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11.1 Introduction

In the present paper, we look at Hermite–Hadamard type inequalities from the per-
spective provided by the stochastic convex order. This approach is mainly due to
Cal and Cárcamo. In the paper [12], the Hermite–Hadamard type inequalities are
interpreted in terms of the convex stochastic ordering between random variables.
Recently, also in [19, 32, 35–38, 40–42], the Hermite–Hadamard inequalities are
studied based on the convex ordering properties. Here, we want to attract the reader’s
attention to some selected topics by presenting some theorems on the convex
ordering that can be useful in the study of the Hermite–Hadamard type inequalities.

The Ohlin lemma [31] on sufficient conditions for convex stochastic ordering
was first used in [36], to get a simple proof of some known Hermite–Hadamard
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type inequalities as well as to obtaining new Hermite–Hadamard type inequalities.
In [32, 41, 42], the authors used the Levin–Stečkin theorem [25] to study Hermite–
Hadamard type inequalities.

Many results on higher-order generalizations of the Hermite–Hadamard type
inequality one can find, among others, in [1–5, 16, 36, 37]. In recent papers [36, 37],
the theorem of Denuit, Lefèvre, and Shaked [13] was used to prove Hermite–
Hadamard type inequalities for higher-order convex functions. The theorem of
Denuit, Lefèvre, and Shaked [13] on sufficient conditions for s-convex ordering
is a counterpart of the Ohlin lemma concerning convex ordering. A theorem on
necessary and sufficient conditions for higher-order convex stochastic ordering,
which is a counterpart of the Levin–Stečkin theorem [25] concerning convex
stochastic ordering, is given in the paper [38]. Based on this theorem, useful
criteria for the verification of higher-order convex stochastic ordering are given.
These criteria can be useful in the study of Hermite–Hadamard type inequalities for
higher-order convex functions, and in particular inequalities between the quadrature
operators. They may be easier to verify the higher-order convex orders, than those
given in [13, 22].

In Section 11.2, we give simple proofs of known as well as new Hermite–
Hadamard type inequalities, using Ohlin’s lemma and the Levin–Stečkin theorem.

In Sections 11.3 and 11.4, we study inequalities of the Hermite–Hadamard type
involving numerical differentiation formulas of the first order and the second order,
respectively.

In Section 11.5, we give simple proofs of Hermite–Hadamard type inequalities
for higher-order convex functions, using the theorem of Denuit, Lefèvre, and
Shaked, and a generalization of the Levin–Stečkin theorem to higher orders. These
results are applied to derive some inequalities between quadrature operators.

11.2 Some Generalizations of the Hermite–Hadamard
Inequality

Let f W Œa; b� ! R be a convex function (a; b 2 R; a < b). The following double
inequality

f

�
a C b

2

�
� 1

b � a

Z b

a
f .x/ dx � f .a/ C f .b/

2
(11.1)

is known as the Hermite–Hadamard inequality (see [16] for many generalizations
and applications of (11.1)).

In many papers, the Hermite–Hadamard type inequalities are studied based on
the convex stochastic ordering properties (see, for example, [19, 32, 35–37, 40, 41]).
In the paper [36], the Ohlin lemma on sufficient conditions for convex stochastic
ordering is used to get a simple proof of some known Hermite–Hadamard type
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inequalities as well as to obtain new Hermite–Hadamard type inequalities. Recently,
the Ohlin lemma is also used to study the inequalities of the Hermite–Hadamard
type for convex functions in [32, 35, 40, 41]. In [37], also the inequalities of the
Hermite–Hadamard type for delta-convex functions are studied by using the Ohlin
lemma. In the papers [32, 40, 41], furthermore, the Levin–Stečkin theorem [25] (see
also [30]) is used to examine the Hermite–Hadamard type inequalities. This theorem
gives necessary and sufficient conditions for the stochastic convex ordering.

Let us recall some basic notions and results on the stochastic convex order (see,
for example, [13]). As usual, FX denotes the distribution function of a random
variable X and �X is the distribution corresponding to X. For real-valued random
variables X; Y with a finite expectation, we say that X is dominated by Y in convex
ordering sense, if

Ef .X/ � Ef .Y/

for all convex functions f WR ! R (for which the expectations exist). In that case,
we write X �cx Y , or �X �cx �Y .

In the following Ohlin’s lemma [31], are given sufficient conditions for convex
stochastic ordering.

Lemma 11.1 (Ohlin [31]) Let X; Y be two random variables such that EX D EY.
If the distribution functions FX; FY cross exactly one time, i.e., for some x0 holds

FX.x/ � FY.x/ if x < x0 and FX.x/ � FY.x/ if x > x0;

then

Ef .X/ � Ef .Y/ (11.2)

for all convex functions f WR ! R.
The inequality (11.1) may be easily proved with the use of the Ohlin lemma

(see[36]). Indeed, let X, Y , Z be three random variables with the distributions �X D
ı.aCb/=2, �Y which is equally distributed in Œa; b� and �Z D 1

2
.ıa Cıb/, respectively.

Then, it is easy to see that the pairs .X; Y/ and .Y; Z/ satisfy the assumptions of the
Ohlin lemma, and using (11.2), we obtain (11.1).

Let a < c < d < b. Let f W I ! R be a convex function, a; b 2 I. Then (see [21]),

f .c/ C f .d/

2
� f

�
c C d

2

�
� f .a/ C f .b/

2
� f

�
a C b

2

�
: (11.3)

To prove (11.3) from the Ohlin lemma, it suffices to take random variables X; Y
(see [27]) with

�X D 1

4
.ıc C ıd/ C 1

2
ı.aCb/=2;

�Y D 1

4
.ıa C ıb/ C 1

2
ıı.cCd/=2

:
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Then, by Lemma 11.1, we obtain

f .c/ C f .d/

2
C f

�
a C b

2

�
� f .a/ C f .b/

2
C f

�
c C d

2

�
; (11.4)

which implies (11.3).
Similarly, it can be proved the Popoviciu inequality

2

3

�
f

�
x C y

2

�
C f

�
y C z

2

�
C f

�
z C x

2

��
� f .x/ C f .y/ C f .z/

3
C f

�
x C y C z

3

�
;

(11.5)

where x; y; z 2 I and f W I ! R is a convex function. To prove (11.5) from the Ohlin
lemma, it suffices (assuming x � y � z ) to take random variables X; Y (see [27])
with

�X D 1

4

�
ı.xCy/=2 C ı.yCz/=2 C ı.zCx/=2

�
;

�Y D 1

6

�
ıx C ıy C ız

� C 1

2
ı.xCyCz/=3:

Convexity has a nice probabilistic characterization, known as Jensen’s inequality
(see [6]).

Proposition 11.1 ([6]) A function f W .a; b/ ! R is convex if, and only if,

f .EX/ � Ef .X/ (11.6)

for all .a; b/-valued integrable random variables X.
To prove (11.6) from the Ohlin lemma, it suffices to take a random variable Y

(see [35]) with

�Y D ıEX;

then we have

Ef .Y/ D f .EX/: (11.7)

By the Ohlin lemma, we obtain Ef .Y/ � Ef .X/, then taking into account (11.7),
this implies (11.6).

Remark 11.1 Note that in [29], the Ohlin lemma was used to obtain a solution of
the problem of Raşa concerning inequalities for Bernstein operators.

In [17], Fejér gave a generalization of the inequality (11.1).

Proposition 11.2 ([17]) Let f W I ! R be a convex function defined on a real
interval I, a; b 2 I with a < b and let gW Œa; b� ! R be nonnegative and symmetric
with respect to the point .a C b/=2 (the existence of integrals is assumed in all
formulas). Then,
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f

�
a C b

2

�
�
Z b

a
g.x/ dx �

Z b

a
f .x/g.x/ dx � f .a/ C f .b/

2
�
Z b

a
g.x/ dx: (11.8)

The double inequality (11.8) is known in the literature as the Fejér inequality
or the Hermite–Hadamard-Fejér inequality (see [16, 28, 33] for the historical
background).

Remark 11.2 ([36]) Using the Ohlin lemma (Lemma 11.1), we get a simple proof
of (11.8). Let f and g satisfy the assumptions of Proposition 11.2. Let X, Y , Z be
three random variables such that �X D ı.aCb/=2, �Y.dx/ D .

R b
a g.x/dx/�1g.x/dx,

�Z D 1
2

.ıa C ıb/. Then, by Lemma 11.1, we obtain that X �cx Y and Y �cx Z,
which implies (11.8).

Remark 11.3 Note that for g.x/ D w.x/ such that
R b

a w.x/dx D 1, the inequal-
ity (11.8) can be rewritten in the form

f

�
a C b

2

�
�

Z b

a
f .x/w.x/dx � f .a/ C f .b/

2
: (11.9)

Conversely, from the inequality (11.9), it follows (11.8). Indeed, if
R b

a g.x/dx >

0, it suffices to take w.x/ D
�R b

a g.x/dx
	�1

g.x/. If
R b

a g.x/dx D 0, then (11.8) is

obvious.
For various modifications of (11.1) and (11.8), see, e.g., [3–5, 10, 11, 16], and

the references given there.
As Fink noted in [18], one wonders what the symmetry has to do with the

inequality (11.8) and if such an inequality holds for other functions (cf. [16, p. 53]).
As an immediate consequence of Lemma 11.1, we obtain the following theorem,

which is a generalization of the Fejér inequality.

Theorem 11.1 ([36]) Let 0 < p < 1. Let f W I ! R be a convex function, a; b 2 I
with a < b. Let � be a finite measure on B.Œa; b�/ such that: (i) �.Œa; pa C qb�/ �
pP0, (ii) �..pa C qb; b�/ � qP0, and (iii)

R
Œa;b�

x�.dx/ D .pa C qb/P0, where q D
1 � p, P0 D �.Œa; b�/. Then,

f .pa C qb/P0 �
Z

Œa;b�

f .x/�.dx/ � Œpf .a/ C qf .b/�P0: (11.10)

Fink proved in [18] a general weighted version of the Hermite–Hadamard
inequality. In particular, we have the following probabilistic version of this
inequality.

Proposition 11.3 ([18]) Let X be a random variable taking values in the interval
Œa; b� such that m is the expectation of X and �X is the distribution corresponding
to X. Then,
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f .m/ �
Z b

a
f .x/ �X.dx/ � b � m

b � a
f .a/ C m � a

b � a
f .b/: (11.11)

Moreover, in [19] it was proved that, starting from such a fixed random
variable X, we can fill the whole space between the Hermite–Hadamard bounds
by highlighting some parametric families of random variables. The authors propose
two alternative constructions based on the convex ordering properties.

In [35], based on Lemma 11.1, a very simple proof of Proposition 11.3 is given.
Let X be a random variable satisfying the assumptions of Proposition 11.3. Let Y ,
Z be two random variables such that �Y D ım, �Z D b�m

b�a ıa C m�a
b�a ıb/. Then, by

Lemma 11.1, we obtain that Y �cx X and X �cx Z, which implies (11.11).
In [36], some results related to the Brenner–Alzer inequality are given. In

the paper [23] by Klaričić Bakula, Pečarić, and Perić, some improvements of
various forms of the Hermite–Hadamard inequality can be found; namely, that of
Fejér, Lupas, Brenner–Alzer, and Beesack–Pečarić. These improvements imply the
Hammer–Bullen inequality. In 1991, Brenner and Alzer [9] obtained the following
result generalizing Fejér’s result as well as the result of Vasić and Lacković [43] and
Lupas [26] (see also [33]).

Proposition 11.4 ([9]) Let p; q be the given positive numbers and a1 � a < b
� b1. Then, the inequalities

f

�
pa C qb

p C q

�
� 1

2y

Z ACy

A�y
f .t/dt � pf .a/ C qf .b/

p C q
(11.12)

hold for A D paCqb
pCq , y > 0, and all continuous convex functions f W Œa1; b1� ! R if,

and only if,

y � b � a

p C q
minfp; qg:

Remark 11.4 It is known [33, p. 144] that under the same conditions Hermite–
Hadamard’s inequality holds, the following refinement of (11.12):

f

�
pa C qb

p C q

�
� 1

2y

Z ACy

A�y
f .t/dt � 1

2
ff .A � y/ C f .A C y/g � pf .a/ C qf .b/

p C q
(11.13)

holds.
In the following theorem, we give some generalization of the Brenner and Alzer

inequalities (11.13), which we prove using the Ohlin lemma.

Theorem 11.2 ([36]) Let p; q be the given positive numbers, a1 � a < b � b1,
0 < y � b�a

pCq minfp; qg and let f W Œa1; b1� ! R be a convex function. Then,
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f

�
pa C qb

p C q

�
�

˛

2
ff .A � .1 � ˛/y/ C f .A C .1 � ˛/y/g C 1

2y

Z AC.1�˛/y

A�.1�˛/y
f .t/dt �

˛

2n

nX
kD1

n
f

�
A � y C k

˛y

n

	
C f

�
A C y � k

˛y

n

	o
C 1

2y

Z AC.1�˛/y

A�.1�˛/y
f .t/dt �

1

2y

Z ACy

A�y
f .t/dt; (11.14)

where 0 � ˛ � 1, n D 1; 2; : : :,

1

2y

Z ACy

A�y
f .t/dt � ˇ

2
ff .A � y/ C f .A C y/g C .1 � ˇ/

1

2y

Z ACy

A�y
f .t/dt

� 1

2
ff .A � y/ C f .A C y/g; (11.15)

where 0 � ˇ � 1,

1

2
ff .A � y/ C f .A C y/g �

.
1

2
� �/ff .A � y � c/ C f .A C y C c/g C �ff .A � y/ C f .A C y/g �

pf .a/ C qf .b/

p C q
; (11.16)

where c D minfb � .A C y/; .A � y/ � ag, � D ˇ̌
1
2

� p
ˇ̌
.

To prove this theorem, it suffices to consider random variables X, Y , W, Z, �n, �

and � such that:

�X D ı paCqb
pCq

;

�Y.dx/ D 1

2y
�ŒA�y;ACy�.x/dx;

�Z D p

p C q
ıa C q

p C q
ıb; �W D 1

2
ıA�y C 1

2
ıACy;

��n.dx/ D ˛

2n

nX
kD1

fıA�yCk ˛y
n

C ıACy�k ˛y
n

g C 1

2y
�ŒA�.1�˛/y;AC.1�˛/y�.x/dx;
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��.dx/ D ˇ

2
fıA�y C ıACyg C 1 � ˇ

2y
�ŒA�y;ACy�.x/dx;

�� D .
1

2
� �/fıA�y�c C ıACyCcg C �fıA�y C ıACyg:

Then, using the Ohlin lemma, we obtain:

• X �cx Y , Y �cx W, and W �cx Z, which implies the inequalities (11.13),
• X �cx �1, �1 �cx �n, and �n �cx Y , which implies (11.14),
• Y �cx � and � �cx W, which implies (11.15), and
• W �cx � and � �cx Z, which implies (11.16).

Theorem 11.3 ([36]) Let p; q be the given positive numbers, 0 < ˛ < 1, a1 � a <

b � b1, 0 < y � b�a
pCq minfp; qg and 0 � ˛

1�˛
y � b�a

pCq minfp; qg. Let f W Œa1; b1� ! R

be a convex function. Then,

f .A/ � ˛

y

Z A

A�y
f .t/dt C .1 � ˛/2

˛y

Z AC ˛
1�˛ y

A
f .t/dt

� ˛f .A � y/ C .1 � ˛/f .A C ˛

1 � ˛
y/

� p

p C q
f .a/ C q

p C q
f .b/; (11.17)

where A D paCqb
pCq .

Let X, Y , Z, and W be random variables such that:

�X D ıA;

�Y.dx/ D ˛

y
�ŒA�y;A�.x/dx C .1 � ˛/2

˛y
�ŒA;AC ˛

1�˛ y�.x/dx;

�W D ˛ıA�y C .1 � ˛/ıAC ˛
1�˛ y;

�Z D p

p C q
ıa C q

p C q
ıb:

Then, using the Ohlin lemma, we obtain X �cx Y , Y �cx W, W �cx Z, which implies
the inequalities (11.17).

Remark 11.5 If we choose ˛ D 1
2

in Theorem 11.3, then the inequalities (11.17)
reduce to the inequalities (11.15).

Remark 11.6 If we choose ˛ D p
pCq and y D .1 � p/z in Theorem 11.3, then we

have

f .A/ � p

qz

Z A

A� q
pCq z

f .t/dt C q

pz

Z AC p
pCq z

A
f .t/dt
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� p

p C q
f .A � q

p C q
z/ C q

p C q
f .A C p

p C q
z/

� p

p C q
f .a/ C q

p C q
f .b/;

where A D paCqb
pCq , 0 < z � b � a.

In the paper [40], the author used Ohlin’s lemma to prove some new inequalities
of the Hermite–Hadamard type, which are a generalization of known Hermite–
Hadamard type inequalities.

Theorem 11.4 ([40]) The inequality

af .˛x C .1 � ˛/y/ C .1 � a/f .ˇx C .1 � ˇ/y/ � 1

y � x

Z y

x
f .t/dt; (11.18)

with some a; ˛; ˇ 2 Œ0; 1�; ˛ > ˇ is satisfied for all x; y 2 R and all continuous and
convex functions f W Œx; y� ! R if, and only if,

a˛ C .1 � a/ˇ D 1

2
; (11.19)

and one of the following conditions holds true:

(i) a C ˛ � 1,
(ii) a C ˇ � 1, and

(iii) a C ˛ > 1; a C ˇ < 1, and a C 2˛ � 2:

Theorem 11.5 ([40]) Let a; b; c; ˛ 2 .0; 1/ be numbers such that a C b C c D 1.
Then, the inequality

af .x/ C bf .˛x C .1 � ˛/y/ C cf .y/ � 1

y � x

Z y

x
f .t/dt (11.20)

is satisfied for all x; y 2 R and all continuous and convex functions f W Œx; y� ! R

if, and only if,

b.1 � ˛/ C c D 1

2
(11.21)

and one of the following conditions holds true:

(i) a C ˛ � 1;

(ii) a C b C ˛ � 1; and
(iii) a C ˛ < 1; a C b C ˛ > 1, and 2a C ˛ � 1:

Note that the original Hermite–Hadamard inequality consists of two parts.
We treated these cases separately. However, it is possible to formulate a result
containing both inequalities.
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Corollary 11.1 ([40]) If a; ˛; ˇ 2 .0; 1/ satisfy (11.19) and one of the conditions
.i/–.iii/ of Theorem 11.4, then the inequality

af .˛x C .1 � ˛y/ C .1 � a/f .ˇx C .1 � ˇ/y/ � 1

y � x

Z y

x
f .t/dt �

.1 � ˛/f .x/ C .˛ � ˇ/f .ax C .1 � a/y/ C ˇf .y/

is satisfied for all x; y 2 R and for all continuous and convex functions f W R ! R:

As we can see, the Ohlin lemma is very useful; however, it is worth noticing that
in the case of some inequalities, the distribution functions cross more than once.
Therefore, a simple application of the Ohlin lemma is impossible.

In the papers [32, 41], the authors used the Levin–Stečkin theorem [25] (see also
[30, Theorem 4.2.7]), which gives necessary and sufficient conditions for convex
ordering of functions with bounded variation, which are distribution functions of
signed measures.

Theorem 11.6 (Levin, Stečkin [25]) Let a; b 2 R, a < b and let F1; F2W Œa; b� !
R be functions with bounded variation such that F1.a/ D F2.a/. Then, in order that

Z b

a
f .x/dF1.x/ �

Z b

a
f .x/dF2.x/ (11.22)

for all continuous convex functions f W Œa; b� ! R; it is necessary and sufficient that
F1 and F2 verify the following three conditions:

F1.b/ D F2.b/; (11.23)Z b

a
F1.x/dx D

Z b

a
F2.x/dx; (11.24)

Z x

a
F1.t/dt �

Z x

a
F2.t/dt for all x 2 .a; b/: (11.25)

Define the number of sign changes of a function 'WR ! R by

S�.'/ D supfS�Œ'.x1/; '.x2/; : : : ; '.xk/�W x1 < x2 < : : : xk 2 R; k 2 Ng;

where S�Œy1; y2; : : : ; yk� denotes the number of sign changes in the sequence y1,
y2,: : : ; yk (zero terms are being discarded). Two real functions '1; '2 are said to
have n crossing points (or cross each other n-times) if S�.'1 � '2/ D n. Let a D
x0 < x1 < : : : < xn < xnC1 D b. We say that the functions '1; '2 cross n-times
at the points x1; x2; : : : ; ; xn (or that x1; x2; : : : ; ; xn are the points of sign changes of
'1�'2) if S�.'1�'2/ D n and there exist a < �1 < x1 < : : : < �n < xn < �nC1 < b
such that S�Œ�1; �2; : : : ; �nC1� D n.
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Szostok [41] used Theorem 11.6 to make an observation, which is more general
than Ohlin’s lemma and concerns the situation when the functions F1 and F2 have
more crossing points than one. In [41] is given some useful modification of the
Levin–Stečkin theorem [25], which can be rewritten in the following form.

Lemma 11.2 ([41]) Let a; b 2 R, a < b and let F1; F2W .a; b/ ! R be functions
with bounded variation such that F.a/ D F.b/ D 0,

R b
a F.x/dx D 0, where F D

F2 � F1. Let a < x1 < : : : < xm < b be the points of sign changes of the function F.
Assume that F.t/ � 0 for t 2 .a; x1/.

• If m is even, then the inequality

Z b

a
f .x/dF1.x/ �

Z b

a
f .x/dF2.x/ (11.26)

is not satisfied by all continuous convex functions f W Œa; b� ! R.
• If m is odd, define Ai (i D 0; 1; : : : ; m, x0 D a, xmC1 D b)

Ai D
Z xiC1

xi

jF.x/jdx:

Then, the inequality (11.26) is satisfied for all continuous convex functions
f W Œa; b� ! R; if, and only if, the following inequalities hold true:

A0 � A1;

A0 C A2 � A1 C A3;

:::

A0 C A2 C : : : C Am�3 � A1 C A3 C : : : C Am�2:

(11.27)

Remark 11.7 ([38]) Let

H.x/ D
Z x

a
F.t/dt:

Then, the inequalities (11.27) are equivalent to the following inequalities

H.x2/ � 0; H.x4/ � 0; H.x6/ � 0; : : : ; H.xm�1/ � 0:

In [41], Lemma 11.2 is used to prove results, which extend the inequali-
ties (11.18) and (11.20) and inequalities between quadrature operators.

Theorem 11.7 ([41]) Let numbers a1; a2; a3; ˛1; ˛2; ˛3 2 .0; 1/ satisfy a1 C a2 C
a3 D 1 and ˛1 > ˛2 > ˛3:
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Then, the inequality

3X
iD1

aif .˛ix C .1 � ˛i/y/ � 1

y � x

Z y

x
f .t/ (11.28)

is satisfied by all convex functions f W Œx; y� ! R if, and only if, we have

3X
iD1

ai.1 � ˛i/ D 1

2
(11.29)

and one of the following conditions is satisfied

(i) a1 � 1 � ˛1 and a1 C a2 � 1 � ˛3;

(ii) a1 � 1 � ˛2 and a1 C a2 � 1 � ˛3;

(iii) a1 � 1 � ˛1 and a1 C a2 � 1 � ˛2;

(iv) a1 � 1 � ˛1; a1 C a2 2 .1 � ˛2; 1 � ˛3/, and 2˛3 � a3;

(v) a1 � 1 � ˛2; a1 C a2 < 1 � ˛3, and 2˛3 � a3;

(vi) a1 > 1 � ˛1; a1 C a2 � 1 � ˛2, and 1 � ˛1 � a1

2
;

(vii) a1 2 .1 � ˛1; 1 � ˛2/; a1 C a2 � 1 � ˛3; and 1 � ˛1 � a1

2
, and

(viii) a1 2 .1 � ˛1; 1 � ˛2/; a1 C a2 2 .1 � ˛2; 1 � ˛3/; 1 � ˛1 � a1

2
, and

2a1.1 � ˛1/ C 2a2.1 � ˛2/ � .a1 C a2/2:

To prove Theorem 11.7, we note that, if the inequality (11.28) is satisfied for
every convex function f defined on the interval Œ0; 1�, then it is satisfied by every
convex function f defined on a given interval Œx; y�: Therefore, without loss of
generality, it suffices to consider the interval Œ0; 1� in place of Œx; y�:

To prove Theorem 11.7, we consider the functions F1; F2 W R ! R given by the
following formulas

F1.t/ WD

8̂̂
<
ˆ̂:

0; t < 1 � ˛1;

a1; t 2 Œ1 � ˛1; 1 � ˛2/;

a1 C a2; t 2 Œ1 � ˛2; 1 � ˛3/;

1; t � 1 � ˛3;

(11.30)

and

F2.t/ WD
8<
:

0; t < 0;

t; t 2 Œ0; 1/;

1; t � 1:

(11.31)

Observe that the equality (11.29) gives us

Z 1

0

tdF1.t/ D
Z 1

0

tdF2.t/:



11 Stochastic Convex Ordering Theorems to Functional Inequalities 243

Further, it is easy to see that in the cases .i/–.iii/ the pair .F1; F2/ crosses exactly
once and, consequently, the inequality (11.28) follows from the Ohlin lemma.

In the case .iv/, the pair .F1; F2/ crosses three times. Let A0; : : : ; A3 be defined
as in Lemma 11.2. In order to prove the inequality (11.28), we note that A0 � A1:

However, since A0 � A1 C A2 � A3 D 0; we shall show that A2 � A3: We have

A2 D
Z 1�˛3

a1Ca2

.t � a1 � a2/dt D .1 � ˛3 � a1 � a2/2

2
D a2

3 � 2a3˛3 C ˛2
3

2

and

A3 D
Z 1

1�˛3

.1 � t/dt D ˛2
3

2
:

This means that A2 � A3 is equivalent to 2˛3 � a3; as claimed.
We omit similar proofs in the cases .v/–.vii/ and we pass to the case .vii/: In

this case, the pair .F1; F2/ crosses five times. We have

A0 D
Z 1�˛1

0

tdt D .1 � ˛1/2

2

and

A1 D
Z a1

1�˛1

.a1 � t/dt D a1.a1 � .1 � ˛1// � a2
1 � .1 � ˛1/2

2
D Œa1 � .1 � ˛1/�2

2
:

This means that the inequality A0 � A1 is satisfied if, and only if, 1 � ˛1 � a1

2
.

Further,

A2 D
Z 1�˛2

a1

.t � a1/dt D .1 � ˛2/2 � a2
1

2
� a1.1 � ˛2 � a1/

and

A3 D
Z a1Ca2

1�˛2

.a1Ca2�t/dt D .a1Ca2/.a1Ca2�.1�˛2//� .a1 C a2/2 � .1 � ˛2/2

2
;

therefore, the inequality A0 C A2 � A3 C A1 is satisfied if, and only if,

.1 � ˛1/2 C .1 � ˛2 � a1/2 � .a1 � 1 � ˛1/2 C .a1 C a2 � 1 C ˛2/2;

which, after some calculations, gives us the last inequality from .vii/.
Using assertions (i) and (vii) of Theorem 11.7, it is easy to get the following

example.
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Example 11.1 ([41]) Let x; y 2 R; ˛ 2 . 1
2
; 1/, and a; b 2 .0; 1/ be such that

2a C b D 1: Then, the inequality

af .˛xC.1�˛/y/Cbf

�
x C y

2

�
Caf ..1�˛/xC˛y/ � 1

y � x

Z y

x
f .t/dt (11.32)

is satisfied by all convex functions f W Œx; y� ! R if, and only if, a � 2 � 2˛:

In the next theorem, we obtain inequalities, which extend the second of the
Hermite–Hadamard inequalities.

Theorem 11.8 ([41]) Let numbers a1; a2; a3; a4 2 .0; 1/; ˛1; ˛2; ˛3; ˛4 2 Œ0; 1�

satisfy a1 C a2 C a3 C a4 D 1 and 1 D ˛1 > ˛2 > ˛3 > ˛4 D 0.
Then, the inequality

4X
iD1

aif .˛ix C .1 � ˛i/y/ � 1

y � x

Z y

x
f .t/ (11.33)

is satisfied by all convex functions f W Œx; y� ! R if, and only if, we have

4X
iD1

ai.1 � ˛i/ D 1

2
(11.34)

and one of the following conditions is satisfied:

(i) a1 � 1 � ˛2 and a1 C a2 � 1 � ˛3;

(ii) a1 C a2 � 1 � ˛2 and a1 C a2 C a3 � 1 � ˛3;

(iii) 1 � ˛2 � a1 and 1 � ˛3 � a1 C a2 C a3;

(iv) 1 � ˛2 � a1; 1 � ˛3 2 .a1 C a2; a1 C a2 C a3/, and ˛3 � 2a4;

(v) 1 � ˛2 � a1 C a2; a1 C a2 C a3 > 1 � ˛3, and ˛3 � 2a4;

(vi) a1 < 1 � ˛2; a1 C a2 � 1 � ˛3, and 2a1 C ˛2 � 1;

(vii) a1 < 1 � ˛2; a1 C a2 > 1 � ˛2; a1 C a2 C a3 � 1 � ˛3, and 2a1 C ˛2 � 1;

(viii) 1 � ˛2 2 .a1; a1 C a2/; 1 � ˛3 2 .a1 C a2; a1 C a2 C a3/; 2a1 C ˛2 � 1, and
2a1.1 � ˛3/ C 2a2.˛2 � ˛3/ � .1 � ˛3/2:

To prove Theorem 11.8, we assume that F1 W R ! R is the function given by the
following formula

F1.t/ WD

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

0; t < 0;

a1; t 2 Œ0; 1 � ˛1/;

a1 C a2; t 2 Œ1 � ˛1; 1 � ˛2/;

a1 C a2 C a3; t 2 Œ1 � ˛2; 1/;

1; t � 1:

(11.35)
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and let F2 be the function given by (11.31). In view of (11.34), we have

Z 1

0

F1.t/dt D
Z 1

0

F2.t/dt:

In cases .i/–.iii/, there is only one crossing point of .F2; F1/ and our assertion is
a consequence of the Ohlin lemma.

In the cases .iv/–.vii/, the pair .F2; F1/ crosses three times and, therefore, we
have to use Lemma 11.2.

In the case .iv/, the inequality (11.33) is satisfied by all convex functions f if,
and only if, A0 � A1: Further, we know that

A0 � A1 C A2 � A3 D 0;

which implies that the inequality A0 � A1 is equivalent to A3 � A2: Clearly, we
have

A2 D
Z 1�a4

1�˛3

.F1.t/ � F2.t//dt D .˛3 � a4/.1 � a4/ � .1 � a4/2 � .1 � ˛3/2

2

D.˛3 � a4/

�
1 � a4 C 2 � .˛3 C a4/

2

�

(11.36)
and

A3 D
Z 1

1�a4

.t � .1 � a4//dt D 1 � .1 � a4/2

2
� .1 � a4/a4 (11.37)

that is, A3 � A2 is equivalent to ˛3 � 2a4.
We omit similar reasoning in the cases .v/–.vii/ and we pass to the most

interesting case .viii/: In this case, .F2; F1/ has five crossing points and, therefore,
we must check that the inequalities

A0 � A1 and A0 � A1 C A2 � A3

are equivalent to the inequalities of the condition .viii/, respectively. To this end,
we write

A0 D
Z a1

0

.a1 � t/dt D a2
1

2
;

A1 D
Z 1�˛1

a1

.t � .a1 C a2//dt D .a1 C a2 � 1 C ˛1/2

2
;

which means that A0 � A1 if, and only if, 2a1 C ˛2 � 1: Further, A2 and A3 are
given by formulas (11.36) and (11.37). Thus, A0 � A1 C A2 � A3 is equivalent to

a2
1 C .a1 C a2 � .1 � ˛2//2 � .1 � ˛2 � a1/2 C .1 � ˛3 � a1 � a2/2;
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which yields

2a1.1 � ˛3/ C 2a2.˛2 � ˛3/ � .1 � ˛3/2:

Using assertions .ii/ and .vii/ of Theorem 11.8, we get the following example.

Example 11.2 ([41]) Let x; y 2 R; let ˛ 2 . 1
2
; 1/, and let a; b 2 .0; 1/ be such that

2a C 2b D 1: Then, the inequality

af .x/ C bf .˛x C .1 � ˛/y/ C bf ..1 � ˛/x C ˛y/ C af .y/ � 1

y � x

Z y

x
f .t/dt

is satisfied by all convex functions f W Œx; y� ! R if, and only if, a � 1�˛
2

:

In the next theorem, we show that the same tools may be used to obtain some
inequalities between quadrature operators, which do not involve the integral mean.

Theorem 11.9 ([41]) Let a; ˛1; ˛2; ˇ 2 .0; 1/ and let b1; b2; b3 2 .0; 1/ satisfy
b1 C b2 C b3 D 1:

Then, the inequality

af .˛1x C .1 � ˛1/y/ C .1 � a/f .˛2x C .1 � ˛2/y/ �

b1f .x/ C b2f .ˇx C .1 � ˇ/y/ C b3f .y/ (11.38)

is satisfied by all convex functions f W Œx; y� ! R if, and only if, we have

b2.1 � ˇ/ C b3 D a.1 � ˛1/ C .1 � a/.1 � ˛2/ (11.39)

and one of the following conditions is satisfied:

(i) a � b1;

(ii) a � b1 C b2; and
(iii) ˛2 � ˇ

or

(iv) a 2 .b1; b1 C b2/; ˛2 < ˇ, and .1 � ˛1/b1 � .˛1 � ˇ/.a � b1/:

Now, using this theorem, we shall present positive and negative examples of
inequalities of the type (11.38).

Example 11.3 ([41]) Let ˛ 2 �
1
2
; 1

�
: The inequality

f .˛x C .1 � ˛/y/ C f ..1 � ˛/x C ˛y/

2
�

f .x/ C f
�

xCy
2

	
C f .y/

3

is satisfied by all convex functions f W Œx; y� ! R if, and only if, ˛ � 5
6
:
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Example 11.4 ([41]) Let ˛ 2 �
1
2
; 1

�
: The inequality

f .˛x C .1 � ˛/y/ C f ..1 � ˛/x C ˛y/

2
� 1

6
f .x/ C 2

3
f

�
x C y

2

�
C 1

6
f .y/

is satisfied by all convex functions f W Œx; y� ! R if, and only if, ˛ � 2
3
:

11.3 Inequalities of the Hermite–Hadamard Type Involving
Numerical Differentiation Formulas of the First Order

In the paper [32], expressions connected with numerical differentiation formulas
of order 1 are studied. The authors used the Ohlin lemma and the Levin–Stečkin
theorem to study inequalities of the Hermite–Hadamard type connected with these
expressions.

First, we recall the classical Hermite–Hadamard inequality

f

�
x C y

2

�
� 1

y � x

Z y

x
f .t/dt � f .x/ C f .y/

2
: (11.40)

Now, let us write (11.40) in the form

f

�
x C y

2

�
� F.y/ � F.x/

y � x
� f .x/ C f .y/

2
: (11.41)

Clearly, this inequality is satisfied by every convex function f and its primitive
function F. However, (11.41) may be viewed as an inequality involving two types of
expressions used, in numerical integration and differentiation, respectively. Namely,

f
�

xCy
2

	
and f .x/Cf .y/

2
are the simplest quadrature formulas used to approximate the

definite integral, whereas F.y/�F.x/

y�x is the simplest expression used to approximate
the derivative of F: Moreover, as it is known from numerical analysis, if F0 D f ,
then the following equality is satisfied

f .x/ D F.x C h/ � F.x � h/

2h
� h2

6
f 00.�/ (11.42)

for some � 2 .x � h; x C h/: This means that (11.42) provides an alternate proof
of (11.41) (for twice differentiable f ).

This new formulation of the Hermite–Hadamard inequality was inspiration
in [32] to replace the middle term of Hermite–Hadamard inequality by more
complicated expressions than those used in (11.40). In [32], the authors study
inequalities of the form



248 T. Rajba

f

�
x C y

2

�
� a1F.x/ C a2F.˛x C .1 � ˛/y/ C a3F.ˇx C .1 � ˇ/y/ C a4F.y/

y � x

and

a1F.x/ C a2F.˛x C .1 � ˛/y/ C a3F.ˇx C .1 � ˇ/y/ C a4F.y/

y � x
� f .x/ C f .y/

2
;

where f W Œx; y� ! R is a convex function, F0 D f ; ˛; ˇ 2 .0; 1/, and a1 C a2 C a3 C
a4 D 0:

Proposition 11.5 ([32]) Let n 2 N; ˛i 2 .0; 1/, ai 2 R, i D 1; : : : ; n be such that
˛1 > ˛2 > � � � > ˛n and a1 C a2 C � � � C an D 0, and let F be a differentiable
function with F0 D f : Then,

Pn
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
D

Z
fd�;

with

�.A/ D � 1

y � x

n�1X
iD1

.a1 C � � � C ai/l1.A \ Œ˛ix C .1 � ˛i/y; ˛iC1x C .1 � ˛iC1/y�/;

where l1 stands for the one-dimensional Lebesgue measure.

Remark 11.8 ([32]) Taking F1.t/ WD �..�1; t�/ with � from Proposition 11.5, we
can see that

Pn
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
D

Z
fdF1: (11.43)

Next proposition will show that, in order to get some inequalities of the Hermite–
Hadamard type, we have to use sums containing more than three summands.

Proposition 11.6 ([32]) There are no numbers ˛i; ai 2 R; i D 1; 2; 3, satisfying
1 D ˛1 > ˛2 > ˛3 D 0 such that any of the inequalities

f

�
x C y

2

�
�

P3
iD1 aiF.˛ix C .1 � ˛i/y/

y � x

or

P3
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
� f .x/ C f .y/

2

is fulfilled by every continuous and convex function f and its antiderivative F:
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To prove Proposition 11.6, we note that by Proposition 11.5, we can see that

P3
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
D

Z y

x
fd�;

with

�.A/ D � 1

y � x

�
a1l1.A \ Œx; ˛2x C .1 � ˛2/y�/C

.a2 C a1/l1.A \ Œ˛2x C .1 � ˛2/y; y�/
�
;

and

P3
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
D

Z y

x
f .t/dF1.t/;

where

F1.t/ D �f.�1; t�g: (11.44)

Now, if

F2.t/ D 1

y � x
l1f.�1; t� \ Œx; y�g;

then F1 lies strictly above or below F2 (on Œx; y�). This means that

Z y

x
F2.t/dt ¤

Z y

x
F1.t/dt: (11.45)

But, on the other hand, if

F3.t/ WD
8<
:

0; t < x;
1
2

; t 2 Œx; y/;

1; t � y;

(11.46)

and

F4.t/ WD



0; t < xCy
2

;

1; t � xCy
2

;
(11.47)

then
Z y

x
F2.t/dt D

Z y

x
F3.t/dt D

Z y

x
F4.t/dt D y � x

2
:
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This, together with (11.45), shows that neither

Z y

x
fdF2 �

Z y

x
fdF3

nor
Z y

x
fdF2 �

Z y

x
fdF4

is satisfied. To complete the proof, it suffices to observe that

Z y

x
fdF3 D f .x/ C f .y/

2
;

Z y

x
fdF4 D f

�
x C y

2

�
:

Remark 11.9 ([32]) Observe that the assumptions of Proposition 11.6, ˛1 D 1

and ˛3 D 0, are essential. For example, it follows from the Ohlin lemma that the
inequality

f

�
x C y

2

�
� �3F. 3

4
x C 1

4
y/ C 25

11
F. 11

20
x C 9

20
y/ C 8

11
F.y/

y � x
� 1

y � x

Z
f .t/dt

is satisfied by all continuous and convex functions f (where F0 D f ). Clearly, there
are many more examples of inequalities of this type.

Lemma 11.3 ([32]) If any of the inequalities

f

�
x C y

2

�
�

P4
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
(11.48)

or

P4
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
� f .x/ C f .y/

2
(11.49)

is satisfied for all continuous and convex functions f W Œx; y� ! R (where F0 D f ),
then

a1.˛2 � ˛1/ C .a2 C a1/.˛3 � ˛2/ C .a3 C a2 C a1/.˛4 � ˛3/ D 1 (11.50)

and

a1.˛2
2 � ˛2

1/ C .a2 C a1/.˛2
3 � ˛2

2/ C .a3 C a2 C a1/.˛2
4 � ˛2

3/ D 1: (11.51)
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To prove this lemma, we take x D 0, y D 1. Then, using Proposition 11.5, we
can see that

4X
iD1

aiF.1 � ˛i/ D
Z 1

0

fd� D �a1

Z 1�˛2

1�˛1

f .x/dxC

�.a1 C a2/

Z 1�˛2

1�˛3

f .x/dx � .a1 C a2 C a3/

Z 1�˛3

1�˛4

f .x/dx:

Now, we consider the functions F1; F3, and F4 given by the formulas (11.44), (11.46),
and (11.47), respectively. Then, the inequalities (11.48) and (11.49) may be written
in the form Z

fdF4 �
Z

fdF1

and Z
fdF1 �

Z
fdF3:

This means that, if, for example, the inequality (11.48) is satisfied, then we have
F1.1/ D F4.1/ D 1, which yields (11.50). Further,

Z 1

0

F1.t/dt D
Z 1

0

F4.t/dt D 1

2
;

which gives us (11.51).

Proposition 11.7 ([32]) Let ˛i 2 .0; 1/, ai 2 R, i D 1; : : : ; 4; be such that 1 D
˛1 > ˛2 > ˛3 > ˛4 D 0, a1 C a2 C a3 C a4 D 0, and the equalities (11.50)
and (11.51) are satisfied. If F1 is such that

P4
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
D

Z y

x
fdF1

and F2 is the distribution function of a measure which is uniformly distributed in the
interval Œx; y�, then .F1; F2/ crosses exactly once.

Indeed, from (11.50) we can see that F1.x/ D F2.x/ D 0 and F1.y/ D F2.y/ D 1:

Note that, in view of Proposition 11.5, the graph of the restriction of F1 to the
interval Œx; y� consists of three segments. Therefore, F1 and F2 cannot have more
than one crossing point. On the other hand, if graphs F1 and F2 do not cross, then

Z y

x
tdF1.t/ ¤

Z y

x
tdF1.t/

that is, (11.51) is not satisfied.
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Theorem 11.10 Let ˛i 2 .0; 1/, ai 2 R, i D 1; : : : ; 4; be such that 1 D ˛1 > ˛2 >

˛3 > ˛4 D 0, a1 C a2 C a3 C a4 D 0, and the equalities (11.50) and (11.51) are
satisfied. Let F; f W Œx; y� ! R be functions such that f is continuous and convex and
F0 D f : Then,

(i) If a1 > �1, then

P4
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
� 1

y � x

Z y

x
f .t/dt � f .x/ C f .y/

2
;

(ii) If a1 < �1, then

f

�
x C y

2

�
� 1

y � x

Z y

x
f .t/dt �

P4
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
;

(iii) If a1 2 .�1; 0�, then

f

�
x C y

2

�
�

P4
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
� 1

y � x

Z y

x
f .t/dt; and

(iv) If a1 < �1 and a2 C a1 � 0, then

1

y � x

Z y

x
f .t/dt �

P4
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
� f .x/ C f .y/

2
:

We shall prove the first assertion. Other proofs are similar and will be omitted.
It is easy to see that if inequalities which we consider are satisfied by every contin-
uous and convex function defined on the interval Œ0; 1�, then they are true for every
continuous and convex function on a given interval Œx; y�: Therefore, we assume
that x D 0 and y D 1: Let F1 be such that (11.43) is satisfied and let F2 be the
distribution function of a measure, which is uniformly distributed in the interval
Œ0; 1�: From Proposition 11.5 and Remark 11.8, we can see that the graph of F1

consists of three segments and, since a1 > �1; the slope of the first segment is
smaller than 1; i.e., F1 lies below F2 on some right-hand neighborhood of x: In view
of the Proposition 11.7, this means that the assumptions of the Ohlin lemma are
satisfied and we get our result from this lemma.

Now, we shall present examples of inequalities, which may be obtained from this
theorem.

Example 11.5 ([32]) Using (i), we can see that the inequality

1

3
F.x/ � 8

3
F

�
3x C y

4

�
C 8

3
F

�
x C 3y

4

�
� 1

3
F.y/ �

R y
x f .t/dt

y � x

is satisfied for every continuous and convex f and its antiderivative F:
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Example 11.6 ([32]) Using (ii), we can see that the inequality

�2F.x/ C 3F

�
2x C y

3

�
� 3F

�
x C 2y

3

�
C 2F.y/ �

R y
x f .t/dt

y � x

is satisfied by every continuous and convex function f and its antiderivative F:

Example 11.7 ([32]) Using (iii), we can see that the inequality

R y
x f .t/dt

y � x
�

� 1
2
F.x/ � 3

2
F

�
2xCy

3

	
C 3

2
F

�
xC2y

3

	
C 1

2
F.y/

y � x
� f

�
x C y

2

�

is satisfied by every continuous and convex function f and its antiderivative F:

Example 11.8 ([32]) Using (iv), we can see that the inequality

R y
x f .t/dt

y � x
�

� 3
2
F.x/ C 2F

�
3xCy

4

	
� 2F

�
xC3y

4

	
C 3

2
F.y/

y � x
� f .x/ C f .y/

2

is satisfied by every continuous and convex function f and its antiderivative F:

In all cases considered in the above theorem, we used only the Ohlin lemma.
Using Lemma 11.2, it is possible to obtain more subtle inequalities. However (for
the sake of simplicity), in the next result, we shall restrict our considerations to

expressions of the simplified form. Note that the inequality between f
�

xCy
2

	
and

expressions which we consider is a bit unexpected.

Theorem 11.11 ([32]) Let ˛ 2 �
0; 1

2

�
, a; b 2 R.

(i) If a > 0, then the inequality

f

�
x C y

2

�
� aF.x/ C bF.˛x C .1 � ˛/y/ � bF..1 � ˛/x C ˛y/ � aF.y/

y � x

is satisfied by every continuous and convex f and its antiderivative F if, and
only if,

.1 � ˛/2 ab

a C b
>

1

2
� .1 � ˛/

b

a C b
; and (11.52)

(ii) If a < �1 and a1 C a2 > 0, then the inequality

aF.x/ C bF.˛x C .1 � ˛/y/ � bF..1 � ˛/x C ˛y/ � aF.y/

y � x
� f .x/ C f .y/

2
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is satisfied by every continuous and convex f and its antiderivative F if, and
only if,

� 1

4a
>

�
�a.1 � ˛/ � 1

2

� �
1

2
C 1

2a

�
:

We shall prove the assertion (i) of Theorem 11.11. The proof of (ii) is similar and
will be omitted. Similarly as before, we may assume without loss of generality that
x D 0; y D 1. Let F1 be such that

aF.0/ C bF.1 � ˛/ � bF.˛/ C aF.1/ D
Z 1

0

fdF1

and let F4 be given by (11.47). Then, it is easy to see that .F1; F4/ crosses three
times: at .1�˛/b

aCb ; 1
2
, and at aC˛b

aCb .
We are going to use Lemma 11.2. Since, from (11.51), we have that

A0 C A1 C A2 C A3 D 0;

it suffices to check that A0 � A1 if, and only if, the inequality (11.52) is satisfied.
Since, F4.x/ D 0; for x 2 �

0; 1
2

�
; we get

A0 D �
Z .1�˛/b

aCb

0

F1.t/dt

and

A1 D
Z 1

2

.1�˛/b
aCb

F1.t/dt;

which yields our assertion.

Example 11.9 ([32]) Neither inequality

f

�
x C y

2

�
�

1
3
F.x/ � 8

3
F

�
3xCy

4

	
C 8

3
F

�
xC3y

4

	
� 1

3
F.y/

y � x
(11.53)

nor

f

�
x C y

2

�
�

1
3
F.x/ � 8

3
F

�
3xCy

4

	
C 8

3
F

�
xC3y

4

	
� 1

3
F.y/

y � x
(11.54)
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is satisfied for all continuous and convex f W Œx; y� ! R: Indeed, if F1 is such that

Z y

x
f .t/dF1.t/ D

1
3
F.x/ � 8

3
F

�
3xCy

4

	
C 8

3
F

�
xC3y

4

	
� 1

3
F.y/

y � x
;

then

Z 3xCy
4

x
F1.t/dt <

Z 3xCy
4

x
F4.t/dt;

thus inequality (11.53) cannot be satisfied. On the other hand, the coefficients and
nodes of the expression considered do not satisfy (11.52). Therefore, (11.54) is also
not satisfied for all continuous and convex f W Œx; y� ! R:

Example 11.10 ([32]) Using assertion (i) of Theorem 11.11, we can see that the
inequality

2F.x/ � 3F
�

3xCy
4

	
C 3F

�
xC3y

4

	
� 2F.y/

y � x
� f

�
x C y

2

�

is satisfied for every continuous and convex f and its antiderivative F:

Example 11.11 ([32]) Using assertion (ii) of Theorem 11.11, we can see that the
inequality

�2F.x/ C 3F
�

2xCy
3

	
� 3F

�
xC2y

3

	
C 2F.y/

y � x
� f .x/ C f .y/

2

is satisfied for every continuous and convex f and its antiderivative F:

11.4 Inequalities of the Hermite–Hadamard Type Involving
Numerical Differentiation Formulas of Order Two

In the paper [42], expressions connected with numerical differentiation formulas
of order 2 are studied. The author used the Ohlin lemma and the Levin–Stečkin
theorem to study inequalities connected with these expressions. In particular, the
author presents a new proof of the inequality

f

�
x C y

2

�
� 1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
ds dt � 1

y � x

Z y

x
f .t/dt; (11.55)
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satisfied by every convex function f W R ! R and he obtains extensions of (11.55).
In the previous section, inequalities involving expressions of the form

Pn
iD1 aiF.˛ix C ˇiy/

y � x
;

where
Pn

iD1 ai D 0; ˛i C ˇi D 1, and F0 D f were considered. In this section, we
study inequalities for expressions of the form

Pn
iD1 aiF.˛ix C ˇiy/

.y � x/2
;

which we use to approximate the second order derivative of F and, surprisingly, we
discover a connection between our approach and the inequality (11.55) (see [42]).

First, we make the following simple observation.

Remark 11.10 ([42]) Let f ; F; ˚ W Œx; y� ! R be such that ˚ 0 D F; F0 D f . Let
ni; mi 2 N [ f0g, i D 1; 2; 3; ai;j 2 R, ˛i;j, ˇi;j 2 Œ0; 1�, i D 1; 2; 3; j D 1; : : : ; ni;

bi;j 2 R, �i;j, ıi;j 2 Œ0; 1�, i D 1; 2; 3; j D 1; : : : ; mi: If the inequality

n1X
iD1

a1;if .˛1;ix C ˇ1;iy/ C
Pn2

iD1 a2;iF.˛2;ix C ˇ2;iy/

y � x

C
Pn3

iD1 a3;i˚.˛3;ix C ˇ3;iy/

.y � x/2
�

m1X
iD1

b1;if .�1;ix C ı1;iy/

C
Pm2

iD1 b2;iF.�2;ix C ı2;iy/

y � x
C

Pm3

iD1 b3;i˚.�3;ix C ı3;iy/

.y � x/2
(11.56)

is satisfied for x D 0; y D 1 and for all continuous and convex functions f W Œ0; 1� !
R, then it is satisfied for all x; y 2 R, x < y and for each continuous and convex
function f W Œx; y� ! R: To see this, it is enough to observe that expressions
from (11.56) remain unchanged if we replace f W Œx; y� ! R by ' W Œ0; 1� ! R

given by '.t/ WD f
�

x C t
y�x

	
:

The simplest expression used to approximate the second order derivative of f is
of the form

f 00
�

x C y

2

�
�

f .x/ � 2f
�

xCy
2

	
C f .y/

� y�x
2

�2
:

Remark 11.11 ([42]) From numerical analysis, it is known that

f 00
�

x C y

2

�
D

f .x/ � 2f
�

xCy
2

	
C f .y/

� y�x
2

�2
�

� y�x
2

�2

12
f .4/.�/:
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This means that for a convex function g and for G such that G00 D g we have

g

�
x C y

2

�
�

G.x/ � 2G
�

xCy
2

	
C G.y/

� y�x
2

�2
:

In the paper [42], some inequalities for convex functions which do not follow from
formulas used in numerical differentiation are obtained.

Let now f W Œx; y� ! R be any function and let F; ˚ W Œx; y� ! R be such that
F0 D f and ˚ 00 D f : We need to write the expression

˚.x/ � 2˚
�

xCy
2

	
C ˚.y/

� y�x
2

�2
(11.57)

in the form
Z y

x
fdF1

for some F1: In the next proposition, we show that it is possible—here for the sake
of simplicity we shall work on the interval Œ0; 1�:

Proposition 11.8 ([42]) Let f W Œ0; 1� ! R be any function and let ˚ W Œ0; 1� ! R

be such that ˚ 00 D f : Then, we have

4

�
˚.0/ � 2˚

�
1

2

�
C ˚.1/

�
D

Z y

x
fdF1;

where F1 W Œ0; 1� ! R is given by

F1.t/ WD



2x2; x � 1
2
;

�2x2 C 4x � 1; x > 1
2
:

(11.58)

Now, we observe that the following equality is satisfied

˚.x/ � 2˚
�

xCy
2

	
C ˚.y/

� y�x
2

�2
D 1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
ds dt:

After this observation, it turns out that inequalities involving the expression (11.57)
were considered in the paper of Dragomir [14], where (among others) the following
inequalities were obtained

f

�
x C y

2

�
� 1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
ds dt � 1

y � x

Z y

x
f .t/dt: (11.59)
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As we already know (Remark 11.11), the first one of the above inequalities may be
obtained using the numerical analysis results.

Now, the inequalities from the Dragomir’s paper easily follow from the Ohlin
lemma but there are many possibilities of generalizations and modifications of
inequalities (11.59). These generalizations will be discussed in this section.

First, we consider the symmetric case. We start with the following remark.

Remark 11.12 ([42]) Let F�.t/ D at2 C bt C c for some a; b; c 2 R; a ¤ 0: It is
impossible to obtain inequalities involving

R y
x fdF� and any of the expressions:

1

y � x

Z y

x
f .t/dt; f

�
x C y

2

�
;

f .x/ C f .y/

2
;

which are satisfied for all convex functions f W Œx; y� ! R: Indeed, suppose that we
have

Z y

x
fdF� � 1

y � x

Z y

x
f .t/dt

for all convex f W Œx; y� ! R: Without loss of generality, we may assume that
F�.x/ D 0; then from Theorem 11.6 we have F�.y/ D 1. Also from Theorem 11.6
we get

Z y

x
F�.t/dt D

Z y

x
F0dt;

where F0.t/ D t�x
y�x , t 2 Œx; y�, which is impossible, because F� is either strictly

convex or concave.
This remark means that in order to get some new inequalities of the Hermite–

Hadamard type we have to integrate with respect to functions constructed with the
use of (at least) two quadratic functions.

Now, we present the main result of this section.

Theorem 11.12 ([42]) Let x; y be some real numbers such that x < y and let a 2 R:

Let f ; F; ˚ W Œx; y� ! R be any functions such that F0 D f and ˚ 0 D F and let
Taf .x; y/ be the function defined by the following formula

Taf .x; y/ D
�
1 � a

2

	 F.y/ � F.x/

y � x
C 2a

˚.x/ � 2˚
�

xCy
2

	
C ˚.x/

.y � x/2
:

Then, the following inequalities hold for all convex functions f W Œx; y� ! R W
• If a � 0, then

Taf .x; y/ � 1

y � x

Z y

x
f .t/dt; (11.60)
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• If a � 0, then

Taf .x; y/ � 1

y � x

Z y

x
f .t/dt; (11.61)

• If a � 2, then

f

�
x C y

2

�
� Taf .x; y/; (11.62)

• If a � 6, then

Taf .x; y/ � f

�
x C y

2

�
; (11.63)

• If a � �6, then

Taf .x; y/ � f .x/ C f .y/

2
; (11.64)

Furthermore,

• If a 2 .2; 6/, then the expressions Taf .x; y/; f
�

xCy
2

	
are not comparable in the

class of convex functions, and
• If a < �6, then expressions Taf .x; y/;

f .x/Cf .y/

2
are not comparable in the class

of convex functions.

To prove Theorem 11.12, we note that we may restrict ourselves to the case
x D 0; y D 1: Take a 2 R; let f W Œ0; 1� W! R be any convex function, and let
F; ˚ W Œ0; 1� ! R be such that F0 D f ; ˚ 0 D F: Define F1 W Œ0; 1� ! R by the
formula

F1.t/ WD



at2 C �
1 � a

2

�
t; t < 1

2
;

�at2 C �
1 C 3a

2

�
t � a

2
; t � 1

2
:

(11.65)

First, we prove that Taf .0; 1/ D R 1

0
fdF1: Now, let F2.t/ D t, t 2 Œ0; 1�: Then, the

functions F1; F2 have exactly one crossing point (at 1
2
) and

Z 1

0

F1.t/dt D 1

2
D

Z 1

0

tdt:

Moreover, if a > 0, then the function F1 is convex on the interval .0; 1
2
/ and concave

on . 1
2
; 1/: Therefore, it follows from the Ohlin lemma that for a > 0 we have

Z 1

0

fdF1 �
Z 1

0

fdF2;
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which, in view of Remark 11.10, yields (11.60) and for a < 0 the opposite inequality
is satisfied, which gives (11.61). Take

F3.t/ WD



0; t � 1
2
;

1; t > 1
2
:

It is easy to calculate that for a � 2 we have F1.t/ � F3.t/ for t 2 �
0; 1

2

�
;

and F1.t/ � F3.t/ for t 2 �
1
2
; 1

�
, and this means that from the Ohlin lemma we

get (11.62). Let now

F4.t/ WD
8<
:

0; t D 0;
1
2
; t 2 .0; 1/;

1; t D 1:

Similarly as before, if a � �2, then we have F1.t/ � F4.t/ for t 2 �
0; 1

2

�
and

F1.t/ � F4.t/ for t 2 �
1
2
; 1

�
: Therefore, from the Ohlin lemma, we get (11.63).

Suppose that a > 2: Then there are three crossing points of the functions F1 and
F3 W x0; 1

2
; x1; where x0 2 .0; 1

2
/; x1 2 . 1

2
; 1/. The function

'.s/ WD
Z s

0

.F3.t/ � F1.t//dt; s 2 Œ0; 1�

is increasing on the intervals Œ0; x0�; Œ 1
2
; x1� and decreasing on Œx0; 1

2
� and on Œx1; 1�:

This means that ' takes its absolute minimum at 1
2
: It is easy to calculate that

'
�

1
2

� � 0, if a � 6, which, in view of Theorem 11.6, gives us (11.63).

To see that, for a 2 .2; 6/, the expressions Taf .x; y/ and f
�

xCy
2

	
are not

comparable in the class of convex functions, it is enough to observe that in this
case '.x0/ > 0 and '

�
1
2

�
< 0:

Analogously (using functions F1 and F4), we show that for a 2 .�2; �6� we
have (11.64), and in the case a < �6 the expressions Taf .x; y/ and f .x/Cf .y/

2
are

not comparable in the class of convex functions. This theorem provides us with a
full description of inequalities, which may be obtained using Stieltjes integral with
respect to a function of the form (11.65). Some of the obtained inequalities are
already known. For example, from (11.60) and (11.61) we obtain the inequality

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
ds dt � 1

y � x

Z y

x
f .t/dt;

whereas from (11.62) for a D 2 we get the inequality

f

�
x C y

2

�
� 1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
ds dt:
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However, inequalities obtained for “critical” values of a, i.e., �6; 6: are here
particularly interesting. In the following corollary, we explicitly write these inequal-
ities.

Corollary 11.2 ([42]) For every convex function f W Œx; y� ! R, the following
inequalities are satisfied

3
1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt � 2

y � x

Z y

x
f .t/dt C f

�
x C y

2

�
; (11.66)

4

y � x

Z y

x
f .t/dt � 3

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt C f .x/ C f .y/

2
: (11.67)

Remark 11.13 ([42]) In the paper [15], Dragomir and Gomm obtained the follow-
ing inequality

3

Z y

x
f .t/dt � 2

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt C f .x/ C f .y/

2
: (11.68)

Inequality (11.67) from Corollary 11.2 is stronger than (11.68). Moreover, as it
was observed in Theorem 11.12, the inequalities (11.66) and (11.67) cannot be
improved, i.e., the inequality

1

y � x

Z y

x
f .t/dt � �

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt C .1 � �/

f .x/ C f .y/

2

for � > 3
4

is not satisfied by every convex function f W Œx; y� ! R and the inequality

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt � �

1

y � x

Z y

x
f .t/dt C .1 � �/f

�
x C y

2

�

with � > 2
3

is not true for all convex functions f W Œx; y� ! R:

In Corollary 11.2, we obtained inequalities for the triples:

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt;

Z y

x
f .t/dt;

f .x/ C f .y/

2

and

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt;

Z y

x
f .t/dt; f

�
x C y

2

�
:
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In the next remark, we present an analogous result for expressions

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt;

f .x/ C f .y/

2
; f

�
x C y

2

�
:

Remark 11.14 ([42]) Using the functions: F1 defined by (11.58) and F5 given by

F5.t/ WD

8̂
<̂
ˆ̂:

0; t D 0;
1
6
; t 2 �

0; 1
2

�
;

5
6
; t 2 �

1
2
; 1

�
;

1; t D 1;

we can see that

1

6
f .x/ C 2

3
f

�
x C y

2

�
C 1

6
f .y/ � 1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt

for all convex functions f W Œx; y� ! R:

Moreover, it is easy to see that the above inequality cannot be strengthened,
which means that if a ; b � 0, 2a C b D 1 and a < 1

6
, then the inequality

af .x/ C bf

�
x C y

2

�
C af .y/ � 1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt;

is not satisfied by all convex functions f .
In [42], inequalities for f .˛x C .1 � ˛/y/ and for ˛f .x/ C .1 � ˛/f .y/; where ˛

is not necessarily equal to 1
2

(the nonsymmetric case), are also obtained.

Theorem 11.13 ([42]) Let x; y be some real numbers such that x < y and let ˛ 2
Œ0; 1�: Let f W Œx; y� ! R be a convex function, let F be such that F0 D f , and let ˚

satisfy ˚ 0 D F: If S2
˛f .x; y/ is defined by

S2
˛f .x; y/ WD .4 � 6˛/F.y/ C .2 � 6˛/F.x/

y � x
C .6 � 12˛/.˚.y/ � ˚.x//

.y � x/2
;

then the following conditions hold true:

•

S2
˛f .x; y/ � ˛f .x/ C .1 � ˛/f .y/;

• If ˛ 2 �
1
3
; 2

3

�
, then

S2
˛f .x; y/ � f .˛x C .1 � ˛/y/;
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• If ˛ 2 Œ0; 1� n �
1
3
; 2

3

�
, then the expressions S2

˛f .x; y/ and f .˛x C .1 � ˛/y/ are
incomparable in the class of convex functions,

• If ˛ 2 �
0; 1

3

� [ �
2
3
; 1

�
; then

S2
˛f .x; y/ � S1

˛f .x; y/; and

• If ˛ 2 �
1
3
; 1

2

� [ �
1
2
; 2

3

�
, then S1

˛f .x; y/ and S2
˛f .x; y/ are incomparable in the class

of convex functions.

11.5 The Hermite–Hadamard Type Inequalities for
n-th Order Convex Functions

Now, we are going to study Hermite–Hadamard type inequalities for higher-order
convex functions. Many results on higher-order generalizations of the Hermite–
Hadamard type inequality one can find, among others, in [1–5, 16, 20, 36, 37].
In recent papers [36, 37], the theorem of Denuit, Lefèvre, and Shaked [13] on
sufficient conditions for s-convex ordering was used, to prove Hermite–Hadamard
type inequalities for higher-order convex functions.

Let us review some notations. The convexity of n-th order (or n-convexity) was
defined in terms of divided differences by Popoviciu [34]; however, we will not state
it here. Instead, we list some properties of n-th order convexity which are equivalent
to Popoviciu’s definition (see [24]).

Proposition 11.9 A function f W .a; b/ ! R is n-convex on .a; b/ .n � 1/ if, and
only if, its derivative f .n�1/ exists and is convex on .a; b/ (with the convention
f .0/.x/ D f .x/).

Proposition 11.10 Assume that f W Œa; b� ! R is .n C 1/-times differentiable on
.a; b/ and continuous on Œa; b� (n � 1). Then, f is n-convex if, and only if, f .nC1/.x/ �
0, x 2 .a; b/.

For real-valued random variables X; Y and any integer s � 2, we say that X is
dominated by Y in s-convex ordering sense if Ef .X/ � Ef .Y/ for all .s � 1/-convex
functions f WR ! R, for which the expectations exist [13]. In that case, we write
X �s�cx Y , or �X �s�cx �Y , or FX �s�cx FY . Then, the order �2�cx is just the usual
convex order �cx.

A very useful criterion for the verification of the s-convex order is given by
Denuit, Lefèvre, and Shaked in [13].

Proposition 11.11 ([13]) Let X and Y be two random variables such that E.Xj �
Yj/ D 0, j D 1; 2; : : : ; s � 1 (s � 2). If S�.FX � FY/ D s � 1 and the last sign of
FX � FY is positive, then X �s�cx Y.
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We now apply Proposition 11.11 to obtain the following results.

Theorem 11.14 ([36]) Let n � 1, a1 � a < b � b1.
Let a.n/ D �

n
2

� C 1, b.n/ D �
nC1

2

� C 1.
Let ˛1; : : : ; ˛a.n/, x1; : : : ; xa.n/, ˇ1; : : : ; ˇb.n/, y1; : : : ; yb.n/ be real numbers

such that

• If n is even, then

0 < ˇ1 < ˛1 < ˇ1 C ˇ2 < ˛1 C ˛2 < : : : < ˛1 C : : : C ˛a.n/ D ˇ1 C : : : C ˇb.n/ D 1;

a � y1 < x1 < y2 < x2 < : : : < xa.n/ < yb.n/ � b;

• If n is odd, then

0 < ˇ1 < ˛1 < ˇ1 C ˇ2 < ˛1 C ˛2 < : : : < ˇ1 C : : : C ˇb.n/ < ˛1 C : : : C ˛a.n/ D 1

a � y1 < x1 < y2 < x2 < : : : < yb.n/ < xa.n/ � bI

and

a.n/X
kD1

xk
i ˛i D

b.n/X
jD1

yk
j ˇj

for any k D 1; 2; : : : ; n.
Let f W Œa1; b1� ! R be an n-convex function. Then, we have the following

inequalities:

• If n is even, then

a.n/X
iD1

˛if .xi/ �
b.n/X
jD1

ˇjf .yj/;

• If n is odd, then

b.n/X
jD1

ˇjf .yj/ �
a.n/X
iD1

˛if .xi/:

Theorem 11.15 ([36]) Let n � 1, a1 � a < b � b1. Let a.n/; b.n/ 2 N. Let
˛1; : : : ; ˛a.n/, ˇ1; : : : ; ˇb.n/ be positive real numbers such that ˛1 C : : : C ˛a.n/ D
ˇ1 C : : : C ˇb.n/ D 1. Let x1; : : : ; xa.n/, y1; : : : ; yb.n/ be real numbers such that

• a � x1 � x2 � : : : � xa.n/ � b and a � y1 � y2 � : : : � yb.n/ � b,

•
Pa.n/

kD1 xk
i ˛i D Pb.n/

jD1 yk
j ˇj; for any k D 1; 2; : : : ; n.
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Let ˛0 D ˇ0 D 0, x0 D y0 D �1. Let F1; F2WR ! R be two functions given
by the following formulas: F1.x/ D ˛0 C ˛1 C : : : C ˛k if xk < x � xkC1 .k D
0; 1; : : : ; a.n/ � 1/ and F1.x/ D 1 if x > xa.n/; F2.x/ D ˇ0 C ˇ1 C : : : C ˇk if
yk < x � ykC1 .k D 0; 1; : : : ; b.n/ � 1/ and F2.x/ D 1 if x > yb.n/. If the functions
F1; F2 have n crossing points and the last sign of F1�F2 is a+, then for any n-convex
function f W Œa1; b1� ! R we have the following inequality

a.n/X
iD1

˛if .xi/ �
b.n/X
jD1

ˇjf .yj/:

Theorem 11.16 ([36]) Let n � 1, a1 � a < b � b1. Let a.n/ D �
n
2

� C 1,
b.n/ D �

nC1
2

� C 1. Let x1; : : : ; xa.n/; y1; : : : ; yb.n/ be real numbers, and ˛1; : : : ; ˛a.n/,
ˇ1; : : : ; ˇb.n/ be positive numbers, such that ˛1C: : :C˛a.n/ D 1, ˇ1C: : :Cˇb.n/ D 1,

1

b � a

Z b

a
xkdx D

b.n/X
jD1

yk
j ˇj D

a.n/X
iD1

xk
i ˛i .k D 1; 2; : : : ; n/;

a � x1 < x2 < : : : < xa.n/ � b, a � y1 < y2 < : : : < yb.n/ < b,

x1�a
b�a < ˛1 < x2�a

b�a ;

x2�a
b�a < ˛1 C ˛2 < x3�a

b�a ;

: : :

xa.n/�1�a
b�a < ˛1 C : : : C ˛a.n/�1 <

xa.n/�a
b�a ;

y1�a
b�a < ˇ1 < y2�a

b�a ;

y2�a
b�a < ˇ1 C ˇ2 < y2�a

b�a ;

: : :

yb.n/�1�a
b�a < ˇ1 C : : : C ˇb.n/�1 <

yb.n/�a
b�a I

if n is even, then y1 D a, yb.n/ D b, x1 > a, xa.n/ < b;
if n is odd, then y1 D a, yb.n/ < b, x1 > a, xa.n/ D b.
Let f W Œa1; b1� ! R be an n-convex function. Then, we have the following

inequalities:

• If n is even, then

a.n/X
iD1

˛if .xi/ � 1

b � a

Z b

a
f .x/dx �

b.n/X
jD1

ˇjf .yj/;
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• If n is odd, then

b.n/X
jD1

ˇjf .yj/ � 1

b � a

Z b

a
f .x/dx �

a.n/X
iD1

˛if .xi/:

Note that Proposition 11.11 can be rewritten in the following form.

Proposition 11.12 ([13]) Let X and Y be two random variables such that

E.Xj � Yj/ D 0; j D 1; 2; : : : ; s .s � 1/:

If the distribution functions FX and FY cross exactly s-times at points x1 < x2 <

: : : < xs and

.�1/sC1 .FY.x/ � FX.x// � 0 for all x � x1;

then

Ef .X/ � Ef .Y/ (11.69)

for all s-convex functions f WR ! R.
Proposition 11.11 is a counterpart of the Ohlin lemma concerning convex

ordering. This proposition gives sufficient conditions for s-convex ordering and is
very useful for the verification of higher-order convex orders. However, it is worth
noticing that in the case of some inequalities, the distribution functions cross more
than s-times. Therefore, a simple application of this proposition is impossible.

In the paper [38], a theorem on necessary and sufficient conditions for higher-
order convex stochastic ordering is given. This theorem is a counterpart of the
Levin–Stečkin theorem [25] concerning convex stochastic ordering. Based on
this theorem, useful criteria for the verification of higher-order convex stochastic
ordering are given. These results can be useful in the study of Hermite–Hadamard
type inequalities for higher-order convex functions, and in particular inequalities
between the quadrature operators. It is worth noticing that these criteria can be easier
to checking of higher-order convex orders, than those given in [13, 22].

Let F1; F2W Œa; b� ! R be two functions with bounded variation and �1, �2 be the
signed measures corresponding to F1, F2, respectively. We say that F1 is dominated
by F2 in .n C 1/-convex ordering sense .n � 1/ if

Z 1

�1
f .x/dF1.x/ �

Z 1

�1
f .x/dF2.x/

for all n-convex functions f W Œa; b� ! R. In that case, we write F1 �.nC1/�cx F2,
or �1 �.nC1/�cx �2. In the following theorem, we give necessary and sufficient
conditions for .n C 1/-convex ordering of two functions with bounded variation.
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Theorem 11.17 ([38]) Let a; b 2 R, a < b, n 2 N and let F1; F2W Œa; b� ! R be
two functions with bounded variation such that F1.a/ D F2.a/. Then, in order that

Z b

a
f .x/dF1.x/ �

Z b

a
f .x/dF2.x/

for all continuous n-convex functions f W Œa; b� ! R; it is necessary and sufficient
that F1 and F2 verify the following conditions:

F1.b/ D F2.b/;

Z b

a
F1.x/dx D

Z b

a
F2.x/dx;

Z b

a

Z xk�1

a
: : :

Z x1

a
F1.t/dtdx1 : : : dxk�1 D

Z b

a

Z xk�1

a
: : :

Z x1

a
F2.t/dtdx1 : : : dxk�1 for k D 2; : : : ; n; (11.70)

.�1/nC1

Z x

a

Z xn�1

a
: : :

Z x1

a
F1.t/dtdx1 : : : dxn�1 �

.�1/nC1

Z x

a

Z xn�1

a
: : :

Z x1

a
F2.t/dtdx1 : : : dxn�1 for all x 2 .a; b/: (11.71)

Corollary 11.3 ([38]) Let �1, �2 be two signed measures on B.R/, which are
concentrated on .a; b/, and such that

R b
a jxjn�i.dx/ < 1, i D 1; 2. Then, in

order that

Z b

a
f .x/d�1.x/ �

Z b

a
f .x/d�2.x/

for continuous n-convex functions f W Œa; b� ! R, it is necessary and sufficient that
�1, �2 verify the following conditions:

�1 ..a; b// D �2 ..a; b// ; (11.72)
Z b

a
xk�1.dx/ D

Z b

a
xk�2.dx/ for k D 1; : : : ; n; (11.73)

Z b

a

�
t � x

�n

C�1.dt/ D
Z b

a

�
t � x

�n

C�2.dt/ for all x 2 .a; b/; (11.74)

where ynC D
n

maxfy; 0g
on

, y 2 R.
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In [13], it can be found the following necessary and sufficient conditions for the
verification of the .s C 1/-convex order.

Proposition 11.13 ([13]) If X and Y are two real-valued random variables such
that EjXjs < 1 and EjYjs < 1, then

Ef .X/ � Ef .Y/

for all continuous s-convex functions f WR ! R if, and only if,

EXk D EYk for k D 1; 2; : : : ; s; (11.75)

E.X � t/sC � E.Y � t/sC for all t 2 R: (11.76)

Remark 11.15 ([38]) Note that if the measures �X , �Y , corresponding to the ran-
dom variables X, Y , respectively, occurring in Proposition 11.13, are concentrated on
some interval Œa; b�, then this proposition is an easy consequence of Corollary 11.3.

Theorem 11.17 can be rewritten in the following form.

Theorem 11.18 ([38]) Let F1; F2W Œa; b� ! R be two functions with bounded
variation such that F1.a/ D F2.a/. Let

H0.t0/ D F2.t0/ � F1.t0/ for t0 2 Œa; b�;

Hk.tk/ D
Z tk�1

a
Hk�1.tk�1/dtk�1 for tk 2 Œa; b�; k D 1; 2; : : : ; n:

Then, in order that

Z b

a
f .x/dF1.x/ �

Z b

a
f .x/dF2.x/

for all continuous n-convex functions f W Œa; b� ! R; it is necessary and sufficient
that the following conditions are satisfied:

Hk.b/ D 0 for k D 0; 1; 2; : : : ; n;

.�1/nC1Hn.x/ � 0 for all x 2 .a; b/:

Remark 11.16 ([38]) The functions H1; : : : ; Hn that appear in Theorem 11.18 can
be obtained from the following formulas

Hn.x/ D .�1/nC1

Z b

a

.t � x/nC
nŠ

d.F2.t/ � F1.t//; (11.77)

Hk�1.x/ D H
0

k .x/; k D 2; 3; : : : ; n: (11.78)
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Note that the function .�1/nC1Hn�1, that appears in Theorem 11.18, plays a role
similar to the role of the function F D F2 � F1 in Lemma 11.2. Consequently, from
Theorem 11.18, Lemma 11.2, and Remarks 11.7, 11.16, we obtain immediately the
following criterion, which can be useful for the verification of higher-order convex
ordering.

Corollary 11.4 ([38]) Let F1; F2W Œa; b� ! R be functions with bounded variation
such that F1.a/ D F2.a/, F1.b/ D F2.b/ and Hk.b/ D 0 .k D 1; 2; : : : ; n/, where
Hk.x/ .k D 1; 2; : : : ; n/ are given by (11.77) and (11.78). Let a < x1 < : : : < xm <

b be the points of sign changes of the function Hn�1 and let .�1/nC1Hn�1.x/ � 0

for x 2 .a; x1/.

• If m is even, then the inequality

Z b

a
f .x/dF1.x/ �

Z b

a
f .x/dF2.x/; (11.79)

is not satisfied by all continuous n-convex functions f W Œa; b� ! R.
• If m is odd, then the inequality (11.79) is satisfied for all continuous n-convex

functions f W Œa; b� ! R if, and only if,

.�1/nC1Hn.x2/ � 0; .�1/nC1Hn.x4/ � 0; : : : ; .�1/nC1Hn.xm�1/ � 0:

(11.80)

In the numerical analysis, some inequalities, which are connected with quadra-
ture operators, are studied. These inequalities, called extremalities, are a particular
case of the Hermite–Hadamard type inequalities. Many extremalities are known
in the numerical analysis (cf. [1, 7, 8] and the references therein). The numerical
analysts prove them using the suitable differentiability assumptions. As proved
by Wąsowicz in the papers [44, 45, 47], for convex functions of higher order,
some extremalities can be obtained without assumptions of this kind, using only
the higher-order convexity itself. The support-type properties play here the crucial
role. As we show in [36, 37], some extremalities can be proved using a probabilistic
characterization. The extremalities, which we study, are known; however, our
method using the Ohlin lemma [31] and the Denuit–Lefèvre–Shaked theorem [13]
on sufficient conditions for the convex stochastic ordering seems to be quite easy.
It is worth noticing that these theorems concern only the sufficient conditions, and
they cannot be used to the proof some extremalities (see [36, 37]). In these cases,
results given in the paper [38] may be useful.

For a function f W Œ�1; 1� ! R, we consider six operators approximating the
integral mean value

I .f / WD 1
2

1Z
�1

f .x/dx:
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They are given by

C.f / WD 1
3

�
f
� �

p
2

2

� C f .0/ C f
� p

2
2

�	
;

G2.f / WD 1
2

�
f
� �

p
3

3

� C f
� p

3
3

�	
;

G3.f / WD 4
9
f .0/ C 5

18

�
f
� �

p
15
5

� C f
� p

15
5

�	
;

L4.f / WD 1
12

�
f .�1/ C f .1/

� C 5
12

�
f
� �

p
5

5

� C f
� p

5
5

�	
;

L5.f / WD 16
45

f .0/ C 1
20

�
f .�1/ C f .1/

� C 49
180

�
f
� �

p
21
7

� C f
� p

21
7

�	
; and

S.f / WD 1
6

�
f .�1/ C f .1/

� C 2
3
f .0/:

The operators G2 and G3 are connected with Gauss–Legendre rules. The operators
L4 and L5 are connected with Lobatto quadratures. The operators S and C concern
Simpson and Chebyshev quadrature rules, respectively. The operator I stands for
the integral mean value (see, e.g., [39, 48–51]).

We will establish all possible inequalities between these operators in the class of
higher-order convex functions.

Remark 11.17 Let X2, X3, Y4, Y5, U, V , and Z be random variables such that

�X2 D 1

2

�
ı�

p
3

3

C ı p
3

3

�
;

�X3 D 4

9
ı0 C 5

18

�
ı�

p
15

5

C ı p
15

5

�
;

�Y4 D 1

12
.ı�1 C ı1/ C 5

12

�
ı�

p
5

5

C ı p
5

5

�
;

�Y5 D 16

45
ı0 C 1

20
.ı�1 C ı1/ C 49

180

�
ı�

p
21

7

C ı p
21

7

�
;

�U D 2

3
ı0 C 1

6
.ı�1 C ı1/;

�V D 1

3

�
ı�

p
2

2

C ı0 C ı p
2

2

�
; and

�Z.dx/ D 1

2
�Œ�1;1�.x/dx:

Then, we have

G2.f / D EŒf .X2/�; G3.f / D EŒf .X3/�;
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L4.f / D EŒf .Y4/�; L5.f / D EŒf .Y5/�;

S.f / D EŒf .U/�; C.f / D EŒf .V/�; I .f / D EŒf .Z/�:

Theorem 11.19 Let f W Œ�1; 1� ! R be 5-convex. Then,

G3.f / � I .f / � L4.f /; (11.81)

G3.f / � L5.f / � L4.f /: (11.82)

Note that the inequalities (11.81) and (11.82) can be simply derived from
Theorems 11.16 and 11.15 (see [38]).

Remark 11.18 The inequalities (11.82) can be found in [45, 47]. Wąsowicz [45]
proved that in the class of 5-convex functions the operators G2; C; S are not
comparable both with each other and with G3;L4;L5.

Theorem 11.20 Let f W Œ�1; 1� ! R be 3-convex. Then,

G2.f / � I .f / � S.f /; (11.83)

G2.f / � C.f / � T.f / � S.f /; (11.84)

where T 2 fG3;L5g.
In [38] is given a new simple proof of Theorem 11.20. Note that from Theo-

rem 11.16, we obtain G3.f / � I .f / and I .f / � S.f /, which implies (11.83). From
Theorem 11.14, we obtain G2.f / � C.f /. By Theorem 11.15, we get C.f / � G3.f /,
C.f / � L5.f /, G3.f / � S.f /, L5.f / � S.f /.

Remark 11.19 The inequalities (11.84) can be found in [44]. Wąsowicz [44] proved
that the quadratures L4, L5, and G3 are not comparable in the class of 3-convex
functions.

Remark 11.20 Moreover, Wąsowicz [44, 46] proved that

C.f / � L4.f /; (11.85)

if f is 3-convex.
The proof given in [44] is rather complicated. This was done using computer

software. In [46], can be found a new proof of (11.85), without the use of any
computer software, based on the spline approximation of convex functions of higher
order. It is worth noticing that Proposition 11.11 does not apply to proving (11.85),
because the distribution functions FV and FY4 cross exactly five-times.

In [38], the following new proof of (11.85) is given. In this proof of (11.85), we
use Corollary 11.4. Note that we have F1 D FV , F2 D FY4 , and H0 D F D FY4 �FV .
By (11.77) and (11.78), we obtain
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H3.x/ D 1
72



.�1 � x/3

C C .1 � x/3
C C 5

��
�

p
5

5
� x

	3

C C
� p

5
5

� x
	3

C

�

�4

�
.�1 � x/3

C C
�
�

p
2

2
� x

	3

C C .�x/3
C C

� p
2

2
� x

	3

C

�

;

H2.x/ D 1
24



� .�1 � x/2

C � .1 � x/2
C � 5

��
�

p
5

5
� x

	2

C C
� p

5
5

� x
	2

C

�

C4

�
.�1 � x/2

C C
�
�

p
2

2
� x

	2

C C .�x/2
C C

� p
2

2
� x

	2

C

�

:

Similarly, H1.x/ can be obtained from the equality H1.x/ D H
0

2.x/. We compute
that x1 D �1 � p

5 C 2
p

2, x2 D 0, and x3 D 1 C p
5 � 2

p
2 are the points of

sign changes of the function H2.x/. It is not difficult to check that the assumptions
of Corollary 11.4 are satisfied. Since

.�1/3C1H3.x2/ D .�1/3C1H3.0/ D 1
72

C
p

5
360

�
p

2
72

> 0;

it follows that the inequalities (11.80) are satisfied. From Corollary 11.4, we
conclude that the relation (11.85) holds.
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