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10.1 Introduction

The functional equation

F.s; F.t; x// D F.s � t; x/; s; t 2 G; x 2 X;

where FW G � X ! X, G is a set with binary operation �, and X is an arbitrary
set, is called the translation equation. Here, we gather only a personal choice of
results concerning the translation equation and its stability published in recent years.
We focus in a more detailed way only on these results, which are not discussed in
the previous survey papers.1 We refer the reader to the earlier survey papers on
this topic:

1Especially the recent ones: [6, 25, 26] are published as open access papers, and [13] is also free
available.
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1. In paper [11], Moszner listed several mathematical domains in which the
translation equation appears. It includes among others abstract geometric and
algebraic objects, groups of transformations, iterations, and dynamical systems.
The author then presents many results concerning the solutions of the translation
equation, including his own construction for the general solution on some
domain. Continuity problems are also discussed.

2. In [13], Moszner continues the presentation of achievements in the theory.
Further results on structure of solutions are listed. This paper also contains
survey on regular (continuous, differentiable, analytic, and monotonic) solutions,
problem of extendability of solutions to bigger domain, and papers of Smajdor
on set-valued iteration semigroups.

3. The survey [14] covers among others the results on stability of the translation
equation obtained by Mach and Moszner.

4. Zdun and Solarz [26] is an extensive survey on iteration theory. Here, we consider
G an additive subgroup or subsemigroup of R or C; in case G D R or G D RC,
we say about iteration group (flow) or semigroup (semiflow), respectively. We
usually write Ft.x/ instead of F.t; x/, hence, the translation equation takes the
form

Ft ı Fs.x/ D FsCt.x/:

The origin of the notion of iteration group is extending the iterates Fn, n 2 N,
of a given FW X ! X, to “real” iterates Ft, t 2 R. We often interpret Ft.x/ as the
state of a point (object) x at the time t.

Topics covered in this paper (quite in detail)2:

• Measurable iteration semigroups: results of Baron, Chojnacki, Jarczyk, and
Zdun on the problem under what condition the measurability of iteration
group/semigroup implies its continuity;

• Embeddability of f into iteration groups or semigroups: when for a given f
there exists fFtg such that F1 D f , moreover, we can demand that iteration
group or semigroup is of suitable regularity. This issue was examined for
diffeomorphisms in R

N , Brouwer homeomorphisms on the plane (mainly
Leśniak’s results), and interval homeomorphisms (mainly the result obtained
by Zdun, Krassowska, and Zhang);

• When two commuting functions (f and g defined on an open interval, without
fixed points) can be embeddable in the same iteration group (i.e. f ; g 2 fFtg)
(mainly the results of Zdun, Krassowska, and Ciepliński);

• Problem of existence of iterative roots (' is an iterative root of order n of a
given f , if 'n D f , where 'n denotes n-th iterate of ') of piecewise monotonic
functions, homeomorphism of the circle, and homeomorphisms of the plane
(Zhang, Liu, Li, Yang, Jarczyk, Jarczyk, Zdun, and Solarz);

2Here, we signal them only, and mention some main authors; for detailed references, we refer the
reader to [26].
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• The structure of iteration groups of homeomorphisms of an interval, and of
homeomorphisms of the circle (Zdun and Ciepliński);

• Different notions of “near” embeddability into iteration semigroup and char-
acterization of such functions (Jarczyk and Przebieracz);

• A few problems concerning set-valued iteration semigroups (existence of
iteration semigroup of single valued functions which is a selection of a given
set-valued iteration group, and existence of majorizing iteration semigroups
(Smajdor, Olko, Piszczek, and Łydzińska);

• Theorems of Matkowski and Jarczyk on iterates of mean-type mappings; and
• Stability of the translation equation (Moszner, Mach, Chudziak, Przebieracz,

Reich, and Jabłoński).

5. The readers interested in the topic of iterative roots should read [6], where many
results (recent and older) are presented in detail, also some open problems are
listed. Here (in Section 10.3), we develop only the topic of conjugacy between F
and its iterative root, for piecewise monotonic F.

6. In [25], Zdun discussed the existence of embeddings of given mappings in
real iteration groups with suitable regularity, the conditions which imply the
uniqueness of embeddings, and the formulas expressing the above embeddings
or their general constructions. Here, in the next section, we refine some new
approach to this subject proposed in [7].

10.2 Recent Advances in the Problem of Embeddability in
Iteration Groups: Embeddability of Homeomorphisms
of the Circle in Set-Valued Iteration Groups

Let S1 D fz 2 C W jzj D 1g be the unit circle with positive orientation, ccŒS1� be
the family of all non-empty convex and compact subsets of S1 (that is, the family of
closed arcs and points of S1). Let FWS1 ! S

1 be a homeomorphism without periodic
points (its rotation number � is irrational). Let LF be the set of all limit points of
orbits of F (it is known that LF is either equal to S

1 or is a nowhere dense perfect
set [4]). Moreover, F is embeddable in continuous iteration group3 if and only if
LF D S

1; in such a case, the continuous embedding is unique up to a constant
[24]. Necessary and sufficient conditions for embeddability in the discontinuous
iteration groups were given in [2] (in this case, F has infinitely many nonmeasurable
embeddings).

In the paper [7], authors proposed a new approach to the problem of embed-
dability. They constructed some substitution of an iteration group in which F can be
embedded.

3That is, there exists an iteration group ff tW S1 ! S
1I t 2 Rg, such that F D f 1 and for every z the

orbits t 7! f t.z/ are continuous.
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Before formulating main theorems from that paper, let us fix some notation.
We assume that LF ¤ S

1. In this case, the set S1 n LF is a countable sum of pairwise
disjoint open arcs, let A be a family of these arcs, ˛.I/ be the middle point of the
arc I, M WD f˛.I/ W I 2 A g, and Ip WD ˛�1.p/ for p 2 M. Hence,

S
p2M Ip is a

decomposition of S1 nLF into open pairwise disjoint arcs. Let L� WD S
1 nS

p2M cl Ip.
There exists exactly one continuous solution ˚ of equation

˚.F.z// D e2� i�˚.z/; z 2 S
1;

such that ˚.1/ D 1. This solution is surjective and increasing (see [3, 23]). Define
Ft.z/ as preimages of singletons:

Ft.z/ WD ˚�1Œfe2� it�˚.z/g�; t 2 R; z 2 S
1:

The family fFtWS1 ! ccŒS1�I t 2 Rg is an iteration group such that F.z/ 2 F1.z/ for
z 2 S

1. It will be called the main set-valued embedding of F. It has the following
properties:

(A1) 8t2R; z2S1 Ft.z/ is either a closed arc cl Ip for some p 2 M or a singleton
belonging to L�;

(A2) 8t2R the function z 7! Ft.z/ is increasing and constant on the arcs
cl Ip, p 2 M;

(A3) 8z2S1 the function t 7! Ft.z/ is periodic with the period 1
�

and strictly
increasing on the arcs cl Ip, p 2 M;

(A4) if Fu.z/ \ Fv.z/ ¤ ;, then u D v C k
�

for a k 2 Z;

(A5) 8p2M F0 is constant on cl Ip, F0Œcl Ip� D cl Ip; F0.z/ D z for z 2 L�;
(A6) 8z2S1

S
t2R Ft.z/ D S

1; and
(A7) 8z2S1 9t1;t22R Ft1 .z/ is an arc, Ft2 .z/ is a singleton.

Some of the above properties characterize the main set-valued embeddings of
F, namely, if a set-valued group fFtWS1 ! ccŒS1�I t 2 Rg fulfills conditions (A1),
(A3), and (A6) (only for one point z0 2 S

1, not necessarily for all z 2 S
1) and

F.z/ 2 F1.z/, then it is the main set-valued embedding of F.
Moreover, the set

T WD ft 2 RI ˚ŒS1 n LF� D e2� it�˚ŒS1 n LF�g;

is an additive, countable, and dense subgroup of R and 1 2 T . It will be called the
supporting group of F.

Let F WD fFtWS1 ! ccŒS1�I t 2 Rg be the main set-valued embedding of F.
It turns out that for every t 2 R and every p 2 M the function Ft is constant on
cl Ip, whence, for every z 2 Ip, Ft.z/ D FtŒcl Ip�. The set FtŒcl Ip� is either an arc
or a point. Similarly, if z 2 L�, then Ft.z/ is either an arc or a point. Group T
characterizes these indices for which Ft maps arcs cl Ip onto arcs and points from
L� onto points from L�.
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The subgroup fFtWS1 ! ccŒS1�I t 2 Tg of F is said to be the refinement set-
valued embedding of F. It possesses a piecewise linear selection fvtWS1 ! S

1I t 2
Tg of homeomorphisms. Moreover, H 2 F has a continuous and injective selection
if and only if H belongs to the refinement set-valued embedding of F.

10.3 Recent Advances in the Subject of Iterative Roots:
Conjugacy Between Piecewise Monotonic Functions
and Their Iterative Roots

First, we set some notations in order to formulate theorems in this section in a more
concise way.

Let I WD Œa; b� for a < b < 1 and FW I ! R be a continuous function. A point
c 2 .a; b/ is called a fort of F if F is not strictly monotonic in any neighbourhood
of c. We say that F is piecewise monotonic (F 2 PM ŒI�) if the number N.F/ of
forts of F is finite.

We put S.F/ WD fc1; c2; : : : ; cN.F/g for the set of all forts of piecewise mono-
tonic F. Additionally, put c0 D a and cN.F/C1 D b and define Ii WD Œci; ciC1� for
i D 0; 1; : : : ; N.F/. It is known that [27, 28] either there exists an integer r 2 N[f0g
such that

0 D N.F0/ < N.F/ < N.F2/ < : : : < N.Fr/ D N.FrC1/ D N.FrC2/ D : : : ;

or for every k 2 N[f0g we have N.Fk/ < N.FkC1/. In the first case, we put H.F/ WD
r, and in the second H.F/ WD 1, where H.F/ is called the non-monotonicity height
of piecewise monotonic F.

For F 2 PM ŒI� with H.F/ D 1, the maximal interval K.F/, containing FŒI� and
such that F is monotonic on it, is called the characteristic interval of F [27, 28].

If f is a continuous iterative root of F of order n, then for every i 2 f0; : : : ; N.F/g
there exists a positive integer k � minfn; N.F/g and i1; : : : ik�1 2 f0; : : : ; N.F/g
such that

Ii ! Ii1 ! : : : ! Iik�1 ! K.F/;

where by Il1 ! Il2 we mean f .Il1 / � Il2 . Let kf .i/ denote the number k described
above. The pace `, of iterative root f , is defined as maxfkf .i/I i 2 f0; 1; : : : ; N.F/gg.

Every iterative root f of F can be extended from the characteristic interval
K.F/ [9].

It turns out that all continuous monotonic functions are conjugate to their iterative
roots [29] (we say that f is conjugate to g if there exists a homeomorphism ˚ such
that ˚ ı f D g ı ˚). It enables us to understand the topological dynamics properties
of iterative root f (explicit formulas can be complicated) having given F D f n.
In [8], authors gave examples of continuous piecewise monotonic but not monotonic
functions, in order to prove that such functions:
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• May have no iterative roots conjugate to them;
• May have some iterative roots not conjugate to them; and
• May have some iterative roots (n ¤ 1) conjugate to them.

Moreover, they give necessary and sufficient conditions under which piecewise
monotonic F is conjugate to its iterative root f .

Theorem 10.1 Suppose that the mapping F 2 PM ŒI� with N.F/ � 1 and its
continuous iterative root F having pace 1 are conjugate. Suppose that F is strictly
increasing on its characteristic interval K.F/. Moreover, assume that K.F/ D
Fix.f / [ J1 [ J2 [ : : : [ Jd, where Fix.f / is the set of all fixed points of f and J0

ms
(m D 1; 2; : : : d) are pairwise different intervals with endpoints being fixed points
of f and interiors without fixed points. Then, f is strictly increasing on K.F/ and for
each interval Jm, m D 1; : : : ; d, either

(H1) ff .ci/I i D 1; 2 : : : ; N.F/g \ int Jm D ;, or
(H2) There is a point c� 2 int Jm such that

(
f .cj/ 2 .f 2.c�/; f .c�/�; if f .c�/ < c� or

f .cj/ 2 .c�; f .c�/�; if f .c�/ > c�

for all cj
0s (j D 1; 2; : : : ; N.F/) satisfying f .cj/ 2 int Jm.

Also,

(H1’) fF.ci/I i D 1; 2 : : : ; N.F/g \ int Jm D ;, or
(H2’) There is a point c� 2 int Jm such that

(
F.cj/ 2 .F ı .f jK.F//.c�/; F.c�/�; if F.c�/ < c� or

F.cj/ 2 .F ı .f jK.F//
�1.c�/; F.c�/�; if F.c�/ > c�

for all cj
0s (j D 1; 2; : : : ; N.F/) satisfying F.cj/ 2 int Jm.

Theorem 10.2 Suppose that the mapping F 2 PM ŒI� with N.F/ � 1 is strictly
increasing on its characteristic interval K.F/. Assume that K.F/ D Fix.F/ [ J1 [
J2[: : :[Jd, where Fix.F/ is the set of all fixed points of F and Jm

0s (m D 1; 2; : : : d)
are pairwise different intervals with endpoints being fixed points of F and interiors
without fixed points. Suppose that a continuous iterative root f of F is strictly
increasing on K.F/. Moreover, let F and f satisfy either

(H3) fF.ci/I i D 0; 1; 2 : : : ; N.F/ C 1g \ int Jm D ;, or
(H4) There is a point c� 2 int Jm such that

(
F.cj/ 2 .F ı .f jK.F//.c�/; F.c�/�; if F.c�/ < c� or

F.cj/ 2 .F ı .f jK.F//
�1.c�/; F.c�/�; if F.c�/ > c�

for all cj
0s (j D 0; 1; 2; : : : ; N.F/ C 1) satisfying F.cj/ 2 int Jm.

Then, F is conjugate to f .
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10.4 Different Definitions of Stability of the Translation
Equation

The question of Ulam, concerning the stability of group homomorphisms, posed
in 1940, and the partial affirmative answer of Hyers [5] is often considered as
the origin of the theory of stability of functional equations. But, even in these
papers: [5, 21, 22], the precise formulation of what to understand as stability differs.
Moszner devoted a few papers to define different kind of stabilities and examined
the relations between them. See [10, 12, 14–17]. In this section, we present some
of the results concerning the different stabilities of the translation equation and,
in the next section, of the systems of functional equations defining (equivalently)
dynamical systems (see [17, 18] and [16]).

In this section, let .S; d/ be a metric space, .G; �/ a groupoid. We start with
reminding some definitions.

Definition 10.1 We say that the translation equation is stable in the Hyers–Ulam
sense (shortly stable) if there exists a function ˚ W .0; 1/ ! .0; 1/ (called measure
of stability) such that for every " > 0 and every function HW G � S ! S, if

d.H.x; H.y; ˛//; H.x � y; ˛// � ˚."/; ˛ 2 S; x; y 2 G;

then there exists a solution FW G � S ! S of the translation equation

F.x; F.y; ˛// D F.x � y; ˛/ (10.1)

such that

d.G.x; ˛/; F.x; ˛// � "; x 2 G; ˛ 2 S:

Moreover, if there exists such a function ˚ which is unbounded, we say that
Equation (10.1) is normally stable.

If there exists such ˚ of the form ˚."/ D K", we say that Equation (10.1) is
strongly stable.

Definition 10.2 We say that the translation equation is uniformly b-stable if there
exists a function � W .0; 1/ ! .0; 1/ (called measure of uniform b-stability), such
that for every ı > 0 and every function HW G � S ! S, if

d.H.x; H.y; ˛//; H.x � y; ˛// � ı; ˛ 2 S; x; y 2 G;

then there exists a solution FW G � S ! S of the translation equation (10.1) such that

d.H.x; ˛/; F.x; ˛// � �.ı/; ˛ 2 S; x 2 G:
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Moreover, if there exists such a function � which is unbounded, we say that the
uniform b-stability is normal.

If there exists such � of the form �.ı/ D kı, we say that Equation (10.1) is
strongly b-stable.

Definition 10.3 We say that the translation equation is b-stable if for every function
HW G � S ! S such that

G � G � S 3 .x; y; ˛/ 7! d.H.x; H.y; ˛//; H.x � y; ˛//

is bounded there exists a solution F of (10.1) such that

G � S 3 .x; ˛/ 7! d.H.x; ˛/; F.x; ˛//

is bounded.
Notice that uniform b-stability implies b-stability.

We have the following results concerning these notions.

Theorem 10.3 (1–4 in [17], 5 in [19] and [1])

1. If the stability of (10.1) is normal, then this equation is uniformly b-stable.
2. Stable equation (10.1) does not need to be necessarily b-stable.
3. If the b-stability of (10.1) is uniform and normal, then this equation is normally

stable.
4. Uniform b-stability of (10.1) does not necessarily imply stability.
5. The translation equation is normally stable with ˚."/ D "=10 and normally

uniformly b-stable with �.ı/ D 10ı, in the class of continuous functions with
.G; �/ D .R; C/ and S being a real interval.

10.5 Stability of Dynamical Systems

In this section, we confine ourselves to continuous function R � I ! I, where
I � R is nondegenerate interval. Such class of function is natural for consideration
of dynamical systems.

Definition 10.4 The continuous function FWR � I ! I is called dynamical system
if F is a solution of the translation equation

F.s; F.t; x// D F.s C t; x/; s; t 2 R; x 2 I; (10.2)

and satisfies one or (equivalently, as it appears), every, of the following condi-
tions:

1. F.0; x/ D x, for x 2 I,
2. .F0/0.x/ D 1, for x 2 I, where F0 D F.0; �/,
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3. I 3 x 7! F.0; x/ is strictly increasing,
4. .F0/0 exists, and
5. F is a surjection.

Hence, we can consider stability problem for systems: translation equation and
one of the equations appearing in the first two of the above conditions; and stability
problem of the translation equation in the class of functions described by one of the
last three of the above conditions. Full research on this topic can be found in [16–
18]. Here, we present the selected results. The definitions from the previous section
can be complemented by the notion of restricted uniform b-stability (definition
almost the same as the definition of uniform b-stability, only the function � is
defined on some interval .0; ı0/ instead of on the whole positive halfline).

Theorem 10.4 1. The translation equation is normally stable and normally uni-
formly b-stable in the class of surjective functions.

2. The translation equation is not stable in any of the classes: such F that F0 is
strictly increasing, and such F that the derivative of F0 exists.

3. The translation equation is b-stable, uniformly b-stable, restrictedly uniformly
b-stable, and normally uniformly b-stable only for I bounded , in both classes:
such F that F0 is strictly increasing, and such F that the derivative of F0 exists.

4. The system of equations: “(10.2) & .F0/0 � 1” is stable and restrictedly
normally uniformly b-stable for every I; normally stable, normally uniformly
b-stable, b-stable, and uniformly b-stable only for I bounded.

5. The system of equations:“(10.2) & F0 D id” is stable and normally stable only
for I D R; b-stable, uniformly b-stable, restrictedly uniformly b-stable, and
normally uniformly b-stable only for I bounded and I D R.

10.6 Approximate Continuous Solutions of the Translation
Equation

In this section, we concentrate only on a class of continuous function R � I ! I,
where I � R is a nondegenerate interval.

In paper [20], there were listed some conditions which every approximate
continuous solution of the translation equation, G, satisfies. These conditions show
similarities between an exact solution and approximate solution of the translation
equation. One of them is the existence of an exact solution of the translation equation
in some neighbourhood of G. It is of interest that assuming only the existence of
a solution of the translation equation in a neighbourhood of GWR � I ! I does
not suffice to obtain that G satisfies the translation equation approximately. More
precisely, in paper [18] it was shown that
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• The translation equation is not inversely stable (i.e. it is not true that
for every " > 0 there exists a ı > 0 such that for every continuous function

HWR � I ! I if there exists a continuous solution F of the translation equation
such that

jF.t; x/ � H.t; x/j � ı; t 2 R; x 2 I;

then

jH.s; H.t; x// � H.t C s; x/j � "; s; t 2 R; x 2 I/I

• The translation equation is not inversely b-stable for unbounded intervals I (i.e.
it is not true that

for every continuous F; HWR � I ! I if F is a solution of the translation
equation and

R � I 3 .t; x/ 7! jF.t; x/ � H.t; x/j

is bounded, then

R � R � I 3 .t; s; x/ 7! jH.s; H.t; x// � H.t C s; x/j

is bounded); and
• The translation equation is not inversely uniformly b-stable for unbounded

intervals I (i.e. it is not true that
for every ı > 0 there exists a " > 0 such that for every continuous function

HWR � I ! I if there exists a continuous solution F of the translation equation
such that

jF.t; x/ � H.t; x/j � ı; t 2 R; x 2 I;

then

jH.s; H.t; x// � H.t C s; x/j � "; s; t 2 R; x 2 I/:

Now, we are going to remind the characterization of a continuous solution of the
translation equation (Theorem 10.5). Next, we present the necessary (Theorem 10.6)
and sufficient condition (Theorem 10.7) for satisfying the translation equation
approximately.

Theorem 10.5 Let FWR � I ! I be a solution of the translation equation, i.e.

F.s; F.t; x// D F.s C t; x/; s; t 2 R; x 2 I:
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Put V D H.R � I/. Then, there exist open, disjoint, intervals Un � V and
homeomorphisms hnWR ! Un such that for every x 2 Un

F.t; x/ D hn.h�1
n .x/ C t/; t 2 R;

and

F.t; x/ D x; x 2 V n
[

n

Un; t 2 R:

Moreover, there exists a continuous function f W I ! V, such that f .x/ D x for x 2 V
and

F.t; x/ D F.t; f .x//; t 2 R; x 2 I n V:

Conversely, for every continuous f W I ! I such that f ı f D f , a family of
open, disjoint intervals fUnI n 2 N � Ng such that Un � f .I/, and a family of
homeomorphisms hnWR ! Un, n 2 N, every function of the form

F.t; x/ D
�

hn.h�1
n .f .x// C t/; if f .x/ 2 Un; t 2 RI

f .x/; if f .x/ … S
n2N Un; t 2 R

is a continuous solution of the translation equation.

Theorem 10.6 Suppose that HWR � I ! I is a continuous solution of 4

jH.s; H.t; x// � H.s C t; x/j � ı; x 2 I; s; t 2 R:

Then,

(a) There exist open, disjoint intervals Un � I, n 2 N, of the length greater or
equal to 6ı, homeomorphisms hnWR ! Un, n 2 N, and a continuous function
f W I ! I, such that f ı f D f , Un � f .I/, n 2 N,

jH.t; x/ � f .x/j � 10ı; t 2 R; f .x/ …
[

n2N

Un;

jH.t; x/ � hn.h�1
n .f .x// C t/j � 10ı; t 2 R; f .x/ 2 Un; n 2 NI

(b) 8.x2I; n2N/ .f .x/ 2 Un ) H.R; x/ D Un/;
(c) 8.x2I; n2N/ .x 2 Un ) f .x/ D x/;
(d) 8.x2I; t2R/ .jf .H.t; x// � H.t; x/j � 2ı/;

4The proof of this theorem can be found in [19] and [20], and the construction of homeomorphisms
hnWR ! Un was done in [1].
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(e) 8x2I

�

f .x/ … S

n2N
Un )

�

8t2R f .H.t; x// … S

n2N
Un

��

I

(f) 8x2I

�

f .x/ … S

n2N
Un ) .8s1;s22R jH.s1; x/ � H.s2; x/j � 6ı/

�

I
(g) The set of values of function f , Vf , is contained in the set of values of function

H, VH, i.e. Vf � VH;
(h) Every interval Un is “invariant”, more precisely

H.R; x/ D Un; x 2 Un; n 2 N;

and

H.t; Un/ D Un; t 2 R; n 2 NI

(i) For every n 2 N, put an WD infUn, bn WD supUn. Either hn is an increasing
homeomorphism,

lim
t!1 H.t; x/ D bn; lim

t!�1 H.t; x/ D an; x 2 Un;

and H.�; x/ “almost increases”, i.e. for every t 2 R we have H.s; x/ > H.t; x/�
2ı for s > t; or hn is a decreasing homeomorphism,

lim
t!1 H.t; x/ D an; lim

t!�1 H.t; x/ D bn; x 2 Un;

and H.�; x/ “almost decreases”, i.e. for every t 2 R we have H.s; x/ < H.t; x/C
2ı for s > t;

(j) For every n 2 N

H.t; an/ D an; H.t; bn/ D bn; t; 2 R;

whenever an, bn are in I;
(k) For every x 2 I such that x … S

n2N
Un but there are n; m 2 N with bn � x � am,

we have

jH.t; x/ � xj � 6ı; t 2 RI

(l)

jH.t; x/ � H.t; f .x//j � 10ı; t 2 R; x 2 II and
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(m) Moreover, for every n 2 N there are two possibilities:

• Either there exists �n > 0 such that

jt1 � t2j � �n ) jhn.t1/ � hn.t2/j � 21ı; t1; t2 2 R; (10.3)

for ��
n WD supf�n > 0 W (10.3) holdsg 2 .0; 1� we have5

hn.t���
n Ch�1

n .f .x/// � H.t; x/ � hn.tC��
n Ch�1

n .f .x///; t 2 R; f .x/ 2 Un;

if hn is increasing,

hn.t���
n Ch�1

n .f .x/// � H.t; x/ � hn.tC��
n Ch�1

n .f .x///; t 2 R; f .x/ 2 Un;

if hn is decreasing,
• or such �n, for which (10.3) holds, does not exist and

H.t; x/ D hn.t C h�1
n .f .x//; t 2 R; f .x/ 2 Un:

Theorem 10.7 Let I be a nondegenerate real interval, ı; A1; A2; B; C; D > 0,
suppose that HWR � I ! I is a continuous function. If

(a) There exist open, disjoint intervals Un � I, n 2 N, homeomorphisms hnWR !
Un, n 2 N, and a continuous function f W I ! I, such that f ı f D f , Un � f .I/,
n 2 N,

jH.t; x/ � f .x/j � A1ı; t 2 R; f .x/ …
[

n2N

Un;

jH.t; x/ � hn.h�1
n .f .x// C t/j � A2ı; t 2 R; f .x/ 2 Un; n 2 NI

(b) 8.x2I; n2N/ .f .x/ 2 Un ) H.R; x/ � Un/;
(c) 8.x2I; n2N/ .x 2 Un ) f .x/ D x/;
(d) 8.x2I; t2R/ .jf .H.t; x// � H.t; x/j � Bı/;

(e) 8x2I

�

f .x/ … S

n2N
Un )

�

8t2R f .H.t; x// … S

n2N
Un

��

I

(f) 8x2I

�

f .x/ … S

n2N
Un ) .8s1;s22R jH.s1; x/ � H.s2; x/j � Cı/

�

I and

(g) Moreover, for every n 2 N there are two possibilities:

• Either there exists �n > 0 such that

jt1 � t2j � �n ) jhn.t1/ � hn.t2/j � Dı; t1; t2 2 R; (10.4)

5If ��

n D 1, then by hn.˙1/ we understand lim
t!˙1

hn.t/.
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for ��
n WD supf�n > 0 W (10.4) holdsg 2 .0; 1� we have6

hn.t � ��
n C h�1

n .f .x/// � H.t; x/ � hn.t C ��
n C h�1

n .f .x///; t 2 R; f .x/ 2 Un;

if hn is increasing,

hn.t � ��
n C h�1

n .f .x/// � H.t; x/ � hn.t C ��
n C h�1

n .f .x///; t 2 R; f .x/ 2 Un;

if hn is decreasing,
• or such �n, for which (10.4) holds, does not exist and

H.t; x/ D hn.t C h�1
n .f .x//; t 2 R; f .x/ 2 Un;

then

jH.s; H.t; x// � H.t C s; x/j � Eı; s; t 2 R; x 2 I;

where E WD maxf.2A2 C D/; minf3A1 C B; A1 C B C Cgg.
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