optimal.

3.3 Illustrative Example

We use the following scenario to elaborate why the straightforward approach of
determining cluster maintenance time based on number of running tasks or jobs
is not optimal. For easy presentation, we denote such approach as Current-Load
(CL) based approach. Consider the a scenario where totally four Hadoop jobs
are scheduled at different time, as shown in Fig. 2(a). For simplicity, we assume
each job has only 1 mapper task and 1 reducer task.

In the figure we highlighted a few time points that are possible starting
time for cluster maintenance. The Current-Load based approach would choose
the time of T2 to start NameNode maintenance, since there is only 1 running
Hadoop job at T2, while at T1 and T3 there are 2 running jobs. However, starting
maintenance at T2 would mean all the accumulated works of job J2 will be
lost, and the corresponding consumed Hadoop processing resources (i.e., CPU,
networking, IO) would be wasted. As shown in Fig. 2(b), the amount of wastage
is non-negligible.

5 The problem considered won’t change even with non-fixed maintenance duration;
but having this assumption simplifies the presentation.
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Fig. 2. An illustrative example showing why the straightforward approach is not
optimal.

On the other hand, if the maintenance time starts at T3, though the number
of running jobs is 2, the aggregated amount of wasted work (Cost3 + Cost4) is
much less than the wasted work (Cost2) if maintenance starts at T1. Since after
maintenance all the broke Hadoop jobs will need to be re-submitted, the forfeited
work (i.e., mapping and reducing) will in turn needs to be re-done, which is a
waste of Hadoop processing resources and reduced Hadoop job completion rate.
Having less wasted work essentially mean the Hadoop cluster can run more jobs
in given amount of time, hence higher job throughput.

3.4 Characteristics of Hadoop Jobs

We also obtained the characteristics of the Hadoop jobs running on one experi-
mental Hadoop cluster. The job set includes totally 135, 808 Hadoop mapreduce
jobs which are retrieved from the job history server. For each of the jobs, we
measure the following metrics: (1) number of tasks (i.e., mappers and reducers)
in a job; (2) total execution time; and (3) aggregated resource usage (i.e., cost).
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Fig. 3. Characteristics of profiled 135 K Hadoop jobs (X-axis is the different buckets
(number of tasks in a job); Y-axis is the number of Hadoop jobs in each bucket).

Since Hadoop mapreduce jobs consist of both mappers and reducers, and
they need to run in separate containers, the number of tasks for a Hadoop job
is defined as the summation of the mappers and reducers. The execution time
of a Hadoop jobs is defined as the summation of average mapping time and the
average reducing time6. For the resource usage, we consider a custom metric of
“container * (execution time)”, which is the product of how many containers
and how long on average a container (i.e., mapper and reducer) runs. Based
on our experiences with running the experimental cluster, the top performance
bottleneck of the Hadoop cluster is the limited number of concurrent running
containers, hence it makes a lot of sense to use the “container * time” as the
cost metric.

Figures 3, 4 and 5 display the characterizing results. For each of the metrics
we considered, we show the distributions of Hadoop jobs under different buckets.
The average number of tasks a Hadoop job has is 211, the average execution time
is 186 s, and the average cost of each Hadoop job is 37775 container * second, or
about 10 container * hours. If cluster maintenance is performed during the runs
of these jobs, on average, half of the cost (i.e., 5 container * hours) incurred by
each job will be lost.

3.5 Summary

We have thus far described that a straightforward Current-Load based approach
fails to consider the nature of Hadoop resource usage, and hence not optimal.
6 The shuffling and reducing phases may overlap, so for simplification, we define the
reducing time as the maximum of reducing time and shuffling time reported by job
history server.
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Fig. 4. Characteristics of profiled 135K Hadoop jobs (X-axis is the different buckets
(Execution time in minute); Y-axis is the number of Hadoop jobs in each bucket).

Fig. 5. Characteristics of profiled 135K Hadoop jobs (X-axis is the different buckets
(Aggregated job cost of container * Second); Y-axis is the number of Hadoop jobs in
each bucket).

Depending on scenarios, the forfeited Hadoop work due to cluster maintenance
can be significant.

By considering the resource used by running Hadoop jobs, a new approach
which is based on accumulated works can achieve better resource usage effi-
ciency and higher job throughput thanks to the minimum wasted resource usage.



Choosing Optimal Maintenance Time for Stateless Data-Processing Clusters 261

We denote the approach of determining cluster maintenance time based on the
amount of accumulated completion of tasks as Accumulated-Work (AW) based
approach.

4 Solution

We now present the design and detailed algorithm of the proposed Accumulated-
Work (AW) based solution.

4.1 Overview

Our proposal depends on forecasting of future workload. Given the irregularities
of Hadoop jobs (i.e., starting/finishing time, number of tasks, run time), we
devise a simple, but effective, predictor by assuming the distribution of those
quantities will be similar over some periods (e.g., on a day-to-day basis or week-
by-week basis). For simplicity, in this work we use the day-to-day model7. Then
the way to determine appropriate maintenance time is by selecting the right
threshold to trigger the maintenance.

The high level flow of the algorithm is illustrated in Fig. 6. The algorithm
consists of a Hadoop workload profiling component that analyzes the load of the
cluster, the job properties, etc. Then the algorithm forecasts the future workload
(e.g., next 1 day) using the forecasting component. Based on the forecasting
result and urgency level of incoming cluster maintenance request, a threshold
value is chosen. The threshold value will be used to determine the starting time
of the next cluster maintenance. Whenever the monitored cluster workload (e.g.,
number of running jobs as in CL-based approach, amount of accumulated work
as in AW-based approach) falls below the threshold, maintenance can start.

The maintenance request may come with different urgency level in the form
of deadlines (e.g., within next 24 h). Such urgency level is fed into the threshold
determination component with a function of Th = f(level). Many forms of the
f function can be defined, and the higher urgency, the larger threshold value
(so that the maintenance can be early kicked off). In this work, we choose a
percentile-based approach which will be elaborated in Sect. 4.4.

Fig. 6. Flow chart of AW-based maintenance determination algorithm.

7 Our particularly studied Hadoop cluster shows consistency of both day-to-day and
week-to-week pattern.
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4.2 Cost Metric and Objective Function

The proposed AW-based solution chooses the cluster maintenance time based
on the amount of accumulated works of the running Hadoop jobs. These works
include both mapper and reducer tasks. Each of these tasks runs for certain
amount of time. There are three types of tasks at a particular timestamp
(i.e., time point): completed tasks (denoted by Taskcompleted), running tasks
(Taskrunning) and tasks that are waiting to be scheduled (Taskwaiting). The
accumulated work is the aggregated works of all completed and running mapper
and reducer tasks. For Taskcompleted, the accumulated work is determined by the
running time of the particular task, that is, the difference between “finish time”
and “start time”. For Taskrunning, the considered run time is the difference
between current timestamp and the job’s “starting time”.

The cost metric of AW-based solution is the aggregated accumulated work
from all Hadoop jobs at any time point. Using AWTi

to denote the cost at time
Ti, and AWTi,Jobj to denote the accumulated work of job Jobj at Ti. So we have
AWTi

=
∑

AWTi,Jobj , and AWTi,Jobj consists of the accumulated work of all
Taskcompleted and Taskrunning.

The objective function of AW-based approach is to choose a time point Tk

that the minimum AWTi
is achieved. By comparison, the objective function of

the baseline CL-based approach is to achieve minimum number of concurrently
running jobs.

4.3 Workload Profiling and Forecasting

In order for both CL-based and AW-based approaches to work, it is important
to profile and forecast the workload of the Hadoop cluster. Profiling can be
done by periodically querying the state of the Hadoop cluster, such as retrieving
information from Job History server. The profiling results can come in different
forms such as probability density functions; in this work, we consider a simplified
form of percentiles for easier presentation, as shown in Fig. 7.

For workload forecasting, it can be achieved by applying various forecasting
models such as time series based ones like ARIMA [10]. Time series forecasting

Algorithm (a): Workload profiling and forecasting
Variables:
1 Tpro f ile: Cycle of profiling the Hadoop workload

1 For every Tpro f ile of time:
2 Start a new cycle of workload profiling;
3 Obtain workload profiles (e.g., percentiles);

Fig. 7. Main algorithm (A).
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model breaks the data values into three parts: seasonal, trending and noises.
Depending on specific scenarios, the workload may have different strengths on
different parts. For instance, for a Hadoop cluster that mostly serves regularly
scheduled jobs such as weekly aggregation of data or daily updates based on
streaming data, the seasonal part will be very strong. On the other hand,
if a Hadoop cluster mainly run ad-hoc experimental jobs, the noise part will
dominate.

4.4 Determining Threshold for Cluster Maintenance

Once the forecasting model is established, then the Hadoop administrators can
predict the workload in the future. When a new cluster maintenance is needed
within certain time period (e.g., 1 day), the administrators can choose a threshold
value for cluster maintenance based on the forecasted workloads.

In cases of non-perfect forecasting model which could be caused by irregu-
larities of the Hadoop workloads, the administrators could adjust the threshold
value for determining the maintenance time a bit to accommodate. For instance,
if the forecasting model predicts the workload will vary between 100 and 1 K
in the coming day. To ensure a maintenance time is indeed chosen, the admin-
istrator could choose a threshold value of 200 (as opposed to 100). Whenever
the workload value drops below the threshold, the maintenance can start. The
threshold value should not be arbitrarily large either (e.g., 900), as otherwise
the opportunity cost associated with not finding an below-threshold time will be
more substantial and defeats the benefits.

Based on our experiences with multiple Hadoop clusters, non-trivial clusters8

typically exhibit irregular workloads and hence it is very difficult to characterize
with reasonable forecasting models. For instance, on the particular cluster we
used for this study, the running Hadoop jobs come from a mix of regularly
scheduled ones and ad-hoc ones. Moreover, the users and jobs of the cluster are
undergoing a major shift. The trending part, however, is not much.

To accommodate the generic cases where Hadoop clusters run irregular work-
loads, we choose a percentile-based method to determine the threshold. Specifi-
cally, we profile the previous days’ workload, and calculate the percentile values
of the past periods. Then we choose a particular percentile P (e.g., 5%) of the
workload and base the maintenance time determination on the corresponding
workload value.

Note the percentile value is determined by the maintenance urgency. For more
urgent maintenance, a larger percentile value is chosen in hope of kicking off the
maintenance early. On the other hand, if the maintenance is not urgent, smaller
percentile value is desired. One approach is to rate the maintenance urgency on
a scale of 1 to 100, where 1 indicates the most urgent level, and then choosing
the corresponding percentile value as the threshold, as shown in Fig. 8. With

8 Those clusters that have sufficiently large of number of data nodes and run heteroge-
nous workload.
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such a scaling of 1 to 100, the threshold value can be easily obtained by treating
the emergency level as the percentile values, that is, AWthre = PLevelurg

. For
instance, for a low-emergency maintenance request rated at level-1, a P1 value
will be chosen, where P1 means a value where 1% of all values are below it.

For CL-based approach, the forecasted workload indicates how many jobs are
concurrently running at any time in the forecasting period. The threshold value
is based on the profiled workload and maintenance urgency. The time stamps in
the future that have forecasted workload intensity falls below the threshold are
the possible cluster maintenance starting time.

For AW-based approach, the forecasted workload deducts the amount of
accumulated workload at any future time. Once the corresponding threshold
value is chosen, a process similar to that of CL-based approach, maintenance
time can be similarly determined.

4.5 Determining Cluster Maintenance Time

Once the cluster maintenance threshold is determined, the maintenance time
can be determined by comparing to the real-time workloads to the threshold
value. This step performs periodical querying of the Hadoop Job History server,
as elaborated in Fig. 9. Every time of Tjh, it obtains the snapshot of the job
history information and extracts all jobs. For every running job Ji, it gathers
all finished or running tasks Tmr. Then it iterate all the tasks and aggregates
consumed computing resource to AWaggr. Finally, it compares the aggregated
AWaggr to the threshold value AWthre determined in Fig. 8. If AWaggr is less
than AWthre, the maintenance can start. Meanwhile, if the maintenance deadline
(e.g., 1 day) has expired, the maintenance can start.

Algorithm (b): determining maintenance threshold
Variables:
1 AWthre: The threshold of the accumulated work for deciding maintenance time
2 Levelurg: The urgency level of maintenance

1 For every maintenance request issued;
2 Obtain forecasted workloads based on recent workload profiles;
3 Determine the maintenance urgency level Levelurg;
4 Determine AWthre based on forecasted workloads and Levelurg;

Fig. 8. Main algorithm (B).



Choosing Optimal Maintenance Time for Stateless Data-Processing Clusters 265

Algorithm (c): determining maintenance time
Variables:
1 Tjh: Cycle of fetching from Hadoop Job History server
2 AWaggr: Currently aggregated computing resources used by all running jobs
3 AWthre: The threshold of the accumulated work for deciding maintenance time
4 Ji: A Hadoop job started but unfinished
5 Tmr A finished or running Hadoop mapper/reducer task

1 Every Tjh of time:
2 Obtain the snapshot of the job history information;
3 For every running job Ji:
4 Get all finished or running tasks Tmr;
5 Aggregate consumed resource to AWaggr;
6 If AWaggr > AWthre or deadline expires:
7 Maintenance starts;

Fig. 9. Main algorithm (C).

5 Evaluation

In this section, we will use the actual traces from our Hadoop cluster to illustrate
how to apply the proposed AW-based approach that is based on accumulated
work on running jobs. For comparison, we also consider the baseline of CL-based
approach, which is based on the number of running jobs.

5.1 Methodology

We use the historical job information kept on Hadoop Job History server. For
each Hadoop job completed, the Job History server maintains the meta data of
the job and its mapper/reducer tasks. The meta data includes submission time,
starting and finishing time, user account, number of mappers and reducers, etc.

The considered Hadoop cluster is able to run 20 K containers concurrently,
and the average job run time is only about 10 h, hence there are up 48 K map-
per/reducer tasks are completed in a single day. The Job History server, however,
is only able to keep most recent 20 K jobs for our setup.

We have continuously collected 3-week of job history. We have to query the
job history server multiple times due to configuration limits. There are two limits
in history server for how many jobs are kept, both are configurable. The first
is the log retention period, which determines how long to keep the job logs on
HDFS. This is by default set to 1 week. The second is the 20 K limits, which
is the maximum number of jobs that history server will load into memory and



266 Z. Zhuang et al.

serve from the web page. For our busy cluster, 20 K jobs only correspond to less
than one-day of job history.

Even though we retrieve from Job History server frequently, due to the large
number of jobs and frequent cluster maintenances, we believe some jobs are still
missed in certain time periods. So we cleaned our data by eliminating some
dirty periods. For easier presentation, we use a 2-day period with clean data to
elaborate the evaluation results. The first day is used as the profiling period.9

The second day is the period to evaluate the approaches.

5.2 Profiling Statistics of First Day

For the first day, we obtain the meta data of each job, hence we know the
running time period (i.e., the start and finish time) and the number of mappers
and reducers running during this time period. Then we can deduct the number
of running jobs and the accumulated works of any time during the 24 h. We plot
the percentile values of concurrent jobs and accumulated works in Fig. 10(a)
and (b), respectively.

For the Hadoop cluster maintenance, we consider three scenarios based on
the maintenance urgency: low-urgency, medium-urgency and high-urgency. For
low-urgency maintenance request, we choose a threshold of 1%, essentially means
about 1% of the entire time, the maintenance is able to kick off. If the check-
ing interval is every minute, then on average, the expected starting maintenance
time is 100 min (i.e., 1

1% ). Similarly, for medium-urgency maintenance request, we
consider two possible thresholds of 2% and 5%, which respectively have mainte-
nance waiting time of 50 min and 20 min. For high-urgency maintenance request,
we choose two possible thresholds of 10% and 20%, with expected maintenance
waiting time of 10 and 5 min, respectively.

For both CL-based and AW-based approaches, the possible time points of
maintenance (i.e., the time when the respective metrics fall below the corre-
sponding particular percentile values.) are determined. The opportunity cost of
each maintenance time point is obtained based on the amount of forfeited work.
The cost unit of the accumulated works is “container * second”, intuitively
indicting the resource used by some containers concurrently running for some
time.

5.3 Cost Results of Second Day

For the second day, we obtain the number of concurrent Hadoop jobs and the
accumulated Hadoop work for each timestamp, shown in Fig. 11. These values
will be used to determine possible cluster maintenance kickoff time based on
threshold values for both CL-based and AW-based approaches.

The assumption of our design is the relatively stable distribution of accumu-
lated works across days. To understand how well the assumption holds, we plot

9 In production, the profiling efforts are running continuously.
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(a) Concurrent running jobs

(b) Accumulated work

Fig. 10. Statistics of the first day.

the CDFs (Cumulative Distribution Function) of these two days in Fig. 12. From
the figure, we see very similar CDF curves.

We also compare the cost of both CL-based and AW-based approaches. For
each approach, the threshold values corresponding to different urgency levels of
cluster maintenance requests are listed in Table 1. Based on the threshold values,
the timestamps of all possible maintenance kicking off are recorded. Then the
opportunity costs (i.e., the amount of forfeited Hadoop works) are obtained for
each timestamp. Finally the average values of all the possible opportunity costs
are calculated for both approaches.

The results of all 5 maintenance urgency levels are displayed in Fig. 13.
As shown in the figure, AW-based approach consistently results in much lower
opportunity compared to CL-based approach. For some urgency levels (e.g., Low
and Medium1), the AW-based cost is only half of that of CL-based. For other
urgency levels, the saving is about 40%.
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(a) Concurrent running jobs

(b) Accumulated work

Fig. 11. Statistics of the second day

Fig. 12. Comparing the CDF (Cumulative Distribution Function) of two days.
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Table 1. Threshold values for kicking off cluster maintenance.

Maintenance urgency Percentile CL-based AW-based

Low 1 7493 8745211

Medium1 2 7924 10.7M

Medium2 5 8884 12.9M

High1 10 9913 14.7M

High2 20 11652 24.3M

Fig. 13. Comparing the amount of forfeited work by CL-based and AW-based approach
under different maintenance urgency levels.

Specifically, at urgency level of High1, for CL-based approach, the aver-
age opportunity cost is about 21,157,000 container * second, or about 5877
container * hour. The average cost of AW-based approach is about 12,240,000
container * second, or about 3,400 container * hours. Compared to CL-based
approach of 5, 877 container * hours, the difference is 2,477 container * hours
for every cluster maintenance is done. In other words, AW-based approach can
save 42% of the wasted resources as resulted from CL-based approach.

6 Discussions

In this section, we discuss several issues/clarifications related to the considered
problem and proposed approach.

6.1 HDFS Federation

HDFS federation is aimed at solving the single-NameNode inefficiency by split-
ting the entire HDFS namespace to multiple ones. Since different NameNodes



270 Z. Zhuang et al.

correspond to different namespaces, NameNode maintenance will still lose unfin-
ished jobs which access the particularly maintained namespace. In addition, even
with HDFS federation, people usually perform maintenance on all namespace at
once.

6.2 HA (High Availability) Setup

HA is an advanced setup for Hadoop NameNode that can alleviate the single-
node failure problem. When configured with HA, two NameNodes work together
to allow seamless NameNode maintenance. One of the NameNode will be active
at any time, while the other be passive. When the active NameNode is down
for any reason, the passive NameNode will take over the responsibility. During
NameNode-caused cluster maintenance, NameNode will not lose unfinished jobs.
However, the tasks might fail during rolling upgrade, hence will need to be
rescheduled. Moreover, for cluster maintenances caused by other reasons (e.g.,
Resource Manager), Hadoop jobs are still lost.

6.3 Resource Manager Maintenance

Though most of the cluster maintenances are caused by NameNode updates,
Resource Manager (RM) can also trigger cluster maintenance. RM node main-
tenance also loses jobs. Thereare features in YARN [11] that adds HA (High
Availability) to RM. For now, this HA feature only allows automatically resub-
mission of previously unfinished jobs. New features are being added which pre-
serve workloads.

6.4 Maintenance Announcement

The scenario we consider in this work is to automatically decide the cluster main-
tenance time and execute the maintenance without the Hadoop users’ awareness
and actions. A slightly different approach is to keep users informed beforehand
by announcing the forthcoming maintenance time so that users do not submit
jobs that will not complete before the maintenance starts. Such an approach does
not really help maximizing the key performance metric of Hadoop job through-
put, since the cluster resources are anyway wasted as users stop submitting jobs.
In our experiences, we have seen such under-utilization of the cluster before
announced maintenance window.

Moreover, though users may be aware of the maintenance window from the
announcement and stop submitting ad hoc jobs (e.g., the one-time running jobs),
most non-ad-hoc jobs (e.g., hourly running jobs) can rarely take advantage of
the announcement. Those jobs are scheduled to run periodically and are very
inconvenient for the users to pause and resume.

In addition, the AW-based approach can be used in tandem with the
announcement-based approach, as the algorithm and its associated observations
can be used to determine the optimal maintenance time window to announce
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to users. In other words, if AW-based profiling has identified the pattern of
accumulated workloads, then a maintenance window with smallest accumulated
workloads can be chosen and be announced to users.

7 Related Work

7.1 Hadoop Performance Optimization

Various optimizations have been proposed to improve Hadoop throughput and
response time [12–15]. In particular, [13] proposes to improve on the job exe-
cution mechanism. [14] studies the impact of adopting SSD for storage. [15]
proposes a new MapReduce Scheduler for special environments. Our work is
orthogonal with these works.

7.2 Workload Forecasting

To forecast various types of computing workload (e.g., networking traffic, incom-
ing traffic), many models such as [10,16] have been proposed. Work [17] proposes
time series based model to forecast when to add more network bandwidth. In
another recent work [18], a time series based forecasting model is used to pre-
dict LinkedIn’s Espresso [19]/Databus [20] traffic. Work [21] proposes a real-time
rolling grey forecasting method to achieve increase in forecast accuracy. Work
[22] uses a novel self-adaptive approach that selects suitable forecasting meth-
ods for a given context, and the user only has to provide a general forecasting
objectives.

7.3 Determining Maintenance Time

We searched thoroughly for related works in the areas of determining opti-
mal cluster maintenance time. Though there are some works [23,24] dealing
with maintenance scheduling for different systems, to our best knowledge, we
haven’t seen any similar work that attempts to optimize the maintenance time for
Hadoop clusters. Moreover, due to the unique characteristics of Hadoop mapre-
duce jobs during cluster maintenance (i.e., combinations of mappers and reduc-
ers, lost intermediate job states during cluster-wide maintenance), the impact
of Hadoop cluster maintenance considerably differs from other types of mainte-
nance. For this reason, we believe our study exhibits uniqueness with regard to
these aspects.

8 Conclusion

This work presents an optimization technique to maximize overall throughput of
a “stateless system” such as Hadoop cluster system. We propose to use accumu-
lated job progress as the cluster maintenance criteria as opposed number of run-
ning jobs. Such a design can significantly save the forfeited computing resources
caused by cluster maintenance.
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Abstract. Cloud computing seeks to provide a global computing utility
service to a broad base of users. Resource management and scheduling
are prime challenges in building such a service. In this paper, we first
provide an overview of clouds from a resource management and schedul-
ing perspective. We then discuss key challenges in these areas, describing
prime opportunities for new research.

1 Cloud Computing Overview

Cloud platforms provide a broad community with sufficient computing resources
to run arbitrary computational workloads [10]. Clouds are typically built from
many discrete warehouse-scale computing platforms. These platforms are dis-
tributed around the world in order to limit the size of fault domains and provide
close proximity to customers.

Clouds pose interesting challenges in resource management and schedul-
ing [12]. The closest prior art is large parallel supercomputers, which have been
in production for over 20 years. However, while much can learned from such sys-
tems, they have generally catered to batch workloads. That is, a job is submitted
to a queue, where it is deferred until sufficient free resources are available to run
it. The primary goal of these systems is to maintain good utilization while main-
taining reasonable response times for individual jobs [7]. These systems often
have fixed configurations for years [6].

By contrast, the first use case for clouds was supporting interactive work-
loads, where requests must be processed in a real-time fashion. Also, these sys-
tems are driven by external demand, whether it be serving web pages or API
endpoints. These workloads are often business critical, so matching instanta-
neous demand is critical. Over time, cloud use cases have broadened to include
large-scale batch computing as well. These two classes of workload have differ-
ent requirements. By contrast, batch workloads are broadly latency insensitive,
though they may have time-to-solution requirements on a larger timescale (e.g.
hours or days). For this reason, these workloads demand different properties
from the system [4].

Most importantly, clouds seek to maintain the illusion of infinite capacity,
because such illusion simplifies user interactions with the platform, allowing them
to focus on their applications and dynamically scale them as needed, instead
of building detailed capacity plans. Cloud providers implement this capability
using several mechanisms. First, they combine discrete user workloads into an
c© Springer International Publishing AG 2017
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aggregated, smoothed demand curve with lower capacity variations than indi-
vidual workloads. Second, they build a predictive model of future demand [5].
This predictive model is in turn used to build new capacity ahead of demand,
hence providing the illusion of infinite capacity. This dynamic aspect of cloud
provisioning is a major departure from the system acquisition approach used by
traditional HPC centers, where fixed systems are procured for long time scales
with few changes over time.

2 Resource Management for Clouds

Effective cloud resource management requires solutions to three major chal-
lenges. The first is product definition for resources, with associated service level
objectives (SLOs). The second is capacity planning with enough notice to pro-
vision capacity before it is needed. The third is scheduling, where the workload
is matched to physical resources. We discuss each in turn.

A cloud product definition specifies what a customer can request. For exam-
ple, each virtual machine instance type in Google Cloud Platform has a fixed
resource configuration for the amount of RAM, CPU, network, and storage [13].
These configurations are often defined by cloud providers in order to enable
efficient allocation and packings of customer requests onto the physical cloud
platform hardware, while providing a rich set of choices for the cloud users.

The product definitions also include SLOs establishing expected behaviors,
such as the expected mean time between failure of VM instances, or whether
a workload can be evicted from its resources, once they have been assigned.
The key challenge here is to devise offerings that are compelling to the cus-
tomers while leaving room for cloud engineers to optimize providing the neces-
sary resources.

Predictive demand models allow cloud providers to procure capacity in
advance of demand. The goal of these models is to ensure that user requests can
be satisfied, while minimizing the number of platform resources left idle. These
models typically include inputs from several sources. Organic growth describes
the observed growth rate over time of a given service or class of loads. Inorganic
growth characterizes events that significantly change consumption patterns (e.g.,
the “Black Friday” shopping day in the USA). Slack is the margin included in a
capacity plan to ensure that requests can be satisfied, even when there is variance
in the actual workload, or prediction errors.

The final major component of cloud resource management is the actual
scheduling of resources to serve the user workload. The process has many goals,
including traditional scheduling goals like ensuring good utilization and satisfy-
ing resource requests “quickly enough”, as well as minimizing system fragmen-
tation and inter-workload interference. This aspect of the system is broadly sim-
ilar to more traditional cluster scheduling problems, although cloud systems are
dominated by interactive requests for resources, so batch optimization heuristics
can’t be used, and the arrival rate of new requests is often quite large [4].
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3 Research Opportunities in Clouds

The appeal of the cloud model is predicated upon on the tacit promise that
the cloud will have resources available when the user needs them. Methods that
keeps this promise while increasing utilization or reducing costs are valuable, as
are ways to make this promise easier to keep.

Defining and managing SLOs is a key challenge. SLOs [9] are promises made
by the cloud provider. These promises might govern the availability of an API
or the performance it provides (e.g., the latency to satisfy a resource request).
These SLOs are usually measured statistically over a time interval. Well-chosen
SLOs can increase the utility of a platform to users in several ways. By making
stronger promises, SLOs can make a platform useful for applications with a wider
range of requirements. By making weaker promises, SLOs can decrease costs and
provide more opportunities for resource optimizations [2]. In all of these cases,
SLOs cast a long shadow on the design, costs and usage experience of cloud
platforms.

Much work remains to be done in defining meaningful SLOs for parallel
workloads. So far, the primary focus in cloud has been on singleton allocations
like a task or VM. But often parallel workloads need guarantees for an ensemble.
Such guarantees can cover instantaneous capacity availability (e.g., keep 95% of
the VMs running at any time) and performance (including connectivity among
VMs). Furthermore, the guarantee on availability needs to be augmented with
performance and sustained throughput guarantees.

A key challenge in SLO research is defining the interface between users and
providers, as to provide guarantees (SLOs) that users need, while preserving
the flexibility for providers to innovate “under the hood”. Part of the benefit
of a richer cloud interface should be increased efficiency. For example, not all
load submitted to the cloud is composed of interactive servers; much is batch in
nature, so the batch load potentially can “fill the trough” of the serving load,
as long as users have adequate throughput or deadline SLOs. Likewise, different
kinds of product SLOs can enable providers to judiciously reallocate unused
resources without “overselling” to the user. In fact, this already happens with
Google’s preemptible VMs [11] and Amazon’s spot market [1].

Large users provide another difficult set of challenges. When users’ requests
are large (i.e., a sizable fraction of the cloud capacity) or very bursty, smooth
projections of demand don’t result in accurate capacity plans. The net result
is that, like on supercomputers, large workloads are costlier to support than
aggregates of smaller workloads with a similar total volume. Interfaces to com-
municate better about the needs of this class of user activity, methods to share
risk of future demand spikes (e.g., options), and approaches that can efficiently
accommodate load spikes all hold promise.

Similarly, resource heterogeneity poses challenges for cloud providers. Clouds
have long been comprised of homogeneous, CPU-centric resources. However,
recent advances in GPUs and other accelerators have demonstrated their value
to a wide range of workloads. Similarly, while clouds started with simple net-
works, some of them have since exceeded supercomputer networks in complexity.
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Both of these trends have resulted in systems that are heterogeneous — which
poses new challenges in resource management [11]. That means that the plat-
form’s resources can no longer be treated as a single resource pool, resulting in
lower utilization, resource stranding, or even inability to satisfy user requests
even when enough capacity is available in aggregate. As accelerators and more
specialized networks continue to develop and are deployed, we expect this trend
will only worsen.

Another promising research area is to build synergistic offerings. With the
range of SLOs and pricing offered by different products and providers, can we
build hybrid offerings that offer a price, predictability, availability or benefit to
users or providers? Cycle computing [3] has provided a compelling example of
this, where ensembles are annotated with a deadline, and then cheap resources
(AWS Spot, or GCE Preemptible) are used as much as possible, with more
expensive guaranteed resources used to ensure that the deadline is met. Similar
approaches can be used to attack problems that users and providers have [8].

4 Conclusions

There has never been a better time to work in resource management. Cloud
computing has increased the relevance and importance of resource management
to a first class concern. While massive systems have already been constructed and
operated in production, much work remains in order to provide enough compute
to satisfy the world’s demand, with the performance and costs required, as well
as supporting use cases not currently addressed. JSSPP remains a prime venue
to showcase and discuss advances on many aspects of this problem, as it has
been for the parallel scheduling community for 20 years.
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