
Chapter 12
On the Construction of the Field of Reals
by Means of Functional Equations and Their
Stability and Related Topics

Jens Schwaiger

Abstract There are certain approaches to the construction of the field of real
numbers which do not refer to the field of rationals. Two of these ideas are closely
related to stability investigations for the Cauchy equation and for some homogeneity
equation. The a priory different subgroups of Z

Z used are shown to be more or
less identical. Extension of these investigations shows that given a commutative
semigroup G and a normed space X with completion Xc the group Hom.G;Xc/

is isomorphic to A .G;X/=B.G;X/ where B.G;X/ is the subgroup of XG of all
bounded functions and A .G;X/ the subgroup of those f W G ! X for which the
Cauchy difference .x; y/ 7! f .x C y/ � f .x/ � f .y/ is bounded.

The space Hom.N;Xc/may be identified with Xc itself. With this in mind, we are
able to show directly that A .N;X/=B.N;X/ is a completion of the normed space X.
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12.1 Introduction

Stability of functional equations is a very active and topical field of research. The
example par excellence is the famous result found in Hyers [6].

Theorem 12.1 Let G be an abelian semigroup and X a complete normed space.
Given f W G ! X, assume that �f W G � G ! X, �f .x; y/ WD f .x C y/ � f .x/ � f .y/,
is bounded. Then, there is a unique g 2 Hom.G;X/ such that f � g is bounded.
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Moreover,
�
��f

�
�1 WD supf���f .x; y/

�
� j x; y 2 Gg � " implies that kf .x/ � g.x/k � "

for all x 2 G.
Similar results hold true if the abelian group .G; �/ operates on some set M when

considering the inequality

kf .g � x/ � '.g/f .x/k � c .g/; x 2 M; g 2 G; (12.1)

where '; 2 Hom.G;R n f0g/ and c � 0. See Jabłoński and Schwaiger [7] for
even more general results.

There are many construction methods for the field R of real numbers. They use
many different principles and ideas. Contrasting most of these ideas some of them
do not require the field of rationals as a tool. The starting point there is the ring of
integers. In Faltin et al. [4], a subring of the ring of formal Laurent series over Z
factored by some maximal ideal, namely the principal ideal generated by a certain
carry string, is used.

Two other ones are closely related to functional equations and their stability.
Schönhage [11] uses the subgroup S WD S

c2N Sc of ZN, where

Sc WD fg 2 Z
N j jg.kn/ � kg.n/j � ck for all n; k 2 Ng: (12.2)

In A’Campo [1], the starting point for the construction is the subgroup A WD
S

c2N Ac of ZZ, where

Ac WD ff 2 Z
Z j jf .n C m/ � f .n/ � f .m/j � c for all n;m 2 Zg: (12.3)

Some basic tools are the following ones.

Theorem 12.2 Let G be an abelian semigroup and X a normed vector space over
the field Q of rationals. Given c � 0, let f 2 Ac.G;X/ WD fh 2 XG j k�hk1 � cg;
where �h.x; y/ WD h.x C y/ � h.x/ � h.y/ is the Cauchy difference of h and

k�hk1 WD supx;y2Gk�h.x; y/k:

Then

kf .nx/ � nf .x/k � .n � 1/c; x 2 G; n 2 N; (12.4)

and the sequence .f .nx/=n/n2N is a Cauchy sequence, since it satisfies

�
�
�
�

f .nx/

n
� f .mx/

m

�
�
�
�

�
�
1

n
C 1

m

�

c; x 2 G; n;m 2 N:

Moreover, if this sequence converges for all x 2 G, the limit function a,

a.x/ WD lim
n!1

f .nx/

n
;
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is an element of Hom.G;X/, the set of homomorphisms from G to X. This a satisfies
kf � ak1 � c and it is the only homomorphism b, such that f � b is bounded.

Proof The first assertion is clear for n D 1. If it is true for n, we get

kf ..n C 1/x/ � .n C 1/f .x/k D kf .nx C x/ � f .nx/ � f .x/C f .nx/ � nf .x/k
� kf .nx C x/ � f .nx/ � f .x/k C kf .nx/ � nf .x/k
� c C .n � 1/c D nc:

By the first part, kf .nmx/ � nf .mx/k � .n�1/c and kf .mnx/ � mf .nx/k � .m�1/c.
Thus,

knf .mx/ � mf .nx/k � knf .mx/ � f .nmx/k C kf .nmx/ � mf .nx/k
� .n � 1C m � 1/c:

Dividing by nm gives the desired result. So, the second assertion also is proved.
Finally, let

an.x/ WD f .nx/

n
:

The properties of f imply

kan.x C y/ � an.x/ � an.y/k � c

n
:

Thus a,

a.x/ WD lim
n!1 an.x/;

lies in Hom.G;X/. Moreover, the second part with n D 1 gives

kf .x/ � am.x/k � .1C 1

m
/c:

Taking the limit for m to 1 shows that kf � ak1 � c.
Finally, assume that for b 2 Hom.G;X/ the difference f � b is bounded. Then

the homomorphism b � a is bounded as well. This implies b � a D 0. ut
Let now G be merely a set on which .N; �/ operates via .n; x/ 7! nx such that

n.mx/ D .nm/x and 1x D 1. Furthermore, let

Sc.G;X/ WD ff 2 XG j kf .nx/ � nf .x/k � nc; x 2 G; n 2 Ng:

Then we have the following result.
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Theorem 12.3 For any f 2 Sc.G;X/ and any x 2 G, the sequence of the values
an.x/ WD f .nx/=n satisfies

kan.x/ � am.x/k �
�
1

n
C 1

m

�

c:

Therefore, it is a Cauchy sequence. If it converges for all x, the limit function a,

a.x/ WD lim
n!1 an.x/;

satisfies a.nx/ D na.x/ for all n and all x. Moreover,

kf � ak1 � c

and a is the only homogeneous function b (i. e., b.nx/ D nb.x/ for all x 2 G and all
n 2 N), such that f � b is bounded.

Proof f 2 Sc.X/ implies kf .nmx/ � nf .mx/k � nc and kf .mnx/ � mf .nx/k � mc.
As in the proof above, this means

kan.x/ � am.x/k �
�
1

n
C 1

m

�

c:

This with n D 1 implies kf .x/ � a.x/k � c. Using kf .mnx/ � mf .nx/k � mc or

�
�
�
�

f .nmx/

n
� m

f .nx/

n

�
�
�
�

� m

n
c

in the limit case n ! 1 shows that a.mx/ � ma.x/ D 0 for all m and x. If f � b is
bounded and b homogeneous, then a � b is also bounded and homogeneous. Thus,
a � b D 0. ut
Remark 12.1 Rational normed vector spaces are considered by Bourbaki, where in
[3, TVS I.6] it is shown that the completion of such a space exists and that it is a real
Banach space. Normed vector spaces over the rationals are special cases of normed
abelian groups introduced in [13]: The homogeneity condition in normed abelian
groups X reads as knxk D jnj kxk for all n 2 Z and all x 2 X.

Remark 12.2 For abelian semigroups G and normed abelian groups X, the set

A .G;X/ WD
[

c�0
Ac.G;X/

is a subgroup of the abelian group XG containing B.G;X/ the subgroup of bounded
functions in XG.
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If G is a set on which N operates in the above sense, the set

S .G;X/ WD
[

c�0
Sc.G;X/

is also a subgroup of XG containing B.G;X/.
If additionally X is a module over some subring R of C, the above subgroups are

also modules over that ring. In particular, this applies to rational vector spaces X.

Proof Ac.G;X/ � Ad.G;X/ for all 0 � c � d implies 0 2 A0.G;X/ � A .G;X/.
Moreover, by the triangle inequality

Ac.G;X/C Ad.G;X/ � AcCd.G;X/:

Finally,

rAc.G;X/ � Ajrjc.G;X/ for all r 2 R:

Any f 2 B.G;X/ with kf .x/k � c for all x is contained in A3c.G;X/.
The arguments are similar for S .G;X/. In this case, kf .x/k � c implies that

f 2 S2c.G;X/. ut
Remark 12.3 (Least Absolute and Least Nonnegative Remainder) For further use,
we also note that given m 2 N any integer n may be written uniquely as n D ˛mC�

with ˛; � 2 Z provided that � satisfies �m � 2� < m. The uniquely determined ˛
will be denoted by hnW mi. Thus,

�m � 2.n � hnW mim/ < m

(and therefore a fortiori jn � hnW mimj < m).
n may also be written uniquely in the form n D ˇm C � with integers ˇ; � such

that 0 � � < m. ˇ will be denoted by Œn W m� and satisfies

0 � n � Œn W m�m < m:

12.2 Two Constructions of the Reals and the Interplay
Between Them

12.2.1 Schönhage

The base of construction in [11] is the set

S WD
[

c2N
Sc
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with

Sc WD Sc.N;Z/:

It is shown that S =B.N;Z/ is an ordered field in which every subset bounded from
above admits a supremum. Thus, this quotient group is a model of the set R of reals.
All constructions are done completely in Z, no noninteger rational numbers have to
be used.

Addition is the one inherited from S . A quasiorder on S is defined by

f � gW ” there is some integer c such that f .n/ � g.n/C c for all n 2 N:

This quasiorder is compatible with the addition. Both f � g and g � f are satisfied
if and only if f � g 2 B.N;Z/. This quasiorder is a total order, too. Accordingly,
the relation

f C B.N;Z/ � g C B.N;Z/W ” f � g

on S =B.N;Z/ is well defined and, by the properties of the quasiorder on S , it is
a total order compatible with the addition of equivalence classes. A convenient fact,

for any f 2 Sc there is some f 0 2 S2 such that f � f 0 2 B.N;Z/;

is used several times, for instance, in the proof that any non-empty subset A of
S =B.N;Z/, which is bounded from above, admits a supremum. To this aim, A is
written as

A D ff C B.N;Z/ j f 2 A0g

with A0 � S2. In the same manner, the set B of upper bounds of A is written as

B D ff C B.N;Z/ j f 2 B0g

with B0 � S2. Then, f .n/ � g.n/C 8 for all n 2 N; f 2 A0; g 2 B0. Accordingly, we
may define h 2 Z

N by

h.n/ WD max
f 2A0

ff .n/g:

Then, h.n/ � g.n/ C 8 for all n 2 N; g 2 B0. Moreover, it is shown that h 2 S .
This and the definition of h implies that

h C B.N;Z/

is a supremum of A.
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Remark 12.4 Given f 2 Sc, Schönhage uses the function

n 7! Œf .kn/ W k� DW g.n/

and shows that g 2 f C B.N;Z/ and that g 2 S2 for sufficiently large k. Using h,
h.n/ WD hf .kn/W ki, instead of g, it turns out that also f � h is bounded and that even
h 2 S1 is true provided that k is suitably large.

In fact:

kh.n/ D f .kn/C u.kn/ with 2 ju.kn/j � k and

2k jh.n/ � f .n/j D j2.f .kn/ � kf .n// � 2u.kn/j � 2kc C k < 2.c C 1/k:

Thus, h � f is bounded. Moreover,

2k .h.mn/ � mh.n// D 2f .kmn/C 2u.kmn/ � 2mf .kn/ � 2mu.kn/

and

2k jh.mn/ � mh.n/j � 2 jf .kmn/ � mf .kn/j C j2u.kmn/ � 2mu.kn/j
� 2cm C .m C 1/k:

For k � 2c, this implies 2k jh.mn/ � mh.n/j � .2mC1/k or 2 jh.mn/ � mh.n/j �
2m C 1. Since only integers are involved, this finally shows that

jh.mn/ � mh.n/j � 1 � m:

Multiplication for f ; g 2 S can be defined by

n 7! hf .n/g.n/W nin:

(Schönhage used n 7! Œf .n/g.n/ W n� instead.) Denoting this by f � g, it is verified
that f � g 2 S in the following way:

Without loss of generality, we may assume that there is some c common to f and
g such that f ; g 2 Sc. Thus, jf .n/ � nf .1/j ; jg.n/ � ng.1/j � cn imply

jf .n/j ; jg.n/j � c0n

for c0 WD c C maxfjf .1j ; jg.1/j/g. According to

nk.hf .nk/g.nk/W nki � khf .n/g.n/W ni/
D .nkhf .nk/g.nk/W nki � f .nk/g.nk//

C f .nk/ .g.nk/ � kg.n//C kg.n/ .f .nk/ � kf .n//

C k2 .f .n/g.n/ � nhf .n/g.n/W ni/
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we get for all n; k that

jnk .hf .nk/g.nk/W nki � khf .n/g.n/W ni/j � nk C c0nkck C kc0nkc C k2n;

implying that

j.hf .nk/g.nk/W nki � khf .n/g.n/W ni/j � 1C 2cc0k C k � 2.1C cc0/k:

So,

f � g 2 S2.1Ccc0/:

For bounded h1; h2, it is seen easily that

.f C h1/ � .g C h2/ D f � g C h3

for some bounded h3. Thus, a product on

S =B.N;Z/

may be defined by

.f C B.N;Z// � .g C B.N;Z// WD f � g C B.N;Z/:

This product makes S =B.N;Z/ to a commutative ring with unit element

idN C B.N;Z/ DW 1:

Since f �g � 0 for f ; g � 0, this is also an ordered ring. Finally, one verifies that this
ring is even a field. If f 2 S and f C B.N;Z/ > 0, we may additionally assume
that mf .n/ � n, f .n/ � 1, and f .n/ � dn for some m; d, and all n. Then, f 0WN ! Z,

f 0.n/ WD hn2W f .n/i;

is contained in S :

kn2
ˇ
ˇhk2n2W f .kn/i � khn2W f .n/iˇˇ
� m2f .kn/f .n/

ˇ
ˇhk2n2W f .kn/i � khn2W f .n/iˇˇ

D m2
ˇ
ˇf .n/

�

k2n2 � r1
� � kf .nk/

�

n2 � r2
�ˇ
ˇ

with jr1j < f .kn/, jr2j < f .n/. Therefore,

kn2
ˇ
ˇhk2n2W f .kn/i � khn2W f .n/iˇˇ
� m2 jf .n/r1 C kf .nk/r2j C kn2 jkf .n/ � f .nk/j
� m2.dnnk C kdnkn C kn2kc/ D m2n2k.d C dk C kc/
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when we assume that f 2 Sc. This implies
ˇ
ˇhk2n2W f .kn/i � khn2W f .n/iˇˇ � m2n2k.2d C c/k

and
ˇ
ˇhk2n2W f .kn/i � khn2W f .n/iˇˇ � m2.2d C c/k:

An (easier) calculation shows that

f � f 0 � idN 2 B.N;Z/:

This implies

.f C B.N;Z// � .f 0 C B.N;Z// D 1:

For g < 0, g 62 B.N;Z/, choose f 2 g C B.N;Z/ such that

.�f / � .�f /0 � idN 2 B.N;Z/:

Then, �.�f /0 C B.N;Z/ is the multiplicative inverse of g C B.N;Z/.

12.2.2 A’Campo et al.

Street [14] gave some hints on how to construct the reals using A WD A .Z;Z/.
Street [15] contains a report of what happened since then. Ross Street refers to
several papers, in particular to A’Campo [1]. Nadine Manschek, one of my students,
gave full worked out proofs of all important steps in [10].

From Remark 12.2, it immediately follows that A is an abelian group with
subgroup B.Z;Z/. Multiplication is defined by .f ; g/ 7! f ı g. The proof that
f ı g 2 A strongly depends on the fact that for f 2 Z

Z the boundedness of �f

as defined in Theorem 12.1 implies that �f .Z � Z/ is finite.

Remark 12.5 This is not true for A .X;X/ in general. In particular, there is some
f 2 A .R;R/ such that f ı f 62 A .R;R/.

An example is given by f D a C r with a additive and r bounded such that
a.��n/ D 2n for all n and r.n/ D ��n. (There is some additive a with this property,
since f��n j n 2 Ng is linearly independent in the Q-vector space R.) Note that

f .f .x// D a.a.x//C a.r.x//C r.f .x//:

Assuming f ı f 2 A .R;R/ would imply the existence of some additive b such
that f ı f � b were bounded. By Theorem 12.2,

b.x/ D lim
n!1

.f ı f /.nx/

n
:
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But for x D 1

f .f .n � 1//=n D a.a.1//C 2n=n C r.f .n//=n

produces a divergent sequence.
Then, it is shown that f ı g � g ı f is bounded and that f ı g � f 0 ı g is bounded

provided that f � f 0 is. Thus, A .Z;Z/=B.Z;Z/ becomes a commutative ring with
unit idZ C B.Z;Z/ and

.f C B.Z;Z// � .g C B.Z;Z// WD .f ı g C B.Z;Z//:

f 2 Ac implies jf .nm/ � nf .m/j � nc for all m 2 Z and all n 2 N. In particular, the
restriction of f to N, f jN, is contained in Sc for f 2 Ac. Accordingly, the quasiorder
defined in S is meaningful in A and defines a total order in A .Z;Z/=B.Z;Z/.

To make this ring a field, several additional steps have to be considered:

1. If f > 0 and f 62 B.Z;Z/, there is some f 0 2 f C B.Z;Z/ which is also > 0 and
additionally odd.

2. For this f 0 and all m 2 Z, the set Mm WD f 0�1.fk 2 Z j k � mg/ is non-empty and
bounded from above.

3. g 2 Z
Z, g.m/ WD max Mm, is contained in A .Z;Z/.

4. f 0 ı g � idZ 2 B.Z;Z/.

Thus, any unbounded f CB.Z;Z/ > 0 is invertible. Inverses for f CB.Z;Z/ < 0 are
constructed as the additive inverse of the multiplicative inverse of .�f /C B.Z;Z/.

Finally, it is shown that any non-empty subset A of A .Z;Z/=B.Z;Z/ has a
supremum. Writing

A D ff C B.Z;Z/ j f 2 A0g

with A0 � A .Z;Z/, one may assume that all f 0 2 A0 are odd and elements of
A1.Z;Z/. For any odd g 2 A .Z;Z/ such that g CB.Z;Z/ is an upper bound of A,
it is seen that f .n/ � g.n/C 2 for all n 2 N0. Thus, h 2 Z

Z with

h.n/ WD maxff .n/ j f 2 A0g

for n 2 N0 and h.n/ WD �h.�n/ for n 2 Z; n < 0 is well defined. Then, some
tedious calculation shows that h 2 A5. Finally, it is shown that h C B.Z;Z/ is a
least upper bound of A. (The definition of h is similar to the corresponding definition
in Schönhage’s approach.)

Remark 12.6 The abovementioned fact that f 0 may be chosen in A1 is shown by
defining for given f 2 Ac the function f 0 by

f 0.n/ WD hf .nk/W ki:
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Then,

f � f 0 2 B.Z;Z/

and f 0 2 A1 for sufficiently large k. The proof for this is similar to that contained in
Remark 12.4.

12.2.3 Synthesis

In Blatter [2], you may find the opinion that Schönhage’s setting is a kind of
predecessor of A’Campo’s setting. In fact, in some sense, the settings are identical.

Theorem 12.4

S D A jN WD ff jN j f 2 A g D A .N;Z/

and

A =B.Z;Z/ Š S =B.N;Z/:

Proof Certainly, A jN � S by the inequality (12.4) of Theorem 12.2, which also
applies when X is an abelian normed group only. Now, take any f 2 Sc. Then,

jf .k/ � hkf .m/W mij � 2c C 1

provided that k � m:

2m jf .k/ � hkf .m/W mij � j2mf .k/ � 2kf .m/C 2rj

for some r such that

2 jrj � m:

Thus,

2m jf .k/ � hkf .m/W mij � 2c.m C k/C m � .4c C 1/m < 2.2c C 1/m

since jf .km/ � kf .m/j � kc and jf .km/ � mf .k/j � mc imply

jmf .k/ � kf .m/j � .k C m/c:

Using this and the easy to verify inequality

2m jha C bW mi � haW mi � hbW mij � 3m
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we may estimate f .k C l/ � f .k/ � f .l/ as follows:

jf .k C l/ � f .k/ � f .l/j � jf .k C l/ � h.k C l/f .m/W mij
C jf .k/ � hkf .m/W mij C jf .l/ � hlf .m/W mij
C jh.kf .m/C lf .m//W mi � h.kf .m/W mi � h.lf .m/W mij
� 3.2c C 1/C 3 D 6.c C 1/ if k; l 2 N; k C l � m:

(Observe that the inequality 2m jha C bW mi � haW mi � hbW mij � 3m implies

jha C bW mi � haW mi � hbW mij � 1:/

Therefore,

f 2 A6.cC1/.N;Z/ � A .N;Z/:

For g 2 A .N;Z/, we define (the odd extension) g� 2 Z
Z by

g�jN WD g;

g�.0/ WD 0, and g�.n/ WD �g.�n/ for n 2 Z; n < 0. By considering the cases

(a) n;m > 0,
(b) m D 0 or n D 0,
(c) n;m < 0,
(d) n < 0; m > 0; n C m D 0,
(e) n < 0; m > 0; n C m > 0, and
(f) n < 0; m > 0; n C m < 0

and by observing that g�.n C m/ � g�.n/ � g�.m/ is symmetric with respect to n
and m, it can be verified that f � 2 A6.cC1/.Z;Z/.

Altogether this shows that S D A jN and A jN D A .N;Z/.
Now, we prove the second assertion. Let 'WA .N;Z/ ! A .Z;Z/=B.Z;Z/ be

defined by

'.f / WD f � C B.Z;Z/

with f � as above. Then, ' is a homomorphism of abelian groups. Since f � 2
B.Z;Z/ is equivalent to

f 2 B.N;Z/

the kernel of ' equals B.N;Z/.
It remains to show that ' is surjective. For given gCB.Z;Z/ with g 2 A .Z;Z/,

assume that g 2 Ac.Z;Z/. Then,

jg.0/ � g.n/ � g.�n/j � c:
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Thus, jg.0/j � c and

jg.n/ � .�g.�n//j � c C jg.0/j � 2c

for all n which with

f WD gjN 2 A .N;Z/

implies g � f � 2 B.Z;Z/. Accordingly,

'.f / D f � C B.Z;Z/ D g C B.Z;Z/:

ut
Remark 12.7 From the proof, it follows that an isomorphism b' between
S =B.N;Z/ and A =B.Z;Z/ is given by

f C B.N;Z/ 7! f � C B.Z;Z/:

Till now, the usage of the set of real or even of the rational numbers has been
avoided. Since at present we already have (two) models for the field R and since

Z � Q � R

we may conclude from Theorem 12.2 that for any f 2 A .N;Z/ and any g 2
A .Z;Z/ there are real numbers ˛; ˇ such that the set of jf .n/ � ˛nj ; n 2 N, is
bounded and that the same holds true for the set of jg.n/ � nˇj ; n 2 Z. (The Cauchy
sequences appearing in that theorem converge, since order completeness implies
sequentially completeness; see, for example, Lang [9, Chapter 2, Theorem 1.5].)
Moreover, any homomorphism a defined on N or Z is of the form n 7! �n with
� D a.1/. This will be used to show the following result, where, given any real x
also the Gaussian bracket

Œx� WD maxfm 2 Z j m � xg

is involved.

Theorem 12.5 For any f ; g 2 S D A .N;Z/, we have

b'.f � g C B.N;Z// D .f � ı g�/C B.Z;Z/:

Thus, the multiplication in the sense of Schönhage and A’Campo coincides.

Proof Let ˛; ˇ 2 R be such that

f .n/ D ˛n C u.n/
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and

g.n/ D ˇn C v.n/

for all n 2 N with certain bounded functions u; v. Then,

f .n/g.n/ D ˛ˇn2 C n.˛v.n/C ˇu.n//C u.n/v.n/:

Let

f .n/g.n/ D nhf .n/g.n/W ni C r.n/

with some function r satisfying 2 jr.n/j � n. Then,

n jhf .n/g.n/W ni � ˛ˇnj � cn

for all n with suitable c. Note that

˛ˇn D Œ˛ˇn�C s.n/;

where 0 � s.n/ < 1. Thus,

n 7! ..f � g/.n/ � Œ˛ˇn�/

is bounded. Obviously,

Z 3 n 7! Œ˛ˇn� 2 A .Z;Z/:

Thus,

f � g � int˛ˇjN 2 B.N;Z/;

where

int� .n/ WD Œ�n�:

So,

b'.f � g C B.N;Z// D int˛ˇj�
N

C B.N;Z/:

If f �; g� 2 A .Z;Z/ are the odd extensions of f ; g, we may write

f � D ˛idZ C u�; g� D ˇidZ C v�:

Then,

f � ı g� D ˛ˇidZ C ˛v� C u� ı g�
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is implying that

f � ı g� � ˛ˇidZ

is bounded. But, therefore also

f � ı g� � int˛ˇ

and

f � ı g� � int˛ˇj�
N

are bounded. This finally implies the assertion. ut

12.3 Stability and Completeness

Now, the interplay between the stability of the Cauchy equation and the com-
pleteness of the involved normed space will be investigated. In the following,
Remark 12.2 should be taken into account.

Theorem 12.6 Let G be an abelian semigroup, suppose X to be a normed vector
space (over Q) with completion Xc. Then, A .G;X/=B.G;X/ Š Hom.G;Xc/, the
group of homomorphisms defined on G with values in Xc.

Proof Since

A .G;X/ � A .G;Xc/

Theorem 12.2 may be applied. Thus, given f 2 A .G;X/ the mapping af with

af .x/ WD lim
n!1

f .nx/

n

is contained in Hom.G;Xc/. Moreover, f � af is bounded. Let

'WA .G;X/ ! Hom.G;Xc/

be defined by '.f / WD af . Then, obviously ' is a homomorphism. Since f is bounded
iff af is bounded, the kernel of ' equals B.G;X/. Since

A .G;X/= ker.'/ Š '.A .G;X//

it remains to show that ' is surjective.
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To this aim, let a 2 Hom.G;Xc/ be arbitrary. For any x 2 G, we may choose
some f .x/ 2 X such that ka.x/ � f .x/k < 1. Then, f is an element of A3.G;X/
because of

kf .x C y/ � f .x/ � f .y/k � kf .x C y/ � a.x C y/k
C kf .x/ � a.x/k C kf .y/ � a.y/k < 3:

The definition of f implies '.f / D a. ut
Corollary 12.1 The groups A .N;X/=B.N;X/, A .Z;X/=B.Z;X/ both are iso-
morphic to Xc. In particular, for X D Q these groups are isomorphic to R.

Proof In both cases for G, the mapping Hom.G;Xc/ 3 a 7! a.1/ 2 Xc is an
isomorphism. ut

It was proved for G D Z in Schwaiger [12] and for arbitrary abelian groups G
containing at least one element of infinite order in Forti and Schwaiger [5] that the
following theorem holds true.

Theorem 12.7 (Hyers’ Theorem and Completeness) If G is an abelian group as
above and X a normed space such that for any f 2 A .G;X/ there is some a 2
Hom.G;X/ such that f � a is bounded, then X necessarily must be complete.

Proof (Alternative Method) In Forti and Schwaiger [5], it was shown that it is
enough to prove the result for G D Z. There the latter task was managed by
constructing to any Cauchy sequence .xn/n2N a suitable f 2 A .Z;X/ and to use
the hypotheses of the theorem for this f . Here, it is done in the following way:
Choose any ˛ 2 Xc and f WZ ! X such that

kf .n/ � ˛nk < 1
for all n 2 Z. Then, f 2 A .Z;X/ and by assumption there is some a 2 Hom.Z;X/
such that f � a is bonded. Since a is a homomorphism defined on Z, there is some
ˇ 2 X such that

a.n/ D ˇn

for all n 2 Z. Thus, also ˛idZ � a is bounded implying ˛ D ˇ 2 X. Therefore,
Xc D X. ut

12.4 A Construction Method for the Completion of a
Normed Space

There are well-known methods to construct the completion of metric and normed
spaces. The most common ones use the set of Cauchy sequences on the underlying
space. A different one, probably first mentioned by Kunugui [8], is contained in the
following remark.
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Remark 12.8 Let .X; d/ be any (non-empty) metric space. Then, there is an
isometry j from X into the Banach space B.X;R/ of real-valued bounded functions
defined on X. Thus, the closure of j.X/ is a completion of X.

The embedding is constructed by fixing some x0 in X and by defining j.x/
pointwise as

j.x/.y/ WD d.y; x/ � d.y; x0/:

If X has some additional structure, say of a normed space, this can be carried over
easily to the completion j.X/.

In the context of the present considerations, it has already been shown that
for any normed space the factor group A .N;X/=B.N;X/ is isomorphic to the
completion Xc of X. But, it seems to be desirable and interesting to give a proof
that A .N;X/=.N;X/ is a completion of X not using the existence of a completion
of X a priori.

Theorem 12.8 Let X be a real normed space, let A WD A .N;X/ and B WD
B.N;X/. Then, A =B is a completion of X, if addition and multiplication by a
real number are defined as usual and if kf C Bk is given by the well-defined limit

lim
n!1

�
�
�
�

f .n/

n

�
�
�
�
:

Proof If X is a normed space, the abelian groups A and B are not only abelian
groups but vector spaces by Remark 12.2. Thus, A =B is a real vector space. Given
f 2 A , we know by Theorem 12.2 that the sequence .f .n/=n/n2N is Cauchy in X. In
detail

�
�
�
�

f .n/

n
� f .m/

m

�
�
�
�

� c

�
1

n
C 1

m

�

for f 2 Ac WD Ac.N;X/. Thus, by the reversed triangle inequality

jkak � kbkj � ka � bk
the sequence .kf .n/=nk/n2N is Cauchy in the complete normed space R. Thus, we
may define

kf k WD lim
n!1

�
�
�
�

f .n/

n

�
�
�
�
:

Obviously, this is a seminorm on A . Now, it is shown that

ff 2 A j kf k D 0g D B:

If f 2 B, the sequence of f .n/ is bounded. Thus,

kf k D lim
n!1

�
�
�
�

f .n/

n

�
�
�
�

D 0:
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On the other hand, let f 2 A satisfy kf k D 0. Then, kf .n/=nk tends to 0 for
n tending to 1. Therefore, the sequence of f .n/=n converges to 0 in X. This
implies that

lim
n!1

f .nm/

n
D m lim

n!1
f .nm/

nm
D 0

for all m 2 N. Theorem 12.2 thus implies that f � 0 D f is bounded.
Accordingly, we may define a norm on A =B by

kf C Bk WD kf k :

To show that A =B equipped with this norm is complete, we need the following
result.

Claim For any f 2 A and any " > 0, there is some g 2 .f C B/ \ A".
For the proof, let f 2 Ac, i. e.,

kf .n C m/ � f .n/ � f .m/k � c

for all n;m 2 N. Taking any m 2 N such that c=m � ", the function g is defined by

g.n/ WD f .mn/

m
;

a construction similar to some used earlier. Then,

kg.k C l/ � g.k/ � g.l/k D 1

m
kf .mk C ml/ � f .ml/ � f .mk/k � c

m
� ":

Accordingly, g 2 A". The estimation

kf .mn/ � mf .n/k � cm

from Theorem 12.2 implies that g 2 f C B.
To show the completeness of the normed space A =B, it is enough to show that

any Cauchy sequence admits a convergent subsequence. So, let the Cauchy sequence
.fn C B/ with fn 2 A be given. By eventually passing to a subsequence, we may
assume that

kfnC1 C B � .fn C B/k � 1

2nC1 ; n 2 N:

Additionally, by the claim above, we may also assume that

fn 2 A 1
2n
; n 2 N:
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Using

kfnC1 C B � .fn C B/k � 1

2nC1

the triangle inequality shows that

kfnCm C B � .fn C B/k � 1

2nC1 C : : :C 1

2nCm
<
1

2n
; n;m 2 N:

Moreover,

fnCm � fn 2 A 1

2nCm
C A 1

2n
� A 1

2nC1 C 1
2n

D A 3

2nC1
:

Thus, by Theorem 12.2

k.fnCm � fn/.k/ � k.fnCm � fn/.1/k � k
3

2nC1

and

k.fnCm � fn/.1/k � 3

2nC1 C
�
�
�
�

.fnCm � fn/.k/

k

�
�
�
�
;

which for k ! 1 results in

kfnCm.1/ � fn.1/k � 5

2nC1 :

Now, let f 2 XN be defined by f .n/ WD nfn.1/ for all n 2 N. Then,

.n C m/fnCm.1/ � nfn.1/ � mfm.1/

D n.fnCm.1/ � fn.1//C m.fnCm.1/ � fm.1/

implies

kf .n C m/ � f .n/ � f .m/k � 5n

2nC1 C 5m

2mC1 D 5

2

� n

2n
C m

2m

�

� 5

2
2
1

2
D 5

2

and thus f 2 A 5
2
.

Next, we consider f � fn. The equality

.f � fn/.n C m/ D .n C m/fnCm.1/ � .n C m/fn.1/

C ..n C m/fn.1/ � fn.n C m//
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implies

k.f � fn/.n C m/k � .n C m/ kfnCm.1/ � fn.1/k C 1

2nC1 .n C m/

and
�
�
�
�

.f � fn/.n C m/

n C m

�
�
�
�

� kfnCm.1/ � fn.1/k C 1

2nC1

� 5

2nC1 C 1

2nC1 D 3

2n
:

Thus,

k.f � fn/C Bk D lim
m!1

�
�
�
�

.f � fn/.n C m/

n C m

�
�
�
�

� 3

2n

implying that fn C B tends to f C B in X .
Finally, we find an isometry jW X ! A =B such that j.X/ is dense in A =B.

Given x 2 X, the function ˛x,

˛x.n/ WD nx;

is contained in A0. Let

j.x/ WD ˛x C B:

Then, j is a vector space homomorphism from X onto j.X/. This is also an isometry
since k˛xk D kxk. Let f C B 2 A =B and " > 0. We may assume that f 2 A".
Then, with x WD f .1/ we have

kf .n/ � nxk � n";

which implies that

kf C B � ˛xk � ":

ut
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