Chapter 7 Remarks on Analogies Between Haar Meager Sets and Haar Null Sets

Eliza Jabłonska ´

Abstract In the paper some analogies between Haar meager sets and Haar null sets in abelian Polish groups are presented.

Keywords Abelian Polish group • Haar meager set • Haar null set • Meager set • Set of Haar measure zero

Mathematics Subject Classification (2010) Primary 28C10, 28E05, 54B30, 54E52; Secondary 39B52, 39B62

7.1 Introduction

It is well known [\[3\]](#page-9-0) that a subset *A* of an abelian Polish group *X* is called *Haar null* if there are a universally measurable set $B \subset X$ with $A \subset B$ and a Borel probability
measure *u* on *X* such that measure μ on *X* such that

$$
\mu(x+B)=0
$$

for all $x \in X$. In [\[5\]](#page-9-1) Darji introduced another family of "small" sets in an abelian Polish group *X*; he called a set $A \subset X$ *Haar meager* if there is a Borel set $B \subset X$ with $A \subset B$, a compact metric space K and a continuous function $f: K \to X$ such that *A* \subset *B*, a compact metric space *K* and a continuous function *f* : *K* \rightarrow *X* such that

 $f^{-1}(B + x)$ is meager in *K* for every $x \in X$.

In a locally compact group these two definitions are equivalent to definitions of Haar measure zero sets and meager sets, respectively. That is why we can say that

E. Jabłońska (⊠)

Department of Discrete Mathematics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland e-mail: elizapie@prz.edu.pl

[©] Springer International Publishing AG 2017

J. Brzd˛ek et al. (eds.), *Developments in Functional Equations and Related Topics*, Springer Optimization and Its Applications 124, DOI 10.1007/978-3-319-61732-9_7

the notion of a Haar meager set is a topological analog to the notion of a Haar null set. Since lots of similarities between meager sets and sets of Haar measure zero are well known in locally compact abelian Polish groups (see, e.g., [\[24\]](#page-10-0)), we would like to find as many analogies between Haar meager sets and Haar null sets as possible.

For each abelian Polish group *Y* we introduce the following notations:

$$
\mathcal{HM}_Y := \{ A \subset Y : A \text{ is Haar null} \},
$$

$$
\mathcal{HM}_Y := \{ A \subset Y : A \text{ is Haar meager} \},
$$

$$
\mathcal{M}_Y := \{ A \subset Y : A \text{ is meager} \};
$$

and, if additionally *Y* is locally compact,

 $\mathcal{N}_Y := \{ A \subset Y : A \text{ has Haar measure zero} \}.$

Moreover, in the whole paper *X* is an abelian Polish group.

7.2 Basic Similarities

Let us start with the fact that both families, \mathcal{HM}_X and \mathcal{HM}_X , are "small".

Theorem 7.1 ([\[3,](#page-9-0) Theorem 1]) *The family* $H \mathcal{M}_X$ *is a* σ -*ideal and, if X is locally compact,*

$$
\mathscr{H}\mathscr{N}_X=\mathscr{N}_X.
$$

Theorem 7.2 ([\[5,](#page-9-1) Theorems 2.4, 2.9]) *The family* \mathcal{HM}_{X} *is a* σ -*ideal and, if X is locally compact,*

$$
\mathscr{HM}_X=\mathscr{M}_X.
$$

Moreover, Darji (see [\[5,](#page-9-1) Theorem 2.2]) proved that in the case, where *X* is not locally compact,

$$
\mathcal{HM}_X\subsetneqq \mathcal{M}_X.
$$

Clearly an analogous inclusion for Haar null sets is impossible.

An important result obtained by Christensen [\[3\]](#page-9-0) is a theorem of Steinhaus' type.

Theorem 7.3 ([\[3,](#page-9-0) Theorem 2]) *For every universally measurable subset A of X, with* $A \notin \mathcal{HM}_X$, the set

$$
\{x \in X : (A + x) \cap A \notin \mathcal{HM}_X\}
$$

is a neighbourhood of 0 *in X; consequently* $0 \in \text{int}(A - A)$.

A topological analogue of the above theorem also holds.

Theorem 7.4 ([\[16,](#page-10-1) Theorem 2]) *For every Borel subset A of X, A* $\notin \mathcal{HM}_X$ *, the set*

$$
\{x \in X : (A + x) \cap A \notin \mathcal{HM}_X\}
$$

is a neighbourhood of 0 *in X; i.e.*, $0 \in \text{int}(A - A)$ *.*

The following generalization of Theorem [7.3](#page-1-0) has been proved by Gajda [\[13\]](#page-10-2).

Theorem 7.5 ([\[13,](#page-10-2) Theorem 1]) *For every n* $\in \mathbb{N}$ *and every universally measurable set A* $\notin \mathcal{HM}_X$ *the set*

$$
\{x \in X: \bigcap_{k \in \{-n, \dots, n\}} (A + kx) \notin \mathcal{H} \mathcal{N}_X\}
$$

is a neighbourhood of 0 *in X.*

The above theorem is a very useful tool in functional equations. An analogous result has been proved in [\[17\]](#page-10-3).

Theorem 7.6 ([\[17,](#page-10-3) Theorem 4]) *For every n* $\in \mathbb{N}$ *and Borel set A* $\notin \mathcal{HM}_X$ *the set*

$$
\{x \in X: \bigcap_{k \in \{-n, \dots, n\}} (A + kx) \notin \mathcal{HM}_X\}
$$

is a neighbourhood of 0 *in X.*

Christensen and Fischer [\[4\]](#page-9-2) generalized Theorem [7.5](#page-2-0) as follows.

Theorem 7.7 ([\[4,](#page-9-2) **Theorem 2**]) *For every* $N \in \mathbb{N}$ *and every universally measurable set A* $\notin \mathcal{HM}_X$ *the set*

$$
\{(x_1,\ldots,x_N)\in X^N: A\cap \bigcap_{i=1}^N (A+x_i)\not\in \mathscr{H}\mathscr{N}_X\}
$$

is a neighbourhood of 0 *in XN.*

It turns out that an analogy to Theorem [7.7](#page-2-1) also exists.

Theorem 7.8 ([\[18,](#page-10-4) Theorem 2.2]) *For every* $N \in \mathbb{N}$ *and Borel set* $A \notin \mathcal{HM}_X$ *the set*

$$
\{(x_1,\ldots,x_N)\in X^N:A\cap\bigcap_{i=1}^N(A+x_i)\notin\mathscr{H}\mathscr{M}_X\}
$$

is a neighbourhood of 0 *in XN.*

From Theorems [7.3](#page-1-0) and [7.4](#page-2-2) we obtain that σ -compact sets in non-locally compact groups are "small" in both senses. More precisely we have the following.

Corollary 7.1 ([\[3\]](#page-9-0), [\[16,](#page-10-1) Corollary 1]) If X is not locally compact, then each σ *compact set is Haar null as well as Haar meager.*

One of the well-known results is the decomposition theorem stating that the real line can be decomposed into two disjoint "small" sets: a meager one and a Lebesgue measure zero one. Doležal, Rmoutil, Vejnar and Vlasák proved that some special spaces also can be decomposed into two disjoint "small" sets.

Theorem 7.9 ($\lceil 10$ **, Theorems 22 and 25**)) *Each Banach space, or* \mathbb{R}^{ω} *, can be decomposed into two disjoint sets: a Haar meager one and a Haar null one.*

Let us pay attention yet that the Kuratowski–Ulam Theorem and the Fubini Theorem, which are analogues of each other in the locally compact groups, fail in non-locally compact groups.

Example 7.1 ([\[10,](#page-10-5) Example 20]) The set

$$
C := \{(s, t) \in \mathbb{Z}^{\omega} \times \mathbb{Z}^{\omega} : t_n \le s_n \le 0 \text{ for } n \in \omega\}
$$

is neither Haar null nor Haar meager. But the set

$$
C[t] := \{ s \in \mathbb{Z}^{\omega} : (s, t) \in C \}
$$

is Haar meager as well as Haar null for each $t \in \mathbb{Z}^{\omega}$ (because it is compact). On the other hand, the set

$$
A := \{ s \in \mathbb{Z}^{\omega} : s_n \leq 0 \text{ for } n \in \omega \}
$$

is non-Haar meager and non-Haar null and, for each $s \in A$, the set

$$
C[s] := \{t \in \mathbb{Z}^{\omega} : (s,t) \in C\}
$$

is neither Haar meager nor Haar null.

From this example we see that there exists a non-Haar meager and non-Haar null set in $\mathbb{Z}^{\omega}\times\mathbb{Z}^{\omega}$ such that in one direction all its section are Haar meager, and in the other direction there are non-Haar meager many sections which are non-Haar meager.

It is rather obvious that every set containing a translation of each compact set is "large" in both senses; i.e., the following proposition is valid.

Proposition 7.1 *Every set containing a translation of each compact set is neither Haar null nor Haar meager.*

This proposition is very useful, because allows to observe some further similarities between Haar meager sets and Haar null sets.

In the paper $[22]$ Matoušková and Zelený constructed closed sets A, B in a nonlocally compact abelian Polish group *X* such that *A*, as well as *B*, includes a translation of each compact set and the set $(A + x) \cap B$ is compact for each $x \in X$. Consequently we obtain two analogies characterizations of locally compact groups. **Proposition 7.2** *An abelian Polish group X is locally compact if and only if*

$$
int(A+B)\neq\emptyset
$$

for each universally measurable non-Haar null sets $A, B \subset X$

Proposition 7.3 *An abelian Polish group X is locally compact if and only if*

$$
int (A + B) \neq \emptyset
$$

for each Borel non-Haar meager sets A, B \subset *X.*
Dodos [6] has used Matoušková's and Zelen

Dodos $[6]$ has used Matoušková's and Zelený's result from $[22]$ $[22]$ to show that the invariance under bigger subgroups is not sufficient to establish a dichotomy. More precisely, he proved the following fact.

Proposition 7.4 ([\[6,](#page-9-3) Proposition 12]) If X is not locally compact and G is a σ *compact subgroup of X, then there exists a G-invariant* F_{σ} *subset* F of X such that *neither F nor* $X \setminus F$ *is Haar null.*

In view of Proposition [7.1,](#page-3-0) in the same way as Dodos, we can prove that an another type of dichotomy also does not hold.

Proposition 7.5 ([\[18,](#page-10-4) Proposition 3.2]) *If X is not locally compact and G is a compact subgroup of X, then there exists a G-invariant* F_{σ} *subset* F of X such that *neither F nor* $X \setminus F$ *is Haar meager.*

Let us also recall that each meager set is contained in an F_{σ} meager set, as well as each set of Lebesgue measure zero is contained in a G_{δ} set of Lebesgue measure zero. It turns out that both theorems cannot be generalized on the case of Haar null sets and Haar meager sets. More precisely, Elekes and Vindyánszky [\[11\]](#page-10-7) proved the following.

Theorem 7.10 ([\[11,](#page-10-7) Theorem 4.1]) *Let* $1 \leq \xi < \omega_1$. If X is non-locally compact, *then there exists a Borel Haar null set that is not contained in any Haar null set* from $\Pi^0_\xi(X)$ (i.e., the ξ th multiplicative Borel class in X).

The same type result for a Haar meager set has been proved by Doležal and Vlásak in [\[9\]](#page-10-8).

Theorem 7.11 ([\[9,](#page-10-8) Theorem 10]) Let $1 \leq \xi < \omega_1$. If X is non-locally compact, *then there exists a Borel Haar meager set that is not contained in any Haar meager* set from $\Sigma^0_\xi(X)$ (i.e., the ξ th additive Borel class in X).

Clearly, for $\xi = 2$, we obtain the existence of a Borel Haar null set without any G_{δ} Haar null hull, as well as the existence of a Borel Haar meager set without any F_{σ} Haar meager hull.

In the same papers we can also find the following theorems analogies each other.

Theorem 7.12 ([\[11,](#page-10-7) Theorem 4.1]) *If X is non-locally compact, then there exists a coanalytic Haar null set without any Borel Haar null hull.*

Theorem 7.13 ([\[9,](#page-10-8) Theorem 10]) *If X is non-locally compact, then there exists a coanalytic Haar meager set without any Borel Haar meager hull.*

Matoušková and Stegall $[21]$ $[21]$ proved that a separable Banach space X is nonreflexive if and only if there exists a closed convex subset of *X* with empty interior, which contains a translation of any compact subset of *X*. Consequently, by Proposition [7.1,](#page-3-0) we obtain the following result.

Theorem 7.14 *Every separable nonreflexive Banach space contains a closed convex set with empty interior, which is neither Haar null nor Haar meager.*

Moreover, Matoušková $[20,$ $[20,$ Theorem 41 has showed that this is unlike the situation in superreflexive spaces, where closed, convex, nowhere dense sets are Haar null. In turn Banakh [\[1,](#page-9-4) Proposition 5.7] has proved that each closed Haar null set in a Polish group is Haar meager. Hence we have the next theorem.

Theorem 7.15 *In separable superreflexive Banach spaces closed, convex, nowhere dense sets are Haar null as well as Haar meager.*

7.3 Generically Haar Meager Sets and Generically Haar Null Sets

Let us recall once again definitions of Haar meager sets and Haar null sets.

Definition 7.1 A set $A \subset X$ is *Haar null* if there is a universally measurable set $B \supseteq A$ and a Borel probability measure u. on X such that $B \supset A$ and a Borel probability measure μ on *X* such that

 $\mu(x + B) = 0$ for all $x \in X$.

Definition 7.2 A set $A \subset X$ is *Haar meager* if there is a Borel set $B \supset A$, a compact metric space K and a continuous function $f: K \to X$ such that metric space *K* and a continuous function $f: K \to X$ such that

$$
f^{-1}(B + x) \in \mathcal{M}_K \text{ for all } x \in X.
$$

It means that:

- each Haar null set has the only one witness parameter—*a test measure*;
- each Haar meager set has two witness parameters—*a witness metric space* and *a witness function*.

The following result has been proved in [\[2\]](#page-9-5).

Proposition 7.6 *A Borel set B* $\subset X$ *is Haar meager if and only if there is a* continuous function $f : 2^{\omega} \rightarrow X$ such that $f^{-1}(B + x)$ is meager in 2^{ω} for all *continuous function* $f : 2^{\omega} \rightarrow X$ *such that* $f^{-1}(B + x)$ *is meager in* 2^{ω} *for all* $x \in X$ $x \in X$.

It means that a Haar meager set and a Haar null set have both the only one witness parameter—*a witness function* and *a test measure*, respectively.

Now, let $P(X)$ be the space of all Borel probability measures on X; this is a Polish space with Lévy metric.

Following Dodos [\[7,](#page-9-6) [8\]](#page-9-7), given a universally measurable set $A \subset X$, by $T(A)$ we an the set of all test measures for A i.e. mean the set of all test measures for *A*, i.e.

$$
T(A) := \{ \mu \in P(X) : \mu(x + A) = 0 \text{ for every } x \in X \}.
$$

Dodos [\[7\]](#page-9-6) has proved the following.

Theorem 7.16 ([\[7,](#page-9-6) Proposition 5]) *If A* \subset *X* is a universally measurable Haar null set then: *null set, then:*

- $T(A)$ *is dense in P(X)*;
- *if A is analytic, then either* $T(A)$ *is meager or* $T(A)$ *is comeager in* $P(X)$ *;*
- *if A is* σ -compact, then $T(A)$ *is comeager in P(X).*

Using Theorem [7.16,](#page-6-0) Dodos [\[8\]](#page-9-7) has introduced the notion of a generically Haar null set and next he has proved a theorem of Steinhaus' type.

Definition 7.3 A set $A \subset X$ is *generically Haar null* if $T(A)$ is comeager in $P(X)$.

Theorem 7.17 ([\[8,](#page-9-7) Proposition 11]) *If A* \subset *X is analytic, non-generically Haar null then A* $=$ *A is non-meager null, then* $A - A$ *is non-meager.*

Now, let $C(2^{\omega}, X)$ be the space of all continuous functions $f: 2^{\omega} \rightarrow X$; this is a Polish space with the supremum metric (similarly as the space $P(X)$ with Lévy metric). For every Borel set $A \subset X$ we define

 $W(A) := \{ f \in C(2^{\omega}, X) : f^{-1}(x + A) \in \mathcal{M}_{2^{\omega}} \text{ for every } x \in X \},\$

i.e., the set of all witness functions for *A*. Clearly, if $A \in \mathcal{HM}_X$, then $W(A) \neq \emptyset$, so this notation is analogous to $T(A)$.

In [\[1\]](#page-9-4) and [\[2\]](#page-9-5) an analogous result to Theorem [7.16](#page-6-0) has been proved.

Theorem 7.18 ([\[2\]](#page-9-5)) *Let* $A \subset X$ *be a Borel Haar meager set. Then:*

- *W*(*A*) *is dense in* $C(2^{\omega}, X)$;
- *either* $W(A)$ *is meager, or* $W(A)$ *is comeager in* $C(2^{\omega}, X)$ *;*
- *if A is* σ -compact, then $W(A)$ *is comeager in* $C(2^{\omega}, X)$ *.*

Theorem 7.19 ([\[1\]](#page-9-4), [\[2\]](#page-9-5)) *If* $A \subset X$ *is analytic, non-generically Haar meager (i.e.,* $W(A)$ *is not comeager in* $C(2^{\omega} \times Y)$ *then* $A - A$ *is non-meager W*(*A*) *is not comeager in* $C(2^{\omega}, X)$ *), then* $A - A$ *is non-meager.*

7.4 Analogies in Functional Equations

In this part (only) we assume that *X* is a Polish real linear space to present some further similarities between Haar meager sets and Haar null sets, which are very important in functional equations.

Lemma 7.1 ([\[23,](#page-10-11) Lemma 5]) Let $A \notin \mathcal{HM}$ be a universally measurable set and $x \in X \setminus \{0\}$. Then there exists a Borel set $B \subset A$ such that the set $k_x^{-1}(B + z)$ has *a positive Lebesgue measure in* $\mathbb R$ *for each* $z \in X$ *, where* $k_x : \mathbb R \to X$ *is given by* $k_r(\alpha) = \alpha x$.

Lemma 7.2 ([\[19,](#page-10-12) Lemma 1]) *Let A* $\notin \mathcal{HM}$ *be a Borel set and* $x \in X \setminus \{0\}$ *. Then there exists a Borel set B* \subset *A such that the set* $k_x^{-1}(B + z)$ *is non-meager with the*
Raire property in \mathbb{R} *for each* $z \in X$ *Baire property in* \mathbb{R} *for each* $z \in X$ *.*

Due to those two lemmas *t*-Wright convex functions, that are bounded on a "large" set, can be characterized.

Theorem 7.20 ([\[23,](#page-10-11) Theorem 8]) *Let* $D \subset X$ *be a nonempty convex open set and* $t \in (0, 1)$ *Each t-Wright convex function* $f : D \to \mathbb{R}$ *hounded on a non-Haar null* $t \in (0, 1)$ *. Each t-Wright convex function* $f : D \to \mathbb{R}$ *bounded on a non-Haar null* $university\;measurable\; set\; T\subset D\; is\; continuous.$

Theorem 7.21 ([\[19,](#page-10-12) Theorem 4]) *Let* $D \subset X$ *be a nonempty convex open set and* $t \in (0, 1)$ *Each t-Wright convex function* $f : D \to \mathbb{R}$ *hounded on a non-Hagy* $t \in (0,1)$ *. Each t-Wright convex function* $f : D \to \mathbb{R}$ *bounded on a non-Haar* $m \neq 0$ *meager Borel set T* $\subset D$ *is continuous.*
Now using a weaker version of I

Now, using a weaker version of Lemma [7.1,](#page-7-0) the additive functions, that are bounded above on a "large" set, can be characterized. More precisely, the following theorem is true.

Theorem 7.22 ([\[14,](#page-10-13) Corollary 1]) If $f : X \to \mathbb{R}$ is additive and bounded above *on a universally measurable set* $C \notin \mathcal{HM}$ *, then f is linear.*

Replacing [\[14,](#page-10-13) Lemma 1] by Lemma [7.2](#page-7-1) in the proof of the above theorem, we obtain an analogous result.

Theorem 7.23 If $f : X \to \mathbb{R}$ is additive and bounded above on a Borel set C \notin *H M, then f is linear.*

Moreover, using a weaker version of Lemma [7.1](#page-7-0) and Theorem [7.22,](#page-7-2) solutions of a generalized Gołąb–Schinzel equation, that are bounded on a "large" set, can be characterized.

Theorem 7.24 ([\[15,](#page-10-14) Theorem 1]) *Let* $f : X \to \mathbb{R}, M : \mathbb{R} \to \mathbb{R}$ and $|f(D)| \subset (0, a)$ for a positive number a and a universally measurable set $D \not\subset \mathcal{H}$ *N*. Then functions *for a positive number a and a universally measurable set* $D \notin \mathcal{HM}$ *. Then functions f and M satisfy the equation*

$$
f(x + M(f(x))y) = f(x)f(y)
$$
\n(7.1)

if and only if one of the following three conditions holds:

(i) $f = 1$; *(ii)* $M|_{(0,\infty)} = 1$ *and there exists a nontrivial linear functional* $h: X \to \mathbb{R}$ *such that*

$$
f(x) = \exp h(x) \text{ for } x \in X;
$$

(iii) there exists a nontrivial linear functional h : $X \to \mathbb{R}$ and $c \in \mathbb{R} \setminus \{0\}$ *such that either*

$$
M(y) = |y|^{1/c} \text{ sgn } y \text{ for } y \in \mathbb{R},
$$

$$
f(x) = \begin{cases} |h(x) + 1|^c \operatorname{sgn}(h(x) + 1), & x \in X, \ h(x) \neq -1; \\ 0, & x \in X, \ h(x) = -1 \end{cases}
$$

or

$$
M(y) = y^{1/c} \text{ for } y \in [0, \infty),
$$

$$
f(x) = \begin{cases} (h(x) + 1)^c, x \in X, h(x) > -1; \\ 0, & x \in X, h(x) \le -1. \end{cases}
$$

Observe that using the method from $[15]$ we can prove a theorem which is analogous to Theorem [7.24;](#page-7-3) the most important change in the proof is to replace:

- [\[15,](#page-10-14) Lemma 6] by Theorem [7.4,](#page-2-2)
- $[15, \text{Lemma 7}]$ $[15, \text{Lemma 7}]$ by Lemma [7.2,](#page-7-1)
- [\[15,](#page-10-14) Lemma 8] by Theorem [7.23.](#page-7-4)

Then we obtain the following theorem.

Theorem 7.25 *Let* $f : X \to \mathbb{R}$, $M : \mathbb{R} \to \mathbb{R}$ and $|f(D)| \subset (0, a)$ for a positive pumber a and a Boral set $D \not\subset \mathcal{H}$ *M Then functions f and M satisfy Equation* (7.1) *number a and a Borel set D* $\notin \mathcal{H}$ *M*. *Then functions f and M satisfy Equation* [\(7.1\)](#page-7-5) *if and only if one of the conditions (i)–(iii) of Theorem [7.24](#page-7-3) holds.*

7.5 Modified Darji's and Christensen's Definitions

Doležal, Rmoutil, Vejnar and Vlasák [\[10\]](#page-10-5) modified Darji's notion of meagerness in the following way.

Definition 7.4 A set $A \subset X$ is *naively Haar meager* if there is a compact metric space K and a continuous function $f: K \to X$ such that space *K* and a continuous function $f: K \to X$ such that

$$
f^{-1}(x + A)
$$
 is meager in K for every $x \in X$.

They also have proved the next theorem.

Theorem 7.26 ([\[10,](#page-10-5) Theorem 16]) *If X is uncountable, then there exists a naively Haar meager subset of X, which is not Haar meager.*

In a similar way Elekes and Vindyánszky [\[12\]](#page-10-15) have defined naively Haar null sets and showed a result analogous to Theorem [7.26.](#page-9-8)

Definition 7.5 A set *A* is called *naively Haar null* if there is a Borel probability measure μ on *X* such that

$$
\mu(x + A) = 0 \text{ for all } x \in X.
$$

Theorem 7.27 ([\[12,](#page-10-15) Theorem 1.3]) *If X is uncountable, then there exists a naively Haar null subset of X which is not Haar null.*

Moreover, in non-abelian Polish groups definitions of Haar meager sets and Haar null sets have been modified in the following way.

Definition 7.6 A subset *A* of a Polish group *X* is *Haar null* if there are a universally measurable set *B* \subset *X* with *A* \subset *B* and a Borel probability measure μ on *X* such that

$$
\mu(x + B + y) = 0 \text{ for all } x, y \in X.
$$

Definition 7.7 A subset *A* of a Polish group *X* is *Haar meager* if there are a Borel set $B \subset X$ with $A \subset B$, a compact metric space K and a continuous function $f : K \to X$ such that $K \rightarrow X$ such that

 $f^{-1}(x + B + y)$ is meager in *K* for every $x, y \in X$.

Then both families—of all Haar null sets and of all Haar meager sets in *X*—form σ -ideals (see [\[12\]](#page-10-15) and [\[10,](#page-10-5) Theorem 3]).

References

- 1. Banakh, T., Karchevska, L., Ravsky, A.: The closed Steinhaus properties of σ -ideals on topological groups. 30 Sept 2015, arXiv:1509.09073v1 [math.GN]
- 2. Banakh, T., Głąb, S., Jabłońska, E., Swaczyna, J.: Steinhaus properties on σ -ideals on Polish groups (manuscript)
- 3. Christensen, J.P.R.: On sets of Haar measure zero in abelian Polish groups. Israel J. Math. **13**, 255–260 (1972)
- 4. Christensen, J.P.R., Fischer, P.: Small sets and a class of general functional equations. Aequationes Math. **33**, 18–22 (1987)
- 5. Darji, U.B.: On Haar meager sets. Topol. Appl. **160**, 2396–2400 (2013)
- 6. Dodos, P.: Dichotomies of the set of test measures of a Haar null set. Israel J. Math. **144**, 15–28 (2004)
- 7. Dodos, P.: On certain regularity properties of Haar-null sets. Fund. Math. **181**, 97–109 (2004)
- 8. Dodos, P.: The Steinhaus property and Haar-null sets. Bull. Lond. Math. Soc. **41**, 377–384 (2009)
- 9. Doležal, M., Vlásak, V.: Haar meager sets, their hulls, and relationship to compact sets. J. Math. Anal. Appl. **446**, 852–863 (2017)
- 10. Doležal, M., Rmoutil, M., Vejnar, B., Vlásak, V.: Haar meager sets revisited. J. Math. Anal. Appl. **440**, 922–939 (2016)
- 11. Elekes, M., Vidnyánszky, Z.: Haar null sets without G_{δ} hulls. Israel J. Math. **209**, 199–214 (2015)
- 12. Elekes, M., Vidnyánszky, Z.: Naively Haar null sets in Polish groups. J. Math Anal. Appl. **446**, 193–200 (2017)
- 13. Gajda, Z.: Christensen measurability of polynomial functions and convex functions of higher orders. Ann. Polon. Math. **47**, 25–40 (1986)
- 14. Jabłońska, E.: Jensen convex functions bounded above on nonzero Christensen measurable sets. Ann. Math. Sil. **23**, 53–55 (2009)
- 15. Jabłonska, E.: Christensen measurability and some functional equation. Aequationes Math. ´ **81**, 155–165 (2011)
- 16. Jabłonska, E.: Some analogies between Haar meager sets and Haar null sets in abelian Polish ´ groups. J. Math. Anal. Appl. **421**, 1479–1486 (2015)
- 17. Jabłonska, E.: A theorem of Piccard's type and its applications to polynomial functions and ´ convex functions of higher orders. Topology Appl. **209**, 46–55 (2016)
- 18. Jabłońska, E.: A theorem of Piccard's type in abelian Polish groups. Anal. Math. 42 , 159–164 (2016)
- 19. Jabłonska, E.: ´ *D*-measurability and *t*-Wright convex functions. J. Math. Inequal. **10**, 213–217 (2016)
- 20. Matousková, E.: Convexity and Haar null sets. Proc. Am. Math. Soc. ˘ **125**, 1793–1799 (1997)
- 21. Matousková, E., Stegall, C.: A characterization of reflexive Banach spaces. Proc. Amer. Math. ˘ Soc. **124**, 1083–1090 (1996)
- 22. Matoušková, E., Zelený, M.: A note on intersections of non-Haar null sets. Colloq. Math. 96, 1–4 (2003)
- 23. Olbrys, A.: On the boundedness, Christensen measurability and continuity of *t*-Wright convex functions. Acta Math. Hungar. **141**, 68–77 (2013)
- 24. Oxtoby, J.C.: Measure and Category. Springer, New York/Heidelberg/Berlin (1971)