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Preface

Constraint programming and decision making are important. Constraint pro-
gramming and decision making techniques are essential in the building of intelli-
gent systems. They constitute an efficient approach to representing and solving
many practical problems. They have been applied successfully to a number of
fields, such as scheduling of air traffic, software engineering, networks security,
chemistry, and biology. However, despite the proved usefulness of these tech-
niques, they are still underutilized in real-life applications. One reason is the per-
ceived lack of effective communication between constraint programming experts
and domain practitioners about constraints, in general, and their use in decision
making, in particular.

CoProd workshops. To bridge this gap, annual International Constraint
Programming and Decision Making workshops CoProd’XX have been organized
since 2008: in El Paso, Texas (2008, 2009, 2011, 2013, and 2015), in Lyon, France
(2010), in Novosibirsk, Russia (2012), and in Würzburg, Germany (2014);
CoProd’2016 was held in Uppsala, Sweden. Papers from the previous workshops
appeared in [8]. This volume contains extended version of selected papers presented
at the following CoProd workshops.

CoProD workshops aim to bring together, from areas closely related to decision
making, researchers who design solutions to decision making problems and
researchers who need these solutions and likely already use some solutions. Both
communities are often not connected enough to allow cross-fertilization of ideas
and practical applications.

CoProD workshops aim at facilitating networking opportunities and
cross-fertilization of ideas between the approaches used in the different attending
communities. Because of this, in addition to active researchers in decision making
and constraint programming techniques, these workshops are also attended by
domain scientists—whose participation and input is highly valued in these
workshops.
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The goal of CoProD workshops is therefore to constitute a forum for
inter-community building. The objectives of this forum are to facilitate:

• The presentation of advances in constraint solving, optimization, decision
making, and related topics;

• The development of a network of researchers interested in constraint techniques,
in particular researchers and practitioners that use numeric and symbolic
approaches (or a combination of them) to solve constraint and optimization
problems;

• The gap bridging between the great capacity of the latest decision
making/constraint techniques and their limited use.

CoProD workshops can impact these communities by easing collaborations and
therefore the emergence of new techniques, and by creating a network of interest.
The objectives of CoProD are also relayed all year round through the Web site
constraintsolving.com.

Topics of interest. The main emphasis is on the joint application of constraint
programming and decision making techniques to real-life problems. Other topics of
interest include:

• Algorithms and applications of:

– Constraint solving, including symbolic-numeric algorithms
– Optimization, especially optimization under constraints (including

multi-objective optimization)
– Interval techniques in optimization and their interrelation with constraint

techniques
– Soft constraints
– Decision making techniques

• Description of domain applications that:

– Require new decision making and/or constraint techniques
– Implement decision making and/or constraint techniques

Contents of the present volume: general overview. All these topics are repre-
sented in the papers forming the current volume. These papers cover all the stages
of decision making under constraints:

• How to formulate the problem of decision making in precise terms, taking
different criteria into account?

• How to check whether (and when) the corresponding decision problem is
algorithmically solvable?

• Once we know that the decision problem is, in principle, algorithmically solv-
able, how to find the corresponding algorithm, and how to make this algorithm
as efficient as possible?

• How to take into account uncertainty, whether it is given in terms of bounds
(intervals), probabilities, or fuzzy sets?
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How to formulate the problem of decision making in precise terms: case of
single-agent multi-criterion decision making. Paper [3] shows that in many cases,
we can efficiently formulate single-agent multi-criterion decision making problems
in terms of constraints, and thus, known constraint-based techniques to solve these
problems.

How to formulate the problem of decision making in precise terms: general case.
In the general case, in addition to several criteria, we may also have several agents.
There are two important aspects of multi-agent problems:

• First, even when different agents have similar interests, their estimates of the
values of different criteria are often drastically different; the papers [2, 11]
analyze how to best reconcile these differences and come up with a reasonable
solution;

• Second, different agents may have different interests; such situations are ana-
lyzed in [14].

When are problems algorithmically solvable? It is known that the corresponding
problems stop being solvable if there is a discontinuity. Interestingly, it turns out
that for many problems, discontinuity is the only obstacle to algorithmic solvability;
see, e.g., [6]. Even in the discontinuous case, many problems are algorithmically
solvable in some weaker—but still physically meaningful—sense [7].

While some of these problems are algorithmically solvable, many of them are
NP-hard, meaning that—unless P=NP—no feasible algorithm is possible that would
always compute the exact solution to the corresponding problem; see, e.g., [5].

How to design efficient algorithms for solving the problems. In some cases, there
already are algorithms for solving similar problems, but these algorithms only work
under difficult-to-test assumptions. For example, many efficient algorithms rely on
global assumptions about the problems, assumptions which—due to their global
character—are difficult to check. It has been empirically determined that in many
such cases, there is a version that only depends only on local (thus, easier-to-test)
constraints. The paper [4] provides a general theoretical explanation of this result
and a general algorithm transforming global constraint results into the corre-
sponding local constraint ones.

In other cases, we do not have ready algorithms. In such cases, it is reasonable to
see how we humans solve problems, and to borrow the corresponding ideas. This
can be done on several levels: It can be done on the higher level, by simulating how
we reason, or at a deeper biological level, by simulating how the brain works when
we solve such problems.

On the reasoning level, one of the most efficient ways of how we humans solve
problem is that we ignore unnecessary details and thus go to a certain level of
abstraction. This is a trade-off: If we ignore too many important details, the solution
becomes too far from optimal, but if we leave too many unnecessary details, the
resulting requires too many computations; there needs to be an optimal level of
abstraction. There is an empirical approach to finding such level, called similarity
approach. The paper [16] provides a theoretical explanation for this approach.
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On the biological level, it has indeed turned out to be computationally efficient to
use neural networks, i.e., algorithms that emulate how our brain’s neurons work.
The paper [1] provides a theoretical explanation for this empirical success.

How to take uncertainty into account. The simplest type of uncertainty is an
interval uncertainty, when instead of the exact value of a quantity x we only know
its lower bounds x and its upper bound x—i.e., the interval ½x; x� that contains this
value.

Interestingly, interval uncertainty is in good accordance with how we often
evaluate our experience: by only taking into account the largest possible value x and
the last occurred value; the reasons behind such an evaluation are shown in [15].
Similarly, it turns that a good strategy in predicting the behavior of stock markets is
to ignore its fluctuation and to only take into account its (local) minima and
maxima; a theoretical explanation for such a strategy is given in [18].

In some situations, we only know the bounds on the quantities. In other situa-
tions, we know how these quantities depend on certain parameters—but we know
the values of these parameters only with interval uncertainty. In particular, in
control situations, the dynamics of a system is often described by a matrix whose
dependence on several parameters is known, but for which the values of these
parameters are only known with interval uncertainty [12] provides efficient algo-
rithms for checking whether an important property like positive definiteness holds
for all possible values if the corresponding parameters.

In addition to the interval of possible values, we may know the probabilities of
different values within this interval (probabilistic approach) or, if we do not know
these probabilities, the expert evaluations of how possible these values are (fuzzy
approach).

In case of the probabilistic approach, one of the main problems is determining
these probabilities. For the case of measurements, this problem is analyzed in [17].

For the case of fuzzy uncertainty, constraint optimization problems are analyzed
in [10].

Known techniques of solving the corresponding problems are practically useful,
but these techniques often involve making rather arbitrary choices that affect the
result. For example, a known method of optimization under fuzzy constraints—
proposed originally by L. Zadeh, the father of fuzzy logic, and by R. Bellman, a
renowned specialist in optimization and control—strongly depends on the rather
arbitrary selection of the unconstrained maximum. The paper [9] analyzed when the
resulting solution does not depend on this selection.

Resulting applications. Papers presented in this volume include numerous
applications, including applications:

• To control [12, 13]: how to take into account interval uncertainty,
• To economics [18]: how to predict stock market behavior,
• To environmental sciences and geosciences [3]: how to combine data of dif-

ferent types,
• To manufacturing [14]: how to optimally determine the production level.
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Why Deep Neural Networks: A Possible
Theoretical Explanation

Chitta Baral, Olac Fuentes and Vladik Kreinovich

1 Formulation of the Problem

Why neural networks. In spite of all the progress in computer-based recognition
algorithms, we humans still perform many recognition tasks much faster (and often
much more reliably) than computer programs. And we perform faster in spite of the
fact that the fastest of our brain’s data processing units—neurons—has reaction time
≈10 msec, while computer components operate in nanoseconds. The explanation
lies largely in the fact that in the human brain, billion of neurons operate in parallel.

Thus, a natural idea is to speed up computer-based data processing, by simulat-
ing the way biological neurons operate. The resulting data processing techniques
are known as artificial neural networks, or simply neural networks, for short; see,
e.g., [1].

Traditionally, neural networks used the smallest possible number of layers.
When we have neurons working in parallel, the computation time is proportional to
the number of layers that the signal passes through:

• in each layer, all the processing is done in parallel,
• so, data processing in each layer takes the same time, no matter howmany neurons
we use.
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2 C. Baral et al.

Most widely used neurons perform two types of operations: a linear combination

of inputs y = w0 +
n∑

i=1
wi · xi and a non-linear transformation y = s(x) for some

non-linear activation function s(x). Activations functions are usually assumed to be
smooth (at least three times differentiable). The most widely used activation function

is the sigmoid function s(x) = 1

1 + exp(−x)
.

It is known that, for the sigmoid activation function, already 3-layer neurons are
universal approximators; see, e.g., [1]. To be more precise, the following class of
functions can approximate any continuous function f (x1, . . . , xn) on a given box
[x1, x1] × . . . × [xn, xn] with a given accuracy ε:

y =
K∑

k=1

Wk · yk − W0, (1)

where
yk = s(zk) (2)

and

zk =
n∑

i=1

wki · xi − wk0. (3)

In such neurons:

• the original signals xi pass through the first linear layer in which all the values zk
are computed;

• then the second (non-linear) layer computes all the values yk , and
• finally, the third (linear) layer computes the resulting value y.

It is also known that 2-layer neural networks do not have the universal approxi-
mation property. As a result, 3-layer networks used to be most frequently used.

Recent successes of deep networks: a mystery. Recently, it was empirically shown
that inmany cases, it is beneficial to use “deep” neural networks, i.e., neural networks
with a large number of layers; see, e.g., [2, 3, 5–7]. What is still not clear is why this
works better than the more traditional (and seemingly better) 3-layer network.

Comment To be more precise, there are qualitative explanations for this empirical
phenomena, but they have not been transformed into a precise result:

• One qualitative explanation is that if we have few neurons on each layer, then we
have fewer combinations of weights on each layer, so it is easier to try all such
combinations.

• Another qualitative explanation is that when we have several neurons on the same
layer, there is a potential duplication of information—since we can have two
identical neurons—but neurons on different layers do not lead to duplication.
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2 Why Deep Neural Networks: Our Explanation

The universal approximation property of 3-layer networks depends on the
choice of the activation function: reminder. In principle, different activation func-
tions s(x) are used in neural networks. The most important requirement is that the
function s(x) should be non-linear: otherwise, wewill only be able to represent linear
functions.

The universal approximation result for 3-layer networks was originally proved
for the sigmoid activation function. A similar result is true for many other activations
functions, but it is not true for many other non-linear functions. For example, if we
use a non-linear function s(x) = x2, then the network (1)–(3) is only able to compute
quadratic functions—and thus, it will not have the universal approximation property.

Similar results. Similarly, if we select s(x) to be any polynomial s(x) = a0 · xd +
a1 · xd−1 + . . . + ad−1 · x + ad , then every function computed by a network (1)–(3)
is a polynomial of degree ≤ d, and thus, the corresponding network does not have
the universal approximation property either.

A similar negative result holds even if, instead of a 3-layer network, we allow
multi-layer networks with the possibility of � non-linear layers. Indeed:

• the function computed by the network is a composition of functions corresponding
to each layer; and

• the composition P1(P2(x)) of two polynomials P1(x) and P2(x) of degrees d1 and
d2 has a degree d1 · d2.

Thus, if the activation function is a polynomial of degree d, and we allow � non-
linear layers, then each function computed such a network is a polynomial of degree

≤ D
def= d�. Thus, such networks are not universal approximators.

Why this is important. Since we are mostly using the sigmoid activation function
s(x), why does it matter that something is wrong with other functions s(x)? At
first glance, the above negative results only emphasize the importance of using the
sigmoid activation function.

In the ideal world, yes. However, in reality, no matter how we implement the
activation function, whether we implement it in hardware or in software, we cannot
implement is exactly. We can implement the activation function with a certain accu-
racy. As a result, in a real neural network, instead of the desired sigmoid activation
function s(x), we actually have an approximate function s̃(x) ≈ s(x).

And here lies a problem. It is known (see, e.g., [1]) that an arbitrary continuous
function on a box can be approximated, within any given accuracy, by a polynomial.
This is not just a theoretical possibility: when a computer computes a standard non-
linear function, be it sin(x) or exp(x), the most widely use computational algorithms
actually compute the sum of the first few terms in the Taylor expansion of the desired
function—i.e., actually compute a polynomial, the activation function for which the
universal approximation property is lost.
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Conclusion: the usual formulation of the universal approximation property is
not fully adequate. The usual formulation of the universal approximation property
assumes that we can implement the exact activation function. In practice, however,
we can only implement some approximation to the ideal activation function—and,
if we take that into account, that the universal approximation property may be lost.

To study real-life neural networks, it is therefore desirable to come up with a more
adequate formulation, that takes into account the fact that an activation function can
only be implemented with a certain accuracy. Let us formulate this in precise terms.

Definition 1 By a �-layer neural network with activation function s(x) and n inputs,
we mean a (marked) ordered graph whose vertices (called neurons) are divided into
� + 1 subsets (called layers) 0, 1, …, �, in such a way that:

• the 0-th (input) layer has exactly n neurons marked x1, . . . , xn;
• the last (�-th) layer has exactly one neuron marked y;
• an edge from a neuron in the i-the layer can only go to a neuron in a j-th layer,
with j > i ;

• some neuronswho have only one incoming edge aremarked by s; each such neuron
applies the activation function s(z) to the output z of the incoming neuron;

• for each neuron that is not marked by s, each edge going into this neuron is marked
by a real number wi and the neuron itself is marked by a number w0; this neuron
computes the value

∑

i
wi · yi − w0, where yi are the outputs of the incoming

neurons.

The markings enable us to compute, layer-by-layer, from Layer 1 to Layer �, the
output of each neuron, until we reach the output of the neuron in the final layer; its
output is called the result of applying the neural network to the inputs x1, . . . , xn .

Definition 2 Let δ > 0 be a real number.We say that functions s(x) and s̃(x) defined
on an interval [−X, X ] are δ-close if |̃s(x) − s(x)| ≤ δ for all x ∈ [−X, X ].
Definition 3 Let s(x) be a given smooth activation function. We say that a class of
neural networks with this activation function has the realistic universal approxima-
tion property if:

• for every continuous functions f (x1, . . . , xn) on a box [x1, x1] × . . . × [xn, xn],• for every two real numbers δ > 0 and ε > 0, and
• for every smooth function s̃(x) which is δ-close to s(x),

there exists a neural network from this class for which,

• when we use the activation function s̃(x),
• for all inputs from the given box, the result of applying this neural network is

ε-close to f (x1, . . . , xn).
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Proposition 1 For any � and for any activation function s(x), the class of all �-layer
neural networks does not have the realistic universal approximation property.

Proof follows directly from the fact that we can approximate any function s(x)
by polynomials s̃(x), and, and we have shown, �-layer neural networks that use a
polynomial activation function do not have the universal approximation property.

Proposition 2 For any nonlinear activation function s(x), the class of all neural
networks has the realistic universal approximation property.

Comment The proof of this result is, in effect, contained in [4], where it is shown
that if we do not limit the number of layers, then any non-linear activation function
has the universal approximation property.

3 Conclusion

In the idealized case, when we assume that we can implement the activation function
exactly, 3-layer networks have the universal approximation property. However, in a
more realistic setting, if we take into account that we can only implement the acti-
vation function approximately, neither 3-layer networks not network with any fixed
number of layer have the corresponding realistic universal approximation property.
Thus, to adequately approximate different dependencies, we have to consider net-
works with many layers—i.e., deep networks. Thus, this theoretical result explains
the need for deep neural networks.
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Abstract Argumentation Frameworks
to Promote Fairness and Rationality
in Multi-experts Multi-criteria
Decision Making

Stefano Bistarelli, Martine Ceberio, Joel A. Henderson
and Francesco Santini

1 Introduction

Expert analysis and decisions arguably provide high-quality and highly-valued sup-
port for action and policy making in a wide variety of fields, from social services,
to medicine, to engineering, to grant funding committees, and so on. However, the
use of experts can be prohibitive due to either lack of availability, high cost, or lim-
ited time frame for action—this is the case particularly more so in impoverished
areas. As such, it is desirable to be able to replicate/predict such decisions when
beneficial even in the absence of experts. Unfortunately, there aremany obstacles that
still hinder an accurate simulation of expert decisions. First, it is hard to understand,
and therefore replicate, the way each expert “aggregates"information/assessment
along several criteria. In addition, even if we had a reasonable insight about it, any
expert may make inconsistent decisions across similar scenarios. Finally, in the case
of multiple experts, despite looking at the same information, two (or more) experts
may disagree on the decisions to be made.
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In spite of such challenges, traditional approaches seek to combine prior known
decisions of experts into a classification of scenarios (machine learning approaches)
or into some aggregation function that allows to best replicate the experts’ decisions.
Unfortunately, this line of approaches tends to overlook the irrationality and/or lack of
fairness of experts, aggregating all available prior information regardless of quality.

In this work, we propose to modelMulti-ExpertsMulti-Criteria Decision-Making
(MEMCDM) problems using argumentation frameworks.We specifically design our
proposed model so as to emulate fairness and rationality in decisions. For instance,
when, of two expert’s decisions, one is unfair, we impose an attack between these
two decisions, forcing one of the two decisions out of the argumentation network’s
resulting extensions. Similarly, we specifically put irrational decisions in opposition
to force one out. In doing so, we aim to enable the prediction of decisions that are
themselves fair and rational. Our model is illustrated on two toy examples.

In what follows, we start by recalling preliminary notions, then we proceed with
describing our model in details and illustrate our model in the case of Software
Quality Assessment by multiple experts along multiple criteria.

2 Preliminary Notions

2.1 Multi-criteria Decision Making (MCDM)

Multi-criteria decision-making (MCDM) involves selecting one of several different
alternatives, based on a set of criteria that describe the alternatives. However, there are
numerous problems that make comparing these alternatives difficult. For instance,
very often, decisions are based on several conflicting criteria; e.g., which car to
buy that is cheap and energy efficient. In addition, what happens when we have
a group of decision makers that must come to some sort of consensus? This is
known as multi-expert multi-criteria decision making (MEMCDM). In MEMCDM,
there are several new problems to be addressed. One such problem is how to handle
expert disagreement and come to a consensus/decision in the first place. Another
problem, as stated earlier, is that of predicting future decisions based on decision
data from multiple experts along multiple criteria. Again, the question of “which
expert/decision-making process to follow?” is a major challenge in solving such
problems.

2.1.1 Approaches to MCDM

In general, on a daily basis, when the decision is not critical, in order to reach
a decision, we mentally “average/sort"these criteria along with their satisfaction
levels. This corresponds to aggregating values of satisfaction with weights on each
criterion, reflecting its importance in the overall score (a.k.a. additive aggregation),
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that is, calculating the overall score of an alternative with the weighted sum of
the criterion scores. In other words, weights assigned to different sets of criteria in
the weighted-average approach form an “additive measure". Additive aggregation,
however, assumes that criteria are independent, which is seldom the case [5]. Non-
linear approaches also prove to lead to solutions that are not completely relevant [9].

This should change when considering possible dependence between criteria. For
example, if two criteria are strongly dependent, it means that both criteria express,
in effect, the same attribute. As a result, when we consider the set consisting of these
two criteria, we should assign to this set the sameweight as to each of these criteria—
and not double the weight as in the weighted sum approach. In general, the weight
associated to different sets should be different from the sum of the weights associated
to individual criteria. Inmathematics, such non-additive functions assigning numbers
to sets are known as non-additive (fuzzy) measures. It is therefore reasonable to
describe the dependence between different criteria by using an appropriate non-
additive (fuzzy) measure. Combining the fuzzy measure values with the criteria
satisfaction can be done using the Choquet integral, which integrals are actively used
in Multi-Criteria Decision Making [8].

However, to make this happen, fuzzy measures need to be determined: they can
either be identified by a decisionmaker/expert or by an automated system that extracts
them from sample data. Since human expertise might not always be available and
getting accurate fuzzy values (even from an expert) might be tedious [14], fuzzy
measures are usually automatically extracted from prior decision decision data. To
the original problem, this approach adds an optimization problem that can be tedious
to solve. Although it was solved with success for some data sets [13], the overall
prediction quality is not satisfactory and the approach limits the number of criteria
that can be taken into account (the number of variables to determine is exponential
in the number of criteria) [12].

2.2 Argumentation Frameworks

In this section we briefly summarise the background information related to classical
AAFs [7]. We focus on the basic definition of an AAF (see Definition 1), on the
notion of defence (Definition 2), and on extension-based semantics (Definition 3).

Definition 1 (Abstract Argumentation Frameworks) An Abstract Argumentation
Framework (AAF) is a pair F = 〈A, R〉 of a set A of arguments and a binary relation
R ⊆ A × A, called the attack relation. ∀a, b ∈ A, aR b (or, a � b) means that a
attacks b. An AAF may be represented by a directed graph (an interaction graph)
whose nodes are arguments and edges represent the attack relation. A set of argu-
ments S ⊆ A attacks an argument a, i.e., S � a, if a is attacked by an argument of
S, i.e., ∃b ∈ S.b � a.
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Definition 2 (Defence)Given an AAF, F = 〈A, R〉, an argument a ∈ A is defended
(in F) by a set S ⊆ A if for eachb ∈ A, such thatb � a, also S � b holds.Moreover,
for S ⊆ A, we denote by S+

R the set S ∪ {b | S � b}.
The “acceptability” of an argument [7] depends on its membership to some sets,

called extensions: such extensions need to satisfy the properties required by a given
semantics, and they characterise a collective “acceptability”. In the following, stb,
adm, prf , gde, com, and sem, respectively stand for stable, admissible, preferred,
grounded, complete, and semi-stable semantics. The intuition behind these semantics
is outside the scope of this work (e.g., see [10, Chap.3]).

Definition 3 (Semantics) Let F = 〈A, R〉 be an AAF. A set S ⊆ A is conflict-free
(in F), denoted S ∈ c f.(F), iff there are no a, b ∈ S, such that (a, b), (b, a) ∈ R. For
S ∈ c f.(F), it holds that:

• S ∈ stb(F), if foreach a ∈ A\S, S � a, i.e., S+
R = A;

• S ∈ adm(F), if each a ∈ S is defended by S;
• S ∈ prf (F), if S ∈ adm(F) and there is no T ∈ adm(F) with S ⊂ T ;
• S = gde(F) if S ∈ com(F) and there is no T ∈ com(F) with T ⊂ S;
• S ∈ com(F), if S ∈ adm(F) and for each a ∈ A defended by S, a ∈ S holds;
• S ∈ sem(F), if S ∈ adm(F) and there is no T ∈ adm(F) with S+

R ⊂ T+
R .

We recall that for each AF, stb(F) ⊆ sem(F) ⊆ prf (F) ⊆ com(F) ⊆ adm(F)

holds, and that for each of the considered semantics σ (except stable) σ(F) 
= ∅
always holds. Moreover, in case an AF has at least one stable extension, its stable,
and semi-stable extensions coincide. Finally, gde(F) is always unique, and gde(F) ∈
com(F).

Consider F = 〈A, R〉 in Fig. 1, with A = {a, b, c, d, e} and R = {(a, b), (c, b),
(c, d), (d, c), (d, e), (e, e)}. We have that stb(F) = sem(F) = {{a, d}}, and
gde(F) = {a}. The admissible sets of F are ∅, {a}, {c}, {d}, {a, c},
{a, d}, and prf (F) = {{a, c}, {a, d}}. The complete extensions are {a}, {a, c}, {a, d}.

In the proposed model (precisely in Sect. 3.2) we take advantage of symmetric
AAFs [6]:

Definition 4 (Symmetric AAFs [6])A symmetric (Abstract) Argumentation Frame-
work is a finite Argumentation Framework F = 〈A, R〉 where R is assumed sym-
metric, non empty and irriflexive.

2.2.1 Decision-making with Arguments

In this section we simplify part of the content in [10, Chap.15]. Solving a decision
problem amounts to defining a pre-ordering, usually a complete one, on a set D =

Fig. 1 An example of AAF
a b c d e
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{d1, . . . , dn} of n candidate options. Argumentation can be a means for ordering
this set D, that is to define a preference relation � on D. An argumentation-based
decision process can be decomposed into the following steps:

1. Constructing arguments in favour/against statements (beliefs or decisions).
2. Evaluating the strength of each argument.
3. Determining the different conflicts among arguments.
4. Evaluating the acceptability of arguments.
5. Comparing decisions on the basis of relevant accepted arguments.

We need to characterise the subsets of practical arguments that are respectively
in favour (F f ), or against (Fc) a given option in di ∈ D:

• F f : D → 2A is a function that returns the arguments in favour of a candidate
decision. Such arguments are said pros the option.

• Fc : D → 2A is a function that returns the arguments against a candidate decision.
Such arguments are said cons the option.

In Definition 5 we present one of the possible ways to prefer (�) one decision
instead of another. This unipolar principle only refers to either the arguments pros
or cons.

Definition 5 (Counting arguments pros/cons) Let DS = (D, F) be a decision sys-
tem, where F is an AAF, and Accstb(F) collects the sceptically accepted arguments
of a framework F under the stable semantics. Let d1, d2 ∈ D.

d1 � d2 ⇐⇒ |F f (d1) ∩ Accstb(F)| ≥ |F f (d2) ∩ Accstb(F)|

The aim of (part of) future work (see also Sect. 5) is to apply similar techniques
to derive the best decision about our model, e.g., an evaluation about the software.

3 Proposed Model for MEMCDM Using Argumentation
Frameworks

Here, we describe our model: given an MEMCDM problem with n criteria and p
experts, how dowe “translate”/model it as an AAF? In other words, which arguments
and attacks should compose it? Note that, through this section we will use letters S
and R to identify “Software”, “Ranking” (unlikely to Sect. 2.2, where these letters
represent a subset of arguments and the attack relation respectively).
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3.1 Arguments

3.1.1 What Does the Data We Use (i.e., Experts’ Evaluation
of Software in This Case) Tell Us About the Arguments
to Add to the Network?

We differentiate arguments that come from the data (i.e., Expert i said that Software
j is good) from arguments that are implicit (i.e., Software k is Poor).

1. Expert i gives Item j a total quality Di j (which, in the case of Software Quality
Assessment – SQA, can be Bad, Poor, Fair, Good, or Excellent):

Argument(Ei , Sj , Di j )

Let us call such arguments, arguments of type ESD.
2. Expert i judges that Item j satisfies criterion m up to quality Di jm

Argument(Ei , Sj , cm, Di jm)

Let us call such arguments, arguments of type EScD.

3.1.2 Which Implicit Arguments Should Be Part of the Argumentation
Network for This Specific Type of Problem?

For each item, independently from what experts say, there will be a decision made.
This decision will be in the form of a final ranking, ranging over all possibly ranking
values (in the case of SQA: Bad, Poor, Fair, Good, Excellent). So regardless of ESD
arguments, we add to the argumentation network the following arguments:

∀item Si ,∀ ranking Dj : Argument (Si , Dj )

Let us call such arguments, arguments of type SD.

3.1.3 Coalitions of Arguments

Here we aim to model the fact the n decisions of any expert on the n criteria of the
problem at hand belong together: they together form the “support” for the expert’s
final decision on the given item. As a result, for any expert Ei and any item Sj , we
define a coalition of “supporting” decisions as:

∀Ei ,∀Sj , Coalition: {(Ei , Sj , ck, Di, j,k), k ∈ {1, . . . , n}}
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Let us call such coalitions of EScDs, extended arguments of type CoEScD. The
result of modeling such coalitions is that all arguments in the coalition will be forced
to be altogether either in or out of extensions. Per se, we are enforcing an equality
constraint on the belonging of these arguments to any extension.

In the following, in particular in Sects. 3.2.3 and 3.2.4, we will use “a supports
b”as a shortcut to represent a set of attacks from a to all the arguments similar, but
at teh same time in contrast with b.

3.2 Attacks

In this subsection, we answer the following question: What are the attacks (edges
of the network) between these arguments (nodes)? Note: All attacks we define are
reciprocal, hence the edges are always set bidirectionally.

For attacks too, we differentiate between attacks that come from inconsistencies
in the decision data (disagreement between experts, inconsistency in decisions of a
single expert, lack of fairness, irrationality).An assumption thatwemake in designing
the network model is that experts should be rational: in this, we mean that even if
they are not (which we know), they should be and we aim to elicit decisions that are
as rational as can be.

3.2.1 Attacks Derived from Lack of Fairness

Here, we assume that if an expert is fair, then s/he should derive the same final ranking
from the same criteria rankings. For instance, if there are 3 criteria (c1, c2, and c3)
to assess items and an expert E has the following decision history:

⎧
⎨

⎩

E, Si , c1, D1

E, Si , c2, D2

E, Si , c3, D3

−→ E, Si , D

and: (with Si 
= Sj )
⎧
⎨

⎩

E, Sj , c1, D1

E, Sj , c2, D2

E, Sj , c3, D3

−→ E, Sj , D′

where D 
= D′, then we should see arguments (E, Si , D) and (E, Sj , D′) are a lack
of fairness in judgment and therefore add the following attack in the argumentation
network: (E, Si , D) ←→ (E, Sj , D′).
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More generally, assuming that the criteria that are considered by the experts are ck ,
with k ∈ K , and that the possible rankings are denoted by Dr , with r ∈ R, then we
add the following rule to our model:

∀E, Si , Sj , s.t. i 
= j and ∀k ∈ K , (E, Si , ck, Dk) and (E, Sj , ck, Dk) :

if (E, Si , Di ) and (E, Sj , Dj ) and Di 
= Dj

thenAttack(E, Si , Di ) ←→ (E, Sj , Dj )

3.2.2 Attacks Derived from Lack of Rationality

Let us recall that we assume that the rankings Dr , with r ∈ R, are totally ordered.
However, with n criteria, the set of n-tuples of rankings is only partially ordered:

(D1, D2, . . . , Dn) ≺ (D′
1, D

′
2, . . . , D

′
n)

iff :
∀i ∈ {1, . . . , n} : (Di 
= D′

i ) −→ Di < D′
i

Now: ∀Ei and ∀Sj , we denote by (D1,i, j , . . . , Dn,i, j ) the set of n decisions made by
Expert Ei on each of the criteria c1, …, cn for Item Sj , and by Di, j the final decision
of Expert Ei on Item Sj .

Being rational for any given expert Ei means that if for Item Sj , s/he ranks criteria
lower (w.r.t. above partial order) than s/he ranks the criteria of Item Sk , then his/her
final ranking of Sj should not be higher than his/her ranking of Sk . Formally, it is
expressed as follows:

∀Ei , ∀Sj , ∀Sk( j 
= k) :
if: (D1,i, j , . . . , Dn,i, j ) ≺ (D1,i,k, . . . , Dn,i,k) and: Di, j > Di,k

then: Attack (Sj , Ei , Di, j ) ←→ (Sk, Ei , Di,k)

3.2.3 Attack Related to Implicit Arguments: SD and cD

In this subsection, we describe the following attacks:

• attacks between implicit arguments SD, and
• attacks across SD and ESD.

1. Attacks among SDs: SD Arguments associate an item with a ranking. For each
item Si , there are p SD arguments if there are p possible ranking levels. Each of
these p arguments attack each other (they form a complete subgraph). In other
words:

∀Si ,∀r1, r2 ∈ R, with r1 
= r2, Attack: (Si , Dr1) ←→ (Si , Dr2)
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2. Supports between SDs and ESDs: For any given item Sj , an argument saying
that Si is evaluated Dh is in contradiction (and therefore attacks—and vice-versa)
with any argument (Ei , Sj , Dk) as soon as Dh 
= Dk . As a result we have:

∀Ei , ∀Sj , ∀Dk .(Ei , Sj , Dk) Supports (Sj , Dk)

In terms of the attack relation, this support can be rephrased as:

∀Ei , ∀Sj , (Dh 
= Dk) → Attack: (Sj , Dh) ←→ (Ei , Sj , Dk)

3.2.4 Supports Between Coalitions and ESDs

Here we aim to model the fact that coalitions of decisions on criteria support experts’
decisions. In other words:

∀Ei ,∀Sj , {(Ei , Sj , ck, Di, j,k), k ∈ {1, . . . , n}}Supports (Ei , Sj , Di, j )

In terms of attacks, this is expressed1 as follows:

∀Ei , E j∀Sk : Di,k 
= Dj,k →
Attack: {(Ei , Sk, cl , Di,k,l), k ∈ {1, . . . , n}} ←→ (E j , Sk, Dj,k)

4 A Simple Example

Here, let us look at a scenario in which experts independently assess given pieces of
software, based on several given evaluation criteria. We describe the resulting argu-
mentation networks (arguments/nodes and attack/edges). Table1 summarises our
example, by reporting all the Poor/Fair/Good quality-evaluation about two different
criteria (1 and 2) and the overall quality related to three different software products
(S1/S2/S3). Such scores are produced by three different experts (E1/E2/E3). For
instance, E1 estimates that the overall quality of S1 is fair, with Criterion 1 evaluated
as poor, and Criterion 2 as good.

The graph in Fig. 2 represents the AAF given by following the model proposed in
Sect. 3 on the data in Table1. The yellow nodes represent explicit arguments from the
data. The green nodes are the implicit arguments. The blue nodes are the coalitions.
The black bold lines represent attacks due to lack of fairness and lack of rationality.
The dotted line attacks are those based on implicit arguments. Finally, the grey bold
lines are coalition supports of expert decisions.

1Refer to Sect. 3.1.3 for the definition of support.
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Table 1 The explicit arguments that can be collected on our toy-example

Software Expert Criterion 1 Criterion 2 Total quality

S1 E1 Poor Good Fair

S1 E2 Good Poor Fair

S1 E3 Fair Fair Fair

S2 E1 Poor Good Poor

S2 E2 Poor Good Good

S2 E3 Poor Good Fair

S3 E1 Good Good Good

S3 E2 Good Good Fair

S3 E3 Fair Fair Fair

Fig. 2 The AAF given by the model proposed in Sect. 3 on the data in Table1

4.1 Towards Decision Making

In order to provide a solution to the example in Fig. 2, we adopted a tool developed
by some of the authors of this work, i.e., ConArg (Argumentation with Constraints).

ConArg2 [2, 3] is a reasoner based on the Java Constraint Programming solver3

(JaCoP), a Java library that provides a Finite Domain Constraint Programming par-
adigm [11]. The tool comes with a graphical interface, which visually shows all the
obtained extensions for each problem. ConArg is able to solve also the weighted and

2http://www.dmi.unipg.it/conarg/.
3http://www.jacop.eu.

http://www.dmi.unipg.it/conarg/
http://www.jacop.eu
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Fig. 3 The AAF of the model in Sect. 3 visualised in the Web interface of ConArg. Arguments
containing criteria have been removed from the picture in order simplify it

coalition-based problems presented in [1, 4]. Moreover, it can import/export AAFs
with the same text format of ASPARTIX. Recently, we have extended the tool to
its second version, i.e., ConArg2 (freely downloadable from the same Web-page of
ConArg), in order to improve its performance: we implemented all the models in
Gecode,4 which is an open, free, and efficient C++ environment where to develop
constraint-based applications.We have also dropped the graphical interface, having a
textual output only. In addition, a Web interface is available at the project homepage,
through which it is possible to test the tool without downloading it. So far, ConArg2
finds all conflict-free, admissible, complete, stable, grounded, preferred, semi-stable
and ideal extensions (see Definition 3).

In Fig. 3 we visualise the example in Table1 (and Fig. 2). ConArg returns four
stable extensions:

{S1E1F S1E2F S1E3F S1F S2E3F S2F S3E1G S3E2F S3E3F}
{S1E1F S1E2F S1E3F S1F S2E2G S2E3F S3E1G S3E3F}
{S1E2F S1E3F S1F S2E1P S2E3F S3E1G S3E2F S3E3F}
{S1E2F S1E3F S1F S2E1P S2E2G S2E3F S3E1G S3E3F}

Therefore, we can see that S1F is sceptically accepted (it is present in all the stable
extensions), while S2F is credulously accepted (it belongs to the first extension only).

4http://www.gecode.org.

http://www.gecode.org
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In addition, no information is obtained for S3, in none of the stable extensions. For
this reason, we can safely evaluate S1 as Fair, and, with a lesser degree of certainty,
S2 as Fair. With such few experts however, we cannot have a final evaluation for S3.

5 Conclusion and Future Work

In this work, we proposed a model for MEMCDM problems, based on classical
AAFs [7], that allows to emulate fairness and rationality. This allows discrimination
among input decision data (from experts’ prior decisions) between data of value and
data that should just not be taken into account. Next steps include operationalising the
whole process (from input processing to results filtering) and then adding weights to
the attacks to simulate the extent of disagreements and allow lineance towards small
errors (e.g., unfairness / irrationality that are really minimal, minor disagreements).
Furthermore, wewill take inspiration from classical decision-making techniques [10,
Ch. 15] with the purpose to rank decisions and decide, for instance, if a software is
good or poor. We will even develop new techniques exploring weights on attacks.
Also part of future work, we plan to explicitly acknowledge in the AAF that dis-
agreement can be at two different levels: epistemic and pragmatic, and to make use
of argumentation frameworks to identify disagreement configurations (epistemic and
pragmatic, epistemic only, pragmatic only).
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Constraint Approach to Multi-objective
Optimization

Martine Ceberio, Olga Kosheleva and Vladik Kreinovich

1 Formulation of the Problem

Multi-objective optimization: examples. In many practical situations, we would
like to maximize several different criteria.

For example, in meteorology and environmental research, it is important to mea-
sure fluxes of heat, water, carbon dioxide, methane and other trace gases that are
exchanged within the atmospheric boundary layer. To perform these measurements,
researchers build up vertical towers equipped with sensors at different heights; these
tower are called Eddy flux towers. When selecting a location for the Eddy flux tower,
we have several criteria to satisfy; see, e.g., [1, 5]: The station should located as
far away as possible from roads, so that the gas flux generated by the cars do not
influence our measurements of atmospheric fluxes. On the other hand, the station
should be located as close to the road as possible, so as to minimize the cost of
carrying the heavy parts when building such a station. The inclination at the station
location should be small, because otherwise, the flux will be mostly determined by
this inclination and will not be reflective of the atmospheric processes, etc.

In geophysics, different type of data provide complementary information about
the Earth structures. For example, information from the bodywaves (P-wave receiver
functions) mostly covers deep areas, while the information about the Earth surface
is mostly contained in surface waves. To get a good understanding of the Earth
structure, it is therefore important to take into account data of different types; see,
e.g., [3, 9].

If we had only one type of data, then we can use the usual Least Squares approach
fi (x) → min to find a model that best fits the data. If we knew the relative accuracy

M. Ceberio (B) · O. Kosheleva · V. Kreinovich
University of Texas at El Paso, El Paso, TX 79968, USA
e-mail: mceberio@utep.edu

O. Kosheleva
e-mail: olgak@utep.edu

V. Kreinovich
e-mail: vladik@utep.edu

© Springer International Publishing AG 2018
M. Ceberio and V. Kreinovich (eds.), Constraint Programming and Decision
Making: Theory and Applications, Studies in Systems, Decision and Control 100,
DOI 10.1007/978-3-319-61753-4_3

21



22 M. Ceberio et al.

of different data types, we could apply the Least Squares approach to all the data.
In practice, however, we do not have a good information about the relative accuracy
of different data types. In this situation, all we can say that we want to minimize the
errors fi (x) corresponding to all the observations i .

Multi-objective optimization is difficult. The difficulty with this problem is that,
in contrast to a simple optimization, the problemofmulti-objective optimization is not
precisely defined. Indeed, ifwewant tominimize a single objective f (x) → min, this
has a very precisemeaning: wewant to find an alternative x0 for which f (x0) ≤ f (x)
for all other alternatives x . Similarly, if we want to maximize a single objective
f (x) → max, this has a very precise meaning: we want to find an alternative x0 for
which f (x0) ≥ f (x) for all other alternatives x .

In contrast, for a multi-objective optimization problem

f1(x) → min; f2(x) → min; . . . ; fn(x) → min (1)

or

f1(x) → max; f2(x) → max; . . . ; fn(x) → max, (2)

no such precise meaning is known.
Let us illustrate this ambiguity on the above trip example. In many cases, conve-

nient direct flights which save on travel time are more expensive, while a cheaper trip
may involve a long stay-over in between flights. So, if we find a trip that minimizes
cost, the trip takes longer. Vice versa, if we minimize the travel time, the trip costs
more.

It is therefore necessary to come up with a way to find an appropriate compromise
between several objectives.

2 Analysis of the Problem and Two Main Ideas

Analysis of the problem. Without losing generality, let us consider a multi-objective
maximization problem. In this problem, ideally,wewould like to find an alternative x0
that satisfies the constraints fi (x0) ≥ fi (x) for all objectives i and for all alternatives
x . In other words, in the ideal case, if we select an alternative x at random, then with
probability 1, we satisfy the above constraint.

Main ideas. The problem is that we cannot satisfy all these constraints with
probability 1.A natural idea is thus to find x0 for which the probability of satisfying
these constraints is as high as possible. Let us describe two approaches to formulating
this idea (i.e., the corresponding probability) is precise terms.

First approach: probability to satisfy all n constraints. The first approach
is to look for the probability that for a randomly selected alternative x , we have
fi (x0) ≥ fi (x) for all i .
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Second approach: probability to satisfy a randomly selected constraint. An
alternative approach is to look for the probability that for a randomly selected alter-
native x and for a randomly selected objective i , we have fi (x0) ≥ fi (x).

How to formulate these two ideas in precise terms. To formulate the above two
ideas in precise terms, we need to estimate two probabilities:

• the probability pI (x0) that for a randomly selected x , we have fi (x0) ≥ fi (x) for
all i , and

• the probability pI I (x0) that for a randomly selected x and a randomly selected i ,
we have fi (x0) ≥ fi (x).

Let us estimate the first probability. Since we do not have any prior information
about the dependence between different objective functions fi (x) and f j (x), i �= j ,
it is reasonable to assume that the events fi (x0) ≥ fi (x) and f j (x0) ≥ f j (x) are
independent for different i and j . Thus, the desired probability pI (x0) that all n such

inequalities are satisfied can be estimated as the product pI (x0) =
n∏

i=1
pi (x0) of n

probabilities pi of satisfying the corresponding inequalities.
So, to estimate p, it is sufficient to estimate, for every i , the probability pi (x0)

that fi (x0) ≥ fi (x) for a randomly selected alternative x .
How can we estimate this probability pi (x0)? Again, in general, we do not have

much prior knowledge of the i-th objective function fi (x). What do we know?
Before starting to solve this problem as a multi-objective optimization problem, we
probably tried to simply optimize each of the objective functions—hoping that the
corresponding solution would also optimize all other objective functions. Since we
are interesting in maximizing, this means that we know the largest possible value Mi

of each of the objective functions: Mi = max
x

fi (x).

In many practical cases, the optimum can be attained by differentiating the objec-
tive function and equating all its derivatives to 0. This is, for example, how the Least
Squares method works: to optimize the quadratic function that describes how well
the model fits the data, we solve the system of linear equations obtained by equat-
ing all partial derivatives to 0. It is important to mention that when we consider the
points where all the partial derivatives are equal to 0, we find not only maxima but
also minima of the objective function. Thus, it is reasonable to assume that in the
process of maximizing each objective function fi (x), in addition to this function’s
maximum, we also compute its minimum mi = min

x
fi (x).

Since we know the smallest possible value mi of the objective function fi (x),
and we know its largest possible value Mi , we thus know that the value fi (x) corre-
sponding to a randomly selected alternative x must lie inside the interval [mi , Mi ].

In effect, this is all the information that we have: that the random value fi (x) is
somewhere in the interval [mi , Mi ]. Since we do not have any reason to believe that
some values from this interval are more probable and some values are less probable,
it is reasonable to assume that all the values from this interval are equally probable,
i.e., that we have a uniform distribution on the interval [mi , Mi ].
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This argument—known as Laplace Indeterminacy Principle—can be formalized
as selecting the distribution with the probability density ρ(x) for which the entropy
S = − ∫

ρ(x) · ln(ρ(x)) dx is the largest possible. One can check that for distribu-
tions on the given interval, the uniform distribution is the one with the largest entropy
[6].

For the uniform distribution on the values fi (x) ∈ [mi , Mi ], the probability pi (x0)
that the random value fi (x) does not exceed fi (x0), i.e., belongs to the subinterval
[mi , fi (x0)], is equal to the ratio of the corresponding intervals, i.e., to pi (x0) =
fi (x0) − mi

Mi − mi
. Thus, the desired probability pI (x0) is equal to the product of such

probabilities. So, we arrive at the following precise formulation of the first idea:
Precise formulation of the first idea. To solve a multi-objective optimization

problem (2), we find a value x0 for which the product pI (x0) =
n∏

i=1

fi (x0) − mi

Mi − mi

attains the largest possible value, where mi
def= min

x
fi (x) and Mi

def= max
x

fi (x).

Let us estimate the second probability. In the second approach, we select the
objective function fi at random. Since we have no reason to prefer one of the n
objective functions, it makes sense to select each of these n functions with equal

probability
1

n
.

For each selection of the objective function i , we know the probability pi (x0) =
fi (x0) − mi

Mi − mi
that we will have fi (x0) ≥ fi (x) for a randomly selected alternative x .

The probability of selecting each objective function fi (x) is equal to
1

n
. Thus, we

can use the complete probability formula to compute the desired probability pI I (x0):
Precise formulation of the second idea. To solve a multi-objective optimiza-

tion problem (2), we find a value x0 for which the expression pI I (x0) =
n∑

i=1

1

n
·

fi (x0) − mi

Mi − mi
attains the largest possible value.

Discussion. Let us show that both ideas lead to known (and widely used) methods
for solving multi-objective optimization problems.

The second idea leads to optimizing a linear combination of objective func-
tions. Let us start with analyzing the second idea, since the resulting formula with
the sum looks somewhat simpler than the product-based formula corresponding to
the first idea.

In the case of the second idea, the optimized value pI I (x0) is a linear combina-
tion of n objective functions—to be more precise, it is an arithmetic average of the
objective functions normalized in such a way that their values are within the interval

[0, 1]: pI I (x0) = 1

n
·

n∑

i=1

f ′
i (x0), where f ′

i (x0)
def= fi (x0) − mi

Mi − mi
.

Maximizing a linear combination of the objective functions is indeed the most
widely used approach to solvingmulti-objective optimization problems; see, e.g., [4].
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The first idea leads to maximizing a product of (normalized) objective func-
tions. One can easily see that the first idea leads to maximizing a product of normal-

ized objective functions: pI (x0) =
n∏

i=1
f ′
i (x0).

Maximizing such a product is exactly what Bellman-Zadeh fuzzy approach rec-
ommends (if we use the product as an “and” operation); see, e.g., [2, 8]. It fits will
with our own proposal for such a situation; see, e.g., [5].

This is also exactly what the the Nobelist John Nash recommended for a similar
situation of making a group decision when each participant would like to optimize
his/her own utility fi (x) → max; see, e.g., [7].
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From Global to Local Constraints:
A Constructive Version of Bloch’s Principle

Martine Ceberio, Olga Kosheleva and Vladik Kreinovich

1 Bloch’s Principle: Formulation of the Problem

Bloch’s Principle: a brief history (see [4] for details). Liouville’s Theorem states
that every analytical function f (z) which is bounded on a whole complex plane
and for which f (0) = 0 is equal to 0; see, e.g., [3]. This theorem requires that the
constraint | f (z)| ≤ C be satisfied globally, i.e., for all z. What if this constraint is
only satisfied locally, i.e., for all z from a bounded set? Such a “localization” of
Liouville’s theorem was indeed proven by H. A. Schwarz: if a function f (z) for
which f (0) = 0 is analytical for all z from a disk

BR(0)
def= {z : |z| < R}

and | f (z)| ≤ C for all z ∈ BR(0), then for all such values z, we get | f (z)| ≤ C

R
· |z|.

When the size R increases, the bound tends to 0; so for R → ∞, we get Liouville’s
Theorem.

Several similar localizations of global results are known. In 1926, A. Bloch,
formulated a general (informal) Bloch’s Principle: that for every global result, there
is a local version from which this global result follows [2]. In complex analysis, this
principle was formalized; however, there are many interesting results of the use of
Bloch’s Principle in other areas of mathematics.

Problem. Can we formalize Bloch’s Principle in a context which is more general
than complex analysis? If yes, and if the appropriate the localization always exists,
can we find it algorithmically?
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What we do in this paper. In this paper, we provide positive answers to both
questions.

Comment. Of course, due to the informal character of Bloch’s principle, no answer
is final—it is always possible that our result (or a similar result) holds in a more
general context.

2 Bloch’s Principle: General Formalization

Analysis of the problem. In general terms, the Liouville’s theorem has the form

∀ f ∈ F (∀x ( f (x) ∈ A(x)) ⇒ ∀x ( f (x) ∈ B(x))), (1)

where F is the class of all analytical functions for which f (0) = 0, x goes over all
complex numbers, A(x) = {x : |x | ≤ C} is the set of all the valued bounded by the
given constant C , and B(x) = {0}.

The implication (1) says that if the constraint f (x) ∈ A(x) is exactly satisfied for
all possible values x , then the conclusion holds. What we want to prove is that when
the constraint is “approximately” satisfied—i.e., if it satisfied with some accuracy
δ > 0 for all the values x which are at a distance r form 0—then the conclusion is also
approximately satisfied, with some accuracy ε > 0 and for all values at a distance R
from 0. We also want to make sure that when δ → 0 and r → ∞, then ε → 0 and
R → ∞. In other words, we want to prove that for every ε > 0 and R > 0, there
exist δ > 0 and r > 0 for which, if the condition is satisfied with accuracy δ for all
x which are r -close to 0, then the conclusion is satisfied with accuracy ε for all x
which are R-close to 0.

A natural way to describe the fact that f (x) is “approximately” in the set A(x)

(or in the set B(x)) is to say that f (x) is close to the set A(x) in the sense of the

usual distance d(z, S)
def= inf{d(z, s) : s ∈ S}. In the above case, the sets A(x) and

B(x) are compact, so d(z, A(x)) = 0 if and only if z ∈ A(x). Thus, the global result
(1) can be reformulated in the equivalent form

∀ f (∀x d( f (x), A(x)) = 0 ⇒ ∀x d( f (x), B(x)) = 0)). (2)

and the desired localized result has the form

∀ε > 0 ∀R > 0 ∃δ > 0 ∃r > 0

∀ f ((∀x (d(x, x0) ≤ r ⇒ d( f (x), A(x)) ≤ δ)) ⇒

(∀x (d(x, x0) ≤ R ⇒ d( f (x), B(x)) ≤ ε))). (3)
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It is worth mentioning that in the case of Liouville’s Theorem (and in several
similar resultsmentioned in [4]), not only all the sets A(x) and B(x) compact, but they

also continuously depend on x – in the sense of the Hausdorff metric dH (A, B)
def=

max

(
max
a∈A

d(a, B),max
b∈B

d(b, A)

)
.

The class F is also compact in some reasonable sense: indeed, for ever bounded
set D, the set of all these functions limited to D is compact in the usual metric
dD( f, g) = max

x∈D
d( f (x), g(x)). Indeed, for an analytical function f (z), its value

f (z) can be described by a Cauchy integral over a surrounding curve γ : f (z) =∫
γ

f (t)

z − t
dt . Differentiation of this formula enables us to get a similar formula for

the derivative f ′(z). Thus, when the analytical function is bounded, its derivative
is also bounded. Due to Ascoli-Arzela theorem, this implies that the corresponding
class of functions is compact – when limited to each bounded domain.

It is also important to notice that the notion of an analytical function is locally
defined, in the sense that if a function f (x) coincides with some analytical function
in every neighborhood, then it is analytical itself.

Thus, we arrive at the following natural formalization of Bloch’s Principle.

Definition 1 Let us call a metric space bounded-compact if every closed bounded
set in this space is compact.

Comment. In particular, this implies that every closed ball

Br (x0)
def= {x : d(x, x0) ≤ r}

is compact. Vice versa, if for some point x0, every closed ball with a center at x0 is
compact then every closed bounded set is compact too: indeed, very bounded set is
contained in some ball Br (x0), and a closed subset of a compact set is also compact.

Definition 2 LetF be a class of functions from a bounded-compact metric space X
to a bounded-compact metric space Y . We say that the class F is bounded-compact

if for every compact set K ⊂ X , this class is compact in the metric dK ( f, g)
def=

sup
x∈K

d( f (x), g(x)).

Definition 3 Let F be a class of a functions from X to Y , and let x0 be a point in
x0. We say that a function f : X → Y locally belongs to the class F if for every n,
there exists a function fn ∈ F which coincides with f on Bn(x0).

Comment. This definition uses the point x0, but one can easily check that the resulting
notion does not depend on x0.

Definition 4 We say that a bounded-compact class of functions F is locally defined
if it contains all the functions that locally belong to this class.
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Definition 5 Let F be a bounded-compact locally defined class of functions. By
an F-constraint A, we mean a (Hausdorff)-continuous function that map each point
x ∈ X into a compact set A(x) ⊆ Y .

Definition 6 Let F be a bounded-compact locally defined class of functions, and
let A and B be F-constraints.

• We say that the constraint A globally implies the constraint B if for every function
f ∈ F , the condition ∀x ( f (x) ∈ A(x)) implies ∀x ( f (x) ∈ B(x)).

• We say that the constraint A locally implies the constraint B for ε, R, δ, and r if
for every function f (x) for which d( f (x), A(x)) ≤ δ for all x with d(x, x0) ≤ r ,
we have d( f (x), B(x)) ≤ ε for all x with d(x, x0) ≤ R.

• We say that the constraint A locally implies the constraint B if for every ε > 0
and for every R > 0, there exist real numbers δ > 0 and r > 0 such that A locally
implies B for ε, R, δ, and r .

Comment. The definition of local implication uses a point x0, but one can easily see
that the corresponding property does not change if we replace this point with any
other point from the metric spaces X .

Proposition 1 Let F be a bounded-compact locally defined class of functions, and
let A and B are F-constraints. Then, if A globally implies B, then A locally implies
B.

Proof Wewill prove the result by contradiction. Let us assume that A does not locally
imply B. This means that there exist ε > 0 and R > 0 such that for every n, there is a
function fn ∈ F for which max

x∈Bn(x0)
d( fn(x), A(x)) ≤ 1/n but d( fn(xn), B(xn)) > ε

for some xn ∈ Bx0(R). Since the sequence xn is contained in a compact set BR(x0),
it has a subsequence which converges to some limit �. Without losing generality, we
can assume that xn → �.

Since F is compact relative to each metric dBk (x0), from the sequence fn , we
can extract a subsequence n(1, i) convergent for k = 1; from this subsequence, we
can extract a subsequence n(2, i) which is convergent for k = 2, etc. The diagonal
subsequence fn(i,i) then converges for all k. This convergence is for all x , no matter
how far from x0 we are, so we can defining a point-wise limit function f (x). On
each ball Bk(x0), this limit coincides with the corresponding limit from F limited
to this ball. Thus, the limit function f (x) locally belongs to F ; since the class F is
locally defined, this means that f ∈ F .

For the limit function f , for every x , the condition d( fn(x), A(x)) ≤ 1/n in the
limit tends to d( f (x), A(x)) = 0. Since A globally implies B, we conclude that we
have d( f (x), B(x)) = 0 for all x , in particular, that we have d( f (�), B(�)) = 0.
However, from d( fn(xn), B(xn)) > ε, in the limit xn → �, we get d( f (�), B(�)) ≥
ε > 0. This contradictions shows that our assumption is wrong, and A does locally
imply B. The proposition is proven.
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3 Bloch’s Principle: A Constructive Version

Towards an algorithmic version. In this paper, we will use the usual definitions of
computable numbers, functions, compact spaces, etc.; see, e.g., [1, 5].

Proposition 2 If spaces X and Y are computable and computably bounded-compact,
and if A and B are computable functions for which A globally implies B, then there
exists an algorithm that, given rational numbers ε > 0 and R > 0, produces com-
putable numbers δ > 0 and r > 0 for which A locally implies B for ε, R, δ, and
r.

Proof From the proof of Proposition 1 can conclude that that for ε0 = ε/3 and for
R0 = R + 1, there exists an integer n = n0 for which r = n and δ = 1/n satisfy the
desired property. Let us show how to algorithmically find this n. For that, we will
repeat the below computations for n = 1, 2, . . . until we find the value n for which
the desired condition is satisfied.

In these computations, wewill use the fact that there are algorithms for computing
the maximum and minimum of a computable function over a computable compact.
We will also use the fact that for a computable function F(x) on a computable
compact set K , for every two computable numbers z− < z+ within the range of
F(x) on K , we can compute an intermediate value z ∈ (z−, z+) for which the set
{x : F(x) ≤ z} is a computable compact.

Before we go through n = 1, 2, . . ., we use the intermediate-value algorithm to
compute a value R′ ∈ (R, R + 1) for which the ball BR′(x0) is computably compact.

Then, for each n, we compute a value rn ∈ (n − 1, n) for which the closed ball
Brn (x0) is a computable compact. Since this ball is a computable compact, the value

v( f )
def= max

x∈Brn (x0)
d( f (x), A(x)) is also computable – and is, therefore, a computable

function of f ∈ F ′ def= F|Bx0 (R).
The restriction F ′ is a computable compact. Thus, by the same intermediate-

value result, we can compute a value δn ∈ (1/n, 1/(n − 1)) for which the set S
def=

{ f : v( f ) ≤ δn} is a computable compact. We can therefore compute the maximum
M of a computable function d( f (x), B(x)) over all x ∈ BR′(x0) and all f ∈ S with
any given accuracy. Let us compute it with accuracy ε/3. If the resulting estimate M̃
is ≤ (2/3) · ε, we stop.

Let us show that if we stop, then we get the desired n. Indeed, in this case, if for
some f , we have d( f (x), A(x)) ≤ 1/n < δn for all x ∈ Bn(x0), then (since rn < n)
this inequality is also true for all x ∈ Brn (x0), hence v( f ) < δn . Every x ∈ BR(x0)
belongs to BR′(x0) and thus, for this x , we have d( f (x), B(x)) ≤ M . Since M ≤
M̃ + ε/3 and M̃ ≤ (2/3) · ε, we conclude that d( f (x), B(x)) ≤ ε.

Let us now show that the above algorithm will stop for n = n0 + 1. By definition
of n0, if x ∈ Bn0(x0) and d( f (x), A(x)) ≤ 1/n0, then d( f (x), B(x)) ≤ ε/3 for all
x ∈ BR0(x0). Here, R′ < R + 1 = R0, so x ∈ BR′(x0) implies that x ∈ BR0(x0). Sim-
ilarly, since rn > n − 1 = n0, we conclude that max

x∈Bn0 (x0)
d( f (x), A(x)) ≤ v( f ) =
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max
x∈Brn (x0)

d( f (x), A(x)) and thus, v( f ) ≤ δn < 1/n0 implies that max
x∈Bn0 (x0)

d( f (x),

A(x)) <
1

n0
. Thus, indeed, for all such x and f , we have d( f (x), B(x)) ≤ ε/3;

hence, the largest value M is ≤ ε/3, so M̃ ≤ (2/3) · ε, and the algorithm will stop.
The proposition is proven.
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Optimizing pred(25) Is NP-Hard

Martine Ceberio, Olga Kosheleva and Vladik Kreinovich

1 Formulation of the Problem

Need to estimate parameters of models. In many practical situations, we know
that a quantity y depends on the quantities x1, . . . , xn , and we know the general
type of this dependence. In precise terms, this means that we know a family of
functions f (c1, . . . , cp, x1, . . . , xn) characterized by parameters ci , and we know
that the actual dependence corresponds to one of these functions.

For example, we may know that the dependence is linear; in this cases, the corre-
sponding family takes the form

f (c1, . . . , cn, cn+1, x1, . . . , xn) = cn+1 +
n∑

i=1

ci · xi .

In general, we know the type of the dependence, but we do not know the actual
values of the parameters. These values can only be determined from the measure-
ments and observations, when we observe the values x j and the corresponding value
y. Measurement and observations are always approximate, so we end up with tuples
(x1k, . . . , xnk, yk), 1 ≤ k ≤ K , for which yk ≈ f (c1, . . . , cp, x1k, . . . , xnk) for all k.
We need to estimate the parameters c1, . . . , cp based on these measurement results.

Least Squares: traditional way of estimating parameters of models. In most
practical situations, the Least Squares method is used to estimate the desired para-
meters. In this method, we select the values ci for which the sum of the squares of
the approximation errors is the smallest possible:
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∑

k

(yk − f (c1, . . . , cp, x1k, . . . , xnk))
2 → min

c1,...,cp
.

One of advantages of this approach is that, when the model f (c1, . . . , cp, x1,
. . . , xn) linearly depends on the parameters ci , the sum of squares is a quadratic func-
tion of ci . Thus, when we apply the usual criterion for the minimum—differentiate
the sum with respect to each variable xi and equate all the resulting partial deriva-
tives to 0—we get a system of linear equations, from which we can easily find all
the unknown c1, . . . , cp.

Least Squares is not always the optimalwayof estimating theparameters. The
Least Squares approach known to be optimal for the case when all the approximation
errors yk − f (c1, . . . , cp, x1k, . . . , xnk) are independent and all distributed according
to the same normal distribution. In practice, however, we often have outliers—e.g.,
values corresponding to the malfunction of a measuring instrument—and in the
presence of even a single outlier, the Least Squares method can give very wrong
results.

Let us illustrate this on the simplified example, when y does not depend on any
variables xi at all, i.e., when y = c for some unknown constant c. In this case, we
need to estimate the value c based on the observations y1, . . . , yK . For this problem,

the Least Squares method takes the form
K∑

k=1
(yk − c)2 → min. Differentiating the

sum with respect to the unknown c and equating the derivative to 0, we conclude that

c = y1 + . . . + yK
K

.

This formula works well if all the values yi are approximately equal to c. For
example, if the actual value of c is 0, and |yi | ≤ 0.1, we get an estimate |c| ≤ 0.1.
However, if out of 100 measurements yi , one of an outlier equal to 1000, the estimate
becomes close to 10—and thus, far away from the actual value 0.

To take care of such situations, we need estimates which do not change as much
in the presence of possible outliers. Such methods are called robust [2].

pred(25) as an example of a robust estimate.Oneof the possible robust estimates
consists of selecting a percentage α and selecting the values of the parameters for
which the number of observations for which the prediction is within α% from the
observed value is the largest possible. In other words, each prediction is formulated
as a constraint, and we look for parameters that maximize the number of satisfied
constraint. This technique is known as pred(α).

Thismethod is especially widely used in software engineering, e.g., for estimating
how well different models can predict the overall software effort and/or the number
of bugs. In software engineering, this method is most frequently applied as pred(25),
for α = 25; see, e.g., [1, 3].

Problem. In contrast to the Least Squares approach, for which the usual calculus
ideas lead to an efficient optimization algorithm, no such easy solution is known
for pred(25) estimates; all known algorithms for this estimation are rather time-
consuming. A natural question arises: is this because we have not yet found a feasible
algorithm for computing these estimates, or is this estimation problem really hard?
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What we prove in this paper. In this paper, we prove that even for a linear model
with no free term cn+1, pred(25) estimation—as well as pred(α) estimation for any
α > 0—is an NP-hard problem. In plain terms, this means that this problem is indeed
inherently hard.

2 Main Result and Its Proof

Definition 1 Let α ∈ (0, 1) be a rational number. By a linear pred(α)-estimation
problem, we means the following problem:

• Given: an integer n, K rational-valued tuples (x1k, . . . , xnk, yk), 1 ≤ k ≤ K , and
an integer M < K ;

• Check: whether there exist parameters c1, . . . , cn for which in at least M cases k,
we have ∣∣∣∣∣yk −

n∑

i=1

ci · xik
∣∣∣∣∣ ≤ α ·

∣∣∣∣∣

n∑

i=1

ci · xik
∣∣∣∣∣ .

Proposition 1 For every α, the linear pred(α)-estimation problem is NP-hard.

Proof Toprove this result, wewill reduce, to this problem, a knownNP-hard problem
of checking whether a set of integer weights s1, . . . , sm can be divided into two parts
of equal overall weight, i.e., whether there exist integers y j ∈ {−1, 1} for which
m∑
j=1

y j · s j = 0; see, e.g., [4].

In the reduced problem, we will have n = m + 1, with n = m + 1 unknown coef-
ficients c1, . . . , cm, cm+1. The parameters ci will correspond to the values yi , and cm+1

is equal to 1. We will build tuples corresponding to equations yi = 1 and yi = −1

for i ≤ m, to cm+1 = 1, and to the equation cm+1 +
m∑
i=1

yi · si = 1.

To each equation of the type yi = 1 or cm+1 = 1, we put into correspondence the
following two tuples:

• In the first tuple, xik = 1 + ε, x jk = 0 for all j �= i , and yk = 1. The resulting
linear term has the form ci · (1 + ε) and thus, the corresponding inequality takes

the form 1 − ε ≤ (1 + ε) · ci ≤ 1 + ε, i.e., equivalently, the form
1 − ε

1 + ε
≤ ci ≤ 1.

• In the second tuple, xik = 1 − ε, x jk = 0 for all j �= i , and yk = 1. The resulting
linear term has the form ci · (1 − ε) and thus, the corresponding inequality takes

the form 1 − ε ≤ (1 − ε) · ci ≤ 1 + ε, i.e., equivalently, the form 1 ≤ ci ≤ 1 + ε

1 − ε
.

It should be mentioned that the only value ci that satisfies both inequalities is the
value ci = 1.

Similarly, to each equation of the type yi = −1, we put into correspondence
following two tuples.
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• In the first tuple, xik = 1 + ε, x jk = 0 for all j �= i , and yk = −1. The resulting
linear term has the form ci · (1 + ε) and thus, the corresponding inequality takes
the form −1 − ε ≤ (1 + ε) · ci ≤ −1 − ε, i.e., equivalently, the form −1 ≤ ci ≤
−1 − ε

1 + ε
.

• In the second tuple, xik = 1 − ε, x jk = 0 for all j �= i , and yk = −1. The resulting
linear term has the form ci · (1 − ε) and thus, the corresponding inequality takes

the form −1 − ε ≤ (1 − ε) · ci ≤ −1 + ε, i.e., equivalently, the form −1 + ε

1 − ε
≤

ci ≤ −1.

Here also, the only value ci that satisfies both inequalities is the value ci = −1.

Finally, to the equation cm+1 +
m∑
j=1

y j · s j = 1, we put into correspondence the

following two tuples. In both tuples, yk = 1.

• In the first tuple, xik = (1 + ε) · si , and xm+1,k = 1 + ε. The corresponding lin-

ear term has the form (1 + ε) ·
(

m∑
i=1

ci · si + cm+1

)
, and thus, the corresponding

inequality takes the form

1 − ε ≤ (1 + ε) ·
(

m∑

i=1

ci · si + cm+1

)
≤ 1 + ε,

i.e., equivalently,
1 − ε

1 + ε
≤

m∑

i=1

ci · si + cm+1 ≤ 1.

• In the second tuple, xik = (1 − ε) · si , and xm+1,k = 1 − ε. The corresponding

linear term has the form (1 − ε) ·
(

m∑
i=1

ci · si + cm+1

)
, and thus, the corresponding

inequality takes the form

1 − ε ≤ (1 − ε) ·
(

m∑

i=1

ci · si + cm+1

)
≤ 1 + ε,

i.e., equivalently,

1 ≤
m∑

i=1

ci · si + cm+1 ≤ 1 + ε

1 − ε
.

Here, both inequalities are satisfied if and only if
m∑
i=1

ci · si + cm+1 = 1.

Overall, we have 2m + 2 pairs, i.e., 4m + 4 tuples. If for the given values
s1, . . . , sm , the original NP-hard problem has a solution yi , then we can take ci = yi ,



Optimizing pred(25) Is NP-Hard 37

cm+1 = 1, and thus satisfy M
def= 2m + 4 inequalities. Let us show that, vice versa,

if at least 2m + 4 inequalities are satisfied, this means that the original problem has
a solution.

Indeed, for every i , each of the two inequalities corresponding to yi = 1 implies
that ci > 0 while each of the two inequalities corresponding to yi = −1 implies
that ci < 0. Thus, these inequalities incompatible, which means that for every i , at
most two inequalities can be satisfied. If for some i , fewer than two inequalities
are satisfied, then even when for every j �= i , we have two, and all four remaining
inequalities are satisfied, we will still have fewer than 2m + 4 satisfied inequalities.
This means that if 2m + 4 inequalities are satisfied, then for every i , two inequalities
are satisfied—and thus, either ci = 1 or ci = −1. Now, the four additional inequali-

ties also have to be satisfied, so we have cm+1 = 1, and
m∑
i=1

ci · si + cm+1 = 1, hence

m∑
i=1

ci · si = 0. The reduction is proven, and thus our problem is indeed NP-hard.

Comment. In this proof, we consider situations in which about half of the inequal-
ities are satisfied. We may want to restrict ourselves to situations in which a certain
proportion of inequality should be satisfied—e.g., 90% or 99%. With such a restric-
tion, the problem remains NP-hard.

To prove this, it is sufficient to consider a similar reduction, in which:

• instead of single pair of tuples corresponding to cm+1 = 1 we have N identical
pairs (for a sufficiently large N ), and similarly,

• instead of a single pair corresponding to the equation
m∑
j=1

y j · s j = 0, we have N

such identical pairs.
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Range Estimation Under Constraints
Is Computable Unless There
Is a Discontinuity

Martine Ceberio, Olga Kosheleva and Vladik Kreinovich

1 Need for Range Estimation Under Constraints

Need for data processing. To make a decision, in particular, to select an engineering
design and/or control strategy, we need to know the effects of selecting different
alternatives. Inmost engineering problems, we know how different quantities depend
on each other and how they change with time. In particular, we usually know how
the quantity y describing the effect depends on the values of the quantities x1, …, xn
describing the decision and the surrounding environment: y = f (x1, . . . , xn). The
resulting computations are known as data processing.

Need to take uncertainty into account. In the ideal situation, when we know the
exact values x1, …, xn of the corresponding parameters, we can simply substitute
these values into a known function f , and get the desired value y. In practice, the
values x1, …, xn come from measurements, and measurements are never absolutely
accurate. As a result, the measurement results x̃1, …, x̃n are, in general, somewhat
different from the actual (unknown) values x1, …, xn of the corresponding quantity.
Thus, the estimate ỹ = f (̃x1, . . . , x̃n) is, in general, different from the desired value
y = f (x1, . . . , xn). To make an appropriate decision, it is important to know how
big can be the difference ỹ − y.

Need for range estimation. Inmany practical situations, the only information that
we have about the measurement error x̃i − xi of each corresponding measurements
is the upper bound Δi provided by the manufacturer. In this case, based on the
measurement result x̃i , the only information that we can conclude about xi is that xi
belongs to the interval [xi , xi ] def= [̃xi − Δi , x̃i + Δi ].
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Another case of such an interval uncertainty iswhen the parameter xi characterizes
a manufactured part; in this case, we know that the corresponding value must lie
within the tolerance interval—the interval [xi , xi ] within which the manufacturer of
this part was required to keep this value.

Different values xi from the corresponding intervals [̃xi − Δi , x̃i + Δi ] lead, in
general, to different values of y = f (x1, . . . , xn). It is therefore important to estimate
the range of all such values, i.e., the set

{ f (x1, . . . , xn) : xi ∈ [xi , xi ] for all i}.

In the usual case of continuous functions f , this range is an interval; we will
denote this interval by [y, y]. Estimation of this range interval is known as interval
computations; see, e.g., [4].

Range estimation problems are, in general, computable. It is known that for
computable functions f on computable intervals [xi , xi ], there is an algorithmwhich
computes the range of the given function on given intervals; see, e.g., [3].

In general, the corresponding computational problem is NP-hard (meaning that
these computations may take a very long time), but there are many situations where
feasible algorithms are possible for exact computations—and there are also many
feasible algorithms for providing enclosures for the desired ranges; see, e.g., [3].

Need to take constraints into account. The above formulation of range estima-
tion problem assumes that the quantities x1, …, xn are independent—in the sense
that the set of possible values of, e.g., x1, does not depend on the actual values of
all other quantities. In practice, we often have additional constraints which limit
possible combinations of values (x1, . . . , xn).

For example, if x1 and x2 represent the control values are two consequentmoments
of time, then usually, due to hardware limitations, these values cannot differ much,
we should have a constraint |x1 − x2| < δ for some small value δ > 0. In this case,
instead of the range of all possible values of f (x1, . . . , xn) when each xi is in the
corresponding interval,we are only interested in the rangeof the values corresponding
to the tuples (x1, . . . , xn) that satisfy all the known constraints.

Constraints make the problem of range estimation more complex. Adding
constraints immediately makes the problem much more complex; see, e.g., [1].

What we do in this paper. In this paper, we explain that the main reason why
range estimation under constraints is not always computable is that constraints may
introduce discontinuity—and all computable functions are continuous. Specifically,
we show that if we restrict ourselves to computable continuous constraints, the prob-
lem of range estimation under constraints remains computable.
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2 Known Results: Brief Reminder

Definition 1

• A real number x is called computable if there exists an algorithm that, given a
natural number k, returns a rational number rk for which |rk − x | ≤ 2−k .

• An interval [x, x] is called computable if both its endpoints are computable.
• A function f (x1, . . . , xn) from real numbers to real numbers is called computable
if there exist two algorithms:

– an algorithm that, given rational numbers r1, . . . , rn , and an integer k, returns a
rational number r for which |r − f (r1, . . . , rn)| ≤ 2−k ; and

– an algorithm that, given a rational number ε > 0, returns a rational number
δ > 0 such that if |xi − x ′

i | ≤ δ for all i , then

| f (x1, . . . , xn) − f (x ′
1, . . . , x

′
n)| ≤ ε.

Proposition 1 [3, 5] There exists an algorithm that, given a computable function
f (x1, . . . , xn) and computable intervals [xi , xi ] (1 ≤ i ≤ n), returns the range [y, y]
of this function on the given intervals.

Proof To compute y with a given accuracy ε > 0, we first use the second algorithm
from the definition of a computable function to find δ > 0 for which |xi − x ′

i | ≤ δ

implies that the values of f are (ε/2)-close to each other. On each interval [xi , xi ], we
then select finitelymanypoints xi , xi + δ, xi + 2δ,…After that, for each combination
(s1, . . . , sn) of the selected points, we use the first algorithm to produce a rational
number r which is (ε/2)-close to the corresponding value f (s1, . . . , sn). Our claim
is that the largest r of these rational numbers is the desired ε-approximation to y.

Indeed, on the one hand, each rational value r is bounded by f (s1, . . . , sn) + ε

2
.

Thus, from f (s1, . . . , sn) ≤ y, we conclude that r ≤ y + ε

2
. In particular, this is true

for the largest of these numbers, hence r ≤ y + ε

2
.

On the other hand, let us consider the values xi at which the function f attains its
largest possible value y: f (x1, . . . , xn) = y. Each value xi from the corresponding
interval is δ-close to oneof the selected points si . Thus, each combination (x1, . . . , xn)
is δ-close to the corresponding combination (s1, . . . , sn) of selected points—which,
due to the choice of δ, implies that

| f (s1, . . . , sn) − f (x1, . . . , xn)| ≤ ε

2
.

So, f (s1, . . . , sn) ≥ y − ε

2
. For the corresponding number r , we have r ≥ f (s1,

. . . , sn) − ε

2
and hence, r ≥ y − ε. Since r is the largest of these rational numbers,

we get r ≥ r and therefore, r ≥ y − ε.
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A similar proof shows that the smallest r of the corresponding rational numbers
r is an ε-approximation to y. The proposition is proven.

Definition 2

• By a computable constraint, we mean a constraint of one of the following types:
g j (x1, . . . , xn) = c j , g j (x1, . . . , xn) ≤ c j , c j ≤ g j (x1, . . . , xn), or
c j ≤ g j (x1, . . . , xn) ≤ c j , where g j (x1, . . . , xn) is a computable function and c j ,
c j , and c j are computable numbers.

• By a problem of range estimation under constraints, we mean the following prob-
lem:

– given a computable function f (x1, . . . , xn), n computable intervals [xi , xi ], and
a finite list of computable constraints,

– compute the largest y and the smallest y values of f (x1, . . . , xn) for all the tuples
(x1, . . . , xn) of values xi ∈ [xi , xi ] which satisfy all the given constraints.

Proposition 2 No algorithm is possible which solves all the problems of range
estimation under constraints.

Comment In other words, it is not possible to have an algorithm that, given the
function f , the intervals [xi , xi ], and the constraints, would always compute the
values y and y.

Proof Let us take n = 1, f (x1) = x1, and a constraint g(x1) = c1, where g(x1) =
min(x1,max(0, x1 − 1)). One can check that for x1 ≤ 0, we get g(x1) = x1; for
0 ≤ x1 ≤ 1, we get g(x1) = 0, and for x1 ≥ 1, we get g(x1) = x1 − 1. So, for c1 < 0,
the constraint is only satisfied for the value x1 = c1, so we get y = c1; on the other
hand, for c1 = 0, the constraint g(x1) = c1 = 0 is satisfied for all x1 ∈ [0, 1], so
we get y = 1. When c1 → 0, the dependence of y on c1 is discontinuous, and all
computable functions are continuous; see, e.g., [5]. The proposition is proven.

3 New Result: Discontinuity Is the only Obstacle
to Computing Y and Y

Definition 3

• Let the computable intervals [xi , xi ] be given, and let the computable functions
g1(x1, . . . , xn), …be given, and for each of these functions, let a type of the cor-
responding constraint be given (i.e., = c j , ≤ c j , ≥ c j , or c j ≤ · ≤ c j ).

• For each combination c of the threshold values c j , c j , and/or c j , by S(c), we
denote the set of all the tuples xi ∈ [xi , xi ] which satisfy all the corresponding
constraints.
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• For each δ > 0, we say that the combinations c and c′ are δ-close if the corre-
sponding threshold are δ-close (e.g., |c j − c′

j | ≤ δ).
• We say that the set of constraints is computably continuous if there exists an
algorithm that, given a rational number ε > 0, returns a rational number δ > 0 such
that when c and c′ are δ-close, then dH (S(c), S(c′)) ≤ ε, where dH (A, B) is the

Hausdorff distance dH (A, B)
def= max

(

sup
a∈A

d(a, B), sup
b∈B

d(b, A)

)

and d(a, B)
def=

inf
b∈B d(a, b).

Proposition 3 There exists an algorithm which solves the problem of range estima-
tion under constraints for all computably continuous constraints.

Comment In other words, this algorithm, given the function f (x1, . . . , xn), the inter-
vals [xi , xi ], and the constraints, returns the corresponding values y and y.

Proof To estimate y and y with accuracy ε, let us find δ > 0 for which |xi − x ′
i | ≤ δ

implies that the f -values are ε-close. One can then show that if dH (S, S′) ≤ δ, then
max
x∈S f (x) and max

x∈S′ f (x) are ε-close [2].

For this δ > 0, we can find β > 0 for which if c and c′ are β-close, then
dH (S(c), S(c′)) ≤ δ. We can now replace each equality g j = c j with inequalities
c j ≤ g j ≤ c j and, as long as |c j − c j | ≤ β and |c j − c j | ≤ β, we still have a δ-
close set S(c). The box [x1, x1] × . . . is a computable compact set (see [1, 3, 5]), so
due to the known properties of such sets, there exists β-close values c′ for which the
set S(c′) is a computable compact—and for which, therefore, the maximum y′ and
the minimum y′ of the computable function f (x) over S(c′) are computable. Since
S(c′) is δ-close to S(c), we have |y′ − y| ≤ ε and |y′ − y| ≤ ε. The proposition is
proven.

Proposition 4 When all constraints are inequalities, with c j < c j , thenwe can solve
all problems of range estimation for which the dependence S(c) is continuous (not
necessarily computably continuous).

Proof For β = 2−k , k = 0, 1, . . ., we estimate the ranges [y′
j
, y′

j ] and [y′′
j
, y′′

j ] of f

over an inner β-approximation S(c′) and the outer β-approximations S(c′′). Then
y′′ ≤ y ≤ y′ (and y′ ≤ y ≤ y′′). Due to continuity, the sets S(c′) and S(c′′) will
eventually become δ-close and thus, the estimates y′ and y′′ become ε-close; when
this happens, we return y′ and y′ as the desired ε-approximations to y and y.
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Towards a Physically Meaningful Definition
of Computable Discontinuous and
Multi-valued Functions (Constraints)

Martine Ceberio, Olga Kosheleva and Vladik Kreinovich

1 Formulation of the Problem

Need to define computable discontinuous functions. One of the main objectives of
physics it to predict physical phenomena, i.e., use the observations to compute the
predicted values of the corresponding physical quantities.Many physical phenomena
such as phase transitions and quantum transitions include discontinuous dependen-
cies y = f (x) (“jumps”); see, e.g., [2].

In other physical situations, for somevalues x ,wemayhave several possible values
y. From the purely mathematical viewpoint, this means that the relation between x
and y is no longer a function, it is a relation of a constraint R ⊆ X × Y ; following
the terminology widely used in applications, we will also call them multi-valued
functions.

To analyze which models of discontinuous or multi-valued behavior are com-
putable and which are not, we need to have a precise definition of what is means
for a discontinuous and/or multi-valued function to be computable. Alas, the current
definitions of computable functions are mostly limited to continuous case.
What we plan to do. Our main goal is to define what it means for a discontinuous
and/or multi-valued function to be computable.

For that purpose, we first explain the current definitions of computable numbers,
objects, and functions. Then, we use physical motivations to come upwith a new def-
inition of computable discontinuous and multi-valued functions. Finally, we provide
a few preliminary results about the new definition.

Computable numbers: reminder. Intuitively, a real number is computable if we
can compute it with any desired accuracy. In more precise terms, a real number x is
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called computable if there exists an algorithm that, given a natural number n, returns
a rational number rn which is 2−n-close to x : |x − rn| ≤ 2−n; [1, 3].

Computable metric spaces: motivation. A similar notion of computable elements
can be defined for general metric spaces. In general, a element x is computable if
there is an algorithm which generates better and better approximation to x . At each
moment of time, we only have a finite amount of information about x ; based on this
information, we produce an approximation corresponding to this information. Any
information can be represented, in the computer, as a sequence of 0 s and 1s; any
such sequence can be, in turn, interpreted as a binary integer n. Let x̃n denote an
approximation corresponding to an integer n. Then, it makes sense to require that in
a computable metric space, there is a sequence of such approximating elements {̃xn}.

Computable means, in particular, that the distance dX (̃xn, x̃m) between such ele-
ments should be computable. Thus, we arrive at the following definition.

Computable metric spaces: definition. By a computable metric space, we mean a
metric space X with a sequence {̃xn} of elements such that there is an algorithm that,
given two natural numbers m and n, returns the distance dX (̃xm, x̃n) (i.e., for every
natural number k, returns a rational number rk which is 2−k-close to dX (̃xm, x̃n)).

We say that an element x of a computable metric space X is computable if there
exists an algorithm that, given a natural number n, returns an integer kn for which
x̃kn is 2

−n-close to x : dX (̃xkn , x) ≤ 2−n .
Computable functions: definition. A function f : X → Y from a computablemet-

ric space X to a computable metric space Y is called computable if there exists
an algorithm which uses x as an input and computes, for each integer n, a 2−n-
approximation yk to f (x). By “uses x as an input”, we mean that to compute yk , this
algorithm can request, for each integer m, a 2−m-approximation x� to x (and to use
the index � of this 2−m-approximation in computing yk).

Computable functions are continuous. The problem with the above definition is
that all the functions computable according to this definition are continuous; see,
e.g., [1, 3]. Thus, we cannot use this definition to check how well we can compute
a discontinuous function.

This continuity is easy to understand. For example, if we have a function f (x)
form real numbers to real numbers which is equal to 0 for x ≤ 0 an to 1 for x > 0,
then, if we could compute f (x) for a given x with accuracy 2−2, then we would be
able, given a computable real number x , to tell whether this number is positive or
not, and this is known to be algorithmically impossible.

Computable compact set. In analyzing computability, it is often useful to start with
pre-compact metric spaces, i.e., metric spaces X for which, for every positive real
number ε > 0, there exists a finite ε-net, i.e., a finite list of elements L such that every
element x ∈ X is ε-close to one of the elements from this list. In a Euclidean space,
every bounded set is compact. A pre-compact set is compact if every converging
sequence has a limit.

A natural idea is to call a compact metric space X computable compact if X is a
computable metric space and there is an (additional) algorithm that, given an integer
n, returns a finite list Ln of elements of X which is a 2−n-net for X .
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2 Towards a New Definition of Computable Discontinuous
and Multi-valued Functions

Simplifying comment. Before we start analyzing the problem, let us make one impor-
tant comment. Functions can not only be discontinuous ormulti-valued, they can also
be undefined for some inputs x . However, in contrast to discontinuity andmultiplicity
of values, this is not a serious problem: if a relation is not everywhere defined, we can
make it everywhere defined if we consider, instead of the original set X , a projection
of R on this set. For example, a function

√
x is not everywhere defined on the real

line, but it is everywhere defined on the set of all non-negative real numbers. Thus,
without losing generality, we can assume that our relation is everywhere defined.

Definition 1 A relation R ⊆ X × Y is called everywhere defined if for every x ∈ X ,
there exists a y ∈ Y for which (x, y) ∈ R.

Analysis of the problem. From the physical viewpoint, what does it mean that the
dependence between x and y—as described by a given discontinuous and/or multi-
valued function—is computable?

In the ideal case, when we have a continuous single-valued dependence, the value
x uniquely determines the value y = f (x). In this case, once we know x , we want
to compute f (x) with a given accuracy. This is exactly the idea behind the usual
definition of a computable function.

For a multi-valued function, for the same input x , we may get several different
values y. In this case, it is desirable to compute the set of all possible value y
corresponding to a given x . When we limit ourselves to multi-valued mappings from
a compact set X to a compact set Y , the set of x-possible values of y is pre-compact,
and thus, with any given accuracy, can be described by a finite list L of possible
values. In other words:

• first, the list L should represent all possible values, i.e., if y is a possible value of
f (x) for a given x , then y should be close to one of the values from the finite list
L;

• second, all the values from the list L must be possible values; in other words, for
every value from the list, there must exist a close possible value of f (x).

Discontinuity provides an additional complexity which can be illustrated on the
example of the above discontinuous function f (x) = 0 for x ≤ 0 and f (x) = 1 for
x > 0. In particular, for x = 0, we get f (x) = f (0) = 0. However, at each stage of
the computation, we only know an approximate value of x . So, when the actual value
of the input is x = 0, we will never find out whether x is non-positive (in which case
f (x) = 0) or positive (in which case f (x) = 1). Thus, no matter how accurately we
measure x , the only information about y that we can conclude is y is either equal to
0 or equal to 1. In general, we need to take into account not only the values f (x) for
a given x , but also the values f (x ′) corresponding to values x ′ which are close to x .
In view of this, the above properties of the list L must be appropriately modified:
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• first, the list L should represent all possible values, i.e., if y is a possible value of
f (x ′) for some x ′ which is close to the given x , then y should be close to one of
the values from the finite list L;

• second, all the values from the list L must be possible values; in other words, for
every value from the list, there must exist a close value y which is a possible value
of f (x ′) for some x ′ which is close to x .

In general, the closeness does does not have to be the same in both cases. Thus, we
arrive at the following definition.

Definition 2 Let X and Y be computable compact sets with metrics dX and dY .
An everywhere defined relation R ⊆ X × Y is called computable if there exists an
algorithm that, given a computable element x ∈ X and computable positive num-
bers 0 < ε < ε′ and 0 < δ, produces a finite list {y1, . . . , ym} ⊆ Y that satisfies the
following two properties:

(1) if (x ′, y) ∈ R for some x ′ for which dX (x ′, x) ≤ ε, then there exists an i for
which dY (y, yi ) ≤ δ;

(2) for each element yi from this list, there exist values x ′ and y forwhichdX (x, x ′) ≤
ε′, dY (yi , y) ≤ δ, and (x ′, y) ∈ R.

3 Properties of the New Definition

Main result. If X and Y are metric spaces with metrics dX and dY , then on their
Cartesian product X × Y (i.e., the set of all pairs (x, y), x ∈ X and y ∈ Y ) we can

define a metric dX×Y ((x, y), (x ′, y′)) def= max(dX (x, x ′), dY (y, y′)). One can check
that if X and Y are both compact sets, then the product X × Y is also a compact set:
to get an ε-net for X × Y , it is sufficient to take ε-nets LX for X and LY for Y ; one
can then easily check that the set LX × Ly of all possible pairs is an ε-net for the
Cartesian product X × Y . This construction is computable, so we conclude that the
Cartesian product of computable compact sets is also a computable compact set.

Our first—somewhat surprising—result is that this new definition is equivalent to
simply requiring that the set R (describing the graph of the relation) is a computable
compact set:

Proposition 1 Let X and Y be computable compact sets. A relation R ⊆ X × Y is
computable if and only if the set R is a computable compact set.

Proof ⇐ Let us first prove that if R is a computable compact set, then the relation
R is computable in the sense of Definition 2. Indeed, let x be a computable element
of X , and let the computable positive values ε < ε′ be given. Then, according to a
known result from [1], we can find a computable value ε0 ∈ (ε, ε′) for which the

set S
def= {(x ′, y) ∈ R : dX (x, x ′) ≤ ε0} is also a computable compact set. Thus, for

a given computable number δ > 0, there exists a finite δ-net for this set S. Let us
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denote the elements of this δ-net L by (x1, y1), . . . , (xm, ym). Let us show that, as
the desired finite list, we can now take the list {y1, . . . , ym}. Let us prove that this
list satisfies both desired properties.

(1) If (x ′, y) ∈ R for some x ′ for which dX (x, x ′) ≤ ε, then, due to ε < ε0, we
have dX (x, x ′) < ε0. Thus, (x ′, y) ∈ S. Since L = {(x1, y1), . . . , (xm, ym)} is
a δ-net for the set S, we conclude that there exists an index i for which
dX×Y ((x ′, y), (xi , yi )) ≤ δ. By definition of dX×Y , this means that
max(dX (x ′, xi ), dY (y, yi )) ≤ δ and therefore, dY (y, yi ) ≤ δ. The first property
from Definition 1 is proven.

(2) Let us now prove the second property. Let yi be one of the selected elements. By
our construction, the corresponding pair (xi , yi ) belongs to δ-net for the set S.
In particular, this means that (xi , yi ) ∈ S. This means that (xi , yi ) ∈ R and that
dX (x, xi ) ≤ ε0. Since ε0 < ε′, we conclude that dX (x, xi ) ≤ ε′. Thus, for each
i , there exists x ′ = xi and y = yi for which dX (x, x ′) ≤ ε′, dY (yi , y) = 0 ≤ δ,
and (x ′, y) ∈ R. The second property is proven as well.

⇒ Let us now prove that if R is a computable relation in the sense of Definition 2,
then R is computable compact set. For that, we must show how, given a computable
positive real number α > 0, we can generate an α-net for this set R. First, we use
that fact that X is a computable compact, and generate an (α/2)-net {x1, . . . , xk}. For
each point xi , we then apply Definition 2 for δ = ε = α/2 and ε′ = α and generate
the corresponding list {yi1, . . . , yimi }. Let us show that the pairs (xi , yi j ) form an
α-net for the set R.

Indeed, by Definition 2, for each i and j , there exist values x ′ and y for which
dX (xi , x ′) ≤ ε′ = α, dY (yi j , y) ≤ δ = α/2, and (x ′, y) ∈ R. Thus, the pair (xi , yi j )
is α-close to an element (x ′, y) ∈ R.

Vice versa, let (x, y) ∈ R. Since xi form an (α/2)-net, there exists an i for
which d(x, xi ) ≤ α/2 = ε. From Property (1) of Definition 2, we can now conclude
that there exists a j for which dY (y, yi j ) ≤ δ = α. Thus, dX×Y ((x, y), (xi , yi j )) =
max(dX (x, xi ), dY (y, yi j )) ≤ max(α/2, α) = α. The proposition is proven.
Inverse functions: a corollary. If the range of R is the whole set Y , then, from
Proposition 1, it follows that a multi-valued function (relation) R is computable if
and only if its inverse R−1 = {(x, y) : (y, x) ∈ R} is computable.
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Algebraic Product is the only T-norm
for Which Optimization Under Fuzzy
Constraints is Scale-Invariant

Juan Carlos Figueroa-García, Martine Ceberio and Vladik Kreinovich

1 Formulation of the Problem

Need for optimization under fuzzy constraints. In decision making, we would like to
find the best solution x among all possible solutions.

For example, if we need to build a chemical plant for producing chemicals needed
for space exploration and for sophisticated electronics, thenwe need to select a design
which is the most profitable among all the designs whose possible negative effect on
the environment is small. In this example, the objective function is the overall profit.

In this example (and in many similar examples) the objective functions is well
defined in the sense that for each alternative x , we can compute the exact value f (x)
of the objective function for this particular design. In contrast, the constraints are
not well-defined, they are formulated by using words from a natural language (like
“small”), words which are nor precise.

A reasonable way to describe themeaning of such imprecise (“fuzzy”) constraints
is to use techniques of fuzzy logic (see, e.g., [4, 6, 8]), where to each possible
alternative x , we assign a numberμc(x) describing towhat extent this design satisfies
the corresponding constraint. To find this value μc(x), we can, e.g., ask the user to
mark this extent on a scale from 0 to 10, and if the user marks 7, take μc(x) = 7/10.

This way, the original problem becomes a problem of optimization under fuzzy
constraint: find x for which f (x) is the largest possible among all x which satisfy
the constraint described by a function μc(x).

Bellman-Zadeh approach to optimization under fuzzy constraints. To solve such
problems, R. Bellman (a known specialist in optimization) and L. Zadeh (the founder
of the fuzzy logic approach) came back with the following idea; see, e.g., [1, 4].
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First, we (somehow) find the smallest value m of the objective function f (x)
among all possible solutions x , and we also find the largest possible value M of
the objective function over all possible constraints. based on the values m and M ,
we can form, for each alternative x , the degree μm(x) to which x is maximal, as

μm(x)
def= f (x) − m

M − m
. The larger f (x), the larger this degree, and it reaches the

value 1 if f (x) attains the largest possible value M .
We want to find an alternative which satisfies the constraints and optimizes the

objective function. In fuzzy techniques, the degree of truth in “and”-statement is
approximately described by applying an appropriate t-norm f (a, b) to the degrees
to which both statements are true; see, e.g., [4, 6]. A t-norm must satisfy several
natural properties: e.g., the fact that A& B means the same as B& A leads to the
commutativity f&(a, b) = f&(b, a), and the fact that “true”& A is equivalent to just
A leads to the property f&(1, a) = a.

• By applying the t-norm f&(a, b) to the degrees μc(x) and μm(x), we find the
degrees μs(x) = f&(μc(x), μm(x)) to which each alternative x is a solution.

• We then select the alternative which is the best fit, i.e., for which the degree μs(x)
is the largest.

Problem: the value M is not well defined. Usually, we have some prior experience
with similar problems, so we know some alternative(s) x which were previously
selected. The value f (x) for such “status quo” alternatives can be used as the desired
minimum m.

Finding M is much more complicated, we do not know which alternatives to
include and which not to include. If we replace the original value M with a new

value M ′ > M , then the maximizing degree changes, from μm(x) = f (x) − m

M − m
to

μ′
m(x) = f (x) − m

M ′ − m
.One can easily see thatμ′

m(x) = λ · μm(x) forλ
def= M − m

M ′ − m
<

1.
The problem is that in general, the alternatives for which the functions μs(x) =

f&(μc(x), μm(x)) and μ′
s(x) = f&(μc(x), μ′

m(x)) = f&(μc(x), λ · μm(x)) may be
different.

It is therefore desirable to come up with a scheme in which the solution would
not change if we simply re-scale μm(x) by modifying the not well-defined quantity
M .

What we do in this paper. In this paper, we show that the dependence on M
disappears if we use algebraic product t-norm f&(a.b) = a · b. We also show that
this is the only t-norm for which decisions do not depend on M .
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2 Main Results

Definition 1 By a t-norm, we mean a function f& : [0, 1] × [0, 1] → [0, 1] for
which f&(a, b) = f&(b, a) and f&(1, a) = a for all a and b.

Comment. Usually, it is also required that the t-norm is associative. However, our
results do not need associativity, so they are valid for non-associative and-operations
as well; such non-associative operations are sometimes used to more adequately
describe human reasoning; see, e.g., [2, 3, 5, 7, 9].

Definition 2 Let f&(a, b) be a t-norm. We say that optimization under fuzzy con-
straints is scale-invariant for this t-norm if for every set X , for every two functions
μc : X → [0, 1] andμm : X → [0, 1], and for every real number λ ∈ (0, 1),we have
S = S′, where:

• S is the set of all x ∈ X for which the function μs(x) = f&(μc(x), μm(x)) attains
its maximum, i.e., for which μs(x) = max

y∈X μs(y);

• S′ is the set of all x ∈ X for which the function μ′
s(x) = f&(μc(x), λ · μm(x))

attains its maximum, i.e., for which μ′
s(x) = max

y∈X μ′
s(y).

Proposition 1 For the algebraic product t-norm f&(a, b) = a · b, optimization
under fuzzy constraints is scale-invariant.

Proposition 2 The algebraic product t-norm f&(a, b) = a · b is the only t-norm for
which optimization under fuzzy constraints is scale-invariant.

Proof of Proposition 1. For the algebraic product t-norm:

• S is the set of all x ∈ X for which the function μs(x) = μc(x) · μm(x) attains its
maximum, and

• S′ is the set of all x ∈ X for which the function μ′
s(x) = μc(x) · λ · μm(x) attains

its maximum.

Here,μ′
s(x) = λ · μs(x) for a positive number λ. Clearly,μs(x) ≥ μs(y) if and only

if λ · μs(x) ≥ λ · μs(y), so the optimizing sets S and S′ indeed coincide.

Proof of Proposition 2. Let f&(a, b) be a t-norm for which optimization under fuzzy
constraints is scale-invariant, and let a and b be two number from the interval [0, 1].
Let us prove that f&(a, b) = a · b.

Let us consider X = {x1, x2}withμc(x1) = μm(x2) = a andμc(x2) = μm(x1) =
1. In this case, μs(x1) = f&(μc(x1), μm(x1)) = f&(a, 1). Due to commutativity,
we get μs(x1) = f&(1, a) and due to the second property of the t-norm, we get
μs(x1) = a.

Similarly, we have μs(x2) = f&(μc(x2), μm(x2)) = f&(1, a). Due to the second
property of the t-norm, we also get μs(x2) = a.

Since μs(x1) = μs(x2), the optimizing set S consists of both elements x1 and x2.
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Due to scale-invariance, for λ = b, the same set S′ = S = {x1, x2} must be the
optimizing set for the function μ′

s(x) = f&(μc(x), λ · μm(x)). Thus, we must have
μ′
s(x1) = μ′

s(x2), i.e., f&(a, b · 1) = f&(1, b · a). So, f&(a, b) = f&(1, a · b). Due
to the second property of the t-norm, we conclude that f&(a, b) = a · b.

The proposition is proven.
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Comparing Operation Points in Linear
Programming with Fuzzy Constraints

Juan Carlos Figueroa-García, Germán Hernández-Pérez
and Dusko Kalenatic

1 Introduction

Optimization over uncertain environments is a challenge for many decision makers
who need solving different problems. Some of those problems require the use of
special algorithms, so it is an interesting field to be covered. In some cases, there is
no any certainty to have stable conditions in the system, so we need to keep in mind
that such uncertainty affects decision making and the way to solve the problem.

One of themost popular problems in decisionmaking is Linear Programming (LP)
due to its applicability and efficiency. Similarly, Fuzzy Linear Programming (FLP)
gained popularity as a powerful technique to handle non probabilistic uncertainty,
adding flexibility to classical LP problems. The first fuzzy constrained LP model has
been proposed by Zimmermann [15] which is equivalent to the work of Delgado,
Verdegay and Vila [5]. Zimmermann and Fullér [16] defined some decision making
principle over fuzzy environments. Interval valued optimization has been extensively
treated by Hladík [8], Černý and Hladík [4], Fiedler et al. [6], whose results are
intimately related to fuzzy optimization.

Other interesting works on FLP has been wrote by Zimmermann and Fullér [16],
Mahdavi-Amiri and Nasseri [11], Friedman et al. [7], Ramík [13, 14], Inuiguchi
and Ramík [9], Ramík and R̆imánek [12], Campos [2], Campos and Verdegay [3],
and Rommelfanger [14] who analyzed fuzzy optimization and FLPs from different
points of view, and all their contributions has been taken into account in this work.

As fuzzy techniques became popular in 80’s and 90’s, some important issues came
from its implementation. An important practical issue regards to compare optimal
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solutions vs. achieved solutions, which means that even when an optimal solution
of a problem is available, what in reality is implemented could be different, so the
analyst needs to compare the optimal vs. an implemented solution, and how to move
closer to its optimal solution.

The soft constraints method proposed by Zimmermann [15] is based on a sym-
metrical handling of the linear fuzzy constraints of an LP model, which means that
if the goal increases, its possibility of occurrence decreases since more resources are
required to increase the goal. This way, we propose a way to quantify the difference
between the optimal solution provided by the Zimmermann’s method and solutions
achieved by different strategies applied in practice.

The chapter is intended to analyze the relationship between theoretical optimal
solutions in FLPs (Zimmermann’s soft constraints method) and what is obtained
in practical applications. This relationship is important in the sense that optimal
solutions are not always reachable in practice, so what the analyst can do is compare
the achieved results to the theoretical optimal solution in order to see how far/close
is it. To do so, we propose a ranking index that compares an obtained solution of an
FLP problem to its optimal solution, and a way to compute its membership degree
through the Bellman-Zadeh decision making and the Zadeh extension principle.

The chapter is divided into five sections. Section1 introduces the topic and present
some relevant bibliography. Section2 presents the Zimmermann’s soft constraints
method. Section3 shows some concepts about optimality in FLP problems. Section4
presents the proposed rankingmethod and an application example, and finally Sect. 4
contains the concluding remarks of the study.

2 The Fuzzy Linear Programming Model

Firstly, we define the LP problem with fuzzy constraints (Zimmermann [15, 16]) as
the following optimization problem

Max
x

z = c′x + c0

s.t.
Ax � B
x � 0

(1)

where x ∈ R
n , c ∈ R

n , c0 ∈ R, A ∈ R
n×m . B ∈ F(x), F(x) is the set of all fuzzy

sets. Every set Bi is a linear fuzzy set defined as:

Bi �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, f (x) � b̌i
b̂i − f (x)

b̂i − b̌i
, b̌i � f (x) � b̂i

0, f (x) � b̂i

(2)
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where b̂i , b̌i ∈ R.
A comprehensive way to solve fuzzy constrained problems is by using the Soft

Constraintsmodel introduced by Zimmermann [15, 16]. Themethod solves this kind
of problems through an α-cut approach, which consists on defining a set of solutions
Z(x∗) to find a joint-optimal α − cut for Z(x∗) and b̃. The method is summarized
next:

• Calculate an inferior bound called ž = Maxx {z = c′x | Ax � b̌, x � 0}.
• Calculate a superior bound called ẑ = Maxx {z = c′x | Ax � b̂, x � 0}.
• Define the fuzzy set Z(x∗)with boundaries ž and ẑ and linearmembership function

z̃(x∗) = c′x∗ − ž

ẑ − ž
, ∀ c′x∗ ∈ [ž, ẑ].

• Create an auxiliary variable α and solve the following LP model

Max {α}
s.t.

c′x + c0 − α(ẑ − ž) = ž
Ax + α(b̂ − b̌) � b̂

x � 0

(3)

• Return α∗, x∗, b∗, z∗.

This method uses α as a decision variable that finds the Max intersection among
all fuzzy constraints i.e. the maximum satisfaction degree among the goal and fuzzy
constraints.

3 Concepts of Optimality Under Fuzzy Uncertainty

In this section, some aspects about the concept of an optimal solution under fuzzy
constraints are addressed, starting from the meaning of feasible solutions, fuzzy
optimal solution, and the idea of fuzzy global optimal solution.

The concept of a feasible solution in crisp LP is based on the idea of having a
convex halfspace whose elements are feasible (or possible). In our case, this concept
can be extended to an LP which has no crisp boundaries but fuzzy.

Now, the vector of boundaries b̂ generates a halfspace namely h(·) which is the
set of all values of x contained into the support of Bi , x ∈ supp(Bi ). This lead to the
following definition:

Definition 1 A fuzzy constrained LP is feasible only if the polyhedron (or polytope)
generated by h(·) is a non-trivial set, that is:

P = {x | h(·) � b̂}, (4)

where P is a non-trivial set of solutions of a crisp LP model.
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Here, P is the convex set of solutions given b̂, that is, the set of solutions con-
strained by b̂. Therefore, any feasible solution contained into P has an associated
membership degree, which leads us to define the following

Definition 2 Let x ′ ∈ P any feasible solution of
∑

ai j x ′
j = b′

i where b′
i ∈ h(·).

Then, the linear combination
∑

ai j x ′
j belongs to Bi with a membership degree

μBi (x
′).

This means that every feasible solution x ′ can be projected over Bi reaching a
membership degree μBi (x

′), which basically is equivalent to say that in a fuzzy
environment, every feasible solution x ′ has a membership degree μBi (x

′). Figure1
shows what a fuzzy feasible solution is.

Fuzzy optimal solution The concept of optimal solution of a fuzzy constrained
LP is close to the optimality concept in LP. While in a crisp LP we have that an
optimal solution is a vector x∗ for which the function z = c′x is certainly maximal,
in a fuzzy constrained LP we have a set of optimal solutions (Z) which is a function
of αB. This leads us to the following definition

Definition 3 A fuzzy optimal solution is defined as a vector x∗ for which ∃ x :
max{αZ = c′x | Ax � αB, x � 0, α ∈ [0, 1]}, so αZ(x∗) � αZ(x)∀ x ∈ B. B ⊆ R

+
is the set of all feasible values of x , and αZ(x∗) is the optimal objective value of c′x∗
given α.

Hence, a fuzzy optimal Fig. 3 solution is a vector x∗ which fulfills all constraints
and obtains a maximal value of the goal z′∗ = c′x∗, at a membership degree α′∗.
Now, as we are using αB as a crisp value, then the value of each αZ(x∗) is a crisp
global optimal solution.

Every particular value of z′ is comes from a crisp LP (see Fig. 2) model, so what
we have is an optimal solution z′ = c′x∗ given a particular value α, projected into αB.
Note that between ž and ẑ there is an infinite amount of possible optimal solutions
(see Algorithm 2).

1

μBi

α

Bi

x ∈ Rb̂b̌ bi

aijxj

μBi(x )

Fig. 1 Fuzzy feasible solution x ′ projected over Bi
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1

μZ

α

Z

x ∈ Rẑž z

z = c x∗

μZ(x∗)

Fig. 2 Fuzzy optimal solution z′ = c′x∗ projected over Z

Also note that asmoreα values are used,more x∗ and αZ(x∗) values exists. Indeed,
there is an infinite amount of possible optimal solutions that can be computed, each
one leading to a global optimal value given α.

Now, the concept of optimal solution in a fuzzy environment implies to obtain a
fuzzy set which is a function of the parameters of the problem (and their membership
functions). This leads to think about the concept what a fuzzy global optimal solution
means.

3.1 Fuzzy Global Optimal Solution

The importance of having a global optimal solution in LP problems is large, since
it is a key point for implementations and algorithms’ design. In many applications,
decision makers ask for a single (crisp) solution because they want to have a single
operation point which returns the best possible results.

This is usefulwhen a single solution to be implemented is requested, but in practice
there is no reliability that optimal results can be applied. What sometimes happen
is that the optimal solution cannot be implemented, so there is a need for having
choices to be applied.

This makes sense to the fuzzy approach, since it obtains a set of optimal solutions
that the analyst can use to compare the obtained results in practice to a set of possible
choices. This allows to see how close (or far) are its results from the best possible
solution.

In general, there is a need for having a relationship between theoretical optimal
andwhat it is obtained in practical applications.Moreover, there is a need for clarify
the sense of having an fuzzy optimal decision and what it means in practice. To do so,
we have to take a look about concepts of global optimal solutions and its extension
to a fuzzy environment.
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The Bellman-Zadeh fuzzy decision making principle (see [1]) is a comprehensive
way to solve fuzzy optimization problems. Its main idea is to solve a max−min
decisionmaking problem given known fuzzy sets which leads to find a single optimal
intersection point between fuzzy constraints and the goal (see (3) in Algorithm 2,
and (5)), and consequently a solution x∗ which returns αB and αZ .

Also, the Bellman-Zadeh fuzzy decision making principle (see [1]) (equivalent to
the extension principle) allows us to find themembership degree of any solution of the
problem.Bellman andZadehdiscussed in [1] ahard version of the extension principle
which uses the max−min operators to solve unions and intersections, but they
opened the door for using different softer versions for fuzzy decision making. This
way, the Zimmermmann’s approach computes the best α level from all combinations
among the goal z∗ and every binding constraint Bk :

μz̃(z
∗) = sup

z∗=α∗
min
k

{Z , B1, . . . , Bk, . . . , BK } (5)

Here, Z = μz̃(z∗) is the fuzzy set in which decision making is done, that is, the
set from z∗ = α∗ is selected, and Bk, k ∈ K is the kth binding constraint. This means
that α operates as an overall satisfaction degree of all fuzzy binding constraints, so
α∗ is the optimal defuzzification degree that reaches a crisp optimal solution of the
problem.

This way, we can infer that a fuzzy global solution is then an optimal solution
given a fuzzy decision making criteria. As usual, find a crisp point which fulfils both
requirements could be expensive, so there is a need for using optimization methods
able to handle fuzzy constraints while computing optimal solutions.

In the case of the Zimmermann’s soft constraints method (see Sect. 2) its decision
making optimization criterion is maxα , so the model shown in (1) operates as a crisp
LP model that computes the maximum satisfaction degree among all constraints and
the goal of the system.

Various authors have proven the existence of boundaries of optimal values of the
goal function when solving fuzzy optimization problems, Ramík [13], Fiedler et al.
[6], and Zimmermann [15, 16] have defined well known methods for finding the
boundaries of the goal function (ž and ẑ in this case).

This leads us to think in the following situation: what is the usefulness of the
solutions between ž and ẑ?. This question leads us to think in all those points as
alternatives to decision making in practical applications.

4 Ranking a Crisp Solution

The main idea addressed in this section is how to compare a solution achieved in
practice to the optimal solution provided by the Zimmermann’s method (see Sect. 2).
To do so, we define what a feasible solution applied in practice is to later define
a ranking method for comparing it to the optimal solution, and finally compute its
membership degree to the set of optimal solutions.
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4.1 Operation Points

From a practical point of view, there is no any certainty of reaching the optimal
solution. When having a single optimal solution, the analyst should set the system
in terms of that referring point in order to get its best performance.

If the analyst has choices or operation points, then decision making can be
enriched because the analyst can use those points when setting the system, so basi-
cally if the system does not reach the expected results, the analyst can compare its
current performance to a set of possible choices and see how good the performance
of the system is. Then, an operation point is defined as follows:

Definition 4 (Operation point) An operation point is a set of observed values of b
namely b′ contained into the boundaries of B, b′ ∈ [b̌, b̂] which leads to the optimal
solution x∗, and z′.

An operation point is then an observed performance of the system which obeys
to certain running conditions. What it is observed by a decision maker in real appli-
cations, is an operation point itself, so as many running conditions can occur as
operation points can be compared by a decision maker.

To do so, we propose the following rank index for comparing an operation point
(what was measured in real world) of the system against the optimal results after
fuzzy decision making.

Definition 5 (Ranking a solution) Let b′ a set of observed constraints b′ ∈ [b̌, b̂],
Z be the set of optimal solutions provided by any fuzzy decision making method,
z′ ∈ Z be the optimal solution of the LP problem given b′, α∗ its optimal uncertainty
degree, z∗ the optimal solution of the fuzzy problem given α∗, and α′ themembership
degree of z′ into Z . Then the relative degree of fulfilment (Dfz′) of z′ compared to
z∗ is:

Dfz′ = z′ − z∗

ẑ − ž
(6)

which is equivalent to
Dfz′ = α′ − α∗ (7)

It is clear that Dfz′ ∈ [−1, 1], so its interpretation is as follows: if Dfz′ > 0 then
the observed values of b′ lead to improve the expected results; if Dfz′ < 0 then
observed values of b′ did not reach the expected results, and if Dfz′ = 0, then the
values of b′ have reached the expected results.

A comprehensive graph is provided in Fig. 3
Therefore, we can see that every operation point (b′) observed in reality leads

to x∗, z′, α′, having its own Dfz′ . This allows us to compare the performance of
the observed system and take actions to improve it. Moreover, Dfz′ allows us to
compare different operation points at different stages of the system in order to make
an appropriate decision.
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Fig. 3 Comparing observed values of b

On the other hand, it is necessary to see what is the membership degree reached
by an operation point which comes from x∗ regarding b′. As z′ and α′ comes from
x∗, then we can use (5) to compute the membership degree of any operation point.
To do so, we propose the following.

Proposition 1 Let x∗ be the optimal solution of an LP problem given b′, z′ = c′x∗
be its optimal value, Z ′ = μZ ′(x∗) be the membership degree of x∗ projected over
Z, and B ′

i = μB ′
i
(x∗) be the membership degree of x∗ projected over Bi . Then, the

membership degree of x∗ given b′ is:

μZ (z′ : b′) = sup
z′=c′x∗

min
k

{Z ′, B ′
1, . . . , B

′
k, . . . , B

′
K } (8)

where B ′
k is the kth ∈ K binding constraint.

Note that (8) only involves binding constraints, since non-binding constraints
does not provide an optimal extreme point. Also note that every operation point has
a smaller membership degree over Z than the fuzzy global optimal solution provided
by the Zimmermann’s method (see (5)) since it provides the maximum satisfaction
degree among all possible choices. This way, an operation point can overpass the
value of z provided by the Zimmermann method, but it definitely has a smaller
satisfaction degree of either the goal or a binding constraint.

Proposition 1 solves the intersection among constraints and the goal through the
inf or min operator, and the union of all possible combinations of z′ = c′x∗ through
the sup or max operator. In the case of an optimal LP, we have only two cases: a
single optimal solution x∗ (the most probable case), and the multiple solutions case,
so the sup operator makes sense only in the second case where multiple solutions
should be compared. In the first case we only have a single solution, and there is no
need for comparing it to other solutions.
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4.2 Application Example

The application example has been taken from Klir and Folger [10], Example 15.8
at page 413. Assume that a company makes two products. Product P1 has a $0.4
per unit profit and product P2 has a $0.3 per unit profit. Product P1 requires twice
as many labor hours as each product P2. The total available labor hours are at least
500 hours per day, and may be possible extended to 600 hours per day, due to some
special arrangements for overtime work. The supply of material is at least sufficient
for 400 units of both products P1 and P2, per day, but may be possible extended to
500 units per day according to previous experience. The problem is, how many units
of products P1 and P2 should be made per day to maximize the total profit? The main
problem can be expressed as follows

Max
x

z = 0.4x1 + 0.3x2 (profit)

s.t.
x1 + x2 � B1 (material)
2x1 + x2 � B2 (labor hours)
x1, x2 � 0

Then we have b̌ = [400; 500] and b̂ = [500; 600]. Using the Algorithm 2 (Zim-
mermann’s method). the obtained results are ž = 130, ẑ = 160, z∗ = 145, α∗ =
0.5, x∗

1 = 100 and x∗
2 = 350.

Now suppose that the analyst did an experiment to try to set the system, and
after all their attempts, the available labor hours and material were 530 and 415 units
respectively, b′ = [415; 530]. Then, the obtained results for this operation point were
z′ = 136, α′ = 0.2, x∗

1 = 115 and x∗
2 = 300. The relative degree of fulfilment of the

current operation point is

Dfz′ = 136 − 145

160 − 130
= −0.3 (9)

The membership degree of this selection can be computed through (8):

Z ′ = 0.2, B ′
1 = 0.85, B ′

2 = 0.7

μZ (z′ : b′) = sup
z′=136

min
k

{0.2, 0.85, 0.7} = 0.2

This means that this current operation point did not reach the expected results
(since Dfz′ < 0) and their membership degree is 0.2, so the analyst has to take
actions to improve the system’s performance.

Now suppose that the analyst has takenmore actions to improve the availability of
their resources. After some negotiations and improvements, it can increased the avail-
ablelabor hours and material to 560 and 465 units respectively, so b′ = [465; 560].
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μZ

α∗ = 0.5

z ∈ Rẑ = 160ž = 130 z = 136

α = 0.2

z = 149

α = 0.35

μZ(x∗)

Fig. 4 Fuzzy optimal solution z′ = c′x∗ projected over Z

Then, the obtained results for this operation point were z′ = 149, α′ = 0.6333, x∗
1 =

95 and x∗
2 = 370. The relative degree of fulfilment of the current operation point is

Dfz′ = 149 − 145

160 − 130
= 0.1333 (10)

The membership degree of this selection can be computed through (8):

Z ′ = 0.633, B ′
1 = 0.35, B ′

2 = 0.4

μZ (z′ : b′) = sup
z′=149

min
k

{0.633, 0.35, 0.4} = 0.35

At this point, the current operation point of the system has overtaken its expected
performance (since Dfz′ > 0) with a membership degree of 0.35, so the analyst has
taken actions which have improved the system’s performance.

To illustrate how Definition 1 works, Fig. 4 displays the set Z and how operation
points are located at.

Note that in the first operation point the goal is less than the second operation
point, but both membership degrees are lesser than the optimal solution. In the
first operation point there is a higher chance of getting all required resources to
achieve z′ = 136 while the second operation point has a smaller chance of getting all
required resources to achieve z′ = 149. As the goal increases, its chance of obtaining
the required resources decreases, so the best possible solution sets an equilibrium
between increasing the goal and the use of resources to increase it (which is reached
by the Zimmermann’s method).

Evenwhen the second operation point has a D f > 0whichmeans that z′ overtakes
the optimal solution, its membership degree regarding Z is lesser than α∗ which
means that it has a lesser possibility of occurrence. For the sake of understanding,
the second operation point has a smaller possibility of occurrence than the first
operation point which in practice means that more efforts are needed to obtain more
resources to increase the goal, which is less possible. As the goal goes to ẑ = 160
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then its possibility of occurrence decreases, and the system has to incur in higher
efforts to increase z.

5 Concluding Remarks

A rankingmeasure to compare operation points to optimal solutions in FLP problems
has been presented. We have applied it in two operation points over a theoretical
application example, and analyzed their results.

A version of the extension principle to FLPs is proposed to compute the mem-
bership degree that an operation point has regarding the set of optimal solutions. We
have applied its results to two cases, and we analyzed their results over Fig. 4.

We also clarify some concepts of fuzzy optimization that are applied in practice
by providing a way to compare different solutions that can be reached in practice
to the theoretical optimal solution. This helps the analyst to see how far/close is the
current operation point of the system from its optimal solution.

Finally, we have explained how different operation points should be analyzed in
order to make better decisions. The main idea is always obtain a higher goal, but in
practice it implies to use more resources which is less possible, so the analyst can
apply our results to establish an equilibrium between a higher goal using the less
possible resources.
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On Modeling Multi-experts Multi-criteria
Decision-Making Argumentation
and Disagreement: Philosophical
and Computational Approaches
Reconsidered

Luciana Garbayo, Martine Ceberio, Stefano Bistarelli and Joel Henderson

1 Introduction

In an evidence-based paradigm aiming at technical decision-making, expert analysis
provides necessary support for action and policy making. Such analyses include both
knowledge and value considerations. Yet, unfortunately, a high level of expertise is
not easily accessible in every needed circumstance, and, even when readily available,
it may be notably tangled in expert disagreement among experts, generating even
more complicated decision-making problems. Given its clear significance for profes-
sional problem-solving, both philosophers and computer scientists investigate and
model expertise, expert disagreement and its entanglements, while studying expert
decisions formally and by computational simulations. In this work, we focus pri-
marily on collaboratively presenting some philosophical as well as computational
aspects of argumentation and disagreement in the case of multi-experts multi-criteria
decision-making (ME-MCDM) situations, aiming at contributing to the further goal
of improving modeling expert decision analysis in an interdisciplinary endeavor.

Epistemology is the field of philosophy dedicated to the inquiry on the nature
of knowledge, taking both propositional and non-propositional accounts thereof.
Recently, a new sub-field of epistemology emerged, especially dedicated to the
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study of disagreement, providing new clues to the understanding of the philosophical
underpinnings thereof. This new sub-field is specially interested in the study of peer
disagreement, in the narrow epistemic sense. Such precise contribution of philosophy
fits quite well with the research aims of the constraint computing area, in the study
of the challenges for modeling expert disagreement in the context of multi-criteria
decision-making.

In this article, we specifically explore the epistemic modeling of argumentation
among experts as epistemic peers, in the context of the work of Stefano Bistarelli
and Martine Ceberio [1, 8], and Dung’s argumentation theory [4]. In particular, we
here consider the role of epistemic justification in expert disagreement on proposi-
tional contexts of knowledge, as well as in non-propositional contexts. We model
the epistemology of disagreement of experts after Christensen’s considerations on
the role of formal constraints for rational belief, in reference to his excellent volume
Putting Logic in its Place [2], and in reference to the debates on state of the art of
the epistemology of disagreement (Epistemology of disagreement [3]), as well as
our own interdisciplinary dialogue on the constraints to knowledge justification in
expert disagreement [5].

2 Conceptualizing Disagreement Among Experts
as Disagreement Among Epistemic Peers

The philosophical concept of disagreement in the domain of epistemology of dis-
agreement is perhaps more precise and rare than in computer science, albeit both
derive from ordinary daily experience of some sort of discord through rational dis-
course. In general philosophical terms, the ordinary experience of disagreement is
mostly conceived first truth-functionally and in linguistic terms, broadly speaking.
In this sense, the possibility of disagreement depends on someone sharing enough
common understanding, so that one may disagree, on propositional matters. In other
words, one should be able to understand semantics, syntactic, and pragmatic aspects
of discourse of a speaker, to make sure that we understand what her point is, and
yet possibly disagree with such and such position she puts forth, and/or proposi-
tional assertion. In this sense, a disagreement may be said to be properly legitimate,
when those basic intelligibility conditions are met, or instead, verbal, when those
conditions are not met, and we have a misunderstanding, rather than a disagreement.

In more strict epistemic terms, if such intelligibility conditions are taken to be met
prima facie, legitimate disagreements are bound to occur as epistemic conflicts; see,
e.g., [7]. Those happen when people are faced with conflicting beliefs that require
the engagement in a belief revision process, in order to adjust one’s confidence, so
that one’s belief is to be taken to be rational, in light of a certain particular dis-
agreement [3]. In general, the degree of belief revision an epistemic agent under
disagreement will engage depends on—as Christensen and Leakey contend—two
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dimensions of her appraisal of the epistemic credentials of her opponent (or oppo-
nents) on the matter under disagreement:

The first dimension of epistemic appraisal is related to the epistemic agent’s
evaluation of the level of familiarity of her opponent with evidence and arguments,
in the case under dispute [3]. If there is asymmetry of familiarity, belief revision may
(or may not) be required.

The second dimension is related to her epistemic appraisal of the opponent’s
competence at correctly evaluating both evidence and arguments [3]. Here cogni-
tive and methodological aspects of knowing are considered. Under this framework,
’epistemic peers’ are then said of those epistemic agents under disagreement who
are appraised to be roughly equal along both dimensions [3].

In the same vein, we here suggest that experts under disagreement would then
ideally be conceptualized as a special case of epistemic peers. Under this revised
conceptualization, the second dimension of epistemic appraisal may be interpreted
as being more fundamental than the first. For this reason, the expert should be taken
to be first formally and methodologically apt to evaluate different scenarios. This
dimension thus relates to general readiness on one’s field of expertise. Disagree-
ments of the sort of the first dimension—such as on familiarity or access to evidence
and arguments—refer to the extension of one’s expertise to cases, which may be
theoretical, applied or practical.

In the next section, we will connect those two dimensions of epistemic appraisal
of expertise under disagreement and consider the problem of rationality in expert
belief-revision.

3 Expert Disagreement: Epistemic and Pragmatic
Rationality

When experts legitimately disagree, they may do so on grounds of lack of complete-
ness in knowing evidence and arguments. But also, while recognizing each other’s
cognitive competence, they may also recognize to be further applying different,
alternative, or complementary methodologies and modeling techniques as cognitive
strategies to one’s field. In this case, experts might be using multi-criteria that may
be incompatible as a whole, when contrasted; see, e.g., [9]. In this sense, experts
under disagreement using different evaluative criteria would be in weak compliance
with the second dimension of epistemic appraisal. For this reason, one may recog-
nize cognitive competence, but not necessarily be ready to discuss the minutia of
alternative expert criteria. See Table1.

In the last case of weak compliance, there is understandably more uncertainty.
In order to model a legitimate expert disagreement in the context of solving multi-
criteria decision-making problems among experts, it is further useful to consider a
philosophical distinction between epistemic and pragmatic rationality, for experts.
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Table 1 Epistemic expert disagreement in two dimensions and Multi-criteria

First dimension of epistemic appraisal Familiarity of the opponent with evidence and
arguments

Second dimension of epistemic appraisal Competence of the opponent at correctly
evaluating evidence and arguments

Epistemic peers If both appraisals result on roughly equal
opponents

Experts under disagreement as epistemic peers A strong compliance with second dimension,
recognition of cognition and methodological
expertise of opponent

Experts under disagreement as epistemic peers
with different methodological approaches

A weak compliance with second dimension,
where there is a shared knowledge of one’s
discipline, but the use of different expert
criteria, generates further uncertainty

3.1 Epistemic Rationality: A More Subtle Focus
of Disagreement on Epistemic Justification

Whenwe consider the dimensions of epistemic appraisal to determinewhat disagree-
ment is the case, we do so mostly under the light of our epistemic rationality. Here
what is meant is to say that such revisions are descriptive in nature. They refer to the
expert description of states of affairs of the world, according to the expert domain of
knowledge in case, and to the matter of fact recognition of expert methodology. Here
peer disagreements would more subtly appear in epistemic criteria for justification
in argumentation and modeling concerns, regarding domain phenomena, and would
mostly be settled on the grounds of assenting to graded beliefs,mostly based (Table2)
on probability of events or states of affairs established from scientific studies, rather
then on simple binary beliefs. We dub such expert disagreement, disagreements on
“epistemic justification” (see [5]).

3.2 Pragmatic Rationality

Let’s imagine another relevant scenario for multi-criteria decision making among
experts. If there is instead expert agreement at the epistemic level of description

Table 2 Epistemic expert disagrement in epistemic justification

Expert disagreement under epistemic
rationality appraisal

Disagreement on the epistemic justification and
epistemic criteria used in argumentation and
modeling regarding domain phenomena
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Table 3 Pragmatic expert disagreement

Pragmatic rationality apraisal When applied uses are in discord and
pragmatic justifications

of what is the case in the domain, in the three dimensions of appraisal mentioned,
there may be an important disagreement on the applied uses of knowledge of graded
beliefs, as suggested for purposes of decision-making. In this case, a new special
type of expert disagreement may emerge, on the pragmatic use of such knowledge,
with a concern with practical reason. This situation refers to concerns with pragmatic
rationality, on value reasoning. Here the resulting model agreement may be seen as
epistemic, but with a diverse practical result. Different sets of pragmatic justification
may be salient (Table3) embedded in description, according to what is deemed
beneficial to decision-making. We dub such disagreement “pragmatic”.
Thus, we here can have both epistemic and pragmatic types of disagreement,
with fine-grain considerations on epistemic—evidence, argumentation, methodol-
ogy issues—or pragmatic—disagreement on practical considerations.

3.3 Synchronic and Diachronic Rationality, Global and Local

Given this basic conceptualization of expert disagreement provided, we are ready to
make further temporal and boundary considerations. It may be that experts disagree
with themselves over time, and may be in contradiction, if considered contrasted
in periods. In this case, we are modeling a dynamic picture of a disagreement with
oneself and with others, possibly non-monotonic, describing change over time. This
is the case of considering a synchronic and diachronic rationality for describing
expert disagreements.

Another important concept is that of the boundaries of expertise. It is invariably
the case that access to data or methodology is not absolute, thus, expertise is, indeed,
always local, albeit possibly the most generalizable. The consideration of a com-
pleteness of data and methodology is an idealization, and much is uncertain. Thus,
all experts are, in some sense, governed by a local (Table4) rationality, and so are
their disagreements, which may be restricted by parochialisms, and limitations of
evidence.

Table 4 Expert disagreement (Types)

Epistemic 3 dimensions

Pragmatic applied uses

Synchronic and diachronic temporal considerations

Global and local boundary considerations
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4 Computational Modeling: Descriptive Constraints
for Epistemic and Pragmatic Disagreements

We model both epistemic and pragmatic types of expert disagreement, with three
main descriptive constraints: semantics, formal, and temporal.

• First, we distinguish semantically verbal from genuine type of disagreement, con-
straining the domain of debate. A verbal disagreement pertains to the misuse or
misunderstanding of language use and terminology among experts, resulting on
talking past each other. On the second case, experts understand each others special
language use, and correctly disagree on the substance of what is been argued.

• Secondly, we use a global approach to formal constraints to rational belief, per-
suasive to compel rational belief revision in epistemic context, with deductive
consistency and deductive closure.

• Thirdly, we consider consistency in synchronic descriptions and justifications of
beliefs in time frames (simultaneous set of beliefs) and in rational belief revision
over time in decision-making, related to diachronic description thereof (diachronic
set of beliefs, consistency over time). As a complication, we consider the problem
that one cannot do everything at once in epistemology [2], with some of the issues
on parsing epistemic tasks.

Within the above-mentioned constraints, we model both epistemic and pragmatic
expert disagreement with an argumentation framework based on Dungs seman-
tics [1], represented with a graph approach, with weighted AF, for graded beliefs and
a consideration of a trust score associated with fuzzy measures (Martines ref.). Such
trust score takes in consideration the differences between epistemic and pragmatic
contexts for establishing degrees of trust. In epistemic context, it aims at measuring
expert trust in considering epistemic justification for rational belief against evidence
available and argumentation. In pragmatic context, in order to evaluate pragmatic
decision-making under multi-criteria decision-making criteria among experts, we
discuss parameters of local rationality, as well as multi-criteria decision-making
aggregation criteria, considering mono-dimensional utilities and the construction of
a global utility function for each expert, and the aggregated results of their choices.

5 Preliminary Notions About Argumentation Frameworks
and MEMCDM

The Dung’s framework [4] allows to model argumentation through a graph of argu-
ments (nodes) and attacks (edges). This framework was extended by Bistarelli et
Al. [1] to elicit coalitions of arguments (e.g., through the notion of conflict-free sets
or α-conflict-free sets).

In [6], we proposed to model MEMCDM using argumentation frameworks and to
seek conflict-free or α-conflict-free sets as decision solutions. More specifically, let
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us look at a scenario in which experts independently assess given pieces of software,
based on several given evaluation criteria. We illustrate our model on this problem:

5.1 Arguments

What information/arguments do we have to integrate into an Argumentation Net-
work?

1. Expert i gives Item j a total quality Di, j (which, in the case of Software Quality
Assessment SQA, can be Bad, Poor, Fair, Good, or Excellent):

Argument (Ei , Sj , Di, j ).

2. Expert Ei judges that Software (or Item) Sj satisfies criterion m up to quality
Di, j,m :

Argument (Ei , Sj , cm, Di, j,m).

5.2 Attacks

What are the attacks (edges of the network) between these arguments (nodes)?

1. Two experts disagree on their assessment of a given item:

∀i, j, k, l, m such that Ei �= E j and Dk �= Dl,

then there is an attack:

(Ei , Sk, Dl) ↔ (E j , Sk, Dm).

2. For a given item, two experts disagree on their assessment of it w.r.t. a given
criterion:

∀i, j, k, l, m, n such that Ei �= E j and Dk �= Dl,

then there is an attack:

(Ei , Sk, cl , Dm) ↔ (E j , Sk, cl , Dn).

3. Every expert’s decision is supported by his/her decisions on the criteria used to
assess the item, but supports are not attacks: they are complementary. So support
is expressed by an attack from every node that does not support.
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6 How Epistemic and Pragmatic Disagreements Can Help
MEMCDM

As of now, the model described in the previous section allows to describe decision
processes as they relate to and are supported by assessment of intermediate criteria,
and allows to model disagreement between experts, at the final decision level as well
as at the intermediate criteria level.

This model is then processed so as to identify (α-) conflict-free sets: these sets
should contain arguments that are not attacked (unlikely) or the least attacked (i.e.,
the least controversial among experts, which corresponds to alpha-conflict-free sets
for the lowest possible α). However, disagreement remains in these cases: only a
solution (even the least controversial) has been reached.

The purpose of this work is to expand on such modeling to further help de- tan-
gling disagreements. The assumption is that disagreement is made of either or both
epistemic and pragmatic disagreements. As currently modeled, decision processes
do not differentiate these two decision levels, so when identifying disagreement (as
modeled in Sect. 4), we do not have access to fine-grained information about why a
disagreement occurs and how to diffuse/understand it. By acknowledging that dis-
agreement can be epistemic or pragmatic, and by further modeling an argumentation
framework for each of these dimensions (or levels of decisions), we can exploit argu-
mentation frameworks (as proposed by Bistarelli et al. [1]) further. We propose to
model decision process as two argumentation graphs: one that models the epistemic
reasoning of experts, and the other one to model their pragmatic reasoning.

For instance, we could identify that there is disagreement on the epistemic level
but not on the pragmatic level, or vice versa, or both. No disagreement (resp. low dis-
agreement)would result ([7]) in an edge-less graph (resp. a solution that encompasses
all nodes of the graph as the α-conflict-free set).

Having knowledge of the levels at which disagreement occurs could inform about
how to resolve conflicts. For instance, if experts agree on the pragmatic level but
not on the epistemic level, that might mean that they do not agree on the metrics
of the problem but do agree on the general solution. Such a finding might call for
a revision of the problem description: maybe the original decision criteria were not
appropriate.

On the other hand ([9]) showing agreement at the epistemic level but not at the
pragmatic levelmight be typical of expertswhohavedifferent goals (different values).

7 What’s Next?

In this work, focusing on decision-making situations involving multiple experts, and
with the aim to identify and understand disagreement, we proposed a new modeling
approach that relies on Dung’s argumentation framework extended by Bistarelli. Our
approach acknowledges that disagreement can be at two different levels: epistemic
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and pragmatic, andmakes use of argumentation frameworks to identify disagreement
configurations (epistemic and pragmatic, epistemic only, pragmatic only).

The next step to this work will consist in exploring ways in which disagreement
identification can be used, not to diffuse disagreement (since, when data is available,
experts are no longer around the table) but to elicit an automated decision-making
process, via the addition of expertise levels and the notion of trust of individual
decisions.

Acknowledgements This work was partially supported by the National Science Foundation, NSF
CCF grant 0953339 and the American Association for the Advancement of Science, AAAS MIRC
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Positive Semidefiniteness and Positive
Definiteness of a Linear Parametric
Interval Matrix

Milan Hladík

1 Introduction

A commonly used deterministic approach to global optimization [3, 5, 7, 8, 15,
27] is based on exhaustive splitting of the search space into smaller parts (usually
boxes) and applying various interval techniques to remove boxes that provably do
not contain any global minimizer, to compute rigorous lower and upper bounds on
the optimal value, and to prove optimality of some point within a box, among others.

An important step in this approach is convexity testing on a box. If the objective
function is identified as convex on the box, any local minimum is also global, and the
search within the box becomes easier. Similarly, if the function is convex nowhere
on the box and the box lies inside the feasible set, then the box can be removed as
it contains no local, and hence also no global, minimum. Convexity also plays an
important role in the global optimization αBB method [3–5, 12, 39], which is based
in constructing a convex underestimator of the objective function by appending an
additional convex quadratic term.

Convexity of the objective function on a box is usually studied via an interval
matrix enclosing all Hessian matrices of the function on the box. Since convexity of
a function corresponds to positive (semi-)definiteness of its Hessian matrix, we face
the problem of checking positive (semi-)definiteness of an interval matrix.

Let us introduce some notation now. We use diag(z) for the diagonal matrix with
entries z1, . . . , zn , and sgn(r) for the sign of r (sgn(r) = 1 if r ≥ 0 and sgn(r) = −1
otherwise). For vectors, the sign is applied entrywise.

An interval matrix A is defined as

A := [A, A] = {A ∈ R
m×n; A ≤ A ≤ A},
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where A, A ∈ R
m×n , A ≤ A, are given, and the inequality is understood entrywise.

The midpoint and the radius of A are defined respectively as

Ac := 1

2
(A + A), AΔ := 1

2
(A − A).

The set of all m-by-n interval matrices is denoted by IRm×n . Supposing that both Ac

and AΔ are symmetric, the symmetric counterpart to A is

AS := {A ∈ A; A = AT }.

A symmetric interval matrix AS ∈ IR
n×n is strongly positive definite (positive

semidefinite) if A is positive definite (positive semidefinite) for each A ∈ AS . Next,
AS is weakly positive definite (positive semidefinite) if A is positive definite (positive
semidefinite) for some A ∈ AS . Eventually, A ∈ IR

n×n is regular if every A ∈ A is
nonsingular.

The classical results characterizing strong positive semidefiniteness and positive
definiteness are stated below; see Rohn [33, 35, 36], and Białas and Garloff [1].
Suppose that A ∈ IR

n×n is given with Ac and AΔ symmetric.

Theorem 1 The following are equivalent:

(1) AS is positive semidefinite,
(2) Ac − diag(z)AΔdiag(z) is positive semidefinite for each z ∈ {±1}n,
(3) xT Acx − |x |T AΔ|x | ≥ 0 for each x ∈ R

n.

Theorem 2 The following are equivalent:

(1) AS is positive definite,
(2) Ac − diag(z)AΔdiag(z) is positive definite for each z ∈ {±1}n,
(3) xT Acx − |x |T AΔ|x | > 0 for each 0 �= x ∈ R

n,
(4) Ac is positive definite and A is regular.

Checking strong positive (semi-)definiteness is known to be a co-NP-hard problem
(Kreinovich et al. [19]). On the other hand, checking whether there is a positive
semidefinite matrix in AS is a polynomial time problem; see Jaulin and Henrion
[14].

There are other related results on positive definiteness of interval matrices. For
instance, Liu [21] presents a sufficient condition and applies it to stability issues,
Kolev [17] presents a method to determine a positive definite margin of an interval
matrix, and Shao and Hou [38] propose a necessary and sufficient criterion for a
larger class of complex Hermitian interval matrices.

Positive (semi-)definiteness closely relates to matrix eigenvalues. A real symmet-
ric matrix A is positive (semi-)definite if and only if all its eigenvalues are positive
(nonnegative). This relation indicates that positive (semi-)definiteness can be inves-
tigated from the perspective of eigenvalues of interval matrices. Such eigenvalues
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were studied, e.g., in [11, 13, 16, 18, 20, 22, 25], and some of those results could pos-
sibly be used to check for positive (semi-)definiteness; a simple sufficient condition
for strong positive definiteness appeared already in Rohn [33, 35, 36]. This paper,
however, is focused in other direction. We generalize some of the classical results to
interval matrices affected by linear dependencies between the matrix entries.

2 Linear Parametric Matrices: Positive Semidefiniteness

The standard notion of an interval matrix assumes that all matrix entries vary within
the given intervals independently of other entries. This assumption is rarely satis-
fied in practice. To approach more closely to practical use and to model possible
dependencies, consider a more general concept of a linear parametric matrix

A(p) =
K∑

k=1

A(k) pk,

where A(1), . . . , A(K ) ∈ R
n×n are fixed symmetric matrices and p1, . . . , pK are

parameters varying respectively in p1, . . . , pK ∈ IR.
Strong and weak positive definiteness extends to parametric matrices naturally as

follows.

Definition 1 A parametric matrix A(p), p ∈ p, is strongly positive definite (positive
semidefinite) if A(p) is positive definite (positive semidefinite) for each p ∈ p. It is
weakly positive definite (positive semidefinite) if A(p) is positive definite (positive
semidefinite) for at least one p ∈ p.

Linear parametric form generalizes the standard interval matrix. Evaluation
A(p) = ∑K

k=1 A
(k)pk by interval arithmetic encloses the set of matrices A(p), p ∈ p,

in an interval matrix and reduces the problem to the standard non-parametric one.
This “relaxation” of parametric structure, however, overestimates the true set and
may lead to loss of positive (semi-)definiteness.

Example 1 Let

A(p) =
(
1 1
1 1

)
p, p ∈ p = [0, 1].

This parametric matrix is strongly positive semidefinite, but its relaxation

A(p) =
( [0, 1] [0, 1]

[0, 1] [0, 1]
)
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is not, as it contains, e.g., the indefinite matrix

(
0 1
1 0

)
.

�
Linear parametric forms are also used to model linear dependencies between

parameters in interval linear equation solving [10, 30, 31, 41]. Linear dependencies
cause not only the problem to be more difficult from the computational viewpoint,
but it is also hard to describe the corresponding solution set; see Mayer [23].

2.1 Strong Positive Semidefiniteness

Surprisingly, characterization of strong positive semidefiniteness from Theorem 1
can be extended to parametric matrices quite straightforwardly.

Theorem 3 The following are equivalent:

(1) A(p) is positive semidefinite for each p ∈ p,
(2) A(p) is positive semidefinite for each p such that pk ∈ {p

k
, pk} ∀k,

(3) xT A(pc)x − ∑K
k=1 |xT A(k)x | · pΔ

k ≥ 0 for each x ∈ R
n.

Proof “(1) ⇒ (2)”
Obvious. “(2) ⇒ (3)” Let 0 �= x ∈ R

n . Define sk := sgn(xT A(k)x) and pk :=
pck − sk pΔ

k ∈ {p
k
, pk}, k = 1, . . . , K . Now, by positive semidefiniteness of A(p),

we have

xT A(pc)x −
K∑

k=1

|xT A(k)x | · pΔ
k = xT A(pc)x −

K∑

k=1

xT A(k)xsk p
Δ
k

=
K∑

k=1

xT A(k)xpk = xT A(p)x ≥ 0.

“(3) ⇒ (1)” Let p ∈ p and x ∈ R
n . Now,

xT A(p)x =
K∑

k=1

xT A(k)xpk = xT A(pc)x +
K∑

k=1

xT A(k)x(pk − pck)

≥ xT A(pc)x −
K∑

k=1

|xT A(k)x | · |pk − pck |

≥ xT A(pc)x −
K∑

k=1

|xT A(k)x | · pΔ
k ≥ 0. �
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This result shows that strong positive semidefiniteness can be verified by checking
positive semidefiniteness of 2K real matrices. This enables us to effectively check
strong positive semidefiniteness of largematrices provided the number of parameters
is small. Moreover, as stated below, the number 2K can be further reduced in some
cases.

Theorem 4 (1) If A(i) is positive semidefinite for some i, then we can fix pi := p
i

for checking strong positive semidefiniteness.
(2) If A(i) is negative semidefinite for some i, then we can fix pi := pi for checking

strong positive semidefiniteness.

Proof (1) Let p ∈ p. We use the fact that positive semidefiniteness is closed under
addition and nonnegative multiples. Thus, A(i)(pi − p

i
) is positive definite. If

∑

k �=i

A(k) pk + A(i) p
i

is positive semidefinite for some pk ∈ pk , k �= i , then

∑

k �=i

A(k) pk + A(i) p
i
+ A(i)(pi − p

i
) = A(p)

is positive semidefinite, too.
(2) Analogously. �

As long as K is too large to apply Theorem 3, and Theorem 4 fails to reduce the
number of real matrices to be processed, the following sufficient condition may be
useful.

Theorem 5 For each k = 1, . . . , K, let A(k) = A(k)
1 − A(k)

2 , where both A(k)
1 , A(k)

2
are positive semidefinite. Then A(p), p ∈ p, is strongly positive semidefinite if

K∑

k=1

(
A(k)
1 p

k
− A(k)

2 pk
)

is positive semidefinite.

Proof Let p ∈ p. By closedness of positive semidefiniteness under addition and
nonnegative multiples, we have that

A(p) =
K∑

k=1

(
A(k)
1 pk − A(k)

2 pk
)

=
K∑

k=1

(
A(k)
1 p

k
− A(k)

2 pk
)

+
K∑

k=1

(
A(k)
1 (pk − p

k
) + A(k)

2 (pk − pk)
)
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is positive semidefinite, too. �

A splitting of A(k) into a difference between two positive semidefinite matrices
can be carried out as follows. Let A(k) = QΛQT be a spectral decomposition of
A(k). Let Λ+ be the diagonal matrix the entries of which are the positive parts of Λ,
and similarly Λ− has the negative parts on the diagonal. Then A(k) = QΛQT =
QΛ+QT − QΛ−QT and both QΛ+QT , QΛ−QT are positive semidefinite.

2.2 Weak Positive Semidefiniteness

Concerning weak positive semidefiniteness, the problem is still solvable in polyno-
mial time by utilizing a suitable semidefinite program [6, 26, 40]. Let M(p) be the
block diagonal matrix with blocks

A(p), p1 − p
1
, . . . , pK − p

K
, p1 − p1, . . . , pK − pK .

All entries of M(p) depend affinely on variables p. Positive definiteness of M(p)
is equivalent to positive definiteness of A(p) and feasibility of variables p ∈ p.
Therefore, by solving this semidefinite program we check whether A(p), p ∈ p, is
weakly positive semidefinite.

Anyway, a cheap necessary conditionmay be useful, e.g., for nonconvexity testing
in global optimization [7].

Theorem 6 For each k = 1, . . . , K, let A(k) = A(k)
1 − A(k)

2 , where both A(k)
1 , A(k)

2
are positive semidefinite. If A(p), p ∈ p, is weakly positive semidefinite, then

K∑

k=1

(
A(k)
1 pk − A(k)

2 p
k

)

is positive semidefinite.

Proof Let p ∈ p such that A(p) is positive semidefinite. By closedness of positive
semidefiniteness under addition and nonnegative multiples, we have that

A(p) +
K∑

k=1

(
A(k)
1 (pk − pk) + A(k)

2 (pk − p
k
)
)

=
K∑

k=1

(
A(k)
1 pk − A(k)

2 p
k

)

is positive semidefinite, too. �

In view of Theorem 4, it is easy to see that the conditions from Theorems 5 and 6
are necessary and sufficient provided for each k = 1, . . . , K , the matrix A(k) is either
positive or negative definite.
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3 Linear Parametric Matrices: Positive Definiteness

In a similar fashion as in Sect. 2, we can characterize positive definiteness of para-
metric matrices.

Theorem 7 The following are equivalent:

(1) A(p), p ∈ p, is strongly positive definite,
(2) A(p) is positive definite for each p such that pk ∈ {p

k
, pk} ∀k,

(3) xT A(pc)x − ∑K
k=1 |xT A(k)x | · pΔ

k > 0 for each 0 �= x ∈ R
n.

Proof Analogous to Theorem 3. �

Theorem 8 (1) If A(i) is positive semidefinite for some i, then we can fix pi := p
i

for checking strong positive definiteness.
(2) If A(i) is negative semidefinite for some i, then we can fix pi := pi for checking

strong positive definiteness.

Proof Analogous to Theorem 4. �

Theorem 9 For each k = 1, . . . , K, let A(k) = A(k)
1 − A(k)

2 , where both A(k)
1 , A(k)

2
are positive semidefinite. Then A(p), p ∈ p, is strongly positive definite if

K∑

k=1

(
A(k)
1 p

k
− A(k)

2 pk
)

is positive definite.

Proof Analogous to Theorem 5. �

A parametric matrix A(p), p ∈ p, is called regular if A(p) is nonsingular for
each p ∈ p. Regularity of parametric matrices was investigated by Popova [29],
for instance. We have the following relation to regularity, extending item (4) of
Theorem 2.

Theorem 10 The parametric matrix A(p), p ∈ p, is strongly positive definite if and
only if the following two properties hold:

(1) A(p) is positive definite for an arbitrarily chosen p ∈ p,
(2) A(p), p ∈ p, is regular.

Proof “⇒” Obvious as each positive definite matrix is nonsingular.
“⇐” Let A(p1) be positive definite for p1 ∈ p and suppose to the contrary that

A(p2) is not positive definite for p2 ∈ p. Hence A(p1) has positive eigenvalues,
and A(p2) has at least one non-positive eigenvalue. Due to continuity of eigen-
values [24] and compactness of p, there is p0 ∈ p such that A(p0) is singular.
A contradiction. �
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Now, we have two sufficient conditions for checking strong positive definiteness.
The first one is stated in Theorem 9, and the second one utilizes regularity according
to Theorem 10. By Poljak and Rohn [28] (see also [2, 19]), checking regularity of an
interval matrix is a co-NP-hard problem, but there are some polynomially verifiable
sufficient conditions; see Rex and Rohn [32]. The commonly used one, the Beeck
criterion, checks whether ρ(MΔ) < 1, where

M :=
K∑

k=1

(
CA(k)

)
pk,

and C = A(pc)−1 is the preconditioner.
We show by examples that no one condition for checking strong positive definite-

ness is stronger than the other one, where the Beeck criterion is utilized for regularity
checking. Notice that the values in the matrices below are displayed to a precision of
four digits, however, the real computation was done rigorously in Matlab using the
interval library Intlab by Rump [37] and the verification software package Versoft
by Rohn [34].

Example 2 Let

A(p) =
(
1.5 0
0 1.1

)
p1 +

(−1 1
1 1

)
p2, p ∈ p = (1, [0, 1]).

This parametric matrix is strongly positive definite.
Let us check the sufficient condition by Theorem 9. The matrix A(1) is positive

definite, so we split only

A(2) = A(2)
1 −A(2)

2 =
(
0.2071 0.5
0.5 1.2071

)
−

(
1.2071 −0.5
−0.5 0.2071

)

Now,

A(1) · 1 + A(2)
1 · 0 − A(2)

2 · 1 =
(
0.2929 0.5
0.5 0.8929

)

is positive definite, proving strong positive definiteness of A(p), p ∈ p.
In comparison, the Beeck sufficient regularity condition fails to prove regularity.

Using the preconditioner

C := A(pc)−1 =
(

1 0.5
0.5 1.6

)−1

,

the relaxation leads to an interval matrix

M =
K∑

k=1

(
CA(k)

)
pk =

( [0.2222, 1.7778] [−0.4075, 0.4075]
[−0.5556, 0.5556] [0.8148, 1.1852]

)
,
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which is not confirmed to be regular by using the Beeck condition as ρ(MΔ) =
1.0419 �< 1. �

Example 3 Let

A(p) =
(
3.3 0.25
0.25 3.3

)
p1 +

(
1 2
2 0

)
p2 +

(
0 2
2 1

)
p3, p ∈ p = (1, [0, 1], [0, 1]).

In this example, Theorem 9 fails to prove positive definiteness. In contrast, with the
preconditioner

C := A(pc)−1 =
(
3.8 2.25
2.25 3.8

)−1

,

and the relaxation matrix

M =
K∑

k=1

(
CA(k)

)
pk =

( [0.7227, 1.2773] [−0.6905, 0.6905]
[−0.6905, 0.6905] [0.7227, 1.2773]

)
,

the Beeck condition proves positive definiteness by showing ρ(MΔ) = 0.9678 < 1.

Theorem 6 is modified to necessary condition for weak positive definiteness as
follows.

Theorem 11 For each k = 1, . . . , K, let A(k) = A(k)
1 − A(k)

2 , where both A(k)
1 , A(k)

2
are positive semidefinite. If A(p), p ∈ p, is weakly positive definite, then

K∑

k=1

(
A(k)
1 pk − A(k)

2 p
k

)

is positive definite.

Proof Analogous to Theorem 6. �

4 Example

Consider a class of functions

f (x) =
L∑

�=1

c�xi�x j�xk�
,

where i�, j�, k� ∈ {0, . . . , n} are not necessarily mutually different, and x0 = 1. For
such functions, their Hessian matrix has directly a linear parametric form without
using any kind of linearization. It is easy to see that each entry of the Hessian of
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f (x) is a linear function with respect to x ∈ R
n . Thus the variables x play the role

of the parameters p, and their domain x works as p.

Example 4 Let

f (x, y, z) = x3 + 2x2y − xyz + 3yz2 + 5y2,

and we want to check its convexity on x ∈ x = [2, 3], y ∈ y = [1, 2] and z ∈ z =
[0, 1]. The Hessian of f reads

∇2 f (x, y, z) =
⎛

⎝
6x + 4y 4x − z −y
4x − z 10 −x + 6z

−y −x + 6z 6y

⎞

⎠

The direct evaluation the Hessian matrix by interval arithmetic results in an enclose
by the interval matrix

∇2 f (x, y, z) ⊆
⎛

⎝
[16, 26] [7, 12] −[1, 2]
[7, 12] 10 [−3, 4]
− [1, 2] [−3, 4] [6, 12]

⎞

⎠

This interval matrix is not strongly positive semidefinite since the smallest eigen-
value, computed by the exponential formula by Hertz [9], is −2.8950. Nevertheless,
Theorem 9 proves ∇2 f (x, y, z) to be positive definite by utilizing the parametric
form

∇2 f (x, y, z) =
⎛

⎝
6 4 0
4 0 −1
0 −1 0

⎞

⎠ x +
⎛

⎝
4 0 −1
0 0 0

−1 0 6

⎞

⎠ y +
⎛

⎝
0 −1 0

−1 0 6
0 6 0

⎞

⎠ z +
⎛

⎝
0 0 0
0 10 0
0 0 0

⎞

⎠ .

Thus, we can conclude that f is convex on the interval domain.
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Automatic Loop-Shaping of H∞/μ Problem
in QFT Using Interval Consistency Based
Hybrid Optimization

R. Jeyasenthil, P.S.V. Nataraj and Harsh Purohit

1 Introduction

Quantitative feedback theory (QFT) [1] is a frequency-domain method of robust
control. A key step in QFT is one of synthesizing the controller using loop-shaping
method. The loop-shaping is a graphical method to design a controller. In this step,
a controller is designed by adding the poles and/or zeros along with gain until the
nominal loop transmission function satisfies the performance specification constraint
at each frequency. Traditionally, the manual loop-shaping depends on the designer
experience and skill, so automatic loop-shaping (ALS) is preferred. It offers the
possibility of finding a controller faster and better than the manual one. Existing
methods [2–4] attempt to solve this nonlinear and nonconvex problem using convex
(or) linear programming techniques, which lead to conservative designs.

An ALS based on reliable deterministic global optimization (namely, interval
branch and bound) is proposed in [5]. To speed up this, a method based on hybrid
optimization with geometric constraint propagation idea is presented in [6]. These
methods, for the first time in the literature, find a global optimum for a particular cho-
sen loop structure [7]. Recently, the QFT controller optimization problem has been
formulated as an Interval Constraint Satisfaction Problem (ICSP) with performance
specification inequality as constraints [8, 9]. This ICSP formulation uses interval
consistency technique (Hull and Box Consistency) to remove the inconsistent values
which are not part of the solution [10]. The ICSP formulation gives all the feasible
controllers solution in which optimal one is picked up manually based on objec-
tive function (e.g.minimum high frequency gain). The main drawback of this ICSP
formulation is the computational demand of its search for all feasible solutions.
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2 Basics of QFT

Consider the uncertain linear time-invariant plant given by P(s) ∈ {P(s, λ) : λ ∈ λ},
where λ = (λ1, λ2, ...λl) ∈ Rl is a vector of plant parameters. It varies over a box

λ = {λ ∈ Rl : λi ∈ [λi , λi ], λi < λi , i = 1, .....l}.
The set of plant frequency responses at a given frequency ω, P(ω) = {P(s =

jω, λ) : λ ∈ λ} defines a region in the Nichols chart, called the template of the plant
at ω.

The nominal open-loop transmission function is defined as L0(s, λ0) = C(s)
P(s, λ0). At each design frequency ωi , (i = 1, 2, ...., n), robust performance and
stability specifications on closed loop system are transformed into bounds in the
nominal open-loop transmission function using a corresponding quadratic inequali-
ties [1]. The bound atωi is denoted as Bi (ωi ) and its magnitude varies with the phase
of L0 i.e. (∠L0( jωi ))

Next, a fixed structure controller C(s) is synthesized using loop shaping the nom-
inal loop transfer function. This ensures that the bound constraints,at each ωi , are
respected and nominal closed-loop system is stable. The prefilter F(s) is designed
to satisfy the robust tracking specifications such that the closed-loop system should
lie in between the lower and upper tracking specifications.

3 H∞/μ Robust Performance Problem

H∞ control is one of the robust control method which aims to minimize the ∞ norm
of the different sensitivity functions. It solves the control problem as a mathematical
optimization problem i.e.

J 2(ω) = (|W1( jω)S0( jω)|2 + |W2( jω)T0( jω)|2), inf
g∈G sup

ω

J (ω) < 1 (1)

where, W1 and W2 are frequency-dependent weighting functions in �H∞. Here
S0, T0 are nominal sensitivity,nominal complementary sensitivity. G is the set of all
stabilizing controllers [11]. Simultaneous achievement of robust performance and
robust stability is the main objective of any robust control method. Equation (1) is
necessary but not sufficient for robust performance (RP). Using structured singular
value (μ), a necessary and sufficient condition for robust performance and robust
stability is achieved. H∞/μ robust performance as [11]

μ(ω) = (|W1( jω)S0( jω)| + |W2( jω)T0( jω)|), inf
g∈G sup

ω

μ(ω) < 1 (2)

H∞/μ robust performance problem is solved in QFT loopshaping framework using
the proposed algorithm. The problem (with control effort constraint) considered here
is given below
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inf
g∈G sup

ω

μ(ω) < 1 (3)

where

μ(ω) = (|W1( jω)S0( jω)| + |W2( jω)T0( jω)| + |W3( jω)K S0( jω)|) ≤ 1 (4)

and K S0 = Nominal Input Sensitivity function (control effort constraint).
The robust performance problem is converted into QFT bounds using the below

quadratic inequality

r2(1 − b2) + 2r(cos(φ + θ) − ab − bc ∗ cos(2φ + θ)) + (1 − a2 − c2 − 2ac) ≥ 0 (5)

where r = |L0| , a = |W1| , b = |W2| , c = |W3| , φ, θ are controller andplant phases
respectively.

4 H∞/μ Problem as QFT Loopshaping: Problem
Statement

The QFT controller synthesis problem can be posed as (nonlinear and noncon-
vex) constrained optimization problem. The usual objective is to minimize the High
Frequency (HF) gain of the controller, which satisfies all the QFT bound constraints.
The controller HF gain minimization tends to reduce the amplification of the sensor
noise in the HF range (cost of feedback [1]). Usually the performance specifications
are at the Low Frequency (LF) range, this motivate us to look for different optimality
criteria. So, the objective function considered here is to minimize the magnitude of
the nominal open loop transmission function i.e. |L0| at ∀ωi . The constraint set C(x)
is nonlinear and non-convex and is given by Ci(x)= ci (x), where ci (x) represents a
single-valued bound constraint at each design frequency ωi (either a single-valued
upper bound constraint cui (x) or a single-valued lower bound constraint cli (x)).

The H∞/μ problem using QFT synthesis can be formulated as the following
constrained global optimization problem:

Minimize
n∑

i=1

|L0(ωi )|,∀ωi , i = 1, 2.., n. (6)

Subject to

cui (x) = |L0( jωi , x)| − Bi (∠L0( jωi , x), ωi ) ≥ 0 (7)

cli (x) = Bi (∠L0( jωi , x), ωi ) − |L0( jωi , x)| ≥ 0 (8)

∠L0( jωi , x) ≥ ψUHFB (9)
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Here,
Bi (∠L0( jωi , x), ωi ) = QFT Bound values at each design frequency ωi

(Obtained from MATLAB Toolbox (Borghesani et al. 1995)).
ψUHFB = Universal High Frequency Bound angle for multiple valued

bound (stability margin bound).

5 Proposed Algorithm

In contrast to the above intervalmethods for automatic controller design, in this paper,
an efficient method is proposed. The proposedmethod combines hybrid optimization
andHullConsistency (HC-4) techniques [10]. The hybrid optimization part combines
nonlinear local optimization with interval global optimization methods.

In HC-4 technique, we introduced the bound condition which allows the con-
straints (to HC-4) that are most suitable for pruning the variable domain. There is
no need to input all the constraints to the consistency algorithm because some (or
many) of the constraints might have satisfied the relations already. This is ensured
by the “bound condition” so processing again these constraints, at every iteration, is
not needed for pruning. As a result, the new algorithm is much better, since it does
not need to process these constraints on every step.

The pruned box is processed by the local constrained optimization solvers. The
local solvers quickly locates the approximate globalminimum, provided that updated
interval is a feasible one. Here the updated interval is formed by the local solution.

6 Design Example

Consider the uncertain plant transfer function

P(s) = k

(s + a)(s + b)
; k ∈ [1, 10], a = [1, 5], b = [0.2, 1];

where the nominal parameters are k = 10, a = 0.2, b = 1;
Performance Specifications:

• Robust Performance:

W1(s) = (s + 5)(s + 7)

1.5(s + 0.01)(s + 0.1)
;

• Robust stability:
W2 = 0.875;

• Control Effort:
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W3 = 0.001;
The controller structure is selected as three poles (p1, p2, p3), two zeros (z1, z2)
and gain(k). Initial Controller Parameter values:

[k, p1, p2, p3, z1, z2] = [10, 15000], [1, 7.5], [1, 2000], [1, 3850], [10, 50], [100, 500]

The design frequency set:

Ω = [0.001, 0.01, 0.05, 0.1, 0.5, 1, 2, 2.5, 3, 5, 6, 10, 50].

The tolerance is 10−2. The designed QFT Controller using the proposed algorithm:

G(s) = 3096
( s
10 + 1)( s

100 + 1)

( s
7.5 + 1)( s

2000 + 1)( s
3750 + 1)

The H-infinity controller is designed using hinfsyn in MATLAB:

GHin f (s) = 2.054 ∗ 1010s3 + 6.326 ∗ 1010s2 + 5.044 ∗ 1010s + 7.722 ∗ 109

s4 + 3.171 ∗ 107s3 + 5.192 ∗ 109s2 + 4.114 ∗ 1011s + 7.722 ∗ 1011

The controller gain reduction of 40 dB is possible at high frequency with QFT based
controller than H∞/μ controller.

Performance comparison of the proposed algorithm:

Algorithm Iterations Time(sec)
HC4 >1000 −
Moore Skelboe 102 28
Proposed Algorithm 34 17

As compared with existing interval methods [5, 9], it’s found that speedup of 40
percent is achieved using the proposed algorithm.

7 Conclusion

The proposed algorithm is applied to automatic QFT loop-shaping of H∞/μ robust
performance problem. The H∞/μ robust performance problem is converted into QFT
loop shaping problem. The advantage of converting is to workwith loop transmission
function (as in QFT) than sensitivity function (H∞), which is insensitive to sensor
noise problem at high frequency. We extend this problem formulation by adding the
input sensitivity function to the original mixed sensitivity problem.
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For comparison purpose, the H∞ control is designed and it’s performance is com-
pared with QFT-based H∞/μ controller. It’s observed that, at least for this problem,
the QFT based controller gives much better response than the H∞ controller alone.

References

1. Horowitz, I.M.: Quantitative Feedback Design Theory. QFT Publications, Boulder, CO (1993)
2. Bryant, G.F., Halikias, G.D.: Optimal loop-shaping for systems with large parameter uncer-

tainty via linear programming. Int. J. Control 62, 557–568 (1995)
3. Chait, Y., Chen, Q., Hollot, C.V.: Automatic loop-shaping of QFT controllers via linear pro-

gramming. ASME J. Dyn. Syst. Meas. Control 121, 351–357 (1999)
4. Garcia-Sanz, M., Guillen, J.C.: Automatic loop-shaping of QFT robust controllers via genetic

algorithms. In: Proceedings of the 3rd IFAC Symposium on Robust Control Design (2000)
5. Nataraj, P.S.V., Tharewal, S.: An interval analysis algorithm for automated controller synthesis

in QFT designs. ASME J. Dyn. Syst. Meas. Control 129, 311–321 (2007)
6. Nataraj, P.S.V., Kubal, N.: Automatic loop shaping in QFT using hybrid optimization and

constraint propagation techniques. Int. J. Robust Nonlinear Control 17, 251–264 (2007)
7. Cervera, J., Baños, A.: QFT loop shaping with fractional order complex pole-based terms. J.

Vib. Control 19, 294–308 (2012)
8. Deshpande,M.M., Nataraj, P.S.V.: Automated synthesis of fixed structure QFT controller using

interval constraint satisfaction techniques. In: Proceeding of the 17th IFAC World Congress,
pp. 4976–4981 (2008)

9. Patil,M.D., Nataraj, P.S.V.: Automated synthesis ofmultivariable QFT controller using interval
constraint satisfaction techniques. J. Process Control 22, 751–765 (2012)

10. Benhamou, F., Goualard, F., Granvilliers, L.: Revising hull and box consistency. In: Proceeding
of 16th International Conference on Logic Programming, pp. 230–244 (1999)

11. Nordgren, R.E., Franchek, M.A., Nwokah, O.D.I.: A design procedure for the exact H∞ SISO-
robust performance problem. Int. J. Robust Nonlinear Control 5, 107–118 (1995)



Existence of the Nash-Optimal Strategies in
the Meta-Game

Vyacheslav V. Kalashnikov, Vladimir A. Bulavsky
and Nataliya I. Kalashnykova

1 Introduction

Conjectural variations equilibrium (CVE) was introduced quite long ago as another
possible solution concept in static games (cf., [1, 2]). According to this concept,
agents behave as follows: each agent chooses his/hermost favorable action taking into
account that every rival’s strategy is a conjectured function of his/her own strategy.

In monograph [3], a new concept of conjectural variations equilibrium (CVE) was
introduced and investigated, in which the conjectural variations (represented via the
so called influence coefficients of each agent) provided a new equilibrium paradigm
distinct from the Cournot-Nash equilibrium.

The detailed story of the highs and lows of the CVE concept is described in [4].
The main obstacle on the way of admitting this concept is the difficulty of checking
its consistency. The consistency (or, sometimes, “rationality”) of the equilibrium is
defined as the coincidence between the conjectural best response of each agent and
the conjectured reaction function of the same.
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To copewith a conceptual difficulty arising inmany-playermodels, Bulavsky pro-
posed in 1997 (cf., [5]) a completely new approach applied later to mixed oligopoly
models [4]. Consider a group of n producers (n ≥ 2) of a homogeneous goodwith the
cost functions fi (qi ), i = 1, . . . , n, where qi ≥ 0 is the output by producer i . Con-
sumers’ demand is described by a demand function G = G(p), whose argument p
is the market clearing price. Active demand D is nonnegative and does not depend
upon the price. The equilibrium between the demand and supply for a given price p
is guaranteed by the following balance equality

n∑

i=1

qi = G(p) + D. (1)

Every producer i = 1, . . . , n, chooses his/her output volume qi ≥ 0 so as to max-
imize his/her profit function

πi (p, qi ) = p · qi − fi (qi ). (2)

Nowwe postulate that the agents (producers) suppose that their choice of produc-
tion volumes may affect the price value p. The latter assumption could be defined
by a conjectured dependence of the price p upon the output values qi . If so, the first
order maximum condition to describe the equilibrium would have the form:

∂πi

∂qi
= p + qi · ∂p

∂qi
− f ′

i (qi )

{
= 0, if qi > 0;
≤ 0, if qi = 0,

for i = 1, . . . , n. (3)

Thus, we see that to describe the agent’s behavior, we need evaluate the behavior
of the derivative ∂p/∂qi = −vi rather than the functional dependence of p upon qi .
Then the optimality condition (3) is reduced to

{
p = vi qi + bi + aiqi , if qi > 0;
p ≤ bi , if qi = 0.

(4)

Definition 1 A collection (p, q1, . . . , qn) is called an exterior equilibrium state for
given influence coefficients (v1, . . . , vn), if the market is balanced, i.e., equality (1)
holds, and for each i the maximum conditions (4) are valid.

We assume the following properties of the model’s data.

Assumption 1 The demand function G = G(p) ≥ 0 is defined for p ∈ (0,+∞),
being non-increasing and continuously differentiable.

The production costs are assumed to be (strictly) convex quadratic functions:
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Assumption 2 For each i , the cost function fi is quadratic and fi (0) = 0, i.e.,

fi (qi ) = (1/2)aiq
2
i + biqi , where ai > 0, bi ≥ 0, i = 1, . . . , n. (5)

From now on, we are going to consider only the case when the set of really
producing participants is fixed (i.e., it doesn’t depend upon the values vi of the
influence coefficients). To guarantee this feature, we make the assumption listed
below.

Assumption 3 For the price value p0 = max
1≤ j≤n

b j , the following estimate holds:

n∑

i=1

p0 − bi
ai

< G(p0). (6)

Now we establish the following existence result.

Theorem 4 Under assumptions 1, 2, and 3, for any D ≥ 0, vi ≥ 0, i = 1, . . . , n,
there exists uniquely an exterior equilibrium (p, q1, . . . , qn) depending continuously
upon theparameters (D, v1, . . . , vn). The equilibriumprice p = p(D, v1, . . . , vn)as
a function of these parameters is differentiablewith respect to D and vi , i = 1, . . . , n.
Moreover, p(D, v1, . . . , vn) > p0, and

∂p

∂D
= 1

n∑

i=1

1

vi + ai
− G ′(p)

. (7)

Now having formula (7) in mind and following the ideas of [2], we introduce the
following

Consistency Criterion.
Atan exterior equilibrium (p, q1, . . . , qn), the influence coefficientsvk , k = 1, . . . , n,
are referred to as consistent if the equalities below hold:

vk = 1
n∑

i=1,i �=k

1

vi + ai
− G ′(p)

, k = 1, . . . , n. (8)

Now we are in a position to define the concept of an interior equilibrium.

Definition 2 A collection (p, q1, . . . , qn, v1, . . . , vn) is called an interior equilib-
rium state, if for the considered influence coefficients, the collection (p, q1, . . . , qn)
is an exterior equilibrium state, and the consistency criterion is valid for all k =
1, . . . , n.

The interior equilibrium existence result is as follows:
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Theorem 5 Under assumptions 1, 2, and 3, there exists an interior equilibrium state.

Theorem 4 allows us to define the following game Γ = (N , V,Π, D), which
will be called the meta-game. Here, D is a (fixed) value of the active demand,
N = {1, . . . , n} is the set of the same players as in the above-described model,
V = Rn+ represents the set of possible strategies, i.e., vectors of conjectures v =
(v1, . . . , vn) ∈ Rn+ accepted by the players, and finally, Π = Π(v) = (π1, . . . , πn)

is the collection of the payoff values defined (uniquely by Theorem 4) by the strategy
vector v.

In general, the Cournot conjectures are not consistent in our single commodity
market model. In other words, the Cournot conjectures vi = −p′(G) usually do not
satisfy the (nonlinear) consistency system (8). However, in themeta-game introduced
above, the consistent conjectures, determined by (8) provide the Cournot-Nash equi-
librium. This result presented below as Theorem 6 was obtained and proved in the
previous publication [6].

Theorem 6 Suppose that Assumptions 1, 2, and 3 hold. Then any Cournot-Nash
equilibrium in the meta-game Γ = (N , V,Π, D) generates a consistent (interior)
equilibrium in the original oligopoly. Conversely, every interior (consistent) equi-
librium in the original oligopoly is Cournot-Nash equilibrium in the meta-game
Γ = (N , V,Π, D).

However, since the meta-game strategies set V = Rn+ is unbounded, the existence
of at least one Cournot-Nash equilibrium state in this game is by no means easy to
check. The following three results (under some extra assumptions) guarantee that
the existence of interior equilibrium in the original oligopoly imply the existence of
Nash equilibrium in the meta-game. Exactly these three theorems represent the main
novelty of this chapter as compared to the previous paper [6]. Since the proofs of
Theorems 7, 8, and 9 are quite long, they will be published elsewhere.

Theorem 7 In addition toAssumptions 1, 2, and 3, suppose that the demand function
is affine, that is,

G(p) :=
{

−Kp + T, if 0 ≤ p ≤ T
K ;

0, if p > T
K ; (9)

here, K > 0, T > 0. In this case, the consistency criterion for the original oligopoly
is the necessary and sufficient condition for the collection of influence conjectures
v = (v1, . . . , vn) to be Cournot-Nash equilibrium in the meta-game.

Theorem 8 Let the assumptions of Theorem 7 be a bit relaxed for the demand func-
tion: Instead of (9), suppose that the function G is concave. In addition, if n = 2
(duopoly), there exists ε > 0 such that G ′(p) ≤ −ε for all p ≥ 0. Then the consis-
tency criterion for the original oligopoly is the necessary and sufficient condition for
the collection of influence conjectures v = (v1, . . . , vn) to be Cournot-Nash equilib-
rium in the meta-game.
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Since the concavity of the demand function may be a too restrictive requirement,
the next theorem relaxes it even more by replacing it with the Lipschitz continuity
of the derivative G ′(p).

Theorem 9 Suppose that apart fromAssumptions 1, 3, and A??, the regular demand
function’s derivative is Lipschitz continuous. In more detail, for n ≥ 3 assume that
for any p1, p2 the following inequality holds:

|G ′(p1) − G ′(p2)| ≤ 1

2s2G(p0)
|p1 − p2|, (10)

where s = max{a1, . . . , an}, and the price p0 is defined in Assumption3. Next, if
n = 2 (duopoly), we again suppose that there exists ε > 0 such that G ′(p) ≤ −ε for
all p ≥ 0, and the Lipschitz continuity of the demand function is described in the
form:

|G ′(p1) − G ′(p2)| ≤ 2
(

a1 + a2
εmin{a1, a2} + 3s

)2
G(p0)

|p1 − p2|, ∀p1, p2. (11)

Then the consistency criterion for the original oligopoly is the necessary and suf-
ficient condition for the collection of influence conjectures v = (v1, . . . , vn) to be
Cournot-Nash equilibrium in the meta-game.

To resume, the paper presents a justification of the concept of consistent con-
jectures and thus contributes to a better understanding of the nature of conjectural
variations equilibrium (CVE). In this paper, we considered an upper level game, in
which not the supply volumes qi but the conjectures (influence coefficients) vi serve
as the players’ strategies instead. The remarkable fact we have demonstrated is the
following: in the upper level game, the consistent (for the original game) conjectures
v∗
i provide for the optimal Cournot-Nash strategies. In other words, if each player
i assumes that the other agents stick to their consistent conjectures v∗

j , j �= i , then
his/her consistent conjecture v∗

i is optimal for player i , too. The latter means that the
vector of conjectures provides the classical Cournot-Nash equilibrium in the upper
level game.
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Peak-End Rule: A Utility-Based Explanation

Olga Kosheleva, Martine Ceberio and Vladik Kreinovich

1 Peak-End Rule: Description and Need for an Explanation

Peak-end rule: empirical fact. In many situations, people judge their overall expe-
rience by the peak and end pleasantness or unpleasantness, i.e., by using only the
maximum (minimum) and the last value; see, e.g., [1, 4].

This is true for people’s perception of the unpleasantness of a medical procedure,
of the quality of the cell phone perception, etc.

Need for an explanation. There is a lot of empirical evidence supporting the peak-end
rule, but not much of an understanding. However, at first glance, the rule appears
somewhat counter-intuitive: why only peak and last value? why not some average? In
this paper, we provide such an explanation based on the traditional decision making
theory.

2 Towards an Explanation

Traditional decision making theory: a brief reminder of utility approach. Our objec-
tive is to describe the peak-end rule in terms of the traditional decisionmaking theory.
According to decision theory, preferences of rational agents can be described in terms
of utility (see, e.g., [2, 3]): a rational agent selects an action with the largest value of
expected utility.
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Utility is not uniquely defined. Utility is usually defined modulo a linear transfor-
mation. In the above experiments, we usually have a fixed status quo level which
can be taken as 0. Once we fix this value at 0, the only remaining non-uniqueness in
describing utility is scaling u → k · u.

Need for a utility-averaging operation. We want to describe the “average” utility
corresponding to a sequence of different experiences. We assume that we know the
utility corresponding to each moment of time. To get an average utility value, we
need to combine these momentous utilities into a single average.

If we have already found the average utility corresponding to two consequent sub-
intervals of time, we then need to combine these two averages into a single average
corresponding to the whole interval. In other words, we need an operation a ∗ b that,
given the average utilities a and b corresponding to two consequent time intervals,
generates the average utility of the combined two-stage experience.

Natural properties of the utility-averaging operation.

(1) If we had the same average utility level a = b on both stages, then this same value
should be the two-stage average, i.e., we should have a ∗ a = a. In mathematical
terms, this means that the utility-averaging operation ∗ should be idempotent.

(2) If we make one of the stages better, then the resulting average utility should
increase (or at least not decrease) as well. In other words, the utility-averaging
operation ∗ should be monotonic in the sense that if a ≤ a′ and b ≤ b′ then
a ∗ b ≤ a′ ∗ b′.

(3) Small changes in one of the stages should lead to small changes in the overall
average utility; in precise terms, this means that the function a ∗ b must be
continuous.

(4) For a three-stage situation, with average utilities a, b, and c corresponding to the
three stages, we can compute the average utility in two different ways:

• we can first combine the utilities of the first two stages into an average value
a ∗ b, and then combine this average with c, resulting in (a ∗ b) ∗ c;

• alternatively, we can first combine the utilities b and c into b ∗ c, and then
combine a with b ∗ c, resulting in a ∗ (b ∗ c).

The resulting three-stage average should not depend on the order in which we
combined the stages, so we should have (a ∗ b) ∗ c = a ∗ (b ∗ c); in mathemat-
ical terms, the operation a ∗ b must be associative.

(5) Finally, since utility is defined modulo scaling, it is reasonable to require that
the utility-averaging operation does not change with scaling:

• In the original scale, we combine a and b and get a ∗ b. In the new scale
corresponding to a factor k > 0, this combined value has the form k · (a ∗ b).

• After re-scaling, the original utilities get the new values a′ = k · a and b′ =
k · b. Averaging these two values leads to a′ ∗ b′ = (k · a) ∗ (k · b) in the new
scale.
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The resulting average should not depend on how we deduced it, i.e., we should
have (k · a) ∗ (k · b) = k · (a ∗ b) for all k, a and b.

What we plan to do. Let us show that the above reasonable requirements largely
explain the peak-end phenomenon.

3 Main Result

Proposition 1 Let a ∗ b be a binary operation on the set of all non-negative numbers
which satisfies the following properties:

(1) it is idempotent, i.e., a ∗ a = a for all a;
(2) it is monotonic, i.e., a ≤ a′ and b ≤ b′ imply that a ∗ b ≤ a′ ∗ b′;
(3) it is continuous as a function of a and b;
(4) it is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c);
(5) it is scale-invariant, i.e., (k · a) ∗ (k · b) = k · (a ∗ b) for all k, a and b.

Then, this operation coincides with one of the following four operations:

• a1 ∗ · · · ∗ an = min(a1, . . . , an);
• a1 ∗ · · · ∗ an = max(a1, . . . , an);
• a1 ∗ · · · ∗ an = a1;
• a1 ∗ · · · ∗ an = an.

Comment. Thus, every utility-averaging operation which satisfies the above reason-
able properties means that we select either thse worst or the best or the first or the
last utility. This (almost) justifies the peak-end phenomenon, with the only exception
that in addition to peak and end, we also have the start a1 ∗ . . . ∗ an = a1 as one of
the options.

Proof

1◦. For every a ≥ 1, let us denote a ∗ 1 by ϕ(a). For a = 1, due to the idempotence,
ϕ(1) = 1 ∗ 1 = 1. Due to monotonicity, a ≤ a′ implies that ϕ(a) ≤ ϕ(a′), i.e., that
the function ϕ(a) is (non-strictly) increasing.

2◦. Due to associativity, for every a, we have (a ∗ 1) ∗ 1 = a ∗ (1 ∗ 1). Due to idem-
potence, 1 ∗ 1 = 1, so the above equality takes the form (a ∗ 1) ∗ 1 = a ∗ 1, i.e., the
form ϕ(ϕ(a)) = ϕ(a). Thus, for every value t from the range of the function ϕ(a)

for a ≥ 1, we have ϕ(t) = t .

3◦. Since the operation a ∗ b is continuous, the function ϕ(a) = a ∗ 1 is also con-

tinuous. Thus, its range S
def= ϕ([1,∞)) for a ∈ [1,∞) is a connected set, i.e., an

interval (finite or infinite). Since the function ϕ(a) is monotonic, and ϕ(1) = 1, this
interval must start with 1. So, we have three possible options:
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• S = {1};
• S = [1, k] or S = [1, k) for some k ∈ (1,∞);
• S = [1,∞).

Let us consider these three options one by one.

3.1◦. In the first case, ϕ(a) = a ∗ 1 = 1 for all a. From scale invariance, we can now

conclude that for all a ≥ b, we have a ∗ b = b ·
(a
b

∗ 1
)

= b · 1 = b.

3.2◦. In the second case, every value t between 1 and k is a possible value of ϕ(a),
thus ϕ(t) = t ∗ 1 = t for all such values t . In particular, for every ε > 0, for the value
t = k − ε, we have ϕ(k − ε) = k − ε. Due to monotonicity, the value ϕ(k) must be
not smaller than all these values k − ε, hence not smaller than k. On the other hand,
all the values ϕ(a) are less than or equal than k, so we must have ϕ(k) = k as well.
Similarly, for values t ≥ k, due to monotonicity, we have ϕ(t) ≥ k and since always
ϕ(t) ≤ k, we conclude that ϕ(t) = k for all t ≥ k. Now, due to associativity, we have

((k − ε)2 ∗ (k − ε)) ∗ 1 = (k − ε)2 ∗ ((k − ε) ∗ 1). (1)

Here, due to scale-invariance,

(k − ε)2 ∗ (k − ε) = (k − ε) · ((k − ε) ∗ 1) = (k − ε) · ϕ(k − ε) =
(k − ε) · (k − ε) = (k − ε)2, (2)

and therefore,

((k − ε)2 ∗ (k − ε)) ∗ 1 = (k − ε)2 ∗ 1 = ϕ((k − ε)2).

For k > 1, we have k2 > k and thus, for sufficiently small ε > 0, we have (k − ε)2 >

k. So, ϕ((k − ε)2) = k, i.e., the left-hand side of the equality (1) is equal to k.
Let us now compute the right-hand side of the equality (1). Here, (k − ε) ∗ 1 =

k − ε and thus, the right-hand side has the form (k − ε)2 ∗ (k − ε) which, as we
already know (Equation (2)), is equal to (k − ε)2. We already know that the left-
hand side is equal to k, and that (k − ε)2 > k. Thus, the equality (1) cannot be
satisfied. This proves that the second case is impossible.

3.3◦. In the third case, every value t ≥ 1 is a possible value of ϕ(a), thus

ϕ(t) = t ∗ 1 = t

for all values t ≥ 1. Thus, for all a ≥ b, we have a ∗ b = b ·
(a
b

∗ 1
)

= b · a
b

= a.
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4◦. Due to Part 3 of this proof, we have one of the following two cases:

≥1: for all a ≥ b, we have a ∗ b = b;
≥2: for all a ≥ b, we have a ∗ b = a.

Similarly, by considering a ≤ b, we conclude that in this case, we also have two
possible cases:

≤1: for all a ≤ b, we have a ∗ b = b;
≤2: for all a ≤ b, we have a ∗ b = a.

By combining each of the ≥ cases with each of the ≤ cases, we get the following
four combinations:

≥1,≤1: in this case, a ∗ b = b for all a and b, and therefore, a1 ∗ . . . ∗ an = an;
≥1,≤2: in this case, a ∗ b = min(a, b) for all a and b, and therefore,

a1 ∗ . . . ∗ an = min(a1, . . . , an);

≥2,≤1: in this case, a ∗ b = max(a, b) for all a and b, and therefore,

a1 ∗ . . . ∗ an = max(a1, . . . , an);

≥2,≤2: in this case, a ∗ b = a for all a and b, and therefore, a1 ∗ . . . ∗ an = a1.

The proposition is proven.

Case of negative utilities. The above formula shows how to combine positive expe-
riences. A similar result can be proven for situations in which we need to combine
unpleasant experiences, i.e., experience corresponding to negative utilities; the proof
of this result is similar to the proof of Proposition 1.

Remaining open problems. Following the psychological experiments, we only con-
sidered the case when all experiences are positive and the case when all experiences
are negative. What happens in the general case? If we impose an additional require-
ment of shift-invariance (a + u0) ∗ (b + u0) = a ∗ b + u0, then we can get a result
similar to Proposition 1 for this general case as well. But what if we do not impose
this additional requirement?

Are all five conditions in Proposition 1 necessary? Some are necessary:

(1) a ∗ b = a + b satisfies all the conditions except for idempotence;

(4) a ∗ b = a + b

2
satisfies all the conditions except for associativity;

(5) the operation a ∗ b that returns the value from the interval [min(a, b),max(a, b)]
which is the closest to 1 satisfies all the conditions except for scale invariance.

However, it is not clear whether monotonicity and continuity are needed to prove
our results.
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Comment. In analyzing the need for these conditions, it may help to know that
the set {z : z ∗ 1 = z} is a semigroup: indeed, if z1 ∗ 1 = z1 and z2 ∗ 1 = z2, then
(z1 · z2) ∗ (z1 ∗ 1) = (z1 · z2) ∗ z1 = z1 · (z2 ∗ 1) = z1 · z2 and ((z1 · z2) ∗ z1) ∗ 1 =
(z1 · z2) ∗ 1, so associativity implies that (z1 · z2) ∗ 1 = z1 · z2.
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Similarity Approach to Defining Basic Level
of Concepts Explained from the Utility
Viewpoint

Joe Lorkowski and Martin Trnecka

1 Formulation of the Problem

What are basic level concepts and why they are important. With the development
of new algorithms and faster hardware, computer systems are getting better and better
in analyzing images. Computer-based systems are not yet perfect, but in many cases,
they can locate human beings in photos, select photos in which a certain person of
interest appears, and perform many other practically important tasks.

In general, computer systems are getting better and better in performing well-
defined image understanding tasks. However, such systems are much less efficient
in more open-ended tasks, e.g., when they need to describe what exactly is described
by a photo.

For example, whenwe present, to a person, a photo of a dog and ask: “What is it?”,
most people will say “It is a dog”. This answer comes natural to us, but, somewhat
surprisingly, it is very difficult to teach this answer to a computer. The problem is that
from the purely logical viewpoint, the same photo can be characterized on a more
abstract level (“an animal”, “a mammal”) or on a more concrete level (“German
Shepherd”). In most situations, out of many possible concepts characterizing a given
object, concepts of different levels of generality, humans select a concept of a certain
intermediate level. Such preferred concepts are known as basic level concepts.

Weneed to describe basic level concepts in precise terms. Detecting basic level
concepts is very difficult for computers. The main reason for this difficulty is that
computers are algorithmic machines. So, to teach computers to recognize basic level
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concepts, we need to provide an explanation this notion in precise terms—and we
are still gaining this understanding.

Current attempts to describe basic level concepts in precise terms: a brief
description. When we see a picture, we make a decision which of the concepts to
select to describe this picture. In decision making theory, it is known that a consistent
decision making can be described by utility theory, in which to each alternative A,
we put into correspondence a number u(A) called its utility—in such a way that a
utility of a situation in which we have alternatives Ai with probabilities pi is equal
to

∑
pi · u(Ai ); see, e.g., [4, 5, 8, 10, 12].

Naturally, researchers tried to use utility theory to explain the notion of basic level
concepts; see, e.g., [3, 6, 7, 14]. In this approach, researchers analyze the effect of
different selections on the person’s behavior, and come up with the utility values
that describes the resulting effects. The utility-based approach describes the basic
level concepts reasonably well, but not perfectly. Somewhat surprisingly, a different
approach—called similarity approach—seems to be more adequate in describing
basic level concepts. The idea behind this approach was proposed in informal terms
in [13] and has been described more formally in [11]. Its main idea is that in a
hierarchy of concepts characterizing a given object, a basic level concept is the one
for which the degree of similarity between elements is much higher than for the more
abstract (moregeneral) concepts and slightly smaller than for themore concrete (more
specific) concepts. For example, we select a dog as a basic level concept because the
degree of similarity between different dogs is much larger than similarity between
differentmammals—but, on the other hand, the degree of similarity between different
German Shepherds is not thatmuch higher than the degree of similarity between dogs
of various breeds.

In our papers [1, 2], we transformed somewhat informal psychological ideas into
a precise algorithms and showed that the resulting algorithms are indeed good in
detecting basic level concepts.

Challenging question. From the pragmatic viewpoint, that we have an approach
that works well is good news. However, from the methodological viewpoint, the
fact that a heuristic approach works better than a well-founded approach based on
decision theory—which describes rational human behavior—is a challenge.

Whatwedo in this paper:main result. In this paper,we show—on the qualitative
level—that the problem disappears if we describe utility more accurately: under this
more detailed description of utility, the decision-making approach leads to the above-
mentioned similarity approach.

What we do in this paper: auxiliary result. It is usually more or less clear how
to define degree of similarity—or, equivalent, degree of dissimilarity (“distance”
d(x, y)) between two objects. There are several possible approaches to translate
this distance between objects into distance between concepts (classes of objects).
We can use worst-case distance d(A, B) defined as the maximum of all the values
d(x, y) for all x ∈ A and y ∈ B. Alternatively, we can use average distance as the
arithmetic average of all the corresponding values d(x, y). In [1], we compared
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these alternatives; it turns out that the average distance leads to the most adequate
description of the basic level concepts.

In this paper, we provide a (qualitative) explanation of this empirical fact as well.

2 Analysis of the Problem and the Resulting Solution

What is the utility associated with concepts of different levels of generality. In
the ideal world, when we make a decision in a certain situation, we should take
into account all the information about this situation, and we should select the best
decision based on this situation.

In practice, our ability to process information is limited. As a result, instead of
taking into account all possible information about the object, we use aword (concept)
to describe this notion, and then we make a decision based only on this word: e.g., a
tiger or a dog. Instead of taking into account all the details of the fur and of the face,
we decide to run away (if it is a tiger) or to wave in a friendly manner (if it is a dog).

In other words, instead of making an optimal decision for each object, we use the
same decision based on an “average” object from the corresponding class. Since we
make a decision without using all the information, based only on an approximate
information, we thus lose some utility; see, e.g., [9] for a precise description of this
loss.

From this viewpoint, the smaller the classes, the less utility we lose. This is what
was used in the previous utility-based approaches to selecting basic level concepts.

However, if the classes are too small, we need to store and process too much
information—and the need towaste resources (e.g., time) to process all this additional
information also decreases utility. For example, instead of coming up with strategies
corresponding to a few basic animals, we can develop separate strategies for short
tigers, medium size tigers, larger tigers, etc.—but this would take more processing
time and use memory resources which may be more useful for other tasks. While
this is a concern, we should remember that we have billions of neurons, enough to
store and process huge amounts of information, so this concern is rather secondary
in comparison with a different between being eaten alive (if it is a tiger) or not (if it
is a dog).

Howto transform the above informal description of utility into precise formu-
las and how this leads to the desired explanations. The main reason for disutility
(loss of utility) is that in a situation when we actually have an x , we use an approach
which is optimal for a similar (but slightly different) object y. For example, instead
of making a decision based on observing a very specific dog x , we ignore all the
specifics of this dog, and we make a decision based only one the fact that x is a dog,
i.e., in effect, we make a decision based on a “typical” dog y.



110 J. Lorkowski and M. Trnecka

The larger the distanced(x, y)between the objects x and y, the larger this disutility
U . Intuitively, different objects within the corresponding class are similar to each
other—otherwise they would not be classified into the same class. Thus, the distance
d(x, y) between objects from the same class is small. We can therefore expand the
dependence of U on d(x, y) in a Taylor series and keep only the first few terms in
this dependence. In general,U = a0 + a1 · d + a2 · d2 + · · · When the distance is 0,
i.e., when x = y, there is no disutility, soU = 0. Thus, a0 = 0 and the first non-zero
term in the Taylor expansion is U ≈ a1 · d(x, y).

Once we act based on the class label (“concept”), we only know that an object
belongs to the class, we do not know the exact object within the class. We may have
different objects from this class with different probabilities. By the above property
of utility, the resulting disutility of selecting a class is equal to the average value
of the disutility—and is, thus proportional to the average distance d(x, y) between
objects from a given class. This explains why average distance works better then the
worst-case distance.

When we go from a more abstract concept (i.e., from a larger class) to a more
specific concept (i.e., to a smaller class of objects), the average distance decreases—
and thus, the main part Um of disutility decreases: U ′

m < Um . However, as we have
mentioned, in addition to this main part of disutility Um , there is also an additional
secondary (smaller) part of utilityUs � Um , which increases when we go to a more
specific concept: U ′

s > Us .
On the qualitative level, this means the following: if the less general level has a

much smaller degree of similarity (i.e., a drastically smaller average distance between
the objects on this level), then selecting a concept on this less general level drastically
decreases the disutility U ′

m � Um , and this decrease Um −U ′
m � 0 overwhelms

the (inevitable) increase U ′
s −Us in the secondary part of disutility, so that U ′ =

Um +U ′
s < Um +Us = U . On the other hand, if the decrease in degree of similarity

is small (i.e.,U ′
m ≈ Um), the increase in the secondary part of disutilityU ′

s −Us can
over-stage the small decrease U ′

m −Um .
A basic level concept is a concept for which disutilityU ′ is smaller than for amore

general conceptU and than for a more specific conceptU ′′. In view of the above, this
means that there should be a drastic difference between the degree of similarity U ′

m
at this level and the degree of similarity Um at the more general level—otherwise,
on the current level, we would not have smaller disutility. Similarly, there should be
a small difference between the degree of similarity at the current level U ′

m and the
degree of similarity U ′′

m at the more specific level—otherwise, on the current level,
we would not have smaller disutility. This explains the similarity approach in utility
terms.
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Comparisons of Measurement Results
as Constraints on Accuracies of Measuring
Instruments: When can we Determine
the Accuracies from These Constraints?

Christian Servin and Vladik Kreinovich

1 Formulation of the Problem

Need to determine accuracies of measurement instruments. Most information
comes from measurements. Measurement results are never absolutely accurate: the
measurement result x̃ is, in general, different from the actual (unknown) value x of
the corresponding quantity; see, e.g., [7]. To properly process data, it is therefore
important to know how accurate are our measurements.

Ideally, wewould like to knowwhat are the possible values of measurement errors

Δx
def= x̃ − x , and how frequent are different possible values of Δx . In other words,

we would like to know the probability distribution on the set of all possible values
of the measurement error Δx .

How accuracies are usually determined: by using a second,muchmore accurate
measuring instrument. One usual way to find the desired probability distribution
is to have a second measuring instrument which is much more accurate than the
one that we want to estimate. In this case, the measurement error Δx2 = x̃2 − x of
this second instrument is much smaller than Δx = x̃ − x and thus, the difference
x̃ − x̃2 = (̃x − x) − (̃x2 − x) between the two measurement results can serve as a
good approximation to the measurement error. From the sample of such differences,
we can therefore find the desired probability distribution for Δx .

What if we do not have a more accurate measuring instrument? But what if the
measuring instrument whose accuracy we want to estimate is among the best? In this
case, we do not have a much more accurate measuring instrument. What can we do
in this case?
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In such situations, we can use the fact that there usually, there are severalmeasur-
ing instrument of the type that wewant to analyze. Due tomeasurement errors, for the
same quantity, these instruments, in general, produce slightly different measurement
results. It is therefore desirable to try to extract the information about measurement
accuracies from the differences between these measurement results.

Two possible situations. In some cases, we have a stable manufacturing process that
produces several practical identical measuring instruments, for which the probability
distributions of measurement error are the same. In such cases, all we need to find is
this common probability distribution.

In other cases, we cannot ignore the differences between different instruments.
In this case, for each individual measuring instrument, we need to find its own
probability distribution.

What is known: case of normal distribution. In many practical situations, the
measurement error is caused by the joint effect of numerous independent small
factors. In such situations, the Central Limit Theorem (see, e.g., [9]) implies that this
distribution is close to Gaussian.

A Gaussian distribution is uniquely determined by its mean (bias) and standard
deviation σ . When we only know the differences, we cannot determine the bias: it
could be that all the measuring instruments have the same bias, and we will never
determine that since we only see the differences. Thus, it makes sense to limit our-
selves only to the random component of the measurement error, i.e., to the measure-
ment error minus its mean value.

For this “re-normalized” measurement error Δx , the mean is 0. So, all we need
to determine is the standard deviation σ . These standard deviations can indeed be
determined; see, e.g., [4, 8].

Specifically, hen we have two identical independent measuring instruments, with
normally distributedmeasurement errorsΔx1 andΔx2, then the difference x̃2 − x̃1 is
also normally distributed, with variance V = σ 2 + σ 2 = 2σ 2. Thus, once we exper-
imentally determine the variance V of this observable difference, we can compute

the desired variance σ 2 as σ 2 = V

2
.

When we have several different measuring instruments, with unknown standard
deviations σ1, σ2, σ3, …, then for each observable difference x̃i − x̃ j the variance
is equal to Vi j = σ 2

i + σ 2
j . Thus, once we experimentally determine the three vari-

ances V12, V23, and V13, we can find the desired standard deviations by solving
the corresponding system of three equations with three unknowns: V12 = σ 2

1 + σ 2
2 ,

V23 = σ 2
2 + σ 2

3 , and V13 = σ 2
1 + σ 2

3 , whose solution is:

σ 2
1 = V12 + V13 − V23

2
, σ 2

2 = V12 + V23 − V13

2
,

σ 2
3 = V13 + V23 − V12

2
.
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Problem: what if distributions are not Gaussian? Empirical analysis of measur-
ing instruments shows that only slightly more than a half of them have Gaussian
measurement errors [3, 6]. What happens in the non-Gaussian case? In such cases,
sometimes, we simply cannot uniquely reconstruct the corresponding distributions;
see, e.g., [8]. In this paper, we explain when such a reconstruction is possible and
when it is not possible.

2 Idea: Let us use Moments

Motivation for using moments. As we have mentioned, a Gaussian distribution
with zero mean is uniquely determined by its second moment M2 = σ 2. This means

that all higher moments Mk
def= E[(Δx)k] are uniquely determined by the value M2.

In general, we may have values of Mk which are different from the corresponding
Gaussian values. Thus, to describe a general distribution, in addition to the second
moment, we also need to describe its higher moments as well.

Moments are sufficient to uniquely describe a distribution: reminder. But even if
we know all the moments, will it be sufficient to uniquely determine the correspond-
ing probability distribution? The answer is yes, it is possible, and let us provide a
simple reminder ofwhy it is possible—and howcanwe reconstruct the corresponding
distribution.

The usual way to represent a probability distribution of a random variable Δx is
by describing its probability density function (pdf) ρ(Δx). In many situations, it is
convenient to use its characteristic function

χ(ω)
def= E[exp(i · ω · Δx)],

where i
def= √−1, i.e.,

χ(ω) =
∫

ρ(Δx) · exp(i · ω · Δx) dΔx .

From themathematical viewpoint, the characteristic function is the Fourier transform
of the pdf, and it is known that we can uniquely reconstruct a function from its Fourier
transform (this reconstruction is known as the inverse Fourier transform); see, e.g.,
[1, 2, 5, 10].

On the other hand, if we use Taylor expansion of the exponential function

exp(z) = 1 + z + z2

2! + z3

3! + · · · + zk

k! + · · · ,

then the characteristic functions takes the form
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χ(ω) = E

[

1 + i · ω · Δx − 1

2! · ω2 · (Δx)2 + · · · + ik

k! · ωk · (Δx)k + · · ·
]

,

i.e.,

χ(ω) = 1 − 1

2
· ω2 · M2 + · · · + ik

k! · ωk · Mk + · · ·

Thus, if we know all the moments Mk , we can uniquely reconstruct the characteristic
function and thus, uniquely reconstruct the desired pdf.

Important fact: for a symmetric distribution, odd moments are zeros. In the
following analysis, it is important to use the fact that for a symmetric distribution,
i.e., a distribution for which ρ(−Δx) = ρ(Δx), add odd moments M2s+1 are equal
to 0:

M2s+1 =
∫

ρ(Δx) · (Δx)2s+1 dΔx .

Indeed, if we replace Δx to Δx ′ def= −Δx , then dΔx = −dΔx ′, (Δx)2s+1 =
−(Δx ′)2s+1 and thus, the above integral takes the form

M2s+1 = −
∫

ρ(−Δx ′) · (Δx ′)2s+1 dΔx ′ = −
∫

ρ(Δx ′) · (Δx ′)2s+1 dΔx ′,

so M2s+1 = −M2s+1 and hence, M2s+1 = 0.

3 Case when have Several Identical Measuring Instruments

Description of the case: reminder. In this cases, we have several measuring instru-
ments, with the same probability distribution and thus, with the same moments M2,
M3, etc. The only available information consists of the differences Δx1 − Δx2 =
x̃1 − x̃2. Based on the observations, we can determine the probability distribution for
each such difference, and thus, we can determine the moments M ′

k of this difference.
We would like to use these observable moments M ′

k = E[(Δx1 − Δx2)k] to find
the desired differences Mk = E[(Δx)k].
What is known: case of second moments. For k = 2, we have M ′

2 = 2M2 and
thus, we can uniquely reconstruct the desired second moment M2 from the observed
second moment M ′

2.

Natural next case: third moments. Can we similarly reconstruct the desired third
moment M3 = E[(Δx)3] based on the observed third moment
M ′

3 = E[(Δx1 − Δx2)3]?
Here,

(Δx1 − Δx2)
3 = (Δx1)

3 − 3 · (Δx1)
2 · Δx2 + 3 · Δx1 · (Δx2)

2 − (Δx2)
3,
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so, due to linearity of the mean and to the fact that the measurement errors Δx1 and
Δx2 corresponding to two measuring instruments are assumed to be independent,
we conclude that

M ′
3 = E[(Δx1 − Δx2)

3] = E[(Δx1)
3] − 3 · E[(Δx1)

2] · E[Δx2]+

3 · E[Δx1] · E[(Δx2)
2] − E[(Δx2)

3].

In this case, E[Δxi ] = 0 and E(Δx1)3] = E[(Δx2)3] = M3, so

M ′
3 = M3 − M3 = 0.

In other words, the observed third moment M ′
3 is always equal to 0, and thus, carries

no information about M3.
So, the only case when we can reconstruct M3 is when we know it already. One

such case is when we know that the distribution is symmetric. In turns out that in
this case, we can reconstruct all the moments and thus, we can uniquely reconstruct
the original probability distribution.

When the probability distribution of the measurement error is symmetric, this
distribution can be uniquely determined from the observed differences. For a
symmetric distribution, all odd moments are equal to 0. Thus, to uniquely determine
a symmetric distribution, it is sufficient to determine all its even moments M2s . Let
us prove, by induction, that we can reconstruct all these even moments.

We already know that we can reconstruct M2. Let us assume that we already
know how to reconstruct the moments M2, …, M2s . Let us show how to reconstruct
the next moment M2s+2 = E[(Δx)2s+2]. For this, we will use the observed moment
M ′

2s+2 = E[(Δx1 − Δx2)2s+2]. Here,

(Δx1 − Δx2)
2s+2 = (Δx1)

2s+2 − (2s + 2) · (Δx1)
2s+1 · Δx2+

(2s + 2) · (2s + 1)

1 · 2 · (Δx1)
2s · (Δx2)

2 − . . . +

(2s + 2) · (2s + 1)

1 · 2 · (Δx1)
2 · (Δx2)

2s − (2s + 2) · Δx1 · (Δx2)
2s+1 + (Δx2)

2s+2.

Thus,
M ′

2s+2 = E[(Δx1)
2s+2] − (2s + 2) · E[(Δx1)

2s+1] · E[Δx2]+
(2s + 2) · (2s + 1)

1 · 2 · E[(Δx1)
2s] · E[(Δx2)

2] − . . . +

(2s + 2) · (2s + 1)

1 · 2 · E[(Δx1)
2] · E[(Δx2)

2s]−
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(2s + 2) · E[Δx1] · E[(Δx2)
2s+1] + E[(Δx2)

2s+2],

i.e.,

M ′
2s+2 = M2s+2 + (2s + 2) · (2s + 1)

1 · 2 · M2s · M2 + . . . +

(2s + 2) · (2s + 1)

1 · 2 · M2 · M2s + M2s+2.

Thus,

2M2s+2 = M ′
2s+2 − (2s + 2) · (2s + 1)

1 · 2 · M2s · M2 − . . . −

(2s + 2) · (2s + 1)

1 · 2 · M2 · M2s .

We know the value M ′
2s+2, and we assumed that we have already shown that we

can uniquely determine the moments M2, …, M2s . Thus, we can indeed uniquely
determine the moment M2s+2.

Induction proves that we can indeed determine all the even moments.

4 Case when have Several Different Measuring Instruments

Description of the case: reminder. In this case, we have several measuring instru-
ments with, in general, different probability distributions. For each of the measuring
instruments i , we want to find the corresponding moments

Mk,i = E[(Δxi )
k].

To find these moments, we can use the observe moments

M ′
k,i, j = E[(Δxi − Δx j )

k].

What is known: case of second moments. For k = 2, we have M ′
2,i, j = M2,i +

M2, j , so we can uniquely reconstruct the desired second moments M2,i from the
observed moments M ′

2,i, j by using the following formulas:

M2,1 = M ′
2,1,2 + M ′

2,1,3 − M ′
2,2,3

2
, M2,2 = M ′

2,1,2 + M ′
2,2,3 − M ′

2,1,3

2
,

M2,3 = M ′
2,1,3 + M ′

2,2,3 − M ′
2,1,2

2
.
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Natural next case: third moments. Can we similarly reconstruct the desired
third moments M3,i = E[(Δxi )3] based on the observed third moments M ′

3,i, j =
E[(Δxi − Δxi )3]?

Here,

(Δxi − Δx j )
3 = (Δxi )

3 − 3 · (Δxi )
2 · Δx j + 3 · Δxi · (Δx j )

2 − (Δx j )
3,

so, due to linearity of the mean and to the fact that the measurement errors Δxi and
Δx j corresponding to two measuring instruments are assumed to be independent,
we conclude that

M ′
3,i, j = E[(Δxi − Δx j )

3] = E[(Δxi )
3] − 3 · E[(Δxi )

2] · E[Δx j ]+

3 · E[Δxi ] · E[(Δx j )
2] − E[(Δx j )

3].

In this case, E[Δxi ] = E[Δx j ] = 0 and E(Δxi )3] = M3,i , so

M ′
3,i, j = M3,i − M3, j .

Since we only know the differences between the their moments, we cannot uniquely
reconstruct these moments M3,i : for example, if we add a constant to all the values
M3,i , all the observed differences will not change.

So, the only case when we can reconstruct the third moments M3,i is when we
have some information about them already. One such case is when we know that for
one of the measuring instruments, the probability distribution of measurement errors
is symmetric. In turns out that in this case, we can reconstruct all the moments and
thus, we can uniquely reconstruct all the original probability distributions.

When the probability distribution of one of the measurement errors is symmet-
ric, all distributions can be uniquely determined from the observed differences.
Without losing generality, let us assume that the probability distribution of the mea-
surement error is symmetric for the 1st measuring instrument. For a symmetric dis-
tribution, all odd moments are equal to 0; thus, we have M2s+1,1 = 0 for all s. Let us
prove, by induction, that we can reconstruct all the moments of all the distributions.

We already know that we can reconstruct the secondmomentsM2,i . Let us assume
that we already know how to reconstruct the moments M2,i , …, Mn,i . Let us show
how to reconstruct the next moments Mn+1,i = E[(Δxi )n+1]. For this, we will use
the observed moments M ′

n+1,i, j = E[(Δxi − Δx j )
n+1]. We will consider two cases:

• when n is odd, i.e., n = 2s + 1 and n + 2 = 2s + 2, and
• when n is even, i.e., n = 2s and n + 1 = 2s + 1.

First case. Let us first consider the first case. Here,

(Δxi − Δx j )
2s+2 = (Δxi )

2s+2 − (2s + 2) · (Δxi )
2s+1 · Δx j+
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(2s + 2) · (2s + 1)

1 · 2 · (Δxi )
2s · (Δx j )

2 − . . . +

(2s + 2) · (2s + 1)

1 · 2 · (Δxi )
2 · (Δx j )

2s − (2s + 2) · Δxi · (Δx j )
2s+1 + (Δx j )

2s+2.

Thus,

M ′
2s+2,i, j = E[(Δxi )

2s+2] − (2s + 2) · E[(Δxi )
2s+1] · E[Δx j ]+

(2s + 2) · (2s + 1)

1 · 2 · E[(Δxi )
2s] · E[(Δx j )

2] − . . . +

(2s + 2) · (2s + 1)

1 · 2 · E[(Δxi )
2] · E[(Δx j )

2s]−

(2s + 2) · E[Δxi ] · E[(Δx j )
2s+1] + E[(Δx j )

2s+2],

i.e.,

M ′
2s+2,i, j = M2s+2,i + (2s + 2) · (2s + 1)

1 · 2 · M2s,i · M2, j + . . . +

(2s + 2) · (2s + 1)

1 · 2 · M2,i · M2s, j + M2s+2, j .

Thus,

M2s+2,i + M2s+2, j = si j
def= M ′

2s+2,i, j − (2s + 2) · (2s + 1)

1 · 2 · M2s,i · M2, j − . . . −

(2s + 2) · (2s + 1)

1 · 2 · M2i · M2s, j .

We know the value M ′
2s+2,i, j , and we assumed that we have already shown that we

can uniquely determine themomentsM2,i ,…,M2s+1,i . Thus, we can indeed uniquely
determine the values si j = M2s+2,i + M2s+2, j .

Based on these values, we can uniquely reconstruct the moments Mn+1,i =
M2s+2,i as follows:

M2s+2,1 = s12 + s13 − s23
2

, M2s+2,2 = s12 + s23 − s13
2

,

M2s+2,3 = s13 + s23 − s12
2

.
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Second case. Let us now consider the second case, when n = 2s and n + 1 = 2s + 1.
Since we assumed that for the first measuring instrument, the probability distribution
is symmetric, we get M2s+1,1 = E[(Δx1)2s+1] = 0.

For every i �= 1, we have

(Δxi − Δx1)
2s+1 = (Δxi )

2s+1 − (2s + 2) · (Δxi )
2s · Δx1+

(2s + 1) · 2s
1 · 2 · (Δxi )

2s−1 · (Δx1)
2 − . . . +

(2s + 1) · 2s
1 · 2 · (Δxi )

2 · (Δx1)
2s−1 − (2s + 1) · Δxi · (Δx1)

2s + (Δx1)
2s+1.

Thus,

M ′
2s+1,i,1 = E[(Δxi )

2s+1] − (2s + 2) · E[(Δxi )
2s+1] · E[Δx1]+

(2s + 1) · 2s
1 · 2 · E[(Δxi )

2s−1] · E[(Δx1)
2] − . . . +

(2s + 1) · 2s
1 · 2 · E[(Δxi )

2] · E[(Δx1)
2s−1]−

(2s + 1) · E[Δxi ] · E[(Δx1)
2s] + E[(Δx1)

2s+1],

i.e.,

M ′
2s+1,i,1 = M2s+1,i + (2s + 1) · 2s

1 · 2 · M2s−1,i · M2,1 + . . . +

Thus,

M2s+1,i = M ′
2s+1,i,1 − (2s + 1) · 2s

1 · 2 · M2s,i · M2,1 − . . . .

We know the value M ′
2s+1,i,1, and we assumed that we have already shown that we

can uniquely determine the moments M2,i , …, M2s,i . Thus, we can indeed uniquely
determine the moments Mn+1,i = M2s+1,i .

Conclusion. In both cases, the induction step is proven, so induction proves that we
can indeed determine all the moments of all the distributions.
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Dow Theory’s Peak-and-Trough Analysis
Justified

Chrysostomos D. Stylios and Vladik Kreinovich

1 Formulation of the Problem

Peak-and-trough analysis. In the early 20th century, a theory—known as Dow
Theory—was developed for forecasting the behavior of different prices, such as
stock prices, equity prices, etc. The main idea behind this theory is that:

• similarly to calculus, where the important first step in the analysis of a function is
finding its local minima and maxima,

• the important information about the changes in stockmarket prices can be obtained
if we mark local maxima (“peaks”) and local minima (“troughs”); see, e.g., [4, 6].

This analysis is still in use. The resulting peak-and-trough analysis was widely
used in the 1920s and early 1930s, until a paper [3] showed the deficiency of the
corresponding forecasting techniques.

This paper used then-prevalent expected-return values to analyze the quality of
theDowTheory recommendations. By the 1990s, however, it became clear that when
comparing different stock recommendations, it is important to also take into account
the corresponding risks.

It turns out that ifwe take risk into account, then theDowTheory recommendations
are not inferior at all, these predictions are actually reasonably good; see, e.g., [7].
As a result, the peak-and-trough analysis has been revived—and it is still used in
financial analysis.
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Comment. The actual dependence of the stock prices (and other prices) on time
t comes with noise: random fluctuations caused by many random factors. From the
purely mathematical viewpoint, this means that the dependence oscillates all the
time, so almost every moment of time has it local minima and local maxima. What
the peak-and-trough analysis suggest, of course, is not to use all these moments of
time, but only to use moments of true local minima and maxima, i.e., moments when
we can be sure that the local extremum is not cause by the noise itself.

So, to apply this analysis, we need first to be able to distinguish between local
extrema which may be due to noise and the real local extrema. There exist efficient
algorithms for making this distinction. For example, in situations when all we know
about the noise n(t) is that its absolute value |n(t)| is bounded by some value n0
(|n(t)| ≤ n0), there is an efficient (linear time) algorithm for detecting real local
extrema; see, e.g., [12].

Similar ideas works well in engineering as well.Whenwe only take into account
the local extrema, this means that:

• for all the moments of time between a local maximum and the following local
minimum, the value x(t) decreases; we do not have any information about how
exactly it decreases, we only know that is decreases;

• similarly, for all the moments of time between a local minimum and the following
local maximum, the value x(t) increases; we do not have any information about
how exactly it increases, we only know that it increases.

In other words, for each moment of time t , we only have one of the following three
pieces of information about how the signal x(t) changes in the small vicinity of this
moment t :

• we may know that there is a local extremum in this vicinity; in this case, in this
vicinity, the value x(t) practically does not change,

• we may know that the value x(t) decreases in this vicinity,
• or, alternatively, we may know that the value x(t) increases in this vicinity.

Interestingly, many efficient methods of signal compression—starting with the so-
called delta-modulation—are based on recording, for each moment of time, exactly
one of these three situations: 0 (no change), − (decrease), or + (increase); see, e.g.,
[1, 2, 5, 8, 10, 13].

Why is peak-and-trough analysis efficient? What is not clear is why the peak-
and-trough analysis, an analysis that ignores all monotonicity segments and only
takes into account the local extrema, is efficient.

Comment. Similarly to financial applications, from the theoretical viewpoint, the
engineering-oriented empirical success of delta-modulation techniques is also largely
a mystery.

What we do in this paper. In this paper, we provide a possible explanation for
the efficiency of peak-and-trough techniques.
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2 Our Explanation

In the first approximation, it is reasonable to only process the most important
values. Ideally, we should take into account the values x(t) of the stock price at
all moments of time t . The problem is that there is a large amount of these data
points, and without a clear understanding of the underlying processes, it is difficult
to meaningfully process all this data.

It is therefore reasonable, in the first approximation, to only concentrate on the
most important stock price values and ignore the less important values.

Which values should we take into account? As the stock price fluctuates, it
attains different values x . Some values appear more frequently, some values appear
more rarely. It therefore makes sense to concentrate on the prices that appear the
largest number of times.

Of course, from the practical viewpoint, very close values x can be viewed as
identical. So, when we talk about the time that a value x appears, we mean the time
when the value x(t) is within an interval [x − δ, x + δ] for some small δ > 0.

How to decide which values are most frequent?Thevalues x(t) are rarely stable,
then usually change with time. Thus, the time period during which the value is within
a given interval [x − δ, x + δ] is small. If we had x(t0) = x for some moment t0,
this means that the neighboring moments of time t at which x(t) ∈ [x − δ, x + δ]
are close to t0, i.e., have the form t = t0 + Δt , whereΔt � t0. For such small values
Δt , we can ignore quadratic and higher order terms in the dependence of x(t) on t ,
and use the linear approximation

x(t0 + Δt) ≈ x(t0) + x ′(t0) · Δt = x + x ′(t0) · Δt. (1)

Thus, the length � of the time interval during which

x(t) = x(t0 + Δt) ∈ [x − δ, x + δ]

is equal to

� = 2δ

|x ′(t0)| . (2)

Resulting explanation. We have decided to only consider the values x(t0) for which
this time interval � is large. According to the formula (2), this means that we should
only consider the values x(t0) at the moments t0 at which the derivative x ′(t0) is
close to 0—i.e., only the values in the vicinity of points where the derivative is equal
to 0. These points are exactly local minima and local maxima—as well as possible
non-minimum and non-maximum stationary points.

Thus, we indeed have an explanation of why the peak-and-trough strategy is
successful.
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3 Additional Theoretical Confirmation of Our Justification

Another situation where extreme points frequently occur. B. S. Tsirelson noticed
[11] that in many cases, when we reconstruct the signal from the noisy data, and we
assume that the resulting signal belongs to a certain class, the reconstructed signal
is often an extreme point from this class. For example:

• when we assume that the reconstructed signal is monotonic, the reconstructed
function is often (piece-wise) constant;

• if we additional assume that the signal is smooth (one time differentiable, from the
classC1), the result is usually one timedifferentiable but rarely twice differentiable,
etc.

This situation has an explanation. To explain this phenomenon, Tsirelson provided
the following geometric explanation to this fact: namely, when we reconstruct a
signal from a mixture of a signal and a Gaussian noise, then themaximum likelihood
estimation (a traditional statistical technique; see, e.g., [9]) means that we look for a
signal that belongs to the priori class, and that is the closest (in the L2-metric) to the
observed “signal+noise”.

In particular, if the signal is determined by finitely many (say, d) parameters, we
must look for a signal s = (s1, . . . , sd) from the a priori set A ⊆ Rd that is the closest
(in the usual Euclidean sense) to the observed values

o = (o1, . . . , od) = (s1 + n1, . . . , sd + nd),

where ni denotes the (unknown) values of the noise.
Since the noise is Gaussian, we can usually apply the Central Limit Theorem [9]

and conclude that the average value of (ni )2 is close to σ 2, where σ is the standard
deviation of the noise. In other words, we can conclude that

(n1)
2 + · · · + (nd)

2 ≈ d · σ 2.

In geometric terms, this means that the distance

√
√
√
√

d
∑

i=1

(oi − si )2 =
√
√
√
√

d
∑

i=1

n2i

between s and o is ≈ σ · √d. Let us denote this distance σ · √
d by ε.

Let us first, for simplicity, consider the case when d = 2, and when A is a convex
polygon. Then, we can divide all points p from the exterior of A that are ε-close to
A into several zones depending on what part of A is the closest to p:

• one of the sides, or
• one of the edges.
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Geometrically, the set of all points for which the closest point a ∈ A belongs to
the side e is bounded by the straight lines orthogonal (perpendicular) to e. The total
length of this set is therefore equal to the length of this particular side; hence, the total
length of all the points that are the closest to all the sides is equal to the perimeter of
the polygon. This total length thus does not depend on ε at all.

On the other hand, the set of all the points at the distance ε from A grows with the
increase in ε; its length grows approximately as the length of a circle, i.e., as const·ε.

When ε increases, the (constant) perimeter is a vanishing part of the total length.
Hence, for large ε:

• the fraction of the points that are the closest to one of the sides tends to 0, while
• the fraction of the points p for which the closest is one of the edges tends to 1.

Similar arguments can be repeated for any dimension. For the same noise level
σ , when d increases, the distance ε = σ · √d also increases, and therefore, for large
d, for “almost all” observed points o, the reconstructed signal is one of the extreme
points of the a priori set A.

A similar explanation can be applied to our case as well. In our case, as
we showed in the previous section, extreme values are also much more frequently
observed than others. Thus, our argument can be viewed as a particular case of the
general geometric explanation proposed by Tsirelson.

Acknowledgements This work was supported in part by the National Science Foundation grants
HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721. This
work was performed when C. Stylios was a Visiting Researcher at the University of Texas at El
Paso.

The authors are thankful to Djuro Zrilic for valuable discussions.

References

1. Bourdopoulos,G.I., Pnevmatikakis,A.:Delta-SigmaModulators:Modeling,Design andAppli-
cations. Imperial College Press, London, UK (2003)

2. Breems, L., Huijsing, J.: Continuous-Time Sigma-Delta Modulation for A/D Conversion in
Radio Receivers. Springer Verlag, New York (2013)

3. Cowles, A.: Can stock market forecasters forecast? Econom. 1(3), 309–324 (1933)
4. Hamilton, W.P.: The Stock Market Barometer: A Study of its Forecast Value Based on Charles

H. Dow’s Theory of the Price Movement. Barrons, New York (1922)
5. Janssen, E., van Roermund, A.: Look-Ahead Based Sigma-Delta Modulation. Springer, Dor-

drecht, Heidelberg, London, New York (2011)
6. Rhea, R.: The Dow Theory. Barron’s, New York (1932)
7. Schannep, J.: Dow Theory for the 21st Century: Technical Indicators for Improving Your

Investment Results. Wiley, New York (2008)
8. Schreier, R., Temes, G.C.: Understanding Delta-Sigma Data Converters. IEEE Press, Piscat-

away, New Jersey (2004). Wiley, Hoboken, New Jersey
9. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman

& Hall/CRC, Boca Raton, Florida (2011)
10. Sira-Ramírez, H.: Sliding Mode Control: The Delta-SigmaModulation Approach. Birkhäuser,

Basel, Switzerland (2015)



128 C.D. Stylios and V. Kreinovich

11. Tsirel’son, B.S.: A geometrical approach to maximum likelihood estimation for infinite-
dimensional Gaussian location. I. Theory Probab. Appl. 27, 411–418 (1982)

12. Villaverde, K., Kreinovich, V.: A linear-time algorithm that locates local extrema of a function
of one variable from interval measurement results. Interval Comput. 4, 176–194 (1993)

13. Zrilic, D.G.: Circuits and Systems Based on Delta Modulation: Linear Nonlinear and Mixed
Mode Processing. Springer, Berlin, Heidelberg (2010)


	Preface
	References

	Contents
	Why Deep Neural Networks: A Possible Theoretical Explanation
	1 Formulation of the Problem
	2 Why Deep Neural Networks: Our Explanation
	3 Conclusion
	References

	Abstract Argumentation Frameworks  to Promote Fairness and Rationality  in Multi-experts Multi-criteria  Decision Making
	1 Introduction
	2 Preliminary Notions
	2.1 Multi-criteria Decision Making (MCDM)
	2.2 Argumentation Frameworks

	3 Proposed Model for MEMCDM Using Argumentation Frameworks
	3.1 Arguments
	3.2 Attacks

	4 A Simple Example
	4.1 Towards Decision Making

	5 Conclusion and Future Work
	References

	Constraint Approach to Multi-objective Optimization
	1 Formulation of the Problem
	2 Analysis of the Problem and Two Main Ideas
	References

	From Global to Local Constraints:  A Constructive Version of Bloch's Principle
	1 Bloch's Principle: Formulation of the Problem
	2 Bloch's Principle: General Formalization
	3 Bloch's Principle: A Constructive Version
	References

	Optimizing pred(25) Is NP-Hard
	1 Formulation of the Problem
	2 Main Result and Its Proof
	References

	Range Estimation Under Constraints  Is Computable Unless There  Is a Discontinuity
	1 Need for Range Estimation Under Constraints
	2 Known Results: Brief Reminder
	3 New Result: Discontinuity Is the only Obstacle  to Computing underlineY and overlineY
	References

	Towards a Physically Meaningful Definition of Computable Discontinuous and Multi-valued Functions (Constraints)
	1 Formulation of the Problem
	2 Towards a New Definition of Computable Discontinuous and Multi-valued Functions
	3 Properties of the New Definition
	References

	Algebraic Product is the only T-norm  for Which Optimization Under Fuzzy Constraints is Scale-Invariant
	1 Formulation of the Problem
	2 Main Results
	References

	Comparing Operation Points in Linear Programming with Fuzzy Constraints
	1 Introduction
	2 The Fuzzy Linear Programming Model
	3 Concepts of Optimality Under Fuzzy Uncertainty
	3.1 Fuzzy Global Optimal Solution

	4 Ranking a Crisp Solution
	4.1 Operation Points
	4.2 Application Example

	5 Concluding Remarks
	References

	On Modeling Multi-experts Multi-criteria Decision-Making Argumentation  and Disagreement: Philosophical  and Computational Approaches Reconsidered
	1 Introduction
	2 Conceptualizing Disagreement Among Experts  as Disagreement Among Epistemic Peers
	3 Expert Disagreement: Epistemic and Pragmatic Rationality
	3.1 Epistemic Rationality: A More Subtle Focus  of Disagreement on Epistemic Justification
	3.2 Pragmatic Rationality
	3.3 Synchronic and Diachronic Rationality, Global and Local

	4 Computational Modeling: Descriptive Constraints  for Epistemic and Pragmatic Disagreements
	5 Preliminary Notions About Argumentation Frameworks and MEMCDM
	5.1 Arguments
	5.2 Attacks

	6 How Epistemic and Pragmatic Disagreements Can Help MEMCDM
	7 What's Next?
	References

	Positive Semidefiniteness and Positive Definiteness of a Linear Parametric  Interval Matrix 
	1 Introduction
	2 Linear Parametric Matrices: Positive Semidefiniteness
	2.1 Strong Positive Semidefiniteness
	2.2 Weak Positive Semidefiniteness

	3 Linear Parametric Matrices: Positive Definiteness
	4 Example
	References

	Automatic Loop-Shaping of Hinfty/μ Problem in QFT Using Interval Consistency Based Hybrid Optimization
	1 Introduction
	2 Basics of QFT
	3 Hinfty/μ Robust Performance Problem
	4 Hinfty/μ Problem as QFT Loopshaping: Problem Statement
	5 Proposed Algorithm
	6 Design Example
	7 Conclusion
	References

	Existence of the Nash-Optimal Strategies in the Meta-Game
	1 Introduction
	References

	Peak-End Rule: A Utility-Based Explanation
	1 Peak-End Rule: Description and Need for an Explanation
	2 Towards an Explanation
	3 Main Result
	References

	Similarity Approach to Defining Basic Level of Concepts Explained from the Utility Viewpoint
	1 Formulation of the Problem
	2 Analysis of the Problem and the Resulting Solution
	References

	Comparisons of Measurement Results  as Constraints on Accuracies of Measuring Instruments: When can we Determine  the Accuracies from These Constraints?
	1 Formulation of the Problem
	2 Idea: Let us use Moments
	3 Case when have Several Identical Measuring Instruments
	4 Case when have Several Different Measuring Instruments
	References

	Dow Theory's Peak-and-Trough Analysis Justified
	1 Formulation of the Problem
	2 Our Explanation
	3 Additional Theoretical Confirmation of Our Justification
	References




