
Chapter 4
The Translation Equation in the Ring of Formal
Power Series Over C and Formal Functional
Equations
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Abstract In this survey we describe the construction of one-parameter subgroups
(iteration groups) of � , the group of all (with respect to substitution) invertible
power series in one indeterminate x over C. In other words, we describe all solutions
of the translation equation in CŒŒ x ��, the ring of formal power series in x with
complex coefficients. For doing this the method of formal functional equations
will be applied. The coefficient functions of solutions of the translation equation
are polynomials in additive and generalized exponential functions. Replacing these
functions by indeterminates we obtain formal functional equations. Applying formal
differentiation operators to these formal translation equations we obtain three
types of formal differential equations. They can be solved in order to get explicit
representations of the coefficient functions. For solving the formal differential
equations we apply Briot–Bouquet differential equations in a systematic way.
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4.1 Introduction

As a motivation we mention the embedding problem from analytic mechanics [30]
or geometric complex analysis [24].

4.1.1 The Embedding Problem

Consider a domain U � C
n, n � 1, 0 D .0; : : : ; 0/ 2 U, and a biholomorphic

function QFW U ! U so that QF.0/ D 0. We try to find a family .Ft/t2C of
biholomorphic functions FtW U ! U so that Ft.0/ D 0, t 2 C, and

F1 D QF
Fs ı Ft D FsCt s; t 2 C: (T)

The mapping C � U 3 .t; x/ 7! Ft.x/ 2 U is supposed to be holomorphic.
The family .Ft/t2C is called a flow, a one-parameter group, an iteration group, or
an embedding of QF. Formula (T) is called the translation equation. If we represent
the mappings Ft by their Taylor expansions in x and if we neglect the convergence
of these series, then we obtain a solution of (T) in the ring of formal power series.

4.1.2 The Ring of Formal Power Series with Complex
Coefficients

Now we want to study (T) in CŒŒ x ��, the ring of all formal power series F.x/ D
c0 C c1x C : : : in the indeterminate x over C. For a detailed introduction to formal
power series we refer the reader to [1] and [13]. Together with addition C and
multiplication � the set CŒŒ x �� forms a commutative ring. If F ¤ 0, then the order
of F.x/ D c0 C c1x C : : : is defined as ord.F/ D minfn � 0 j cn ¤ 0g. Moreover,
ord.0/ D 1. The composition ı of formal series is defined as follows: Let F; G 2
CŒŒ x ��, ord.G/ � 1, then .F ı G/.x/ is F.G.x// D P

n�0 c�ŒG.x/�� . (This converges
in the order topology.) Consider

� D fF 2 CŒŒ x �� j F.x/ D c1x C : : : ; c1 ¤ 0g D fF 2 CŒŒ x �� j ord.F/ D 1g
and

�1 D fF 2 � j c1 D 1g:
Then .�; ı/ is the group of all invertible formal power series (with respect to ı), and
.�1; ı/ is a subgroup of .�; ı/. It will be necessary to consider rings of formal power
series in more than one variable, e.g., CŒŒ x; y �� D .CŒŒ x ��/ŒŒ y ��, CŒŒ x; y; z ��, etc., and
also rings of the form .CŒ y �/ŒŒ x ��, where CŒy� is the polynomial ring in y over C,
which are subrings of CŒŒ x; y ��.
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The derivation of F 2 CŒŒ x ��, F.x/ D P
n�0 cnxn is

F0.x/ D dF

dx
.x/ D

X

n�0

.n C 1/cnC1xn:

In CŒŒ x; y �� or CŒŒ x; y; z �� we have derivations with respect to x, y, z. The chain rule
is valid which means that for F; G 2 CŒŒ x ��, ord.G/ � 1, the derivation of F ı G 2
CŒŒ x �� is of the form .F ı G/0.x/ D F0.G.x//G0.x/. In rings of the form CŒŒ x; y �� or
CŒŒ x; y; z �� the mixed chain rule holds true.

4.1.3 Iteration Groups

Iteration groups or one-parameter groups in CŒŒ x �� are families .Ft/t2C , Ft 2 � ,
t 2 C, satisfying (T). If we write Ft.x/ as

F.t; x/ D
X

n�1

cn.t/xn; t 2 C;

then (T) is equivalent to

F.s C t; x/ D F.s; F.t; x//; s; t 2 C:

Therefore F0.x/ D x and F�t.x/ D F�1
t .x/.

An iteration group in � can be seen as a homomorphism

� W .C; C/ ! .�; ı/; �.t/ D Ft:

Moreover, in [17–19] and [16], Jabłoński and Reich were studying homomorphisms
� W .G; C/ ! .�; ı/, where .G; C/ is a commutative group. In general the situation
G ¤ C is even more involved. In the present paper we will only deal with G D C.

The problem to describe the one-parameter groups in the group of invertible
formal power series in one indeterminate with complex coefficients and, more
generally, to describe one-parameter groups of invertible formal power series trans-
formations (“formally biholomorphic mappings”) was studied by several authors,
mainly in connection with the embedding problem, that is, whether a given formal
power series (a formally biholomorphic mapping) can be embedded in such an
iteration group. We mention Lewis [21], Sternberg [30], Chen [2], Peschl and
Reich [24], Reich and Schwaiger [28], Mehring [23], and Praagman [25].

If .Ft/t2C is an iteration group in � and S 2 � , then .S�1ıFtıS/t2C is an iteration
group as well. Two iteration groups .Ft/t2C and .Gt/t2C are called conjugate if there
is some S 2 � so that Gt D S�1 ı Ft ı S for all t 2 C.
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4.1.4 The Main Problems

Motivated by the question of embeddability the problem arises to find the structure
and the explicit form of iteration groups in detail, not necessarily as a part of the
embedding problem. In the sequel we will study the following topics:

1. Construction of all iteration groups in � .
2. Find the detailed structure and explicit form of the coefficient functions

cnWC ! C (n � 1) of the solutions Ft.x/ D P
n�1 cn.t/xn, t 2 C, of (T).

3. Describe the structure of all iteration groups and their normal forms with respect
to conjugation.

The construction of iteration groups is strongly connected with the maximal abelian
subgroups of .�; ı/ (cf. [26]).

In the present paper we apply the method of formal functional equations which
differs in many aspects from the approach by Jabłoński and Reich [17, 18]. This
approach combines a detailed investigation of the systems (FE,I) and (FE; .II; k/)
(see Section 4.2) for the coefficient functions of iteration groups with the a priori
construction of the so-called analytic iteration groups, which have by definition
entire coefficient functions, and with the application of certain polynomial relations
associated with the coefficient functions. In our paper, however, we do not use any
knowledge in analytic iteration groups.

We hardly ever present complete proofs, in some places we indicate some sketch
of the proof. For details the reader is referred to the publications [4] in connection
with iteration groups of type I and [5] for iteration groups of type .II; k/.

We finish the introduction by giving an outline of the results and adding several
comments. In Section 4.2 we describe the basic distinction between iteration
groups of type I and iteration groups of type .II; k/, k � 2. After studying the
infinite systems of functional equations characterizing the coefficient functions
of iteration groups, namely (FE,I) for iteration groups of type I and (FE; .II; k/)
for iteration groups of type .II; k/ (see Lemmas 4.1 and 4.2), we reduce the
construction to the investigation of the so-called formal iteration groups of type I
and formal iteration groups of type .II; k/ (Theorem 4.1). These objects are elements
in .CŒy�/ŒŒx�� which are solutions of certain relations in .CŒy; z�/ŒŒx��, namely the
formal translation equations (Tform; I) and (Tform; .II; k/), together with appro-
priate boundary conditions. The basic idea of this reduction is the possibility
to replace in the case of iteration groups of type I, say Ft.x/ D c1.t/x C : : :,
t 2 C, the generalized exponential function c1 ¤ 1 by an indeterminate y and
similarly in the case of iteration groups of type .II; k/, Ft.x/ D x C ck.t/xk C : : :,
t 2 C, the additive function ck ¤ 0 by an indeterminate y, in the systems
(FE,I) and (FE; .II; k/), respectively. Furthermore, we deduce from (Tform; I) and
(Tform; .II; k/) by formal differentiation two formal differential equations, namely
(Dform; I), (PDform; I) and by combining these two (AJform; I) for formal iteration
groups of type I, and (Dform; .II; k/), (PDform; .II; k/), and (AJform; .II; k/) for
formal iteration groups of type .II; k/. The partial differential equations (PDform; I)
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and (PDform; .II; k/) may be considered as the simplest since they do not require
a substitution of the unknown series G.y; x/. The Aczél–Jabotinsky equations
(AJform; I) and (AJform; .II; k/) are weaker than the other differential equations
just mentioned, and we add a remark (Theorem 4.2) how these Aczél–Jabotinsky
differential equations can be used to construct and describe maximal abelian
subgroups of � . All these differential equations contain the generator H.x/ where
H.x/ D @

@y G.y; x/jyD1 D x C h2x2 C : : : for formal iteration groups of type I

and H.x/ D @
@y G.y; x/jyD1 D xk C hkC1xkC1 C : : :, k � 2, for formal iteration

groups of type .II; k/. The coefficients h� of the generators play an important
role as natural parameters in the representations we are going to obtain in the
following sections. In Section 4.2.5 we draw attention to the reordering of a formal
iteration group G.y; x/ 2 .CŒy�/ŒŒx�� as G.y; x/ D P

n�1 �n.x/yn (for type I) or
G.y; x/ D P

n�0 �n.x/yn (for type .II; k/) which allows in several situations a
simpler and more elegant integration of the differential system.

In Section 4.3 we present the main results about the explicit form of formal
iteration groups. Theorems 4.3 and 4.4 give the form of the coefficient functions
Pn as derived from (PDform; I) for formal iteration groups G.y; x/ D yx CP

n�2 Pn.y/xn of type I. The coefficient functions Pn.y/ are not only polynomials in
y, but also universal polynomials in y and the coefficients h2; : : : ; hn of the generator
H, where H.x/ D x C : : : can be chosen arbitrarily. We obtain rather explicit
formulas for the Pn, including recursive relations describing the dependence on the
parameters .hn/n�2, as well as estimates of the degree of Pn. Using the reordering
G.y; x/ D P

n�1 �n.x/yn of the formal iteration group of type I in (PDform; I)
leads to Briot–Bouquet differential equations for the coefficients �n. The result is
Theorem 4.5 which gives the unique representation G.y; x/ D S�1.yS.x// with
S 2 �1, sometimes called standard form. This means that each formal iteration
group of type I is conjugate to yx which has generator x.

Theorems 4.6 and 4.7 show another representation of the coefficient functions
Pn.y/ of formal iteration groups of type I, as deduced from (Dform; I). Theorem 4.8
contains one more description of G.y; x/ D P

n�1 �n.x/yn, a formal iteration group
of type I, which follows from (Dform; I), where �n.x/ is expressed as 'n.�1.x//,
n � 1, and a recurrence for .'n/n�1 without differentiation is deduced.

Theorem 4.9 refers to the solutions of (AJform; I). Here again Briot–Bouquet
differential equations may be applied. The condition G.y; x/ D yxC: : : leads exactly
to the solutions of (Tform; I) (see Theorems 4.9 and 4.10). Theorem 4.11 is also
based on (AJform; I), reordering of G.y; x/, and using Briot–Bouquet differential
equations. It gives again the standard form and the recurrence of Theorem 4.8.

In Section 4.3.4 we sketch two further approaches to obtain the standard form,
here directly without formal functional equations. In connection with the first
approach we discuss the important connection (4.1) of the generators of two
conjugate formal iteration groups of type I. We formulate this connection as a
differential equation for the conjugating series S 2 � , involving the generators
H and QH of the conjugate formal iteration groups. Formula (4.1), also valid for
formal iteration groups of type .II; k/, will also appear later in the paper. The second
approach to the standard form is a calculation in the field Chhxii of formal Laurent
series with finite principal part.
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The results for formal iteration groups of type .II; k/ follow in the next section.
The situation is not only much more complicated from a technical point of view,
but also offers new “aspects.” Theorems 4.12 and 4.13 refer to explicit formulas
for the coefficient functions of the formal iteration groups of type .II; k/, G.y; x/ D
x C yxk C P

n>k Pn.y/xn, derived from (PDform; .II; k/) or (Dform; .II; k/). Here
Pn is a universal polynomial in y and the coefficients hkC1; : : : ; hn�kC1; hn of the
generator H.x/ D xk C hkC1xkC1 C : : :. As a matter of fact, Pn does not depend on
hn�kC2; : : : ; hn�1. Estimates of the degree of the Pn are given.

A similar result follows from (AJform; .II; k/) (see Theorems 4.14 and 4.15).
Writing G.y; x/ D P

n�0 �n.x/yn and substituting it into (PDform; .II; k/) we find
a simple recurrence formula (PDRn; .II; k/) for �n, this time with differentiation. Its
solution under the boundary condition (BR; .II; k/) is contained in Theorems 4.16–
4.18. The explicit formula for �nC1 in Theorem 4.17 has as parameters certain
coefficients h� of the generator H and certain coefficients of the Pn which are the
coefficients of G.y; x/ D x C yxk C P

n>k Pn.y/xn, whereas the explicit formula for
�n in Theorem 4.18 has as parameters the coefficients of the generator only.

Formal iteration groups of type I and those of type .II; k/ have very different
properties with respect to conjugation. We start Section 4.3.6 by claiming that each
formal iteration group of type .II; k/ is conjugate to a formal iteration group of
type .II; k/ with generator QH.x/ D xk C hx2k�1, a so-called normal form. This
is unique if we restrict the conjugating series S to be an element of �1. To see
this, we have to solve (4.1) for S 2 �1. Theorem 4.19 describes in detail, using
(PDform; .II; k/) and (B; .II; k/), the explicit form of formal iteration groups of
type .II; k/ with generators xk C hx2k�1. These normal forms have the simplified
structure G.y; x/ D P

n�0 Pn.k�1/C1.y/xn.k�1/C1 which is, however, much more
complicated than the standard form S�1.yS.x// of formal iteration groups of type I.

It follows that the normal form G.y; x/ determined by the generator xk C hx2k�1

has an expansion G.y; x/ D P
r�0 Gr.y; x/hr as a power series in h with coefficients

Gr.y; x/ 2 CŒŒy; x��, since h can be considered as a new indeterminate. The series
Gr.y; x/ are determined from the recursive system (4.4) and (4.5). Their form is
presented in Theorem 4.20. The differential equation (Dform; .II; k/) leads to a
more compact description of Gr.y; x/, given in Theorem 4.21, involving a series
of binomial type and a polynomial in ln.1 � .k � 1/yxk�1/. The series G0.y; x/ D
x.1 � .k � 1/yxk�1/�1=.k�1/ plays a role in the theory of reversible power series (cf.
[12]). Eventually Theorem 4.22 builds a bridge to Lie–Gröbner series.

We finish the paper by collecting some open problems. The most interesting one
is the construction of iteration groups in higher dimensions by means of formal
functional equations. So far only partial results are known.



4 The Translation Equation and Formal Functional Equations 47

4.2 First Classification of Iteration Groups

Let .Ft/t2C be an iteration group, Ft.x/ D P
n�1 cn.t/xn, t 2 C. We consider three

different types of iteration groups:

1. Ft.x/ D x for all t 2 C is the trivial iteration group.
2. If c1 ¤ 1, then

c1.s C t/ D c1.s/c1.t/; s; t 2 C;

thus c1 is a non-trivial generalized exponential function. We call .Ft/t2C an
iteration group of type I.

3. If c1 D 1, then there exists some k � 2, so that c2 D � � � D ck�1 D 0, ck ¤ 0, and

ck.s C t/ D ck.s/ C ck.t/; s; t 2 C;

thus ck is a non-trivial additive function. We say that .Ft/t2C is an iteration group
of type .II; k/.

This classification is compatible with the conjugation of iteration groups, i.e., if
.Ft/t2C and .Gt/t2C are conjugate, then they have the same type.

4.2.1 Systems of Functional Equations for the Coefficient
Functions

Consider a family .Ft/t2C , Ft.x/ D P
n�1 cn.t/xn, t 2 C, where c1 ¤ 1. Then

.Ft/t2C is an iteration group of type I, if and only if the system

c1.s C t/ D c1.s/c1.t/

c2.s C t/ D c1.s/c2.t/ C c2.s/c1.t/2 (FE,I)

cn.s C t/ D c1.s/cn.t/C cn.s/c1.t/n C QPn
�
c2.s/; : : : ; cn�1.s/; c2.t/; : : : ; cn�1.t/

�
;

n � 2

is satisfied for all s; t 2 C. The QPn are universal polynomials which are linear in
c2.s/; : : : ; cn�1.s/.

Lemma 4.1 ([4, Lemma 2]) If .Ft/t2C is an iteration group of type I of the form
Ft.x/ D P

n�1 cn.t/xn, t 2 C, then c1 is a non-trivial generalized exponential
function and there exists a sequence of polynomials .Pn/n�2 so that

cn.s/ D Pn.c1.s// 8s 2 C; and Pn.0/ D 0; n � 2:
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Since c1 ¤ 1, for n � 2 there exists some tn 2 C so that c1.tn/n � c1.tn/ ¤ 0. From
c2.s C t/ D c2.t C s/, for all s; t 2 C, we obtain

c2.s/ D c2.t2/.c1.s/2 � c1.s//

c1.t2/ � c1.t2/2
D P2.c1.s//; s 2 C:

Using induction on n and cn.s C t/ D cn.t C s/, 8s; t 2 C, we obtain the assertion
from (FE,I).

Hence we obtain from (FE,I)

Pn.c1.s/c1.t// D Pn.c1.s C t// D cn.s C t/

D c1.s/Pn.c1.t// C Pn.c1.s//c1.t/n ( OP; I)

C QPn
�
P2.c1.s//; : : : ; Pn�1.c1.s//; P2.c1.t//; : : : ; Pn�1.c1.t//

�

for all s; t 2 C and all n � 2.
Consider a family .Ft/t2C , Ft.x/ D x C P

n�k cn.t/xn, t 2 C, where ck ¤ 0.
Then .Ft/t2C is an iteration group of type .II; k/, if and only if the system

cn.s C t/ D cn.s/ C cn.s/; k � n � 2k � 2;

c2k�1.s C t/ D c2k�1.s/ C c2k�1.t/ C kck.s/ck.t/

c2k.s C t/ D c2k.s/ C c2k.t/ C kck.s/ckC1.t/ C .k C 1/ckC1.s/ck.t/

cn.s C t/ D cn.s/ C cn.t/ C kck.s/cn�.k�1/.t/ (FE; .II; k/)

C �
n � .k � 1/

�
cn�.k�1/.s/ck.t/

C QPn
�
ck.s/; : : : ; cn�k.s/; ck.t/; : : : ; cn�k.t/

�
; n > 2k;

for all s; t 2 C, where QPn are universal polynomials which are linear in
ck.s/; : : : ; cn�k.s/.

Lemma 4.2 ([5, Lemma 1]) Consider some integer k � 2. If .Ft/t2C is an iteration
group of type .II; k/, Ft.x/ D x C P

n�k cn.t/xn, t 2 C, then ck is a non-trivial
additive function and there exists a sequence of polynomials .Pn/n�k so that

cn.s/ D Pn.ck.s//; s 2 C; n � k:

The reader should remember that these polynomials Pn differ from the polynomials
Pn of Lemma 4.1. Since ck ¤ 0 there exists some t0 2 C so that ck.t0/ ¤ 0. Using
(FE; .II; k/) for n D 2k we obtain from c2k.s C t/ D c2k.t C s/,

ckC1.s/ D ckC1.t0/

ck.t0/
ck.s/ D PkC1.ck.s//; s 2 C:
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By induction on n and cnCk�1.s C t/ D cnCk�1.t C s/, for all s; t 2 C, we obtain the
assertion from (FE; .II; k/).

Hence we obtain from (FE; .II; k/)

Pn.ck.s/ C ck.t// D Pn.ck.s C t// D cn.s C t/

D Pn.ck.s// C Pn.ck.t// C kck.s/Pn�.k�1/.ck.t// ( OP; .II; k/)

C �
n � .k � 1/

�
Pn�.k�1/.ck.s//ck.t/

C QPn
�
ck.s/; : : : ; Pn�k.ck.s//; ck.t/; : : : ; Pn�k.ck.t//

�
;

for all s; t 2 C and n � k, where Pj D 0 for j < k and QPj D 0 for j � 2k.

4.2.2 Formal Functional Equations

Formal functional equations in connection with the translation equation were
studied by Gronau [10, 11], and the present authors [4, 5]. Similar methods were also
applied for the study of cocycle equations which occur in connection with covariant
embeddings of the linear functional equation (cf. [3, 6, 7]). Assume that .Ft/t2C is an
iteration group of type I, Ft.X/ D P

n�1 cn.t/xn, t 2 C, where c1.sCt/ D c1.s/c1.t/,
s; t 2 C, c1 ¤ 1 and c1 ¤ 0. Since the image of c1 contains infinitely many elements
we can prove for any polynomial Q.x; y/ 2 CŒx; y� that Q.c1.s/; c1.t// D 0 for all
s; t 2 C implies Q D 0. From ( OP; I) we obtain by replacing c1.s/ and c1.t/ by
independent variables y; z, that

Pn.yz/ D yPn.z/ C Pn.y/zn C QPn
�
P2.y/; : : : ; Pn�1.y/; P2.z/; : : : ; Pn�1.z/

�
(P; I)

in CŒy; z� for n � 2. Writing G.y; x/ D yx C P
n�2 Pn.y/xn 2 .CŒy�/ŒŒx�� we deduce

from (P; I) that G satisfies the formal translation equation of type I

G.yz; x/ D G.y; G.z; x// (Tform; I)

in .CŒy; z�/ŒŒx��. We call G.y; x/ a formal iteration group of type I. It also satisfies the
condition

G.1; x/ D x: (B; I)

Assume that .Ft/t2C is an iteration group of type .II; k/ for some k � 2,
Ft.x/ D x C P

n�k cn.t/xn, t 2 C, where ck.s C t/ D ck.s/ C ck.t/, s; t 2 C,
ck ¤ 0. Since the image of ck contains infinitely many elements we can prove for any
polynomial Q.x; y/ 2 CŒx; y� that Q.ck.s/; ck.t// D 0 for all s; t 2 C implies Q D 0.
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From ( OP; .II; k/) we obtain by replacing ck.s/ and ck.t/ by independent variables
y; z, that

Pn.y C z/ D Pn.y/ C Pn.z/ C kyPn�.k�1/.z/ C �
n � .k � 1/

�
Pn�.k�1/.y/z

C QPn
�
y; : : : ; Pn�k.y/; z; : : : ; Pn�k.z/

�
(P; .II; k/)

for all n � k.
Writing G.y; x/ D x C yxk C P

n�kC1 Pn.y/xn 2 .CŒy�/ŒŒy�� we deduce from
(P; .II; k/) that G satisfies the formal translation equation of type .II; k/

G.y C z; x/ D G.y; G.z; x// (Tform; .II; k/)

in .CŒy; z�/ŒŒx��. We call G.y; x/ a formal iteration group of type .II; k/. It also satisfies
the condition

G.0; x/ D x: (B; .II; k/)

Conversely, from each formal iteration group we can construct iteration groups
in the following way (cf. [4, Theorem 3] and [5, Theorem 3]):

Theorem 4.1 1. If G.y; x/ is a formal iteration group of type I, c1 a generalized
exponential function, c1 ¤ 1, then .G.c1.t/; x//t2C is an iteration group of type I.

2. If G.y; x/ is a formal iteration group of type .II; k/, k � 2, ck an additive function,
ck ¤ 0, then .G.ck.t/; x//t2C is an iteration group of type .II; k/.

4.2.3 Differential Equations Obtained from the Translation
Equation

Let G.y; x/ 2 .CŒy�/ŒŒx�� be a formal iteration group of type I. Then the infinitesimal
generator of G is defined as

H.x/ D @

@y
G.y; x/

ˇ
ˇ
yD1

:

It is of the form H.x/ D x C P
n�2 hnxn. Differentiation of (Tform; I) with respect

to y yields

z
@

@t
G.t; x/jtDyz D @

@y
G

�
y; G.z; x/

�
:

For y D 1 we get

z
@

@z
G.z; x/ D H.G.z; x//: (Dform; I)
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Differentiation of (Tform; I) with respect to z and application of the mixed chain
rule yields

y
@

@t
G.t; x/jtDyz D @

@t
G.y; t/jtDG.z;x/

@

@z
G.z; x/:

For z D 1 we get

y
@

@y
G.y; x/ D H.x/

@

@x
G.y; x/: (PDform; I)

The advantage of this equation lies in the circumstance that no substitution of the
unknown series G.y; x/ is needed and that (PDform; I) is a linear equation.

Combining (Dform; I) and (PDform; I), we obtain an Aczél–Jabotinsky differen-
tial equation of the form

H.x/
@

@x
G.y; x/ D H.G.y; x//: (AJform; I)

In this equation the variable y is an internal parameter since it does not appear
explicitly in (AJform; I).

Let G.y; x/ 2 .CŒy�/ŒŒx�� be a formal iteration group of type .II; k/ for some k � 2.
Then the infinitesimal generator of G is defined as

H.x/ D @

@y
G.y; x/

ˇ
ˇ
yD0

:

It is of the form H.x/ D xk C P
n�kC1 hnxn. Differentiation of (Tform; .II; k/) with

respect to y yields

@

@t
G.t; x/jtDyCz D @

@y
G

�
y; G.z; x/

�
:

For y D 0 we get

@

@z
G.z; x/ D H.G.z; x//: (Dform; .II; k/)

Differentiation of (Tform; .II; k/) with respect to z and application of the mixed
chain rule yields

@

@t
G.t; x/jtDyCz D @

@t
G.y; t/jtDG.z;x/

@

@z
G.z; x/:

For z D 0 we get

@

@y
G.y; x/ D H.x/

@

@x
G.y; x/: (PDform; .II; k/)
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The advantage of this equation lies in the circumstance that no substitution of the
unknown series G.y; x/ is needed and that (PDform; .II; k/) is a linear equation.

Combining (Dform; .II; k/) and (PDform; .II; k/), we obtain an Aczél–Jabotinsky
differential equation of the form

H.x/
@

@x
G.y; x/ D H.G.y; x//: (AJform; .II; k/)

In this equation the variable y is an internal parameter since it does not appear
explicitly in (AJform; .II; k/).

4.2.4 The Relevance of Aczél–Jabotinsky Differential
Equations

The Aczél–Jabotinsky differential equations can be used to characterize maximal
abelian subgroups of � (cf. [26]). The main result reads as follows:

Theorem 4.2 A set F � � is a maximal abelian subgroup of � if and only if there
exists some H 2 CŒŒ x ��, H ¤ 0, ord.H/ � 1, so that

� 2 F ” H.x/�0.x/ D H.�.x//:

It can be shown that either F is isomorphic to C
�, or F is isomorphic to

��
� t
0 �

� ˇ
ˇ
ˇ �m D 1; t 2 C

�

;

where m is uniquely determined by F .

4.2.5 Reordering the Summands

Let G.y; x/ D P
n�1 Pn.y/xn 2 .CŒy�/ŒŒx�� � CŒŒy; x�� be a formal iteration group of

type I, then it is possible to write G.y; x/ in the form

G.y; x/ D
X

n�1

�n.x/yn 2 .CŒŒ x ��/ŒŒy�� (R; I)

where �1 2 �1, and .�n.x//n�1 is a summable family in CŒŒ x ��. Therefore the
boundary condition (B; I)

G.1; x/ D
X

n�1

�n.x/ D x (BR; I)
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makes sense. It is possible to use this representation of G in the differential equations
(Dform; I), (PDform; I), and (AJform; I).

Let

G.y; x/ D x C yxk C
X

n�kC1

Pn.y/xn 2 .CŒy�/ŒŒx�� � CŒŒy; x��;

k � 2, be a formal iteration group of type .II; k/, then it is possible to write G.y; x/

in the form

G.y; x/ D
X

n�0

�n.x/yn 2 .CŒŒ x ��/ŒŒy�� (R; .II; k/)

where .�n.x//n�0 is a summable family in CŒŒ x ��. The boundary condition (B; .II; k/)
reads as

G.0; x/ D �0.x/ D x: (BR; .II; k/)

It is possible to use this representation of G in the differential equations
(Dform; .II; k/), (PDform; .II; k/), and (AJform; .II; k/).

4.3 Solving the Translation Equation by a Purely Algebraic
Differentiation Process

Here we present the construction of formal iteration groups by solving the differen-
tial equations (Dform; I), (PDform; I), or (AJform; I) for formal iteration groups of
type I and (Dform; .II; k/), (PDform; .II; k/), or (AJform; .II; k/) for formal iteration
groups of type .II; k/ under the appropriate boundary conditions.

4.3.1 Formal Iteration Groups of Type I Obtained from
(PDform; I) and (B; I)

Using the partial differential equation (PDform; I) we describe how the polynomials
Pn, n � 2, depend on the coefficients hj, j � 2, of the infinitesimal generator H of
the formal iteration group G of type I. We determine all solutions of (PDform; I) and
(B; I) and we show that each of them is a solution of (Tform; I).

Theorem 4.3 ([4, Theorem 4]) For each generator H.x/ D x C h2x2 C : : :

the partial differential equation (PDform; I) together with (B; I) has exactly one
solution. It is given by

G.y; x/ D yx C
X

n�2

Pn.y/xn 2 .CŒy�/ŒŒx��:
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The polynomials Pn, n � 2, are of formal degree n (that is an upper bound for the
degree), they satisfy Pn.0/ D 0, and they are of the form

Pn.y/ D hn

n � 1
.yn � y/ C

n�1X

jD1

˚
.n/
j .h2; : : : ; hn�1/

n � j
.yn � yj/

where the polynomials ˚
.n/
j , 1 � j � n � 1, are (recursively) determined by

n�1X

rD2

hr.n � r C 1/Pn�rC1.y/ D
n�1X

jD1

˚
.n/
j .h2; : : : ; hn�1/yj:

Theorem 4.4 ([4, Theorem 5]) For each generator H.x/ D x C h2x2 C : : : the
solution G.y; x/ of (PDform; I) and (B; I) is a solution of the formal translation
equation (Tform; I).
Let G be the solution of (PDform; I) and (B; I) for the generator H. In order to prove
this theorem we show that both series

U.y; z; x/ WD G.yz; x/

V.y; z; x/ WD G.z; G.y; x//

satisfy the system

y
@

@y
f .y; z; x/ D H.x/

@

@x
f .y; z; x/

f .1; z; x/ D G.z; x/

which has a unique solution in .CŒy; z�/ŒŒx��.
Let G be the solution of (PDform; I) and (B; I) for the generator H. Reordering

the summands of G we write G.y; x/ as
P

n�1 �n.x/yn. Then from (PDform; I) and
(B; I) we obtain

X

n�1

n�n.x/yn D H.x/
X

n�1

�0
n.x/yn (PDR; I)

and (BR; I). Equation (PDR; I) is equivalent to

n�n.x/ D H.x/�0
n.x/ (PDRn; I)

for all n � 1. Each of these equations is equivalent to a Briot–Bouquet differential
equation (in the non-generic case), thus it has solutions.
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A Briot–Bouquet differential equation (cf. [20, Section 5.2], [14, Section 11.1],
[15, Section 12.6]) is a complex differential equation

zw0.z/ D az C bw.z/ C
X

˛Cˇ�2

a˛;ˇz˛Œw.z/�ˇ;

where w.z/ is a power series in z with w.0/ D 0, and the power series on the right-
hand side is given. Cauchy’s theorem on existence and uniqueness cannot be applied
directly. In the case b D n, a positive integer, a formal solution w.z/ exists if, and
only if, a certain polynomial P.a; b; a˛;ˇ W ˛ C ˇ � n/ vanishes. If so, then the
equation is called solvable or non-generic of type n, and all solutions take the shape

wt.z/ D c1z C : : : C cn�1zn�1 C tzn C
X

��nC1

Q�.t/z�; t 2 C;

for polynomials Q�.t/ . The coefficients ci, 1 � i � n � 1, are uniquely determined.
The series wt.z/ is convergent if the given right-hand side is convergent.

Let

H.x/ D x.1 C
X

n�1

h�
n xn/ D xH�.x/;

then h�
n D hnC1, n � 1, and (PDRn; I) is equivalent to

n�n.x/ D xH�.x/�0
n.x/

or

x�0
n.x/ D n�n.x/Œ1 C h�

1 x C : : :��1:

Finally for each n � 1 we end up with the system

x�0
n.x/ D n�n.x/ C n

X

˛Cˇ�2

d˛;ˇx˛Œ�n.x/�ˇ

�n.0/ D 0:

The set of solutions of (PDRn; I) is then given by f'.n/
n Œ�1;0.x/�n j '

.n/
n 2 Cg, where

�1;0.x/ is the unique solution of .PDR1; I/ which belongs to �1, i.e., which is of the
form �1;0.x/ D x C : : :. Denote this series by S.x/ D �1;0.x/ and let

P
n�1 �n.x/ be

a solution of (PDR; I). From the boundary condition (BR; I) we obtain

x D
X

n�1

�n.x/ D
X

n�1

'.n/
n ŒS.x/�n;
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whence,

S�1.x/ D
X

n�1

'.n/
n xn;

from which it is possible to determine the values '
.n/
n , n � 1.

The main result of this section is

Theorem 4.5 ([4, Theorem 7]) If G.y; x/ D P
n�1 �n.x/yn is a solution of

(Tform; I) and (B; I), then there exists exactly one S 2 �1 so that

G.y; x/ D S�1
�
yS.x/

�
:

Using the representation (R; I) we have �n.x/ D '
.n/
n ŒS.x/�n, where '

.n/
n 2 C, n � 1.

Conversely, for every S 2 �1 the series

G.y; x/ D S�1
�
yS.x/

�

is a solution of (Tform; I) and (B; I).

4.3.2 Formal Iteration Groups of Type I Obtained from
(Dform; I) and (B; I)

For the differential equation (Dform; I) we obtain similar results as in the previous
section (see also [4, Theorems 9, 10, 11]).

Theorem 4.6 For each generator

H.x/ D x C h2x2 C : : :

the differential equation (Dform; I) together with (B; I) has exactly one solution. It
is given by

G.z; x/ D zx C
X

n�2

Pn.z/xn 2 .CŒz�/ŒŒx��:

The polynomials Pn, n � 2, are of formal degree n, they satisfy Pn.0/ D 0, and they
are of the form

Pn.z/ D hn

n � 1
.zn � z/ C

nX

jD2

�
.n/
j .h2; : : : ; hn�1/

j � 1
.zj � z/
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where the polynomials �
.n/
j , 2 � j � n, are (recursively) determined by

n�1X

�D2

h�

X

r1C:::Cr� Dn
rj�1

0

@
�Y

jD1

Prj.z/

1

A D
nX

jD2

�
.n/
j .h2; : : : ; hn�1/zj:

Theorem 4.7 For each generator

H.x/ D x C h2x2 C : : :

the solution G.z; x/ of (Dform; I) and (B; I) is a solution of the formal translation
equation (Tform; I).

Using the representation (R; I) we obtain from (Dform; I)

X

n�1

n�n.x/zn D
X

��1

h�

2

4
X

n�1

�n.x/zn

3

5

�

(DR; I)

which is equivalent to

n�n.x/ D
nX

�D1

h�

X

r1C:::Cr� Dn
rj�1

0

@
�Y

jD1

�rj.x/

1

A (DRn; I)

for all n � 1. This is a recursive formula for the �n without any differentiation
process. The solutions of (DR; I) are given in

Theorem 4.8 Consider H.x/ D x C h2x2 C : : :.

1. Every �1.x/ 2 CŒŒ x �� satisfies .DR1; I/.
2. Let �1 2 CŒŒ x �� n f0g. For each n � 2 there exists exactly one solution �n of

(DRn; I), depending on �1. It is given by �n.x/ WD 'nŒ�1.x/�n, where '1 D 1 and

'n D 1

n � 1

nX

�D2

h�

X

r1C:::Cr�Dn

�Y

jD1

'rj ; n � 2:

Consequently, 'n does not depend on the choice of �1.
3. The system (DR; I) and (BR; I) has a unique solution. It is given by

X

n�1

'nŒ�1.x/�nzn
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for '1 D 1, 'n for n � 2 given as above, and

�1.x/ D .x C
X

n�2

'nxn/�1;

which is an element of �1.

4.3.3 Formal Iteration Groups of Type I Obtained from
(AJform; I) and (B; I)

Here we present some facts from [4, Section 2.3]. Writing the series H as
x.1 C h2x C : : :/ and �.x/ WD G.y; x/ motivates that (AJform; I) is equivalent to

x�0.x/ D Œ1 C h2x C : : :��1H.�.x//

or

x�0.x/ D �.x/ C
X

˛Cˇ�2
ˇ�1

d˛;ˇ.h/x˛Œ�.x/�ˇ

which is a Briot–Bouquet differential equation. It is well known that for each
QP1.y/ 2 CŒy� there exists exactly one solution

QG.y; x/ D QP1.y/x C
X

n�2

QPn.y/xn

of this Briot–Bouquet equation with coefficients QPn.y/ which are polynomials,
n � 2.

The solutions of (AJform; I) with QP1.y/ D y are determined in the next theorem.

Theorem 4.9 1. For each generator H.x/ D xCh2x2C: : : the differential equation
(AJform; I) has exactly one solution of the form

G.y; x/ D yx C
X

n�2

Pn.y/xn 2 .CŒy�/ŒŒx��:

2. The polynomials Pn, n � 2, (from the unique solution G.y; x/ 	 yx mod x2) are
of formal degree n, they satisfy Pn.0/ D 0, and they are of the form

Pn.y/ D hn

n � 1
.yn � y/ C

nX

jD2

	
.n/
j .h2; : : : ; hn�1/

n � 1
.yj � y/
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where the polynomials 	
.n/
j , 2 � j � n, are (recursively) determined by

n�1X

�D2

h�

0

B
B
@

X

r1C:::Cr� Dn
rj�1

0

@
�Y

jD1

Prj.y/

1

A � .n � � C 1/Pn��C1.y/

1

C
C
A D

nX

jD2

	
.n/
j .h2; : : : ; hn�1/.yj � y/:

Applying the same method as in the proof of Theorem 4.4 we obtain

Theorem 4.10 For each generator H.x/ D x C h2x2 C : : : the solution G.y; x/

of the differential equation (AJform; I) with G.y; x/ 	 yx mod x2 is a solution of
(Tform; I).
Using the representation (R; I) we obtain from (AJform; I)

H.x/
X

n�1

�0
n.x/yn D

X

��1

h�

2

4
X

n�1

�n.x/yn

3

5

�

(AJR; I)

which is equivalent to

H.x/�0
n.x/ D �n.x/ C

nX

�D2

h�

X

r1C:::Cr� Dn
rj�1

0

@
�Y

jD1

�rj.x/

1

A (AJRn; I)

for all n � 1. Again these equations are Briot–Bouquet differential equations since,
for all n � 1,

x�0
n.x/ D Œ1 C h2x C : : :��1

0

B
B
@�n.x/ C

nX

�D2

h�

X

r1C:::Cr� Dn
rj�1

0

@
�Y

jD1

�rj.x/

1

A

1

C
C
A :

We are mainly interested in solutions where �1.x/ D x C : : : since they lead to
iteration groups. The set of all solutions of (AJR; I) is described in

Theorem 4.11 Consider H.x/ D x C h2x2 C : : :.

1. For every c 2 C, there is exactly one solution

�1.x/ 	 cx mod x2

of .AJR1; I/.
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2. Assume that �1 D cx C : : :, c ¤ 0, is a solution of .AJR1; I/. Then for each
n � 2 there exists exactly one solution �n.x/ of (AJRn; I). It is given by �n.x/ D
'nŒ�1.x/�n, where '1 D 1 and

'n D
nX

�D2

h�

n � 1

X

r1C:::Cr�Dn

�Y

jD1

'rj ; n � 2:

Consequently, 'n does not depend on the choice of �1.
3. The unique solution �1 of system .AJR1; I/ which belongs to �1, (i.e., c D 1)

leads to the solution

X

n�1

'nŒ�1.x/�nyn

of (AJR; I), where '1 D 1 and 'n for n � 2 given as above. Moreover �1.x/ D
.x C P

n�2 'nxn/�1.

Based on these results it is possible to give another simple proof of Theorem 4.5.

4.3.4 Normal Forms of Iteration Groups of Type I

From Theorem 4.5 we know that each formal iteration group G.y; x/ of type I is
conjugate to yx. We call it the normal form of formal iteration groups of type I. Let
.Ft/t2C be an iteration group of type I, Ft.x/ D P

n�1 cn.t/xn for all t 2 C. Then
there exists some S 2 �1 so that Ft.x/ D S�1.c1.t/S.x//, t 2 C.

We want to present two further methods for finding this normal form.

1. Consider the generator H.x/ D @
@y G.y; x/jyD1 D x C h2x2 C : : : of a formal

iteration group of type I, and some S 2 � . Then QG.y; x/ D S�1.G.y; S.x/// is a
solution of (Tform; I). We calculate its generator

QH.x/ D @

@y
S�1.G.y; x//jyD1

by an application of the chain rule:

@

@y
S�1.G.y; Sx// D .S�1/0.G.y; Sx//

@

@y
G.y; Sx/:

Putting y D 1 we obtain QH.x/ D .S�1/0.Sx/H.Sx/. Since .S�1/0.Sx/S0.x/ D 1

we get

�
@

@x
S.x/

�
QH.x/ D H.S.x//: (4.1)
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If we choose QH.x/ D x, then (4.1) yields the Briot–Bouquet differential equation

x
@

@x
S.x/ D S.x/ C h2ŒS.x/�2 C : : : (4.2)

(see [20, Section 5.2], [14, Section 11.1], [15, Section 12.6]). It is known that
(4.2) has exactly one solution in S 2 �1. Using this S it follows that QG.y; x/

has the generator QH.x/ D x, hence from (B; I) we get yx D QG.y; x/ D
S�1.G.y; S.x///, or equivalently

G.y; x/ D S.yS�1.x//: (4.3)

2. Consider for some H.x/ D xCh2x2 C: : : 2 CŒŒ x �� the Aczél–Jabotinsky equation

H.x/˚ 0.x/ D H.˚.x//; for ˚.x/ D �x C : : : ; � ¤ 0: (AJ)

We compute the standard form of its set of solutions by computation in Chhxii,
the ring of formal Laurent series with finite principal part. Again we write
H.x/ D xH�.x/ and assume that ŒH�.x/��1 D 1 C h�

1 x C h�
2 x2 C : : :. Then

from (AJ) we get xH�.x/˚ 0.x/ D ˚.x/H�.˚.x// thus

˚ 0.x/

˚.x/

0

@1 C
X

n�1

h�
n Œ˚.x/�n

1

A D 1

x

0

@1 C
X

n�1

h�
n xn

1

A

and

˚ 0.x/

˚.x/
� 1

x
D �

X

n�1

h�
n ˚ 0.x/Œ˚.x/�n�1 C

X

n�1

h�
n xn�1:

Using the differentiation operator this can be written as

@

@x

�

ln
˚.x/

�x

�

D � @

@x

0

@
X

n�1

h�
n

n
Œ˚.x/�n

1

A C @

@x

0

@
X

n�1

h�
n

n
xn

1

A ;

therefore

ln
˚.x/

�x
D �T.˚.x// C T.x/ for T.x/ D

X

n�1

h�
n

n
xn:

Applying the exponential series we deduce

˚.x/

�x
D exp.T.x//

exp.T.˚.x///
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or equivalently ˚.x/ exp.T.˚.x/// D �x exp.T.x//. The series S given by S.x/ D
x exp.T.x// is in �1 and satisfies S.˚.x// D �S.x/, whence ˚.x/ D S�1.�S.x//.
The coefficients of S are polynomials in the coefficients hn.

4.3.5 Formal Iteration Groups of Type .II; k/ Obtained from
the Three Differential Equations

The solutions of (PDform; .II; k/) [or (Dform; .II; k/)] together with (B; .II; k/) and
the polynomials Pn.y/, n > k, occurring as their coefficient functions are completely
described in

Theorem 4.12 ([5, Theorems 4, 9]) Consider some k � 2.

1. For each generator H.x/ D xk C P
n>k hnxn the system of (PDform; .II; k/)

and (B; .II; k/) (or (Dform; .II; k/) and (B; .II; k/)] has exactly one solution. It
is given by

G.y; x/ D x C yxk C
X

n>k

Pn.y/xn 2 .CŒy�/ŒŒx��:

2. The polynomials Pn, n � k, have a formal degree b.n � 1/=.k � 1/c and they are
of the form

Pn.y/ D

8
ˆ̂
<

ˆ̂
:

hny k � n < 2k � 1

h2k�1y C k
2
y2 n D 2k � 1

hny C nC1
2

hn�kC1y2 C ˚n.y; hkC1; : : : ; hn�k/ n � 2k;

where ˚n are polynomials in y and in the coefficients hkC1; : : : ; hn�k. They satisfy
˚n.0; hkC1; : : : ; hn�k/ D 0. For n > 2k a formal degree of ˚n as a polynomial in
y is b.n � 1/=.k � 1/c.

Theorem 4.13 ([5, Theorems 5, 10]) For each generator H.x/ D xk C P
n>k hnxn

the solution G.y; x/ of the system (PDform; .II; k/) and (B; .II; k/) [or (Dform; .II; k/)
and (B; .II; k/)] is a solution of (Tform; .II; k/).

For the Aczél–Jabotinsky equation we obtain

Theorem 4.14 ([5, Theorem 13]) Consider some k � 2.

1. For each generator H.x/ D xk C P
n>k hnxn and for any polynomial Pk.y/ 2

CŒy� with Pk.0/ D 0 the differential equation (AJform; .II; k/) together with
(B; .II; k/) has exactly one solution of the form

G.y; x/ D x C Pk.y/xk C
X

n>k

Pn.y/xn 2 .CŒy�/ŒŒx��:
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The polynomials Pn.y/ for n > k are given by

Pn.y/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

hnPk.y/ if n < 2k � 1

h2k�1Pk.y/ C k
2
Pk.y/2 if n D 2k � 1

hnPk.y/ C nC1
2

hn�kC1Pk.y/2

C ˚n.Pk.y/; hkC1; : : : ; hn�k/ if n � 2k;

with polynomials ˚n, n � 2k, in Pk.y/ and hkC1; : : : ; hn�k.
2. Assume that Pk.y/ D y. The polynomials Pn, n � k, have a formal degree

b.n � 1/=.k � 1/c and their coefficients are given in Theorem 4.12.

Applying the same method as in the proof of Theorem 4.4 we obtain

Theorem 4.15 ([5, Theorem 14]) For each generator H.x/ D xk C P
n>khnxn the

solution G.y; x/ of (AJform; .II; k/) with G.y; x/ 	 x C yxk mod xkC1 is a solution
of (Tform; .II; k/).

Let G be the solution of (PDform; .II; k/) and (B; .II; k/) for the generator H.x/ D
xk C P

n>k hnxn. Reordering the summands of G we write G.y; x/ as
P

n�0 �n.x/yn.
Then (PDform; .II; k/) yields

X

n�1

n�n.x/yn�1 D H.x/
X

n�0

�0
n.x/yn; (PDR; .II; k/)

where .�0
n.x/yn/n�0 is a summable family. We note that (PDR; .II; k/) is satisfied if

and only if

�nC1.x/ D 1

n C 1
H.x/�0

n.x/ (PDRn; .II; k/)

holds true for all n � 0.
The solutions of (PDR; .II; k/) and (BR; .II; k/) are thoroughly analyzed in the

following theorems.

Theorem 4.16 ([5, Theorem 15]) For each generator H.x/ D P
n�k hnxn, k � 2,

hk D 1, the system (PDRn; .II; k/) and (BR; .II; k/) has a unique solution. For n � 0

the order of �n.x/ is equal to n.k � 1/ C 1 and �n.0/ D 0.

Theorem 4.17 ([5, Corollary 16, Theorem 18]) Consider some k � 2 and
assume that

P
n�0 �n.x/yn D P

r�1 Pr.y/xr is the solution of (PDRn; .II; k/) and
(BR; .II; k/) for a given generator H.x/. Writing

Pr.y/ D
X

j�0

Pr;jy
j; r � 1; and �n.x/ D

X

r�1

Pr;nxr; n � 0;

we deduce that Pr D 0 for 2 � r < k. Moreover for r � k the series Pr.y/

is a polynomial which has a formal degree b.r � 1/=.k � 1/c and which satisfies
Pr.0/ D 0. Consequently
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X

n�0

�n.x/yn D x C
X

r�k

Pr.y/xr 2 .C Œy�/ŒŒx��:

If �n.x/ D P
r�n.k�1/C1 Pr;nxr and H.x/ D P

r�k hrxr, then

�nC1.x/ D 1

n C 1

X

r�.nC1/.k�1/C1

0

@
rC1�kX

�Dn.k�1/C1

�hrC1��P�;n

1

A xr; n � 0:

Theorem 4.18 ([5, Theorem 19]) Let H.x/ D P
n�k hnxn, k � 2, hk D 1, be

a generator and assume that
P

n�0 �n.x/yn is the solution of (PDRn; .II; k/) and
(BR; .II; k/). Then

�n.x/ D 1

nŠ

X

r�n.k�1/C1

0

@
�rX

.�1;:::;�n�1/

n�1Y

sD1

h�s

�
r C s �

sX

tD1

�t

	
hrC.n�1/�Pn�1

tD1 �t

1

Axr

for n � 1. In
P�r

.�1;:::;�n�1/ we are taking the sum over all .n�1/-tuples .�1; : : : ; �n�1/

of integers, such that k � �s � r � .n � s/k C .n � 1/ � Ps�1
tD1 �t.

This theorem shows that the coefficient Pr;n of xr in �n.x/ depends only on the
elements hk; : : : ; hr�.n�1/.k�1/.

4.3.6 Normal Forms of Iteration Groups of Type .II; k/

Assume that G.y; x/ is a formal iteration group of type .II; k/ for some k � 2, i.e.,
G is a solution of (Tform; .II; k/) and (B; .II; k/). For all S 2 �1 the series

QG.y; x/ WD S�1
�
G.y; S.x//

�

is also a solution of (Tform; .II; k/) and (B; .II; k/). Assume that H is the infinitesi-
mal generator of G, then according to (4.1) the infinitesimal generator of QG is

QH.x/ D 

S0.x/

��1
H

�
S.x/

�
:

This differential equation for S is not a Briot–Bouquet equation. However, it can be
reduced to such an equation by putting S.x/ D x exp.�.x//, where �.x/ 2 CŒŒ x ��,
�.0/ D 0. For each H.x/ D P

n�k hnxn, k � 2, hk D 1, there exist some S.x/ 2 �1

and exactly one h 2 C, so that

QH.x/ D xk C hx2k�1:
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This is the normal form of the generator of a formal iteration group of type .II; k/.
(A direct proof not using the theory of Briot–Bouquet equations can be found in [5,
Theorem 28].) We say that a (formal) iteration group of type .II; k/ with generator

H.x/ D xk C hx2k�1; h 2 C;

is a normal form and we describe these normal forms in the next theorems.

Theorem 4.19 ([5, Theorem 29]) Consider some k � 2. The solution of
(PDform; .II; k/) and (B; .II; k/) for H.x/ D xk C hx2k�1 is given by

G.y; x/ D
X

n�0

Pn.k�1/C1.y/xn.k�1/C1

where

Pn.k�1/C1.y/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1 if n D 0

y if n D 1
n�1Y

iD1

�
i.k � 1/ C 1

�yn

nŠ
C hQn.y; h/ if n � 2;

and where Qn.y; h/, n � 2, is a polynomial in y of degree n � 1 and a polynomial in
h of degree bn=2c � 1.

Now we assume that h is an indeterminate over .CŒy�/ŒŒx��. It is interesting to note
that the normal forms of iteration groups of type .II; k/ have expansions in powers
of the parameter h. Since for n � 2 the degree of Pn.k�1/C1.y/ as a polynomial in h
is bn=2c, we can write G.y; x/ as

G.y; x/ D
X

r�0

Gr.y; x/hr 2 .CŒŒ x; y ��/ŒŒh��:

From (B; .II; k/) we deduce that G0.0; x/ D x and Gr.0; x/ D 0 for r � 1. Instead
of (PDform; .II; k/) we obtain

X

r�0

@

@y
Gr.y; x/hr D �

xk C hx2k�1
�

0

@
X

r�0

@

@x
Gr.y; x/hr

1

A

D
X

r�0

xk @

@x
Gr.y; x/hr C

X

r�0

x2k�1 @

@x
Gr.y; x/hrC1

This is a system of equations for Gr.y; x/, r � 0, given by

@

@y
G0.y; x/ D xk @

@x
G0.y; x/ (4.4)
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and

@

@y
Gr.y; x/ D xk @

@x
Gr.y; x/ C x2k�1 @

@x
Gr�1.y; x/; r � 1: (4.5)

Theorem 4.20 ([5, Theorem 30]) Consider H.x/ D xk C hx2k�1 where h is an
indeterminate over CŒŒ x; y ��. The solution of (4.4), (4.5), and (B; .II; k/) is given by

X

r�0

Gr.y; x/hr

where

Gr.y; x/ D
X

n�r

X

. j1;:::; jr /
1� j1

js� js�1C2; s�2
jr�nCr�1

QnCr�1
iD1 Œi�

Qr
sD1Œ js�

xŒnCr�

nŠ
yn; r � 0;

where Œr� D r.k � 1/ C 1.
Concerning the differential equation (Dform; .II; k/) we have

Theorem 4.21 ([5, Theorem 33]) Consider some k � 2. The solution of
(Dform; .II; k/) and (B; .II; k/) for H.x/ D xk C hx2k�1 is given by

G.y; x/ D
X

r�0

Gr.y; x/hr

with

Gr.y; x/ D xŒr�.1 � .k � 1/yxk�1/�Œr�=.k�1/Pr.ln.1 � .k � 1/yxk�1//; r � 0;

where Œr� D r.k � 1/ C 1 and Pr are polynomials of degree r. Moreover P0 D 1 and

P1.z/ D �z=.k � 1/:

The binomial series is used in order to compute

.1 � .k � 1/yxk�1/�Œr�=.k�1/:

The particular situation r D 0 yields

G0.y; x/ D x.1 � .k � 1/yxk�1/�1=.k�1/:

G0.y; x/ together with its conjugates occur in the problem of reversible power series
(c.f. [12, Section 0.3]).
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There exists also an approach with Lie–Gröbner-series (cf. [8] or [9, Chapter 1])
to solve (PDR; .II; k/) and (BR; .II; k/). We note that Lie–Gröbner-series in the
context of iteration groups have already been used by St. Scheinberg [29] and also
by Reich and Schwaiger in [27]. Define an operator

DWCŒŒ x �� ! CŒŒ x ��; D.f .x// WD H.x/f 0.x/:

Lemma 4.3 ([5, Lemma 23]) Let H be a generator of order k � 2. If .�n/n�0

satisfies the system (PDR; .II; k/) and (BR; .II; k/), then

�n.x/ D 1

nŠ
Dn.x/; n � 0:

Theorem 4.22 ([5, Theorem 24]) The series

G.y; x/ WD
X

n�0

1

nŠ
Dn.x/yn;

is a Lie–Gröbner-series. It satisfies (Tform; .II; k/) and (B; .II; k/).

4.4 Concluding Remarks and Open Problems

At the end of this paper we present some open problems concerning the construction
of iteration groups.

1. It is an important problem to study iteration groups in higher dimension. This
means in our situation to change to the ring CŒŒx1; : : : ; xn�� of formal power series
in n � 2 indeterminates x D .x1; : : : ; xn/T over C and to consider n-tuples

F.x/ D F

0

B
@

x1

:::

xn

1

C
A D

0

B
@

F1..x1; : : : ; xn/T/
:::

Fn..x1; : : : ; xn/T/

1

C
A D

0

B
@

F1.x/
:::

Fn.x/

1

C
A ;

i.e., elements of .CŒŒx��/n. By ord.F.x// we understand minford.F1/; : : : ; ord.Fn/g.
We consider the substitution of G.x/ 2 .CŒŒx��/n into F.x/ 2 .CŒŒx��/n provided
that ord.G/ � 1.

Each F.x/ 2 .CŒŒx��/n can be written as F.x/ D A � x C R.x/, where A is a
complex n � n-matrix and R.x/ 2 .CŒŒx��/n with ord.R/ � 2. If det.A/ ¤ 0 we
call F a formally biholomorphic mapping. The set of all formally biholomorphic
mappings forms a group � with respect to substitution ı, and a family .Ft.x//t2C ,
Ft.x/ 2 � , satisfying the translation equation

FsCt D Fs ı Ft; s; t 2 C; (T)

is called an iteration group in n dimensions.
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The construction of all iteration groups of dimension n � 2 is an open problem
and very likely the method of formal functional equations and differential
equations will lead to a solution.

Mehring has shown in [22, 23] that the coefficient functions of an iteration
group are polynomials in a finite number of additive or generalized exponential
functions, however, the detailed structure is not known.

2. Jabłoński and Reich studied in [19] the iteration groups of truncated formal
power series. It is an open question how to construct these groups using the
method of formal functional equations.

3. The method of formal functional equations should also be applied in the problem
of constructing maximal abelian subgroups of � or � , in particular in higher
dimension.

4. The various representations of the coefficient functions of iteration groups
presented in this paper and the representations obtained by Jabłoński and Reich
have so far not been compared by direct computation. This could yield interesting
polynomial identities.

5. We notice that from the representation G.y; x/ D S.yS�1.x// given in (4.3) we
can derive a representation

G.y; x/ D yx C
X

��2

Q�.y; s2; : : : ; s�/x�

where each Q� is a polynomial in y and in the coefficients s2; : : : ; s� of S.x/ D xC
s2x2 C : : :. Formula (4.2) describes a connection between the generator H.x/ D
x C h2x2 C : : : and the conjugating series S.x/. This gives eventually another
(maybe new) representation of the coefficients Pn of G from Theorem 4.3 as
polynomials in y and h2; : : : ; hn.
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17. Jabłoński, W., Reich, L.: On the form of homomorphisms into the differential group L1
s and

their extensibility. Results Math. 47, 61–68 (2005)
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