
Chapter 15
Stability of Systems of General Functional
Equations in the Compact-Open Topology

Pavol Zlatoš

Abstract We introduce a fairly general concept of functional equation for k-tuples
of functions f1; : : : ; fkW X ! Y between arbitrary sets. The homomorphy equa-
tions for mappings between groups and other algebraic systems, as well as
various types of functional equations and recursion formulas occurring in mathe-
matical analysis or combinatorics, respectively, become special cases (of systems)
of such equations. Assuming that X is a locally compact and Y is a completely
regular topological space, we show that systems of such functional equations,
with parameters satisfying rather a modest continuity condition, are stable in the
following intuitive sense: Every k-tuple of “sufficiently continuous,” “reasonably
bounded” functions X ! Y satisfying the given system with a “sufficient precision”
on a “big enough” compact set is already “arbitrarily close” on an “arbitrarily big”
compact set to a k-tuple of continuous functions solving the system. The result is
derived as a consequence of certain intuitively appealing “almost-near” principle
using the relation of infinitesimal nearness formulated in terms of nonstandard
analysis.
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15.1 Introduction

The study of stability of functional equations in the spirit of Ulam started with
examining the stability of additive functions and more generally of homomorphisms
between metrizable topological groups, cf. [3, 13, 14, 19, 20, 27, 28]. Since that
time it has developed to an established topic in mathematical and functional
analysis and extended to a variety of (systems of) functional equations—see, e.g.,
[6, 9, 15, 21, 22, 26]. However, in most cases the stability issue was considered
(explicitly or implicitly) either within the topology of uniform convergence or within
the (strong) topology given by a norm on some functional space. On the other
hand, especially when dealing with spaces of continuous functions defined on a
locally compact space, the compact-open topology (i.e., the topology of uniform
convergence on compact sets) is the most natural one. The systematic study of such
local stability on compacts and its relation to the “usual” global or uniform stability
was commenced by the author for homomorphisms between topological groups in
[30] and extended to homomorphisms between topological universal algebras in
[31]; cf. also [18, 24].

In the present paper we introduce a fairly general concept of functional equation
for k-tuples of functions f1; : : : ; fkW X ! Y between arbitrary sets. Then the homo-
morphy equations for mappings between groups and other algebraic systems, as well
as various types of functional equations occurring in mathematical analysis (like,
e.g., the sine and cosine addition formulas) or various recursion formulas occurring
in combinatorics become just special cases (of systems) of such equations. Assum-
ing that X is a locally compact and Y is a completely regular (i.e., uniformizable)
topological space, we will show that systems of such functional equations, with
functional parameters satisfying rather a modest continuity condition, are stable in
the following intuitive sense, which will be made precise in the final Section 15.4
(Theorems 15.2, 15.3): Every k-tuple of “sufficiently continuous,” “reasonably
bounded” functions X ! Y satisfying the given system with a “sufficient precision”
on a “big enough” compact set is already “arbitrarily close” on an “arbitrarily big”
compact set to a k-tuple of continuous functions solving the system. The result is a
generalization comprising several former results by the author and his collaborators
[24, 25, 29–31], as special cases. It is derived as a consequence of certain intuitively
appealing stability or “almost-near” principle (in the sense of [2, 5]) using the
relation of infinitesimal nearness formulated in terms of nonstandard analysis in
Section 15.3 (Theorem 15.1, Corollary 15.2), generalizing a more specific principle
of this kind from [24].

15.2 General Form of Functional Equations

Let X, Y be arbitrary nonempty sets and k; m; n � 1, p � 0 be integers. A k-tuple
of functions fff D .f1; : : : ; fk/, fiW X ! Y , is viewed as a single function fff W X ! Yk.
Further, let ˛̨̨ D .˛1; : : : ; ˛m/ be an m-tuple of p-ary operations ˛jW Xp ! X
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(if p D 0, a nullary operation ˛ on X is simply a constant ˛ 2 X). We use the
tensor product notation to denote the function fff ˝ ˛̨̨ W Xp ! Yk�m assigning to every
p-tuple xxx D .x1; : : : ; xp/ 2 Xp the k � m matrix

.fff ˝ ˛̨̨ /.xxx/ D �
.fi ı ˛j/.xxx/

� D

0

B
@

f1
�
˛1.xxx/

�
: : : f1

�
˛m.xxx/

�

:::
: : :

:::

fk
�
˛1.xxx/

�
: : : fk

�
˛m.xxx/

�

1

C
A :

In the trivial case when k D m D 1 we can identify fff D f , ˛̨̨ D ˛; then fff ˝ ˛̨̨ is just
the composition of functions f ı ˛W Xp ! Y . If m D 1 and ˛.x/ D x is the identity
IdX on X, then fff ˝ ˛ D .f1; : : : ; fk/ D fff . If m D p and ˛̨̨ D ��� D .�1; : : : ; �m/,
where �jW Xm ! X is the jth projection, i.e., �j.x1; : : : ; xm/ D xj, then .fff ˝ ���/.xxx/ D�
fi.xj/

� 2 Yk�m. In general, the function fff ˝ ˛̨̨ can be identified with the matrix of
composed functions fi ı ˛jW Xp ! Y (i � k, j � m).

Additionally, if FW Yk�m ! Y is a .k � m/-ary operation on Y , then F.fff ˝ ˛̨̨ / D
F ı .fff ˝ ˛̨̨ /W Xp ! Y denotes the function given by

F. f ˝ ˛̨̨ /.xxx/ D F
�
.fff ˝ ˛̨̨ /.xxx/

�
;

for xxx 2 Xp. More generally, for any mapping FW Yk�m � Xp ! Y we denote by
eF.fff ˝ ˛̨̨/W Xp ! Y the function given by

eF.fff ˝ ˛̨̨ /.xxx/ D F
�
.fff ˝ ˛̨̨ /.xxx/;xxx

�
;

for xxx 2 Xp. Further on (except for some Examples) we will study exclusively the
latter more general case which includes the former one, when the mapping F does
not depend on xxx, i.e., when F.AAA;xxx/ D F.AAA;xxx 000/ for any matrix AAA 2 Yk�m and all
xxx;xxx 000 2 Xp.

A general functional equation, briefly a GFE, of type .k; m; n; p/, with k; m; n �
1, p � 0, is a functional equation of the form

eF.fff ˝ ˛̨̨/ D eG.fff ˝ ˇ̌̌/ ; (15.1)

where fff D .f1; : : : ; fk/ is a k-tuple of functional variables or “unknown” functions
fiW X ! Y , ˛̨̨ D .˛1; : : : ; ˛m/ is an m-tuple and ˇ̌̌ D .ˇ1; : : : ; ˇn/ is an n-tuple
of p-ary operations on the set X, and, finally, FW Yk�m � Xp ! Y and GW Yk�n �
Xp ! Y are any mappings. The operations (mappings) ˛i, ˇj, F, and G are called
the functional coefficients or parameters of the equation. A k-tuple of functions
fff D .f1; : : : ; fk/W X ! Yk satisfies the GFE (15.1), or it is a solution of it, if the
functionseF.fff ˝ ˛̨̨/, eG.fff ˝ ˇ̌̌/ coincide, i.e., if

F
�
.fff ˝ ˛̨̨/.xxx/;xxx

� D G
�
.fff ˝ ˇ̌̌/.xxx/;xxx

�
;
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for all xxx 2 Xp. More generally, fff satisfies the GFE (15.1) on a set S � Xp if the
above equation holds for each xxx 2 S; we say that fff satisfies the GFE (15.1) on a set
A � X if it satisfies (15.1) on the set Ap � Xp.

A system of GFEs

eF�.fff ˝ ˛̨̨�/ D eG�.fff ˝ ˇ̌̌�/ .� 2 �/ ; (15.2)

with (finite or infinite) index set � ¤ ;, consist of GFEs of particular types
.k; m�; n�; p�/ (with k fixed and m�, n�, p� depending on � 2 �). Then f D
.f1; : : : ; fk/ is a solution of the system if fff satisfies all the equations in it. Satisfaction
of the system on some set A � X is defined in the obvious way.

We do not maintain that the (systems of) GFEs of the form just defined cover
all the (systems of) functional equations one can meet, as such a claim would be
too ambitious and, obviously, not founded well enough. In particular, functional
equations dealing with compositions of functional variables fi ı fj or with iterated
compositions like f , f 2 D f ı f , f 3 D f ı f ı f , etc., do not fall under this scheme. On
the other hand, as indicated by the examples below, they still comprise a large and
representative variety of (systems of) functional equations studied so far.

Let us start with three closely related examples of algebraic nature.

Example 15.1 Let .X; �/, .Y; ?/ be two groupoids, i.e., algebraic structures with
arbitrary binary operations �, ? on the sets X and Y , respectively. Let ˛W X2 ! X be
the operation ˛.x1; x2/ D x1 � x2 on X, �1; �2W X2 ! X be the projections on the
first and the second variable, respectively, F D IdY W Y ! Y be the identity mapping
and GW Y2 ! Y be the operation G.y1; y2/ D y1 ? y2 on Y . Then the GFE

F.fff ˝ ˛̨̨ / D G.fff ˝ ���/

of type .1; 1; 2; 2/, with fff D f W X ! Y , ˛̨̨ D ˛ and ��� D .�1; �2/, which rewrites as

f ı ˛ D G
�
f ˝ .�1; �2/

�
;

simply means that

f .x1 � x2/ D f .x1/ ? f .x2/

for all x2; x2 2 X. In other words, a function f satisfies the above GFE if and only if
it is a homomorphism f W .X; �/ ! .Y; ?/.

If both .X; �/, .Y; ?/ coincide with the additive group .R; C/ of reals, we get the
Cauchy functional equation

f .x C y/ D f .x/ C f .y/ :

If .X; �/ D .R; C/ and .Y; ?/ is the multiplicative group .RC; �/ of positive reals,
we obtain the equation

f .x C y/ D f .x/f .y/ ;
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characterizing exponential functions. If both .X; �/, .Y; ?/ denote the set R with the
arithmetical mean x � y D x ? y D .x C y/=2, we have Jensen’s functional equation

f

�
x C y

2

�
D f .x/ C f .y/

2
:

And the list could be continued indefinitely.

Example 15.2 More generally, let � be a set of operation symbols with finite arities
p� (� 2 �), and X D .X; ˛�/�2�, Y D .Y; G�/�2� be two universal algebras
of signature .p�/�2�, i.e., ˛� D �XW Xp� ! X, G� D �YW Yp� ! Y are p�-ary
operations on the sets X, Y , respectively, corresponding to the symbol � 2 �,
cf. [10]. A function f W X ! Y is called a homomorphism from X to Y, briefly
f WX ! Y, if for each � 2 � and any p�-tuple xxx D .x1; : : : ; xp�

/ 2 Xp� we have

f
�
˛�.x1; : : : ; xp�

/
� D G�

�
f .x1/; : : : ; f .xp�

/
�

;

(for nullary operation symbols � 2 � this simply means that f .˛�/ D G�). Similarly
as in the previous Example 15.1, we see immediately that this is the case if and only
if f satisfies the system of GFEs

f ı ˛� D G�

�
f ˝ .�1; : : : ; �p�

/
�

.� 2 �/ ;

of types .1; 1; p�; p�/, where �jW Xp� ! X, �j.xxx/ D xj, is the jth projection for
j � p�.

Example 15.3 Let .�; C; �; 0; 1/, be a ring with unit 1 ¤ 0. A (left) �-module X
is an abelian group .X; C/ with scalar multiplication � � X ! X, sending each
pair .�; x/ 2 � � X to the scalar multiple �x 2 X, satisfying the usual axioms.
Then each scalar � 2 � can be regarded as an endomorphism �XW X ! X of the
abelian group .X; C/, and the assignment � 7! �X becomes a homomorphism of
rings .�; C; �; 0; 1/ ! �

End.X; C/; C; ı; 0; IdX
�
, cf. [12]. In particular, if � is a

field, then a �-module is just a vector space over �.
A homomorphism of �-modules X, Y is a mapping f W X ! Y , preserving the

addition and scalar multiplication, i.e., satisfying

f .x C y/ D f .x/ C f .y/ ;

f .�x/ D �f .x/

for any x; y 2 X, � 2 �. If � is a field, then this is the usual definition of a linear
mapping between the vector spaces X, Y .

Regarding �C D fCg [ � as a set of operation symbols (+ binary, and each
� 2 � unary), every �-module is simply a universal algebra X D .X; C; �/�2�,
satisfying the �-module axioms, and a �-module homomorphism is a homomor-
phism of such algebras. Now, the previous Example 15.2 applies, i.e., f W X ! Y is a
�-module homomorphism if and only if it satisfies the system of GFEs consisting of
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f ı ˛ D G
�
f ˝ .�1; �2/

�
;

where ˛ is the addition in X and G is the addition in Y , and

f ı �X D �Y ı f .� 2 �/ :

We continue with two examples of more analytic character.

Example 15.4 Let ˛WR2 ! R be the addition on R, F1 D �1; F2 D �2WR2 ! R

denote the projections, and the functions G1; G2WR2�2 ! R be given by

G1

�
a11 a12

a21 a22

�
D Per

�
a11 a12

a21 a22

�
D a11a22 C a21a12 ;

G2

�
a11 a12

a21 a22

�
D Det

�
a21 a12

a11 a22

�
D a21a22 � a11a12 ;

(notice the reversed order of elements in the first column of the determinant). Then
the system of the following two GFEs, both of type .2; 1; 2; 2/, in the couple of
functional variables fff D .f1; f2/, standing for the sine and cosine, respectively,

�1.fff ˝ ˛/ D G1

�
fff ˝ .�1; �2/

�
;

�2.fff ˝ ˛/ D G2

�
fff ˝ .�1; �2/

�
;

is nothing else but the well-known sine and cosine addition formulas

sin.x C y/ D sin x cos y C cos x sin y ;

cos.x C y/ D cos x cos y � sin x sin y :

Example 15.5 Let � WC ! C denote the shift �.x/ D x C 1 and GWC � C ! C be
the multiplication G.y; x/ D yx on C. Then the GFE

f ı � D eG.f /

of type .1; 1; 1; 1/ is the functional equation

f .x C 1/ D f .x/ x ;

satisfied by the Euler function � on the open complex half plane fx 2 C j Re x > 0g.
We conclude with two examples dealing with recursion in one and two variables.

Example 15.6 Let
�
f .x/

�
x2N be a sequence of elements of a set A, i.e., a function

f WN ! A, satisfying the recursion

f .x C n/ D G
�
f .x/; : : : ; f .x C n � 1/

�
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for a fixed n � 1 and an n-ary operation GW An ! A given in advance. For each
j 2 N we denote by � jWN ! N the shift � j.x/ D x C j. Then the above recursion
formula takes the form of the GFE

f ı �n D G
�
f ˝ �

�0; : : : ; �n�1
��

of type .1; 1; n; 1/. The more general recursion formula

f .x C n/ D G
�
f .x/; : : : ; f .x C n � 1/; x

�
;

where GW An � N ! A, takes the form of the GFE of type .1; 1; n; 1/

f ı �n D eG
�
f ˝ �

�0; : : : ; �n�1
��

:

Example 15.7 Let A be a set and GW A3�N
2 ! A be an arbitrary mapping. Consider

the following recursion formula:

f .x C 1; y C 1/ D G
�
f .x; y/; f .x C 1; y/; f .x; y C 1/; x; y

�
;

expressing the value of a function f WN2 ! A at .x C 1; y C 1/ in terms of its values
at the preceding neighbors .x; y/, .x C 1; y/, .x; y C 1/, and the position .x; y/ itself.
The notorious recursion formulas

 
n C 1

k C 1

!

D
 

n

k

!

C
 

n

k C 1

!

;

c.k C 1; l C 1/ D c.k C 1; l/ C c.k; l C 1/ ;

s.n C 1; k C 1/ D s.n; k/ � n s.n; k C 1/ ;

S.n C 1; k C 1/ D S.n; k/ C .k C 1/S.n; k C 1/ ;

for binomial coefficients (both in the usual form or for c.k; l/ D �kCl
k

�
), as well as for

Stirling numbers of the first and the second kind, respectively, are just some special
cases of such functional equations for functions f WN2 ! Z.

Let �1; �2WN2 ! N
2 denote the shifts in the first and the second variable,

respectively, i.e., �1.x; y/ D .x C 1; y/, �2.x; y/ D .x; y C 1/, and �12 D �1 ı �2 D
�2 ı �1WN2 ! N

2 be the double shift, i.e., �12.x; y/ D .x C 1; y C 1/. Then the
original recursion formula can be written as the GFE

f ı �12 D eG
�
f ˝ .�0; �1; �2/

�
;

with �0 D IdN2 WN2 ! N
2 denoting the identity. The generalization to recursion

formulas for functions f WNn ! A with n � 2 variables is straightforward.
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15.3 Infinitesimal Nearness and S-Continuity

In this section we modify the short introduction to the nonstandard approach to
continuity of mappings between topological groups from [24] to the more general
situation of mappings between completely regular topological spaces. We use [8]
as a reference source for general topology. In order to simplify our terminology, we
assume that all (standard) topological or uniform spaces dealt with are Hausdorff.

The reader is assumed to have some basic acquaintance with nonstandard
analysis in an extent covered either by the original Robinson’s monograph [23]
or, e.g., by Albeverio et al. [1], or Davis [7], or Arkeryd et al. [4], mainly in the
parts [11] and [17]. In particular, some knowledge of the nonstandard approach to
topology, based on the equivalence relation of infinitesimal nearness, is desirable.

Our exposition takes place in a nonstandard universe which is an elementary
extension �V of a superstructure V over some set of individuals containing at
least all (classical) complex numbers and the elements of the universal algebras
or topological spaces dealt with. In particular, this means that every standard
universal algebra A D .A; F�/�2� is embedded into its nonstandard extension
�A D .�A; �F�/�2� via the canonic elementary embedding a 7! �a, and identified
with its image under �, in such a way that for any formula ˆ.v1; : : : ; vn/ of the
first-order language built upon the operation symbols � 2 � and any a1; : : : ; an 2 A
we have

ˆ.a1; : : : ; an/ holds in A if and only if �ˆ.a1; : : : ; an/ holds in �A;

where �ˆ is the formula obtained from ˆ by replacing each operation F�W Ap� ! A
by its extension �F�W �Ap� ! �A. This rule is referred to as the transfer principle.
However, this principle applies to any tuples of functions fff D .f1; : : : ; fk/W X ! Yk

and their nonstandard extensions �fff D .�f1; : : : ; �fk/W �X ! �Yk, as well.
Objects belonging to the original universe are called standard and objects

belonging to its nonstandard extension are called internal. Taking the advantage
of the relation between the universes of standard and internal objects, we cannot
avoid the so-called external sets, i.e., sets of internal objects, which themselves are
not necessarily internal.

We assume that our nonstandard universe is �-saturated for some sufficiently
big uncountable cardinal �, which will be specified later on. This is to say that any
system of less than � internal sets with the finite intersection property has itself
nonempty intersection. Informally, we refer to this situation by the phrase that our
nonstandard universe is sufficiently saturated. In a similar vein, a set of admissible
size means a set of cardinality < �.

If .X;T / is a topological space, then the topology T (i.e., the system of open
sets in X) gives rise to two different topologies on its nonstandard extension �X.

The Q-topology is given by the base �T ; it is Hausdorff if and only if the original
topology T on X is Hausdorff. This topology plays rather an auxiliary role in our
accounts.
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The S-topology is given by the base f�A j A 2 T g. Obviously, the S-topology is
coarser than the Q-topology and it is not Hausdorff, unless .X;T / is discrete.

We will systematically take advantage of the fact that if .X;T / is a (Hausdorff)
completely regular space, whose topology is induced by a uniformity U on X, then,
in a sufficiently saturated nonstandard universe, the S-topology is fully determined
by a single external equivalence relation

x 	 y , 8 U 2 U W .x; y/ 2 �U ;

called the relation of infinitesimal nearness on �X. At the same time the system
f�U j U 2 U g is a base of the S-uniformity on �X. Uniform continuity with respect
to it is referred to as the uniform S-continuity.

The external set of all elements indiscernible from x 2 �X is called the monad of
x, i.e.,

Mon.x/ D fy 2 �X j y 	 xg :

An element x 2 �X is called nearstandard if x 	 x0 for some x0 2 X. The (external)
set of all nearstandard elements in �X is denoted by Ns.�X/, i.e.,

Ns.�X/ D
[

x2X

Mon.x/ :

For x 2 Ns.�X/ we denote by ıx the unique element x0 2 X infinitesimally close
to x, called the standard part or shadow of x.

For the rest of this section .X;TX/ and .Y;TY/ denote some completely regular
topological spaces, whose topologies are induced by some uniformities UX , UY ,
respectively, and �X, �Y are their canonical extensions in a sufficiently saturated
nonstandard universe; more precisely, we assume that our nonstandard universe is
�-saturated for some cardinal � bigger than the cardinalities of some bases of the
uniformities UX , UY .

While the Q-continuity of internal functions f W �X ! �Y is just the �continuity,
their S-continuity can be characterized in the following intuitively appealing way
in the spirit of the original infinitesimal calculus (below, we denote the relations of
infinitesimal nearness on �X, �Y by 	X , 	Y , respectively):

Proposition 15.1 Let f W �X ! �Y be an internal function. Then

(a) f is S-continuous in a point x0 2 �X if and only if

8 x 2 �X W x 	X x0 ) f .x/ 	Y f .x0/ I

(b) f is S-continuous on a set A � �X (i.e., f is S-continuous in every point a 2 A)
if and only if

8 a 2 A 8 x 2 �X W x 	X y ) f .x/ 	Y f .y/ I
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(c) if A � �X is an intersection of admissibly many internal sets, then f is
S-continuous on A if and only if f is uniformly S-continuous on A.

In view of (a) and (b), S-continuity of an internal function f W �X ! �Y can be
alternatively defined as preservation of the relation of infinitesimal nearness by f . In
particular, for the canonic extension �f W �X ! �Y of a standard function f W X ! Y
we have the following criteria (notice the subtle difference between (b) and (c)).

Corollary 15.1 Let f W X ! Y be a function. Then

(a) f is continuous in a point x0 2 X if and only if

8 x 2 �X W x 	X x0 ) �f .x/ 	Y f .x0/ I

(b) f is continuous on a set A � X (i.e., f is continuous in every point a 2 A) if and
only if

8 a 2 A 8 x 2 �X W x 	X a ) �f .x/ 	Y f .a/ I

(c) f is uniformly continuous on a set A � X if and only if

8 x; y 2 �A W x 	X y ) �f .x/ 	Y
�f .y/ :

Notice that under the assumption of (b), �f is Q-continuous on �A, as well.
An internal function f W �X ! �Y is called nearstandard if f .x/ 2 Ns.�Y/ for

each x 2 X. Let us remark that this is indeed equivalent to f be a nearstandard point
in the nonstandard extension ��YX

�
of the Tikhonov product YX D ff j f W X ! Yg.

Any nearstandard function f W �X ! �Y gives rise to a function ıf W X ! Y given by

.ıf /.x/ D ı.f .x// ;

for x 2 X, called the standard part of f . If f is additionally S-continuous on Ns.�X/,
then its standard part can be extended to a map ıf W Ns.�X/ ! Y (denoted in the same
way), such that

ıf .x/ D ıf .ıx/ D ı.f .x//

for any x 2 Ns.�X/. The situation can be depicted by the following commutative
diagram:

Ns.�X/
f�����! Ns.�Y/

ı
??y

??yı

X �����!
ıf

Y
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A function f W �X ! �Y is called NS-continuous if it is S-continuous on Ns.�X/.
Now we have the following supplement to Proposition 15.1 and its Corollary 15.1.

Proposition 15.2 Let f W �X ! �Y be a nearstandard internal function. Then the
following implications hold:

(a) if f is NS-continuous, then its standard part ıf W X ! Y is continuous and
�.ıf /.x/ 	Y f .x/ for x 2 Ns.�X/;

(b) if f is S-continuous on some internal set A 
 Ns.�X/, then its standard part
ıf W X ! Y is uniformly continuous.

Notice that the function �.ıf / is also Q-continuous. However, even if f were
S-continuous on the whole of �X, the second conclusion in (a) still cannot be
strengthened to �.ıf /.x/ 	Y f .x/ for all x 2 �X.

Proof We will prove just the first statement in (a); then the second statement easily
follows and (b) can be proved in a similar way.

Assume that f is NS-continuous and denote g D ıf W X ! Y its standard part.
In order to prove the continuity of g, pick an arbitrary x0 2 X and V 2 UY . Let
W 2 UY be symmetric, such that W3 D W ı W ı W � V . As f is internal and
NS-continuous, it is also continuous in x0 with respect to the S-topology on �X,
hence there is a U 2 UX such that .x; x0/ 2 �U implies

�
f .x/; f .x0/

� 2 �W for
any x 2 �X. In particular, for x 2 X such that .x; x0/ 2 U, we have g.x/ 	Y f .x/,�
f .x/; f .x0/

� 2 �U, as well as f .x0/ 	Y g.x0/, hence
�
g.x/; g.x0/

� 2 �W3 � �V .
Since g.x/; g.x0/ 2 Y , by transfer principle

�
g.x/; g.x0/

� 2 V .
Let us conclude this section with a remark that the introduced continuity notions

can be easily generalized to tuples of functions fff D .f1; : : : ; fk/W X ! Yk. As well
known, fff has whatever standard continuity property if and only if all the functions
fi have this property. The relation of infinitesimal nearness 	Y can be extended to
�Yk by

y 	Y z , y1 	Y z1 & : : : & yk 	Y zk ;

(similarly, 	X can be extended to �Xp). Then an internal function fff W �X ! �Yk is
nearstandard if and only if all the functions fi are nearstandard; fff has anyone of the
S-continuity properties if and only if all the functions fi have the corresponding
property. If fff is nearstandard, then the k-tuple ıf D �ıf1; : : : ; ıfk

�
of functions

ıfiW X ! Y is called the standard part of fff .

15.4 An Infinitesimal “Almost-Near” Principle for Systems
of General Functional Equations

Let .X;TX/, .Y;TY/ be two completely regular topological spaces with topologies
induced by some uniformities UX , UY , respectively. If there is no danger of
confusion, we omit the subscripts X, Y in the notation of the relations of infinitesimal
nearness 	X , 	Y on �X, �Y , respectively.



344 P. Zlatoš

Consider the GFE (15.1) for a k-tuple of functional variables fff D .f1; : : : ; fk/.
Embedding the situation into some nonstandard universe we say that an internal
function fff D .f1; : : : ; fk/W �X ! �Yk, almost satisfies Equation (15.1) on Ns.�X/ if

�eF.fff ˝ �˛̨̨/.xxx/ 	 �eG.fff ˝ �ˇ̌̌/.xxx/

for all xxx D .x1 : : : ; xp/ 2 Ns.�Xp/. Similarly, fff almost satisfies the system of
GFEs (15.2) on Ns.�X/ if it almost satisfies on Ns.�X/ every equation in it. (Notice
that, due to the transfer principle, ��eF

� D e�F, and similarly for G, hence the notation
�eF, �eG is unambiguous.)

Theorem 15.1 Let the mappings FW Yk�m � Xp ! Y, GW Yk�n � Xp ! Y be
continuous in the “matrix” variables yij 2 Y for all i � k and j � m; n, respectively.
If a nearstandard internal function fff D .f1; : : : ; fk/W �X ! �Yk almost satisfies the
GFE (15.1) on Ns.�X/, then its standard part ıf D �ıf1; : : : ; ıfk

�
is a solution of the

GFE (15.1).

Proof Take an arbitrary xxx D .x1; : : : ; xp/ 2 Xp. We have

�eF.fff ˝ �˛̨̨/.xxx/ 	 �eG.fff ˝ �ˇ̌̌/.xxx/ :

As xxx is standard, �˛̨̨.xxx/ D ˛̨̨.xxx/ is standard, as well, hence fi
�
˛j.xxx/

� 	 ıfi
�
˛j.xxx/

�
for

any i � k, j � m, and, as �F is NS-continuous in the matrix variables yij,

�eF.fff ˝ �˛̨̨ /.xxx/ D �F
�
.fff ˝ �˛̨̨ /.xxx/;xxx

� D �F
�
.fff ˝ ˛̨̨ /.xxx/;xxx

�

	 �F
�
.ıf ˝ ˛̨̨ /.xxx/;xxx

� D F
�
.ıf ˝ ˛̨̨ /.xxx/;xxx

� D eF.ıf ˝ ˛̨̨/.xxx/ :

Similarly we can get

�eG.fff ˝ �ˇ̌̌/.xxx/ 	 eG.ıf ˝ ˇ̌̌/.xxx/ :

Therefore,

eF.ıf ˝ ˛̨̨ /.xxx/ 	 eG.ıf ˝ ˇ̌̌/.xxx/ ;

and, as both the expressions are standard,

eF.ıf ˝ ˛̨̨ /.xxx/ D eG.ıf ˝ ˇ̌̌/.xxx/ ;

i.e., ıf is a solution of the GFE (15.1).
From Theorem 15.1 and Proposition 15.2 (b) we readily obtain the following con-

sequence generalizing Theorem 2.2 from [24], dealing just with the homomorphy
equation in topological groups.
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Corollary 15.2 Assume that F, G are continuous in the matrix variables yij. Then
for every nearstandard NS-continuous internal function fff D .f1; : : : ; fk/W �X ! �Yk

which almost satisfies the system of GFEs (15.2) on Ns.�X/, there is a continuous
solution ''' D .'1; : : : ; 'k/ of the system, such that '''.x/ 	 fff .x/ for each x 2 X.

15.5 Stability of Systems of General Functional Equations

In order to formulate a standard version of the just established nonstandard stability
principle, we need to introduce some notions—cf. [24, 30, 31].

Definition 15.1 Let .X;TX/ be a topological space and .Y;UY/ be a uniform
space.

(a) A .TX;UY/ continuity scale is a mapping � W X � B ! TX , such that B is
a base of the uniformity UY and � .x; V/ is a neighborhood of x in .X;TX/,
satisfying

V � W ) � .x; V/ � � .x; W/

for any x 2 X, and V; W 2 B.
(b) Given a continuity scale � W X � B ! TX , a function f W X ! Y is called

� -continuous in a point x0 2 X, or continuous in x0 with respect to � , if

x 2 � .x0; V/ ) �
f .x/; f .x0/

� 2 V

for each x 2 X; f is � -continuous on a set A � X if it is � -continuous in each
point a 2 A; it is � -continuous if it is � -continuous on X.

(c) Given a continuity scale � W X � B ! TX and an entourage U 2 B, a function
f W X ! Y is .�; U/-precontinuous in a point x0 2 X if

x 2 � .x0; V/ ) �
f .x/; f .x0/

� 2 V

for any V 2 B, such that U � V , and each x 2 X; .�; U/-precontinuity on a set
A � X and on X are defined in the obvious way.

(d) If .X;UX/ is a uniform space, too, then a .UX;UY/ uniform continuity scale is
a mapping � WB ! UX such that B is some base of the uniformity UY and

V � W ) � .V/ � � .W/

for any V; W 2 B.
(e) Given a uniform continuity scale � WB ! UX , a function f W X ! Y is uniformly

� -continuous on a set A � X if

.x; y/ 2 � .V/ ) �
f .x/; f .y/

� 2 V
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for any x; y 2 A; f is uniformly � -continuous if it is uniformly � -continuous
on X.

(f) Given a uniform continuity scale � WB ! UX and an entourage U 2 B,
a function f W X ! Y is uniformly .�; U/-precontinuous on a set A � X if

.x; y/ 2 � .V/ ) �
f .x/; f .y/

� 2 V

for any V 2 B, such that U � V and all x; y 2 A; f is uniformly .�; U/-
precontinuous if it is .�; U/-precontinuous on X.

Obviously, if a function f W X ! Y is � -continuous with respect to some
continuity scale � , then it is continuous. Conversely, if f is continuous, then, given
any base B of UY , the assignment

� .x0; V/ D ˚
x 2 X

ˇ̌ �
f .x/; f .x0/

� 2 V
�

;

for x0 2 X, V 2 B, defines a .TX;UY/ continuity scale � W X � B ! TX , and, of
course, f is continuous with respect to it.

The other way round, f is � -continuous if and only if it is .�; U/-precontinuous
for all U 2 B. Thus each particular condition of .�; U/-precontinuity for an
entourage U 2 UY can be regarded as an approximate continuity property. Infor-
mally, f is “almost � -continuous” if it is .�; U/-precontinuous for a “sufficiently
small” U 2 B. The relation between the uniform versions of these notions is similar.

If .X; d/, .Y; e/ are metric spaces, then a .d; e/-continuity scale is just a mapping
	 W X � R

C ! R
C such that 	.x; 
/ � 	.x; 
0/ for any x 2 X, 
0 � 
 > 0. Then a

function f W X ! Y is 	 -continuous in x0 2 X if

d.x; x0/ < 	.x0; 
/ ) e
�
f .x/; f .x0/

�
< 


for all 
 > 0 and x 2 X. A uniform .d; e/-continuity scale is an isotone mapping
	 WRC ! R

C. A function f W X ! Y is uniformly 	 -continuous if

d.x; y/ < 	.
/ ) e
�
f .x/; f .y/

�
< 


for all 
 > 0 and x; y 2 X.

Definition 15.2 Let X, Y be arbitrary sets.

(a) A bounding relation from X to Y is any binary relation R � X � Y such that all
its stalks RŒx� D fy 2 Y j .x; y/ 2 Rg, for x 2 X, are nonempty.

(b) Given a bounding relation R � X � Y , a function f W X ! Y is R-bounded on a
set A � X if f .a/ 2 RŒa� for each a 2 A; f is R-bounded if it is R-bounded on X,
i.e., if f � R.

(c) A bounding relation R � X�Y is stalkwise finite if all its stalks RŒx� are finite. If,
additionally, .Y;TY/ is a topological space, then R is called stalkwise compact
if all its stalks RŒx� are compact.
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Definition 15.3 Let X be any set, .Y;UY/ be a uniform space and V 2 UY .

(a) Two functions f ; gW X ! Y are V-close on a set A � X if
�
f .a/; g.a/

� 2 V for
all a 2 A.

(b) A k-tuple fff D .f1; : : : ; fk/ of functions fiW X ! Y is a V-solution of the
GFE (15.1) on a set S � Xp if

�eF.fff ˝ ˛̨̨ /.xxx/; eG.fff ˝ ˇ̌̌/.xxx/
� 2 V

for all xxx 2 S; fff is a V-solution the GFE (15.1) on a set A � X if it is its V-
solution on Ap; fff is a V-solution of the system of GFEs (15.2) on A � X if it is
a V-solution of every equation in the system on A.

For brevity’s sake we say that a function fff D .f1; : : : ; fk/W X ! Yk has any of
the just introduced � -continuity properties if and only if each particular function fi
has the corresponding property. Similarly, fff is R-bounded (on a set A � X) if and
only each function fi is R-bounded. We say that two such functions fff ;gggW X ! Yk are
V-close on A � X if fi, gi are V-close on A for each i � k.

The system of all nonempty compact sets of a topological space .X;TX/ is
denoted by K .X/.

Theorem 15.2 Let .X;TX/ be a locally compact topological space, .Y;UY/ be a
uniform space, � W X � B ! TX be a .TX;UY/ continuity scale, and R � X � Y be
a stalkwise compact bounding relation. Assume that all the functional coefficients
F�W Yk�m� � Xp� ! Y, G�W Yk�n� � Xp� ! Y in the system of GFEs (15.2) are
continuous in the matrix variables yij. Then for each pair D 2 K .X/, V 2 UY there
exists a pair C 2 K .X/, U 2 UY such that D � C and the following implication
holds true:

If a U-solution fff D .f1; : : : ; fk/W X ! Yk of the system (15.2) on C is both .�; U/-
precontinuous and R-bounded on C, then there exists a continuous solution ''' D
.'1; : : : ; 'k/ of the system, such that fff , ''' are V-close on D.

Proof Let .X;TX/, .Y;UY/, � W X � B ! TX , R � X � Y , as well as the system
of GFEs (15.2) satisfy the assumptions of the theorem. Then .X;TX/ is completely
regular, as well, hence its topology is induced by some uniformity UX . Admit, in
order to obtain a contradiction, that there is a pair D 2 K .X/, V 2 UY for which the
conclusion of the theorem fails. For each pair C 2 K .X/, U 2 B such that C 
 D
we denote by F .C; U/ the set of all U-solutions fff D .f1; : : : ; fk/W X ! Yk of the
system of GFEs (15.2) on C which are both .�; U/-precontinuous and R-bounded on
C, nonetheless, fff is not V-close on D to any continuous solution ''' D .'1; : : : ; 'k/ of
the system (15.2). According to our assumption, all the sets F .C; U/ are nonempty,
and, for all C; C0 2 K .X/, U; U0 2 B, we obviously have

D � C � C0 & U0 � U ) F .C0; U0/ � F .C; U/ :

Let us embed the situation into a sufficiently saturated nonstandard universe.
More precisely, we assume that it is �-saturated for some uncountable cardinal �
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such that cardB < �, as well as cardC < � for some cofinal subset C � K .X/

such that D � C for each C 2 C . Then

\

C2C ; U2B
�F .C; U/ ¤ ; :

Let fff D .f1; : : : ; fk/ belong to this intersection. Then fff W �X ! �Yk is an internal
function, for all U 2 UY , C 2 C , fff is �.�; U/-precontinuous and �R-bounded on �C
and it satisfies

��eF�.fff ˝ �˛̨̨�/.xxx/; �eG�.fff ˝ �ˇ̌̌�/.xxx/
� 2 �U

for any � 2 � and xxx 2 �Cp� . Since X is locally compact, Ns.�X/ D S
C2C �C.

It follows that fff is NS-continuous and almost satisfies the system (15.2) on Ns.�X/.
Finally, fff .x/ 2 ��RŒx�

�k
for any C 2 C and x 2 �C. As RŒx� is compact for x 2 X, in

that case we have fff .x/ 2 ��RŒx�
�k � Ns

��Yk
�
. Thus fff is nearstandard. According to

Corollary 15.2, there is a continuous solution ''' D .'1; : : : ; 'k/ of the system (15.2),
such that fff .x/ 	 '''.x/ each x 2 X. On the other hand, �''' is Q-continuous (i.e.,
�continuous), hence fff and �''' cannot be �V-close on �D. Thus there are an i � k and
an x 2 �D such that

�
fi.x/; �'i.x/

� … �V . However, as D is compact, �D � Ns.�X/.
Since both fi and �'i are NS-continuous, taking an x0 2 X such that x 	 x0, we
obtain

�'i.x/ 	 'i.x0/ 	 fi.x0/ 	 fi.x/ ;

i.e., a contradiction.
Like in Theorem 15.2, we assume in the next three Corollaries that all the

mappings F�, G� in the system of GFEs (15.2) are continuous in the matrix
variables yij (but, for brevity’s sake, we do not mention that explicitly). In the fourth
Corollary 15.6 this assumption is superfluous as it is satisfied automatically.

If .Y;UY/ is compact, then R D X � Y is a stalkwise compact bounding relation
such that every function fff W X ! Yk is R-bounded. This makes possible to avoid
mentioning any bounding relation in the formulation of Theorem 15.2.

Corollary 15.3 Let .X;TX/ be a locally compact topological space, .Y;UY/ be a
compact uniform space, and � W X �B ! TX be a .TX;UY/ continuity scale. Then
for each pair D 2 K .X/, V 2 UY there is a pair C 2 K .X/, U 2 UY such that
D � C and the following implication holds true:

If a U-solution fff D .f1; : : : ; fk/W X ! Yk of the system of GFEs (15.2) on C is
.�; U/-precontinuous on C, then there exists a continuous solution ''' D .'1; : : : ; 'k/

of the system, such that fff , ''' are V-close on D.
If .X;TX/ is compact, then its topology is induced by a unique uniformity UX

and, at the same time, it is enough to control the continuity of functions fff W X ! Yk

by means of a uniform continuity scale. Choosing D D X we get the following
global version of Theorem 15.2.
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Corollary 15.4 Let .X;UX/ be a compact and .Y;UY/ be an arbitrary uniform
space, � WB ! UX be a .UX;UY/ uniform continuity scale and R � X � Y be a
stalkwise compact bounding relation. Then for each V 2 UY there is a U 2 UY such
that the following implication holds true:

If fff D .f1; : : : ; fk/W X ! Yk is a uniformly .�; U/-precontinuous and R-bounded
U-solution of the system of GFEs (15.2), then there exists a (uniformly) continuous
solution ''' D .'1; : : : ; 'k/ of the system, such that fff , ''' are V-close on X.

Under the assumptions of both Corollaries 15.3 and 15.4 we have

Corollary 15.5 Let .X;UX/, .Y;UY/ be compact uniform spaces and � WB ! UX

be a .UX;UY/ uniform continuity scale. Then for each V 2 UY there is a U 2 UY

such that the following implication holds true:
If fff D .f1; : : : ; fk/W X ! Yk is a uniformly .�; U/-precontinuous U-solution of

the system of GFEs (15.2), then there exists a (uniformly) continuous solution ''' D
.'1; : : : ; 'k/ of the system, such that fff , ''' are V-close on X.

The interested reader can easily formulate the metric versions of Theorem 15.2,
as well as of Corollaries 15.3–15.5.

Endowing both the sets X, Y with discrete topologies (uniformities), all the
functions X ! Y become (uniformly) continuous. Then compact subsets of X are
just the finite ones and, similarly, a stalkwise compact bounding relation R � X � Y
is a stalkwise finite one. In that case, choosing U D IdY in Theorem 15.2, we obtain
the following result on extendability of functions satisfying a system of GFEs (15.2)
on some finite set to its (global) solutions.

Corollary 15.6 Let X and Y be arbitrary sets and R � X � Y be a stalkwise finite
bounding relation. Then for each finite set D � X there is a finite set C � X such
that D � C and for every R-bounded partial solution fff D .f1; : : : ; fk/W X ! Yk

of the system of GFEs (15.2) on C there exists a solution ''' D .'1; : : : ; 'k/ of the
system, such that '''.x/ D fff .x/ for all x 2 D.

If the arity numbers p� in the system of GFEs (15.2) have a common upper
bound p, then all the particular equations in the system can be considered as being
of types .k; m�; n�; p/. In such a case, given a U 2 UY , we say that a function fff W X !
Yk is a U-solution of the system (15.2) on a set S � Xp if it is a U-solution of each
its particular equation on S. Then we have the following variant of Theorem 15.2.
Its proof can be obtained by slight modifications of the proof of Theorem 15.2 and
is left to the reader.

Theorem 15.3 Let .X;TX/ be any topological space, .Y;UY/ be a uniform space,
� W X � B ! TX be a .TX;UY/ continuity scale, and R � X � Yk be a
stalkwise compact bounding relation. Assume that all the equations in the system
of GFEs (15.2) have the same arity p� D p, S is a locally compact subspace of Xp

and each of the maps F�W Yk�m� � Xp ! Y, G�W Yk�n� � Xp ! Y is continuous in
the matrix variables yij. Then for each pair D 2 K .X/, V 2 UY , such that Dp � S,
there is a triple C 2 K .X/, K 2 K

�
Xp
�
, U 2 UY , such that D � C, Dp � K � S

and the following implication holds true:
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If a U-solution fff D .f1; : : : ; fk/W X ! Yk of the system (15.2) on K is both .�; U/-
precontinuous and R-bounded on C, then there exists a continuous solution ''' D
.'1; : : : ; 'k/ of the system on S, such that fff , ''' are V-close on D.

Formulation of the corresponding modified versions of Corollaries 15.3–15.6 is
left to the reader, as well.

Comparing the “local” stability Theorems 15.2, 15.3 and Corollaries 15.3, 15.6
with “global” Corollaries 15.4, 15.5 and other global stability results we see that
while global stability deals with approximation of functions fff D .f1; : : : ; fk/W X !
Yk by continuous solutions ''' D .'1; : : : 'k/ of the given (system of) functional
equation(s) on the whole space X, local stability deals with approximate extension
(and if Y is discrete, then right by extension) of restrictions fff �D D .f1 �D; : : : ; fk �
D/ of such functions to some (in the present setting compact) subset D � X to
continuous solutions of the (system of) functional equation(s).

The interested reader can find a brief discussion of the role of nonstandard
analysis in establishing our results as well of the possibility to replace it by some
standard methods in the final part of [24].

Final Remark The general form of functional equations introduced in Section 15.1
was designed with the aim to prove the stability Theorems 15.2, 15.3 for all of them
in a uniform way. I expected that in order to achieve this goal it will be necessary to
assume that all the functional coefficients F�, G�, ˛̨̨�, ˇ̌̌� are continuous (in all their
variables). Having succeeded just with the continuity of F� and G� in the “matrix”
variables yij 2 Y , only, without requiring their continuity in the remaining variables
xi 2 X, and, at the same time, without any continuity assumption on the tuples of
operations ˛̨̨�, ˇ̌̌�, was then a true surprise for me.

A revision of the results established in [24, 25, 29–31] from such a point of
view reveals that in most of them some continuity assumptions can be omitted.
For instance, Theorem 3 from [30] (as well as Theorem 2.6 from [24]) on stability
of continuous homomorphisms from a locally compact topological group G into
any topological group H remains true without assuming that G is a topological
group. It suffices that G be both a group and a locally compact topological space.
Similarly, Theorem 3.1 from [31] on stability of continuous homomorphisms from
a locally compact topological algebra A into a completely regular topological
algebra B remains true for any universal algebra A endowed with a locally compact
(Hausdorff) topology, without assuming continuity of the operations in A.

Theorems 15.2, 15.3 also show that both the above-mentioned results admit
a generalization in yet another direction, for the former one stated already in
Theorem 2.6 in [24]. Namely for a mapping f W G ! H or f W A ! B in order
to be close to a continuous homomorphism it is not necessary to assume that it
is � -continuous with respect to the given continuity scale � (as both the above-
mentioned theorems in [30] and [31] do); it is enough that f be .�; U/-precontinuous
for a sufficiently small entourage U.

On the other hand, as shown by several counterexamples in [25] and [30], even
in those weaker results one cannot manage without the control of the examined
functions by means of some continuity scale and a stalkwise compact bounding
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relation. The more interesting are then the stability results not requiring the
continuity scale and/or the bounding relation in their formulation. This is, e.g.,
the case of the global stability result for homomorphisms from amenable groups
into the group of unitary operators on a Hilbert space in [16] (covering many more
specific results proved both before and afterwards), as well as of the local stability
result for homomorphisms from amenable groups into the unit circle T in [30].

Acknowledgements Research supported by grants no. 1/0608/13 and 1/0333/17 of the Slovak
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