Chapter 9
Homomorphisms from Functional Equations in
Probability

Adam J. Ostaszewski

“Niedaleko jabtko spada od jabtoni”
“The apple never falls far from the tree”

Abstract We showcase the significance to probability theory of homomorphisms
and their simplifying r6le by reference to the Goldie functional equation (GFE), an
equation at the heart of regular variation theory (RV) encoding asymptotic flows,
but with an apparent lack of symmetry. Like the Golab—Schinzel equation (GS), of
which it is a disguised equivalent, it and its Pexiderized form can be transmuted into
homomorphy under a ‘generalized circle product’ due to Popa, conformally with the
Pompeiu equation. This not only forges a specific direct connection to Beurling’s
Tauberian Theorem, but also generally both helps simplify classical RV-analysis,
lending it a flow-type intuition as a guide, and elevates it to unfamiliar contexts.
This is illustrated by a new approach to the one-dimensional random walks with
stable laws.

We review some new literature, offer some new insights and, in Sections 9.4 and
9.5, some new contributions; possible generalizations are indicated in Section 9.6.
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9.1 Introduction

The leitmotif of this article is the critical role of homomorphisms underlying several
of the functional equations arising in probability theory. When homomorphy is
patently present in a functional equation, then it surely guides the work of extending
classical theorems to a wider context. As for the converse: if absent, one seeks out
any latent structures capable of expressing homomorphy, and so of bearing the fruits
of unity and clarity—through closeness to a paradigm, as in the introductory motto.
We offer several examples, both old and new.

Generally speaking, functional equations, more properly their (continuous)
solutions, play a significant role in the asymptotic analysis needed to elicit the
characterization of various laws in probability theory (see [58] for the origins of
such a programme). Below we meet familiar examples of functional equations in
such situations.

The classical context of R generalizes naturally to the metric-group frameworks
of harmonic analysis: a general locally compact group G, alternatively a linear
space—indeed a Hilbert space H. A remarkable instance of generalization is to be
seen in the characterization of infinitely divisible laws, which on R goes back to
Lévy and Khintchine; here the most basic is the Cauchy functional equation (CFE)
in the general form of a homomorphy equation between groups:

x(xy) = x () x(y), (CFE)

its (continuous) solutions termed characters, and the symmetric bi-homomorphy
variant:

V(xy,z) = ¥(x,2)¥(.2) with ¥ (x,y) = ¥(y,x).
In the bi-additive case ¥ : G*> — R, putting

Y(x) := ¥(x,x)

yields the important associated quadratic form ¥ : G — R, which may be
equivalently defined (as in [74, Section 6, (6.1)], or with more explicit details as
in [50, L. 5.2.4]) by the Apollonius or quadratic functional equation:

V) + Yy =20 @) + ¥ ()

see also [2, Section 11.1; cf. Chapter 8, the related d’Alembert equation], [84,
Chapter 13], and [86, Section 2.2], the latter in connection with the Chebyshev
‘polynomial hypergroup’—for which see [22], Section 9.6 (and presently below).
Their continuous solutions are critical in establishing the characterization of a
Gaussian measure (1 [27] either on a locally compact abelian G, or in Hilbert space
H, along the following lines.
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The first of the three equations above introduces duality considerations into a
locally compact abelian G, employing the group G of continuous unitary characters
x : G — T, with T the unit circle group in C, and draws on the Pontryagin structure
theorem for G. That and the third equation, with G replacing G, yields a functional
characterization of a Gaussian measure p via its Fourier transform fi: for some
g€QG,

A = x@exp(—v(x) (1 €G).

For details see [74, IV Theorem 6.1], or [50, Section 5.2], [85, Section 3.2]; for an
example see Section 9.3.3 below. A similar result holds in Hilbert space, which is
of course self-dual, so H replaces both G and G above—see [74, VI Theorem 4.9].
Noteworthy is that the last formula speaks entirely in the language of
homomorphy.
Indeed, also the Fourier transformation taking w to its ‘characteristic function’
(which uniquely determines the measure):

A = /G 2(©)du(s) . )

is itself both an additive and multiplicative homomorphism (on the measures on G,
which form a semigroup under convolution).

A further ubiquitous functional equation is the Gotgb—Schinzel equation [43],
cf. [30]:

n( + un()) = nwn(v) (u,v € R), (GS)

whose continuous solutions that are positive on Ry (briefly: positive) satisfy for
some p > 0

n =n,t) : =1+ pt (teRy).

For a new approach to the proof see Section 9.5. We write n € GS to mean that
n satisfies (GS). Equation (GS) is the focus for much of the text below, for good
reason: indeed, for three reasons.

The classical theory of regular variation, RV for short, introduced by Karamata,
studies for f : Ry — R4 := (0, 0o) the limit function

k(t) = k(1) := xl_i)m @

oo f(x)

or Karamata kernel, with domain A C Ry ;if A = Ry, f is called regularly varying.
This is the multiplicative formulation, thematic here and of practical significance;
for the additive variant, more convenient in theoretical considerations (for instance,
in Section 9.3.1), see Section 9.7(1). The standard text for RV is [21], BGT below.

(te p),
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(There is also an associated notion of regularly varying measures: see [53], or [79],
and Section 9.7(4) below.) In his seminal text on probability Feller laid claim to RV
as an important tool: the opening second paragraph of [42, VIII.8], motivating the
significance of RV to probability theory, highlights the quantifier weakening aspect
(visited below) of being prepared to work on the premise of good limiting behaviour
(as above) but initially on only a dense set A (cf. Section 9.2.1).

Above, if A =Ry and if k = 1, then f is called slowly varying. In general,
however, as « satisfies the multiplicative Cauchy equation:

k(st) = k(s)k(),

a regularly varying function that is measurable/Baire (i.e. with the Baire property)
has a natural characterization as the product of a power function with a slowly
varying factor.

For the purposes of extending the Wiener Tauberian theorem (Section 9.2.6
below) to encompass the Borel summability method (cf. [16, Section 1]), Beurling
introduced what we now know as Beurling slow variation, BSV, employing
functions ¢ : Ry — R satisfying

P(x + to(x))

— 1,
@(x)

with ¢(x) = o(x) as x — oo. This includes the case, significant to the Borel and
Valiron summability method, of

9(x) 1= Vx.

Such functions are called self-neglecting, ¢ € SN, provided a further technical
condition holds, that the convergence is locally uniform in ¢. Conditions implying
self-neglect are studied in [16], where for ¢ € SN a more comprehensive theory of
@-regular variation is established by studying limit functions

o St e()
gl = x1_1)no10 —f o (teA).

It also emerged in [16, Section 10.3] (a matter followed through in [18]) that an even
more satisfactory development may be had by going beyond BSV to obtain the even
more comprehensive notion of Beurling regular variation, BRV, which encompasses
both the Karamata theory and the related Bojani¢-Karamata/de Haan theory (cf.
BGT Chapter 3). BRV is built around functions ¢ that are self-equivarying, as in
[71]; for these functions a limit value more general than the ‘1’ above is permitted,
so that

@(x + to(x))

=¥t  (teh), (SEx)
@(x)
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here with A = R4 (but see Proposition 1 in Section 9.2.3), and this convergence
demands a side-condition of local uniformity as in (SN) above (and ¢(x) = O(x)).
For n = 1, these specialize to the self-neglecting functions of Beurling, as above.
The key result from [71] is that the limit function 7¥ (¢) satisfies (GS), and this is the
first reason for interest in (GS) in RV.

The second reason is that (GS) may be ‘converted’ very simply into an expression
of homomorphism and so throws much light on an alternative form of the equation
occurring in RV, ‘disguised from birth’ in [11] (cf. BGT Lemma 3.2.1), now known
as the Goldie equation. The latter contains a further auxiliary function ¥ and takes
the form:

Kx+y)—K() =y(MKKx)  (rnyeRy). (GFE)

In the functional equations literature this is a special case of the Levi-Civita
functional equation, albeit a conditioned one, as the quantifiers are bounded:
quantifying over R —cf. [84, Section 5.4]. However, tracing the direct connection
of (GFE) to (GS), and so to homomorphy, brings untold benefits: see Section 9.2.4,
as already mentioned.

The ‘algebraicization’ needed to release these benefits originates with a largely
forgotten contribution, due first to Popa [76] and later Javor [57], based on the binary
operation, generated from an arbitrary  : R — R:

uoyv:i=u-+vnu),

for which see Section 9.2.3 below (cf. [28]). This may be traced back to the ‘circle
product’ of ring theory:

xoy:=x+y+xy;
indeed, o, reduces to just that for
nx) =1+x.

(For historical background see [72, Section 2.1].) This binary operation re-expresses
(GS) as homomorphy:

N oy v) = n)n(v),

where the right-hand side may be interpreted in various group structures (e.g. the
Pompeiu equation of [84, Example 3.24], where the original circle product o appears
on both sides).

The third reason can now be declared as the benefit of homomorphy: homo-
morphism into (R4, %) lessens the burdens of proof in the Beurling theory of
regular variation: the algebra becomes virtually identical to that of the R classical
theory, leaving only the analysis of local uniformity to be undertaken (cf. Theorem 6
below).
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We therefore advocate a more systematic use of the tool of homomorphy, as a
unifier and clarifier.

The bulk of the material below falls naturally into two parts: first Sections 9.2
and 9.3, and then Sections 9.4 and 9.5, as follows.

In the first part, Section 9.2 discusses (GFE), indicating its relation to (GS),
and considers the Popa operation o,. We then describe the connection with the
Beurling Tauberian Theorem, a proper extension of the celebrated Wiener Tauberian
Theorem. In passing, we indicate briefly how to solve (GFE) using integration,
which also permits a side glance at the rdle of flows—a natural consequence of
the presence of a group action. In Section 9.3 we pass beyond Karamata kernels
to the Beurling kernels of BRV, and as an application sketch how (GFE) helps
to deduce very directly the form of stable laws associated with one-dimensional
random walks (i.e. walks on the additive group R—see [9] for an a very informative
survey of the theory and application of random walks). The starting point is their
characteristic functional equation (ChFE), which is briefly deduced ab initio and
then reduced after some work to (GFE)—see Section 9.3.3 below. We also indicate
further literature.

The second part, comprising Sections 9.4 and 9.5, contains new contributions as
supporting material: a new theorem about (ChFE) and novel approaches to solutions
of (GS) that are positive (on R ). The latter functions play a significant réle in RV,
so direct proofs are of interest.

We complete the circle of ideas in Section 9.6, ending as we began: with the
theme of homomorphy—noting how the characteristic functions of random walks
on some other groups give rise to an integrated functional equation (IFE)—for
background here see [78], inspired by the work of Choquet and Deny [32]. However,
the more natural setting for these is that of a hypergroup structure (sketchily
reproduced below) with binary operation = and involution, within which these
particular IFEs again reduce to a homomorphy:

K(x*y) = K)K(). (*)

In brief, cf. [22], or [86, 87]: a hypergroup has as underlying domain a topological
space X (possibly a topological group). The topology may be discrete. Upon
this space is imposed (axiomatically) both a measure-theoretic and a group-like
structure: first, the points x of X are identified with probability measures &,
degenerate at the points of X; then a binary operation « is introduced on these (later
extended to a wider domain of measures), and is interpreted much as convolution, so
as to yield a probability measure with compact support (continuously mapped to the
hyperspace .# (X) of (nonempty) compact subsets of X, the latter equipped with the
topology inherited from the Vietoris topology [41, 2.7.20] on the (nonempty) closed
subsets, known also as the Michael topology, in view of the contribution [67]); and
lastly, an involution operation is provided on the point-masses.

This allows a very broad algebraicization of random ‘dynamics’, generated by x,
within which measures describe the location of ‘random points’ of X. Sometimes
the hypergroup is not much more than a group, as when

8 % 8y 1= b1,
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But often the introduction of « calls for some quite intriguing ingenuity—as the two
examples of Section 9.6 show.

We close in Section 9.7 with complements, including in Section 9.7(4) indica-
tions of some generalizations.

9.2 From Beurling via Goldie to Golab—Schinzel

We begin with a discussion of Equation (GFE) introduced in Section 9.1.

9.2.1 The Goldie Equation

In RV Equation (GFE) emerges from asymptotic analysis (see Section 9.3.1) and is
initially valid on a subset of R (as the domain of convergence of a limit operation), so
it is natural to formalize this phenomenon by weakening the quantifiers, as indicated
in Section 9.1, allowing the free variables to range over a set A smaller than R, which
typically will be a subgroup that is dense. (There is an implicit appeal to Kronecker’s
density theorem here and the presence of two incommensurable elements in A.) The
functional equation in the result below, denoted by (G, ), is thus a second form of the
Goldie functional equation. As we see in Theorem 1 below, the two coincide in the
principal case of interest—compare the insightful Footnote 3 of [26]. The notation
H, below (originating in [26]) is from BGT Sections 3.1.7 and 3.2.1, implying

Ho(l) =1.

Equation (G,) below when A = R is a special case of a generalized Pexider
equation studied by Aczél [1]. In Theorem 1 (CEE) is the Cauchy exponential
equation. Versions of the specific result here, taken from [17, Theorem 1] (where the
proof—based on the Cauchy nucleus of K [63, Section 18.5]—may be consulted),
also appear elsewhere in the literature.

Theorem 1 ([26, (2.2)], BGT Lemma 3.2.1; cf. [3], [84, Proposition 5.8]) For ¢
with ¥ (0) = 1, if K # 0 satisfies

K(u+v) =y W)K(u) + K(v) (u,v e A, (Ga)
with A a dense subgroup, then:

(1) the following is an additive subgroup on which K is additive:
Ay ={uchA: Yy =1};
(i) if Ay # A and K # 0, there is a constant k # 0 with

KO =«@@®-1) (€A, )
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and  satisfies
Y(u+v) =)y (u,v € h). (CEE)
(iii) So for A = R and v locally bounded at O with v # 1 except at 0 :
) =e ",
for some constant y # 0, and so K(t) = cH, (1) for some constant ¢, where
H,(1):=(1—e")/y.

For the needs of Section 9.5 below, we note briefly that the proof rests on
symmetry in the equation:

YK () + K@) = K(u+v) =K+ u)
=Y WKWw) + K(u).
So, for u, v not in {x : ¥ (x) = 1}, an additive subgroup,
K@y (v) — 1] = K@)[y ) — 1],

K@ KO
Y -1 Y1

as in BGT Lemma 3.2.1. If K(-) is to satisfy (GFE), ¥ (-) needs to satisfy (CEE).

= const. = k,

9.2.2 The Disguised GS

By Theorem 1, assuming its local boundedness, the auxiliary function ¥ of (GFE)
is exponential; with this in mind, we can trace the connection to (GS) as follows.
Recall from Section 9.1 that a function is positive if it takes positive values on
Ry.
Recall also that the positive (and likewise, ultimately, the continuous) solutions
of (GS) take the form

n=np(x):=1+px,

with p > 0, for x > p* := —p~'—see Section 9.5. Writing (GS) in the form

n(a + n(a)b) = n(a)n(d),
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put

A:=n(a) >0, B:=nb) >0,

and take f := n;l (which exists to the right of p*); then a = f(A),b = f(B).
Applying f to (GS) yields

a+Ab=f(AB): f(A) + Af(B) =f(AB).
Apply the logarithmic transformation: u = log A, v = log B, set K(x) := f(e*); then
[ +e'fe) =f( ") K@) +e"K(v) = K(u+v).

The reverse direction can be effected for non-trivial (i.e. invertible) solutions K
of this last equation — see [20, §7].

9.2.3 Popa (Circle) Operation: Basics

The operation

xopyi=x+yn),

with 1 : R — R arbitrary, was introduced in 1965 for the study of Equation (GS) by
Popa [76], and later Javor [57] (in the broader context of n : E — [F, with E a vector
space over a commutative field IF), who observed that this equation is equivalent to
the operation o, being associative on R, and that then o, confers a group structure
on G, := {g € R: n(g) # 0}—see [76, Proposition 2], [57, Lemma 1.2]. We term
this a Popa circle group, or Popa group for short, as the case

mx)=1+x

(i.e. for p = 1 above, so a translation) yields precisely the circle group of the ring
R, as noted in Section 9.1.
The operation o,, turns 7 into a homomorphism from

G ={geG,:n(g >0}
to (R4, x). For n = n¥, arising from ¢ € SE as in (SE,) with natural domain

A = Ry, one may in fact extend the definition of 7* from R4 to (G;,’Jr preserving
homomorphy, as we see presently (Proposition 1). Below, when

n() =1+ pt,
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we use the variants (G, o,) and (G,, o,) interchangeably and call p* := —p~ ! the
Popa centre of G,. Other notation associated with G, includes 1, for the neutral
element, and tn_l for the inverse of ¢, and obvious variants of these.

Proposition 1 (Non-zero Uniform Involutive Extension, [18, L.1]) For ¢ € SE,
o = o, with p = p, > 0, put

() = (—=t/n? (1) == 1/n’(t)  (t>0);

then (SE ) holds for A = Gﬁ_ =(p*, 00). Moreover, this is a maximal non-vanishing
extension: for each s < p*, assuming ¢(x + s@(x)) > 0 is defined for all large x,

Jlim nf(s) = lim o(x+ sp(x)/e(x) =0 = n(p").

Here we see the critical role of the Popa origin p* = —p~! : the domain of the
limit operation

1 ¢
Jlm 176,

used to extend 71?, is Gi. So the argument s here has to take values to the right of
the Popa origin. As p — 0+ the Popa centre recedes to —oco and this extension
falls into line with the natural extension to R_ (taken for granted) in the Karamata
theory: see BGT (2.11.2).

With this much isomorphy in place (in fact conjugacy with R), it is natural to
seek further group structures in order to allow (GFE), as a statement about K, to
assert homomorphism between Popa groups:

K(xo,y) = K(y) o K(x) for some o € GS, (GBE)
with the side-condition

o(Ky) =¥ ().

We term the above the Goldie—Beurling equation (GBE), acknowledging the
Beurling connection via #; it is a natural extension of the Pompeiu equation to which
it reduces when n = o = n; [84, Example 3.24], and so links with results not only
of Acz€l, but also of Chudziak [33-35], and Jabtoniska [55], concerned with the
equation

fxogy) =f(x)of(y) (ChE)

withf : R — (8, o) for (S, o) some group or semigroup, and g : R — R continuous,
or locally bounded above.

Javor’s observation regarding associativity has interesting corollaries. (Recall
that positive means positive on R .)

Lemmacom ([72]) If (GBE) holds for some injective K, o with o, commutative,
andn: R4y — R, then
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n(u) =1+ pu,

for some constant p.

Proof Here
K(u+vn(u) = K@) o5 K(v) = K(v) 05 K(u) = K(v + un(v)),
as o, is commutative. By injectivity, for all u, v > 0,
u+vnw) =v+un): ull—-nw)=v(-n@w),
so, as in Theorem 1,
(n(u) — 1)/u = p = const.,
for u > 0; taking v = 1 above,
nw) =1+ pu,

forall u > 0. O
Lemmagssoc ([72]) If (GBE) holds for some injective K, o with o, associative,
and a positive continuous ) : R — R, then

nw =1+pu (u=>0),

for some constant p.

Proof This follows, e.g., from Javor’s observation above connecting associativity
with (GS) [57, p. 235].

9.2.4 Creating Homomorphisms

In this section we demonstrate how to convert two functional equations into
expressions of homomorphy. The immediate use this serves is to enable the solutions
to be ‘read back’ from those of the Cauchy functional equation (CFE), as in
Theorem 5 below. This process is captured in the following routine result concerning
(GBE). For

o, =09 and o5 = 04,

the equation reduces to the exponential format of (CFE) ([63, Section 13.1]; cf.
[54]). The critical case for Beurling regular variation is for p € (0, 00), with
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positive continuous solutions described in the table below; the four corner formulas
correspond to classical variants of (CFE). The proof, which we omit, proceeds by a
straightforward reduction to a classical variant of (CFE) by an appropriate shift and
rescaling.

Proposition 2 ([72, Proposition A]; cf. [33]) For

O,] = Oy, Oy = Oy,

and K Baire/measurable satisfying (GBE), there is y € R so that K(t) is given by:

Popa parameter | s =0 s € (0,00) s = 00
r=0 yt (e —1)/s 24

r € (0, 00) ylog(1+rt) | [(14+ )" —1]/s (1 4+ )y
r= o0 ylogt @ —1)/s 24

Below and elsewhere a function K is non-trivial if K £ 0 and K # 1.

Theorem 2 (Conversion to Homomorphy, [72, Theorem 1]) For n € GS in the
setting above, (GBE) holds for positive  in the side-condition and a non-trivial K
iff
(1) K isinjective;

(i) o =: YK~ ! € GS, equivalently, either = 1, or, for some s > 0,

Ku) = ) —1)/sand ¥y (0) =1, so K(0) =0;
(iii)

K(xo,y) = K(x) o5 K(y). (Hom-1)

Then
(iv) for some constants c,y,

K(x)=c-[(1+px)" —1]/py, or K@) = ylog(l + p1)
(o= py>0),
o K@=c- @ ~D/y (p=0).
A related functional equation replaces one instance of K on the right of

(GBE) by a further unknown function k multiplying v, yielding a ‘Pexiderized’
generalization!

Kx+yn(x) —K@y) =¥ (e  (xyeR), (GBE-P)

! Acknowledging the connection, the qualifier P in (GBE-P) is for ‘Pexiderized’ Goldie-Beurling
equation—referring to Pexider’s equation: f(xy) = g(x) 4 h(y) and its generalizations—cf. [29,
30], and the recent [54].
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considered also in [36]. Passage to this more general form enables the inclusion of
(GS) as the case

K=y =n
withk =n—1.

To apply the earlier argument here, an extension of the Popa binary operation
suggests itself; put

uov =uoug v :=a) + v,

with «, B continuous and « invertible; this seems reminiscent of [3].

Proposition 3 ([72, Proposition A]) The operation o is a group operation on
A CRwith0 € A iff A is closed under o and for some constants b, ¢ with bc = 0

ax) =x+band B(x) =1+ cx.

That is:
ax)=xand B(x) =14+ cx, ORau(x) =x+band f(x) = 1.

So this is either a Popa group with

xoy=uxo.y:=x+ y(l + cx),
or the b-shifted additive reals with the operation

xX+py:=x+y+b.

Remark For the b-shifted additive reals, the neutral element is ¢ ;= —b and x~' =
—x —2b.

Applying Proposition 3, we deduce the circumstances when (GBE-P) may be
transformed to a homomorphism. Here we see that

Kx) =) —-1/s

only in the cases (i) and (iii), but not in (ii)—compare Theorem 2. Note that in all
cases k is a homomorphism between Popa groups.

Theorem 2’ (Conversion to Homomorphy, [72, Theorem 1']) If (GBE-P) is
solved by K for \ positive, k positive and invertible, n(x) = 1 4 px (with p > 0),
then in the equation below o is a group operation and K=" is a homomorphism
under o:
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K Yoy v) =K '(u) o K~ (v) (u,v € R), (Hom-2)
iffo := YK=' € GS and one of the following three conditions holds:
(1) p =0, 0 =o0yand o, = oy for some s > 0; then, for some y € R,
Kny=«k®=("-1/s, Y@ =e";
(i) p =0, 05 = 09 and o = +, for some b € R; then
K@) =«@+b) =«k(@t) + «(b), v =1 (teR),

and k : Gy — Gy is linear;
(iii) p > 0,0 = o, and o, = oy for some s > 0; then, for some y € R,

Ky=ck@=[1+p) —1]/s, (s>0), or ylogl+r) (s=0),
vy =A+p) (>0), or Y@ =1 (s=0).

This recovers results in [33].

9.2.5 Beck Sequences, Integration, and Flows

Assuming continuity, we show in this section how to use integration to find the
non-trivial solutions of the following variant of (GFE):

K(x+yn@) — K@) = ¢y (DK K).

A key tool here, and also in later sections, is an appropriate partitioning of any
interval (range of integration); for this we refer to what we term the Beck ¢-sequence
tm = t,(u), defined recursively for u > 0 and ¢ a solution of (GS) by

Imt1 = Ly Op U = 1y, + M(p(tm) with#p = 0.

Albeit present in [43], the systematic use of such iterations seems to stem from
Beck’s oeuvre on continuous flows in the plane—[5, L. 1.6.4]. The Popa notation
inserted above clarifies that this is the sequence of Popa powers of u under
o, and so may also be written u;;. So, from the group perspective, this is the
natural discretization with ‘mesh’ size u for the purposes of integration. As ¢ is
a homomorphism,

o)) = W) = )" (0).

So ([17, Theorem 5], or Theorem 8 below) the sequence t,, is divergent, since either
@) = 1 and t,, = mu (directly, from the inductive definition), or else ¢(u) # 1
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and

PLLC) d SRR / G (+%)
o) —1

—see, e.g., by Ostaszewski [71, L. 4] (cf. a lemma of Bloom: BGT Lemma 2.11.2).
In either case, for u, t > 0 there exists a unique integer m = m,(u), the jump index
of t, satisfying

ty =t <lpti -

Application: Solutions by Integration To solve the equation above for K, ¥ (and
n) continuous, note that if K is non-trivial with K(0) = 0, then for all small enough
u > 0 we have K(u) non-zero; otherwise the o,-subgroup?

{u: K(u) =0}

accumulates at the origin, and so is dense in R (forcing K into triviality). Now
proceed as follows. Fix xg, x; > 0, and denote the corresponding jump indices
ip = io(u) and i} = ij(u): so forj € {0, 1}

tij =x < tii+1 .

Now, for the Beck n-sequence #,, = uf,",

K(tm+1) - K(tm) = K(”)W(tm) .

Summing, and setting

h@) =y (O/n@0 =0  (eRy)
(valid as 7 is positive),

m—1

m—1
K(tn) = K(tn) ~ K() = K@) 3 96 =~ 3 una, e,

n=0 n=0

since fy = 0.
As above, K(u) > 0 for small enough u > 0, so we may write with the obvious
notation

0=K(0) = K(1,) = Ko, u; ") = ¥(u;, HK(w) + K(u, ") = K(u, ™).
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K(ty) _ K Y20 ¥(t) _ XZe un(t)h(s)

K(t) K@) Y 2wt 02 un()h(,)

_ Tl —th() [y 0dE H(xa)
SO sy — t)R()  Jo  h(Ddr  H(xo)

Here passage to the limit in the rightmost terms is as # | 0. Above we assume
without loss of generality that H(xp) > 0. (Otherwise ¥ = 0 on [0, co), implying
that K is constant and yielding the trivial case K = 0.) Passing to the limitas u | 0
in the leftmost term above, by continuity of K, as liy = X

K(x1)/K(xo) = H(x1)/H(xo0) .
Put
¢ = K(xo)/H(xo) ;

then, with x for x,
K(x) =cH(x) := c[ h(r)dt,
0

valid for x > 0, as K(0) = 0.
Remark When

n =1, v(t) =e", h(t) = e,

the analysis above lends new clarification, via the language of homomorphisms, to
the ‘classical relation’ in RV that

K=cy—-1),
connecting K and the auxiliary function v, as in Theorem 1.

Flows (‘Translation Equation’) Subject to K(0) = 0, assuming positivity of K
(i.e. to the right of 0), and continuity and positivity of ¥, we have just seen that the
solution K satisfies, for some ¢ > 0,

Kx) =c-t(x),

for
7 (x) :=/0 du/f (u), withf :=n/y .

Inspired by Beck [5, 5.25], we may interpret 7y as the occupation time measure (of
[0, x]) of the continuous f-flow: dx/dt = f(x), where f as above measures the relative
velocity of 7 and . Furthermore, interpreting o, as a flow or group action (yielding
the translation equation, cf. [69], [77]) it emerges surprisingly that the underlying
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homomorphy is now expressed not by K, but by the relative flow-velocity f: under
mild regularity assumptions, if K solves (GBE-P), then f satisfies

Jxopy) =f0fy)  yeRy).

There is a converse for { := n/f: see [17, 72].

9.2.6 Beurling’s Tauberian Theorem

For ¢ : R — R introduce the following ‘Beurling convolution’:
du
¢ (x)

Fx, H(x) == /F();;x;‘ )H(u)

= /F(—t)H(x + tp(x)) dt,
reducing for ¢ = 1 to the classical counterpart
FxH(x) = /F(x— HH(t)dr.
See [18] for background. Substitution of t = (1 — x)/¢(x) yields
u = u,(t) := x + tp(x),
so that 7 — u,(?) is a ‘speeded-up’ version of the x-shift # — x + . This includes for

H = (l/a)l[Oa]

and
G(x) = g
n<x

the moving average ‘speeded up’ by ¢, introducing alternative summability
methods:

1 x+ap(x)

1 x~+ap(x)
MAY(x) = G %, H(x) = - f Gludu = ~ Z gn.

Theorem BT (Beurling’s Tauberian Theorem) For K € L,(R) with K non-zero
on R, and ¢ Beurling slowly varying, i.e. with

px+19)/9x) > 1. (x—>o00) (t=0): (BSV)
if H is bounded, and the following holds for some c € R
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K*(pH(x)—>c/K(y)dy, (K *y, H)
then for all F € Li(R)

F*wH(x)—>c/F(y)dy (x > 00).

As a sample, we note that the Popa algebraicization enables the following
generalization:

Theorem 3 (Extension to Beurling’s Tauberian Theorem, [18, Theorem 2])
Suppose that:

(1) ¢ € SE, i.e. locally uniformly in t

px+19(x)/o(x) > n(r) € GS  (x—>o00)  (t=0),
(i) K € Li(R) with K non-zero on R,
(iii) H is bounded, and

(iv) (K *4, H) holds
then for all G € L (R)

G *, H(x) — c/ G(y)dy (x —> 00).

9.3 Beurling Kernels

We begin by describing the context in which Beurling kernels arise.

9.3.1 Asymptotics

We refer below again to the self-equivarying functions defined by (SE) of Sec-
tion 9.1. We adopt the additive formulation here. At its simplest, a functional
equation such as (GFE) arises when taking limits

Kp(f) := lim,— oo [F(x + t@(x)) — F(x)] = briefly, lim AY F(x), (BK)
for ¢ € SE; then, with 1 the associated limit as in (SE) above, for s, f ranging over

the set A on which the limit function K, the Beurling kernel of F, exists as a locally
uniform limit:

Kp(s +1) = Ke(s/n(®0) + Ke(®) : - Kp(t + s1(1)) = Kp(s) + Kp(2) .
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So with o, in mind, both A and Kr(A) carry group structures under which K is
a homomorphism. Thus, even in the classical context, (GS) plays a significant role
albeit disguised and previously unnoticed, despite its finger-print: namely, the terms
+1 or —1, appearing in the formulas for K (as in Theorem 2).

The more general functional equation, arising in Beurling RV, is the generalized
Goldie-Beurling equation on R := [0, 00), noted in Section 9.2.3:

Kx+yn(x) - K@) =¢y(MKK)  (x,yeRy) (GBEy)

(in the two unknowns K and ), where 1(x) = 1,(x) for some p € R4. This arises
quite similarly to (BK) in the context

K(¢) = lim AfF(x)/ @(x) with ¥ (1) := lim @ (x + to(x))/P(x),

assuming these limits exist.

The classical Karamata case is p = 0 with A = R, and the general Beurling case
p>0with A = (Gp+ (in which case @ (x) is Beurling ¢-regularly varying). In the RV
literature this equation appears in [11], in work inspired by Bojani¢ and Karamata
[26], and is due principally to Goldie. In both these cases the solution K to (GBE)
describes a function derived from the limiting behaviour of some regularly varying
function F for a suitable auxiliary @.

Example ([18, Corollary 2]) For ¢ € SE, if U satisfies

U+ tp(x)) — Ux)
@(x)

— cytasx — oo, forallt >0, (BMA,)
and
Ky(w) = lim AZF()/p().
for V() := U(t(;1 (+)) with 7, as in Section 9.2.5, then for p = p,
Ky(s +1) = Ky(s)e” + Ky(1),
and so with the notation H,, of Section 9.2.1 above, for some c,

Ky(s) = cH,(s).

9.3.2 Some “Advanced” Popa Theory: Quantifier Weakening

We illustrate the usefulness of the Popa group structure by surveying some further
results from the recent [18]. These culminate in a theorem on quantifier weakening
(Theorem 5 below) in the demanding context of local uniformity; it in turn relies
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on the ‘subgroup property’ of the domain of definition of certain limit operations
(the sets A¥ and A, below). For additional motivation see Proposition 10 in
Section 9.7(5).

The definition of SE in Section 9.1 demands locally uniform convergence: this
motivates the introduction of the following weak notion of uniformity, which is key
to Theorem 4 below. Say that f;, — f uniformly near t if for every ¢ > 0 there is
8 > 0 and m € N such that

f(@®) —e <fu(s) <f(t) +eforn>mands e (t—5,t+ ).

For instance, for ¢ € SN, x, divergent, and f(s) = 1, if f,(s) = e, +
s¢(x,))/@(xy), then ‘f;, — f uniformly near ¢ for all # > 0.’

The notion above is easier to satisfy than Hobson’s ‘uniform convergence at t’
which replaces f(¢) above by f(s) twice, [52, p. 110]; suffice it to refer to f,, = 0,
and f with f(0) = 0 and f = 1 elsewhere. (See also Klippert and Williams [62],
where though Hobson’s condition is satisfied at all points of a set, the choice of §
cannot itself be uniform in z.)

The above notion of uniformity may be equivalently stated in limsup language,
which presently (in Proposition 6) brings to the fore the underlying uniform upper
and lower semicontinuity. We refer to [18, Section 5] for details.

For ¢ € SE we now introduce a further binary operation, one in which a point x
appears as a parameter (we think of this as a circle operation localized to x):

S0 1= 5+ m?(s),
where
n%(s) == o(x + 5¢(x))/p(x) .

This notation neatly summarizes two frequently used facts in (Karamata/Beurling)
regular variation: firstly,

xo0y (boyra) =yo,a, fory :=xo, b =x+ bp(x)
(so an ‘absorption’ property), and secondly, as x — oo, locally uniformly in s, 7 :
§0p t — soyt, for n:=lim, n¥ € GS.
Here n satisfies (GS), by Ostaszewski [71], so the localized operation o, is
asymptotic to a Popa operation o,. This is used in Proposition 8.
An important role is played by the corresponding localized Beck 1% -sequence (or

iteration):

n+l _ n I _ (2
gy = Gy Opx A, a, =a. (nx)
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Its properties are listed below; here to avoid excessive bracketing, the usual
arithmetic operations bind more strongly than Popa operations.

Proposition 4 (Arithmetic of Popa Operations, [18, Proposition 2])

(i) | @), =1y =0, aogayl =0, | fora,! = (=a)/ni(a);
(ii) | xop (boyra) =yo,a, fory:=xo,b;
(iii) | x0, (boya) = y o, an(b)/me(b). | fory:=x0,b:
(iv) x=yo¢ngl, fory :=xo0,b;
m—1
o) | btz = T1 e, for ve =0, db,.

Definitions Recalling from Section 9.3.1 that
A7 h(x) := h(x + tp(x)) — h(x),

and, taking limits here and below as x — oo, as before (rather than sequentially as
n — 00), put for ¢ € SE and with p = p, and p* = —p~!
A? := {t > p* : A?h converges to a finite limit} ,

Ay = {t > p* : AYh converges to a finite limit locally uniformly near ¢} .

So
0eA?,

but we cannot yet assume either that A? is a subgroup, or that 0 € Ay, a critical
point in Proposition 5 below. In the Karamata case ¢ = 1, A = A! is indeed a
subgroup (see [20, Proposition 1] and Section 9.7(5) below).

For t € A? put

K() = lim Alh. (K)

So K(0) = 0.

Proposition 5 ([18, Proposition 6]) For ¢ € SE, Ay is a subgroup of (Gri for
p = pp iff 0 € Ay, then K : (Ay,0) — (R, +), defined by (K) above, is a
homomorphism.

Theorem 4 ([18, Theorem 4]) If the pointwise convergence (K) holds on a co-
meagre set in Gﬁ_ with the limit function K upper semicontinuous also on a co-
meagre set, and, furthermore, the one-sided condition

K@) = %iig limsup sup{i(x + s@(x)) —h(x) : s € [t,t + 8)} (UNIF)

X—>00

holds at the origin, then two-sided limsup convergence holds everywhere:
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A(p = Au = Gﬁ_ .

This last result is based on the following monotone convergence theorem, akin
to those of Dini and of Pélya-Szegd; the proof relies on the Baire category theorem.

Proposition 6 (Uniform Upper Semicontinuity, [18, Proposition 4]) If quasi
everywhere f, converges pointwise to f, an upper semicontinuous limit satisfying
quasi everywhere in its domain the one-sided condition

f@) = lbiinlim sup sup{f,(s) : s € [t,t + §)},
T
then quasi everywhere f is uniformly upper semicontinuous:
f@) = liinlimsup sup{f,(s) :s€ (t—8,t+6)}.
540 n

Definitions For ¢ € SE and p = p,,, put

H' (1) := 151?1 lim sup sup {h(x 0p8) —h(x):seltt+ 8)} (t>p"),
0

X—>00
AITJ = {t>p* tH'(1) < o0}.

So Ay C A}, as H (1) = K(z) on Ay.
The following result clarifies the role of uniformity in classical ‘Heiberg—Seneta
boundedness’ terms (for background see BGT (3.2.4) and [17, Section 1,2]).

Proposition 7 ([18, Proposition 9]) For ¢ € SE, the following are equivalent:

(1) 0 € Ay (i.e. Ay # @ and so a subgroup);
(i) lim,—eolh(x + uep(x)) — h(x)] = 0 uniformly near u = 0;
(iii) HT(¢) satisfies the two-sided Heiberg—Seneta condition:

limsupH' (1) < 0. (HS+(H"))

u—>0

Theorem 5 (Quantifier Weakening from Uniformity, [18, Theorem 6]) If Ay
is dense in Gﬂ_ and H'(t) = K(t) on Ay—i.e. H' : (Ay,0p) = R, +) isa
homomorphism, then Ay = Gﬁ_ and for some ¢ € R:

H'(t) = clog(l + pr) (t> p*).
This uses Proposition 2. Below, again working additively, we put for ¢ € SE

H*(t) := limsup h(x o, 1) — h(x) (t > py),
X—>00
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H,(t) := liminf h(x o, 1) — h(x) (t > py).
X—>00

Theorem 6 ([18, Theorem 10]) In the setting of Theorem 5, for ¢ € SE, if the set
S on which H* (t) and H.(t) are both finite contains a half-interval [a, 00) for some
a > 0, then there is a constant K > 0 such that for all large enough x and u

h(up(x) + x) — h(x) < Klogu.

The proof parallels a classical result (that of BGT Theorem 2.0.1), but with the
usual powers a" replaced by the (localized) Beck n¥-iterates, as in Equation (1)
above. But there is heavy reliance on the estimation results below for aj, that are

uniform in m (this only needs n¢ — 1, pointwise):

Proposition 8 ([18, Proposition 11]) If ¢ € SE with p = p, > 0, then for any
a>land0<e<1:

(i) (ay,-estimates under n?) for all large enough x,

(1—¢) < nf(@))"""/ny@ <(1+e)  (meN),
>ii) ( a’vf'x-estimates under 1,) for all large enough x,

=) e L o) e
1—¢ 1—g — Pe = 14+¢ 1+¢

(mEN)v

(iii) a’gx — 00, and
(iv) there are Cx+ = C+(p,a, &) > 0 such that, for all large enough x and u,

a$x§u<a$jl:>mC_§10gu§(m—|—1)C+.

9.3.3 Random Walks with Stable Laws: GFE Again

A random variable X has a stable law if the probability law (measure) u of the
random walk S, := X; + ... 4+ X,,, in which the steps are executed on the group of
additive reals R independently and with identical law, is again of the same type. The
latter means that the distribution function

F(x) = Prob*[X < x]

of X and that of each S, should be equal up to a change of ‘scale and location’:

Sy 2 a,X + b, (D)
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for some (real) norming constants a,, b, with a, > 0. Here 2 denotes equality
of distributions. Such a law may be exactly characterized by its characteristic
functional equation, Equation (ChFE) below, obtained from (D) on taking its
Fourier transform (using the linearity and multiplicativity features of the transform).
Since the characteristic function here is

o(t) = Elexp(itX)] = / exp(itx) dF (x)
R
(identifying the characters as
Xt(x) — eirx
—cf. [84, Example 3.7]), (D) above yields
o))" = @(a,t) exp(ib,t) (neN). (ChFE)

In what follows we restrict attention to ¢+ > 0, without loss of generality (as
¢ (—t) may be reconstructed via complex conjugation). The standard way of solving
(ChFE) is to derive from it the equations satisfied by the functions a : n — a,
and b : n — a,. A direct approach to the characterization of the laws was
recently demonstrated in Pitman and Pitman [75], who proceed by proving the map
a injective, extending both of the maps a and b to R, and exploiting the classical
Cauchy functional equation (CFE) in both cases. For a background textbook account
see [58] and for subsequent developments, based on the Choquet—Deny Theorem
[45]; the stable laws are given a sketchy account in [78, Chapter 3], and more recent
studies include [46] and [47].

Here, however, we indicate why (ChFE) can be re-configured to (GFE), so that
(GFE) may be used just once, thereby simplifying the Pitman approach and yielding
an even more direct approach. Though we adopt a somewhat cavalier fashion
here, the procedure is made entirely rigorous in [73], and we comment below on
the underlying justification. Take logarithms (trickery!—see below) and, adjusting
notation, pass first to the form

fgmn) =nf() +h(m)t ~ (neN,reRy),

where now Ry := (0,00). Suppose both that g is injective and that one may
pass to continuous arguments, in the manner of Kendall’s Theorem, for which see
Section 9.7(4) (for the double trickery involved here—again see below); then, taking
s = g(n), this is

fen =g ' Of O +hg ()1 (s.t€Ry),
or with F(t) := f(t)/t, G(s) := g~ (s)/s, H(s) := hg™'(s)/s, by symmetry:

F(st) = F(1)G(s) + H(s) = F(s)G(1) + H(1).
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There are now two cases to consider, both leading to the multiplicative form of
(GFE):

Case (i). If F(1) = 0, then taking s = 1 yields F(r) = H(t), and so
F(st) — F(s) = F(t)G(s) .
So k = F indeed satisfies the multiplicative form of the Goldie equation.

Case (ii). On the other hand, if F(1) # 0, then passing from F to F/F(1) and
from H to H/F(1) we may assume without loss of generality that F(1) = 1 (i.e.
f(1) = 1); then, taking t = 1,

F(s) = G(s) + H(s).
Eliminating H gives
F(st) = F(s) = (F(st) = 1) = (F(s) = 1) = (F(1) — DG(5)

so k = F — 1 now satisfies the multiplicative form of the Goldie equation.
Either way, putting s = ¢* and t = ¢¥, and K(u) = «(¢") and ¥ (u) = G(e"), we
obtain the additive form:

K(u+v) — K() = K@)¥ ().

So (ChFE) is (GFE), again in disguise!

As to the trickery above: application of the logarithm and the passage from
discrete to continuous in the transformation of (CAFE) into (GFE) is justified in
[73] from knowledge of the norming constants, that a, = n* for some k # 0 (as
then a extends to an injective function g, and the values a,,/a, form a dense set).
That is an acceptable way to proceed for probabilists, by virtue of an elementary
probabilistic proof identifying the norming constants (cf. [42, VI.1, Theorem 1], [75,
Lemma 5.3]); the next section (Section 9.4) rids us of this dependence on ‘outside
material’.

The first trick above (taking logarithms) is justified by Lemma 1 below; the
subsequent trick relies on continuity of K and on reference to a dense subset of
R, via the simple Corollary below, the routine proof of which we omit: it is similar
in spirit to the proof of Lemma 1. (Unlike for the constants a,, an explicit form for
the b,, is not needed.)

Lemma 1 ([73, L. 1]) For continuous ¢ # 0 satisfying (ChFE) with a, = nk
(k # 0), ¢ has no zeros on R...

Proof 1f ¢(7) = 0 for some T > 0, then ¢(a,,t) = O for all m, by (ChFE). Again
by (ChFE),

lp(zan/a)|" = |p(ant)| = 0,
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so ¢ is zero on the dense subset of points ta,,/a,; then, by continuity, ¢ = 0 on
R, a contradiction. O

Corollary ([73, C. 1]) Equation (ChFE) with a,, = n* (k # 0) holds on the dense
subgroup

Ag :={an/a, : m,n € N} :
there are constants {byn}mnen With

o)™ = p(tay,/ay) exp(iby/nt) (t=0).

Reference to case (ii) in the reduction to (GFE) above and to the known
continuous solutions of (GFE) yields the form of the (non-degenerate) stable law:
for some y € R,k € Cand withA := k/y and B:=1— A (for y # 0),

- _ ) (@At 4 Br), fory #0,
f@) =logo(t) = F)e+ ktlogs). fory =0, (t>0). )

Here « := y + 1 is called the characteristic exponent.

Remark The form (%) here takes no account of a further probabilistic ingredient:
restrictions on the two parameters y and « (equivalently « and k). Such restrictions
follow from the asymptotic analysis of the ‘initial’ behaviour of the characteristic
function ¢ (i.e. near the origin). This is equivalent to the ‘final’ or tail behaviour (i.e.
at infinity) of the corresponding distribution function, and relates to its skewness, i.e.
its ‘tail balance’ ratio—the asymptotic ratio of the distribution’s tail difference to its
tail sums; for the details see [75, Section 8].

9.4 The Stable Laws Equation on R

Treating the stable laws equation (ChFE) purely as a functional equation for
determining continuous solutions calls for the removal of spurious probabilistic
assumptions. It emerges that knowledge of a, may be deduced from (ChFE)
provided the continuous solution ¢ is to be non-trivial, i.e. neither |¢| = 0 nor
|¢| = 1 holds on [0, co0). That is: the explicit form of a, may be deduced without
assuming that ¢ is the characteristic function of a (non-degenerate) distribution, as
we now show.

Theorem 7 If ¢ is a non-trivial continuous function and satisfies (ChFE) for some
sequence a, > 0, then a, = n* for some k # 0.

We will first need to establish a further lemma and proposition.
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Lemma 2 [f (ChFE) is satisfied by a continuous and non-trivial function ¢, then
the sequence a,, is either convergent to 0, or divergent (‘convergent to +00’).

Proof Suppose otherwise. Assume first that, as a, > 0, for some infinite Ml C N,
and a > 0,

a,, — a through M.

Without loss of generality Ml = N, otherwise interpret m below as restricted to M.
For any fixed ¢, a,,t — at, so

Kl = Supm{lgo(amt)l}
is finite by the continuity of ¢. Then, for all m,
lo)" = le(ant)| < Ki.

and so |¢(¢)| < 1, for each ¢. Then, by continuity,
lp(an)| = lim |p(a,1)| = lim [p(A)[" = Oor 1.
So, setting Ny := {t : |p(at)| = k},
Ry =NyUN;.

By the connectedness of R4, one of Ny, N; is empty, as the disjoint sets N, are
closed; so respectively |¢| = 0 or |p| = 1, contradicting non-triviality.

To complete the proof, suppose there exist M € N and M’ € N such that
lim,,ep @, = o0 and limy,epy a,, = 0. The former implies that |p(0)] = 1 : as
@ is non-trivial, we may choose ¢ with |¢(¢)| # 0; then, by continuity at 0,

. . 1
00) = Jim [0/ = limexp (5 Togl()]) = 1.
meM neM m
But, again by continuity at 0, for each ¢,
li Hl" = 1l 2D = le0)] =1,
lim Jo(n)[" = lim |¢(ann)] = |¢(0)]

and so |¢(¢)| = 1 for all 7, contradicting non-triviality. |

The next result essentially contains [75, Lemma 5.2]; the latter relies on |¢(0)| =
1, the continuity of ¢, and the existence of some 7 with ¢(f) < 1 (guaranteed below
by the non-triviality of ¢). We assume less here, and so must also consider the
possibility that [¢(0)| = 0 (automatically excluded if ¢ is the characteristic function
of a distribution [42, Chapter XV, Lemma 1]).
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Proposition 9 [f (ChFE) is satisfied by a continuous and non-trivial function ¢ and
for some ¢ > 0, |o(t)| = |@(ct)| for all t > 0, then ¢ = 1.

Proof Note first that @, > 0 for all n; indeed, otherwise, a; = 0 for some k > 1 and

e =lp©)]  (>0).

Assume first that k > 1; taking ¢ = 0 yields |¢(0)| = 0 or 1, which as in Lemma 2
implies |¢| = 0or |p| = 1. If k = 1, then |¢(f)| = |¢(0)|, and for all n > 1,

lpO)]" = leO);
so again |¢(0)| = 0 or 1, which again implies |¢| = 0 or |p| = 1.

Applying Lemma 2, the sequence a, converges either to 0 or to co.
We consider these two cases separately.

(i) Suppose that a, — 0. Then, as above (referring again to K;), we obtain
lp@)| <1,
for all ¢. Now, since
l9(0)] = lim [¢(a,n)| = Tim [p(®)[",

if |@(¢)| = 1 for some t, then |@(0)| = 1, and that in turn yields, for the very
same reason, that

lp@)] =1
for all t, a trivial solution, which is ruled out. So in fact |¢(7)| < 1 for all t, and
s0 |p(0)| = 0.
Now suppose that for some ¢ > 0, |¢(7)| = |@(ct)| for all + > 0. We show

that ¢ = 1. If not, without loss of generality ¢ < 1, (otherwise replace ¢ by ¢!
and so, by hypothesis, |¢(t/c)| = |¢(ct/c)| = |@(?)] ); then

0= lpO)] = lim|p(c"n| = l¢@)], forz >0,

and also for r = 0; so ¢ is trivial, a contradiction. So indeed ¢ = 1 in this case.
(i1) Suppose now that a, — oco. Choose s with ¢(s) # 0; then, by (CAFE),

1
lp(0)] = liplw(s/an)l = limexp (; log Iw(s)l) =1,

i.e. |¢(0)| = 1. Again as in case (i) above, suppose that for some ¢ > 0,
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le@] = le(cr)]
for all # > 0. To show that ¢ = 1, suppose again without loss of generality that
¢ < 1; then
1= [p0)] = lim [p(c"n)| = lp()] forz> 0,
and so |¢(r)| = 1, for t > 0, again a trivial solution. So again ¢ = 1. O

Proof of the Theorem 7 (ChFE) implies that

lp(amt)| = loO)|™ = |p(an))* = |@(amant)] (t=0).
By Proposition 9, a, satisfies the discrete version of the Cauchy equation

Amn = Amdy (m,n e N) s

whose solution is known to take the form #*, since a, > 0 (as at the start of the

proof of Proposition 9). If @, = 1 for some n > 1, then, for each r > 0, |¢(¢)| = 0
or 1 (as |@(?)| = |¢(#)|") and so again, by continuity as in Lemma 2, ¢ is trivial. So
k #0. |

Remark Continuity is essential to the theorem: take a, = 1, then a Borel function
¢ may take the values 0 and 1 arbitrarily.

9.5 Positive Solutions of GS

In this section we include various new arguments providing information on the
positive solutions of (GS) by way of fairly direct links to the equation. Theorem BM,
with a family resemblance to Theorem 1, is derived here more directly than if we
were to specialize results from Brzdgk [29] and Brzdgk-Mureriko [31]. Theorem B,
which follows it and in combination yields the dichotomy: f is either never 1 or
always 1 on R} := (0, 00), is taken from these papers, but again the proof here is
more direct, and shorter. The final result is Theorem 9, suggested by the recent [71,
Theorem 6].

For completeness, as it is needed in Theorem B (and obliquely referred to in
Section 9.2.5 above), we begin with the following, which we quote verbatim, as it
is short.

Theorem 8 (From [17, Theorem 5]) If ¢ : Ry — Ry satisfies (GS), then ¢(x) >
1 forall x > 0.

Proof Suppose that ¢(u) < 1 for some u > 0; then v := u/(1 — ¢(«)) > 0 and so,
since v = u + vo(u),

0 <o) =¢@+vpu)=epue®).

So, cancelling by ¢(v) > 0, one has ¢(u) = 1, a contradiction. O
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In Theorems BM and B below we use f rather than ¢ for ease of comparison
with [31].

Theorem BM ([31, Lemma 7]) Forf > 0 on Ry a solution of (GS), if f # 1 at
all points, then f(x) = 1 + cx (x > 0) for some ¢ > 0.

Proof By symmetry, for any x,y > 0

S+ () =ff @) =f0+50)).

Fix x and y and put u := x + yf(x) and v := y + xf(y). If these are unequal, without
loss of generality suppose that v > u. Then (v — u)/f(u) > 0, so

0 <f(w) =f) =flu+fw)u—v)/fw)=[f)f(u—0v)/fuw).

Cancelling by f(u) > 0 gives f((u—v)/f(u)) = 1, contradicting the hypothesis that
fisnever 1. Sou = v: thatis, forall x,y > 0

x+y(x) =y +x0);

equivalently, for all x,y > 0

x/(1=f(x) =y/(1=f() = const. =c,

say. Then f(x) = 1 + cx forall x > 0. So ¢ > 0. O
Below we suppose that f(a) = 1, for some fixed a > 0. Note that ¢, := na is
a Beck sequence under o, with step size a; so f(na) = 1, since f(t,) = f(t1)" (see
Section 9.2.5).
For f a positive solution of (GS), we denote here the positive range of f by

Ry :=1{w:(3x> 0w = f(x)}.

If f =1, then Ry = {1}.
Lemma B ([29, Corollary 1], cf. [31, Lemmas 1,2]) [f the value 1 is achieved at
a > 0 by a solution f > 0 on Ry of (GS), then

(i) the range set Ry is a multiplicative subgroup;
(i) f(x+a) =f(x) forallx > 0;
(iii) f(wa) = 1 forw € Ry.

Proof For (i), (GS) itself implies that R is a semigroup. We only need to find the
inverse of w := f(x) with x > 0. Choose n € N with na > x. Puty = (na —x)/f(x);
theny > 0 and

JOF) =fx+yf(x) =f(na) = 1.
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So f(y) € Ry. For (ii), note that, as f(a) = 1,
f@) =ff(a) =fla+xf(a) =f(x+a).

For (iii), since (i) holds, this time write w = 1/f(x) for some x > 0; then by (ii)

f) =fx+a) =fx+fWa/fx) =f0)f (aw),

and cancelling by f(x) > 0 gives f(aw) = 1. O
Theorem B ([29, Theorem 3]) For f a positive solution of (GS), if 1 € Ry, then
f=1

Proof Suppose otherwise; then, by Theorem 8§ above, f(u) > 1, for some u > O.
Choose a > 0 with f(a) = 1 and n € N with

na > u/(f(u) —1) > 0.
Put
vi=na+u/(1—f(w)>0; v+ naf(u) =u-+ vf(u) + na.
So, since f(u) € Ry, applying Lemma B (first (iii) with f(u) in place of w giving
f(af(u)) = 1, then (ii) repeatedly, but with af (1) in place of a, and then again (ii)
repeatedly, but this time with a)
0 <f(v) =f(v + naf(w) = f(u+ vf(u) + na)
=flu+vf(w) =fwf(v),

yielding the contradiction f () = 1. Hence f(x) = 1 for all x. O

We now revert to the ¢ notation. In Section 9.2.5 above, K(u) > 0 was posited

for u > O near 0. Below a similar assumption, justified by Theorem 8 above, is made
for K := ¢ — 1. For ¢ : [0, 00) — R, denote its level set above unity by:

Li(p):={reRy 9> 1j.
Theorem 9 If the continuous solution ¢ of (GS) with ¢(0) = 1 has a nonempty

level set L1 (@) containing an interval (0, §) for some § > 0, then ¢ is differentiable
and for some p > 0

o) =1+ pt.

Proof ForT € Ly := Ly(¢) and u > 0, write m(u) = mr(u) for the jump index of
T for the Beck sequence #,,(u), as in Section 9.2.5 above; then

tm(u) (Lt) < T < tm(u)+l(u) .
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By (**) of Section 9.2.5 (with m = m(u)) and continuity at 0 of ¢,

Ay () =ty 41 (1) — tniuy () = ugp ()™
<T(ew)—1)+u—>0 asu—0,

for u € Ly uniformly in T > 0 on compacts. Likewise for u ¢ L4, as then
Am(u) (bt) = u.
Consider any null sequence u,, — 0 with u, > 0. We will show that
{(w(un) - 1) /un}
is convergent, by showing that down every subsequence {(¢(u,) — 1) /u, }nem there
is a convergent sub-subsequence with limit independent of M.

Without loss of generality we take 0 < u,, € Ly for all n (so u, < §). Now
consider an arbitrary T € L . Passing, if necessary, to a subsequence (dependent on
T) of {(¢(u,) — 1) /uy }nem, we may suppose, for k(n) := mr(u,), that

Ak(n) (I/t”) —0;
then along M
|T - tm(u,,) (Mn)| =< Am(un) (Mn) s
and so
tiny (Un) = gy () — T.

Again by (**) and continuity at T of ¢, putting p := (¢(T) — 1)/T > 0,

) =1 @)™ =1 @ty () — 1 -1 _

U tm(un) (un) tm(un) (un) T

)

along M to a limit p dependent only on T (and not on M). So {(¢(u,) — 1) /u, }
is itself convergent to p. But this holds for any null sequence {u,} in R, so the
function ¢ is differentiable at 0, and so is right-differentiable everywhere in L4 (see
[71, Lemma 3]). It is also left-differentiable at any x > 0, as follows. For y with
0 <y<ux, put

1= x=y/¢@) > 0.

Then x = y + t¢(y), so
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o) —90) _ e +190) —e0) _ [e@) —lle() _ @) -1

xX—y xX—y xX—y t

Butt | Oasy 1 x (by continuity of ¢ at x), and
(p() — 1)/t — ¢'(0).

So ¢ is left-differentiable at x and so differentiable; from here
! /
¢ (x) = ¢(0).

Integration then yields the form of ¢(x); also, since T above was arbitrary, for
any T € L4 and with u, — 0 as above,

p = lim{(p(u) = 1) /u,} = ¢'(0) = (p(T) = 1)/T

p(x) =1+px (xeRy).

9.6 Two Random Walks in R3

We close by taking note of two higher-dimensional analogues of the random walk
of Section 9.3.2, one unbounded, the other not. These are random walks involving
independence both of the step size and of the direction, the latter with (directional)
symmetry, i.e. its probability law is invariant under rotation; the object of study is
the distribution of the distance from a designated starting point o. The unbounded,
locally compact, case is a motion in space starting from the origin with spherical
symmetry (which can thus be described by the distribution of its radial component),
the other, compact, case a motion on the sphere with starting point o at its north
pole (yielding angular, or great circle, distance from o). The correspondingly radial
or angular-wise characteristic function satisfies a functional equation involving an
‘averaging homomorphy’:

1

KWK() = /_ Ko ) dv ). (AH)

with the auxiliary function ¥ a direction-cosine distribution, and two corresponding
commutative binary operations with real parameter A:

xoyy = ( +y* 4+ 2Xxy)"/2,

xopy=xy+ AVl —x2y/1—y2,
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These expressions arise from the cosine rules for Euclidean and spherical Triangles,
respectively. The first of the two gives the radial distance generated by the two step
lengths x, y with A the direction-cosine of the angle between them (note the relation
to the Gauss functional equation [2, Chapter 3, Example 6]); similarly, the second
measures angular distance. As the action which generates motion is not associative
in the usual sense, associativity has to be replaced by a probabilistic variant.
Replacing the step-length realizations by random variables, the usual associativity

property is re-interpreted modulo ‘equality in distribution’ (cf. 2 in Section 9.3.2)
for the corresponding random outcomes ‘(X oy Y) oy, Z” and ‘X oy, (Y oy Z)* (with ¥
denoting the law of 1). The two kinds of motion were studied, respectively, first by
Kingman [61] and next by Bingham [8]. They were very much driven by the work
of Bochner, especially [23-25]; indeed, on the basis of this link, one may regard
Bochner as the forerunner to/founding father of hypergroups.

The Kingman non-degenerate case finds that probabilistic associativity holds iff
the direction-determining auxiliary function is V¥, with

dys(A) oc (1 —A%)°724)

(for a parameter 0 > —1/2), a matter earlier recognized by Haldane [48]; the
(radial) characteristic function of the walk is then

K() = /_ Ly, () = A ),

1

where the lambda Bessel function is defined by
As(t) :=(t/2)° I, (O (0 + 1).

The Bingham non-degenerate case finds that probabilistic associativity holds iff the
auxiliary function v again has the same ¥, form and, up to normalization, the
corresponding (angular) characteristic functions K are the Gegenbauer orthogonal
polynomials (ultraspherical polynomials): Gegenbauer’s original analysis plays a
role in both random walks.

The two degenerate cases of (AH) in the spherical case correspond to ¥
representing either §p—a unit point-mass at 0, or %(8_1 + 641)—two half-unit
masses at 1. The former yields the Cauchy multiplicative equation on [—1, 1],
as may be expected, the latter the cosine functional equation.

The general framework for non-deterministic binary operations is provided by
the theory of hypergroups, as noted in the introduction. Thus the two examples
above yield Kingman’s Bessel hypergroups [22, 3.5.68] (cf. [86, Section 4.1], [87]),
and Bingham’s Gegenbauer polynomial hypergroups [22, 3.4.23] (cf. [86, Chapter
2]). A few words may help to provide some context.

The latter ‘polynomial hypergroup’ is the easier to describe. Its underlying
topological space is discrete: N. Convolution is defined using a family of orthogonal
polynomials {C,(¢)} acting as a base in the linear space of all polynomials; the
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binary operation on the pair k,/ € N is computed from the product C;C; via
its ‘linearization’—its orthogonal expansion. The indices n for C, with non-zero
coefficients in the expansion (the direction cosines) are the possible locations in N,
with the cosines prescribing the probability of random selection. This calculation is
also at the heart of [8, Proposition 3b], which uses classical orthogonal polynomials
with weight function v,

The other example is a hypergroup on Ry := [0, co) with Euclidean topology.
The connection with Bessel’s differential equation makes Kingman’s random walks
a canonical example of hypergroups generated by a standard Sturm-Liouville (S-L)
differential operator

P (x) 5

-=%c = —3)% - X s
p(x)

where p(x) denotes, as usual, the S-L coefficient function, so that the subscript x
signifies the variable of differentiation (cf. [22, 3.5]). The convolution of two unit
point-masses at x and y is determined by their action on a C* (R ) function f, which
action maps f to the evaluation us(x, y) at (x, y) of the unique function u = us(.,.)
defined on Ri and satisfying the p.d.e.

Zau(x,y) = Zu(x,y)

with boundary information along the axes x = 0 and y = 0 provided by f.
The upshot of this is to fulfil a like aim as in the earlier example: to define a
binary operation x. The continuous analogue, based on (AH) above, is

1
Floxy) = /R F0) (S % 8,)(dr) = / S DY),
. 3

where f(x * y) stands for f (5, * §,), and so is the mean value of f under the measure
8y » 8, and the function u(x,y) := f(8; * d,) is to satisfy the S-L p.d.e. as above.
(This assumes f is integrable with respect to such measures.)

The characteristic function K now solves (AH) above iff it solves the functional
equation

K(x*y) = K()K(). (%)

and now this again expresses homomorphy. In the Sturm-Liouville case, by dint of
the construction of the hypergroup relying on the operator .%;, Equation (x) reduces
(via separation of variables) to solving a Sturm-Liouville eigenvalue problem:

ZK(x) = const. ,
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with
p@)/p'(x) = x,

which identifies that K is a lambda Bessel function [22, 3.5.23]. In the polynomial
case, Equation (x) reduces to a polynomial recurrence equation, with solution
yielding the Gegenbauer polynomials.

Remarks We note two significant underlying features, correlated with the homo-
morphy asserted by ().

Firstly, the r-th normalized coefficient (i.e. modulo division by the usual binomial
coefficients) 0, in any valid finite Taylor expansions of log K(¢) is ‘additive’:

(these are the Haldane ‘cumulants’)—see [61, Section 4]; here by a valid expansion
is meant that the powers in the expansion corresponding to r are taken only as far as
the finiteness of the corresponding moments allows.

Secondly, the radial characteristic function encodes homomorphy:

E[K(tX)|E[K (tY)] = E[K(t(X oy Y))].

9.7 Complements

1. Additive Versus Multiplicative, and Double Sweep The definition of a regularly
varying f defined on R is usually given in multiplicative form, as that is generally
found most useful in applications; the definition immediately suggests a connection
with scaling phenomena, as in the Fechner theorem in physics—see [10]. One is
tempted to interpret these phenomena as functional equations of absent scaling: to
solve f(x) = ¢(g(x)) in the absence of any natural scaling effect between f and g.
This is solved on the assumption of asymptotic scale independence of f from g :

JAx) ~ ¥ (A)f (%)

for some ¥, i.e. on the assumption that f is regularly varying. [10] is a very
illuminating survey of the applications of RV also in other fields.

The theoretical work in RV, on the other hand, prefers the equivalent additive
form of regular variation (as in Section 9.3.1), with f defined on R satisfying

fx+10—f(x) —> k@),

so that k will satisfy the additive Cauchy equation. This limit function £ may be
regarded as the first-order derivative of f ‘at infinity’. Of interest is then a second-
order asymptotic form arising from the divided difference:
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&+ —f0]/8(x)

(comparing growth rates) studied in the Bojani¢-Karamata/de Haan theory, BGT
Chapter 3. The general denominator yields the advantages of ‘double sweep’ (BGT
3.13.1) by capturing both first- and second-order at once (setting g = 1 in the former
case). Consequently, the Beurling divided difference story of BRV captures the best
of both worlds and encompasses all the forms of RV see especially [20, §7].

2. Automatic Continuity In the presence of even the merest hint of additional
good behaviour, an additive function is beautifully well-behaved—it is (continuous,
and hence) linear. The general context for results like this is that of automatic
continuity, studied, e.g., by us [12, 13, 15, 17] for real analysis, Hoffmann-Jgrgensen
in [80, Part 3, Section 2], [83] and [82] for groups, etc. For Banach algebras and
Gelfand theory, see, e.g., Dales [37, 38], Helson [49, p. 51], [39, 40], and the recent
[60, esp. Corollary 16.7]. The pathology of discontinuity in the absence of good
behaviour here is tied to set-theoretic axioms (cf. the foundational discussion in [19,
Appendix 1]).

For a study of these features and the up-grade phenomenon (as in Theorem 9),
that continuity implies differentiability, see [44] and the textbook [56].

3. Generalized Quantifiers Relevant for us are weakenings of the universal quanti-
fier, along such lines as ‘for quasi all x’, i.e. for x off a negligible set (and elsewhere
‘there exist an infinite subset of N’ [20]). Mostowski [68] was the first in modern
times to begin a study of generalized quantifiers, followed by Lindstrdm [66] (for
a textbook treatment see [6, Chapter 13]), and most notably Barwise [4]—see
[89] for an account of this important development, and e.g. [65] for some recent
developments in this field. Van Lambalgen [88] traces connections here with the
conditional expectation of probability theory.

4. Sequential Limits The quantifier weakening here has been concerned with
thinning as much as possible the set of A occurring in A + x or Ax. Related,
and equally important, is the question of thinning the set of x here—that is, in
letting x — oo through not all the reals, but some thinned subset. The most
familiar case is taking limits sequentially, as in Kendall’s theorem (BGT, Theorem
1.9.2; cf. [10] and Section 9.3.3): for any sequence {x,} with limsupx, = oo
and limsupx,+;/x, — 1 (for instance, x, = n), if f is smooth enough (e.g.
continuous) and

af(Ax,) —> g(A) € (0,00) VA el
for some finite interval I C (0, oo) and some sequence a,, — 00, then f is regularly
varying. (Here a, regularly varying follows from smoothness of f.) The question
arises of simultaneous thinning of A and x together. Another case here is regular

variation—in many dimensions, or of measures:

nP(a,'x € ) — v(.) (n - o0),
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(here regular variation of a, — oo is assumed) and the limit (spectral) measure v
is on the unit sphere S; see, e.g., Hult et al. [53] or [79, Chapter 6] for background.
Now thinning is to be done on subsets of S on which convergence is assumed.
For convergence-determining classes here, see, e.g., Billingsley [7, Section 1.2],
Landers [64], Rogge [81].

5. Regular Variation Without Limits In the absence of limit functions one studies the
‘limsup’ variants. As these are subadditive, one asks when does this subadditivity
lead to additivity. The following identifies where naturally to apply quantifier
weakening; Theorem 5 of Section 9.3.2 yields a sample answer: see also [18, 20].

Proposition 10 (Additive Kernel, [20, Proposition 1]) For F : R — R put

Ap:={u: lim [F(u + x) — F(x)] exists and is finite} ,
X—=>00

and, for a € Ap, put G(a) := lim,—,oo[F(a + x) — F(x)]. For u € R define
F*(u) :=limsup,_, [F(u + x) — F(x)].

Then:

(1) Ar is an additive subgroup;
(ii) G is an additive function on Ag;
(iii)) F*: R - R U {—o0, 400} is a subadditive extension of G;
(iv) F* is finite-valued and additive iff Ar = R and F*(u) = G(u) for all u.

This directly connects to Theorem 1 in Section 9.2, as the identity
w—u—v+1=0-uw(l—-v)

gives that (1—e™)/y is subadditive on R := (0, 0o) for y > 0, and superadditive
on Ry fory <0.

6. Functional Equations of Associativity The equivalence noticed by Javor of (GS)
with the associativity of o, has further analogues in connecting functional equations

with the associativity of binary operations. For example, one may consider the
operations

X%,y 1= xy £ A2p(x)p(y)

with p either involutary or skew-involutary. These are associative iff g(x) :=
Ap(x)/x solves the equation

g(x) + g(y)

glx*yy) = W;
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converting g into a homomorphism calls for the right-hand side to be interpreted
as the combination of the elements u = g(x) and v = g(y) by means of a group
operation on the interval (—1, A), oy say, given by

u+v
1+£uv/A2°

Uoyv =

Then g is seen to satisfy the functional equation of competition introduced recently
by Kahlig and Matkowski [59]; cf. the hyperbolic semi-group of [51, 8.3]. As there,
the choice of sign ‘= or ‘4’ yields the familiar tangent or hyperbolic tangent
addition formulas. In the skew case the operations *, include both

xy £ 221 —x)(1 —y)
and the ‘cosine formula’, similarly as in Section 9.6:
xy &+ A2V1—x2 m .
The operation

xxy=xy+px) +pQ),

with p(0) = 0, is associative only for p(x) = 0 and p(x) = x.

7. The Cocycle Equation The cocycle functional equation
F(st,x) = F(s,tx)F(t, x)

for F : G x X — G may be regarded as an entry-point into RV, using flow
language, as in [70, Section 4] and [14]; indeed, if F is to be a h-coboundary for
some continuous /%, then

h(tx) = F(t,x)h(x) .
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