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Dedicated to the memory of
Stanisław Marcin Ulam (1909–1984)
who more than 75 years ago
posed a problem concerning
approximate homomorphisms of groups
which stimulated
a long-lasting interest
in stability of functional equations



Preface

The present book has been composed on the occasion of the 16th International
Conference on Functional Equations and Inequalities (ICFEI) that took place in
the Mathematical Research and Conference Center in Będlewo, Poland, on May
17–23, 2015. We dedicate it to the memory of Stanisław Marcin Ulam (April 13,
1909–May 13, 1984), who 77 years ago posed a problem concerning approximate
homomorphisms of groups that stimulated long-lasting research into stability of
functional equations and inequalities (FEI). Several papers featured in this volume
have been devoted fully or partly to Ulam’s stability problem.

The book consists of articles written by eminent scientists from the international
mathematical community, who present important research works in the field of
FEI as well as related subjects. These works provide an insight into the progress
achieved on the study of various problems of nonlinear flavor and present up-to-date
developments of selected topics of FEI as well as of related fields of mathematics.
Both old and new results are presented in expository and research papers written
by 17 authors from 8 countries who have been intensively involved in those areas
of investigations. Special emphasis has been placed on a variety of topics applying
methods and techniques involving or originating from FEI.

Several of these results have been influenced and inspired by the work of
S.M. Ulam, the well-known mathematician and physicist. Emphasis is placed on
those questions, concerning approximate homomorphisms, that he posed in 1940.

We aim for this publication to serve as a kind of guidebook for mathematicians
and other researchers, whose works are somewhat connected or related to the fields
of FEI and in particular to Ulam’s type stability.

Subjects which have been treated in this book include (in order of appearance in
the volume):

– Some quasi-means and the behavior of their difference
– The isometric approximation problem in bounded sets and some applications of

the results related to it to the extension problems for bilipschitz and quasisym-
metric maps

– A mathematization method of social choice

vii
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– One-parameter subgroups (iteration groups) of the group of all invertible power
series in one indeterminate x over C and a description of their construction

– The Fischer-Muszély equation, its pexiderization, and Hyers-Ulam stability, as
well as two inequalities related to it

– The “alienation phenomenon” for functional equations (and inequalities)
– Haar meager sets and Haar null sets and some analogies between them
– Different types of stability of a system of two equations related to one-

dimensional dynamical systems
– The role of functional equations in the asymptotic analysis needed to elicit the

characterization of various laws in probability theory
– The translation equation and its stability
– Stochastic convex ordering and some applications of the results related to it to

the Hermite-Hadamard type inequalities
– Two constructions of the field of reals closely related to functional equations and

their stability
– The generalized Dhombres functional equation and a classification of its possible

solutions as well as a description of the structure of periodic points contained in
the range of the solutions

– Functional equations as well as their stability and superstability on hypergroups
– The nonstandard analysis approach to some systems of functional equations and

their stability in the compact-open topology

It is a pleasure to express our deepest thanks to all of the mathematicians
who, through their works, participated in this volume. We would also wish to
acknowledge the support of the reviewers and the superb assistance that the staff
of Springer has provided for this publication.

Kraków, Poland Janusz Brzdęk
Kraków, Poland Krzysztof Ciepliński
Athens, Greece Themistocles M. Rassias
March 2017
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Chapter 1
The Behavior of the Difference Between Two
Means

Shoshana Abramovich

Abstract The inequalities derived in this article are related to the two
quasi-arithmetic means Wp .x; �/ and Mq .x; �/. Here we extend some results about
the difference Wp .x; �/ � Mq .x; �/ for several sets of the values p and q.

Keywords Quasi-arithmetic means • Power means • Convex functions •
Jensen’s inequality • Subquadratic functions

Mathematics Subject Classification (2010) Primary 26D15, 47A63, 47A64;
Secondary 26A51

1.1 Introduction

In this paper we extend the results proved in [2]. We discuss the behavior of the
quasi-means

Wf .x; �/ D f �1
 

f

 
nX

rD1
�rxr

!
C

nX
rD1

�rf

 ˇ̌̌
ˇ̌xr �

nX
iD1

�ixi

ˇ̌̌
ˇ̌
!!

; (1.1)

nX
rD1

�r D 1; �r � 0; xr � 0; r D 1; : : : ; n;

in relation to the quasi-arithmetic means

Mg .x; �/ D g�1
 

nX
rD1

�rg .xr/

!
(1.2)
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2 S. Abramovich

where x D .x1; : : : ; xn/, � D .�1; : : : ; �n/ and the function f in (1.1) and g in (1.2)
are increasing convex functions on x � 0; satisfying f .0/ D g .0/ D 0.

In particular we deal with f .x/ D xp; p � 1; x � 0 and g .x/ D xq; q � 1,
x � 0. In these cases (1.1) and (1.2) are

Wp .x; �/ D
  

nX
rD1

�rxr

!p

C
nX

rD1
�r

ˇ̌̌
ˇ̌xr �

nX
iD1

�ixi

ˇ̌̌
ˇ̌
p! 1

p

(1.3)

and

Mq .x; �/ D
 

nX
rD1

�rx
q
r

! 1
q

: (1.4)

The identity

W2 .x; �/ � M2 .x; �/ D 0 (1.5)

leads to the question about what can be said about the difference

Wf .x; �/ � Mg .x; �/

and in particular about the difference

Wp .x; �/ � Mq .x; �/ ; p ¤ q:

In [7] and in [4] it was proved that

Wp .x; �/ � Mq .x; �/ � 0; p D q � 2; x � 0; (1.6)

holds, and

Wp .x; �/ � Mq .x; �/ � 0; 1 � p D q � 2; x � 0: (1.7)

In [2] it was proved that Wp .x; �/ is decreasing in p when 0 � xi � 2x; i D 1; : : : ; n;
where

x D
nX

iD1
�ixi:

This, together with (1.5)–(1.7) leads to Theorem 3 in [2] that part of which we quote
here:

Theorem 1.1 Let

xi � 0; �i � 0; xi � 2

nX
jD1

�jxj; i D 1; : : : ; n;
nX

iD1
�i D 1:



1 The Behavior of the Difference Between Two Means 3

If

1 � s � t � 2;

then

M1 .x;�/ � Ms .x;�/ � Mt .x;�/ � M2 .x;�/ D W2 .x;�/

� Wt .x;�/ � Ws .x;�/ � 21=sM1 .x;�/ :

If

s � t � 2;

then

Ms .x;�/ � Mt .x;�/ � M2 .x;�/ D W2 .x;�/

� Wt .x;�/ � Ws .x;�/ � M1 .x;�/ ;

where Wp .x;�/ and Mp .x;�/ are as in (1.3) and (1.4).
Moreover, the difference

Ms .x;�/ � Ws .x;�/

increases when s � 1, is negative when 1 � s < 2, positive when s > 2, and is
equal to zero when s D 2.

In Section 1.2 we prove inequalities related to the difference

Wp .x; �/ � Mq .x; �/

for

� D
�
1

2
;
1

2

�
; p � 2;

1

p
C 1

q
D 1

and show an example for

� D .�1; �2/ ; 0 � �1 � 1

2
� �2 � 1:

In Section 1.3 we discuss the general quasi-means (1.1) and (1.2).
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1.2 The Behavior of Mp .x1; x2/ � Wq .x1; x2/

In this section we investigate the difference

�.p; q/ D Mp .x1; x2/ � Wq .x1; x2/ (1.8)

D
�

xp
1 C xp

2

2

� 1
p

�
��

x1 C x2
2

�q

C
� jx2 � x1j

2

�q� 1
q

; 0 � x1; x2;

for different values of p; q � 1.
We know that Mp .x1; x2/ is increasing with p; p � 0 and that Wq .x1; x2/

decreases with q; q � 0. Hence the difference �.p; q/ as defined in (1.8) increases
when p and q increase. In particular

�.p; p/ � �.2; 2/ D 0 � �.q; q/ ; 1 � q � 2 � p; (1.9)

and

�.p2; q2/ � �.p; p/ � �.2; p/ � �.2; 2/ D 0 (1.10)

� �.q; 2/ � �.q; q/ � �.p1; q1/ ;

1 � p1; q1 � q � 2 � p � p2; q2:

Inequalities (1.9) and (1.10) lead to the following questions:

Question 1 For what p and q

�.q; p/ D
�

xq
1 C xq

2

2

� 1
q

�
��

x1 C x2
2

�p

C
�x2 � x1

2

�p
� 1

p

� 0; (1.11)

x2 � x1 � 0; 1 � q � 2 � p;

holds?

Remark 1.1 It is obvious that (1.11) holds for q D 2 and p � 2 and for q D 1

and p � 2 this is not the case. This means that �.q; p/ does not hold for every
1 � q � 2 � p.

Question 2 For what p and q

�.p; q/ D
�

xp
1 C xp

2

2

� 1
p

�
��

x1 C x2
2

�q

C
�x2 � x1

2

�q
� 1

q

� 0; (1.12)

x2 � x1 � 0; 1 � q � 2 � p;

holds.
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Remark 1.2 It is obvious that (1.12) is valid for 1 � q < 2 D p and does not hold
for q D 2 < p.

First we will see that these two questions are related:

Theorem 1.2 Let p and q be given and p � 2 � q � 1; x2 � x1 � 0. Then:

Case a. When 1=p C 1=q D 1; inequality (1.11) holds iff inequality (1.12) holds.
Case b. When 1=p C 1=q > 1; if inequality (1.11) holds, then inequality (1.12)

holds.
Case c. When 1=p C 1=q < 1; if inequality (1.12) holds, then inequality (1.11)

holds.

Proof For p � 2 � q � 1; x2 � x1 � 0; substituting

y1 D x2 � x1
2

; y2 D x2 C x1
2

in �.q; p/ we get

� 2� 1
q �.p; q/ D

�
yq
1 C yq

2

2

� 1
q

(1.13)

�21�
�
1
p C 1

q

� ��
y1 C y2
2

�p

C
�y2 � y1

2

�p
� 1

p

:

Then from (1.13) we deduce the following.

Case a: 1=p C 1=q D 1. From

�2� 1
q �.p; q/ D �.q; p/ ;

we get that the proof of Case a is complete.
Case b: 1=p C 1=q > 1. Note that if �.q; p/ � 0, then (1.11) holds, because

2
1�
�
1
p C 1

q

�
< 1:

Hence we get from (1.13) that also

�2� 1
q �.q; p/ � 0

and therefore (1.12) holds. The proof of Case b is complete.
Case c: follows similarly. ut
Conclusion Once we have p0 and q0; 1 < q0 � 2 � p0 that satisfy �.q0; p0/ � 0,
then because of the monotonicity with respect to q of the power means it is clear that
if 1 < q0 � q1 Inequality (1.11) holds too for q1 and p0. It is also obvious that there
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is an interval Œ1; q2� ; q2 < q0 such that Inequality (1.11) is not satisfied because for
q D 1

x1 C x2
2

<

��
x1 C x2
2

�p

C
�x2 � x1

2

�p
� 1

p

;

x2 > x1 > 0; 1 D q; 2 � p:

Similarly, let p0 and q0 satisfy (1.12). Then if p1 < p0 (1.12) is also satisfied for p1
and q0. On the other hand, there is p2 > p0 for which Inequality (1.12) for p2 and q0
does not hold because

��
x1 C x2
2

�q

C
�x2 � x1

2

�q
� 1

q

; x2 � x1 � 0

is decreasing in q and

��
x1 C x2
2

�q

C
�x2 � x1

2

�q
� 1

q

>

"�
x1 C x2
2

�2
C
�x2 � x1

2

�2# 1
2

D
�

x21 C x22
2

� 1
2

:

Therefore for p2 big enough and q < 2 but close enough to 2 the Inequality (1.12)
for these q and p2 is not satisfied.

In the following theorem we demonstrate sufficient answers to Questions 1 and 2
under the conditions of Case a of Theorem 1.2.

Theorem 1.3 Let p � 2. Then for x2 � x1 � 0 and an integer p

�
xp
1 C xp

2

2

� 1
p

�
"�

x1 C x2
2

� p
p�1

C
�x2 � x1

2

� p
p�1

# p�1
p

(1.14)

and

0
@x

p
p�1

1 C x
p

p�1

2

2

1
A

p�1
p

�
��

x1 C x2
2

�p

C
�x2 � x1

2

�p
� 1

p

(1.15)

hold.

Proof As

1 <
p

p � 1 � 2;
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and

f .x/ D xp=.p�1/; x � 0;

is convex, we get from (1.7) that

0
@x

p
p�1

1 C x
p

p�1

2

2

1
A

p�1
p

�
"�

x1 C x2
2

� p
p�1

C
�x2 � x1

2

� p
p�1

# p�1
p

x2 � x1 � 0:

As

p

p � 1 � p

we get the inequality satisfied by power means

0
@x

p
p�1

1 C x
p

p�1

2

2

1
A

p�1
p

�
�

xp
1 C xp

2

2

� 1
p

:

We will show that when p � 2 is an integer and x2 � x1 � 0

�
xp
1 C xp

2

2

� 1
p

�
"�

x1 C x2
2

� p
p�1

C
�x2 � x1

2

� p
p�1

# p�1
p

holds. Moreover as Wq .x1; x2/ decreases for

q1 � q D p

p � 1
and as Mp .x1; x2/ increases in p; therefore

�.p1; q1/ � 0

for p1 � p and

q1 � p

p � 1 :

By the change of variables

y1 D x2 � x1
2

; y2 D x2 C x1
2
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instead of (1.14) we have to prove

.y2 C y1/
p C .y2 � y1/

p � 2

�
y

p
p�1

2 C y
p

p�1

1

�p�1
: (1.16)

Equality holds in (1.16) for y1 D 0 and for y1 D y2.
By the change of variables

z1 D y
1

p�1

1 ; z2 D y
1

p�1

2 ;

we get from (1.16) that we need to prove the inequality

�
zp�1
1 C zp�1

2

�p C
�

zp�1
2 � zp�1

1

�p � 2
�
zp
1 C zp

2

	p�1
(1.17)

for z2 � z1 � 0; p � 2. Equality holds in (1.17) when z1 D 0 and for z1 D z2.
With no loss of generality, when z1 > 0; we may assume that z1 D 1 and we get

from (1.17) that we want to prove the inequality

F .z/ D 2 .zp C 1/p�1 �
h�

zp�1 C 1
	p C �

zp�1 � 1	p
i

� 0; z � 1: (1.18)

Note that

F .1/ D 0:

For an integer p; p � 2 we will show that Inequality (1.18) holds.
We will use Newton Binomial Expansion of

.1C zp/p�1

and for

.1C zp�1/p C .zp�1 � 1/p:

It is easy to verify that in the expansion of (1.18) we get

F .z/ D 2

p�1X
kD0

�
p � 1

k

�
.zp/k (1.19)

�
2
4 pX

jD0

�
p
j

� �
zp�1	j C

pX
jD0

�
p
j

� �
zp�1	j

.�1/.p�j/

3
5
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and that there are 3 .m � 1/ powers with non-zero coefficients of zi; i D
0; : : : ; p .p � 1/ when p D 2m; when m is an integer. This is because in

2

p�1X
kD0

�
p � 1

k

�
.zp/k

there are p D 2m non-zero terms and in

pX
jD0

�
p
j

� �
zp�1	j C

pX
jD0

�
p
j

� �
zp�1	j

.�1/.p�j/

there are m C 1 non-zero terms, and also the coefficients of z0 and of zp.p�1/ in

2

p�1X
kD0

�
p � 1

k

�
.zp/k

and in

pX
jD0

�
p
j

� �
zp�1	j C

pX
jD0

�
p
j

� �
zp�1	j

.�1/.p�j/

of F .z/ in (1.19) cancel each other.
The same number of powers with non-zero coefficients is when p D 2m C 1.
We prove our result for odd integers. We get the same result when p is an even

integer.
For p D 2m C 1, m � 1; when m is an integer, we will see that the sum of the

following kth three consecutive term in the expansion (1.19) satisfies

Wk .z/ D
�

2m
2k C 1

�
z.2mC1/.2kC1/

�
�
2m C 1

2k C 1

�
z2m.2kC1/ C

�
2m
2k

�
z.2mC1/2k � 0

for k D 0; : : : ;m � 1.
The vector ��

2m
2k C 1

�
;

�
2m C 1

2k C 1

�
;

�
2m
2k

��

can be rewritten as

.2m/Š

.2k C 1/Š .2m � 2k/Š
.2m � 2k; 2m C 1; 2k C 1/ :
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Therefore

Wk .z/ D .2m/Š

.2k C 1/Š .2m � 2k/Š

�
h
.2m � 2k/ z.2mC1/.2kC1/ � .2m C 1/ z2m.2kC1/ C .2k C 1/ z2k.2mC1/i

or

Wk .z/ D .2m/Š

.2k C 1/Š .2m � 2k/Š
z.2mC1/2k

� 
.2m � 2k/ z2mC1 � .2m C 1/ z2m�2k C .2k C 1/
�
;

Wk .1/ D Wk .0/ D 0:

Define

Rk .z/ D .2m � 2k/ z2mC1 � .2m C 1/ z2m�2k C .2k C 1/ ; k D 0; : : : ;m � 1
The derivative of R .z/ is

R0
k .z/ D .2m � 2k/ z2m .2m C 1/ � .2m C 1/ z2m�2k�1 � .2m � 2k/

D .2m C 1/


z2kC1 � 1�

and we get that

R0
k .1/ D 0

and

R0
k .z/ � 0

because z � 1; k � 0; m > k.
Therefore as R0

k .1/ D 0 and R0
k .z/ > 0; Rk .z/ > 0; k D 0; : : : ;m � 1 hence

Wk .z/ � 0; k D 0; : : : ;m � 1:
Therefore for p D 2m C 1

m�1X
iD0

Wi .z/ D F .z/ (1.20)

D 2

p�1X
kD0

�
p � 1

k

�
.zp/k

�
2
4 pX

jD0

�
p
j

� �
zp�1	j C

pX
jD0

�
p
j

� �
zp�1	j

.�1/.p�1/.p�j/

3
5 � 0;
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and by using (1.20) and (1.19) we get that Inequality (1.18) holds when x2 � x1 � 0

and p D 2m C 1; p � 2. Hence (1.14) holds. Therefore Inequality (1.12) holds for
integers p � 2 and for q D p=.p � 1/ and (1.15) follows from Theorem 1.2, Case
a as

1

p
C 1

q
D 1:

This completes the proof of the theorem. ut
We give now an example of

�
˛xq

1 C ˇxq
2

	 1
q � ..˛x1 C ˇx2/

p C .˛ˇp C ˛pˇ/ .x2 � x1/
p/

1
p

when 0 � ˛ � 1
2

� ˇ � 1; ˛ C ˇ D 1, q D 3
2
; p D 3, which probably is valid

also for p D n; n � 2 is an integer and 1=p C 1=q D 1.

Example 1.1 In this example we show that when

˛ C ˇ D 1; 0 � ˛ � 1

2
� ˇ; 0 � x1 � x2;

the inequality

�
˛x

3
2

1 C ˇx
3
2

2

� 2
3

�
�
.˛x1 C ˇx2/

3 C ˛ˇ
�
˛2 C ˇ2

	
.x2 � x1/

3
� 1
3

holds.
Instead, with no loss of generality, we show that

�
˛ C ˇy3

	 2
3 �

��
˛ C ˇy2

	3 C ˛ˇ
�
˛2 C ˇ2

	 �
y2 � 1	3� 1

3
:

It is clear that for y D 1 we get an equality.
The last inequaltity is equivalent to

F D �
˛ C ˇy3

	2 �
��
˛ C ˇy2

	3 C ˛ˇ
�
˛2 C ˇ2

	 �
y2 � 1	3� � 0;

from which we get that

F D ˛ˇ


˛ .ˇ � ˛/ y6 � 3y4˛ .ˇ � ˛/C 2y3

�3 .˛ C 1 � 2˛ˇ/ y2 C .˛ C 1 � 2˛ˇ/�
D ˛ˇ .y � 1/2 
˛ .ˇ � ˛/ y4 C 2˛ .ˇ � ˛/ y3

C2 .1 � ˛ .ˇ � ˛// y C .1 � ˛ .ˇ � ˛//� :
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Therefore under our conditions as y � 1, ˛ C ˇ D 1, 0 � ˛ � 1
2

� ˇ � 1 we get
that F � 0 which means that

�
˛x

3
2

1 C ˇx
3
2

2

� 2
3

�
�
.˛x1 C ˇx2/

3 C ˛ˇ
�
˛2 C ˇ2

	
.x2 � x1/

3
� 1
3

when 0 � x1 � x2 and ˛ C ˇ D 1, 0 � ˛ � 1
2

� ˇ � 1.
In the special case we get that when ˛ D ˇ D 1=2

F D 1

4
.y � 1/2 .2y C 1/ � 0:

1.3 Inequalities for Quasi-Arithmetic Means and
Subquadracity

In this section we state a result related to the more general quasi-means Mf and Wg

defined in (1.1) and in (1.2). Indeed, Theorem 1.1 is a special case of Theorem 1.4
below. In a future paper we intend to generalize Theorems 1.2 and 1.3 to Mf and Wg

so that Theorems 1.2 and 1.3 become a special case of a theorem that deals with the
more general quasi-means Mf and Wg.

First we quote a definition and results that appear, for instance, in [1, 2, 4, 5] and
[6] and their references.

Definition A A function f is defined on an interval I D Œ0; b/ or Œ0;1/ is
subquadratic if for each x in I, there exists a real number C .x/ such that

f .y/ � f .x/ � f .jy � xj/C C .x/ .y � x/ (1.21)

for all y 2 I. The function f is superquadratic if �f is subquadratic.
From (1.21) it is easy to verify that:

Lemma A Let f be subquadratic on Œ0; b/, 0 < b � 1. Let �r � 0; xr 2
Œ0; b/ ; r D 1; : : : ; n and

nX
rD1

�r D 1:

Then

nX
rD1

�rf .xr/ � f

 
nX

iD1
�ixi

!
C

nX
rD1

�rf

 ˇ̌̌
ˇ̌xr �

nX
iD1

�ixi

ˇ̌̌
ˇ̌
!
: (1.22)

If f is superquadratic, the reverse of Inequality (1.22) holds.
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When f is superquadratic and nonnegative, f is also convex increasing and

f .0/ D f 0 .0/ D 0:

The functions

f .x/ D xp; 1 � p � 2; x � 0;

and

f .x/ D 3x2 � 2x2 log.x/; 0 � x � 1;

are examples of subquadratic increasing functions which are also convex (see [1]).
The functions

f .x/ D xp; p � 2; x � 0;

and f .x/ D x2 log.x/ are examples of superquadratic functions.
The following theorem deals with the quasi-means Mf and Wg and was proved

in [2], by using the properties of subquadratic functions and by using the results
of [3].

Theorem 1.4 Let xi; �i � 0;

xi � 2

nX
jD1

�jxj; i D 1; : : : ; n;

nX
iD1

�i D 1:

Let F and G be nonnegative strictly increasing functions on Œ0;1� satisfying

F .0/ D G .0/ D 0:

Let ' D G ı F�1 be convex function.
Case I: If F and G are subquadratic functions, then

Mf D F�1
0
@ nX

jD1
�jF

�
xj
	1A � G�1

0
@ nX

jD1
�jG

�
xj
	1A

� G�1
0
@G

0
@ nX

jD1
�jxj

1
AC

nX
iD1

�iG

0
@
ˇ̌̌
ˇ̌̌xi �

nX
jD1

�jxj

ˇ̌̌
ˇ̌̌
1
A
1
A

� F�1
0
@F

0
@ nX

jD1
�jxj

1
AC

nX
iD1

�iF

0
@
ˇ̌̌
ˇ̌̌xi �

nX
jD1

�jxj

ˇ̌̌
ˇ̌̌
1
A
1
A D Wf :
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Case II: If G and F are superquadratic functions, then

G�1
0
@ nX

jD1
�jG

�
xj
	1A � F�1

0
@ nX

jD1
�jF

�
xj
	1A

� F�1
0
@F

0
@ nX

jD1
�jxj

1
AC

nX
jD1

�iF

0
@
ˇ̌̌
ˇ̌̌xi �

nX
jD1

�jxj

ˇ̌̌
ˇ̌̌
1
A
1
A

� G�1
0
@G

0
@ nX

jD1
�jxj

1
AC

nX
jD1

�iG

0
@
ˇ̌̌
ˇ̌̌xi �

nX
jD1

�jxj

ˇ̌̌
ˇ̌̌
1
A
1
A :

Example 1.2 Let �i � 0 for i D 1; : : : ; n;

nX
iD1

�i D 1;

and

F .x/ D x.aCb/=a; G .x/ D xaCb; x � 0:

(a) If 1 � a � b; we get that ' .x/ D G
�
F�1 .x/

	 D xa is a convex function and as
well as F and G.

As F and G are superquadratic too, we get according to Theorem 1.4

 
nX

iD1
�ix

aCb
i

!
1=.aCb/ �

 
nX

iD1
�ix

.aCb/=a
i

!a=.aCb/

�

0
B@
0
@ nX

jD1
�jxj

1
A
.aCb/=a

C
nX

iD1
�i

0
@
ˇ̌̌
ˇ̌̌xi �

nX
jD1

�jxj

ˇ̌̌
ˇ̌̌
1
A
.aCb/=a

1
CA

a=.aCb/

�

0
B@
0
@ nX

jD1
�jxj

1
A

aCb

C
nX

iD1
�i

0
@
ˇ̌̌
ˇ̌̌xi �

nX
jD1

�jxj

ˇ̌̌
ˇ̌̌
1
A

aCb
1
CA
1=.aCb/

:

(b) If a � 1; b � 0, a C b � 2; F and G are subquadratic and we get that
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0
@ nX

jD1
�jxj

1
A

aCb

�
 

nX
iD1

�ix
.aCb/=a
i

!a

�
nX

jD1
�jx

aCb
j

�
0
@ nX

jD1
�jxj

1
A

aCb

C
nX

iD1
�i

0
@
ˇ̌̌
ˇ̌̌xi �

nX
jD1

�jxj

ˇ̌̌
ˇ̌̌
1
A

aCb

�
0
@ nX

jD1
�jxj

1
A
.aCb/=a

C
nX

iD1
�i

0
@
ˇ̌̌
ˇ̌̌xi �

nX
jD1

�jxj

ˇ̌̌
ˇ̌̌
1
A
.aCb/=a

is satisfied.
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Chapter 2
Isometric Approximation in Bounded Sets
and Its Applications

Pekka Alestalo

Abstract We give a review of results related to the isometric approximation
problem in bounded sets, and their application in the extension problems for
bilipschitz and quasisymmetric maps. We also list several recent articles dealing
with the approximation problem for mappings defined in the whole space.

Keywords Nearisometry • Quasisymmetric • Bilipschitz • Extension

Mathematics Subject Classification (2010) Primary 30C65; Secondary 46B20

2.1 Introduction

Definition 2.1 Let X and Y be metric spaces with distance written (in the Polish
notation) as jx � yj, and let " � 0. A mapping f W X ! Y is an "-nearisometry if

ˇ̌jf .x/ � f .y/j � jx � yjˇ̌ � "

for all x; y 2 X.
We remark that these mappings are often called "-isometries, "-quasi-isometries,

etc., and that the condition is equivalent to

jx � yj � " � jf .x/ � f .y/j � jx � yj C ":

The nearisometry condition does not imply continuity (unless " D 0), but these
maps are closely related to .1C "/-bilipschitz maps that satisfy

jx � yj=.1C "/ � jf .x/ � f .y/j � .1C "/jx � yj

P. Alestalo (�)
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DOI 10.1007/978-3-319-61732-9_2
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for all x; y 2 X. In particular, if the diameter d.X/ is finite, then every .1 C "/-
bilipschitz map f W X ! Y is a d.X/"-nearisometry.

Our starting point is the following theorem from [14] and [19].

Theorem 2.1 Let E and F be real normed spaces and let f W E ! F be a surjective
"-nearisometry with f .0/ D 0. Then there is a surjective linear isometry TW E ! F
satisfying

kT � f kE � supfjTx � f .x/j j x 2 Eg � 2":

The original proof in [14] was for Hilbert spaces only, and with a constant 10".
The bound 2", obtained in [19], is the best universal one, but it can be improved to
J.E/" for Hilbert spaces, cf. [13]. Here J.E/ is the Jung’s constant of the space E.

A comprehensive history of these developments, some counterexamples demon-
strating the sharpness of the constants, and a survey of further progress up to c. 2002
can be found in the article [25], which I recommend to the interested reader. See
also [22] for some updates. Additional surveys of these problems in [11] and [21]
are also useful. Furthermore, many of the original proofs are reproduced in Chapter
13 of the monograph [16], which contains also other closely related material.

However, some important counterexamples related to the approximation problem
in bounded subsets were discovered only after Väisälä’s survey article appeared. In
the following sections I will describe these developments and present applications
of the results to extension problems for mappings that are, in a certain sense, close
to either an isometry or a similarity.

To close this introduction, I remark that also the case of mappings defined in the
whole space, but without the surjectivity assumption, has attracted a lot of interest
and new results in the last couple of years. Since this is not my area of speciality and
I want to concentrate in the approximation problem for bounded sets, I will only list
here some of these references: [7–10, 12, 20, 27, 28].

2.2 Isometric Approximation in Bounded Sets

We start with the approximation of nearisometries in the closed unit ball Bn � R
n.

Theorem 2.2 There is a universal constant C > 0 such that every "-nearisometry
f W Bn ! R

n has an isometric approximation TWRn ! R
n satisfying

kT � f kBn � supfjTx � f .x/j j x 2 Bng � C log.n C 1/ � ":

History A similar result was proved by John [15] already in 1961, but with an error
term 10n 3=2 ". A more general formulation of this can also be found in the book [6,
Theorem 14.11.]. The logarithmic upper bound was found in 2003 by Kalton in [17],
whereas Matouvsková [18] constructed already in 2002 examples, where the error
grows logarithmically. It follows that the logarithmic dependence on the dimension
n is optimal.
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We consider next the case, where the subset A � Bn is otherwise arbitrary, but
contains the points 0; e1; : : : ; en 2 A.

Theorem 2.3 There is a universal constant C > 0 such that every "-nearisometry
f W A ! R

n has an isometric approximation TWRn ! R
n satisfying

kT � f kA � supfjTx � f .x/j j x 2 Ag � C n � ":

History An upper bound C n 3=2 " was obtained in [4, 3.12] using John’s idea (see
[6, Chapter 14]). In 2005, Vestfid [26] found the linear bound C n " and showed that
the linear growth is optimal in n.

Before more general versions, we need a definition.

Definition 2.2 The thickness �.A/ of a set A � R
n is the infimum of numbers t > 0

such that A lies between two parallel hyperplanes with mutual distance t.
The inequality

0 � �.A/ � d.A/

is always true, but the thickness �.A/ can be very small even if the diameter d.A/ is
large. In particular, �.A/ D 0 if and only if A is contained in some hyperplane.

A

thickness

diameter

The following theorem is from [4, 3.3].

Theorem 2.4 Let A � R
n be a compact set such that

�.A/ � d.A/

t

for some t � 1, and let f W A ! R
n be an "-nearisometry. Then there is an isometry

TWRn ! R
n such that

kT � f kA � supfjTx � f .x/j j x 2 Ag � Cnt ":
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Remark The upper bound is sharp with respect to the parameter t, but the asymptotic
behaviour of Cn is unknown. Vestfrid’s examples show that the growth of Cn is at
least linear in n. On the other hand, an upper bound for Cn can be derived from the
proof in [4]. The proof proceeds by induction on n, and the growth of Cn can be
analysed from a system of recursion formulas. Numerical experiments for n � 50

by the author (unpublished) indicate that

lim
n!1

log Cn

3n
	 0:5756:

(Curiously, this number seems to be equal to .1=4/ log 10 up to at least 10 decimal
places, which I discovered by accident.) It follows from this that

Cn . 1:7783
n
;

so there seems to be a huge gap between upper and lower estimates.
Without any restrictions on the geometry of the set A we obtained the following

result in [4, 2.2].

Theorem 2.5 Let A � R
n be a compact set and let f W A ! R

n be an "d.A/-
nearisometry. Then there is an isometry TWRn ! R

n such that

kT � f kA � supfjTx � f .x/j j x 2 Ag � cnd.A/
p
":

Remark Numerical estimation of cn for large n using the proof seems difficult but
should be possible: it leads to nested optimization problems for recursion formulas.
However, I have calculated that our proofs give c3 D 19, whereas C3 D 107 for
thick sets.

The following example shows that the
p
"-term is essential in general.

Example 2.1 Let f W A D f�1; 0; 1g ! R
2 be defined, using complex notation, by

f .x/ D
(

x; x D ˙1
i
p
"; x D 0:

Then f is .1 C "/-bilipschitz and hence a 2"-nearisometry, but for all isometric
approximations TWR2 ! R

2 the error is at least
p
"=2. This follows easily by

minimizing the distance from the set fA to the line TR.

2.3 From Approximation to Bilipschitz Extension

In this and the following section we give some examples of extension results that can
be proven by using the approximation results for bounded sets. The main problem is
to extend a mapping f W A ! R

n to a mapping FWRn ! R
n having similar properties

as the original f .
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The easiest case for bilipschitz extension occurs if the set A has thickness in
all scales.

Definition 2.3 Let c � 1. A set A � R
n is c-uniformly thick if

�.A \ B.a; r// � 2r=c

for all a 2 A and r > 0.
Uniform thickness does not allow isolated points, but, on the other hand,

extending a map from an isolated point (at least to its neighbourhood) is very easy.
In order to obtain the most general setting for extension, we need a more general
definition that does not rule out isolated points if there is enough thickness around
them, in a larger scale related to the distance from an isolated point of A to the rest
of A.

Definition 2.4 Let A � R
n. For a 2 A we set s.a/ D d.a;A n fag/.

Then s.a/ > 0 if and only if a is isolated in A.

Definition 2.5 Let c � 1. We say that the set A � R
n is c-sturdy if

(1) �.A \ B.a; r// � 2r=c whenever a 2 A; r � cs.a/; A 6� B.a; r/,
(2) �.A/ � d.A/=c.

If A is unbounded, we omit (2), and the condition A 6� B.a; r/ of (1) is unnecessary.
Examples of sturdy sets are Z

n � R
n, the Koch snowflake curve in the plane,

bounded Lipschitz domains, and all uniformly thick sets.

A

2s(a)

s(a)

a = an isolated point of A

vertices of a thick triangle
B(a,r) and A intersection of contains

The following extension theorem is from [5].

Theorem 2.6 Let A � R
n be c-sturdy. Then there are ı D ı.c; n/ and C D C.c; n/

such that every .1C"/-bilipschitz map f W A ! R
n, with " � ı, extends to a .1CC"/-

bilipschitz map FWRn ! R
n.

The proof is based on approximation results for nearisometries and will be
sketched in a more general setting in the next section.
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Remark The converse result in R
2 was proven in [1]: If a set A � R

2 has the above
extension property for .1C "/-bilipschitz maps with a small ", then it is sturdy, and
there are quantitative relations between all constants involved.

2.4 From Approximation to Quasisymmetric Extension

In this section we consider a more general class of mappings, the quasisymmetric
ones, and present the main extension result from [3].

Let �W Œ0;1/ ! Œ0;1/ be a homeomorphism, called a growth function.

Definition 2.6 An injective map f W A ! R
n is �-quasisymmetric if the ratios of

distances are changed in a controlled way:

jf .x/ � f .y/j
jf .x/ � f .z/j � �

� jx � yj
jx � zj

�

for all distinct x; y; z 2 A. If �.t/ D t, then f is a similarity.
An L-bilipschitz map is quasisymmetric with �.t/ D L2t, t � 0. Conversely, a

quasisymmetric map with a linear growth �.t/ D Ct is always bilipschitz. However,
since there is no general bound for the Lipschitz-constant of a similarity, we cannot
say anything about the constant in this converse part.

It was proven in [24, 3.12] and [23, 6.5] that one can often replace the growth
function � with a power form.

Theorem 2.7 If A is relatively connected, then one can always choose

�.t/ D C � max
�
t˛; t1=˛

	
; t � 0;

where C � 1 and ˛ > 0.
Here relative connectedness is much weaker than connectedness.

Definition 2.7 Let M � 1. A metric space X is M-relatively connected if,
for all pairs of distinct points .x; y/ and .w; z/, there is a finite sequence
.x0; x1; : : : ; xk�1; xk/ such that

x0 D x; x1 D y; xk�1 D w; xk D z

and

1

M
� jxjC1 � xjj

jxj � xj�1j � M

for all 1 � j � k � 1.
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Examples of relatively connected spaces include all connected ones, the Cantor
middle-third set, etc.

In this light, the following condition seems natural and turns out to be the best
way to measure how close a quasisymmetric mapping is from a similarity. Some
problems with other possible approaches are considered in [2].

Definition 2.8 A mapping f W A ! R
n is "-power-quasisymmetric if it is

�-quasisymmetric with

�.t/ D .1C "/ � max.t1C�; t1=.1C�//:

We remark that suitable radial stretching maps in R
n will satisfy this condition,

but they are not bilipschitz.

Theorem 2.8 Let A � R
n be c-sturdy. Then there are ı D ı.c; n/ and C D C.c; n/

such that every "-power-quasisymmetric map f W A ! R
n, with " � ı, extends to a

C"-power-quasisymmetric map FWRn ! R
n.

Main Steps of the Proof

• Show that "-power-quasisymmetric maps can be well approximated by similari-
ties in balls A \ B.a; r/ if r is suitably chosen. This follows from sturdiness and
the isometric approximation results of Alestalo et al. [4] by scaling.

• Show that one may assume A to be unbounded, so that sturdiness is easier to
handle. This a rather easy, but a very technical part.

• Decompose R
n n A into Whitney cubes and define the extension in the vertices v

by using suitable approximating similarities of f in sets of the type A \ B.v; r/.
Here the radius r must be carefully chosen in order to guarantee the thickness of
this intersection.

• Triangulate the Whitney cubes and extend affinely to each simplex.
• The result will be a continuous map FWRn ! R

n.
• The final step is based on showing that the assumptions for the following theorem

from [3, 3.7] are satisfied if " is small enough. Indeed, if a mapping has been
extended in a suitable way using approximating similarities, it should not be
surprising that it can be well approximated by similarities. However, the details
of the proof are again quite technical.

Theorem 2.9 Let FWRn ! R
n satisfy the following condition for some " � 1=100:

For every ball B D B.x; r/ there is a similarity S D Sx;r such that

kS ı F � idkB � "r:

Then F is 50"-power-quasisymmetric.
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19. Omladič, M., Šemrl, P.: On non linear perturbations of isometries. Math. Ann. 303, 617–628

(1995)
20. Protasov, V.Y.: On stability of isometries in Banach spaces. In: Rassias, T.M., Brzdȩk, J. (eds.)
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Chapter 3
On the Indicator Plurality Function

Anna Bahyrycz

Abstract This survey paper is dedicated to certain mathematization method of
social choice, given by Roberts, and its generalizations.

Keywords Social choice • Plurality function • Indicator plurality function
• Consistency condition • Cone • Additive function

Mathematics Subject Classification (2010) Primary 39B22; Secondary 39B52,
39B72, 39B82

3.1 Introduction

There is a long history in the theory of social choice of finding axioms that
characterize a particular group consensus function and of finding all group consen-
sus functions that satisfy certain axioms. Much of the early history of this theory has
been concerned with impossible theorems, which show that under certain reasonable
axioms there is no social choice function that merges individual judgements into a
consensus judgement (see [8]). From 1974 there have been a variety of positive
results. The first concerned an axiomatization of Borda’s rule [21], next outcomes,
among others, of social choice scoring functions [22], of the plurality rule [15], and
of the plurality function [16].

Much of the literature of social choice functions falls into the following setting.
Let A be a set of alternatives, for instance, alternative strategies, alternative new
technologies, alternative diagnoses, or alternative candidates and let B be a set of
individuals (voters or experts), who are expressing opinions about the alternatives
in the set A. A social choice function is a function which, based on the opinions
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of the individuals in B, picks a “consensus.” In many contexts, the opinions of the
individuals in B are given as rankings or linear orders of the elements of A. In other
contexts, the opinions are simply a choice of the best or most preferred alternative
in A. The “consensus” can be either a single element of A, a subset of alternatives in
A, a ranking of elements of A, or a set of such rankings. In the situation where the
opinions are rankings and the consensus is a subset of A, a well-known social choice
function is the plurality rule, which chooses for the consensus all those alternatives
which receive the greatest number of first place rankings. In [15], Richelson was
able to characterize the plurality rule by giving five simple axioms, which are based
on some earlier axioms of Young (see [22]).

In the situation where each of individual gives only the first choice from A
(the opinions are elements of the set A) and the consensus is a subset of A a social
choice function is a consensus function. The plurality function is that consensus
function which chooses as consensus all alternatives which receive the largest
number of first choices. The axioms that characterize the plurality function were
introduced by Roberts [16]. Mathematical theory of this approach was developed by
Bahyrycz [2–7], Forti and Paganoni [9, 10], Moszner [7, 11–14], Roberts [17, 18],
and Rosenbaum [20]. In this paper we present some of these results.

In the second section we present the definitions and characterizations of the
plurality function and the indicator plurality function and we give their election
interpretation. In the Section 3.3 we determine all functions which are consistent.
In the next section we describe a way of construction of all m-elements consistent
system related to the indicator plurality function. In the last section we consider the
systems of equations with unknown multifunctions related to the indicator plurality
function.

3.2 The Plurality Function and the Indicator Plurality
Function

In this section we start by recalling the results of Roberts [16, 17], which are based
on some earlier axioms of Richelson [15].

Suppose A is a set of alternatives and each voter provides us with a first choice
from A. The plurality function is the function F from [1

nD1An into 2A, where
F.x1; : : : ; xn/ is the set of all those y in A so that no z in A appears more often
in .x1; : : : ; xn/ than y.

To state the characterization of the plurality function, we introduce the following
definitions.

Anonymity For all permutations � of f1; : : : ; ng

F.x�.1/; : : : ; x�.n// D F.x1; : : : ; xn/

for all sequences of alternatives .x1; : : : ; xn/.
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The election interpretation of this property is the following. The election result
does not depend on the order of inserting the votes into the ballot box.

Neutrality For all permutations 	 of A

F.	.x1/; : : : ; 	.xn// D 	ŒF.x1; : : : ; xn/�

where 	.X/ D f	.x/ W x 2 Xg.
The election result does not depend on the order of placing the candidates on

the list.

Consistency If F.x1; : : : ; xn/ \ F.y1; : : : ; ym/ ¤ ;; then

F.x1; : : : ; xn; y1; : : : ; ym/ D F.x1; : : : ; xn/ \ F.y1; : : : ; ym/: (3.1)

It expresses the following. If .x1; : : : ; xn/ and .y1; : : : ; ym/ are two vectors represen-
ting the votes of two different groups of voters among the same set of candidates
and some candidate is chosen by both groups, then a candidate x is chosen by the
combined group if and only if this candidate x is chosen by both groups, separately.
The combined group is represented by the vector .x1; : : : ; xn; y1; : : : ; ym/.

The assumption that at least one candidate won the election in both groups is
important, otherwise the equality (3.1) could not take place, the set on the right side
would be empty and the set on the left side could never be empty.

Faithfulness F.x/ D fxg for all x 2 A.
If we have one voter and this voter gives his or her first choice on a candidate x,

then this candidate is chosen.
In [16] was given a following characterization of the plurality function.

Theorem 3.1 Suppose F W [1
nD1An ! 2A and F.x/ ¤ ; for any x 2 A. Then the

following are equivalent:

(1) F is the plurality function.
(2) F is anonymous, neutral, consistent, and faithful.

For more characterization of the plurality function see [16].
Now, suppose that A is a finite set fv1; v2; : : : ; vmg and F is a plurality function.

We may rewrite any vector .x1; : : : ; xn/ from An, after possibly permuting the
subscripts, in the form

v1; : : : ; v1; v2; : : : ; v2; : : : ; vm; : : : ; vm ;

c1 c2 cm

where vi occurs ci times. If vj doesn’t occur in the vector .x1; : : : ; xn/, then cj D 0

and all of the ci are non-negative integers and at least one of them is positive.
The vector .x1; : : : ; xn/ we can write in the following way: .c1v1; : : : ; cmvm/.

Since the function F is anonymous we have

F.x1; : : : ; xn/ D F.c1v1; : : : ; cmvm/:
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We can define a new function f D .f1; : : : ; fm/ W Z.m/ ! 0.m/; where Z.m/ is
the set of all m-vectors of non-negative integer numbers, except the vector 0 WD
.0; : : : ; 0/ and 0.m/ is a subset of Z.m/ in which each component is 0 or 1 and

fk.c1; : : : ; cm/ D 1 , vk 2 F.c1v1; : : : ; cmvm/ for k 2 f1; : : : ;mg:

We will think of f as the indicator function corresponding to the plurality functionF.
From the above considerations follows that we may define the function f

independently of the plurality function in the following way:

fk.c1; : : : ; cm/ D 1 , ck � cj for j 2 f1; : : : ;mg: (3.2)

It expresses the following. If we vote for m candidates and c1; : : : ; cm is a description
of this vote (ci is the number of votes which received the ith candidate on the
list), then 1 in the kth position in f .c1; : : : ; cm/ means that the kth candidate on
the list received at least as many votes as the other and he won the election maybe
simultaneously with other candidates.

More generally, if we allow fractional votes or vote splitting, the domain of f
would consist of the set of all m-vectors of non-negative rational numbers, except
0
�
Q.m/

	
or even the set of all m-vectors of non-negative real numbers, except

0
�
R.m/

	
.

A function f D .f1; : : : ; fm/ W U ! 0.m/;where U � R.m/ is called the indicator
plurality function on U if f satisfies (3.2) for all .c1; : : : ; cm/ 2 U.

From now on, we assume that U 2 fZ.m/;Q.m/;R.m/g.
The indicator plurality function on U has analogous properties to those defined

above for the plurality function F. The anonymity was used to define the indicator
plurality function and other properties have the following form.

Neutrality For all .c1; : : : ; cm/ 2 U and all permutations � of f1; : : : ;mg

fk.c�.1/; : : : ; c�.m// D f�.k/.c1; : : : ; cm/ for k 2 f1; : : : ;mg:

Consistency For all c; d 2 U

f .c/ � f .d/ ¤ 0 ) f .c C d/ D f .c/ � f .d/; (3.3)

where x C y WD .x1 C y1; : : : ; xm C ym/ and x � y WD .x1 � y1; : : : ; xm � ym/ for
x D .x1; : : : ; xm/, y D .y1; : : : ; ym/ 2 U.

Faithfulness For all i 2 f1; : : : ;mg

f .ei/ D ei

where ei denotes the vector .0; : : : ; 0; 1; 0; : : : ; 0/ with a 1 in the ith position.
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We have the following characterization of the indicator plurality function on
Z.m/ and Q.m/ (see [17]).

Theorem 3.2 Suppose that V 2 fZ.m/;Q.m/g and f W V ! 0.m/. Then the
following are equivalent:

(i) f is the indicator plurality function on V.
(ii) f is neutral, consistent, and faithful.

The original indicator plurality function is homogeneous, because the election
result does not depend on the number of votes, but on the proportion of the votes for
individual candidates. One can consider the following properties:

Weak Homogeneity For all c 2 U

f .2c/ D f .c/:

Homogeneity For all positive real number r, all c 2 R.m/ and U D R.m/

f .rc/ D f .c/;

where rc WD .rc1; : : : ; rcm/ for c D .c1; : : : ; cm/ 2 R.m/.

Homogeneity Faithful For all positive real number r, all j 2 f1; : : : ;mg and
U D R.m/

f .rej/ D f .ej/:

In the case, when we weaken the assumption in Theorem 3.2 that the range of f is
contained in O.m/ we have the following (see [17]):

Theorem 3.3 Suppose that V D Z.m/ or V D Q.m/ and f W V ! R.m/. Then the
following are equivalent:

(i) f is the indicator plurality function on V.
(ii) f is neutral, consistent, faithful, and weakly homogeneous.

If we consider the function f W R.m/ ! 0.m/, then there exist the functions which
are neutral, consistent, and faithful but different from the indicator plurality function
which shows the following example ([20], see also [11]).

Let b0 be a positive irrational, b1 be a non-zero rational, and H be a Hamel base
of the space R over a field Q such that b0; b1 2 H. Every x 2 R has a representation,
unique up to terms with coefficients zero

x D
nX

lD0
qlbl;
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where ql 2 Q, bl 2 H for l 2 f0; : : : ; ng. We put 
 WD q0 and ı WD Pn
lD1 qlbl; then

x D 
b0 C ı. We define a function g D .g1; : : : ; gm/ W Rm ! 0.m/ by

gj.x1; : : : ; xm/ D
�
1 if xj � xk for k D 1; : : : ;m;
0 otherwise :

Now, we define a function f W R.m/ ! 0.m/ in the following way:

f .x1; : : : ; xm/ D g.ı1 � 
1; : : : ; ım � 
m/;

where xj WD 
jb0 C ıj for j 2 f1; : : : ;mg.
The function f is neutral, consistent, and faithful but different from the indicator

plurality function because

f .b0; 0; : : : ; 0/ D g.�1; 0; : : : ; 0/ D .0; 1; : : : ; 1/:

On the other hand, we have the following theorems (see [17]):

Theorem 3.4 Let f W R.m/ ! 0.m/ be an arbitrary function. Then the following
are equivalent:

(i) f is the indicator plurality function on R.m/.
(ii) f is neutral, consistent, and homogeneous faithful.

Theorem 3.5 Let f W R.m/ ! R.m/ be an arbitrary function. Then the following
are equivalent:

(i) f is the indicator plurality function on R.m/.
(ii) f is neutral, consistent, faithful, and homogeneous.

If we consider the function f W R.m/ ! R.m/; then there exist the functions which
are neutral, consistent, and homogeneous faithful but different from the indicator
plurality function on R.m/; which shows the following example (see [2, 12]).

We define a function f D .f1; : : : ; fm/ W R.m/ ! R.m/ as follows:

fi.x/ D
�

exp.x1 C � � � C xm � xi/ for x 2 Zi;

0 for x 2 R.m/ n Zi;

where Zi WD fx 2 R.m/ W xi � xj for j 2 f1; : : : ;mgg and i 2 f1; : : : ;mg.
The function f is neutral, consistent, and homogeneity faithful but f is not the

indicator plurality function on R.m/ because the range of f is not contained in 0.m/;
for example,

f .1; 1; 0 : : : ; 0/ D .e; e; 0 : : : ; 0/:

In the original problem of the social choice the function f .x1; : : : ; xm/ is defined
on the set Z.m/ and x1 C � � � C xm is the sum of the votes cast. In practice this sum
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is limited, for example, by the number c > 0. This begs the idea of replacing the
property consistency by the condition

x1C� � �Cxm Cy1C� � �Cym � c ^ f .x/�f .y/ ¤ 0 ) f .xCy/ D f .x/�f .y/ (3.4)

and a problem arises if each function f satisfying Equation (3.4) can be uniquely
extended to the solution of Equation (3.3). We have the following (see [12, 13]):

Theorem 3.6 Every function f W E WD f.x1; : : : ; xm/ 2 R.m/ W x1 C � � � C xm �
cg ! R.m/ which is the solution of Equation (3.4) can be uniquely extended to the
solution of Equation (3.3).

Every solution of Equation (3.4) can be obtained by restricting the solution of
Equation (3.3) to the set E.
This result shows that the generalization of the considerations about the election
of the case of natural numbers to the case of real numbers is not good for
the description of the election, because the outcome of the election on a small
population determines the result for the whole population. Note that this anomaly
does not take place if the real numbers replace integers, because in this case an
analogue of Theorem 3.6 is not true. Indeed, we consider the function f defined as
follows (see [13]):

f .1; 0/ D f .2; 0/ D f .1; 1/ D .1; 0/ and f .0; 1/ D f .0; 2/ D .0; 1/:

This function f satisfies the condition (3.4) with c D 2 and m D 2 and can be
extended onto Z.2/ at least two different ways

f1.x1; x2/ D
�
.1; 0/ for x1 � x2;
.0; 1/ for x1 < x2

(3.5)

and

f2.x1; x2/ D
�
.1; 0/ for x1 ¤ 0;

.0; 1/ for x1 D 0:

These and other characterizations of the indicator plurality function one may be
found in [2, 11–13, 17, 18].

3.3 On the Functions Which Are Consistent

In [19] Roberts stated that it is of interest in the theory of social choice to determine
all functions f W R.m/ ! R.m/ which are consistent, i.e., satisfy the conditional
functional equation

f .x/ � f .y/ ¤ 0 ) f .x C y/ D f .x/ � f .y/:
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As a generalization, one may consider functions f W R.n/ ! R.m/ (where n, m are
arbitrary natural numbers, independent of each other) satisfying the condition

8x;y2R.n/ W f .x/ � f .y/ ¤ 0 ) f .x C y/ D f .x/ � f .y/: (3.6)

It may be shown that in such a case the description of all the solutions f D
.f1; : : : ; fm/ of Equation (3.6) takes the following form (see [4] and [11] for n D m):

f�.x/ D
�

exp a�.x/ for x 2 Z�;
0 for x 2 R.n/ n Z�;

(3.7)

where a� W Rn ! R are additive functions for � D 1; : : : ;m; whereas the sets Z�
satisfy the conditions

Z1 [ � � � [ Zm D R.n/; (3.8)

ij ¤ 0m ) Zi1
1 \ � � � \ Zim

m C Zj1
1 \ � � � \ Zjm

m � Zi1j1
1 \ � � � \ Zimjm

m ; (3.9)

for every i D .i1; : : : ; im/; j D .j1; : : : ; jm/ 2 0.m/; E1 C E2 WD fx C y W x 2
E1; y 2 E2g for E1;E2 � R

n; E1 WD E; E0 WD R.n/ n E for E � R.n/.
Let us observe that if sets Z1; : : : ;Zm satisfy condition (3.8), then for every a 2

R.n/ and every k 2 f1; : : : ;mg there exists a unique ik 2 f0; 1g such that a 2 Zik
k .

The parameters determining the solutions of Equation (3.6) are systems of sets
Z1; : : : ;Zm satisfying conditions (3.8) and (3.9), as well as additive functions a� W
R

n ! R. Additionally condition (3.9) has a complicated form. For this reason, it
is interesting to find conditions equivalent to condition (3.9) under the assumption
of condition (3.8) which are of simpler form than the ones obtained from (3.9). We
have the following theorem (see [4]).

Theorem 3.7 Assume that sets Z1; : : : ;Zm satisfy condition (3.8). The following
conditions are equivalent:

(i) condition (3.9);
(ii) the sets Z1; : : : ;Zm are cones over Q for which

Z1l C Z1l \ Z0k � Z1l \ Z0k (3.10)

for all k; l 2 f1; : : : ;mg such that k ¤ l;
(iii) the sets Z1; : : : ;Zm satisfy the conditions

Z1k C Z1k � Z1k (3.11)

for every k 2 f1; : : : ;mg and condition (3.10) for all k; l 2 f1; : : : ;mg such
that k ¤ l;
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(iv) for all x; y 2 R.n/ if there exists � 2 f1; : : : ;mg such that x 2 Z� and y 2 Z� ,
then

8k 2 f1; : : : ;mg W x C y 2 Zk , x 2 Zk and y 2 ZkI

(v) for all k; l 2 f1; : : : ;mg the following implication holds:

ij ¤ 0 ) Zik
k \ Zil

l C Zjk
k \ Zjl

l � Zikjk
k \ Ziljl

l ;

where i D .ik; il/; j D .jk; jl/ 2 0.2/.
We observe (see [12]) that the function f satisfying the condition (3.6) is

continous if and only if the sets Z1; : : : ;Zm fulfilling the condition (3.8) are such
that Z� D ; or Z� D R.n/ and the additive functions a� for � 2 f1; : : : ;mg are
continous.

We notice also that the function f satisfying the condition (3.6) can be measurable
without being continuous. For example, for m D n D 2 it is enough to consider the
function f1 given by the formula (3.5).

Let us make the following definitions.

Definition 3.1 Let C � R.n/ be a cone over Q (x C y 2 C and qx 2 C for all
x; y 2 C, q 2 QC). Denote:

< C > � the linear subspace of Rn over the field R generated by CI
C� � the interior of the set C in < C > :

Definition 3.2 For every subset fl1; : : : ; lkg � f1; : : : ; ng we define the set

Bl1;:::;lk WD f.x1; : : : ; xn/ 2 R.n/ W xl1 D � � � D xlk D 0g;

and then we define the set

B WD fBl1;:::;lk W fl1; : : : ; lkg � f1; : : : ; ngg:

Theorem 3.7 leads to the following.

Corollary 3.1 If the sets Z1; : : : ;Zm are pairwise disjoint and satisfy condi-
tion (3.8), then condition (3.9) is equivalent to the following condition: Z1; : : : ;Zm

are cones over Q.

Corollary 3.2 If a system of sets Z1; : : : ;Zm satisfies conditions (3.8) and (3.9),
then for every non-empty subset fl1; : : : ; lpg of the set f1; : : : ;mg and for every

.il1 ; : : : ; ilp/ 2 0.p/ the set Z
il1
l1

\ � � � \ Z
ilp
lp

is a cone over Q.
Let us observe that if the sets Z1; : : : ;Zm satisfy conditions (3.8) and (3.9), then for
m 2 f1; 2g the set Z01 in the case of m D 1 and the sets Z01 ; Z02 ; Z01 \ Z02 for m D 2
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are also cones over Q. If m D 1; then Z1 D R.n/; so Z01 D ;. If m D 2; then
Z01 D Z01 \ Z12 and Z02 D Z02 \ Z11 are cones over Q and the set Z01 \ Z02 is empty.

If the sets Z1; : : : ;Zm satisfy conditions (3.8) and (3.9), then for m > 2 not every
set Z0l1 \� � �\Z0lp ; where ; ¤ fl1; : : : ; lpg � f1; : : : ;mg, is necessarily a cone over Q.
Here is a suitable example for n D 2 and m D 3. Define

Z1 WD f.x; y/ 2 R.2/ W y � 1
2
xg;

Z2 WD f.x; y/ 2 R.2/ W 1
2
x < y � 2xg;

Z3 WD f.x; y/ 2 R.2/ W y > 2xg:

The sets Z1;Z2;Z3 satisfy conditions (3.8) and (3.9) but Z02 is not a cone over Q.

Corollary 3.3 Let the sets Z1; : : : ;Zm satisfy the conditions (3.8) and (3.9). If there
exist k; l 2 f1; : : : ;mg such that k ¤ l and .Zk \ Zl/

� ¤ ;, then

Zk \< Zk \ Zl > D Zl \< Zk \ Zl >:

Corollary 3.4 If the sets Z1; : : : ;Zm satisfy the conditions (3.8) and (3.9), then for
all k; l 2 f1; : : : ;mg Zk D Zl or Zk \ Zl is a set with empty interior in R

n.

Corollary 3.5 If a system Z1; : : : ;Zm satisfies the conditions (3.8) and (3.9) and
if there exists such k 2 f1; : : : ;mg that Zk D R.n/; then Zi 2 B for every
i 2 f1; : : : ;mg.
From the above Corollary we obtain, for example, that if the sets Z1;Z2 satisfy the
conditions (3.8) and (3.9) with n D m D 2 and Z1 D R.2/; then Z2 must be equal
to one of the sets B; D R.2/, B1, B2; B1;2 D ;.

It may be proved (see [12] for n D m) that every function f W R.n/ ! R.m/
satisfying (3.6) and the condition

9r>0 W Œr ¤ 1 ^ 8x2R.n/ W f .rx/ D f .x/� (3.12)

with some r being an algebraic number must have values in the set 0.m/. It is known
(see [3] for n D m) that this property holds also with a transcendental number r
if m � 2 and in the case when m > 2 there exists a solution of Equation (3.6)
satisfying (3.12) with some transcedental number r which range is not contained in
0.m/. In a very long construction of such function the Axiom of Choice is used.
Moreover in [7] was shown that one cannot give this construction without using
non-measurable set.

Theorem 3.8 If a function f W R.n/ ! R.m/ fulfils the conditions (3.6), (3.12) and
additionally for every x 2 R.n/ the set

Mi.x/ D ftx 2 R.n/ W fi.tc/ ¤ 0g for i 2 f1; : : : ;mg

are Lebesgue linearly measurable, then f must have its values in the set 0.m/.
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From the description of the solution of Equation (3.6) follows that the function
satisfying the conditions (3.6) and (3.12) has values in the set 0.m/ if and only if all
additive functions a� are identically equal to zero. The condition (3.12) imposes on
the functions a� and the sets Z� (� D 1; : : : ;m) the conditions

rZ� D Z� (3.13)

and

a�.rx/ D a�.x/ for x 2 Z�; (3.14)

and we have the following

Theorem 3.9 The function f W R.n/ ! R.m/ satisfying the conditions (3.6)
and (3.12) has values only in the set 0.m/ if and only if the sets Z� fulfilling the
conditions (3.8), (3.9), and (3.13) satisfy the condition

Z� � .r � 1/linQZ� for � D 1; : : : ;m (3.15)

with r occuring in (3.12).
The above Theorem was proved in [7] for n D m, but from Lemma 1 from the same
paper we can obtain this fact for the arbitrary n;m 2 N.

We notice that for m D 1 we have Z1 D R.n/ and the condition (3.15) is
obviously fulfilled. This condition is also satisfied for m D 2; because then the
sets Z01 and Z02 are cones over Q. In the paper [3] such a cone is constructed for
which the condition (3.15) is not satisfied.

In [9, 10] was given a description of the construction of the solutions of a system
of functional equations: (3.6) (with n D m) and equation

8r>08x2R.m/ W f .rx/ D f .x/: (3.16)

To each function f W R.m/ ! 0.m/ a partition of R.m/ is associated, given by the
family of the non-empty level sets of f , i.e., the family fAi; i 2 I � 0.m/g where
Ai D fx 2 R.m/ W f .x/ D ig and i 2 I if and only if Ai ¤ ;. The following theorem
characterizes the solutions of the system of the functional equations (3.6) and (3.16)
through the properties of the corresponding families of the non-empty level sets.

Theorem 3.10 Let fAi; i 2 I � 0.m/g be the family of the non-empty level sets of
a function f W R.m/ ! 0.m/. Then f is a solution of Equation (3.6) satisfying (3.16)
if and only if

(i) Ai is a cone over R for all i 2 I ;
(ii) ij ¤ 0 ) Ai C Aj � Aij for all i; j 2 I .

In [9] were described explicitly all solutions of that system in the case of dimension
less or equal to three. The authors wrote that for higher dimension the task of giving
an analogous description seemed hopeless. We present these results only for m 2
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f1; 2g because the construction of all solutions of that system for m D 3 in [9]
occupies more than 12 pages.

For m D 1 the only solution is given by f .x/ D 1 for x 2 R.1/.
In the case m D 2 we have the following possibilities:

.a/ f .x/ D i for x 2 R.2/;

where i 2 f.1; 0/; .0; 1/; .1; 1/gI

.b/ f .x/ D
�

i for x 2 R.2/ n U;
.1; 1/ or .1; 1/ � i for x 2 U;

where U is one of the semiaxes of R.2/ and i 2 f.1; 0/; .0; 1/gI

.c/ f .x/ D
8<
:

i for x 2 Z;
.1; 1/ � i for x 2 Z0;
i or .1; 1/ � i or .1; 1/ for x 2 L;

where L is a half-line in R.2/ from the origin, Z, Z0 are two non-empty and
disjoint cones over R whose union is R.2/ n L and i 2 f.1; 0/; .0; 1/g.

In [10] the above problem was studied in a completely different way: first the authors
have proved some lemmas of geometric-combinatorial type which highlight some
properties that were the guidelines for developing the procedure for the construction
of the solutions, then they have described an operative procedure to construct all
solutions.

3.4 Construction of All m-Elements Consistent System

In this section motivated by problem of Aczel [1] and Roberts [19] we provide a way
of construction of all families of the sets Z1; : : : ;Zm satisfying the conditions (3.8)
and (3.9) from the paper [6].

We start from the following:

Definition 3.3 A system of sets .Z1; : : : ;Zm/ is called an m-elements consistent
system if it satisfies the conditions (3.8) and (3.9).

Definition 3.4 We call a system of sets Z1; : : : ;Zp � R.n/ can be extended
to an m-elements consistent system .p < m/, if there exists a system of sets
ZpC1; : : : ;Zm � R.n/ such that .Z1; : : : ;Zm/ is m-elements consistent system.
From now on, we assume that p < m. We have the following:

Theorem 3.11 A system of sets Z1; : : : ;Zp � R.n/ can be extended to an m-
elements consistent system if and only if the sets Z1; : : : ;Zp are cones over Q satisfy-
ing the condition (3.10) for every k; l 2 f1; : : : ; pg such that k ¤ l and the set R.n/n
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Sp
iD1 Zi has a representation as a sum of system ApC1; : : : ;Am; which elements

are pairwise disjoint cones over Q. Then the system .Z1; : : : ;Zp;ApC1; : : : ;Am/ is
m-elements consistent system extending the system Z1; : : : ;Zp.
Now we describe a way of construction of the set of all m-elements consistent
systems extending the system Z1; : : : ;Zp.

Let a system Z1; : : : ;Zp � R.n/ be such that it can be extended to an m-elements
consistent system. We denote

Up WD fCp D .Z1; : : : ;Zp;ApC1; : : : ;Am/ W ApC1; : : : ;Am are pairwise disjoint
cones over Q such that ApC1 [ � � � [ Am D R.n/ nSp

iD1 Zig:

For every Cp D .Z1; : : : ;Zp;ApC1; : : : ;Am/ 2 Up we construct corresponding sets

Z
Cp

pC1 WD fZpC1 W ZpC1 is a cone over Q satisfying the following conditions:
ApC1 � ZpC1 � ApC1 [ Z1 [ : : : [ Zp;

Z1k C Z1k \ Z0pC1 � Z1k \ Z0pC1 and Z1pC1 C Z1pC1 \ Z0k � Z1pC1 \ Z0k
for every k 2 f1; : : : ; pgg;

U
Cp

pC1 WD f.Z1; : : : ;Zp;ZpC1;ApC2; : : : ;Am/ W ZpC1 2 Z
Cp

pC1g;
UpC1 WD S

Cp2Up
U

Cp

pC1:

Each element of the set UpC1 is an m-elements consistent system and if m�p> 1,
then satisfies the condition ApC2 [ � � � [ Am D R.n/ n SpC1

iD1 Zi. Proceeding in the
analogous way, after .m�p/ steps, we can construct the set Um, which each element
is an m-elements consistent system extending the system Z1; : : : ;Zp.

From the above consideration we have the following:

Theorem 3.12 Constructing in the above way the set Um is the set of all m-elements
consistent systems extending the system Z1; : : : ;Zp.
Let us make the following definition:

Definition 3.5 A system .A1; : : : ;Am/ is called an m-elements basis system of R.n/
if the sets A1; : : : ;Am are pairwise disjoint cones over Q; such that A1 [ � � � [
Am D R.n/.
We denote

˛ WDfBD.A1; : : : ;Am/ W A1; : : : ;Am is an m-elements basis system of R.n/g:

We define an equivalence relation 
 on the set ˛ in the following way:

8BD.A1;:::;Am/;B�D.A�

1 ;:::;A
�

m/2˛.B 
 B� , A1 D A�
1 /:

Each equivalence class ŒB��; where B D .A1; : : : ;Am/ 2 ˛ is the set of those
elements belonging to the set ˛ which first element equals A1. By ˇ we denote
the set of all equivalence classes given an equivalence relation 
 on ˛.
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We notice that the equivalence class ŒB�� 2 ˇ; where B D .A1; : : : ;Am/; is equal
to the set U1 constructing according to above description for one-element set A1,
i.e., the set of all m-elements consistent systems extending the system A1; such that
m � 1 remaining cones are pairwise disjoint and their sum is equal to R.n/ n A1.
By Theorem 3.12, for each equivalence class ŒB D .A1; : : : ;Am/�� 2 ˇ we can
construct corresponding set Um.ŒB��/; which is the set of all m-elements consistent
systems extending the system A1. Hence we derive the following result:

Theorem 3.13 A set

U D
[

ŒB�
�

2ˇ
Um.ŒB��/

is the set of all m-elements consistent systems of R.n/.
The way of construction of all elements of the set ˛ is unknown.

Denote by ˛R WD f.A1; : : : ;Am/ 2 ˛ such that A1; : : : ;Am are cones over Rg.

Theorem 3.14 The set

UR WD
[

ŒB�
�

2ˇR
Um.ŒB��/

is the set of all m-elements consistent systems such that all their elements are cones
over R; where ˇR is the set of all equivalence classes given the equivalence relation

 on the set ˛R.
In [9, 10] was described the completely different way of construction of all
m-elements consistent systems such that their elements are cones over R and n D m.
Theorem 3.14 may be treated as a generalization of this construction for the case of
n;m being arbitrarily chosen natural numbers, independent of each other.

3.5 On the Multifunctions Related to the Plurality Function

As a generalization, in [14] were considered the multifunctions Z W T ! 2G; where
T is an arbitrary non-empty set, .G;C/ is an arbitrary groupoid. The conditions (3.8)
and (3.9) were replaced by

[
t2T

Z.t/ D G; (3.17)

and

.9t2T W i.t/j.t/ ¤ 0/ )
\
t2T

Z.t/i.t/ C
\
t2T

Z.t/j.t/ �
\
t2T

Z.t/i.t/j.t/; (3.18)
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respectively, where Z.t/1 WD Z.t/;Z.t/0 WD G n Z.t/; and i.t/; j.t/ W T ! f0; 1g are
arbitrary functions not identically equal to zero.

It is known that the multifunction Z.t/ W T ! 2G fulfilling condition (3.17),
satisfies condition (3.18) if and only if Z.t/ satisfies condition

Z.t1/k1 \ Z.t2/k2 C Z.t1/l1 \ Z.t2/l2 � Z.t1/k1l1 \ Z.t2/k2l2 ;

for all t1; t2 2 T and for all k1; k2; l1; l2 2 f0; 1g such that k1l1 C k2l2 ¤ 0.
Moreover, we have the following theorem (see [5]):

Theorem 3.15 Let T be an arbitrary set with at least 2 elements and let the
multifunction Z.t/ W T ! 2R.n/ satisfy condition

[
t2T

Z.t/ D R.n/: (3.19)

If the multifunction Z.t/ fulfils the system of conditional equations

.9t2T W i.t/j.t/ ¤ 0/ )
\
t2T

Z.t/i.t/ C
\
t2T

Z.t/j.t/ D
\
t2T

Z.t/i.t/j.t/ (3.20)

for the arbitrary functions i.t/; j.t/ W T ! f0; 1g not identically equal to zero, then
Z.t/ satisfies the system of equations

Z.t1/k1 \ Z.t2/k2 C Z.t1/l1 \ Z.t2/l2 D Z.t1/k1l1 \ Z.t2/k2l2 ; (3.21)

for all t1; t2 2 T and all k1; k2; l1; l2 2 f0; 1g such that k1l1 C k2l2 ¤ 0.
The converse of Theorem 3.15 for the set T with at least 2 elements is not true, and
here is an example for T D f1; 2; 3g.

Let H be a Hamel base of the space R
n, such that

h0 D .
p
2; 0; : : : ; 0/ 2 R.n/,

.i/
hi D .0; : : : ; 0; 1;0; : : : ; 0/ 2 R.n/ for i D 1; : : : ; n
belong to H.
Every x 2 R

n has a representation, unique up to terms with coefficients zero

x D
kX

lD0
qlhl;

where ql 2 Q and hl 2 H for l 2 f0; : : : ; kg.
We define the multifunction Z.t/ W f1; 2; 3g ! 2R.n/ in the following way:

Z.t/ D
8<
:

fx 2 R.n/ W qo � 0g for t D 1;

fx 2 R.n/ W qo D 0g for t D 2;

fx 2 R.n/ W qo � 0g for t D 3:



40 A. Bahyrycz

It can be easily checked that the sets Z.1/; Z.2/; Z.3/ satisfy the conditions (3.19)
and (3.21) for all t1; t2 2 f1; 2; 3g and all k1; k2; l1; l2 2 f0; 1g such that k1l1 C k2l2
¤ 0. The condition (3.20) is not satisfied because

Z.1/1 \ Z.2/1 \ Z.3/0C Z.1/1 \ Z.2/0 \ Z.3/0 ¨ Z.1/1 \ Z.2/0 \ Z.3/0:
k ¬ ¬
; ; ;
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Chapter 4
The Translation Equation in the Ring of Formal
Power Series Over C and Formal Functional
Equations

Harald Fripertinger and Ludwig Reich

Abstract In this survey we describe the construction of one-parameter subgroups
(iteration groups) of � , the group of all (with respect to substitution) invertible
power series in one indeterminate x over C. In other words, we describe all solutions
of the translation equation in CŒŒ x ��, the ring of formal power series in x with
complex coefficients. For doing this the method of formal functional equations
will be applied. The coefficient functions of solutions of the translation equation
are polynomials in additive and generalized exponential functions. Replacing these
functions by indeterminates we obtain formal functional equations. Applying formal
differentiation operators to these formal translation equations we obtain three
types of formal differential equations. They can be solved in order to get explicit
representations of the coefficient functions. For solving the formal differential
equations we apply Briot–Bouquet differential equations in a systematic way.
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4.1 Introduction

As a motivation we mention the embedding problem from analytic mechanics [30]
or geometric complex analysis [24].

4.1.1 The Embedding Problem

Consider a domain U � C
n, n � 1, 0 D .0; : : : ; 0/ 2 U, and a biholomorphic

function QFW U ! U so that QF.0/ D 0. We try to find a family .Ft/t2C of
biholomorphic functions FtW U ! U so that Ft.0/ D 0, t 2 C, and

F1 D QF
Fs ı Ft D FsCt s; t 2 C: (T)

The mapping C � U 3 .t; x/ 7! Ft.x/ 2 U is supposed to be holomorphic.
The family .Ft/t2C is called a flow, a one-parameter group, an iteration group, or
an embedding of QF. Formula (T) is called the translation equation. If we represent
the mappings Ft by their Taylor expansions in x and if we neglect the convergence
of these series, then we obtain a solution of (T) in the ring of formal power series.

4.1.2 The Ring of Formal Power Series with Complex
Coefficients

Now we want to study (T) in CŒŒ x ��, the ring of all formal power series F.x/ D
c0 C c1x C : : : in the indeterminate x over C. For a detailed introduction to formal
power series we refer the reader to [1] and [13]. Together with addition C and
multiplication � the set CŒŒ x �� forms a commutative ring. If F ¤ 0, then the order
of F.x/ D c0 C c1x C : : : is defined as ord.F/ D minfn � 0 j cn ¤ 0g. Moreover,
ord.0/ D 1. The composition ı of formal series is defined as follows: Let F;G 2
CŒŒ x ��, ord.G/ � 1, then .F ı G/.x/ is F.G.x// D P

n�0 c�ŒG.x/�� . (This converges
in the order topology.) Consider

� D fF 2 CŒŒ x �� j F.x/ D c1x C : : : ; c1 ¤ 0g D fF 2 CŒŒ x �� j ord.F/ D 1g
and

�1 D fF 2 � j c1 D 1g:
Then .�; ı/ is the group of all invertible formal power series (with respect to ı), and
.�1; ı/ is a subgroup of .�; ı/. It will be necessary to consider rings of formal power
series in more than one variable, e.g., CŒŒ x; y �� D .CŒŒ x ��/ŒŒ y ��, CŒŒ x; y; z ��, etc., and
also rings of the form .CŒ y �/ŒŒ x ��, where CŒy� is the polynomial ring in y over C,
which are subrings of CŒŒ x; y ��.
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The derivation of F 2 CŒŒ x ��, F.x/ D P
n�0 cnxn is

F0.x/ D dF

dx
.x/ D

X
n�0
.n C 1/cnC1xn:

In CŒŒ x; y �� or CŒŒ x; y; z �� we have derivations with respect to x, y, z. The chain rule
is valid which means that for F;G 2 CŒŒ x ��, ord.G/ � 1, the derivation of F ı G 2
CŒŒ x �� is of the form .F ı G/0.x/ D F0.G.x//G0.x/. In rings of the form CŒŒ x; y �� or
CŒŒ x; y; z �� the mixed chain rule holds true.

4.1.3 Iteration Groups

Iteration groups or one-parameter groups in CŒŒ x �� are families .Ft/t2C , Ft 2 � ,
t 2 C, satisfying (T). If we write Ft.x/ as

F.t; x/ D
X
n�1

cn.t/x
n; t 2 C;

then (T) is equivalent to

F.s C t; x/ D F.s;F.t; x//; s; t 2 C:

Therefore F0.x/ D x and F�t.x/ D F�1
t .x/.

An iteration group in � can be seen as a homomorphism

� W .C;C/ ! .�; ı/; �.t/ D Ft:

Moreover, in [17–19] and [16], Jabłoński and Reich were studying homomorphisms
� W .G;C/ ! .�; ı/, where .G;C/ is a commutative group. In general the situation
G ¤ C is even more involved. In the present paper we will only deal with G D C.

The problem to describe the one-parameter groups in the group of invertible
formal power series in one indeterminate with complex coefficients and, more
generally, to describe one-parameter groups of invertible formal power series trans-
formations (“formally biholomorphic mappings”) was studied by several authors,
mainly in connection with the embedding problem, that is, whether a given formal
power series (a formally biholomorphic mapping) can be embedded in such an
iteration group. We mention Lewis [21], Sternberg [30], Chen [2], Peschl and
Reich [24], Reich and Schwaiger [28], Mehring [23], and Praagman [25].

If .Ft/t2C is an iteration group in � and S 2 � , then .S�1ıFtıS/t2C is an iteration
group as well. Two iteration groups .Ft/t2C and .Gt/t2C are called conjugate if there
is some S 2 � so that Gt D S�1 ı Ft ı S for all t 2 C.
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4.1.4 The Main Problems

Motivated by the question of embeddability the problem arises to find the structure
and the explicit form of iteration groups in detail, not necessarily as a part of the
embedding problem. In the sequel we will study the following topics:

1. Construction of all iteration groups in � .
2. Find the detailed structure and explicit form of the coefficient functions

cnWC ! C (n � 1) of the solutions Ft.x/ D P
n�1 cn.t/xn, t 2 C, of (T).

3. Describe the structure of all iteration groups and their normal forms with respect
to conjugation.

The construction of iteration groups is strongly connected with the maximal abelian
subgroups of .�; ı/ (cf. [26]).

In the present paper we apply the method of formal functional equations which
differs in many aspects from the approach by Jabłoński and Reich [17, 18]. This
approach combines a detailed investigation of the systems (FE,I) and (FE; .II; k/)
(see Section 4.2) for the coefficient functions of iteration groups with the a priori
construction of the so-called analytic iteration groups, which have by definition
entire coefficient functions, and with the application of certain polynomial relations
associated with the coefficient functions. In our paper, however, we do not use any
knowledge in analytic iteration groups.

We hardly ever present complete proofs, in some places we indicate some sketch
of the proof. For details the reader is referred to the publications [4] in connection
with iteration groups of type I and [5] for iteration groups of type .II; k/.

We finish the introduction by giving an outline of the results and adding several
comments. In Section 4.2 we describe the basic distinction between iteration
groups of type I and iteration groups of type .II; k/, k � 2. After studying the
infinite systems of functional equations characterizing the coefficient functions
of iteration groups, namely (FE,I) for iteration groups of type I and (FE; .II; k/)
for iteration groups of type .II; k/ (see Lemmas 4.1 and 4.2), we reduce the
construction to the investigation of the so-called formal iteration groups of type I
and formal iteration groups of type .II; k/ (Theorem 4.1). These objects are elements
in .CŒy�/ŒŒx�� which are solutions of certain relations in .CŒy; z�/ŒŒx��, namely the
formal translation equations (Tform; I) and (Tform; .II; k/), together with appro-
priate boundary conditions. The basic idea of this reduction is the possibility
to replace in the case of iteration groups of type I, say Ft.x/ D c1.t/x C : : :,
t 2 C, the generalized exponential function c1 ¤ 1 by an indeterminate y and
similarly in the case of iteration groups of type .II; k/, Ft.x/ D x C ck.t/xk C : : :,
t 2 C, the additive function ck ¤ 0 by an indeterminate y, in the systems
(FE,I) and (FE; .II; k/), respectively. Furthermore, we deduce from (Tform; I) and
(Tform; .II; k/) by formal differentiation two formal differential equations, namely
(Dform; I), (PDform; I) and by combining these two (AJform; I) for formal iteration
groups of type I, and (Dform; .II; k/), (PDform; .II; k/), and (AJform; .II; k/) for
formal iteration groups of type .II; k/. The partial differential equations (PDform; I)
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and (PDform; .II; k/) may be considered as the simplest since they do not require
a substitution of the unknown series G.y; x/. The Aczél–Jabotinsky equations
(AJform; I) and (AJform; .II; k/) are weaker than the other differential equations
just mentioned, and we add a remark (Theorem 4.2) how these Aczél–Jabotinsky
differential equations can be used to construct and describe maximal abelian
subgroups of � . All these differential equations contain the generator H.x/ where
H.x/ D @

@y G.y; x/jyD1 D x C h2x2 C : : : for formal iteration groups of type I

and H.x/ D @
@y G.y; x/jyD1 D xk C hkC1xkC1 C : : :, k � 2, for formal iteration

groups of type .II; k/. The coefficients h� of the generators play an important
role as natural parameters in the representations we are going to obtain in the
following sections. In Section 4.2.5 we draw attention to the reordering of a formal
iteration group G.y; x/ 2 .CŒy�/ŒŒx�� as G.y; x/ D P

n�1 
n.x/yn (for type I) or
G.y; x/ D P

n�0 
n.x/yn (for type .II; k/) which allows in several situations a
simpler and more elegant integration of the differential system.

In Section 4.3 we present the main results about the explicit form of formal
iteration groups. Theorems 4.3 and 4.4 give the form of the coefficient functions
Pn as derived from (PDform; I) for formal iteration groups G.y; x/ D yx CP

n�2 Pn.y/xn of type I. The coefficient functions Pn.y/ are not only polynomials in
y, but also universal polynomials in y and the coefficients h2; : : : ; hn of the generator
H, where H.x/ D x C : : : can be chosen arbitrarily. We obtain rather explicit
formulas for the Pn, including recursive relations describing the dependence on the
parameters .hn/n�2, as well as estimates of the degree of Pn. Using the reordering
G.y; x/ D P

n�1 
n.x/yn of the formal iteration group of type I in (PDform; I)
leads to Briot–Bouquet differential equations for the coefficients 
n. The result is
Theorem 4.5 which gives the unique representation G.y; x/ D S�1.yS.x// with
S 2 �1, sometimes called standard form. This means that each formal iteration
group of type I is conjugate to yx which has generator x.

Theorems 4.6 and 4.7 show another representation of the coefficient functions
Pn.y/ of formal iteration groups of type I, as deduced from (Dform; I). Theorem 4.8
contains one more description of G.y; x/ D P

n�1 
n.x/yn, a formal iteration group
of type I, which follows from (Dform; I), where 
n.x/ is expressed as 'n.
1.x//,
n � 1, and a recurrence for .'n/n�1 without differentiation is deduced.

Theorem 4.9 refers to the solutions of (AJform; I). Here again Briot–Bouquet
differential equations may be applied. The condition G.y; x/ D yxC: : : leads exactly
to the solutions of (Tform; I) (see Theorems 4.9 and 4.10). Theorem 4.11 is also
based on (AJform; I), reordering of G.y; x/, and using Briot–Bouquet differential
equations. It gives again the standard form and the recurrence of Theorem 4.8.

In Section 4.3.4 we sketch two further approaches to obtain the standard form,
here directly without formal functional equations. In connection with the first
approach we discuss the important connection (4.1) of the generators of two
conjugate formal iteration groups of type I. We formulate this connection as a
differential equation for the conjugating series S 2 � , involving the generators
H and QH of the conjugate formal iteration groups. Formula (4.1), also valid for
formal iteration groups of type .II; k/, will also appear later in the paper. The second
approach to the standard form is a calculation in the field Chhxii of formal Laurent
series with finite principal part.
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The results for formal iteration groups of type .II; k/ follow in the next section.
The situation is not only much more complicated from a technical point of view,
but also offers new “aspects.” Theorems 4.12 and 4.13 refer to explicit formulas
for the coefficient functions of the formal iteration groups of type .II; k/, G.y; x/ D
x C yxk C P

n>k Pn.y/xn, derived from (PDform; .II; k/) or (Dform; .II; k/). Here
Pn is a universal polynomial in y and the coefficients hkC1; : : : ; hn�kC1; hn of the
generator H.x/ D xk C hkC1xkC1 C : : :. As a matter of fact, Pn does not depend on
hn�kC2; : : : ; hn�1. Estimates of the degree of the Pn are given.

A similar result follows from (AJform; .II; k/) (see Theorems 4.14 and 4.15).
Writing G.y; x/ D P

n�0 
n.x/yn and substituting it into (PDform; .II; k/) we find
a simple recurrence formula (PDRn; .II; k/) for 
n, this time with differentiation. Its
solution under the boundary condition (BR; .II; k/) is contained in Theorems 4.16–
4.18. The explicit formula for 
nC1 in Theorem 4.17 has as parameters certain
coefficients h� of the generator H and certain coefficients of the Pn which are the
coefficients of G.y; x/ D x C yxk CP

n>k Pn.y/xn, whereas the explicit formula for

n in Theorem 4.18 has as parameters the coefficients of the generator only.

Formal iteration groups of type I and those of type .II; k/ have very different
properties with respect to conjugation. We start Section 4.3.6 by claiming that each
formal iteration group of type .II; k/ is conjugate to a formal iteration group of
type .II; k/ with generator QH.x/ D xk C hx2k�1, a so-called normal form. This
is unique if we restrict the conjugating series S to be an element of �1. To see
this, we have to solve (4.1) for S 2 �1. Theorem 4.19 describes in detail, using
(PDform; .II; k/) and (B; .II; k/), the explicit form of formal iteration groups of
type .II; k/ with generators xk C hx2k�1. These normal forms have the simplified
structure G.y; x/ D P

n�0 Pn.k�1/C1.y/xn.k�1/C1 which is, however, much more
complicated than the standard form S�1.yS.x// of formal iteration groups of type I.

It follows that the normal form G.y; x/ determined by the generator xk C hx2k�1
has an expansion G.y; x/ D P

r�0 Gr.y; x/hr as a power series in h with coefficients
Gr.y; x/ 2 CŒŒy; x��, since h can be considered as a new indeterminate. The series
Gr.y; x/ are determined from the recursive system (4.4) and (4.5). Their form is
presented in Theorem 4.20. The differential equation (Dform; .II; k/) leads to a
more compact description of Gr.y; x/, given in Theorem 4.21, involving a series
of binomial type and a polynomial in ln.1 � .k � 1/yxk�1/. The series G0.y; x/ D
x.1 � .k � 1/yxk�1/�1=.k�1/ plays a role in the theory of reversible power series (cf.
[12]). Eventually Theorem 4.22 builds a bridge to Lie–Gröbner series.

We finish the paper by collecting some open problems. The most interesting one
is the construction of iteration groups in higher dimensions by means of formal
functional equations. So far only partial results are known.
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4.2 First Classification of Iteration Groups

Let .Ft/t2C be an iteration group, Ft.x/ D P
n�1 cn.t/xn, t 2 C. We consider three

different types of iteration groups:

1. Ft.x/ D x for all t 2 C is the trivial iteration group.
2. If c1 ¤ 1, then

c1.s C t/ D c1.s/c1.t/; s; t 2 C;

thus c1 is a non-trivial generalized exponential function. We call .Ft/t2C an
iteration group of type I.

3. If c1 D 1, then there exists some k � 2, so that c2 D � � � D ck�1 D 0, ck ¤ 0, and

ck.s C t/ D ck.s/C ck.t/; s; t 2 C;

thus ck is a non-trivial additive function. We say that .Ft/t2C is an iteration group
of type .II; k/.

This classification is compatible with the conjugation of iteration groups, i.e., if
.Ft/t2C and .Gt/t2C are conjugate, then they have the same type.

4.2.1 Systems of Functional Equations for the Coefficient
Functions

Consider a family .Ft/t2C , Ft.x/ D P
n�1 cn.t/xn, t 2 C, where c1 ¤ 1. Then

.Ft/t2C is an iteration group of type I, if and only if the system

c1.s C t/ D c1.s/c1.t/

c2.s C t/ D c1.s/c2.t/C c2.s/c1.t/
2 (FE,I)

cn.s C t/ D c1.s/cn.t/C cn.s/c1.t/
n C QPn

�
c2.s/; : : : ; cn�1.s/; c2.t/; : : : ; cn�1.t/

	
;

n � 2

is satisfied for all s; t 2 C. The QPn are universal polynomials which are linear in
c2.s/; : : : ; cn�1.s/.

Lemma 4.1 ([4, Lemma 2]) If .Ft/t2C is an iteration group of type I of the form
Ft.x/ D P

n�1 cn.t/xn, t 2 C, then c1 is a non-trivial generalized exponential
function and there exists a sequence of polynomials .Pn/n�2 so that

cn.s/ D Pn.c1.s// 8s 2 C; and Pn.0/ D 0; n � 2:
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Since c1 ¤ 1, for n � 2 there exists some tn 2 C so that c1.tn/n � c1.tn/ ¤ 0. From
c2.s C t/ D c2.t C s/, for all s; t 2 C, we obtain

c2.s/ D c2.t2/.c1.s/2 � c1.s//

c1.t2/ � c1.t2/2
D P2.c1.s//; s 2 C:

Using induction on n and cn.s C t/ D cn.t C s/, 8s; t 2 C, we obtain the assertion
from (FE,I).

Hence we obtain from (FE,I)

Pn.c1.s/c1.t// D Pn.c1.s C t// D cn.s C t/

D c1.s/Pn.c1.t//C Pn.c1.s//c1.t/
n ( OP; I)

C QPn
�
P2.c1.s//; : : : ;Pn�1.c1.s//;P2.c1.t//; : : : ;Pn�1.c1.t//

	
for all s; t 2 C and all n � 2.

Consider a family .Ft/t2C , Ft.x/ D x C P
n�k cn.t/xn, t 2 C, where ck ¤ 0.

Then .Ft/t2C is an iteration group of type .II; k/, if and only if the system

cn.s C t/ D cn.s/C cn.s/; k � n � 2k � 2;
c2k�1.s C t/ D c2k�1.s/C c2k�1.t/C kck.s/ck.t/

c2k.s C t/ D c2k.s/C c2k.t/C kck.s/ckC1.t/C .k C 1/ckC1.s/ck.t/

cn.s C t/ D cn.s/C cn.t/C kck.s/cn�.k�1/.t/ (FE; .II; k/)

C �
n � .k � 1/	cn�.k�1/.s/ck.t/

C QPn
�
ck.s/; : : : ; cn�k.s/; ck.t/; : : : ; cn�k.t/

	
; n > 2k;

for all s; t 2 C, where QPn are universal polynomials which are linear in
ck.s/; : : : ; cn�k.s/.

Lemma 4.2 ([5, Lemma 1]) Consider some integer k � 2. If .Ft/t2C is an iteration
group of type .II; k/, Ft.x/ D x CP

n�k cn.t/xn, t 2 C, then ck is a non-trivial
additive function and there exists a sequence of polynomials .Pn/n�k so that

cn.s/ D Pn.ck.s//; s 2 C; n � k:

The reader should remember that these polynomials Pn differ from the polynomials
Pn of Lemma 4.1. Since ck ¤ 0 there exists some t0 2 C so that ck.t0/ ¤ 0. Using
(FE; .II; k/) for n D 2k we obtain from c2k.s C t/ D c2k.t C s/,

ckC1.s/ D ckC1.t0/
ck.t0/

ck.s/ D PkC1.ck.s//; s 2 C:
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By induction on n and cnCk�1.s C t/ D cnCk�1.t C s/, for all s; t 2 C, we obtain the
assertion from (FE; .II; k/).

Hence we obtain from (FE; .II; k/)

Pn.ck.s/C ck.t// D Pn.ck.s C t// D cn.s C t/

D Pn.ck.s//C Pn.ck.t//C kck.s/Pn�.k�1/.ck.t// ( OP; .II; k/)
C �

n � .k � 1/	Pn�.k�1/.ck.s//ck.t/

C QPn
�
ck.s/; : : : ;Pn�k.ck.s//; ck.t/; : : : ;Pn�k.ck.t//

	
;

for all s; t 2 C and n � k, where Pj D 0 for j < k and QPj D 0 for j � 2k.

4.2.2 Formal Functional Equations

Formal functional equations in connection with the translation equation were
studied by Gronau [10, 11], and the present authors [4, 5]. Similar methods were also
applied for the study of cocycle equations which occur in connection with covariant
embeddings of the linear functional equation (cf. [3, 6, 7]). Assume that .Ft/t2C is an
iteration group of type I, Ft.X/ D P

n�1 cn.t/xn, t 2 C, where c1.sCt/ D c1.s/c1.t/,
s; t 2 C, c1 ¤ 1 and c1 ¤ 0. Since the image of c1 contains infinitely many elements
we can prove for any polynomial Q.x; y/ 2 CŒx; y� that Q.c1.s/; c1.t// D 0 for all
s; t 2 C implies Q D 0. From ( OP; I) we obtain by replacing c1.s/ and c1.t/ by
independent variables y; z, that

Pn.yz/ D yPn.z/C Pn.y/z
n C QPn

�
P2.y/; : : : ;Pn�1.y/;P2.z/; : : : ;Pn�1.z/

	
(P; I)

in CŒy; z� for n � 2. Writing G.y; x/ D yx CP
n�2 Pn.y/xn 2 .CŒy�/ŒŒx�� we deduce

from (P; I) that G satisfies the formal translation equation of type I

G.yz; x/ D G.y;G.z; x// (Tform; I)

in .CŒy; z�/ŒŒx��. We call G.y; x/ a formal iteration group of type I. It also satisfies the
condition

G.1; x/ D x: (B; I)

Assume that .Ft/t2C is an iteration group of type .II; k/ for some k � 2,
Ft.x/ D x CP

n�k cn.t/xn, t 2 C, where ck.s C t/ D ck.s/ C ck.t/, s; t 2 C,
ck ¤ 0. Since the image of ck contains infinitely many elements we can prove for any
polynomial Q.x; y/ 2 CŒx; y� that Q.ck.s/; ck.t// D 0 for all s; t 2 C implies Q D 0.
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From ( OP; .II; k/) we obtain by replacing ck.s/ and ck.t/ by independent variables
y; z, that

Pn.y C z/ D Pn.y/C Pn.z/C kyPn�.k�1/.z/C �
n � .k � 1/	Pn�.k�1/.y/z

C QPn
�
y; : : : ;Pn�k.y/; z; : : : ;Pn�k.z/

	
(P; .II; k/)

for all n � k.
Writing G.y; x/ D x C yxk C P

n�kC1 Pn.y/xn 2 .CŒy�/ŒŒy�� we deduce from
(P; .II; k/) that G satisfies the formal translation equation of type .II; k/

G.y C z; x/ D G.y;G.z; x// (Tform; .II; k/)

in .CŒy; z�/ŒŒx��. We call G.y; x/ a formal iteration group of type .II; k/. It also satisfies
the condition

G.0; x/ D x: (B; .II; k/)

Conversely, from each formal iteration group we can construct iteration groups
in the following way (cf. [4, Theorem 3] and [5, Theorem 3]):

Theorem 4.1 1. If G.y; x/ is a formal iteration group of type I, c1 a generalized
exponential function, c1 ¤ 1, then .G.c1.t/; x//t2C is an iteration group of type I.

2. If G.y; x/ is a formal iteration group of type .II; k/, k � 2, ck an additive function,
ck ¤ 0, then .G.ck.t/; x//t2C is an iteration group of type .II; k/.

4.2.3 Differential Equations Obtained from the Translation
Equation

Let G.y; x/ 2 .CŒy�/ŒŒx�� be a formal iteration group of type I. Then the infinitesimal
generator of G is defined as

H.x/ D @

@y
G.y; x/

ˇ̌
yD1:

It is of the form H.x/ D x C P
n�2 hnxn. Differentiation of (Tform; I) with respect

to y yields

z
@

@t
G.t; x/jtDyz D @

@y
G
�
y;G.z; x/

	
:

For y D 1 we get

z
@

@z
G.z; x/ D H.G.z; x//: (Dform; I)
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Differentiation of (Tform; I) with respect to z and application of the mixed chain
rule yields

y
@

@t
G.t; x/jtDyz D @

@t
G.y; t/jtDG.z;x/

@

@z
G.z; x/:

For z D 1 we get

y
@

@y
G.y; x/ D H.x/

@

@x
G.y; x/: (PDform; I)

The advantage of this equation lies in the circumstance that no substitution of the
unknown series G.y; x/ is needed and that (PDform; I) is a linear equation.

Combining (Dform; I) and (PDform; I), we obtain an Aczél–Jabotinsky differen-
tial equation of the form

H.x/
@

@x
G.y; x/ D H.G.y; x//: (AJform; I)

In this equation the variable y is an internal parameter since it does not appear
explicitly in (AJform; I).

Let G.y; x/ 2 .CŒy�/ŒŒx�� be a formal iteration group of type .II; k/ for some k � 2.
Then the infinitesimal generator of G is defined as

H.x/ D @

@y
G.y; x/

ˇ̌
yD0:

It is of the form H.x/ D xk CP
n�kC1 hnxn. Differentiation of (Tform; .II; k/) with

respect to y yields

@

@t
G.t; x/jtDyCz D @

@y
G
�
y;G.z; x/

	
:

For y D 0 we get

@

@z
G.z; x/ D H.G.z; x//: (Dform; .II; k/)

Differentiation of (Tform; .II; k/) with respect to z and application of the mixed
chain rule yields

@

@t
G.t; x/jtDyCz D @

@t
G.y; t/jtDG.z;x/

@

@z
G.z; x/:

For z D 0 we get

@

@y
G.y; x/ D H.x/

@

@x
G.y; x/: (PDform; .II; k/)
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The advantage of this equation lies in the circumstance that no substitution of the
unknown series G.y; x/ is needed and that (PDform; .II; k/) is a linear equation.

Combining (Dform; .II; k/) and (PDform; .II; k/), we obtain an Aczél–Jabotinsky
differential equation of the form

H.x/
@

@x
G.y; x/ D H.G.y; x//: (AJform; .II; k/)

In this equation the variable y is an internal parameter since it does not appear
explicitly in (AJform; .II; k/).

4.2.4 The Relevance of Aczél–Jabotinsky Differential
Equations

The Aczél–Jabotinsky differential equations can be used to characterize maximal
abelian subgroups of � (cf. [26]). The main result reads as follows:

Theorem 4.2 A set F � � is a maximal abelian subgroup of � if and only if there
exists some H 2 CŒŒ x ��, H ¤ 0, ord.H/ � 1, so that


 2 F ” H.x/
0.x/ D H.
.x//:

It can be shown that either F is isomorphic to C
�, or F is isomorphic to��

� t
0 �

� ˇ̌̌
�m D 1; t 2 C



;

where m is uniquely determined by F .

4.2.5 Reordering the Summands

Let G.y; x/ D P
n�1 Pn.y/xn 2 .CŒy�/ŒŒx�� � CŒŒy; x�� be a formal iteration group of

type I, then it is possible to write G.y; x/ in the form

G.y; x/ D
X
n�1


n.x/y
n 2 .CŒŒ x ��/ŒŒy�� (R; I)

where 
1 2 �1, and .
n.x//n�1 is a summable family in CŒŒ x ��. Therefore the
boundary condition (B; I)

G.1; x/ D
X
n�1


n.x/ D x (BR; I)
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makes sense. It is possible to use this representation of G in the differential equations
(Dform; I), (PDform; I), and (AJform; I).

Let

G.y; x/ D x C yxk C
X

n�kC1
Pn.y/x

n 2 .CŒy�/ŒŒx�� � CŒŒy; x��;

k � 2, be a formal iteration group of type .II; k/, then it is possible to write G.y; x/
in the form

G.y; x/ D
X
n�0


n.x/y
n 2 .CŒŒ x ��/ŒŒy�� (R; .II; k/)

where .
n.x//n�0 is a summable family in CŒŒ x ��. The boundary condition (B; .II; k/)
reads as

G.0; x/ D 
0.x/ D x: (BR; .II; k/)

It is possible to use this representation of G in the differential equations
(Dform; .II; k/), (PDform; .II; k/), and (AJform; .II; k/).

4.3 Solving the Translation Equation by a Purely Algebraic
Differentiation Process

Here we present the construction of formal iteration groups by solving the differen-
tial equations (Dform; I), (PDform; I), or (AJform; I) for formal iteration groups of
type I and (Dform; .II; k/), (PDform; .II; k/), or (AJform; .II; k/) for formal iteration
groups of type .II; k/ under the appropriate boundary conditions.

4.3.1 Formal Iteration Groups of Type I Obtained from
(PDform; I) and (B; I)

Using the partial differential equation (PDform; I) we describe how the polynomials
Pn, n � 2, depend on the coefficients hj, j � 2, of the infinitesimal generator H of
the formal iteration group G of type I. We determine all solutions of (PDform; I) and
(B; I) and we show that each of them is a solution of (Tform; I).

Theorem 4.3 ([4, Theorem 4]) For each generator H.x/ D x C h2x2 C : : :

the partial differential equation (PDform; I) together with (B; I) has exactly one
solution. It is given by

G.y; x/ D yx C
X
n�2

Pn.y/x
n 2 .CŒy�/ŒŒx��:
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The polynomials Pn, n � 2, are of formal degree n (that is an upper bound for the
degree), they satisfy Pn.0/ D 0, and they are of the form

Pn.y/ D hn

n � 1 .y
n � y/C

n�1X
jD1

˚
.n/
j .h2; : : : ; hn�1/

n � j
.yn � yj/

where the polynomials ˚.n/
j , 1 � j � n � 1, are (recursively) determined by

n�1X
rD2

hr.n � r C 1/Pn�rC1.y/ D
n�1X
jD1

˚
.n/
j .h2; : : : ; hn�1/yj:

Theorem 4.4 ([4, Theorem 5]) For each generator H.x/ D x C h2x2 C : : : the
solution G.y; x/ of (PDform; I) and (B; I) is a solution of the formal translation
equation (Tform; I).
Let G be the solution of (PDform; I) and (B; I) for the generator H. In order to prove
this theorem we show that both series

U.y; z; x/ WD G.yz; x/

V.y; z; x/ WD G.z;G.y; x//

satisfy the system

y
@

@y
f .y; z; x/ D H.x/

@

@x
f .y; z; x/

f .1; z; x/ D G.z; x/

which has a unique solution in .CŒy; z�/ŒŒx��.
Let G be the solution of (PDform; I) and (B; I) for the generator H. Reordering

the summands of G we write G.y; x/ as
P

n�1 
n.x/yn. Then from (PDform; I) and
(B; I) we obtain

X
n�1

n
n.x/y
n D H.x/

X
n�1


0
n.x/y

n (PDR; I)

and (BR; I). Equation (PDR; I) is equivalent to

n
n.x/ D H.x/
0
n.x/ (PDRn; I)

for all n � 1. Each of these equations is equivalent to a Briot–Bouquet differential
equation (in the non-generic case), thus it has solutions.
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A Briot–Bouquet differential equation (cf. [20, Section 5.2], [14, Section 11.1],
[15, Section 12.6]) is a complex differential equation

zw0.z/ D az C bw.z/C
X

˛Cˇ�2
a˛;ˇz˛Œw.z/�ˇ;

where w.z/ is a power series in z with w.0/ D 0, and the power series on the right-
hand side is given. Cauchy’s theorem on existence and uniqueness cannot be applied
directly. In the case b D n, a positive integer, a formal solution w.z/ exists if, and
only if, a certain polynomial P.a; b; a˛;ˇ W ˛ C ˇ � n/ vanishes. If so, then the
equation is called solvable or non-generic of type n, and all solutions take the shape

wt.z/ D c1z C : : :C cn�1zn�1 C tzn C
X
��nC1

Q�.t/z
�; t 2 C;

for polynomials Q�.t/ . The coefficients ci, 1 � i � n � 1, are uniquely determined.
The series wt.z/ is convergent if the given right-hand side is convergent.

Let

H.x/ D x.1C
X
n�1

h�
n xn/ D xH�.x/;

then h�
n D hnC1, n � 1, and (PDRn; I) is equivalent to

n
n.x/ D xH�.x/
0
n.x/

or

x
0
n.x/ D n
n.x/Œ1C h�

1 x C : : :��1:

Finally for each n � 1 we end up with the system

x
0
n.x/ D n
n.x/C n

X
˛Cˇ�2

d˛;ˇx˛Œ
n.x/�
ˇ


n.0/ D 0:

The set of solutions of (PDRn; I) is then given by f'.n/n Œ
1;0.x/�n j '.n/n 2 Cg, where

1;0.x/ is the unique solution of .PDR1; I/ which belongs to �1, i.e., which is of the
form 
1;0.x/ D x C : : :. Denote this series by S.x/ D 
1;0.x/ and let

P
n�1 
n.x/ be

a solution of (PDR; I). From the boundary condition (BR; I) we obtain

x D
X
n�1


n.x/ D
X
n�1

'.n/n ŒS.x/�n;
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whence,

S�1.x/ D
X
n�1

'.n/n xn;

from which it is possible to determine the values '.n/n , n � 1.
The main result of this section is

Theorem 4.5 ([4, Theorem 7]) If G.y; x/ D P
n�1 
n.x/yn is a solution of

(Tform; I) and (B; I), then there exists exactly one S 2 �1 so that

G.y; x/ D S�1�yS.x/
	
:

Using the representation (R; I) we have 
n.x/ D '
.n/
n ŒS.x/�n, where '.n/n 2 C, n � 1.

Conversely, for every S 2 �1 the series

G.y; x/ D S�1�yS.x/
	

is a solution of (Tform; I) and (B; I).

4.3.2 Formal Iteration Groups of Type I Obtained from
(Dform; I) and (B; I)

For the differential equation (Dform; I) we obtain similar results as in the previous
section (see also [4, Theorems 9, 10, 11]).

Theorem 4.6 For each generator

H.x/ D x C h2x
2 C : : :

the differential equation (Dform; I) together with (B; I) has exactly one solution. It
is given by

G.z; x/ D zx C
X
n�2

Pn.z/x
n 2 .CŒz�/ŒŒx��:

The polynomials Pn, n � 2, are of formal degree n, they satisfy Pn.0/ D 0, and they
are of the form

Pn.z/ D hn

n � 1 .z
n � z/C

nX
jD2

�
.n/
j .h2; : : : ; hn�1/

j � 1 .zj � z/
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where the polynomials �.n/
j , 2 � j � n, are (recursively) determined by

n�1X
�D2

h�
X

r1C:::Cr�Dn
rj�1

0
@ �Y

jD1
Prj.z/

1
A D

nX
jD2

�
.n/
j .h2; : : : ; hn�1/zj:

Theorem 4.7 For each generator

H.x/ D x C h2x
2 C : : :

the solution G.z; x/ of (Dform; I) and (B; I) is a solution of the formal translation
equation (Tform; I).

Using the representation (R; I) we obtain from (Dform; I)

X
n�1

n
n.x/z
n D

X
��1

h�

2
4X

n�1

n.x/z

n

3
5
�

(DR; I)

which is equivalent to

n
n.x/ D
nX

�D1
h�

X
r1C:::Cr�Dn

rj�1

0
@ �Y

jD1

rj.x/

1
A (DRn; I)

for all n � 1. This is a recursive formula for the 
n without any differentiation
process. The solutions of (DR; I) are given in

Theorem 4.8 Consider H.x/ D x C h2x2 C : : :.

1. Every 
1.x/ 2 CŒŒ x �� satisfies .DR1; I/.
2. Let 
1 2 CŒŒ x �� n f0g. For each n � 2 there exists exactly one solution 
n of

(DRn; I), depending on 
1. It is given by 
n.x/ WD 'nŒ
1.x/�n, where '1 D 1 and

'n D 1

n � 1
nX

�D2
h�

X
r1C:::Cr�Dn

�Y
jD1
'rj ; n � 2:

Consequently, 'n does not depend on the choice of 
1.
3. The system (DR; I) and (BR; I) has a unique solution. It is given by

X
n�1

'nŒ
1.x/�
nzn
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for '1 D 1, 'n for n � 2 given as above, and


1.x/ D .x C
X
n�2

'nxn/�1;

which is an element of �1.

4.3.3 Formal Iteration Groups of Type I Obtained from
(AJform; I) and (B; I)

Here we present some facts from [4, Section 2.3]. Writing the series H as
x.1C h2x C : : :/ and 
.x/ WD G.y; x/ motivates that (AJform; I) is equivalent to

x
0.x/ D Œ1C h2x C : : :��1H.
.x//

or

x
0.x/ D 
.x/C
X
˛Cˇ�2
ˇ�1

d˛;ˇ.h/x
˛Œ
.x/�ˇ

which is a Briot–Bouquet differential equation. It is well known that for each
QP1.y/ 2 CŒy� there exists exactly one solution

QG.y; x/ D QP1.y/x C
X
n�2

QPn.y/x
n

of this Briot–Bouquet equation with coefficients QPn.y/ which are polynomials,
n � 2.

The solutions of (AJform; I) with QP1.y/ D y are determined in the next theorem.

Theorem 4.9 1. For each generator H.x/ D xCh2x2C: : : the differential equation
(AJform; I) has exactly one solution of the form

G.y; x/ D yx C
X
n�2

Pn.y/x
n 2 .CŒy�/ŒŒx��:

2. The polynomials Pn, n � 2, (from the unique solution G.y; x/ � yx mod x2) are
of formal degree n, they satisfy Pn.0/ D 0, and they are of the form

Pn.y/ D hn

n � 1 .y
n � y/C

nX
jD2

�
.n/
j .h2; : : : ; hn�1/

n � 1 .yj � y/
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where the polynomials �.n/
j , 2 � j � n, are (recursively) determined by

n�1X
�D2

h�

0
BB@ X

r1C:::Cr�Dn
rj�1

0
@ �Y

jD1
Prj.y/

1
A � .n � � C 1/Pn��C1.y/

1
CCA D

nX
jD2

�
.n/
j .h2; : : : ; hn�1/.yj � y/:

Applying the same method as in the proof of Theorem 4.4 we obtain

Theorem 4.10 For each generator H.x/ D x C h2x2 C : : : the solution G.y; x/
of the differential equation (AJform; I) with G.y; x/ � yx mod x2 is a solution of
(Tform; I).
Using the representation (R; I) we obtain from (AJform; I)

H.x/
X
n�1


0
n.x/y

n D
X
��1

h�

2
4X

n�1

n.x/y

n

3
5
�

(AJR; I)

which is equivalent to

H.x/
0
n.x/ D 
n.x/C

nX
�D2

h�
X

r1C:::Cr�Dn
rj�1

0
@ �Y

jD1

rj.x/

1
A (AJRn; I)

for all n � 1. Again these equations are Briot–Bouquet differential equations since,
for all n � 1,

x
0
n.x/ D Œ1C h2x C : : :��1

0
BB@
n.x/C

nX
�D2

h�
X

r1C:::Cr�Dn
rj�1

0
@ �Y

jD1

rj.x/

1
A
1
CCA :

We are mainly interested in solutions where 
1.x/ D x C : : : since they lead to
iteration groups. The set of all solutions of (AJR; I) is described in

Theorem 4.11 Consider H.x/ D x C h2x2 C : : :.

1. For every c 2 C, there is exactly one solution


1.x/ � cx mod x2

of .AJR1; I/.
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2. Assume that 
1 D cx C : : :, c ¤ 0, is a solution of .AJR1; I/. Then for each
n � 2 there exists exactly one solution 
n.x/ of (AJRn; I). It is given by 
n.x/ D
'nŒ
1.x/�n, where '1 D 1 and

'n D
nX

�D2

h�
n � 1

X
r1C:::Cr�Dn

�Y
jD1
'rj ; n � 2:

Consequently, 'n does not depend on the choice of 
1.
3. The unique solution 
1 of system .AJR1; I/ which belongs to �1, (i.e., c D 1)

leads to the solution X
n�1

'nŒ
1.x/�
nyn

of (AJR; I), where '1 D 1 and 'n for n � 2 given as above. Moreover 
1.x/ D
.x CP

n�2 'nxn/�1.

Based on these results it is possible to give another simple proof of Theorem 4.5.

4.3.4 Normal Forms of Iteration Groups of Type I

From Theorem 4.5 we know that each formal iteration group G.y; x/ of type I is
conjugate to yx. We call it the normal form of formal iteration groups of type I. Let
.Ft/t2C be an iteration group of type I, Ft.x/ D P

n�1 cn.t/xn for all t 2 C. Then
there exists some S 2 �1 so that Ft.x/ D S�1.c1.t/S.x//, t 2 C.

We want to present two further methods for finding this normal form.

1. Consider the generator H.x/ D @
@y G.y; x/jyD1 D x C h2x2 C : : : of a formal

iteration group of type I, and some S 2 � . Then QG.y; x/ D S�1.G.y; S.x/// is a
solution of (Tform; I). We calculate its generator

QH.x/ D @

@y
S�1.G.y; x//jyD1

by an application of the chain rule:

@

@y
S�1.G.y; Sx// D .S�1/0.G.y; Sx//

@

@y
G.y; Sx/:

Putting y D 1 we obtain QH.x/ D .S�1/0.Sx/H.Sx/. Since .S�1/0.Sx/S0.x/ D 1

we get

�
@

@x
S.x/

�
QH.x/ D H.S.x//: (4.1)
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If we choose QH.x/ D x, then (4.1) yields the Briot–Bouquet differential equation

x
@

@x
S.x/ D S.x/C h2ŒS.x/�

2 C : : : (4.2)

(see [20, Section 5.2], [14, Section 11.1], [15, Section 12.6]). It is known that
(4.2) has exactly one solution in S 2 �1. Using this S it follows that QG.y; x/
has the generator QH.x/ D x, hence from (B; I) we get yx D QG.y; x/ D
S�1.G.y; S.x///, or equivalently

G.y; x/ D S.yS�1.x//: (4.3)

2. Consider for some H.x/ D xCh2x2C: : : 2 CŒŒ x �� the Aczél–Jabotinsky equation

H.x/˚ 0.x/ D H.˚.x//; for ˚.x/ D �x C : : : ; � ¤ 0: (AJ)

We compute the standard form of its set of solutions by computation in Chhxii,
the ring of formal Laurent series with finite principal part. Again we write
H.x/ D xH�.x/ and assume that ŒH�.x/��1 D 1 C h�

1 x C h�
2 x2 C : : :. Then

from (AJ) we get xH�.x/˚ 0.x/ D ˚.x/H�.˚.x// thus

˚ 0.x/
˚.x/

0
@1C

X
n�1

h�
n Œ˚.x/�

n

1
A D 1

x

0
@1C

X
n�1

h�
n xn

1
A

and

˚ 0.x/
˚.x/

� 1

x
D �

X
n�1

h�
n˚

0.x/Œ˚.x/�n�1 C
X
n�1

h�
n xn�1:

Using the differentiation operator this can be written as

@

@x

�
ln
˚.x/

�x

�
D � @

@x

0
@X

n�1

h�
n

n
Œ˚.x/�n

1
AC @

@x

0
@X

n�1

h�
n

n
xn

1
A ;

therefore

ln
˚.x/

�x
D �T.˚.x//C T.x/ for T.x/ D

X
n�1

h�
n

n
xn:

Applying the exponential series we deduce

˚.x/

�x
D exp.T.x//

exp.T.˚.x///
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or equivalently˚.x/ exp.T.˚.x/// D �x exp.T.x//. The series S given by S.x/ D
x exp.T.x// is in �1 and satisfies S.˚.x// D �S.x/, whence ˚.x/ D S�1.�S.x//.
The coefficients of S are polynomials in the coefficients hn.

4.3.5 Formal Iteration Groups of Type .II; k/ Obtained from
the Three Differential Equations

The solutions of (PDform; .II; k/) [or (Dform; .II; k/)] together with (B; .II; k/) and
the polynomials Pn.y/, n > k, occurring as their coefficient functions are completely
described in

Theorem 4.12 ([5, Theorems 4, 9]) Consider some k � 2.

1. For each generator H.x/ D xk C P
n>k hnxn the system of (PDform; .II; k/)

and (B; .II; k/) (or (Dform; .II; k/) and (B; .II; k/)] has exactly one solution. It
is given by

G.y; x/ D x C yxk C
X
n>k

Pn.y/x
n 2 .CŒy�/ŒŒx��:

2. The polynomials Pn, n � k, have a formal degree b.n � 1/=.k � 1/c and they are
of the form

Pn.y/ D

8̂̂<
ˆ̂:

hny k � n < 2k � 1
h2k�1y C k

2
y2 n D 2k � 1

hny C nC1
2

hn�kC1y2 C ˚n.y; hkC1; : : : ; hn�k/ n � 2k;

where ˚n are polynomials in y and in the coefficients hkC1; : : : ; hn�k. They satisfy
˚n.0; hkC1; : : : ; hn�k/ D 0. For n > 2k a formal degree of ˚n as a polynomial in
y is b.n � 1/=.k � 1/c.

Theorem 4.13 ([5, Theorems 5, 10]) For each generator H.x/ D xk CP
n>k hnxn

the solution G.y; x/ of the system (PDform; .II; k/) and (B; .II; k/) [or (Dform; .II; k/)
and (B; .II; k/)] is a solution of (Tform; .II; k/).

For the Aczél–Jabotinsky equation we obtain

Theorem 4.14 ([5, Theorem 13]) Consider some k � 2.

1. For each generator H.x/ D xk C P
n>k hnxn and for any polynomial Pk.y/ 2

CŒy� with Pk.0/ D 0 the differential equation (AJform; .II; k/) together with
(B; .II; k/) has exactly one solution of the form

G.y; x/ D x C Pk.y/x
k C

X
n>k

Pn.y/x
n 2 .CŒy�/ŒŒx��:
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The polynomials Pn.y/ for n > k are given by

Pn.y/ D

8̂̂̂
<̂
ˆ̂̂̂:

hnPk.y/ if n < 2k � 1
h2k�1Pk.y/C k

2
Pk.y/2 if n D 2k � 1

hnPk.y/C nC1
2

hn�kC1Pk.y/2

C ˚n.Pk.y/; hkC1; : : : ; hn�k/ if n � 2k;

with polynomials ˚n, n � 2k, in Pk.y/ and hkC1; : : : ; hn�k.
2. Assume that Pk.y/ D y. The polynomials Pn, n � k, have a formal degree

b.n � 1/=.k � 1/c and their coefficients are given in Theorem 4.12.

Applying the same method as in the proof of Theorem 4.4 we obtain

Theorem 4.15 ([5, Theorem 14]) For each generator H.x/ D xk CP
n>khnxn the

solution G.y; x/ of (AJform; .II; k/) with G.y; x/ � x C yxk mod xkC1 is a solution
of (Tform; .II; k/).

Let G be the solution of (PDform; .II; k/) and (B; .II; k/) for the generator H.x/ D
xk CP

n>k hnxn. Reordering the summands of G we write G.y; x/ as
P

n�0 
n.x/yn.
Then (PDform; .II; k/) yieldsX

n�1
n
n.x/y

n�1 D H.x/
X
n�0


0
n.x/y

n; (PDR; .II; k/)

where .
0
n.x/y

n/n�0 is a summable family. We note that (PDR; .II; k/) is satisfied if
and only if


nC1.x/ D 1

n C 1
H.x/
0

n.x/ (PDRn; .II; k/)

holds true for all n � 0.
The solutions of (PDR; .II; k/) and (BR; .II; k/) are thoroughly analyzed in the

following theorems.

Theorem 4.16 ([5, Theorem 15]) For each generator H.x/ D P
n�k hnxn, k � 2,

hk D 1, the system (PDRn; .II; k/) and (BR; .II; k/) has a unique solution. For n � 0

the order of 
n.x/ is equal to n.k � 1/C 1 and 
n.0/ D 0.

Theorem 4.17 ([5, Corollary 16, Theorem 18]) Consider some k � 2 and
assume that

P
n�0 
n.x/yn D P

r�1 Pr.y/xr is the solution of (PDRn; .II; k/) and
(BR; .II; k/) for a given generator H.x/. Writing

Pr.y/ D
X
j�0

Pr;jy
j; r � 1; and 
n.x/ D

X
r�1

Pr;nxr; n � 0;

we deduce that Pr D 0 for 2 � r < k. Moreover for r � k the series Pr.y/
is a polynomial which has a formal degree b.r � 1/=.k � 1/c and which satisfies
Pr.0/ D 0. Consequently
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X
n�0


n.x/y
n D x C

X
r�k

Pr.y/x
r 2 .C Œy�/ŒŒx��:

If 
n.x/ D P
r�n.k�1/C1 Pr;nxr and H.x/ D P

r�k hrxr, then


nC1.x/ D 1

n C 1

X
r�.nC1/.k�1/C1

0
@ rC1�kX
�Dn.k�1/C1

�hrC1��P�;n

1
A xr; n � 0:

Theorem 4.18 ([5, Theorem 19]) Let H.x/ D P
n�k hnxn, k � 2, hk D 1, be

a generator and assume that
P

n�0 
n.x/yn is the solution of (PDRn; .II; k/) and
(BR; .II; k/). Then


n.x/ D 1

nŠ

X
r�n.k�1/C1

0
@ �rX
.�1;:::;�n�1/

n�1Y
sD1

h�s

�
r C s �

sX
tD1

�t

�
hrC.n�1/�Pn�1

tD1 �t

1
Axr

for n � 1. In
P�r

.�1;:::;�n�1/
we are taking the sum over all .n�1/-tuples .�1; : : : ; �n�1/

of integers, such that k � �s � r � .n � s/k C .n � 1/ �Ps�1
tD1 �t.

This theorem shows that the coefficient Pr;n of xr in 
n.x/ depends only on the
elements hk; : : : ; hr�.n�1/.k�1/.

4.3.6 Normal Forms of Iteration Groups of Type .II; k/

Assume that G.y; x/ is a formal iteration group of type .II; k/ for some k � 2, i.e.,
G is a solution of (Tform; .II; k/) and (B; .II; k/). For all S 2 �1 the series

QG.y; x/ WD S�1�G.y; S.x//	
is also a solution of (Tform; .II; k/) and (B; .II; k/). Assume that H is the infinitesi-
mal generator of G, then according to (4.1) the infinitesimal generator of QG is

QH.x/ D 

S0.x/

��1
H
�
S.x/

	
:

This differential equation for S is not a Briot–Bouquet equation. However, it can be
reduced to such an equation by putting S.x/ D x exp.�.x//, where �.x/ 2 CŒŒ x ��,
�.0/ D 0. For each H.x/ D P

n�k hnxn, k � 2, hk D 1, there exist some S.x/ 2 �1
and exactly one h 2 C, so that

QH.x/ D xk C hx2k�1:
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This is the normal form of the generator of a formal iteration group of type .II; k/.
(A direct proof not using the theory of Briot–Bouquet equations can be found in [5,
Theorem 28].) We say that a (formal) iteration group of type .II; k/ with generator

H.x/ D xk C hx2k�1; h 2 C;

is a normal form and we describe these normal forms in the next theorems.

Theorem 4.19 ([5, Theorem 29]) Consider some k � 2. The solution of
(PDform; .II; k/) and (B; .II; k/) for H.x/ D xk C hx2k�1 is given by

G.y; x/ D
X
n�0

Pn.k�1/C1.y/xn.k�1/C1

where

Pn.k�1/C1.y/ D

8̂̂
ˆ̂<
ˆ̂̂̂:

1 if n D 0

y if n D 1
n�1Y
iD1

�
i.k � 1/C 1

	yn

nŠ
C hQn.y; h/ if n � 2;

and where Qn.y; h/, n � 2, is a polynomial in y of degree n � 1 and a polynomial in
h of degree bn=2c � 1.

Now we assume that h is an indeterminate over .CŒy�/ŒŒx��. It is interesting to note
that the normal forms of iteration groups of type .II; k/ have expansions in powers
of the parameter h. Since for n � 2 the degree of Pn.k�1/C1.y/ as a polynomial in h
is bn=2c, we can write G.y; x/ as

G.y; x/ D
X
r�0

Gr.y; x/h
r 2 .CŒŒ x; y ��/ŒŒh��:

From (B; .II; k/) we deduce that G0.0; x/ D x and Gr.0; x/ D 0 for r � 1. Instead
of (PDform; .II; k/) we obtain

X
r�0

@

@y
Gr.y; x/h

r D �
xk C hx2k�1	

0
@X

r�0

@

@x
Gr.y; x/h

r

1
A

D
X
r�0

xk @

@x
Gr.y; x/h

r C
X
r�0

x2k�1 @
@x

Gr.y; x/h
rC1

This is a system of equations for Gr.y; x/, r � 0, given by

@

@y
G0.y; x/ D xk @

@x
G0.y; x/ (4.4)
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and

@

@y
Gr.y; x/ D xk @

@x
Gr.y; x/C x2k�1 @

@x
Gr�1.y; x/; r � 1: (4.5)

Theorem 4.20 ([5, Theorem 30]) Consider H.x/ D xk C hx2k�1 where h is an
indeterminate over CŒŒ x; y ��. The solution of (4.4), (4.5), and (B; .II; k/) is given by

X
r�0

Gr.y; x/h
r

where

Gr.y; x/ D
X
n�r

X
. j1;:::; jr /
1� j1

js� js�1C2; s�2
jr�nCr�1

QnCr�1
iD1 Œi�Qr
sD1Œ js�

xŒnCr�

nŠ
yn; r � 0;

where Œr� D r.k � 1/C 1.
Concerning the differential equation (Dform; .II; k/) we have

Theorem 4.21 ([5, Theorem 33]) Consider some k � 2. The solution of
(Dform; .II; k/) and (B; .II; k/) for H.x/ D xk C hx2k�1 is given by

G.y; x/ D
X
r�0

Gr.y; x/h
r

with

Gr.y; x/ D xŒr�.1 � .k � 1/yxk�1/�Œr�=.k�1/Pr.ln.1 � .k � 1/yxk�1//; r � 0;

where Œr� D r.k � 1/C 1 and Pr are polynomials of degree r. Moreover P0 D 1 and

P1.z/ D �z=.k � 1/:

The binomial series is used in order to compute

.1 � .k � 1/yxk�1/�Œr�=.k�1/:

The particular situation r D 0 yields

G0.y; x/ D x.1 � .k � 1/yxk�1/�1=.k�1/:

G0.y; x/ together with its conjugates occur in the problem of reversible power series
(c.f. [12, Section 0.3]).
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There exists also an approach with Lie–Gröbner-series (cf. [8] or [9, Chapter 1])
to solve (PDR; .II; k/) and (BR; .II; k/). We note that Lie–Gröbner-series in the
context of iteration groups have already been used by St. Scheinberg [29] and also
by Reich and Schwaiger in [27]. Define an operator

DWCŒŒ x �� ! CŒŒ x ��; D.f .x// WD H.x/f 0.x/:

Lemma 4.3 ([5, Lemma 23]) Let H be a generator of order k � 2. If .
n/n�0
satisfies the system (PDR; .II; k/) and (BR; .II; k/), then


n.x/ D 1

nŠ
Dn.x/; n � 0:

Theorem 4.22 ([5, Theorem 24]) The series

G.y; x/ WD
X
n�0

1

nŠ
Dn.x/yn;

is a Lie–Gröbner-series. It satisfies (Tform; .II; k/) and (B; .II; k/).

4.4 Concluding Remarks and Open Problems

At the end of this paper we present some open problems concerning the construction
of iteration groups.

1. It is an important problem to study iteration groups in higher dimension. This
means in our situation to change to the ring CŒŒx1; : : : ; xn�� of formal power series
in n � 2 indeterminates x D .x1; : : : ; xn/

T over C and to consider n-tuples

F.x/ D F

0
B@

x1
:::

xn

1
CA D

0
B@

F1..x1; : : : ; xn/
T/

:::

Fn..x1; : : : ; xn/
T/

1
CA D

0
B@

F1.x/
:::

Fn.x/

1
CA ;

i.e., elements of .CŒŒx��/n. By ord.F.x//we understand minford.F1/; : : : ; ord.Fn/g.
We consider the substitution of G.x/ 2 .CŒŒx��/n into F.x/ 2 .CŒŒx��/n provided
that ord.G/ � 1.

Each F.x/ 2 .CŒŒx��/n can be written as F.x/ D A � x C R.x/, where A is a
complex n � n-matrix and R.x/ 2 .CŒŒx��/n with ord.R/ � 2. If det.A/ ¤ 0 we
call F a formally biholomorphic mapping. The set of all formally biholomorphic
mappings forms a group � with respect to substitution ı, and a family .Ft.x//t2C ,
Ft.x/ 2 � , satisfying the translation equation

FsCt D Fs ı Ft; s; t 2 C; (T)

is called an iteration group in n dimensions.
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The construction of all iteration groups of dimension n � 2 is an open problem
and very likely the method of formal functional equations and differential
equations will lead to a solution.

Mehring has shown in [22, 23] that the coefficient functions of an iteration
group are polynomials in a finite number of additive or generalized exponential
functions, however, the detailed structure is not known.

2. Jabłoński and Reich studied in [19] the iteration groups of truncated formal
power series. It is an open question how to construct these groups using the
method of formal functional equations.

3. The method of formal functional equations should also be applied in the problem
of constructing maximal abelian subgroups of � or � , in particular in higher
dimension.

4. The various representations of the coefficient functions of iteration groups
presented in this paper and the representations obtained by Jabłoński and Reich
have so far not been compared by direct computation. This could yield interesting
polynomial identities.

5. We notice that from the representation G.y; x/ D S.yS�1.x// given in (4.3) we
can derive a representation

G.y; x/ D yx C
X
��2

Q�.y; s2; : : : ; s�/x
�

where each Q� is a polynomial in y and in the coefficients s2; : : : ; s� of S.x/ D xC
s2x2 C : : :. Formula (4.2) describes a connection between the generator H.x/ D
x C h2x2 C : : : and the conjugating series S.x/. This gives eventually another
(maybe new) representation of the coefficients Pn of G from Theorem 4.3 as
polynomials in y and h2; : : : ; hn.

Acknowledgements We would like to thank the anonymous referee for helpful comments.
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Chapter 5
Fischer–Muszély Additivity: A Half Century
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Abstract This is an extended version of my talk presented at the 30th International
Summer Conference on Real Functions Theory that was held in Stará Lesná
(Slovakia) from September 4 to 9, 2016.

Keywords Fischer–Muszély equation (additivity) • Strictly convex spaces • Gen-
eral solution • The hierarchy of (non)commutativity • Pexiderization • Fischer–
Muszély type inequalities • Stability

Mathematics Subject Classification (2010) Primary 39B52; Secondary 39B82,
49B99

5.1 Background

In the beginning was the word (of Fischer and Muszély in Hungarian and English:
A Cauchy-féle függvényegyenletek bizonyos típusú általánosí-tásai (see [11]) and

On some new generalizations of the functional equation of Cauchy (see [12]):

Examining certain problems in physics M. Hosszu (Észrevételek a relativ-
itáselméleti időfogalom Reichenbach-féle értelmezéséhez, NME magyarnyelvű
Kőzleményi Miskolc (1964), 223–233) obtained the functional equation

f .x C y/2 D Œf .x/C f .y/�2; (�)

where x; y; f are real.
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In another paper of M. Hosszu (Egy alternativ fűggvényegyenletrő, Mat. Lapok
14 (1963), 98–102) proved that Equation (�) is equivalent to the functional equation
of Cauchy, i.e. to the equation

f .x C y/ D f .x/C f .y/ (��)

H. Światak examined in (On the equation '.x C y/2 D Œ'.x/g.y/ C '.y/g.x/�2,
Zeszyty Naukowe Uniwersytetu Jagiellońskiego, Nr II. Prace Matematyczne,
Zeszyt 10 (1965), 97–104) a generalization of Equation (�) in the class of
continuous functions.

A similar alternative functional equation is considered in a paper of J. Aczél, K.
Fladt and M. Hosszu (Lösungen einer mit dem Doppelverhältnis zusamenhängender
Funktionalgleichung, MTA Mat. Kut. Int. Közl 7A (1962), 335–352).

At the end of his paper M. Hosszu puts the question: what is the general solution
of Equation (�)?

E. Vincze was the first to give an answer to this question in his papers

• Alternativ fűggvényegyenletek megoldásairól, Mat Lapok 14 (1963), 179–195;
• Beitrag zur Theorie der Cauchyschen Funktionalgleichungen, Arch. Mat. 15

(1964), 132–135;
• Über eine Verallgemeinerung der Cauchyschen Funktionalgleichung, Funkcialaj

Ekvacioj 6 (1964), 55–62.

He proved that the functional equation

f .x C y/n D Œf .x/C f .y/�n

is equivalent to the functional equation of Cauchy, where x; y are in an additive
Abelian semigroup, f is an arbitrary complex-valued function and n is a natural
number.

5.2 Fischer–Muszély Equation

Plainly, Equation (�) may equivalently be written in the form

jf .x C y/j D jf .x/C f .y/j

and, if so, why not to replace the absolute value sign by the norm?
Throughout the years the functional equation

kf .x C y/k D kf .x/C f .y/k (FM)

has extensively been studied by many authors, see, e.g., Fischer and Muszély
[11, 12], Dhombres [9], Aczél and Dhombres [1], Berruti and Skof [4], Skof [28],
Ger [16–22], Schöpf [27], Ger and Koclȩga [23], Száz [29]. The reason why this
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functional equation was attracting so much attention is, on the one side, the facts
established in the papers spoken of in the Background and, on the other side,
because of its links with the theory of isometries; moreover, it leads to some
characterizations of strictly convex normed linear spaces as well as to some of
their generalizations. The main result from [18] states that any map f from a (not
necessarily commutative) group into a strictly convex space has to be additive, i.e.
to satisfy the Cauchy equation

f .x C y/ D f .x/C f .y/: (C)

On the other hand, already in 1979 Dhombres [9] exhibited an example of a
continuous solution f W R ! X of Equation (�) that fails to satisfy (C).

In the case where the domain R is replaced by the halfline Œ0;1/ one may
“produce” a rich family of C1-nonadditive solutions of Equation (FM).

This inspired Schöpf [27] to look for a description of all continuous (resp.
differentiable) solutions of (FM) mapping the real line R into a not necessarily
strictly convex normed linear space .X; k � k/. Looking for some alternative
representations Ger and Koclȩga [23] have shown that any function f of that kind
fulfilling merely very mild regularity assumptions has to be proportional to an odd
isometry mapping R into X.

Last but not least, in 2003, Tabor [31] has obtained the additivity of surjective
solutions to (FM).

Theorem 5.1 (Fischer and Muszély [11]) Let .X;C/ be a semigroup and .Y; .�j�//
be a unitary space. Let further f W X ! Y be a solution to functional equation (FM).
Then f is additive.

Problem Is it possible to replace the unitary target space by a strictly convex one?
Numerous characterizations of strictly convex spaces are known (see, e.g., the

monograph of Day [6]). Among them the following one was given by Dhombres
in [9]

A normed space (real or complex) .X; k � k/ is strictly convex if and only if each
function f W R ! X belonging to the class

F WD fg W R ! X W g has a measurable majorant on a set of positive measureg

and satisfying the functional equation (FM) has to be additive.
Moreover, Dhombres writes (p. 2.28 in [9]): The problem of determining those

normed spaces characterized by the equivalence of Equation (FM) and the equation
of additivity, even in the case of the domain being some group like the additive R,
remains open.

Actually, to show that the space considered is strictly convex it suffices to
consider only continuous solutions of Equation (FM) (see Aczél and Dhombres [1]
and Theorem 5.4 below). But while studying logical connections between (FM)
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and additivity it seems desirable indeed to get rid of the class F . This is actually
possible; namely, we have the following:

Theorem 5.2 Let .G;C/ be a group (not necessarily commutative) and let .X;
k � k/ be a strictly convex space. Then every function f W G ! X satisfying
Equation (FM) for all x; y 2 G is additive.

Proof Without the use of strict convexity one may show [see Dhombres (p. 2.23 in
[9])] that the equality

kf .2x/C f .x/k D kf .2x/k C kf .x/k

holds true for all x 2 G: Then strict convexity implies that for every x 2 G such that
f .x/ ¤ 0 ¤ f .2x/ there exists a positive number �.x/ such that f .2x/ D �.x/f .x/.
Since we obviously have

kf .2x/k D 2kf .x/k; x 2 G; (5.1)

we infer that �.x/ D 2 whenever f .x/ ¤ 0 ¤ f .2x/. However, in view of (5.1), if
one of the values f .x/ or f .2x/ vanishes, then so does the other; consequently, the
equality f .2x/ D 2f .x/ is fulfilled for all elements x from G.

Putting y D �x in (FM) and taking into account that (5.1) implies the equality
f .0/ D 0, we derive the oddness of f . Now, observe that for all x; y 2 G one has

k f .x C y/ � 1

2
f .x/ kDk 1

2
f .x/C f .y/ kDk f .x C y/C f .y/

2
k : (5.2)

In fact,

2 k f .x C y/ � 1

2
f .x/ k D k 2f .x C y/ � f .x/ kDk f .x C y C x C y/C f .�x/ k

D k f .y C x C y/ kDk f .x C y/C f .y/ k;

and, on the other hand,

2 k 1
2

f .x/C f .y/ k D k f .x/C 2f .y/ kDk f .x/C f .2y/ k
D k f .x C 2y/ kDk f .x C y/C f .y/ k;

which ends the proof of (5.2). Fix arbitrarily x and y from G and put u WD f .x Cy/�
1
2

f .x/ and v WD 1
2
f .x/C f .y/; then (5.2) states that

k u kDk v kDk u C v

2
k;
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which, in view of the strict convexity of X, gives u D v. Thus

f .x C y/ D f .x/C f .y/;

which was to be proved. ut
Remark 5.1 Under the assumption that the group considered is uniquely 2-divisible
this result was presented by the author at the 26-th International Symposium on
Functional Equations (Catalonia, 1988); see [16]. A year later, during the 27-th
ISFE, the present version as well as its detailed proof was presented; see [17].
Assuming that the domain of the function in question yields a real linear space, in
1991 Berruti and Skof (Lemma fondamentale in [4]) proved the analogous assertion.
Their proof relies essentially on Baker’s lemma from [3].

Below we derive Baker’s main result of [3] from ours.

Theorem 5.3 (Baker) Let .E; k �k/ and .X; k �k/ be two real normed linear spaces
and let f W E ! X be an isometry. If the target space is strictly convex, then f has to
be an affine function, i.e. there exists a constant c 2 X and a linear map L W E ! X
such that f .x/ D L.x/C c for all x 2 E.

Proof Put c WD f .0/ and L WD f � c. Then L is an isometry as well and L.0/ D 0.
Consequently,

k L.x/ � L.y/ kDk x � y kDk L.x � y/ k (5.3)

for all x; y 2 E. Putting here y D �x; one gets

k L.x/ � L.�x/ kD 2 k x kDk L.x/ k C k �L.�x/ k

which, by means of the strict convexity of X; implies the oddness of L. This, jointly
with (5.3), implies that the equality

k L.x C y/ kDk L.x/C L.y/ k

holds true for all x; y 2 E: An appeal to Theorem 5.2 gives now the additivity of L
which, being continuous, has to be linear. This ends the proof. ut

The following characterization of strictly convex spaces in terms of the equiv-
alence of Equation (FM) and the Cauchy functional equation yields a slight
refinement of a result given by Aczél and Dhombres (p. 138 in [1]).

Theorem 5.4 A normed linear space .X; k � k/ is strictly convex if and only if for
every its two-dimensional subspace Y � X the functions

fc.x/ D x � c; x 2 R;

where c stands for an arbitrarily fixed element of Y, are the only continuous
solutions f W R ! Y of Equation (FM).
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Proof Necessity. Fix a two-dimensional subspace Y of X and a continuous solution
f W R ! Y of Equation (FM). Obviously, .Y; k � k/ is strictly convex; therefore, by
means of Theorem 5.2, f is additive and being continuous has to have the form fc
for some c 2 Y .

Sufficiency. Assume, for the indirect proof, that .X; k � k/ is not strictly convex.
Then there exist elements a; b 2 X; a ¤ b such that

kak D kbk Dk a C b

2
kD 1:

Such vectors are linearly independent; in fact, if we had b D �a for some scalar �
(real or complex) we would get j�j D 1 and j1C�j D 2 implying the equality � D 1,
which is impossible. Consequently, the space Y WD Linfa; bg is two-dimensional.
A continuous function

f .x/ WD
8<
:

x � a for x 2 Œ�1; 1�
a C .x � 1/ � b for x 2 .1;1/

� a C .x C 1/ � b for x 2 .�1;�1/;

mapping R into Y yields a solution to (FM) (see Dhombres [9] or Aczél and
Dhombres [1]) which obviously fails to be an fc function. This contradiction
completes the proof. ut

Now, we are going to show that our Theorem 5.2 carries over to the case of linear
topological spaces, topologized through families of suitable seminorms. To this aim,
we shall first recall the definition introduced by Diminnie and White Jr. in [7]. Let
X be a linear space and let P be a nonempty family of nonzero seminorms on X.
For p 2 P we put Np WD fx 2 X W p.x/ D 0g. The pair .X;P/ is said to be strictly
convex if and only if for every p 2 P and every a; b 2 X the conditions

p.a/ D p.b/ D p

�
a C b

2

�
D 1 and Np \ Linfa; bg D f0g

imply that a D b. Without loss of generality, in what follows, we shall be assuming
that the family P consists of just a single seminorm: P D fpg.

Theorem 5.5 Let .G;C/ be a group (not necessarily commutative) and let X be
a linear space endowed with a nonzero seminorm p such that the pair .X; fpg/ is
strictly convex. Suppose that f W G ! X satisfies the functional equation

p.f .x C y// D p.f .x/C f .y//; x; y 2 G: (5.4)

Then there exists exactly one additive function a W G ! X and exactly one function
n W G ! Np such that

f .x/ D a.x/C n.x/; x 2 GI
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in particular,

p.f .x C y/ � f .x/ � f .y// D 0; x; y 2 G:

Proof One of the four equivalent conditions for a pair .X; fpg/ to be strictly convex
given by Diminnie and White Jr. in [8] states that there exists a strictly convex
normed space .Y; k � k/ and a linear mapping F W X ! Y such that p.x/ D kF.x/k
for all x 2 X. Consequently, Equation (5.4) says that

kF.f .x C y//k D kF.f .x/C f .y//k D kF.f .x//C F.f .y//k; x; y 2 G:

Putting g WD F ı f we obtain

kg.x C y/k D kg.x/C g.y/k

for all x; y 2 G and, by the strict convexity of the space .Y; k � k/, Theorem 5.2
implies the additivity of the map g; in other words

F.f .x C y// D F.f .x//C F.f .y//; x; y 2 G:

Now, the additivity of F gives

Cf .x; y/ WD f .x C y/ � f .x/ � f .y/ 2 ker F;

whence

p.Cf .x; y// Dk F.Cf .x; y// kD 0;

i.e. Cf .x; y/ 2 Np for all x; y 2 G.
Let Nc

p denote the complementary space to the linear subspace Np of the space X.
Then, for every x 2 G, the value f .x/ can uniquely be factorized as a.x/ C n.x/,
where a.x/ 2 Nc

p and n.x/ 2 Np. Since, for any x; y 2 G, one has

Nc
p 3 a.x C y/ � a.x/ � a.y/ D Cf .x; y/ � n.x C y/C n.x/C n.y/ 2 Np;

the function a is additive, which finishes the proof. ut
Now we are going to present an example illustrating the utility of Theorem 5.2

while solving some functional equations.
Assume that we are given a (not necessarily commutative) group .G;C/ and real

numbers ˛; ˇ; 
 such that

˛ > 0 and ˇ2 � 4˛
 < 0: (5.5)
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We will find the general solution of the functional equation

˛


'.x C y/2 � .'.x/C '.y//2

�C ˇ Œ'.x C y/ .x C y/

� .'.x/C '.y//. .x/C  .y//�C 



 .x C y/2 � . .x/C  .y//2

� D 0 (e)

in the class of all functions '; W G ! R. An easy calculation shows that
Equation (e) may equivalently be written in the form��

˛; 1
2
ˇ

1
2
ˇ; 


�
�
�
'.x C y/
 .x C y/

�
j
�
'.x C y/
 .x C y/

��

D
��

˛; 1
2
ˇ

1
2
ˇ; 


�
�
�
'.x/C '.y/
 .x/C  .y/

�
j
�
'.x/C '.y/
 .x/C  .y/

��

for all x; y 2 G; here .�j�/ stands for the usual inner product in R
2. Let us put

A WD
�
˛; 1

2
ˇ

1
2
ˇ; 


�
and f .x/ WD .'.x/;  .x// ; x 2 G:

Then the latter equation states that

.A � f .x C y/ j f .x C y// D .A � .f .x/C f .y// j f .x/C f .y//

for all x; y 2 G. Since conditions (5.5) guarantee that the matrix A is positive definite
the formula

hujvi WD .A � u jv/; u; v 2 R
2;

produces a new inner product in R
2 and the equation considered assumes the form

k f .x C y/ k2Dk f .x/C f .y/ k2; x; y 2 G;

where kuk2 D hujui; u 2 R
2. Since any inner product space is obviously strictly

convex, Theorem 5.2 establishes the additivity of f and hence that of the component
functions ' and  . Conversely, every pair of additive functions '; W G ! R

yields a solution to Equation (e).

5.3 General Solution

In what follows, we are presenting a factorization of the general solution of
Equation (FM) for functions mapping a commutative group into a real normed linear
space (with no regularity assumptions whatsoever), into isometric and additive
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mappings. We believe that, in this way, we have finally achieved a clear explanation
of seemingly divergent earlier approaches focused on different endeavours either to
show that (FM) implies additivity or to express the solutions of (FM) in terms of
isometries.

5.3.1 Preliminary Results

Given an Abelian group .X;C/ we call a function p mapping X into the set R of all
real numbers sublinear provided that p is subadditive, i.e.

p.x C y/ � p.x/C p.y/; x; y 2 X;

and satisfies a homogeneity condition

p.nx/ D np.x/;

for all x 2 X and all n 2 N0 (nonnegative integers).
The following Hahn–Banach type theorem is a special case of Kranz’s result

(Theorem 2 in [24]).

Lemma 5.1 Let .X;C/ be an Abelian group and let .X0;C/ stand for a subgroup of
.X;C/. Assume that we are given a sublinear functional p W X ! R and an additive
functional a0 W X0 ! R such that

a0.x/ � p.x/; x 2 X0:

Then there exists an additive extension a W X ! R of a0 such that

a.x/ � p.x/; x 2 X:

As a matter of fact, the sublinearity assumption on the functional p above might
simply be replaced by subadditivity alone but, in the sequel, we will need the
following corollary in which sublinearity is actually essential.

Corollary 5.1 Let .X;C/ be an Abelian group and let x0 2 X. Given an even
sublinear functional p W X ! R there exists an additive functional a W X ! R

such that a � p and a.x0/ D p.x0/.

Proof Denote by Z the set of all integers and put X0 WD fnx0 W n 2 Zg. Obviously, a
functional a0 W X0 ! R is unambiguously defined by the formula

a0.nx0/ WD np.x0/; n 2 ZI
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moreover, a0 is additive and majorized by p on X0 since p, being even, has to be
nonnegative. Now, it suffices to apply Lemma 5.1 to complete the proof. ut

In what follows, we are going to show that the validity of Fischer’s conjecture
(see [13] and Kuczma [25]) stating that an (even!) sublinear functional p admits a
representation of the form p D k � k ı A where A W X ! Z stands for an additive map
with values in a suitable real normed linear space .Z; k � k/, carries over to groups.
The idea of the proof is based on the paper of Berz [5]; we have only to ensure
that the passage to commutative group domains is possible. To proceed we need yet
another lemma.

Lemma 5.2 Let .X;C/ be an Abelian group and let p W X ! R be an even
sublinear functional. Then the equality

p.x/ D supfa.x/ W a W X ! R is additive and a � pg

holds true for all x 2 X.

Proof By virtue of Corollary 5.1, the family T of all additive real functionals a on
X majorized by p is nonvoid.

Therefore, the formula

Qp.x/ D supfa.x/ W a 2 T g; x 2 X;

correctly defines a functional Qp W X ! R. Plainly, we have Qp � p. On the other
hand, by means of Corollary 5.1 again, for an arbitrarily fixed x0 2 X there exists an
a 2 T such that p.x0/ D a.x0/ � Qp.x0/: Thus, p � Qp; which finishes the proof. ut

In the sequel, as usual, given a nonempty set T by B.T;R/ we denote a Banach
space of all bounded real functions on T , equipped with the uniform convergence
norm k � k1.

Theorem 5.6 Let .X;C/ be an Abelian group and let p W X ! R be an even
sublinear functional. Then there exists a nonempty set T � R

X and an additive
operator A W X ! B.T;R/ such that

p.x/ D kA.x/k1; x 2 X:

Proof Let T � R
X stand for the family of all additive real functionals a on X

majorized by p. According to Lemma 5.2, we have

p.x/ D supfa.x/ W a 2 Tg; x 2 X:

In view of the evenness of p as well as the oddness of the members of T we obtain
the estimation ja.x/j � p.x/ valid for every x 2 X and every a 2 T: Therefore, the
formula

A.x/.a/ WD a.x/; a 2 T; x 2 X;
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correctly defines a map A W X ! B.T;R/. Clearly, A yields an additive operator and,
moreover, the equality

p.x/ D supfjA.x/.a/j W a 2 Tg D kA.x/k1;

is satisfied for all x 2 X: Thus the proof has been completed. ut

5.3.2 Main Result

Now, we are in a position to prove a factorization theorem announced at the
beginning of the present section.

Theorem 5.7 Let .X;C/ be an Abelian group and let .Y; k � k/ be a real normed
linear space. Let further f W X ! Y be a solution to functional equation (FM). Then
there exist: a nonempty set T � R

X, an additive operator A W X ! B.T;R/ and an
odd isometry I W A.X/ ! Y such that

f .x/ D I.A.x//; x 2 X:

Conversely, for an arbitrary real normed linear space .Z; k � kZ/, any additive
operator A W X ! Z and any odd isometry I W A.X/ ! Y the superposition f WD IıA
yields a solution of Equation (FM).

Proof Let f be a solution of Equation (FM) and let a functional p W X ! R be given
by the formula

p.x/ WD kf .x/k; x 2 X:

Equation (FM) implies easily the subadditivity of p as well as the relationship

p.2x/ D 2p.x/; x 2 X:

A simple induction shows that then p.nx/ D np.x/ holds true for every x 2 X and
every positive integer n. In other words, the functional p is sublinear. Observe that
f .0/ D 0 [by putting x D y D 0 in (FM)] whence the oddness of f results by setting
y D �x in (FM). Consequently the sublinear functional p is even. Therefore, by
virtue of Theorem 5.6, there exist: a nonempty set T � R

X and an additive operator
A W X ! B.T;R/ such that

p.x/ D kA.x/k1; x 2 X:

Denote by OX the quotient space X=ker A and define an operator OA W OX ! B.T;R/ by
the formula

OA.x C ker A/ WD A.x/; x 2 X:
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Obviously, the operator OA is both additive and injective. Now, observe that the
formula

Of .x C ker A/ WD f .x/; x 2 X;

correctly defines a map Of W OX ! Y . Indeed, once we have x C ker A D y C ker A for
some x; y from X, then x � y 2 ker A whence by means of (FM) and the oddness of
f we get

0 D kA.x � y/k1 D p.x � y/ D kf .x � y/k D kf .x/ � f .y/k

and, a fortiori, f .x/ D f .y/.
Clearly, the image G WD OA. OX/ D A.X/ yields a subgroup of the additive group

.B.T;R/;C/ and the formula

I.u/ WD Of
� OA�1.u/

�
; u 2 G;

establishes a map from the group .G;C/ into the normed space .Y; k � k/. We are
going to show that

(i) kI.u/C I.v/k D kI.u C v/k; u; v 2 G;
(ii) kI.u/k D kuk1; u 2 G:

In fact, to see that (i) holds true, fix arbitrarily u; v from G. Then there exist x; y
in X such that u D OA.xCker A/ and v D OA.yCker A/. Thus uCv D OA.xCyCker A/
whence

kI.u/C I.v/k D kOf
� OA�1.u/

�
C Of

� OA�1.v/
�

k

D kOf .x C ker A/C Of .y C ker A/k D kf .x/C f .y/k D kf .x C y/k
D kOf .x C y C ker A/k D kOf

� OA�1.u C v/
�

k D kI.u C v/k:

To check (ii), observe that for every u 2 G one has

kI.u/k D kOf
� OA�1.u/

�
k D kOf .x C ker A/k

D kf .x/k D p.x/ D kA.x/k1 D kOA.x C ker A/k1 D kuk1:

Since, as we have seen already, (i) implies the oddness of I, we infer that for every
u; v 2 G one has

kI.u/ � I.v/k D kI.u/C I.�v/k D kI.u � v/k D ku � vk

because of (i) and (ii). Thus the map I yields an odd isometry mapping G into Y .
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Finally, for any x 2 X we have

I.A.x// D I
� OA.x C ker A/

�
D .I ı OA/.x C ker A/ D Of .x C ker A/ D f .x/;

which completes the necessity part of the proof.
Conversely, given a real normed linear space .Z; k � kZ/, an additive operator

A W X ! Z and an odd (hence also norm preserving) isometry I W A.X/ ! Y , we
see that the superposition f WD I ı A satisfies Equation (FM) because for all x; y 2 X
one gets

kf .x/ � f .y/k D kI.A.x// � I.A.y//k
D kA.x/ � A.y/kZ D kA.x � y/kZ D kI.A.x � y//k D kf .x � y/kI

now, since f itself is odd as a superposition of an odd and additive mapping, it
remains to replace here y by �y to get (FM). This finishes the proof. ut

In the case where the domain group .X;C/ is uniquely 2-divisible, it is
worthwhile to note that actually the functional p D k � k ı f discussed above is not
merely sublinear but also Jensen-convex, i.e. it satisfies the functional inequality

p

�
x C y

2

�
� p.x/C p.y/

2

for all points x; y from X. In particular, assuming that .X;C/ is simply the additive
group of a normed real linear space .X; k � kX/ we see that very mild regularity
assumption imposed upon p (for instance, continuity at a single point, Baire
measurability, boundedness on a second category Baire subset of X, etc.; see
Kuczma’s monograph [25] for numerous further much more delicate instances)
implies its continuity. Consequently, we get easily the following:

Theorem 5.8 Let .X; k � kX/ and .Y; k � kY/ be two real normed linear spaces. Let
further f W X ! Y be a solution to the functional equation (FM) such that the
functional p W X ! R defined by the formula

p.x/ WD kf .x/kY ; x 2 X;

satisfies any regularity condition that forces a Jensen-convex functional to be
continuous. Then there exist: a nonempty set T � R

X, a continuous linear operator
L W X ! B.T;R/ and an odd isometry I W L.X/ ! Y such that

f .x/ D I.L.x//; x 2 X:

Conversely, for an arbitrary real normed linear space .Z; k � kZ/, any continuous
linear operator L W X ! Z and any odd isometry I W L.X/ ! Y the superposition
f WD I ı L yields a solution of Equation (FM) and the corresponding functional p is
continuous.
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Proof As we have already observed the functional p being Jensen-convex has to be
continuous. Therefore the additive operator A W X ! B.T;R/ such that

p.x/ D kA.x/k1; x 2 X;

is continuous as well. Therefore, since it is well known that additivity implies
rational homogeneity, jointly with continuity it forces A to be linear (recall that
we deal with real normed linear spaces).

Since the latter assertion is obvious, this ends the proof. ut

5.3.3 Derivation of Earlier Results

We shall first derive the main result of [18] (cf. Theorem 5.2 above) from
Theorem 5.9. To this end, we shall prove two propositions which, I believe, may
present an interest of their own.

Proposition 5.1 (A Modified Version of Baker’s Theorem; See [3]) Let .Z; k�kZ/

and .Y; k �kY/ be two real normed linear spaces and let .Y; k �kY/ be strictly convex.
Let further .G;C/ be a subgroup of the additive group .Z;C/ such that G D 2G. If
I W G ! Y is an isometry vanishing at zero, then I is additive.

Proof Fix arbitrarily elements u; v 2 G. Then

kI

�
u C v

2

�
� I.u/kY D ku C v

2
� ukZ D 1

2
ku � vkZ D 1

2
kI.u/ � I.v/kY

as well as

kI

�
u C v

2

�
� I.v/kY D ku C v

2
� vkZ D 1

2
ku � vkZ D 1

2
kI.u/ � I.v/kY ;

whence, in view of the uniqueness of the midpoint of a metric segment in a strictly
convex space, implies the equality

I

�
u C v

2

�
D I.u/C I.v/

2
:

Hence, on account of the assumption that I.0/ D 0, we obtain the additivity of I.
This ends the proof. ut

It turns out that the assumption G D 2G is superfluous whenever the isometry in
question is odd. Namely, we have the following:

Proposition 5.2 Let .Z; k � kZ/ and .Y; k � kY/ be two real normed linear spaces and
let .Y; k � kY/ be strictly convex. Let further .G;C/ be a subgroup of the additive
group .Z;C/. If I W G ! Y is an odd isometry, then I is additive.
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Proof Put

QG WD
[

f2�nG W n 2 N0g :

It is easily seen that the structure . QG;C/ yields a subgroup of the group .Z;C/ and
that G � QG. Moreover, we have QG D 2 QG. Therefore, by means of Proposition 5.1,
to finish the proof, it suffices to show that I admits an isometric extension onto QG:
This is actually the case, because I being an odd isometry satisfies Equation (FM)
whence, in particular, I.2u/ D 2I.u/ (see, e.g., [1, p. 139]). Consequently, the
formula

QI .2�nu/ WD 2�nI.u/; u 2 G; n 2 N0;

unambiguously defines a map QI W QG ! Y which, obviously, yields an extension of I.
To see that QI itself is an isometry, fix arbitrarily u; v 2 G and n;m 2 N0. Then

kQI .2�nu/ � QI .2�mv/ kY D k2�nI.u/ � 2�mI.v/kY

D 2�n�mk2mI.u/ � 2nI.v/kY D 2�n�mkI.2mu/ � I.2nv/kY

D 2�n�mk2mu � 2nvkZ D k2�nu � 2�mvkZ ;

which completes the proof. ut
Corollary 5.2 Any solution of Equation (FM) mapping an Abelian group into a
strictly convex real normed linear space .Y; k � kY/ satisfies the Cauchy functional
equation (C).

Proof An appeal to Theorem 5.7 shows that f D I ı A where A W X ! B.T;R/ is an
additive operator and I W A.X/ ! Y is an odd isometry. Plainly, A.X/ is a subgroup
of the additive structure .B.T;R/;C/ whence, on account of Proposition 5.2, I is
additive; therefore so is also the composition f D I ı A. ut
Remark 5.2 The main result of [12] (i.e. Theorem of Fischer and Muszély here)
cannot, however, be derived from Corollary 5.2 (even with semigroups replaced
by groups) because the commutativity of the domain was not assumed there.
On the other hand, the only place in the proof of our Theorem 5.7, requiring
commutativity of the domain was an indirect appeal to Corollary 5.1 via Lemma 5.2
and Theorem 5.6. Therefore, the following question arises in a natural way.

Problem Does Lemma 5.1 carry over to non-Abelian groups? An essential step
towards a positive answer to that question will be discussed in Section 5.4.

Corollary 5.3 Any solution f W R ! Y of Equation (FM), where .Y; k � kY/ stands
for a real normed linear space, such that the function p W R ! R defined by the
formula

p.x/ WD kf .x/kY ; x 2 R;
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satisfies any regularity condition that forces a Jensen-convex function to be contin-
uous, has to be proportional to an odd isometry mapping R into Y.

Proof An appeal to Theorem 5.8 shows that f D I ı L where L W R ! B.T;R/ is
a continuous linear operator and I W L.R/ ! Y yields an odd isometry. Clearly, we
simply have

L.x/ D x � c; x 2 R;

where c is a fixed element of B.T;R/. Without loss of generality we may assume
that c 6D 0. Setting

QI.x/ WD 1

kck1
I.x � c/; x 2 R;

we infer that

kQI.x/ � QI.y/kY D 1

kck1
kI.x � c/ � I.y � c/kY D 1

kck1
kx � c � y � ck1 D jx � yj

for all x; y 2 R stating that QI yields an isometry. The oddness of QI results from that
of I. Finally,

f .x/ D I.x � c/ D kck1QI.x/; x 2 R;

i.e. f is proportional to the odd isometry QI, as claimed. ut
The subsequent corollary (the main result in Schöpf’s paper [27]) does not follow

directly from our Theorem 5.9. The derivation of condition (iii) below is possible
via a structural result of Jacek Tabor describing the form of odd isometries on the
real line (see Ja. Tabor, Isometries from R to a Banach space, oral communication).
We omit the details here.

Corollary 5.4 Any continuous solution f W R ! Y of Equation (FM), where .Y;
k � kY/ stands for a real normed linear space, satisfies the following conditions:

(i) f is odd,
(ii) kf .xy/k D jxjkf .y/k for all x; y 2 R,

(iii) conv
n

f .y/�f .x/
kf .y/�f .x/k W x; y 2 R; x < y

o
is contained in the unit sphere S � X.

Conversely, any function f W R ! Y that enjoys properties (i), (ii) and

(iii0) for every quadruple x; y; u; v of real numbers such that x < y and u < v the
segment joining the points f .y/�f .x/

kf .y/�f .x/k and f .v/�f .v/
kf .v/�f .v/k is contained in S,

is necessarily continuous and satisfies Equation (FM).
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Corollary 5.5 Let .X;C/ be an Abelian group with uniquely performable division
by 2 and 3 and let .Y; k � kY/ be a real Banach space. Then any surjective solution
f W X ! Y of Equation (FM) is additive.

Proof An appeal to Theorem 5.7 shows that f D I ı A where A W X ! B.T;R/
is an additive map and I stand for an odd isometry mapping the set G WD A.X/
into Y . Clearly, the subgroup .G;C/ of the additive group .B.T;R/;C/ enjoys the
following property:

G D �G; � 2 D WD f˙ 2n3m W n;m 2 Zg:
On the other hand, the surjectivity of f implies that I yields a surjective isometry of
G onto the Banach space Y . Therefore G is a closed subset of the space B.T;R/ and,
a fortiori,

G D �G; � 2 R;

because of the density of the set D in R. Hence, the isometry I yields a surjection
of the Banach space .G;C/ onto Y and being odd has to be linear by means of the
well-known Mazur–Ulam theorem. Consequently, f is additive as a composition of
two additive maps. ut
Remark 5.3 Corollary 5.5 is, however, a considerably weaker version of Tabor’s
result from [27] where neither commutativity nor divisibility assumptions were
imposed upon the domain group.

Two further questions might be asked:

• what about the uniqueness of the factorization spoken of in Theorem 5.7?
• does the result carry over to the case of Abelian semigroups?

The first question has a negative answer; actually we are pretty far from any
kind of uniqueness. This is visible already from the last part of the statement of
Theorem 5.7 the platform space .Z; k � k/ occurring in the “only if” part, whichever
it could be, may always be replaced by the space B.T;R/ considered in the “if” part
of the theorem.

The other question remained open for many years and finally has been partially
answered by Badora who has shown in [2] that commutativity may be replaced by
the requirement that the group in question is a so-called G -group. We shall discuss
this problem in the next section.

5.4 The Hierarchy of (Non)Commutativity

Recall that the essential part of the proof of Lemma 5.2 was to show that

the family of all additive real functionals a on X majorized by p is nonvoid:

In that connection Badora [2] decided to introduce the notion of G -groups, as
those enjoying this property. More exactly:
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Definition 5.1 We say that a group .G;C/ belongs to the class G if and only if
for each subadditive functional p W G ! R there exists an additive functional
a W G ! R such that a � p.

It turns out that that notion is closely connected with the validity of Hahn–Banach
extension theorem for groups. Namely, the following characterization of the class
of G -groups holds true.

Theorem 5.9 (Badora [28]) Let .G;C/ be a group. Then .G;C/ 2 G if and only if
for each subgroup .G0;C/ of the group .G;C/ and for every subadditive functional
p W G ! R such that

M.x/ WD supfp.�a C x C a/ � p.x/ W a 2 G0g < 1
and

lim inf
n!1

1

n
M.nx/ D 0;

for all x 2 G, and for every additive functional a0 W G0 ! R with a0 � pjG0 , there
exists an additive functional a W G ! R such that ajG0 D a0 and a � p.

Corollary 5.6 Let .G;C/ be a group from the class G and let p W G ! R be a
subadditive functional such that

p.2x/ D 2p.x/; x 2 G:

Then for every subgroup .G0;C/ of the group .G;C/ and for every additive
functional a0 W G0 ! R enjoying the property a0 � pjG0 , there exists a functional
a W G ! R such that ajG0 D a0 and a � p.

Moreover, Badora has shown in [2] that the following classes of groups .G;C/
are contained in class G :

• Abelian groups
• amenable groups, i.e. those admitting a positive, translation invariant linear

functional M W B.G;R/ ! R with M.1/ D 1;
• weakly commutative groups, i.e. those enjoying the following property: for each

x; y 2 G there exists a positive integer n such that 2n.x C y/ D 2nx C 2ny.

By Hyers groups we comprehend those enjoying the following property: for each
functional f W G ! R with bounded Cauchy difference G � G 3 .x; y/ 7! f .x C
y/ � f .x/ � f .y/ 2 R, there exists a homomorphism a W G ! R such that f � a is
bounded.

The following chain of inclusions holds true:

Abel � Amen � G � Hyers[
weak commutativity
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It is known that free groups with two free generators fail to be Hyers ones (see
Forti’s remark [14]); consequently, such groups stay off the class G . Till now it is
not known whether anyone of the inclusions

Amen � G � Hyers

is strict.
Undoubtedly, Badora’s idea of introducing the class G proved to be extremely

useful. In particular, in all corresponding results concerning Equation (FM), the
commutativity assumption of the group considered may now be replaced by
the requirement that this group belongs to the class G . Above all, it holds true in
the case of the factorization Theorem 5.7 which now, without any changes in the
proof, may be improved as follows:

Theorem 5.10 Let a group .X;C/ be a member of class G and let .Y; k � k/ be
a real normed linear space. Let further f W X ! Y be a solution to functional
equation (FM). Then there exist: a nonempty set T � R

X, an additive operator
A W X ! B.T;R/ and an odd isometry I W A.X/ ! Y such that

f .x/ D I.A.x//; x 2 X:

Conversely, for an arbitrary real normed linear space .Z; k � kZ/, any additive
operator A W X ! Z and any odd isometry I W A.X/ ! Y the superposition f WD IıA
yields a solution of Equation (FM).

5.5 Pexiderization

The results presented in the present section are published with detailed proofs in
paper [19] of mine in which an answer to a question posed by Ludwig Reich during
my stay at the Karl-Franzens Universität (Graz, Austria, Autumn 1995) gives a
description of solutions to the functional equation

kf .x C y/k D kg.x/C h.y/k: (PFM)

Surprisingly, in contrast to the preceding results, even in the case of strictly
convex ranges, the pexiderized Equation (FM), i.e. Equation (PFM) fails to be
equivalent to the Pexider functional equation

f .x C y/ D g.x/C h.y/: (P)

Indeed, let .X;C/ be a groupoid and let .Y; k � k/ be a normed linear space with
dim Y � 2. Fix arbitrarily a positive real number % and a d 2 Y . Denoting by S.a; %/
the sphere fu 2 Y W ku � ak D %g; a 2 Y , one can easily check that the triple
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.f ; g; d/ yields a solution to (PFM) for quite arbitrary mappings f W X ! S.0; %/
and g W X ! S.�d; %/. Therefore, in general, Equation (PFM) enjoys an abundance
of solutions being far away from translations of an additive map which are the only
ones satisfying the Pexider equation (cf. Aczél and Dhombres [1] or Kuczma [25],
for instance). As we shall see later on such a phenomenon is caused by the lack
of zeros of the map f . If f vanishes at at least one point of its domain, then all the
triples .f ; g; h/ fulfilling (PFM) may be expressed in terms of mappings G fulfilling
the equation

kG.x � y/k D kG.x/ � G.y/k: (5.6)

5.5.1 Solutions Admitting Zeros

Assuming that either f or, equivalently, the two-place function .x; y/ 7! g.x/C h.y/
vanishes at some point we shall reduce Equation (PFM) to (5.6). Namely we have
the following:

Theorem 5.11 Let .X;C/ be a group (not necessarily commutative) and let .Y; k�k/
be a (real or complex) normed linear space. Assume that functions f ; g; h W X ! Y
satisfy the functional equation (PFM) for all x; y 2 X and f .x0/ D 0 for some
x0 2 X. Then there exists a solution G W X ! Y of Equation (5.6) and a vector
a 2 Y such that

g.x/ D G.x/C a; x 2 X; (5.7)

h.x/ D �G.x0 � x/ � a; x 2 X; (5.8)

and f is a selection of the multifunction

X 3 x 7! S.0; kG.x/ � G.x0/k/ � Y: (5.9)

Conversely, for every solution G W X ! Y of Equation (5.6), for every vector
a 2 Y, for every point x0 2 X and for every selection f of the multifunction (5.9), the
triple .f ; g; h/ with g and h given by (5.7) and (5.8), respectively, yields a solution
to (PFM) with f .x0/ D 0.

Remark 5.4 The assumption on f to possess a zero in X may equivalently be
replaced by the requirement

h�1.�g.X// ¤ ; or g�1.�h.X// ¤ ;:

In particular, this is the case provided that at least one of the maps g and h is
surjective.
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Theorem 5.12 Let .X;C/ be a group (not necessarily commutative) and let .Y; k�k/
be a (real or complex) strictly convex normed linear space. Assume that functions
f ; g; h W X ! Y satisfy the functional equation (PFM) for all x; y 2 X and f .x0/ D 0

for some x0 2 X. If either the even part of g is constant or the function X 3 x 7!
h.x C x0/ 2 Y has constant even part, then there exists an additive map G W X ! Y
and constants a; b 2 Y such that

g.x/ D G.x/C a; x 2 X;

h.x/ D G.x/C b; x 2 X;

and f is a selection of the multifunction

X 3 x 7! S.0; kG.x/C a C bk/ � Y:

Conversely, for every additive function G W X ! Y, for every vectors a; b 2 Y
and for every selection f of the above multifunction, the triple .f ; g; h/ with g and h
given by the above formulae yields a solution to (PFM).

Remark 5.5 A particular selection

f .x/ WD G.x/C a C b; x 2 X;

of the multifunction considered in Theorem 5.12 leads to a solution .f ; g; h/ of the
Pexider equation (P). However, in general, Theorem 5.12 shows that even in the
case of strictly convex ranges, a solution .f ; g; h/ of (PFM) may still be far from
any triple solving (P) because of multitude of possible selections f . Nevertheless,
remarkable is the fact that functions g and h in any such triple are exactly those
occurring in solutions of the Pexider equation (translations of an additive function).

5.5.2 Basic Equation and Additivity

As we have seen, Equation (5.6) happened to be basic while studying (PFM).
Obviously, each odd solution of (5.6) satisfies (FM) and every solution of (FM)
is easily checked to be odd. Therefore

Remark 5.6 Equations (5.6) and (FM) are equivalent in the class of odd functions
mapping a group into a normed linear space.

Replacing x by x C y in (5.6) we arrive at

kG.x/k D kG.x C y/ � G.y/k;

which, in case of Abelian domains, is equivalent to

kG.x C y/ � G.x/k D kG.y/k: (S)

Equally simple is the way back whence
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Remark 5.7 Equations (5.6) and (S) are equivalent in the class of functions mapping
a commutative group into a normed linear space.

Equation (S) was examined by Skof [28] in the case where the unknown function
G is defined on a real linear space. Her principal goal was to give sufficient
conditions for a solution of (S) to be additive. As we shall see later on, the main
results (Theorems 1 and 2 in [28]) are special cases of our Theorem 5.13 (ii) and
Corollary 5.8, respectively.

We proceed with the following:

Theorem 5.13 Let .X;C/ be an Abelian group and let .Y; k � k/ be a strictly convex
normed linear space. If G W X ! Y is a solution to the equation

kG.x � y/k D kG.x/ � G.y/k; x; y 2 X;

then the following conditions are pairwise equivalent:

(i) G is additive;
(ii) G.X/ D �G.X/;

(iii) G is odd;
(iv) kG.2x/k D 2kG.x/k for all x 2 X.

Remark 5.8 The commutativity of .X;C/ was used exclusively to show that (ii) )
(iii). Even in this case the relationship

kG.x C y/k D kG.y C x/k; x; y 2 X; (5.10)

is sufficient to conduct that part of the proof of Theorem 5.13. Indeed, having (5.10)
we replace y by y � x to get

kG.y/k D kG.x C y � x/k D kG.x C y/ � G.x/k

and that is what was really needed. The question whether or not Equation (5.6)
implies (5.10) in non-Abelian groups remains open.

Remark 5.9 Unlike (FM) Equation (5.6) always admits nonadditive solutions
(no matter whether or not the target space is strictly convex) provided that the
domain constitutes a group possessing subgroups of index 2. If that is the case,
.K;C/ is a subgroup of index 2 of the group .X;C/ and c ¤ 0 is an arbitrarily fixed
vector of the normed linear space .Y; k � k/, then any function G W X ! Y given by
the formula

G.x/ D
�
0 if x 2 K
c if x 2 X n K

(5.11)

yields a nonadditive solution of Equation (5.6). Indeed, G being even and nonzero
cannot be additive since, otherwise, it would be odd. To check that it satisfies
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Equation (5.2) fix arbitrarily a pair .x; y/ 2 X2. The following three possibilities
have to be distinguished:

(a) x; y 2 K W then so does x � y and both sides of (5.6) are equal to 0;
(b) x; y 2 X n K W then x � y is in K and we have the equalities

G.x � y/ D 0 D c � c D G.x/ � G.y/I

(c) exactly one of the arguments x; y is in K W then x�y 2 XnK whence G.x�y/ D c
and G.x/ � G.y/ 2 f�c; cgI thus (5.6) is satisfied as well.

Remark 5.10 Functions of the form (5.11) are, jointly with the additive solutions,
the only ones that satisfy Mikusiński’s functional equation

G.x C y/ ¤ 0 implies G.x C y/ D G.x/C G.y/ (M)

(cf. Dubikajtis et al. [10] or Kuczma [25]). Therefore, in the light of Remark 5.9,
each solution of Equation (M) satisfies the basic equation (5.6). In the sequel we
shall show, among others, that the converse is true in the case of real functionals on
groups.

5.5.3 Solutions with Values in Inner Product Spaces

Except for Theorem 5.14 below, in the present section we deal with solutions to
the basic equation (5.6) which map a given group into an inner product space. So,
we replace the assumption of strict convexity upon the target space by a stronger
requirement: the norm comes from an inner product structure.

Theorem 5.14 Let .X;C/ be a group (not necessarily commutative) such that X D
2X and let .Y; .k � k/ be a normed linear space (real or complex). Then any even
solution of Equation (5.6), mapping X into Y vanishes identically on X.

Proof Let G W X ! Y be an even solution of (5.6). Replacing y by �y in (5.6)
leads to

kG.x C y/k D kG.x/ � G.y/k; x; y 2 X;

whence, by putting here y D x we obtain the equality G.2x/ D 0 valid for all x 2 X.
Since, by assumption, 2X D X this completes the proof. ut
Remark 5.11 In view of Remark 5.10 the 2-divisibility assumption is essential
because each function of the form (5.11) is even.

In what follows we wish to realize how far are the solutions of (5.6) from
those of (FM). The following two results jointly with Corollary 5.7 provide some
information in that direction.
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Theorem 5.15 Let .X;C/ be a group (not necessarily commutative) and let
.Y; .�j�// be an inner product space (real or complex). Then G W X ! Y is a solution
of Equation (5.6) if and only if

kG.x/C G.y/k2 D kG.x C y/k2 C 4<.G.x/jGe.y//

for all x; y 2 X, where Ge stands for the even part of G.

Theorem 5.16 Let .X;C/ be a commutative group and let .Y; .�j�// be a real inner
product space. Then Equation (5.6) is equivalent to the system

kG.x/C G.y/k2 D kG.x C y/k2 C kG.x/C G.y/ � G.x C y/k2

kG.x/C G.y/ � G.x C y/k2 D 4 .G.x/jGe.y//

assumed for all x; y 2 X. In particular, any solution G W X ! Y of (5.6) enjoys the
property

G.x C y/ ? G.x/C G.y/ � G.x C y/:

Observe that due to the commutativity of the group .X;C/ the assertion of
Theorem 5.15 implies the equality

.G.x/jGe.y// D .G.y/jGe.x//

valid for all x; y 2 X. Plainly, we have also

.G.�x/jGe.y// D .G.y/jGe.x//; x; y 2 X;

which, by subtracting these two equalities side by side, we deduce the following:

Corollary 5.7 Under the assumptions of Theorem 5.16 every solution G W X ! Y
of Equation (5.6) has the following property:

Go.x/ ? Ge.y/; x; y 2 X;

where Go and Ge stand for the odd and even part of G, respectively. In particular, if
the set fGo.x/ W x 2 Xg is total, then G is additive.

Finally, we shall show that in the case of real functionals the basic equation (5.6)
and Mikusiński’s equation (M) are equivalent.

Theorem 5.17 Let .X;C/ be a commutative group. Then a function G W X ! R

satisfies the equation

jG.x � y/j D jG.x/ � G.y/j; x; y 2 X; (5.12)
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if and only if G is a solution to Mikusiński’s equation

G.x C y/ ŒG.x C y/ � G.x/ � G.y/� D 0; x; y 2 X: (5.13)

Proof Let G W X ! R be a solution of (5.12). An appeal to Theorem 5.16 shows
that

G.x C y/ ? G.x C y/ � G.x/ � G.y/

for all x; y 2 X which, in the real case, states nothing else but (5.13).
As to the converse Remark 5.10 may directly be applied. This ends the proof. ut
Remark 5.10 jointly with Theorem 5.17 immediately implies the following:

Corollary 5.8 If .X;C/ is a commutative group with no subgroups of index 2, then
a function G W X ! R satisfies Equation (5.12) if and only if G is additive.

5.6 Inequality Case

Is there any chance to obtain nontrivial results for the case where the equality sign
in Equation (FM) would be replaced by that of inequality? More precisely, there are
two possibilities:

• to assume that for every x; y from the domain (semigroup, at least, written
additively) of a function f whose codomain is a normed linear space, one has

kf .x C y/k � kf .x/C f .y/kI
• to assume that for every x; y from the domain (semigroup, at least, written

additively) of a function f whose codomain is a normed linear space, one has

kf .x C y/k � kf .x/C f .y/k:

The first possibility seems to be pointless because of the abundance of solutions
that might be expected. For instance, given any normed linear space .E; k � k/ the
function f W E ! R defined by f .x/ D kxk; x 2 E, is a solution. For any nonnegative
increasing subadditive function ' W Œ0;1/ ! R the function f W R ! R defined by
the formula f .x/ D '.jxj/; x 2 Œ0;1/, is a solution as well.

What concerns the other possibility, the following very interesting result of Gyula
Maksa and Peter Volkmann has been obtained in their paper [26]. In what follows,
the details will be reported on.

Theorem 5.18 (Maksa and Volkmann [26]) Let .X;C/ be a group and .Y; .�j�//
be a real or complex inner product space. Let further f W X ! Y be a solution to the
functional inequality

kf .x C y/k � kf .x/C f .y/k; x; y 2 X: (MV)

Then f is additive.
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Proof Putting x D y D 0 in (MV) we infer that f .0/ D 0. Consequently, on setting
y D �x in (MV) we get f .�x/ D �f .x/; x 2 X: Squaring both sides of (MV) we
arrive at

kf .x C y/k2 � kf .x/k2 C 2<.f .x/jf .y//C kf .y/k2: (5.14)

Replacing here x and y by x C y and �y, respectively, and taking into account the
oddness of f , we obtain the inequality

kf .x/k2 � kf .x C y/k2 � 2<.f .x C y/jf .y//C kf .y/k2

whence

�kf .x C y/k2 � �kf .x/k2 � 2<.f .x C y/jf .y//C kf .y/k2:

Now, adding the latter inequality to (5.14) side by side we infer that

2<.f .x/jf .y// � 2<.f .x C y/jf .y//C 2kf .y/k2 � 0;

or, equivalently,

<.f .x/C f .y/ � f .x C y/jf .y// � 0: (5.15)

Replacing in (5.14) x and y by �x and x C y, respectively, and taking into account
the oddness of f , we obtain the inequality

kf .y/k2 � kf .x/k2 � 2<.f .x/jf .x C y// � kf .x C y/k2

whence

�kf .x C y/k2 � kf .x/k2 � 2<.f .x/jf .x C y// � kf .y/k2:

Now, adding the latter inequality to (5.14) side by side we infer that

2kf .x/k2 C 2<.f .x/jf .y/ � f .x C y// � 0;

or, equivalently,

<.f .x/C f .y/ � f .x C y/jf .x// � 0: (5.16)

Replacing here x and y by x C y and �y, respectively, and taking into account the
oddness of f , we get

<.f .x C y/ � f .y/ � f .x/jf .x C y// � 0;
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or, equivalently,

<.f .x/C f .y/ � f .x C y/j � f .x C y// � 0: (5.17)

Now, adding (5.15)–(5.17), side by side, we deduce finally that the inequality

kf .x/C f .y/ � f .x C y/k2 � 0;

holds true for all elements x; y from X. This implies the additivity of f and finishes
the proof. ut

That kind result fails to hold in the case where the group domain is replaced
by a semigroup one. In fact, take .X;C/ D .Œ0;1/;C/, .Y; .�j�// D .R; �/, and
f W Œ0;1/ ! R given by the formula f .x/ D x2; x 2 Œ0;1/. Then

jf .x C y/j D .x C y/2 D x2 C y2 C 2xy � x2 C y2 D jf .x/C f .y/j:

The authors of [26] have posed also the following:

Problem Is it possible to replace the unitary target space by a strictly convex one?
The aforesaid result of Maksa and Volkmann has recently been generalized by

Száz in [29]. The generalization consists in replacing the target inner product space
by a group .Y;C/ endowed with an inner product Q W Y � Y ! C subjected to
satisfy the following conditions:

(a) Q.x; x/ � 0 and Q.x; x/ D 0 forces x to be 0;
(b) Q.y; x/ D Q.x; y/;
(c) Q.x C y; z/ D Q.x; z/C Q.y; z/,

for all x; y; z from Y .

Theorem 5.19 (Száz [29, 30]) Let .X;C/ be a group and .YC/ be a group
endowed with an inner product Q. Put

q.u/ WD
p

Q.u; u/; u 2 Y:

Then for every map f W X ! Y the following conditions are pairwise equivalent:

• f is additive;
• q.f .x C y// � q.f .x/C f .y// for all x; y 2 X;
• f is odd and

<Q.f .x/; f .y// � 1

2

�
q.f .x C y//2 � q.f .x//2 � q.f .y//2

	
for all x; y 2 X.

In a final Remark 3.4 of his paper spoken of, Száz emphasizes that his proof
of the above theorem “does not requires particular tricks” (author’s spelling) and
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therefore it is “more simple” than that presented by Maksa and Volkmann (see the
proof of Theorem 5.18 above).

In a feature article of Száz Remarks and Problems at the Conference on
Inequalities and Application [30], containing 228 references, item nr [207] is a self-
citation and reads as follows:

[207] Á. Száz, A generalization of a theorem of Maksa and Volkmann on additive
functions, Tech. Rep., Inst. Math., Univ. Debrecen 2016/5, 6 pp. (The publication
of an improved and enlarged version of this work in the Anal. Math. was probably
prevented by a close colleague of Ger.)

No comments.

5.7 Stability

We shall present two single results in two categories:

• Hyers–Ulam stability of the Fischer–Muszély equation;
• Fischer–Muszély equation postulated almost everywhere.

It turns out that Fischer–Muszély equation is stable in the sense of Hyers and
Ulam. More precisely we have the following result established by Tabor in his paper
[31] for the class of surjective mappings.

Theorem 5.20 (Tabor [31]) Let .G;C/ be a group and let .X; k � k/ be a Banach
space. If a surjective map f W G ! X satisfies the inequality

jkf .x C y/k � kf .x/C f .y/kj � "; x; y 2 G;

with a given " � 0, then

kf .x C y/ � f .x/ � f .y/k � 13"; x; y 2 G:

In particular ." D 0/, any surjective solution of Equation (FM) is additive.

Corollary 5.9 If .G;C/ is amenable, or more generally, if .G;C/ happens to be
a G -group, then there exists exactly one additive map a W G ! X such that
kf .x/ � a.x/k � 13" for all x 2 G. Consequently, in that case, the Fischer–Muszély
functional equation is stable in the class of surjective mappings.

Now we want to exhibit another stability property: we shall show that under
suitable assumptions a function satisfying the Fischer–Muszély functional equation
postulated almost everywhere has to coincide with an additive map almost every-
where.

In what follows the symbol .G;C/ will stand for an additively written group.
Recall that a nonempty family J � 2G n fGg is called a proper linearly invariant
ideal (briefly: p.l.i. ideal) in G provided that it satisfies the following conditions:
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(i) if A;B 2 J , then A [ B 2 J ;
(ii) if A 2 J and B � A, then B 2 J ;

(iii) if A 2 J and x 2 G, then x � G 2 J .

We say that a property P.x/ holds J -almost everywhere in G whenever P.x/ is
valid for all x 2 G n U for some set U 2 J .

For a subset M � G2 and x 2 G we define a section

MŒx� WD fy 2 G W .x; y/ 2 Mg:

An ideal cJ in G2 is said to be conjugate with an ideal J in G if and
only if for every set M 2 cJ the appurtenance MŒx� 2 J takes place
J -almost everywhere in G.

The family

˝.J / WD fM � G2 W MŒx� 2 J for J -almost all x 2 Gg

yields the largest (in sense of the set inclusion) p.l.i. ideal in G2 being conjugate to
J [see, e.g., Kuczma [25, Ch. XVII, §5]].

Our main result reads as follows.

Theorem 5.21 Given a p.l.i. ideal J in a group .G;C/ and a real or complex
inner product space .H; .�j�//, assume that a map f W G ! H satisfies Equation (FM)
for all pairs .x; y/ 2 G2 off a set M 2 ˝.J / such that T1.M/ and T2.M/ stay in
˝.J / for T1.x; y/ WD .y; x/ and T2.x; y/ WD .y; x � y/; .x; y/ 2 G2.

If, moreover, for any set U from J the set 1
2

U WD fx 2 G W 2x 2 Ug belongs to
J and there exists a member E of J such that

M \
3[

kD1
f.x; kx/ 2 G2 W x … Eg D ;;

then there exists a unique additive map a W G ! H such that

fx 2 G W f .x/ ¤ a.x/g 2 J :

Proof To apply the technique used by Fischer and Muszély in [12] (see also p. 139
in Aczél and Dhombres [1], fix arbitrarily an x 2 G n .E [ 1

2
E/; then all the pairs

.x; x/; .x; 2x/ and .x; 3x/ as well as .2x; 2x/ are off M and we have

kf .2x/k D 2kf .x/k; kf .3x/k D kf .x/C f .2x/k;
4kf .x/k D kf .4x/k D kf .x/C f .3x/k;
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which like in [12], forces the equality

f .2x/ D 2f .x/; x 2 G n .E [ 1

2
E/: (5.18)

Since M is supposed to be a member of ˝.J /, there exists a set U 2 J such
that for every x 2 G n U the section MŒx� falls into J .

Let N stand for the set-theoretical union of the following seven sets: M; .E [
. 1
2

E// � G;G � .E [ . 1
2
E// and

M1 WD f.x; y/ 2 G2 W x 2 1

2
U or y 2 MŒ2x�g; M2 WD f.x; y/ 2 G2 W x 2 U or y 2 1

2
MŒx�g;

M3 WD f.x; y/ 2 G2 W x 2 U or y 2 �x C MŒx�g; M4 WD .T1 ı T2/.M/:

Each one of these seven sets yields a member of the ideal ˝.J /. Indeed, this is
obvious for the first three sets as well as, by the invariance assumptions, for the set
M4. To check that M1 2 ˝.J / note that for every x … 1

2
U 2 J the section

M1Œx� D fy 2 G W .x; y/ 2 M1g D fy 2 G W y 2 MŒ2x�g D MŒ2x� belongs to J :

Similarly, since for every x … U 2 J the section

M2Œx� D fy 2 G W .x; y/ 2 M2g D fy 2 G W y 2 1

2
MŒ2x�g D 1

2
MŒ2x� belongs to J ;

we infer that M2 2 ˝.J /: Finally, for every x … U 2 J the section

M3Œx� D fy 2 G W .x; y/ 2 M3g D fy 2 G W y 2 �x C MŒx�g D �x C MŒx� belongs to J ;

which shows that M3 2 ˝.J /.
Consequently, the union N of all the sets spoken of yields a member of the ideal

˝.J / as well. Now, fix arbitrarily a pair .x; y/ 2 G2 n N. Then:

1. kf .x C y/k D kf .x/C f .y/k because .x; y/ … M;
2. f .2x/ D 2f .x/ and f .2y/ D 2f .y/ because of (5.18) and the fact that

x; y … E [ 1
2

E;
3. kf .2xCy/k D kf .2x/C f .y/k because .x; y/ … M1 which forces the pair .2x; y/

to stay off the set M;
4. kf .2x C y/k D kf .x/ C f .x C y/k because .x; y/ … M3 which forces the pair
.x; x C y/ to stay off the set M;

5. kf .xC2y/k D kf .x/C f .2y/k because .x; y/ … M2 which forces the pair .x; 2y/
to stay off the set M;

6. kf .x C 2y/k D kf .x C y/ C f .y/k because .x; y/ … M4 which forces the pair
.x C y; y/ to stay off the set M.
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Relations 3. and 4. jointly with 2. imply that

kf .x/C .f .x/C f .y//k D kf .x/C f .x C y/k; (5.19)

whereas a similar conclusion

k.f .x/C f .y//C f .y/k D kf .x C y/C f .y/k; (5.20)

can be drawn from relations 5. and 6. jointly with 2. By means of 1., after squaring
both sides of (5.19) and (5.20), by a simple calculation, we derive the equalities

<..f .x/jf .x C y/ � f .x/ � f .y/// D 0 D <..f .y/jf .x C y/ � f .x/ � f .y///;

respectively, which immediately imply that

<..f .x/C f .y/jf .x C y/ � f .x/ � f .y/// D 0: (5.21)

Along the same lines as in the paper [12] of Fischer and Muszély, from the trivial
equality

kf .x C y/k2 D k.f .x/C f .y//C .f .x C y/ � f .x/ � f .y//k2

with the aid of 1. and (5.21) we derive the relationship

kf .x C y/ � f .x/ � f .y/k2 D 0:

This clearly forces the additivity relation

f .x C y/ D f .x/C f .y/

that remains valid for all pairs .x; y/ 2 G2 n N, i.e.˝.J /-almost everywhere in G2.
Now, it remains to apply a de Bruijn’s type result from [15]: there exists a unique
additive function a W G ! H such that the equality f .x/ D a.x/ holds for J -almost
all x 2 G, i.e.

fx 2 G W f .x/ ¤ a.x/g 2 J :

Thus the proof has been completed. ut
Remark 5.12 The leading idea of the proof above was to run along the lines of
the proof presented in [12] treating it as the obstacle race. However, the set of
obstacles, although basically caused by the fact that the validity of the (FM) equation
is postulated merely almost everywhere, was enlarged by another one; namely, close
to the bottom of page 199 in [12] the authors write:
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If we interchange the variables x and y in Equation (16) we get

Œ<.f .y/; f .x C y/ � .f .x/C f .y//� D 0�; (17)

which is wrong; actually, we get then

Œ<.f .y/; f .y C x/ � .f .x/C f .y//� D 0�;

and not (17) because of the lack of the commutativity of the domain semigroup.
In what follows we shall present a few corollaries illustrating some consequences

of the theorem just proved.

Corollary 5.10 Let .X; k�k/ stand for a normed linear space and let .H; .�j�// be an
inner product space. If a map f W X ! H satisfies the Fischer–Muszély functional
equation (FM) in a vicinity of infinity (outside an arbitrarily given ball centred at
the origin), then there exist a unique additive map a W X ! H and a bounded set
B � X such that f .x/ D a.x/ for all x 2 X n B.

Proof Let J stand for the p.l.i. ideal of all bounded subsets of the space X. Clearly,
any bounded set and, in particular, any ball M WD B..0; 0/; r/ in the product space
X2 yields a member of ˝.J /. Assume that

kf .x C y/k D kf .x/C f .y/k; .x; y/ 2 X2 n M:

Put T1.x; y/ WD .y; x/ and T2.x; y/ WD .y; x � y/; .x; y/ 2 X2. The images T1.M/
and T2.M/ are contained in M and

p
5M, respectively, so that they stay in ˝.J /.

Moreover, 1
2

U is bounded for any bounded set U. Finally, since the set E WD fx 2
X W kxk � rg belongs to J and for every x 2 X n E one has

k.x; kx/k D
p
1C k2kxk � p

2r > r; k 2 f1; 2; 3g;

the condition

M \
3[

kD1
f.x; kx/ 2 G2 W x … Eg D ;

is satisfied. Thus all the assumptions of Theorem 5.21 are fulfilled which ends the
proof. ut
Corollary 5.11 Let .G;C/ stand for a uniquely 2-divisible locally compact group
and let .H; .�j�// be an inner product space. Denote by h1 and h2 the left Haar
measures in G and G2, respectively, with h1.G/ D 1; moreover, let h�

1 be the
outer Haar measure associated with h1. Assume that for every set U � G one has
h�.fx 2 G W 2x 2 Ug/ < 1 provided that h�.U/ < 1. If a map f W G ! H satisfies
the Fischer–Muszély functional equation (FM) for all .x; y/ 2 G2nM where M � G2

is a set of finite measure h2 and such that
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M \
3[

kD1
f.x; kx/ 2 G2 W x 2 Gg D ;;

then there exist a unique additive map a W G ! H and a set B � G such that
h�
1 .B/ < 1 and f .x/ D a.x/ for all x 2 G n B.

Proof Let J stand for the p.l.i. ideal of all subsets of G having finite outer measure
h�
1 . Since, by Fubini’s theorem, one has

1 > h2.M/ D
Z

G
h1.MŒx�/dh1.x/;

we infer that h1-almost all sections MŒx� are of finite h1 measure. This proves that
M falls into the ideal ˝.J /. Let T1 and T2 be defined as in the statement of
Theorem 5.18. Directly from the definition of the product measure it follows that
h2.T1.M// D h2.M/ < 1 and

h2.T2.M// D
Z

G
h1.T2.M/Œx�/dh1.x/ D

Z
G

h1.�x C T1.M/Œx�/dh1.x/

D
Z

G
h1.T1.M/Œx�/dh1.x/ D h2.T1.M// D h2.M/ < 1:

Therefore, h1�almost all sections T2.M/Œx� are of finite h1 measure which forces
the image T2.M/ to fall into the ideal ˝.J /. To finish the proof it suffices to apply
Theorem 5.18. ut
Corollary 5.12 Let .G;C/ stand for a uniquely 2-divisible Polish topological
group and let .H; .�j�// be an inner product space. Assume that the map G 3 x 7!
1
2
x 2 G is a homeomorphism of G onto itself. If a map f W G ! H satisfies the

Fischer–Muszély functional equation (FM) for all .x; y/ 2 G2 n M where M � G2 is
a first category (in the sense of Baire) subset of the group G2 and such that

M \
3[

kD1
f.x; kx/ 2 G2 W x 2 Gg D ;;

then there exist a unique additive map a W G ! H and a first category set B � G
such and f .x/ D a.x/ for all x 2 G n B.

Proof Let J stand for the p.l.i. ideal of all first category sets in G. Then with the aid
of the celebrated Kuratowski–Ulam theorem we establish the fact that M belongs to
the ideal˝.J /. Since the maps T1.x; y/ WD .y; x/ and T2.x; y/ WD .y; x�y/; .x; y/ 2
G2 yield homeomorphic self-mappings of G2 we infer that both the images T1.M/
and T2.M/ stay in˝.J /. Moreover since, by assumption, the map G 3 x 7! 1

2
x 2

G is a homeomorphism of G onto itself, the set 1
2
U is of the first Baire category

provided that so is U. To finish the proof it remains to apply Theorem 5.18. ut
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Corollary 5.13 Let .Z;C/ be the additive group of all integers and let .H; .�j�// be
an inner product space. If a sequence .an/n2Z of elements of the space H satisfies
the Fischer–Muszély equation

kanCmk D kan C amk (5.22)

for all but finite set of pairs .n;m/ 2 Z
2, then there exists a unique vector c 2 H

such that an D nc for all but finite number of integers n.

Proof Let J stand for the p.l.i ideal of all finite subsets of Z. Assuming that
relation (5.22) holds for all n;m 2 Z off a set M WD f.n;m/ 2 Z

2 W jnj; jmj � n0g
where n0 is a positive integer, we see that M belongs to the ideal˝.J /. Plainly the
maps T1.n;m/ WD .m; n/ and T2.n;m/ WD .m; n � m/; .n;m/ 2 Z

2 transform finite
sets into finite sets, which forces the images T1.M/ and T2.M/ to stay in ˝.J /.
Moreover, for every finite set U � Z the set fn 2 Z W 2n 2 Ug is finite as well.
Finally, on setting E WD f�n0; : : : ;�1; 0; 1; : : : ; n0g we have E 2 J and M is
disjoint with the union

3[
kD1

f.n; kn/ 2 Z
2 W n … Eg

that is contained in Z
2 n M. Thus all the assumptions of Theorem 5.21 are fulfilled

which implies the existence of a unique additive map a W Z ! H such that the set
fn 2 Z W a.n/ ¤ ang is finite. Since, obviously, a.n/ D na.1/; n 2 Z, we get the
equality an D nc for all but finite number of integers n, with a unique c WD a.1/ 2 H,
as claimed. ut
Remark 5.13 As it states, the formulation of Theorem 5.21 leaves room for
improvements. For instance, it would be desirable to have

• the group considered replaced by a semigroup;
• the inner product space replaced by a strictly convex one;
• the assumption

M \
3[

kD1
f.x; kx/ 2 G2 W x … Eg D ;;

removed.

Unfortunately, at present none of these three wishes can be accomplished because
of the proof technique applied.
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Chapter 6
Alien Functional Equations: A Selective Survey
of Results

Roman Ger and Maciej Sablik

Abstract We present the (relatively short) history of the “alienation” in the theory
of functional equations. The notion originally has been proposed by Dhombres
(Aequationes Math 35:186–212,1988). Later the topic has been developed and
generalized by many authors. We summarize the present state of the research in
this area.

Keywords Alienation • Functional equations of Cauchy • Hosszú • d’Alembert •
Jensen • Derivations • Inequalities

Mathematics Subject Classification (2010) Primary 39B22; Secondary 39B72

6.1 Introduction

Dhombres in his paper [9] considers the following four Cauchy equations:

C1.f /.x; y/ WD f .x C y/ � .f .x/C f .y// D 0I (6.1)

C2.f /.x; y/ WD f .xy/ � f .x/f .y/ D 0I (6.2)

C3.f /.x; y/ WD f .x C y/ � f .x/f .y/ D 0I (6.3)

C4.f /.x; y/ WD f .xy/ � .f .x/C f .y// D 0: (6.4)

Dhombres introduced the following definitions.

Definition 6.1 Equations .i/ and .j/; i; j 2 f1; : : : ; 4g; i ¤ j, are s-independent on
X; Y if the only common solutions f W X ! Y of .i/; .j/ are f D 0 or f .x/ � x.
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Remark 6.1 The notion of s-independence may depend on the sets X and Y .
Indeed, (6.1) and (6.2) are s-independent as long as we are concerned with X D
Y D R but there exists a nontrivial solution f W C ! C of the system (6.1) and (6.2).
Hence (6.1) and (6.2) are not s-independent on C.

Remark 6.2 One can easily check that

• (6.1) and (6.3) are s-independent on a ring
• (6.1) and (6.4) are s-independent on RC; R, i.e. for f W RC ! R.

Remark 6.3 Let us observe the following.

• (6.1) and (6.4) are a fortiori s-independent on R or C. However, (6.4) has only
f D 0 as solution, when considered for functions f W R ! R. This is why we
restrict ourselves to f W RC ! R.

• (6.2) and (6.4) are s-independent on RC; R, hence they are a fortiori s-
independent on R or C.

Since the notion of s-independence seemed somehow restrictive, Dhombres contin-
ued with the following definition.

Definition 6.2 Let E1.f / D 0 and E2.f / D 0 be two functional equations for a
function f W X ! Y , where X and Y are non-empty sets. The equations E1 and E2
are alien with respect to X and Y , if any solution f W X ! Y of

E1.f /C E2.f / D 0; (6.5)

is a solution of the system

�
E1.f / D 0

E2.f / D 0:
(6.6)

If there is no risk of confusion we note E1 ? E2 if the two equations are alien.
In [9] we also find the following result:

Proposition 6.1 Let X be a unitary ring divisible by 2 and let Y be a unitary ring
with the following two properties:

.i/ y3 D y 2 Y implies y 2 f1;�1; 0g;
.ii/ y2 D 0 and y 2 Y imply y D 0:

Then Equations (6.1) and (6.2) are alien with respect to X and Y:
It may happen that E1 ? E2 but 
 .�E1 ? E2/: Indeed, the equation

f .x/C f .y/C f .xy/ D f .x C y/C f .x/f .y/ (6.7)

f W K ! K; where K is a field of characteristic different from 2 has f D 2 as a
solution, which is not a field homomorphism. Thus C1 ? C2 but not 
 .�C1 ? C2/.

This observation leads to the following new definition.
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Definition 6.3 Two equations E1.f / D 0 and E2.f / D 0 are weakly alien with
respect to X and Y if any non-constant solution f W X ! Y of (6.5) solves the
system (6.6).

Following Dhombres we admit yet another definition.

Definition 6.4 Two equations E1.f / D 0 and E2.f / D 0 are strongly alien with
respect to X and Y if any couple .f ; g/ of functions mapping X into Y and solving

E1.f /C E2.g/ D 0;

solves also the system

�
E1.f / D 0

E2.g/ D 0:

Dhombres has also noted the following.
One can imagine many more kinds of dependence between functional equa-

tions Ci; i 2 f1; 2; 3; 4g other than s-independence or being weakly or strongly
alien. In connection with conditional equations we shall study elsewhere the m-
independence, i.e. the case where

E1.f /E2.f / D 0

implies E1.f / D 0 or E2.f / D 0: The Pexider analogue is the functional equation

E1.f /E2.g/ D 0:

Actually, Dhombres in [9] dealt with the following equation:

af .xy/C bf .x/f .y/C cf .x C y/C d.f .x/C f .y// D 0; (6.8)

for mapping f defined on a unitary ring with the uniquely performed division by 2
and with values in a unitary ring and a field, respectively. Here a; b; c and d are some
constants from the range of f . Actually, the main result concerning Equation (6.8)
concerns the situation where X is a unitary ring divisible by 2 and Y is a field. In
[9] (Theorem 11) one can see the table of all solutions of (6.8) depending on the
behaviour of constants a; b; c and d which are assumed to belong to the centre of Y .
The solution is expressed in terms of solutions to (6.1), (6.2) or (6.3) or is arbitrary
constant, or a specific constant, or vanishes everywhere.

A particular case of (6.8) is (a D c D 1; b D d D �1)

f .x C y/C f .xy/ D f .x/C f .y/C f .x/f .y/: (6.9)

In [9] we find the following result.
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Theorem 6.1 ([9], Théorème 5) Let X be unitary ring divisible by 2 and let Y be
a unitary ring. Let f W X ! Y be any function with f .0/ D 0: Then f solves (6.9) for
all x; y 2 X if, and only if, f solves the system

�
f .x C y/ D f .x/C f .y/;

f .xy/ D f .x/f .y/;
(6.10)

for all x; y 2 X (in other words, f is a ring homomorphism).
The crucial part of Dhombres’s proof was to get the oddness of a solution f

of (6.9). However, even in the very simple case of unitary rings X D Z (the integers)
and Y D R (the reals) Equation (6.9) admits non-odd (actually even) and hence non-
homomorphic solutions of the form

f .x/ D
�
0 for x 2 2Z

�1 for x 2 2Z C 1 :

More generally, it is not hard to check that for any two elements c; d from the target
ring Y such that c D c3 and cd D dc D d2 D 0 a map f W Z ! Y given by the
formula

f .x/ D
8<
:

1
2

x.c C c2/C d for x 2 2Z
1
2
.x � 1/c2 C 1

2
.x C 1/c C d for x 2 2Z C 1 :

yields a non-homomorphic solution of (6.9) unless c D c2 and d D 0.
Therefore it is most desirable to relax the assumptions upon the rings considered.

6.2 Extension of Dhombres’s Results

The first author of the present survey was dealing with the question in papers [13]
and [14]. However, any attempt to do that presented in both papers shows that
omitting the divisibility hypothesis and/or the existence of unit elements causes
essential difficulties and requires some developed techniques. To give you a flavour,
let us present the following:

Theorem 6.2 ([14], Theorem 3) Let X be a unitary ring with e as a unit and let Y
be an arbitrary ring. If f W X ! Y is a solution of Equation (6.9) such that f .0/ D 0;

then the ring Y0 generated by f .X/ in Y is unitary with c2 as a unit, where c WD f .e/.
Moreover, c3 D c and f satisfies the following system of functional equations:
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8̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂:

f .2x C y/ D f .2x/C f .y/

f .2xy/ D f .2x/f .y/

f .2z/ Œf .x C y/ � f .x/ � f .y/� D 0

f .2z/ Œf .xy/ � f .x/f .y/� D 0

(6.11)

for all x; y; z 2 X.
In particular, if the ring X is either 2-divisible or f .2a/ 2 fc; c2g for some

a 2 X or f .2a/ 6D 0 is not a zero divisor for some a 2 X, then f yields a ring
homomorphism between X and Y:

Another result in that spirit:

Theorem 6.3 ([14], Theorem 4) Under the assumptions and denotations of the
previous theorem the sets

I WD fx 2 X W f .2x/ D 0 g and J WD fu 2 Y0 W uc D cu D �u g

form two-sided ideals in the rings X and Y0, respectively. The quotient ring Y0=J is
unitary with the unit element eJ WD c C J: Moreover,

�
f .x C y/ � f .x/ � f .y/ 2 J
f .xy/ � f .x/f .y/ 2 J

(6.12)

for all x; y 2 X. In other words, the map

X 3 x 7�! F.x/ WD f .x/C J 2 Y0=J

establishes a homomorphism between the rings X and Y0=J fulfilling the condition
F.e/ D eJ :

6.2.1 Even Solutions

Plainly, whatever has been told about solutions of Equation (6.9) till now applies,
in particular, for even solutions. However, in this case, we are able to explain the
occurrence of f0;�1g-solutions in the case of the ring Z of all integers. Namely, we
have the following:

Theorem 6.4 ([14], Theorem 6) Let X be a unitary ring with e as a unit and let
Y be an arbitrary ring. If j W X ! Y is an even solution of Equation (6.7) such that
j.0/ D 0, then the ring Y0 generated by j.X/ in Y is unitary with c2 as a unit, where
c WD j.e/. Moreover, c2 D �c and j j2XD 0, j satisfies the functional equation of
Hosszú:
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j.x C y � xy/C j.xy/ D j.x/C j.y/; x; y 2 X; (6.13)

and

2j.x/ .j.x/ � c/ D 0; x 2 X : (6.14)

If, in addition, the cardinality of the quotient ring X=2X does not exceed 2, then the
set Z WD fx 2 X W j.x/ D 0 g yields a two-sided ideal of the ring X, 2X � Z and

j.x/ D
�
0 for x 2 Z
c for x 2 Z C e

(6.15)

Conversely, in that case, each function j W X ! Y of that form with �c2 D c D j.e/
yields an even solution of Equation (6.9), vanishing at 0:

6.2.2 A Generalized Ring Homomorphisms Equation

In 2010 the first author, jointly with an Austrian mathematician Ludwig Reich, has
established in [19] the general solution of the functional equation

af .xy/C bf .x/f .y/C cf .x C y/C df .x/C kf .y/ D 0 (6.16)

yielding a joint generalization of equations that has been studied by Dhombres,
Alzer, Hammer, Benz, Halter-Koch and Ger. Around 2004, Alzer (private com-
munication), motivated by an entirely different type of problems was asking about
solutions of the equation

f .x C y/ � f .xy/ D f .x/C f .y/ � f .x/f .y/;

which, however, may simply be viewed as the result of subtraction (instead of
summation) of the additivity and multiplicativity equations side by side. It turned
out that actually Alzer was interested in the inequality

f .x/f .y/ � f .xy/ � f .x/C f .y/ � f .x C y/:

A similar inequality has earlier been studied by Hammer in [23].
We also mention two different approaches to the problem of characterizing field

homomorphisms by means of functional equations. The first one uses, e.g., the
functional equation

f
�
x.x C y/�1

	
.f .x/C f .y// D f .x/
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to characterize homomorphisms of skew fields (see Benz [3]). The second approach
characterizes field homomorphisms in the class of additive functions by a functional
equation in a single variable (cf. Halter-Koch [22]).

The emphasis is given upon the dropping of the 2-divisibility assumption in X and
replacing the range Y by an integral domain; this, however, by definition, requires
the commutativity of the multiplication. Ger and Reich believed that, in this way,
they had also achieved a greater uniformity of the presentation as well as that their
approach allows one to have a better insight into the reasons of the occurrence of
non-homomorphic solutions.

The crucial result reads as follows:

Theorem 6.5 ([19], Theorem) Let X and Y be two unitary rings and let Y be
commutative with no zero divisors. Given five elements a; b; c; d and k 2 Y, denote
by S the family of all functions f W X ! Y such that f 6D 0; f .0/ D 0, and
satisfying Equation (6.16) for all x; y 2 X: If S 6D ;, then k D d D �c. If c D 0 in
Equation (6.16) reduced to

af .xy/C bf .x/f .y/ D c .f .x/C f .y/ � f .x C y// ; (6.17)

then

• b D 0 implies that either S D ; provided that a 6D 0 or, otherwise, S coincides
with the family of all nonzero functions mapping X into Y vanishing at 0;

• b 6D 0 and f 2 S imply that f .e/ 6D 0 and g WD f .e/�1f yields a multiplicative
mapping from X into QY—the field of fractions of the ring Y.

If c 6D 0 in Equation (6.16) reduced to (6.17) and f 2 S , then the following four
cases are the only possible ones:

(i) a D b D 0 and cf is additive;
(ii) a D 0 6D b and there exists an exponential map g W X ! QY such that

bf .x/ D c.1 � g.x//; x 2 XI

(iii) a 6D 0 D b and either f is an arbitrary nonzero constant function provided that
a D c, or f is even, f .2x/ � 0 on X and f is constant on the cosets forming the
elements of the quotient ring X=2X, provided that a D 2c. In the latter case
the formula

F.x C 2X/ WD f .x/; x 2 X:

correctly defines an even map F W X=2X ! Y which solves the corresponding
equation on X=2X and vanishes at zero ;

(iv) a 6D 0 6D b and either

(j) f is additive and af .xy/ D �bf .x/f .y/ for all x; y 2 X or
(jj) bf .x/ � c � a on X or
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(jjj) f is even, f .2x/ � 0 on X and f is constant on the cosets forming the
elements of the quotient ring X=2X with F defined and behaving like
in (iii).

The result is completed with following remarks.

Remark 6.4 The assumption that f .0/ D 0 is by no means restrictive. Indeed,
while dealing with Equation (6.16), with the aid of the substitutions g.x/ WD
f .x/ � f .0/; x 2 X; d0 WD bf .0/C d and k0 WD bf .0/C k we get

ag.xy/C bg.x/g.y/C cg.x C y/C d0g.x/C k0g.y/

CŒaf .0/C bf .0/2 C cf .0/C df .0/C kf .0/� D 0

and the constant term in square brackets vanishes [just put x D y D 0 in (6.16)].
Therefore

ag.xy/C bg.x/g.y/C cg.x C y/C d0g.x/C k0g.y/ D 0

and obviously g.0/ D 0.

Remark 6.5 ([19], Remark 3) It follows from this theorem that except for the
trivial case where all five coefficients in (10) are vanishing (then, plainly, (6.16)
is satisfied for all functions mapping X into Y), a map f 2 S yields a nonzero ring
homomorphism if and only if k D d D �c 6D 0 and b D �a 6D 0 (see the case
(iv)(j)).

Remark 6.6 ([19], Remark 4) It is to be observed that in the family S the solutions
of three Cauchy equations: additivity, exponentiality and multiplicativity occur in
some cases, but not logarithmic functions. The latter effect is caused by the fact that
to have nontrivial logarithmic functions we have to remove zero from the domain.

6.2.3 The Alienation of Additivity and Exponentiality

In contrast to Equation (6.9) or

f .x C y/C f .xy/ D f .x/C f .y/C f .x/f .y/;

where two Cauchy functional equations (additivity and multiplicativity of the same
function f ) have been summed up side by side, trying to examine possible alienation
of additivity and exponentiality, Ger (cf. [16]) decided to discuss a Pexider version
of the problem:

f .x C y/C g.x C y/ D f .x/C f .y/C g.x/g.y/; x; y 2 S;
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from the very beginning. This could not be avoided because, otherwise, for f D g,
i.e. in the case of equation

2 f .x C y/ D f .x/C f .y/C f .x/f .y/; x; y 2 S;

the problem becomes trivial. Indeed, one may easily check that constant solutions f
are the only possible ones (at least under the assumption that the binary law “C” in
S admits a neutral element). On the other hand, it seems hardly likely that given two
maps f ; g the validity of the equation

f .x C y/C g.x C y/ D f .x/C f .y/C g.x/g.y/; x; y 2 S;

brings us back to the additivity of f and hence the exponentiality of g (or,
in the language of Dhombres, Equations (6.1) and (6.3) are strongly alien, cf.
Definition 6.4).

Note also that in the case where the target ring .R;C; �/ yields an integral domain
(a commutative unitary ring with no zero divisors), no nontrivial linear combination
of an additive map a from a groupoid .S;C/ to R and an exponential map e W S ! R
is quadratic unless e.x/ � 0 or e.x/ � 1. Here and in the sequel a map f W S ! R is
termed quadratic whenever

�3
y f .x/ WD f .x C 3y/ � 3f .x C 2y/C 3f .x C y/ � f .x/ D 0; x; y 2 S:

Let us introduce a new definition.

Definition 6.5 We say that mappings a W S ! R and e W S ! R are quadratically
equivalent if for some non-vanishing constants ˛; ˇ 2 R we have

�3
y.˛ a C ˇ e/.x/ � 0 on S � S;

Now, if our additive a and exponential e were quadratically equivalent, i.e. if for
some non-vanishing constants ˛; ˇ 2 R we had

�3
y.˛ a C ˇ e/.x/ � 0 on S � S;

then in view of the linearity of the operator �3
y we would get

ˇ Œe.x C 3y/ � 3e.x C 2y/C 3e.x C y/ � e.x/� D 0; x; y 2 S;

which due to the exponentiality of e states that

e.x/ .e.y/ � 1/3 � 0 on S � S :

Thus e.x/ � 0 or e.y/ � 1, as claimed.
Our main result establishes the alienation of additivity and exponentiality up to

the quadratical equivalence.
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6.2.3.1 Some Lemmas

In what follows the minimal requirement upon the domain groupoid is that the
binary law in question is associative.

Lemma 6.1 ([16], Lemma 1) Let .S;C/ be a semigroup and let .R;C; �/ be a ring.
If functions f ; g W S ! R satisfy functional equation

f .x C y/C g.x C y/ D f .x/C f .y/C g.x/g.y/; x; y 2 S; (6.18)

then for all x; y; z 2 S one has

g.x C y/�g.x/g.y/Dg.x C y/g.z/�g.x/g.y C z/Cg.y C z/�g.y/g.z/: (6.19)

Proof It is well known that the Cauchy difference

F.x; y/ WD f .x C y/ � f .x/ � f .y/; x; y 2 S;

satisfies the cocycle equation

F.x C y; z/C F.x; y/ D F.x; y C z/C F.y; z/; x; y; z 2 S : (6.20)

Since (6.18) states that F.x; y/ D g.x/g.y/ � g.x C y/; x; y 2 S; the equality (6.19)
follows as a result of a simple calculation. ut

The following lemma is also almost evident.

Lemma 6.2 ([16], Lemma 2) Let .S;C/ be a semigroup and let .R;C; �; 1/ be a
unitary ring. If a function g W S ! R satisfies Equation (6.19) for all x; y; z 2 S,
then the function h WD 1 � g yields a solution to the equation

Œh.x/ � h.y C x/�h.z/ D h.y/Œh.x/ � h.x C z/�; x; y; z 2 S: (6.21)

Proof After inserting g D 1� h into (6.19) it suffices to interchange the roles of the
variables x and y. ut

The last of the lemmas reads as follows.

Lemma 6.3 ([16], Lemma 3) Let .S;C/ be an Abelian semigroup and let
.R;C; �; 1/ be an integral domain. Denote by eR the field of quotients generated
by R. If a function h W S ! R satisfies Equation (6.21) for all x; y; z 2 S; then there
exists a function ' W S !eR such that

h.x C y/ D '.x/h.y/C h.x/; x; y 2 S: (6.22)

Proof In the trivial case where h.x/ � 0 any function ' satisfies (6.22). Therefore,
in what follows, we may assume that

Z WD fx 2 S W h.x/ D 0g 6D S :
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Then, Equation (6.21) implies that for every x 2 S and all y; z 2 S n Z one has

h.x C y/ � h.x/

h.y/
D h.x C z/ � h.x/

h.z/
DW '.x/ :

Consequently, for all pairs .x; y/ 2 S � .S n Z/, we obtain the relationship

h.x C y/ D '.x/h.y/C h.x/ : (6.23)

Note that having z in Z it follows from (6.21) that z yields a period of h. Hence,
Equation (6.23) is satisfied unconditionally (i.e. the assertion (6.22) holds true),
which completes the proof. ut

6.2.3.2 Main Results

Now, we are in a position to derive the general description of solutions to the
functional equation in question in various domain and ranges.

Theorem 6.6 ([16], Theorem 1) Let .S;C; 0/ be an Abelian monoid and let
.R;C; �; 1/ stand for an integral domain. If functions f ; g W S ! R satisfy equation

f .x C y/C g.x C y/ D f .x/C f .y/C g.x/g.y/ (6.24)

for all x; y 2 S, then there exist constants p; q 2 R; q 6D 0; additive maps a;A W
S ! R and a function r W S ! R such that

p r.x C y/ D r.x/r.y/; x; y 2 S;

and either �
q2f .x/ D a.x/C .p � q/r.x/C p.q � p/ for x 2 S;
q g.x/ D r.x/C q � p for x 2 S;

(6.25)

or �
2f .x/ D a.x/2 C A.x/ for x 2 S;
g.x/ D 1 � a.x/ for x 2 S:

(6.26)

Conversely, each pair of functions f ; g W S ! R satisfying either of the systems
(6.25), (6.26) yields a solution to Equation (6.24).

Proof Let, as previously, QR stand for the field of quotients generated by R and let
functions f ; g W S ! R satisfy Equation (6.24). On account of Lemmas 6.1–6.3, the
function h WD 1 � g generates then a map ' W S ! QR satisfying (6.22). Due to the
commutativity of the addition in S and the multiplication in QR we have also

h.x C y/ D h.x/'.y/C h.y/; x; y 2 S: (6.27)
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Now, an appeal to Theorem 1 from Aczél’s and Dhombres’s monograph [1, p. 242]
leads to the following three possibilities: either h is additive, or h D b.1 � e/ with
an exponential function e W S ! QR, or h.x/ � b 2 QR.

The first possibility gives g D 1 � a with an additive map a W S ! R; which
inserted into (6.24) implies that

f .x C y/ � f .x/ � f .y/ D a.x/a.y/; x; y 2 S:

Put A WD 2 f � a2 to get (by means of the additivity of a),

A.x C y/ � A.x/ � A.y/ D 2 Œf .x C y/ � f .x/ � f .y/ � a.x/a.y/� D 0;

for all x 2 S; which states that the map A W S ! R is additive and we arrive at
formulas (6.26).

In the case where h D b.1 � e/ there exist constants p; q 2 R; q 6D 0; such that

h D p

q
.1 � e/ i.e. q .1 � g/ D q h D p .1 � e/

whence

r WD p e D q g C p � q:

Clearly, r maps S into R and due to the exponentiality of e; for all x; y 2 S; one has

r.x C y/ D pe.x C y/ D pe.x/e.y/ D r.x/e.y/

whence

p r.x C y/ D r.x/r.y/;

as claimed. To prove the first of formulas (6.25) in the case discussed, note that we
have g D b e C 1 � b whence by (6.24) and the exponentiality of e; for all x; y 2 S,
one obtains

f .x C y/ � f .x/ � f .y/ D b.b � 1/Œe.x C y/ � e.x/ � e.y/C 1�

D b.b � 1/ Œ.e.x C y/ � 1/ � .e.x/ � 1/ � .e.y/ � 1/�

or, equivalently,

f .x C y/ � b.b � 1/ Œ.e.x C y/ � 1/�
D f .x/ � b.b � 1/ Œ.e.x/ � 1/�C f .y/ � b.b � 1/ Œ.e.y/ � 1/� ;
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which proves that the map a0 WD f �b.b�1/.e�1/ is additive. With b D p=q; p; q 2
R; q 6D 0; we deduce now that

a.x/ WD q2a0.x/ D q2f .x/ � p.p � q/.e.x/ � 1/
D q2f .x/ � .p � q/.r.x/ � p/ 2 R; x 2 S:

Thus, q2f D a C .p � q/r C p.q � p/ with an additive map a W S ! R; which was
to be shown.

Finally, the last possibility h.x/ � b 2 QR; forces b to belong to the ring R and
g.x/ � c WD 1� b 2 R: Then Equation (6.24) implies that the map a WD f C c2 � c W
S ! R has to be additive and we arrive at f D a C c.1 � c/; g D c which is the
special case of (6.25) with r D 0 and q D 1; p D 1 � c.

Thus the proof has been completed. ut
We have the following corollary.

Corollary 6.1 ([16], Corollary) Let .S;C/ be a commutative group and let
.Z;C; �/ stand for the ring of all integers. If functions f ; g W S ! Z satisfy
Equation (6.24) for all x; y 2 S; then either

�
f .x/ D A.x/C c.1 � c/ for x 2 S;
g.x/ D c for x 2 S;

(6.28)

with an additive map A W S ! Z and some constant c 2 Z; or the pair .f ; g/ is given
by formulas (6.26) with additive maps a;A W S ! Z.

Proof We apply Theorem 6.6 assuming that R D Z. Having (6.25) with some
constants p; q 2 Z; q 6D 0; additive maps a;A W S ! Z and a function r W S ! Z

such that

p r.x C y/ D r.x/r.y/; x; y 2 S;

since the domain S is endowed with a group structure, we infer that p r.0/ D r.0/2

and p r.0/ D r.x/r.�x/ for all x 2 S: In particular, we have either r.0/ D 0 or
r.0/ D p 6D 0: In the first case we have r.x/ � 0 on S whence for all x 2 S we get

q2f .x/ D a.x/C p.q � p/ and q g.x/ D q � p:

On setting c0 WD 1 � g.0/ the latter equality implies that p D c0q and, a fortiori,

q2f .x/ D a.x/C c0.1 � c0/q
2; x 2 S :

This forces the function A WD f � c0.1 � c0/ to be additive, giving (6.28) with
c WD 1 � c0.

In the case where r.0/ D p 6D 0 we see that 0 6D r.x/ divides p2 for every x 2 SI
in particular, Z WD r.S/ forms a finite subset of Z n f0g and the map e W S ! 1

p Z
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given by the formula e.x/ WD 1
p r.x/; x 2 S; is a nonzero exponential function with

a finite number of values. Since, obviously, e.nx/ D e.x/n for all x 2 S and all
positive integers n we have to have e.x/ � 1 which implies that r.x/ � p on S:
Thus q2f .x/ D a.x/ as well as qg.x/ D q for all x 2 S; stating that f itself has
to be additive whereas g D 1, i.e. we have (6.28) with c D 1: This completes the
proof. ut

In the case where we assume additionally that the range is field we obtain

Theorem 6.7 ([16], Theorem 2) Let .S;C; 0/ be an Abelian monoid and let
.F;C; �/ stand for a field. If functions f ; g W S ! F satisfy Equation (6.24) i.e.

f .x C y/C g.x C y/ D f .x/C f .y/C g.x/g.y/

for all x; y 2 S; then there exist a constant � 2 F; additive maps a;A W S ! F and
an exponential function e W S ! F such that either�

f .x/ D a.x/C �.1 � �/Œ1 � e.x/� for x 2 S;
g.x/ D .1 � �/e.x/C � for x 2 S;

(6.29)

or �
f .x/ D 1

2
a.x/2 C A.x/ for x 2 S;

g.x/ D 1 � a.x/ for x 2 S:
(6.30)

Conversely, each pair of functions f ; g W S ! F satisfying either of the
systems (6.29), (6.30) yields a solution to Equation (6.24).

Proof From Theorem 6.6 we infer that either (6.25)

(
f .x/ D 1

q2
a.x/C

�
p
q � 1

�
1
q r.x/C p

q

�
1 � p

q

�
for x 2 S;

g.x/ D 1
q r.x/C 1 � p

q for x 2 S;

holds or (6.26)

�
f .x/ D 1

2
a.x/2 C 1

2
A.x/ for x 2 S;

g.x/ D 1 � a.x/ for x 2 S:

is valid with

p r.x C y/ D r.x/r.y/; x; y 2 S:

Now, if we had p D 0, then r must be the zero function and we get (6.29) with a
standing for the additive function 1

q2
a and with � WD 1: For p 6D 0 the map e WD 1

p r

becomes exponential and, again, we arrive at (6.29) with � WD 1 � p
q and with

a standing for the additive function 1
q2

a: To finish the proof it remains to observe

that (6.30) results from (6.26) on replacing 1
2
A by A. ut
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6.2.3.3 Quadratic Equivalence and the Crucial Result

Looking at the assertion of Theorem 6.6 we see that for some constants p; q 2
R; q 6D 0, and additive maps a;A W S ! R, one has either

q2f .x/C q.q � p/g.x/ D a.x/C q.q � p/; x 2 S; (6.31)

or

2f .x/C g.x/ D a.x/2 C A.x/ � a.x/C 1; x 2 S; (6.32)

depending on whether formulas (6.25) or (6.26) are valid, respectively. Therefore,
in the sense of the Definition 6.5, f and g are not quadratically equivalent if and only
if q D p. In fact, the right-hand sides of both (6.31) and (6.32) are special quadratic
maps from S into R. Consequently, if the pair .f ; g/ of functions f ; g W S ! R that
are not quadratically equivalent yields a solution to Equation (6.24) then q2f , and
hence f itself, is additive. Then (6.24) forces g to be exponential.

Thus we have proved the following:

Theorem 6.8 ([16] Theorem 3) Let .S;C; 0/ be an Abelian monoid and let
.R;C; �; 1/ stand for an integral domain. If functions f ; g W S ! R are not
quadratically equivalent, then they satisfy equation

f .x C y/C g.x C y/ D f .x/C f .y/C g.x/g.y/

for all x; y 2 S; if and only if f is additive and g is exponential.
A straightforward verification shows that quadratical equivalence yields an

equivalence relation in the space of all mappings from S into R. Therefore,
Theorem 6.8 states nothing else than that additivity and exponentiality are alien
to each other modulo quadratical equivalence.

6.2.4 Alienation of Additive and Logarithmic Equations

The first author published in 2013 the paper [18] in which he dealt with (6.1)
and (6.4) in context of their strong alienation. More exactly, if .C;C; �/ is the cone
of all positive elements in an Archimedean totally ordered unitary ring .R;C; �/ and
.H;C/ is an Abelian group then Ger was dealing with the question whether or not
the equations

a.x C y/ D a.x/C a.y/

and

`.xy/ D `.x/C `.y/;
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are strongly alien in the sense of Dhombres. Although, at first glance, it seems hardly
likely, bearing in mind the results obtained by Dhombres [9] and by Ger in [13] and
[14] (see also Ger and Reich [19]), such a conjecture becomes more reasonable. In
contrast to the papers just quoted, following the case of additivity and exponentiality
dealt with in Ger’s paper [16], it was decided to discuss strong alienation rather than
alienation. Indeed, the case where a D `, i.e. in the case of equation

a.x C y/C a.xy/ D 2a.x/C 2a.y/;

we are faced to a very special form of the general functional equation studied in [19];
on the other hand, there are no nontrivial mappings that would be both additive and
logarithmic. The result from [18] reads as follows.

Theorem 6.9 ([18] Theorem) Given an Archimedean totally ordered unitary ring
.R;C; �/ and an Abelian group .H;C/ denote by C the positive cone in R. Then
functions f ; g W C ! H satisfy equation

f .x C y/C g.xy/ D f .x/C f .y/C g.x/C g.y/ (6.33)

for all x; y 2 C, if and only if there exist: an additive map a W R ! H, a logarithmic
map ` W S ! H and a constant c 2 H such that

f .x/ D a.x/C c and g.x/ D `.x/ � c; x 2 C:

Proof Assume that functions f ; g W C ! H satisfy Equation (6.33) for all x; y 2 C
and put h WD f C g: Let F W C � C ! H stand for the Cauchy kernel of h, i.e.

F.x; y/ D h.x C y/ � h.x/ � h.y/; x; y 2 C:

Then F satisfies the cocycle equation (6.20) for all x; y; z 2 C. On the other hand,
by means of (6.33) and the definition of h, one has

F.x; y/ D h.x C y/ � f .x C y/ � g.xy/ D g.x C y/ � g.xy/

provided that x; y are in C: Inserting that form of F into (6.20) we get the equality

g..x C y/z/C g.xy/ � g.x C y/ D g.x.y C z//C g.yz/ � g.y C z/ (6.34)

valid for every triple .x; y; z/ 2 C3: Now, setting here y D x gives

g.2xz/C g
�
x2
	� g.2x/ D g.x.x C z//C g.xz/� g.x C z/; x; z 2 C; (6.35)

and putting z D e, the identity element of R, into (6.34) leads to

g.xy/ D g.xy C x/C g.y/ � g.y C e/; x; y 2 C:
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With y D e this implies the equality

g.x/ D g.2x/C g.e/ � g.2e/;

and on setting ˛ WD g.2e/ � g.e/ we arrive at

g.2x/ D g.x/C ˛; x 2 C: (6.36)

Applying (6.36) in (6.35) we infer that

u.x/ WD g
�
x2
	 � g.x/ D g.x.x C z// � g.x C z/

or, equivalently,

g.x.x C z// D u.x/C g.x C z/; x; z 2 C: (6.37)

With y D x C z Equation (6.37) may equivalently be rewritten in the form

x 
 y ! g.xy/ D u.x/C g.y/; x; y 2 C:

Now, going back to (6.33), we deduce that

x 
 y ! f .x C y/C u.x/ D f .x/C f .y/C g.x/:

In other words,

x 
 y ! f .x C y/ D A.x/C f .y/; x; y 2 C; (6.38)

where we have put A WD f � u C g: Now, we are going to show that map A is
additive. To this end, observe that due to the inequality x 
 x C y valid for all
x; y 2 C, relation (6.38) implies that

f .2x C y/ D A.x/C f .x C y/; x; y 2 C: (6.39)

Replacing here y by y C z we get

f .2x C y C z/ D A.x/C f .x C y C z/; x; y; z 2 C;

whence, by setting here 2y in place of y one obtains

f .2.x C y/C z/ D A.x/C f .2y C x C z/; x; y; z 2 C;

which, with the aid of a double use of (6.39), gives

A.x C y/C f .x C y C z/ D f .2.x C y/C z/ D

A.x/C f .2y C x C z/ D A.x/C A.y/C f .x C y C z/



124 R. Ger and M. Sablik

for all x; y; z 2 C, proving the additivity of A, as claimed. It is well known and easily
verifiable that the formula

a.x/ WD
8<
:

A.x/ whenever x 2 C
0 for x D 0

�A.�x/ whenever x 2 �C

uniquely extends A to an additive map a W R ! H.
Observe that, on account of (6.39) and the additivity of A, for arbitrary x; y from

C one has

f .2x C y/ � A.2x C y/ D A.x/C f .x C y/ � 2A.x/ � A.y/ D f .x C y/ � A.x C y/;

which on setting c WD f � A states that

c.2x C y/ D c.x C y/; x; y 2 C: (6.40)

Fix arbitrarily an s 2 C and a t such that s � t � 2s: With x WD t � s and y WD 2s � t
we have then x; y 2 C as well as

s D x C y and t D 2x C y;

which jointly with (6.40) implies that c.t/ D c.s/ for all t from the order segment
Œs; 2s/: As a matter of fact, we have also c.2s/ D c.s/; indeed, fix a t0 from the
segment .s; 2s/ to get s � t0 � 2s � 2t0 (without loss of generality we may
assume that .s; 2s/ ¤ ;/ whence c.2s/ D c.t0/ D c.s/: Clearly, now we can
conclude that for every s 2 C and each positive integer n the restriction cjŒs;2ns�

is constant. Consequently, c is globally constant on C. In fact, fix arbitrarily two
elements a; b; a � b, (recall that the ordering is total) from C. Since the ring R is
supposed to be Archimedean there exists a positive integer n such that a � b � 2na
whence c.b/ D c.a/.

To finish the proof, it remains to observe that the equality f D A C c forces the
map g C c to be logarithmic, by means of (6.33). Since the reverse implication is
fairly straightforward, the proof has been completed. ut

6.3 Functional Equations Stemming from Actuarial
Mathematics

In mathematical risk theory the notion of utility function plays a crucial role. The
utility functions are used, e.g., to determine insurance premiums (cf. Bowers et al.
[5], Gerber [20] or Tversky and Kahneman [42]). Roughly speaking, the notions of
utility function and mathematical expectation or rather a special tool called Choquet
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integral make the insurance business go round. In particular, one determines the
premium H.X/; X denotes a random variable associated with risk from the equation

u.w/ D Eghu .w C H.X/ � X/ ; (6.41)

(cf. Kałuszka and Krzeszowiec [25]). Here u denotes a utility function, g; h W
Œ0; 1� ! Œ0; 1� are probability distortion functions, i.e. non-decreasing functions
mapping Œ0; 1� into itself and keeping both ends fixed. Egh stands for the expression

EghX D EgXC � Eh.�X/C

where Eg (and also Eh) is defined by

EgX WD
Z 0

�1
Œg.P.X > t// � 1�dt C

Z 1

0

g.P.X > t//dt;

provided both (Riemann) integrals on the left-hand side are finite. In the case where
h.p/ D g.p/ D 1 � g.1 � p/ then EggX D EgX and (6.41) reduces to

u.w/ D Eg Œu .w C H.X/ � X/� : (6.42)

Equation (6.42) has been considered by Heilpern in [24]. It is called sometimes
the model of rank-dependent utility. Admitting some special forms of u one can
determine H from (6.42). An interesting problem is when H is additive? More
exactly, what are the conditions guaranteeing the following:

X;Y � independent ! H.X C Y/ D H.X/C H.Y/: (6.43)

In the paper of Heilpern we find the following result:

Theorem 6.10 ([24], Theorem 1.v/) Let X and Y be independent risks.

a) Let g D id: Then (6.43) holds if, and only if, u D id or u.x/ D 1
r .1 � exp.�rx// :

b) If u is either identity or u.x/ D 1
r .1 � exp.�rx//, then (6.43) holds if, and only

if, g D id:

In the proof Heilpern gets taking u D id

H.X/ D Eg.X/;

where g is defined by

g.x/ D 1 � g.1 � x/; x 2 Œ0; 1�:

In the case where u is exponential, i.e. u.x/ D 1
r .1 � exp.�rx// ; where r > 0; he

obtains

H.X/ D 1

r
ln Eg .exp.rX// :
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It turns out that in the former case (6.43) is equivalent to

g.p C q � pq/C g.pq/ D g.p/C g.q/; (6.44)

or the Hosszú’s equation in Œ0; 1� (cf. also (6.13)). In the latter, (6.43) is equivalent to

g.p/C g.q/ � g.p C q � pq/ D erg.pq/ � .er � 1/g.p/g.q/;

which can be rewritten as

g.p C q � pq/ � g.p/ � g.q/C g.pq/

er � 1 D g.p/g.q/ � g.pq/;

or, still more generally,

h.pCq�pq/�h.p/�h.q/Ch.pq/ D g.p/g.q/�g.pq/; p; q 2 Œ0; 1�: (6.45)

Heilpern solves (6.44) and (6.45) differentiating g twice and using other regularity
properties. As we have seen, at least (6.44) can be solved using techniques of the
theory of functional equations. Indeed, from Lajkó’s result from [29] or [30] we
get that g has to be of the form A C c; where A is an additive function, and c is a
constant. Applying the definition of g and the properties of g; we arrive at g D id,
as claimed. As to Equation (6.45) we conjectured that it is actually an example of
(strongly) alien functional equation, i.e. (6.45) can be split into a system

�
g.xy/ D g.x/g.y/;
h.x C y � xy/C h.xy/ D h.x/C h.y/;

(6.46)

for x; y 2 Œ0; 1�. Unfortunately (or fortunately, as it turned out) Maksa (cf. [32])
disproved this conjecture giving an example of a nontrivial solution of (6.45) which
does not satisfy (6.46). Here is his example. Let M W Œ0; 1� ! R be a multiplicative
function, i.e.

M.xy/ D M.x/M.y/:

Put

h.x/ D M.1 � x/; x 2 Œ0; 1�;

and

g.x/ D 1 � M.1 � x/; x 2 Œ0; 1�:

The pair .g; h/ solves (6.45) but usually neither h nor g are solutions of (6.46).
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6.3.1 Positive Results on Alienation of Hosszú and Other
Cauchy Equations

Here is what we obtained jointly (cf. Maksa [32]).

Theorem 6.11 ([32] and [36]) Hosszú equation (6.44) and the logarithmic
Cauchy equation (6.4) are strongly alien for functions g; h W .0; 1/ ! R.

Proof As Lajkó observed (oral communication) if a pair .f ; g/ of mappings defined
on .0; 1/ satisfies

g.x/C g.y/ � g.xy/ D h.x C y � xy/ � h.x/ � h.y/C h.xy/ (6.47)

for x; y 2 .0; 1/, then .f D g C h; h/ satisfies

h.x C y � xy/ D f .x/C f .y/ � f .xy/; x; y 2 .0; 1/: (6.48)

Using a theorem from [30], we get

h.x/ D A.x/C c; (6.49)

where A W R ! R is an additive function. Now, from (6.48) and (6.49) it turns out
that m given by

m.x/ D f .x/ � A.x/ � c; x 2 .0; 1/;

satisfies

m.xy/ D m.x/C m.y/; x; y 2 .0; 1/:

But obviously m D g; and the proof is completed. ut
We also obtained the following, using a method of Ger presented earlier and

based on the use of cocycle equation.

Theorem 6.12 ([32] and [36]) Hosszú equation (6.44) and the additive Cauchy
equation (6.1) are strongly alien for functions g; h W R ! R.

In the case of (6.45) we proved some partial results. Let g W Œ0; 1� ! R be any
function and � D g.x/g.y/ � g.xy/; x; y 2 Œ0; 1�. Then

�.xy; z/C g.z/�.x; y/ D �.x; yz/C g.x/�.y; z/ (6.50)

holds for all x; y; z 2 Œ0; 1�. This shows that the values of g can be expressed by the
values of� provided that� is not identically zero. Assuming that� ¤ 0means that
g is not multiplicative, or equivalently, h is not a solution of the Hosszú equation, in
case of Equation (6.45). The following two results hold.
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Theorem 6.13 ([32]) If .g; h/ is a solution of (6.45),� ¤ 0; and h is differentiable
(on Œ0; 1�), then g is differentiable (on Œ0; 1�), too, and, if in addition, g0.1/ D 0, then
(and only then) there are real numbers a; b; 1 < ˛ such that

g.x/ D 1 � .1 � x/˛ and h.x/ D ax C b C .1 � x/˛; x 2 Œ0; 1�: (6.51)

Theorem 6.14 ([32]) If .g; h/ is a solution of (6.45), � ¤ 0; and h is Lebesgue
integrable on Œ0; 1� (or locally Lebesgue integrable on .0; 1/), then g and h are
infinitely many times differentiable on .0; 1/.

We also stated the following open problems.

Problem 6.1 Find the general solution of

g.x/g.y/ � g.xy/ D h.x C y � xy/ � h.x/ � h.y/C h.xy/

where g; h W Œ0; 1� ! R and the equation holds for all x; y 2 Œ0; 1�.
Conjecture The pair .g; h/ is a solution if and only if there exist an additive function
A W R ! R, a multiplicative function M W Œ0; 1� ! R, and b 2 R such that either

g.x/ D M.x/; h.x/ D A.x/C b; x 2 Œ0; 1�

or

g.x/ D 1 � M.1 � x/; h.x/ D A.x/C b C M.1 � x/; x 2 Œ0; 1�:

Problem 6.2 Find all the solutions .g; h/ of

g.x/g.y/ � g.xy/ D h.x C y � xy/ � h.x/ � h.y/C h.xy/

where g; h W Œ0; 1� ! R; h is continuous (differentiable) on Œ0; 1� and the equation
holds for all x; y 2 Œ0; 1�.
Problem 6.3 Find all the solutions .g; h/ of

g.x/g.y/ � g.xy/ D h.x C y � xy/ � h.x/ � h.y/C h.xy/

where g; h W Œ0; 1� ! R; g is continuous (differentiable) on Œ0; 1� and the equation
holds for all x; y 2 Œ0; 1�.

6.3.2 Alienation of Hosszú and Exponential Equations

During Maksa’s talk [32] the following question was also asked.
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Problem 6.4 Find all the solutions .g; h/ of

g.x/g.y/ � g.x C y/ D h.x C y � xy/ � h.x/ � h.y/C h.xy/ (6.52)

where g; h W R ! R and the equation holds for all x; y 2 R.
The question has been answered under some additional assumptions by Maksa

and Sablik in [34]. In that paper, we investigated the functional equation (6.52)
supposing that the function h is continuous. First, define the function � on R

2 by

� .x; y/ D g.x/g.y/ � g.x C y/; x; y 2 R: (6.53)

If � is identically zero, then we have that g is a solution of the exponential Cauchy
equation (6.3) and h is a solution of the Hosszú equation (6.44). These equations
are well-discussed and their general (and also their continuous) solutions are well
known, e.g., from [28] and [7], respectively. Thus the interesting case now for us is
the case � ¤ 0. In this case, we can prove the following regularity improvement:

Theorem 6.15 ([34], Theorem 1) Let g; h W R ! R and define the function �
by (6.53). Suppose that the pair .g; h/ is a solution of (6.52), � is not identically
zero and h is continuous. Then g and h are differentiable on R.

The main result was the following.

Theorem 6.16 ([34], Theorem 2) Suppose that the functions g; h W R ! R

satisfy functional equation (6.52) and h is continuous. Then g is a solution of the
exponential Cauchy equation (6.3) and there exist a; b 2 R such that

h.x/ D ax C b (6.54)

holds for all x 2 R.
The following corollary of Theorem 6.16 is obvious.

Corollary 6.2 ([34], Corollary) The exponential Cauchy equation (6.3) and the
Hosszú equation (6.44) are strongly alien in the class of couples .g; h/ such that h;
solution of (6.44), is continuous.

6.4 Further Developments

6.4.1 Alienation of Exponential and Logarithmic Cauchy
Equations

In their paper [27] Kominek and Sikorska looked at the equation

f .xy/ � f .x/ � f .y/ D g.x C y/ � g.x/g.y/; x; y 2 R; (6.55)

and looked for solutions f ; g W R ! R of the equation. They obtained the following:
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Theorem 6.17 ([27], Theorem 1) Let f ; g W R ! R be functions satisfy-
ing (6.55). Then

f .x/ � 0 and g is an arbitrary exponential function;

or there exists a nonzero real constant ˛ such that

f .x/ � ˛.˛ C 1/; g.x/ � ˛ C 1;

or

f .x/ D �˛x2 C ˛.˛ C 1/; g.x/ D �˛x C ˛ C 1; x 2 R:

Conversely, each of the above pairs of functions is a solution of (6.55) with any
˛ 2 R.

Investigating much more interesting case, f W R n f0g ! R and g W R ! R and
they satisfy

f .xy/ � f .x/ � f .y/ D g.x C y/ � g.x/g.y/; x; y 2 R n f0g; (6.56)

they obtained the following result.

Theorem 6.18 ([27], Theorem 2) Assume that f W R n f0g ! R and g W R ! R

satisfy (6.56).
If g.1/ ¤ 1 or f .1/ ¤ 0, then

g.x C y/ D g.x/g.y/ x; y 2 R and f .xy/ D f .x/C f .y/; x; y 2 R n f0g;

or there exist ˛ 2 R n f0g and a function F W R n f0g ! R satisfying F.xy/ D
F.x/C F.y/ for all x; y 2 R n f0g such that

g.x/ D ˛x C ˛; x 2 R; and f .x/ D F.x/ � ˛x2 C ˛.˛ C 1/; x 2 R n f0g;

or there exist ˇ 2 R n f1g and a function F W R n f0g ! R satisfying F.xy/ D
F.x/C F.y/ for all x; y 2 R n f0g such that

g.x/ D ˇ; x 2 R; and f .x/ D F.x/C ˇ2 � ˇ; x 2 R n f0g:

If g.1/ D 1; f .1/ D 0 and g is continuous at the origin, then

g.x/ � 1; x 2 R and f .xy/ D f .x/C f .y/; x; y 2 R n f0g:

Conversely, each pair of functions described by the above formulae is a solution
of (6.56).

Obviously, Kominek and Sikorska realized that the assumption about continuity
of g should be relaxed and they formulated in [27] the following question:
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Problem 6.5 Find all functions f W R n f0g ! R; g W R ! R satisfying the
conditions

f .1/ D 0; g.1/ D 1 (6.57)

and (6.56) holds for all x; y 2 R n f0g.
Recently, during the 17th Katowice-Debrecen Winter Seminar in Zakopane,

Maksa [33] presented the solution of this problem by showing that these func-
tions are

f .x/ D a.ln jxj/; x 2 R n f0g; g.x/ D exp A.x/; x 2 R

where a;A W R ! R are additive functions with A.1/ D 0. This result can
be interpreted also in the way that, under the additional supposition (6.57), the
logarithmic and the exponential Cauchy equations are alien.

6.4.2 The Alienation Phenomenon and Associative Rational
Operations

The title of the present subsection is exactly the title of Ger’s paper [17]. The first
author of the present survey observed that (6.9) can be written as

f .x C y/C f .xy/ D Q.f .x/; f .y//; (6.58)

with Q.u; v/ WD u C vC uv being a rational associative operation. This observation
motivated Ger to ask the following question: given an abstract rational associative
operation Q does Equation (6.58) force f to be a ring homomorphism (with the target
ring being a field)? The answer is negative in general, but under some additional
assumptions, like 2-homogeneity of f and provided the range of f is large enough,
Ger was able to get some sufficient and necessary conditions for the positive answer
to his original question. In what follows X will stand for a unitary ring with unity e
and F will denote a real closed field. In particular, F is formally real, i.e. a sum of
squares of elements of F vanishes if and only if each of these elements is equal to
zero. Moreover, for each element a of F either a or �a is a square and charF D 0:

Chéritat [6] has shown that any nontrivial associative rational operation Q from a
suitable subdomain of F � F into F admits a representation of the form

Q.u; v/ D '�1
�

'.u/C '.v/

1C !'.u/'.v/

�

with some constant ! 2 F and with a homography

'.u/ D au C b

cu C d
such that ad � bc 6D 0 :
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It is not hard to check that the following forms of an associative rational operation
Q spoken of are the only possible ones:

Q.u; v/ D '�1.'.u/C '.v// (A)

or

Q.u; v/ D '�1.'.u/'.v// (M)

or

Q.u; v/ D '�1
�
'.u/C '.v/

1 � '.u/'.v/
�
; (T)

with a homography

'.u/ D au C b

cu C d
such that ad � bc 6D 0 : (G)

The homography ' is then called a generator of the operation Q which, a fortiori,
is termed additively, multiplicatively or tangentially generated provided that case
(A), (M) or (T) does occur, respectively. Here are the results from [17].

Theorem 6.19 ([17], Theorem 1) Given a rational associative operation Q
assume that a map f W X ! F satisfies Equation (6.58) for all x; y 2 X such
that the pair .f .x/; f .y// falls into the domain of Q and card f .X/ > 4. Then there
exist constants �;�; � and 	 in F such that

	 .f .x C y/C f .xy// f .x/f .y/ D � .f .x C y/ � f .x/ � f .y//C �f .xy/C �f .x/f .y/:

More precisely, if ' given by (G) stands for the generator of Q, then

(i) a 6D 0 D b 6D d; � D � D 1; � D � 2c
d and 	 D �

c
d

	2
provided that

Q is additively generated;
(ii) b D d 6D 0; � D � D 1; � D � aCc

b and 	 D ac
b2

provided that Q is
multiplicatively generated;

(iii) a 6D 0 D b 6D d; � D � D d2; � D �2cd and 	 D a2 C c2 provided
that Q is tangentially generated.

Theorem 6.20 ([17], Theorem 2) Given a rational associative operation Q
assume that a map f W X ! F satisfies Equation (6.58) for all x; y 2 X such
that the pair .f .x/; f .y// falls into the domain of Q and card f .X/ > 4. Then f is
2-homogeneous, i.e.

f .2x/ D 2f .x/; x 2 X;

if and only if

Q.u; v/ D �uv C u C v; u; v 2 X; � 6D 0:
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If that is the case, then f is additive and �f is multiplicative; moreover, Q is
multiplicatively generated by a generator ' given by the formula

'.u/ D �u C 1; u 2 F:

6.4.3 Alienation of Cauchy and Leibniz Equations

Gselmann in [21] studied the question of (6.1) and

g.xy/ D xg.y/C yg.x/; (6.59)

defining derivations, and sometimes called Leibniz equation. She has noticed that
although the characterization of ring derivation has an extensive literature, most of
the results are of the form: additivity along with an other algebraic property implies
that the function in question is a derivation. The main purpose of the paper was to
show that derivations can be characterized via a single equation. In the paper the
author examines whether the equations occurring in the definition of derivations are
independent. As a corollary of the main result, that concerns functional equation

f .x C y/ � f .x/ � f .y/ D g.xy/ � xg.y/ � yg.x/;

the following result is proved.

Theorem 6.21 ([21], Corollary 2.3) Let F be a field and X be a linear space over
F, �;� 2 F n f0g. Then the function f WF ! X is a derivation if and only if

� Œf .x C y/ � f .x/ � f .y/� D � Œf .xy/ � xf .y/ � yf .x/�

is fulfilled for any x; y 2 F.

6.4.4 Exponential, Jensen and d’Alembert Equations

In 2016 Sobek published the paper [40] in which she presented results concerning
mutual alienation of classical exponential Cauchy equation (6.3), Jensen equation
and d’Alembert’s. More precisely, assuming that F is a field of characteristic
different from 2, .S;C/ is a commutative semigroup and 	 is an endomorphism
of S with 	.	.x// D x for x 2 S, Sobek has studied the equations

g.x C y/ D g.x/g.y/; x; y 2 S;

f .x C y/C f .x C 	.y// D 2f .x/; x; y 2 S; (6.60)
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and the following generalized version of the classical d’Alembert equation (cf. [39])

h.x C y/C h.x C 	.y// D 2h.x/h.y/; x; y 2 S: (6.61)

The solutions f ; g and h are supposed to map S into F.

6.4.4.1 Exponential and Jensen Equations

The first equation considered by Sobek is the following.

f .x C y/C f .x C 	.y//C g.x C y/ D 2f .x/C g.x/g.y/; x; y 2 S: (6.62)

In [40] it was shown that (6.62) forces f and g to solve the system (6.60)–(6.3),
which means that Equations (6.60) and (6.3) are strongly alien.

Theorem 6.22 ([40], Theorem 2.1) Assume that a pair of functions .f ; g/, where
f ; g W S ! F, satisfies Equation (6.62). Then f solves (6.60) and g satisfies (6.3).
In a skillful proof the author applies some ideas from [38]. To give you a flavour we
reproduce here the proof.

Proof Making use of (6.62), for every x; y; z 2 S, we get

.f C g/.x C y C z/C f .x C y C 	z/ D 2f .x C y/C g.x C y/g.z/; (6.63)

.f C g/.x C 	y C z/C f .x C 	y C 	z/ D 2f .x C 	y/C g.x C 	y/g.z/; (6.64)

.f C g/.x C y C z/C f .x C 	y C 	z/ D 2f .x/C g.x/g.y C z/ (6.65)

and

.f C g/.x C 	y C z/C f .x C y C 	z/ D 2f .x/C g.x/g.	y C z/: (6.66)

Summing up equalities (6.63) and (6.64) side by side, and subtracting from the
equality thus obtained the sum of equalities (6.65) and (6.66), we infer that

2Œf .x C y/C f .x C 	y/�C Œg.x C y/C g.x C 	y/�g.z/

D 4f .x/C g.x/Œg.z C y/C g.z C 	y/�; x; y; z 2 S:

Thus, applying (6.62) again, we obtain

Œg.x C y/C g.x C 	y/�g.z/ � 2g.x C y/

D g.x/Œg.z C y/C g.z C 	y/ � 2g.y/�; x; y; z 2 S:
(6.67)
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Replacing in (6.67) y by 	y, we get

Œg.x C 	y/C g.x C y/�g.z/ � 2g.x C 	y/

D g.x/Œg.z C 	y/C g.z C y/ � 2g.	y/�; x; y; z 2 S:
(6.68)

Hence, subtracting (6.67) from (6.68) side by side, we arrive at

g.x C y/ � g.x C 	y/ D g.x/Œg.y/ � g.	y/�; x; y 2 S; (6.69)

whereas by summing up (6.67) and (6.68) side by side, we get

Œg.x C y/C g.x C 	y/� � Œg.z/ � 1�
D g.x/Œg.z C y/C g.z C 	y/ � g.y/ � g.	y/�; x; y; z 2 S:

(6.70)

Fix x0; z0 2 S with g.x0/ ¤ 0 and g.z0/ ¤ 1 and define a function U W S ! F in the
following way:

U.y/ D g.x0 C y/C g.x0 C 	y/

g.x0/
; y 2 S:

Then

U.	y/ D U.y/; y 2 S (6.71)

and, by (6.70),

g.x C y/C g.x C 	y/ � g.y/ � g.	y/ D U.y/Œg.x/ � 1�; x; y 2 S: (6.72)

Furthermore, in view of (6.70), we have

U.y/ D g.z0 C y/C g.z0 C 	y/ � g.y/ � g.	y/

g.z0/ � 1 ; y 2 S

and

g.x C y/C g.x C 	y/ D g.x/U.y/; x; y 2 S: (6.73)

So, from (6.69) and (6.73) it follows that

2g.x C y/ D g.x/V.y/; x; y 2 S; (6.74)

where the function V W S ! F is defined by

V.y/ D U.y/C g.y/ � g.	y/; y 2 S: (6.75)
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Since, in view of (6.71), V.y/ C V.	y/ D 2U.y/ for y 2 S, making use of (6.72)
and (6.74), we obtain

2g.x/U.y/ D g.x/V.y/C g.x/V.	y/ D 2g.x C y/C 2g.x C 	y/

D 2U.y/Œg.x/ � 1�C 2g.y/C 2g.	y/; x; y 2 S:

Hence U.y/ D g.y/ C g.	y/ for y 2 S, which together with (6.75) gives V D 2g.
Thus, taking into account (6.74), we conclude that g satisfies (6.3) and so, in view
of (6.62), f solves (6.60). ut

From Theorem 6.22 and [39] we derive the following result.

Corollary 6.3 ([40], Corollary 2.2) Assume that a pair .f ; g/ of functions mapping
S into F satisfies Equation (6.62). Then g satisfies Equation (6.3) and there exist a
constant c 2 F and an additive function a W S ! F such that a.	x/ D �a.x/ for
x 2 S and f .x/ D a.x/C c for x 2 S.

6.4.4.2 Jensen and d’Alembert’s Equations

The following result shows that the phenomenon of strong alienation takes place
also in the case of the Jensen and the d’Alembert equations.

Theorem 6.23 ([40], Theorem 3.1) Assume that a pair of functions .f ; h/, where
f ; h W S ! F, satisfies equation

.f C h/.x C y/C .f C h/.x C 	y/ D 2f .x/C 2h.x/h.y/; x; y 2 S: (6.76)

Then f satisfies (6.60) and h solves (6.61).
Applying [39, Theorems 1–2], from Theorem 6.23 Sobek deduced the following

result.

Corollary 6.4 ([40], Corollary 3.2) Let F be a quadratically closed field of
characteristic different from 2. Suppose that a pair of functions .f ; h/, where
f ; h W S ! F, satisfies Equation (6.76). Then there exist a function g W S ! F
satisfying Equation (6.3), an additive function a W S ! F and a constant c 2 F such
that a.	x/ D �a.x/ for x 2 S, f .x/ D a.x/C c for x 2 S and

h.x/ D g.x/C g.	x/

2
; x 2 S:

6.4.4.3 Exponential and d’Alembert’s Equations

The alienation problem for the pair of Equations (6.3) and (6.61) is different. The
following example shows that, in general, these equations are not strongly alien to
each other.
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Example 6.1 ([40], Example) Let g; h W R ! C be the constant functions, say
g D c and h D d, where c; d 2 C n f0; 1g are such that c.1 � c/ D 2d.d � 1/.
Then, as one can easily check, the pair .f ; g/ satisfies Equation (6.77), but neither g
fulfils (6.3), nor h satisfies (6.61).

However, under some additional assumptions, Equations (6.3) and (6.60) are
strongly alien to each other. To this end, we will need the following simple result.

Lemma 6.4 ([40], Lemma 4.1) Let .S;C; 0/ be a commutative monoid. Assume
that a pair of functions .g; h/, where g; h W S ! F, satisfies equation

g.x C y/C h.x C y/C h.x C 	y/ D g.x/g.y/C 2h.x/h.y/; x; y 2 S: (6.77)

Then g satisfies (6.69) and h is even with respect to 	 , i.e.

h.x/ D h.	x/; x 2 S: (6.78)

Applying the above Lemma 6.4 Sobek proves

Theorem 6.24 ([40], Theorem 4.2) Let .S;C; 0/ be a commutative monoid.
Assume that a pair of functions .g; h/, where g; h W S ! F, satisfies Equation (6.77)
and g.s0/ ¤ g.	s0/ for some s0 2 S. Then g satisfies (6.3) and h satisfies (6.61).
The paper [40] is concluded with a result which states that in the class of non-
constant functions mapping a 2-divisible Abelian group into a field of characteristic
different from 2, the exponential Cauchy equation and the d’Alembert equation are
strongly alien to each other.

Corollary 6.5 ([40], Corollary 4.3) Let .S;C/ be an Abelian group with S D 2S.
Assume that a pair of functions .g; h/, where g; h W S ! F, satisfies equation

g.x C y/C h.x C y/C h.x � y/ D g.x/g.y/C 2h.x/h.y/; x; y 2 S: (6.79)

Then one of the following holds:

.i/ either there exist c; d 2 F with c.1�c/ D 2d.d �1/ such that g D c and h D d;
.ii/ or g satisfies (6.3) and h satisfies equation

h.x C y/C h.x � y/ D 2h.x/h.y/; x; y 2 S: (6.80)

6.4.5 Trigonometric Equations

Tyrala published in 2011 (cf. [44]) results concerning the alienation of Wilson’s
(sine, [1, 47]) and d’Alembert’s (cosine, [1, 26, 43]) functional equations:

�
f

�
x C y

2

��2
�
h
f
�x � y

2

�i2 D f .x/f .y/; x; y 2 G; (6.81)



138 R. Ger and M. Sablik

and

f .x C y/C f .x � y/ D 2f .x/g.y/; x; y 2 G: (6.82)

We replace x by 2x and y by 2y in (6.81) and (6.82). Summing up these functional
equations side by side, for all x; y 2 G, we get

Œf .x C y/�2�Œf .x � y/�2Cf .2x C 2y/Cf .2x � 2y/D f .2x/Œf .2y/C2g.2y/�: (6.83)

Tyrala proved the following theorem (fo and fe stand for the odd and the even part
of a function f ).

Theorem 6.25 ([44], Theorem 1) Let .G;C/ be a uniquely 2-divisible Abelian
group. Then functions f ; g W G ! C satisfy Equation (6.83) if and only if

(i) f D 0 and g is arbitrary; or
(ii) f .x/ D ˛ ¤ 0; g.x/ D 1 � 1

2
˛; x 2 G; or

(iii) there exists an additive function A W G ! C such that f D A; g D 1; or
(iv) there exists an exponential function m W G ! C and some constant ˇ 2 C such

that f D ˇmo; g D me; or
(v) there exists an exponential function m W G ! C such that f .x/ D f .0/mo.x/C

f .0/me.x/; g.x/ D f .0/
2

mo.x/C
�
1 � f .0/

2

�
me.x/; x 2 G; or

(vi) there exists an exponential function m W G ! C such that f .x/ D �f .0/mo.x/C
f .0/me.x/; g.x/ D � f .0/

2
mo.x/C

�
1 � f .0/

2

�
me.x/; x 2 G:

6.4.6 Cauchy, Jensen and Lagrange Equations

Tyrala in [45] studied the dependence between Equation (6.1) and the so-called
Lagrange equation

g.x/ � g.y/ D .x � y/f

�
x C y

2

�

for all x; y 2 R. The latter was considered and solved, e.g., by Aczél (cf. Sahoo and
Riedel book [37]). The main result of the article [45] reads as follows.

Theorem 6.26 ([45], Theorem 5) Let .R;C; �/ be a uniquely 2-divisible ring.
Then functions f ; g W R ! R satisfy the generalization of the Lagrange functional
equation

f .x C y/C g.x/ � g.y/ D f .x/C f .y/C .x � y/f

�
x C y

2

�
(6.84)
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for all x; y 2 R if and only if8<
:f .x C y/ D f .x/C f .y/

g.x/ � g.y/ D .x � y/f
�

xCy
2

� (6.85)

for each x; y 2 R.
In 2016, Troczka-Pawelec and Tyrala went back to the problem of alienation

of Cauchy and Lagrange equations. They published their results in [41]. Actually,
they studied a generalization of the system (6.85), namely they replaced g.y/ on the
left-hand side of (6.84) by h.y/: First, they proved the following:

Theorem 6.27 ([41], Theorem 4) Let .R;C; �/ be a uniquely 2-divisible ring. If
functions f ; g; h W R ! R satisfy the functional equation

f .x C y/C g.x/ � h.y/ D f .x/C f .y/C .x � y/f

�
x C y

2

�
; (6.86)

for all x; y 2 R, then there exists an additive function a W R ! R such that8̂̂<
ˆ̂:

f .x/ D a.x/C f .0/

g.x/ D g.0/C 1
2

xa.x/C xf .0/

h.x/ D g.0/C 1
2

xa.x/C xf .0/ � f .0/

for all x 2 R.

Theorem 6.28 ([41], Theorem 5) Let .R;C; �/ be a uniquely 2-divisible ring. If
functions f ; g; h W R ! R satisfy the functional equation

f .x C y/C g.x/ � h.y/ D f .x/C f .y/C .x � y/

�
f .x/C f .y/

2

�
(6.87)

for all x; y 2 R, then there exists an additive function a W R ! R such that8̂̂
<
ˆ̂:

f .x/ D a.x/C f .0/

g.x/ D g.0/C 1
2

xa.x/C xf .0/;

h.x/ D g.0/C 1
2

xa.x/C xf .0/ � f .0/

where x 2 R.

Corollary 6.6 ([41], Corollary 1) Let .R;C; �/ be a uniquely 2-divisible ring and
f .0/ D 0. Functions f ; g; h W R ! R satisfy the functional equation (6.86) if and
only if 8<

:f .x C y/ D f .x/C f .y/

g.x/ � h.y/ D .x � y/f
�

xCy
2

� (6.88)

for all x; y 2 R.
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Corollary 6.7 ([41], Corollary 2) Let .R;C; �/ be a uniquely 2-divisible ring and
f .0/ D 0. Functions f ; g; h W R ! R satisfy for all x; y 2 R the functional
equation (6.87) if and only if

8<
:f .x C y/ D f .x/C f .y/

g.x/ � h.y/ D .x � y/
�

f .x/Cf .y/
2

�
;

(6.89)

where x; y 2 R.
The authors dealt also with Jensen equation

f

�
x C y

2

�
D f .x/C f .y/

2
; x; y 2 R; (6.90)

The following theorems are the main results of that paper.

Theorem 6.29 ([41], Theorem 6) Let .R;C; �/ be a uniquely 2-divisible ring.
Functions f ; g; h W R ! R satisfy for all x; y 2 R the functional equation

f

�
x C y

2

�
C g.x/ � h.y/ D f .x/C f .y/

2
C .x � y/f

�
x C y

2

�
(6.91)

if and only if

8<
:

f
�

xCy
2

�
D f .x/Cf .y/

2

g.x/ � h.y/ D .x � y/f
�

xCy
2

� (6.92)

for all x; y 2 R.

Theorem 6.30 ([41], Theorem 7) Let .R;C; �/ be a uniquely 2-divisible ring.
Functions f ; g; h W R ! R satisfy for all x; y 2 R the functional equation

f

�
x C y

2

�
C g.x/ � h.y/ D f .x/C f .y/

2
C .x � y/

�
f .x/C f .y/

2

�
(6.93)

if and only if

8<
:

f
�

xCy
2

�
D f .x/Cf .y/

2

g.x/ � h.y/ D .x � y/
�

f .x/Cf .y/
2

� (6.94)

for all x; y 2 R.
Let us note in connection of the presented results the following.
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Remark 6.7 It is noteworthy that in fact h D g in results of Troczka-Pawelec and
Tyrala. Indeed, if in

g.x/ � h.y/ D .x � y/f

�
x C y

2

�
; x; y 2 R;

[second equation in the system (6.92)] we interchange x and y; we get

g.y/ � h.x/ D .y � x/f

�
x C y

2

�
; x; y 2 R:

Adding the above equations side by side, we obtain

.g.x/ � h.x//C .g.y/ � h.y// D 0; x; y 2 R;

and obviously

g.x/ � h.x/ D h.y/ � g.y/ D const D 0:

Similarly one can prove that g D h in the case of the second equation of the
system (6.94), as well as (6.91) or (6.93).

6.5 Inequalities

Dhombres’s original idea was to characterize the ring homomorphisms which is
defined by a system of equations with one equation only. But it is possible also to
show equivalence of the system to a system of inequalities. Such was the idea of
Rǎdulescu who proved in 1980 the following result.

Theorem 6.31 ([35]) Let X stand for a compact Hausdorff topological space and
let CR.X/ denote the space of all continuous real valued functions on X. If an
operator TW CR.X/ ! CR.X/ satisfies the following system:

�
T. f C g/ � T. f /C T.g/;

T. f � g/ � T. f / � T.g/;
(6.95)

for each f ; g 2 CR.X/, then there exist a clopen subset B � X and a continuous
function 'W X ! X such that

T.f / D �B � f ı '

for all f 2 CR.X/: In particular, T is linear, multiplicative and continuous and the
system (6.95) assumes the form:

�
T.f C g/ D T.f /C T.g/;

T.f � g/ D T.f / � T.g/:
(6.96)
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The Rǎdulescu’s result was later generalized by several mathematicians. Let us
mention here research of Volkmann from [46]: if A is a ring, then each solution
TW A ! R of system (6.95) is additive and multiplicative. Then Dhombres in [8]
showed that if A is a ring and R is an ordered ring in which nonzero elements
have positive squares then each solution TW A ! R of system (6.95) is additive and
multiplicative. In 2007, Ercan proved that (cf. [10]) the Rǎdulescu’s assumption that
X is a compact Hausdorff space may be dropped.

However, there exist also some counterexamples. In particular it turns out that
the above-mentioned results fail to hold if we reverse one or both of the inequalities
in system (6.95). Indeed,

• The absolute value of a real or complex number is subadditive and multiplicative.
• The function ��RnQ is both superadditive and submultiplicative.

The assumptions upon the domain cannot be relaxed too much, as well, even if the
mappings in question are smooth: the function

Œ0;C1/ 3 x 7! �1 � x 2 R

is both superadditive and supermultiplicative.

6.5.1 Stability

Bourgin has shown in [4] that given a surjective map f from a ring into a Banach
algebra such that both additivity and multiplicativity of f are assumed merely with
some ."; ı/-exactness, i.e.

kf .x C y/ � f .x/ � f .y/k � "

and

kf .xy/ � f .x/f .y/k � ı;

then f has to be a ring homomorphism, i.e. f has to satisfy the system of two Cauchy
functional equations (6.10), or

�
f .x C y/ D f .x/C f .y/
f .xy/ D f .x/f .y/

exactly. This stability result has been then generalized by Badora in [2] who was
applying different methods to get rid of, among others, the surjectivity assumption
upon the map in question.

The functional equation we have been dealing with, i.e.

f .x C y/C f .xy/ D f .x/C f .y/C f .x/f .y/
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(6.9) may obviously be viewed as that characterizing ring homomorphism. This
gives rise to a natural problem whether the Bourgin-Badora hyperstability result
[."; ı/-exactness and the exact validity of the system are equivalent!] carries over
to the case of the latter equation. The question was approached by Ger in [15].
An affirmative answer can hardly be expected, because given a positive " a
straightforward verification proves that an arbitrary map f from a ring into a normed
algebra, enjoying the property that

kf .x/k � � where 4�C �2 � " ;

satisfies Equation (6.9) with "-exactness. Moreover, it is worthy to observe also that
taking arbitrary elements a and r from the domain and the range of the solution f of
Equation (6.9), respectively, one can easily check that the map

x 7�! af .rx/

yields a solution as well, provided that a2 D a and r2 D r. Therefore, the maps for
which such shifts are bounded are, in a sense, uninteresting in the context discussed.
What about the others? The following result provides an answer to that question.

Theorem 6.32 ([15], Theorem) Let X be a unitary ring with a unit 1 and let .A ; k�
k/ stand for a commutative Banach algebra with a unit e. Given an " � 0 assume
let that a map f W X ! A is such that f .0/ D 0; f .1/ D e; f .2/ D 2e, and

kf .x C y/C f .xy/ � f .x/ � f .y/ � f .x/f .y/k � "; x; y 2 X: (6.97)

Then either there exist an a 2 A n f0g and an r 2 X n f0g such that the map

X 3 x 7�! af .rx/ 2 A is bounded

or

f establishes a ring homomorphism between X and A :

Remark 6.8 The assumptions f .0/ D 0 and f .1/ D e seem to be natural while
dealing with homomorphisms. Note that none of them results from inequality (6.97).
The same applies to f .2/ D 2e; inequality (6.97) forces only the distance kf .2/�2ek
to be majorized by ". The question whether the commutativity of the target algebra
is essential remains open.

Remark 6.9 The assertion of the theorem would certainly be more readable if we
had simply the alternative: either f is bounded or f is a homomorphism (classical
superstability effect). Plainly, that is actually the case whenever both the domain
ring X and the Banach algebra A in question are fields. If A is a field, then f yields
a homomorphism provided that no function of the form x 7�! f .rx/; r 2 X n f0g;
is bounded. If X is a field, then f yields a homomorphism provided that no function
af ; a 2 A n f0g; is bounded.

Laohakosol et al. in [31] obtained an analogue of Dhombres’ theorem for
mappings defined on R

C.
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6.5.2 More Inequalities

Rǎdulescu’s result from [35] mentioned above may also be viewed as follows:
An operator TW C.X/ ! C.X/ satisfies the system:

�
T.f C g/ � T.f /C T.g/;

T.f � g/ � T.f / � T.g/;

for every f ; g 2 C.X/ if and only if

T.f C g/C T.f � g/ D T.f /C T.g/C T.f / � T.g/

for all f ; g 2 C.X/.
What about possible equivalence of the system in question with the inequality

T.f C g/C T.f � g/ � T.f /C T.g/C T.f / � T.g/ ?

No hope, because of the following results.

Theorem 6.33 (Hammer, [23]) A continuous function f W R ! R that is
differentiable at zero satisfies the functional inequality

f .x C y/C f .xy/ � f .x/C f .y/C f .x/f .y/; x; y 2 R (6.98)

if and only if f is constant and equal to 0 or

f .x/ D x C a � 1
a

.eax � 1/; x 2 R;

with a D f 0.0/ � 1.
With the aid of this result we infer that (under Hammer’s assumptions) the

“alienation phenomenon” holds true for inequality (6.98) if and only if f 0.0/ D 0

(which leads to f D 0) or f 0.0/ D 1 (which gives f D id), i.e. merely for boundary
cases.

Quite recently Fechner [11] has generalized Hammer’s result in a few directions.
First, he has started with two unknown functions instead of a single one. Second, he
has taken a linear combination of inequalities from the system in question instead
of the sum. His objective was to check whether the “alienation phenomenon” holds
true for the functional inequalities discussed. The answer reads as follows.

Theorem 6.34 ([11], Theorem 1) Let f W R ! R be a differentiable at zero and
continuous function and let b; c 2 R be arbitrary nonzero constants. If f satisfies

f .x C y/C bf .xy/ � f .x/C f .y/C cf .x/f .y/; x; y 2 R;
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jointly with f .0/ D 0, then f D 0 or

f .x/ D ac � b

ac2
Œeacx � 1�C b

c
x; x 2 R;

where a D f 0.0/ and moreover ac > 0 and .ac � b/bc � 0.
Fechner proved also the following.

Corollary 6.8 ([11], Corollary 1) Let f W R ! R be a differentiable at zero and
continuous function and let b; c 2 R be arbitrary nonzero constants. If f satisfies
the inequality

f .x C y/C bf .xy/ � f .x/C f .y/C cf .x/f .y/; x; y 2 R;

jointly with f .0/ D 0, then f solves the system

�
f .x C y/ � f .x/C f .y/; x; y 2 R;

bf .xy/ � cf .x/f .y/; x; y 2 R;

if and only if f D 0 or f 0.0/ D b
c .

In connection with his results, Fechner asked the following two questions.
Consider the inequality

˛ � C1f .x; y/C ˇ � C2g.x; y/ � 0; x; y 2 R; (6.99)

where ˛, ˇ are real constants, and C1; C2 are defined by (6.1) and (6.2). Then the
following two problems arise.

Problem 6.6 ([12], Problem 3.5) Solve (6.99) completely.

Problem 6.7 ([12], Problem 3.6) Solve inequality (6.98) under weaker regularity
assumptions and/or in a more general setting.
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Chapter 7
Remarks on Analogies Between Haar Meager
Sets and Haar Null Sets
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Abstract In the paper some analogies between Haar meager sets and Haar null sets
in abelian Polish groups are presented.
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7.1 Introduction

It is well known [3] that a subset A of an abelian Polish group X is called Haar null
if there are a universally measurable set B � X with A � B and a Borel probability
measure � on X such that

�.x C B/ D 0

for all x 2 X: In [5] Darji introduced another family of “small” sets in an abelian
Polish group X; he called a set A � X Haar meager if there is a Borel set B � X with
A � B; a compact metric space K and a continuous function f W K ! X such that

f �1.B C x/ is meager in K for every x 2 X:

In a locally compact group these two definitions are equivalent to definitions of
Haar measure zero sets and meager sets, respectively. That is why we can say that
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the notion of a Haar meager set is a topological analog to the notion of a Haar null
set. Since lots of similarities between meager sets and sets of Haar measure zero are
well known in locally compact abelian Polish groups (see, e.g., [24]), we would like
to find as many analogies between Haar meager sets and Haar null sets as possible.

For each abelian Polish group Y we introduce the following notations:

H N Y WD fA � Y W A is Haar nullg;
H M Y WD fA � Y W A is Haar meagerg;
MY WD fA � Y W A is meagergI

and, if additionally Y is locally compact,

NY WD fA � Y W A has Haar measure zerog:
Moreover, in the whole paper X is an abelian Polish group.

7.2 Basic Similarities

Let us start with the fact that both families, H M X and H N X , are “small”.

Theorem 7.1 ([3, Theorem 1]) The family H N X is a 	 -ideal and, if X is locally
compact,

H N X D NX:

Theorem 7.2 ([5, Theorems 2.4, 2.9]) The family H M X is a 	 -ideal and, if X is
locally compact,

H M X D MX:

Moreover, Darji (see [5, Theorem 2.2]) proved that in the case, where X is not
locally compact,

H M X ¤ MX:

Clearly an analogous inclusion for Haar null sets is impossible.
An important result obtained by Christensen [3] is a theorem of Steinhaus’ type.

Theorem 7.3 ( [3, Theorem 2]) For every universally measurable subset A of X,
with A 62 H N X, the set

fx 2 X W .A C x/ \ A 62 H N Xg

is a neighbourhood of 0 in X; consequently 0 2 int .A � A/:
A topological analogue of the above theorem also holds.
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Theorem 7.4 ([16, Theorem 2]) For every Borel subset A of X, A 62 H M X,
the set

fx 2 X W .A C x/ \ A 62 H M Xg

is a neighbourhood of 0 in X; i.e., 0 2 int .A � A/.
The following generalization of Theorem 7.3 has been proved by Gajda [13].

Theorem 7.5 ([13, Theorem 1]) For every n 2 N and every universally measur-
able set A 62 H N X the set

fx 2 X W
\

k2f�n;;:::;ng
.A C kx/ 62 H N Xg

is a neighbourhood of 0 in X.
The above theorem is a very useful tool in functional equations. An analogous

result has been proved in [17].

Theorem 7.6 ([17, Theorem 4]) For every n 2 N and Borel set A 62 H M X the set

fx 2 X W
\

k2f�n;;:::;ng
.A C kx/ 62 H M Xg

is a neighbourhood of 0 in X.
Christensen and Fischer [4] generalized Theorem 7.5 as follows.

Theorem 7.7 ([4, Theorem 2]) For every N 2 N and every universally measur-
able set A 62 H N X the set

f.x1; : : : ; xN/ 2 XN W A \
N\

iD1
.A C xi/ 62 H N Xg

is a neighbourhood of 0 in XN.
It turns out that an analogy to Theorem 7.7 also exists.

Theorem 7.8 ([18, Theorem 2.2]) For every N 2 N and Borel set A 62 H M X

the set

f.x1; : : : ; xN/ 2 XN W A \
N\

iD1
.A C xi/ 62 H M Xg

is a neighbourhood of 0 in XN.
From Theorems 7.3 and 7.4 we obtain that 	 -compact sets in non-locally

compact groups are “small” in both senses. More precisely we have the following.
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Corollary 7.1 ([3], [16, Corollary 1]) If X is not locally compact, then each 	 -
compact set is Haar null as well as Haar meager.

One of the well-known results is the decomposition theorem stating that the real
line can be decomposed into two disjoint “small” sets: a meager one and a Lebesgue
measure zero one. Doležal, Rmoutil, Vejnar and Vlasák proved that some special
spaces also can be decomposed into two disjoint “small” sets.

Theorem 7.9 ([10, Theorems 22 and 25]) Each Banach space, or R
! , can be

decomposed into two disjoint sets: a Haar meager one and a Haar null one.
Let us pay attention yet that the Kuratowski–Ulam Theorem and the Fubini

Theorem, which are analogues of each other in the locally compact groups, fail
in non-locally compact groups.

Example 7.1 ([10, Example 20]) The set

C WD f.s; t/ 2 Z
! � Z

! W tn � sn � 0 for n 2 !g

is neither Haar null nor Haar meager. But the set

CŒt� WD fs 2 Z
! W .s; t/ 2 Cg

is Haar meager as well as Haar null for each t 2 Z
! (because it is compact). On the

other hand, the set

A WD fs 2 Z
! W sn � 0 for n 2 !g

is non-Haar meager and non-Haar null and, for each s 2 A, the set

CŒs� WD ft 2 Z
! W .s; t/ 2 Cg

is neither Haar meager nor Haar null.
From this example we see that there exists a non-Haar meager and non-Haar null set
in Z

! �Z
! such that in one direction all its section are Haar meager, and in the other

direction there are non-Haar meager many sections which are non-Haar meager.
It is rather obvious that every set containing a translation of each compact set is

“large” in both senses; i.e., the following proposition is valid.

Proposition 7.1 Every set containing a translation of each compact set is neither
Haar null nor Haar meager.

This proposition is very useful, because allows to observe some further similari-
ties between Haar meager sets and Haar null sets.

In the paper [22] Matous̆ková and Zelený constructed closed sets A;B in a non-
locally compact abelian Polish group X such that A, as well as B, includes a
translation of each compact set and the set .A C x/ \ B is compact for each x 2 X.
Consequently we obtain two analogies characterizations of locally compact groups.
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Proposition 7.2 An abelian Polish group X is locally compact if and only if

int .A C B/ ¤ ;

for each universally measurable non-Haar null sets A;B � X

Proposition 7.3 An abelian Polish group X is locally compact if and only if

int .A C B/ ¤ ;

for each Borel non-Haar meager sets A;B � X.
Dodos [6] has used Matous̆ková’s and Zelený’s result from [22] to show that the

invariance under bigger subgroups is not sufficient to establish a dichotomy. More
precisely, he proved the following fact.

Proposition 7.4 ([6, Proposition 12]) If X is not locally compact and G is a 	 -
compact subgroup of X, then there exists a G-invariant F	 subset F of X such that
neither F nor X n F is Haar null.

In view of Proposition 7.1, in the same way as Dodos, we can prove that an
another type of dichotomy also does not hold.

Proposition 7.5 ([18, Proposition 3.2]) If X is not locally compact and G is a 	 -
compact subgroup of X, then there exists a G-invariant F	 subset F of X such that
neither F nor X n F is Haar meager.

Let us also recall that each meager set is contained in an F	 meager set, as well
as each set of Lebesgue measure zero is contained in a Gı set of Lebesgue measure
zero. It turns out that both theorems cannot be generalized on the case of Haar null
sets and Haar meager sets. More precisely, Elekes and Vindyánszky [11] proved the
following.

Theorem 7.10 ([11, Theorem 4.1]) Let 1 � � < !1. If X is non-locally compact,
then there exists a Borel Haar null set that is not contained in any Haar null set
from ˘0

� .X/ (i.e., the �th multiplicative Borel class in X).
The same type result for a Haar meager set has been proved by Doležal and

Vlásak in [9].

Theorem 7.11 ([9, Theorem 10]) Let 1 � � < !1. If X is non-locally compact,
then there exists a Borel Haar meager set that is not contained in any Haar meager
set from ˙0

� .X/ (i.e., the �th additive Borel class in X).
Clearly, for � D 2, we obtain the existence of a Borel Haar null set without any

Gı Haar null hull, as well as the existence of a Borel Haar meager set without any
F	 Haar meager hull.

In the same papers we can also find the following theorems analogies each other.

Theorem 7.12 ([11, Theorem 4.1]) If X is non-locally compact, then there exists
a coanalytic Haar null set without any Borel Haar null hull.
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Theorem 7.13 ([9, Theorem 10]) If X is non-locally compact, then there exists a
coanalytic Haar meager set without any Borel Haar meager hull.

Matous̆ková and Stegall [21] proved that a separable Banach space X is non-
reflexive if and only if there exists a closed convex subset of X with empty
interior, which contains a translation of any compact subset of X. Consequently,
by Proposition 7.1, we obtain the following result.

Theorem 7.14 Every separable nonreflexive Banach space contains a closed
convex set with empty interior, which is neither Haar null nor Haar meager.

Moreover, Matous̆ková [20, Theorem 4] has showed that this is unlike the
situation in superreflexive spaces, where closed, convex, nowhere dense sets are
Haar null. In turn Banakh [1, Proposition 5.7] has proved that each closed Haar null
set in a Polish group is Haar meager. Hence we have the next theorem.

Theorem 7.15 In separable superreflexive Banach spaces closed, convex, nowhere
dense sets are Haar null as well as Haar meager.

7.3 Generically Haar Meager Sets and Generically Haar
Null Sets

Let us recall once again definitions of Haar meager sets and Haar null sets.

Definition 7.1 A set A � X is Haar null if there is a universally measurable set
B � A and a Borel probability measure � on X such that

�.x C B/ D 0 for all x 2 X:

Definition 7.2 A set A � X is Haar meager if there is a Borel set B � A, a compact
metric space K and a continuous function f W K ! X such that

f �1.B C x/ 2 MK for all x 2 X:

It means that:

• each Haar null set has the only one witness parameter—a test measure;
• each Haar meager set has two witness parameters—a witness metric space and

a witness function.

The following result has been proved in [2].

Proposition 7.6 A Borel set B � X is Haar meager if and only if there is a
continuous function f W 2! ! X such that f �1.B C x/ is meager in 2! for all
x 2 X:
It means that a Haar meager set and a Haar null set have both the only one witness
parameter—a witness function and a test measure, respectively.
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Now, let P.X/ be the space of all Borel probability measures on X; this is a Polish
space with Lévy metric.

Following Dodos [7, 8], given a universally measurable set A � X, by T.A/ we
mean the set of all test measures for A, i.e.

T.A/ WD f� 2 P.X/ W �.x C A/ D 0 for every x 2 Xg:

Dodos [7] has proved the following.

Theorem 7.16 ( [7, Proposition 5]) If A � X is a universally measurable Haar
null set, then:

• T.A/ is dense in P.X/;

• if A is analytic, then either T.A/ is meager or T.A/ is comeager in P.X/;

• if A is 	 -compact, then T.A/ is comeager in P.X/.

Using Theorem 7.16, Dodos [8] has introduced the notion of a generically Haar
null set and next he has proved a theorem of Steinhaus’ type.

Definition 7.3 A set A � X is generically Haar null if T.A/ is comeager in P.X/.

Theorem 7.17 ([8, Proposition 11]) If A � X is analytic, non-generically Haar
null, then A � A is non-meager.

Now, let C.2!;X/ be the space of all continuous functions f W 2! ! X; this is
a Polish space with the supremum metric (similarly as the space P.X/ with Lévy
metric). For every Borel set A � X we define

W.A/ WD ff 2 C.2!;X/ W f �1.x C A/ 2 M2! for every x 2 Xg;

i.e., the set of all witness functions for A. Clearly, if A 2 H M X , then W.A/ ¤ ;,
so this notation is analogous to T.A/.

In [1] and [2] an analogous result to Theorem 7.16 has been proved.

Theorem 7.18 ([2]) Let A � X be a Borel Haar meager set. Then:

• W.A/ is dense in C.2!;X/;

• either W.A/ is meager, or W.A/ is comeager in C.2!;X/;

• if A is 	 -compact, then W.A/ is comeager in C.2!;X/.

Theorem 7.19 ([1], [2]) If A � X is analytic, non-generically Haar meager (i.e.,
W.A/ is not comeager in C.2!;X/), then A � A is non-meager.
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7.4 Analogies in Functional Equations

In this part (only) we assume that X is a Polish real linear space to present some
further similarities between Haar meager sets and Haar null sets, which are very
important in functional equations.

Lemma 7.1 ([23, Lemma 5]) Let A 62 H N be a universally measurable set and
x 2 X n f0g. Then there exists a Borel set B � A such that the set k�1

x .B C z/ has
a positive Lebesgue measure in R for each z 2 X, where kx W R ! X is given by
kx.˛/ D ˛x:

Lemma 7.2 ([19, Lemma 1]) Let A 62 H M be a Borel set and x 2 X n f0g. Then
there exists a Borel set B � A such that the set k�1

x .B C z/ is non-meager with the
Baire property in R for each z 2 X.

Due to those two lemmas t-Wright convex functions, that are bounded on
a “large” set, can be characterized.

Theorem 7.20 ([23, Theorem 8]) Let D � X be a nonempty convex open set and
t 2 .0; 1/. Each t-Wright convex function f W D ! R bounded on a non-Haar null
universally measurable set T � D is continuous.

Theorem 7.21 ( [19, Theorem 4]) Let D � X be a nonempty convex open set and
t 2 .0; 1/. Each t-Wright convex function f W D ! R bounded on a non-Haar
meager Borel set T � D is continuous.

Now, using a weaker version of Lemma 7.1, the additive functions, that are
bounded above on a “large” set, can be characterized. More precisely, the following
theorem is true.

Theorem 7.22 ([14, Corollary 1] ) If f W X ! R is additive and bounded above
on a universally measurable set C 62 H N , then f is linear.

Replacing [14, Lemma 1] by Lemma 7.2 in the proof of the above theorem, we
obtain an analogous result.

Theorem 7.23 If f W X ! R is additive and bounded above on a Borel set C 62
H M , then f is linear.

Moreover, using a weaker version of Lemma 7.1 and Theorem 7.22, solutions of
a generalized Gołąb–Schinzel equation, that are bounded on a “large” set, can be
characterized.

Theorem 7.24 ([15, Theorem 1]) Let f W X ! R, M W R ! R and jf .D/j � .0; a/
for a positive number a and a universally measurable set D 62 H N . Then functions
f and M satisfy the equation

f .x C M.f .x//y/ D f .x/f .y/ (7.1)
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if and only if one of the following three conditions holds:

(i) f D 1;
(ii) Mj.0;1/ D 1 and there exists a nontrivial linear functional h W X ! R such

that

f .x/ D exp h.x/ for x 2 XI
(iii) there exists a nontrivial linear functional h W X ! R and c 2 R n f0g such that

either

M.y/ D jyj1=c sgn y for y 2 R;

f .x/ D
( jh.x/C 1jc sgn .h.x/C 1/; x 2 X; h.x/ ¤ �1I
0; x 2 X; h.x/ D �1

or

M.y/ D y1=c for y 2 Œ0;1/;

f .x/ D
(
.h.x/C 1/c; x 2 X; h.x/ > �1I
0; x 2 X; h.x/ � �1:

Observe that using the method from [15] we can prove a theorem which is
analogous to Theorem 7.24; the most important change in the proof is to replace:

• [15, Lemma 6] by Theorem 7.4,

• [15, Lemma 7] by Lemma 7.2,

• [15, Lemma 8] by Theorem 7.23.

Then we obtain the following theorem.

Theorem 7.25 Let f W X ! R, M W R ! R and jf .D/j � .0; a/ for a positive
number a and a Borel set D 62 H M . Then functions f and M satisfy Equation (7.1)
if and only if one of the conditions (i)–(iii) of Theorem 7.24 holds.

7.5 Modified Darji’s and Christensen’s Definitions

Doležal, Rmoutil, Vejnar and Vlasák [10] modified Darji’s notion of meagerness in
the following way.

Definition 7.4 A set A � X is naively Haar meager if there is a compact metric
space K and a continuous function f W K ! X such that

f �1.x C A/ is meager in K for every x 2 X:

They also have proved the next theorem.
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Theorem 7.26 ([10, Theorem 16]) If X is uncountable, then there exists a naively
Haar meager subset of X, which is not Haar meager.

In a similar way Elekes and Vindyánszky [12] have defined naively Haar null
sets and showed a result analogous to Theorem 7.26.

Definition 7.5 A set A is called naively Haar null if there is a Borel probability
measure � on X such that

�.x C A/ D 0 for all x 2 X:

Theorem 7.27 ([12, Theorem 1.3]) If X is uncountable, then there exists a naively
Haar null subset of X which is not Haar null.

Moreover, in non-abelian Polish groups definitions of Haar meager sets and Haar
null sets have been modified in the following way.

Definition 7.6 A subset A of a Polish group X is Haar null if there are a universally
measurable set B � X with A � B and a Borel probability measure � on X such that

�.x C B C y/ D 0 for all x; y 2 X:

Definition 7.7 A subset A of a Polish group X is Haar meager if there are a Borel
set B � X with A � B, a compact metric space K and a continuous function f W
K ! X such that

f �1.x C B C y/ is meager in K for every x; y 2 X:

Then both families—of all Haar null sets and of all Haar meager sets in X—form
	 -ideals (see [12] and [10, Theorem 3]).
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15. Jabłońska, E.: Christensen measurability and some functional equation. Aequationes Math. 81,
155–165 (2011)
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Chapter 8
On Some Inequalities Inspired by the Stability
of Dynamical System

Zenon Moszner

Abstract We approximate the solutions of the system of inequalities

� jH.t;H.s; x// � H.t C s; x/j � ı; x 2 I; t; s 2 R

jH0.0; x/ � aj � ı; x 2 I

(I is nondegenerated interval) for a ¤ 0 by the dynamical system and we consider
the different stabilities of this system for ı D 0.

Keywords Generalized dynamical system • Stability • b-Stability • Inverse sta-
bility • Inverse b-stability • Absolute stability
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8.1 Introduction

The one-dimensional dynamical system is defined as the continuous function F W
R � I ! I, where I is nondegenerated interval, for which

F.t;F.s; x// D F.t C s; x/; x 2 I; t; s 2 R (8.1)

(the translation equation) and

F.0; x/ D x; x 2 I: (8.2)
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The conjunction of the above conditions is equivalent to the conjunction of
conditions (8.1) and

F0.0; x/ D a; x 2 I; (8.3)

(where a 2 R and F0.0; x/ means the derivative of the function F.0; :/ W I ! I at the
point x) only for a D 1.

The system (8.1) and (8.3) does not have the solution for 0 ¤ a ¤ 1, and for
a D 0 it has only the constant solution F.t; x/ D c 2 I.1 Indeed, by (8.3) we have
F.0; x/ D ax C b and by (8.1) we obtain a.ax C b/C b D ax C b, thus “a D 0 and
b arbitrary” or “a D 1 and b D 0”. For a D 0 we have F.0; x/ D b for a b 2 I and
F.t; x/ D F.F.t; x/; 0/ D b too.

The system (8.1) and (8.3) is said to be Ulam–Hyers stable (in short stable) if
for every � > 0 there exists a ı > 0 such that for every function H W R � I ! I if� jH.t;H.s; x// � H.t C s; x/j � ı; x 2 I; t; s 2 R

jH0.0; x/ � aj � ı; x 2 I;
(8.4)

then there exists a solution F of this system (8.1) and (8.3) for which

jF.t; x/ � H.t; x/j � "; x 2 I; t 2 R:

8.2 Stability

Theorem 8.1 If a function H W R � I ! I satisfies the conditions (8.4)

(i) for some a > 0 and positive ı � a
2aC2 and it is continuous with each variable,

then there exists a dynamical system F? such that

jF?.t; x/ � H.t; x/j � .20C a C 2

a
/ı; x 2 I; t 2 R;

(ii) for some a < 0 and positive ı � a�a2

3a�2 , then there exists a dynamical system F?

such that

jF?.t; x/ � H.t; x/j � 4
a � 1

a
ı; x 2 I; t 2 R;

(iii) for a D 0 and positive ı � 1
2
, then there exists a solution F? of the system (8.1)

and (8.3) such that

jF?.t; x/ � H.t; x/j � 2ı; x 2 I; t 2 R:

1Moreover, for the solution F of (8.1) if F0.0; x/ exists (not necessarily constant), then F.t; x/ D c
or F.0; x/ D x (see [1]).
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Lemma 8.1 Let a function h W I ! I be such that jh.h.x//� h.x/j � ı and jh0.x/�
aj � ı for every x 2 I and for some ı > 0 and a 2 R.

(i) If a > 0 and ı � a
2aC2 , then

jh.x/ � xj � a C 2

a
ı; x 2 I: (8.5)

(ii) If a < 0 and ı � a�a2

3a�2 , then

jh.x/ � xj � 2
a � 1

a
ı; x 2 I:

Proof (i) (a simple modification of the proof of Corollary 3.8 in [1]). We have

jh.h.x// � h.x/j � ı � a C 2

a
ı; x 2 I;

thus (8.5) is satisfied for x 2 h.I/. Since jh0.x/ � aj � ı, we see that

0 < a � a

2a C 2
� a � ı � h0.x/ � a C ı � a C a

2a C 2
: (8.6)

From here the function h is increasing.
Let y1 D infI; y2 D supI; x1 D infh.I/; x2 D suph.I/. We consider two

cases.

(1) For y1 > �1 and y2 D C1 the function h is unbounded, since, in the
contrary case, we would have

h.n/ � h.y1 C 1/

n � .y1 C 1/
D h0.�.n// ! 0 as n ! C1;

which is a contradiction with (8.6).

(a) If x1 D y1, then h.I/ D I and condition (8.5) is satisfied.
(b) If x1 > y1 and y1 2 I, then we have h.y1/ D x1 and jh.x1/ � x1j � ı,

and since

h.x1/ � x1 D h.x1/ � h.y1/ D h0.�/.x1 � y1/

for a � , we get

.a � ı/.x1 � y1/ � h0.�/.x1 � y1/ D jh.x1/ � x1j � ı;

and consequently x1 � y1 � ı
a�ı . If x 2 Œy1; x1/, then by (8.6) and

ı � a
2aC2 we obtain
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jh.x/ � xj � jh.x/ � x1j C jx1 � xj � h0.�/.x � y1/C .x1 � x/

� ı

a � ı Œh
0.�/C 1� � ı C a C 1

a � ı ı � a C 2

a
ı:

Therefore (8.5) is satisfied for x 2 I, because h.I/ D Œx1;C1/.

(2) If y1 D �1 and y2 D C1, then by (8.6) the function h is unbounded from
above and from below, thus h.I/ D R and (8.5) is satisfied.

The proof in the other cases is analogous.

(ii) The proof is analogous as above with x1 replaced by x2, since the function h is
decreasing in this case. ut

Proof of Theorem 8.1 Put h.x/ D H.0; x/ and V D H.R � I/.

(i) If jVj � 2ı, then by Lemma 8.1 for the dynamical system F?.t; x/ D x for
.t; x/ 2 R � I we have

jH.t; x/ � F?.t; x/j � jH.t; x/ � H.0; x/j C jH.0; x/ � xj

< Œ2C a C 2

a
�ı � Œ20C a C 2

a
�ı:

By Theorem 1.1 in [2] there exists a continuous solution F of translation
equation (8.1) for which

jF.t; x/ � H.t; x/j � 10ı; x 2 I; t 2 R:

Let z1 D infV and z2 D supV . If jVj > 2ı, then from the proof of Theorem 1.1
in [2] we see that

f .x/ WD F.0; x/ D

8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂
ˆ̂:

x if x 2 Œh.z1/; h.z2/� \ I;
h.z1/ if x 2 Œz1; h.z1/� \ I;
h.z2/ if x 2 Œh.z2/; z2� \ I;
h.x/ if x 2 I n V and h.x/ 2 Œh.z1/; h.z2/�;
h.z1/ if x 2 I n V and h.x/ 2 Œz1; h.z1/�;
h.z2/ if x 2 I n V and h.x/ 2 Œh.z2/; z2�;

where h.z1/ WD z1 if z1 … I and h.z2/ WD z2 if z2 … I, and

F.t; x/ D
�

h�1
n .hn.f .x//C t/ if f .x/ 2 Bn and x 2 I; t 2 R; n 2 M � N;

f .x/ for the other x 2 I and t 2 R;

where Bn � f .I/ are open disjoint intervals and hn is a homeomorphism from
Bn onto R.
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Since f is increasing, by (8.4) we obtain

f .x/ D
8<
:

h.z1/ if x < h.z1/ and x 2 I;
x if x 2 Œh.z1/; h.z2/�;
h.z2/ if x > h.z2/ and x 2 I;

and therefore f .I/ D Œh.z1/; h.z2/�. Moreover, Bn � .h.z1/; h.z2// because
Bn is an open interval and Bn � f .I/. This together with f .x/ 2 Bn implies
x 2 .h.z1/; h.z2//, and consequently f .x/ D x for f .x/ 2 Bn. Therefore the
function F has the form

F.t; x/ D
�

h�1
n .hn.x/C t/ if x 2 Bn; t 2 R; n 2 M � N;

f .x/ for the other x 2 I and t 2 R:

The function

F?.t; x/ D
�

h�1
n .hn.x/C t/ if x 2 Bn; t 2 R; n 2 M � N;

x for the other x 2 I and t 2 R

is a dynamical system. By the Lemma 8.1 we have

jH.t; x/ � F?.t; x/j D jH.t; x/ � F.t; x/j C jF.t; x/ � F?.t; x/j
� 10ı C jf .x/ � xj � 10ı C jf .x/ � h.x/j C jh.x/ � xj

� 10ı C 10ı C a C 2

a
ı D

�
20C a C 2

a

�
ı;

because

jf .x/ � h.x/j D jF.0; x/ � H.0; x/j � 10ı:

(ii) The proof is as the proof of part (b) of Theorem 3.1 in [1]. However, we present
this short proof for the reader’s convenience. Since the function h is decreasing,
the interval has to be bounded (otherwise we would have limx!C1 jh.x/�xj D
C1 or limx!�1 jh.x/ � xj D C1, which is impossible). Putting h.y1/ D
limx!yC

1
h.x/ if y1 … I and h.y2/ D limx!y�

2
h.x/ if y2 … I we have

y2 � y1 D y2 � h.y2/C h.y2/ � h.y1/C h.y1/ � y1

� 2
a � 1

a
ı C .h.y2/ � h.y1//C 2

a � 1
a

ı � 4
a � 1

a
ı;

because y1 � y2. Hence the function F?.t; x/ D x is a dynamical system for
which

jF?.t; x/ � H.t; x/j � 4
a � 1

a
ı:
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(iii) We proceed with the following remark. Let ˛; ˇ be real numbers for which
j˛�ˇj � 2ı and j ˛

ˇ
j � ı for a positive ı � 1

2
. Then we have j˛. ˛

ˇ
� 1/j � 2ı2

and 0 < 1 � ı � 1 � ˛
ˇ

, and thus j˛j � 2 ı
1�ı ı � 2ı.

Since jH.0;H.t; x//�H.t; x/j � ı, we have jh.x/�xj � ı and jh.y/�yj � ı

for x; y 2 h.V/, where V D h.H.R�I//. Thus jŒh.x/�h.y/��.x�y/j � 2ı and

ˇ̌̌h.x/ � h.y/

x � y

ˇ̌̌
D jh0.�/j � ı; x ¤ y:

By the above remark for ˛ D h.x/ � h.y/ and ˇ D x � y we have jh.x/ �
h.y/j � 2ı for x; y 2 h.V/, and therefore suph.V/ � infh.V/ � 2ı. Let c D
infh.V/ and d D suph.V/. Since jH.0;H.t; x// � H.t; x/j � ı, we see that

c � ı � h.H.t; x// � ı � H.t; x/ � h.H.t; x//C ı � d C ı:

Hence H.t; x/ 2 Œc�ı; dCı� and for the solution F?.t; x/ D cCd
2

of system (8.1)
and (8.3) we have

jF?.t; x/ � H.t; x/j � d C ı � c C ı

2
� 4ı

2
D 2ı; t 2 R; x 2 I: ut

Corollary 8.1 For 0 ¤ a ¤ 1 there exists a ı > 0 for which system (8.4) has a
solution and there exists a ı > 0 for which it does not have a solution.

Proof For ı D jaj every constant function H W R � I ! I is a solution of (8.4).
Assume that 0 ¤ a ¤ 1 and that for every ı > 0 system (8.4) has a solution H.

Then for h.x/ WD H.0; x/ we have

jh0.x/ � aj D jh0.x/ � 1 � .a � 1/j � ı

and

ja � 1j � ı � jh0.x/ � 1j:

By Lemma 8.1 there exist positive constants A.a/ and B.a/ such that jh.x/ � xj �
B.a/ı for 0 < ı � A.a/ and x 2 I. Since we also have jh.y/ � yj � B.a/ı, thus for
a � we get

jh.x/� h.y/� .x � y/j D jh0.�/.x � y/� .x � y/j D jŒh0.�/� 1�.x � y/j � 2B.a/ı:

Hence .ja � 1j � ı/jx � yj � 2B.a/ı, and if ı < ja � 1j, then

jx � yj � 2B.a/ı.ja � 1j � ı/�1; x; y 2 I:
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If the interval I is unbounded, then we have a contradiction. On the other hand, if it
is bounded, then 0 < jIj � 2B.a/ı.ja � 1j � ı/�1, where jIj is the length of I. Since
limı!0 ı.ja � 1j � ı/�1 D 0, we have a contradiction too. ut
Problem The set S1.a/ (S2.a/) of ı > 0 for which system (8.4) does not have a
solution (has a solution) is an interval and S1[ S2 D .0;C1/. For a D 0 and a D 1

we have S1.0/ D S1.1/ D ; and S2.0/ D S2.1/ D .0;C1/. For 0 ¤ a ¤ 1 give
ı.a/ WD supS1.a/ (its existence follows from Corollary 8.1). Does ı.a/ belong to
S1 (S2)?

Corollary 8.2 The system (8.1) and (8.3) is stable for 0 ¤ a ¤ 1 as well as for
a D 1 in the class of functions which are continuous in each variable with ı D "

23
,

and for a D 0 with ı � minf "
2
; 1
2
g.

Proof It is trivial for 0 ¤ a ¤ 1, because ı for which system (8.4) does not have a
solution is “good” for every " > 0. For a D 0 and a D 1 the stability of (8.1) and
(8.3) is a consequence of Theorem 8.1. ut

8.2.1 Remarks

Remark 8.1 A continuous solution of (8.4) for 0 ¤ a ¤ 1 is approximated by a
dynamical system (Theorem 8.1 (i) and (ii)) and it is not approximated by a solution
of (8.1) and (8.3), since system (8.1) and (8.3) does not have a solution.

Remark 8.2 The solution F? of system (8.1) and (8.3) in Theorem 8.1(iii) cannot
be replaced by a dynamical system. Indeed, if the interval I is unbounded, then
the function H.t; x/ D c 2 I satisfies condition (8.4) for a D 0 and for every
dynamical system F? the function jF?.0; x/ � H.0; x/j D jx � cj is unbounded.
Now, let the interval I be bounded and nondegenerated and assume that for " D jIj

4

there exists a ı > 0 such that for every function H satisfying (8.4) for a D 0

there exists a dynamical system F? for which jF?.t; x/ � H.t; x/j � ". The function
H.t; x/ D infICsupI

2
satisfies (8.4) for every ı > 0 and

jIj
2

D supx2I

ˇ̌̌
x � infI C supI

2

ˇ̌̌
D supx2IjF?.0; x/ � H.0; x/j � " D jIj

4
;

a contradiction.

Remark 8.3 The system (8.1) and (8.3) is equivalent to the equation

jF.t;F.s; x// � F.t C s; x/j C jF0.0; x/ � aj D 0: (8.7)

Since for any b; c 2 R we have

�
jbjCjcj � ı ) .jbj � ı^jcj � ı/

�
and

�
.jbj � ı^jcj � ı/ ) jbjCjcj � 2ı

�
;
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Equation (8.7) is stable by Corollaries 8.1 and 8.2. This equation for a D 1 is
equivalent to the equation

jF.t;F.s; x// � F.t C s; x/j C jF.0; x/ � xj D 0; (8.8)

which is equivalent to system (8.1) and (8.2). This system is stable only for I D R

(see [2]), thus Equation (8.8) is stable only for I D R too.

Remark 8.4 The stability of system (8.1) and (8.3) for a D 1 is proved in [1] with
ı D minf "

10
; 2
5
g by a complicated and longer proof than here.

Remark 8.5 A non-constant solution F of translation equation (8.1) for which
F0.0; x/ exists is a dynamical system. The translation equation is unstable for every
interval I in the class of functions H W R � I ! I for which H0.0; x/ exists (see [1]).

8.3 b-Stability

The system (8.1) and (8.3) is said to be b-stable if for every function H W R � I ! I
the boundedness of the function

jH.t;H.s; x// � H.t C s; x/j C jH0.0; x/ � aj (8.9)

implies the boundedness of the function jF.t; x/ � H.t; x/j for a solution F of the
system (8.1) and (8.3).

Theorem 8.2 The system (8.1) and (8.3) is

(i) not b-stable for 0 ¤ a ¤ 1,
(ii) b-stable both for a D 1 and for a D 0 only if I is bounded.

Proof (i) It is known (see Corollary 8.1) that for 0 ¤ a ¤ 1 there exists a
ı > 0 such that the system (8.4) of the inequalities has a solution. Since the
system (8.1) and (8.3) does not have the solutions, this system is not b-stable.

(ii) Let a D 1. The function (8.9) is bounded for the function H.t; x/ D c 2 I.
Assume that there exists a solution F of (8.1) and (8.3) such that jF.t; x/ �
H.t; x/j is bounded. Thus jF.0; x/ � H.0; x/j D jx � cj is bounded and if I
is unbounded we have a contradiction. If I is bounded the function jF.t; x/ �
H.t; x/j is bounded by the length of I for any functions F;H W R � I ! I, thus
the system is b-stable in this case.

We have the same situation for a D 0: H.t; x/ D x is the solution of (8.4) for
ı D 1 and F.t; x/ D c 2 I is the only solution of the system (8.1) and (8.3) in
this case. ut
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8.4 Inverse Stability

The system (8.1) and (8.3) is said to be inversely stable if for every � > 0 there
exists a ı > 0 such that for every function H W R � I ! I such that

jH.t; x/ � F.t; x/j � ı; .t; x/ 2 R � I

for some solution F of (8.1) and (8.3) we have

jH.t;H.s; x// � H.t C s; x/j � �; jH0.0; x/ � aj � �; x 2 I; t; s 2 R:

Theorem 8.3 The system (8.1) and (8.3) is inversely stable for 0 ¤ a ¤ 1, and it
is not inversely stable for a D 0 and a D 1.

Proof The system (8.1) and (8.3) does not have the solution for 0 ¤ a ¤ 1, thus it
is inversely stable.

For a D 0 (a D 1) assume that this system is inversely stable and for every ı > 0
let f W I ! I be a differentiable function for which jf .x/j � ı (jf .x/ � xj � ı) for
x 2 I and there exists an x0 such that jf 0.x0/j > 1 (jf 0.x0/� 1j > 1). For the function
H.t; x/ D f .x/ we have a contradiction (see the proof of Theorem 4.4 in [1]). ut

8.5 Inverse b-Stability

The system (8.1) and (8.3) is said to be inversely b-stable if for every function H W
R � I ! I the boundedness of the function jF.t; x/ � H.t; x/j for some solution F
of the system (8.1) and (8.3) implies the boundedness of the function (8.9).

Here the situation is the same as in Theorem 8.3.

8.6 Absolute Stability

The system (8.1) and (8.3) is stable and inversely stable (i.e. absolutely stable) only
for 0 ¤ a ¤ 1.
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and suggestions.
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Chapter 9
Homomorphisms from Functional Equations in
Probability

Adam J. Ostaszewski

“Niedaleko jabłko spada od jabłoni”
“The apple never falls far from the tree”

Abstract We showcase the significance to probability theory of homomorphisms
and their simplifying rôle by reference to the Goldie functional equation (GFE), an
equation at the heart of regular variation theory (RV) encoding asymptotic flows,
but with an apparent lack of symmetry. Like the Gołąb–Schinzel equation (GS), of
which it is a disguised equivalent, it and its Pexiderized form can be transmuted into
homomorphy under a ‘generalized circle product’ due to Popa, conformally with the
Pompeiu equation. This not only forges a specific direct connection to Beurling’s
Tauberian Theorem, but also generally both helps simplify classical RV-analysis,
lending it a flow-type intuition as a guide, and elevates it to unfamiliar contexts.
This is illustrated by a new approach to the one-dimensional random walks with
stable laws.

We review some new literature, offer some new insights and, in Sections 9.4 and
9.5, some new contributions; possible generalizations are indicated in Section 9.6.
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9.1 Introduction

The leitmotif of this article is the critical rôle of homomorphisms underlying several
of the functional equations arising in probability theory. When homomorphy is
patently present in a functional equation, then it surely guides the work of extending
classical theorems to a wider context. As for the converse: if absent, one seeks out
any latent structures capable of expressing homomorphy, and so of bearing the fruits
of unity and clarity—through closeness to a paradigm, as in the introductory motto.
We offer several examples, both old and new.

Generally speaking, functional equations, more properly their (continuous)
solutions, play a significant rôle in the asymptotic analysis needed to elicit the
characterization of various laws in probability theory (see [58] for the origins of
such a programme). Below we meet familiar examples of functional equations in
such situations.

The classical context of R generalizes naturally to the metric-group frameworks
of harmonic analysis: a general locally compact group G, alternatively a linear
space—indeed a Hilbert space H. A remarkable instance of generalization is to be
seen in the characterization of infinitely divisible laws, which on R goes back to
Lévy and Khintchine; here the most basic is the Cauchy functional equation (CFE)
in the general form of a homomorphy equation between groups:

�.xy/ D �.x/�.y/ ; (CFE)

its (continuous) solutions termed characters, and the symmetric bi-homomorphy
variant:

�.xy; z/ D �.x; z/�.y; z/ with �.x; y/ D �.y; x/ :

In the bi-additive case � W G2 ! R, putting

 .x/ WD �.x; x/

yields the important associated quadratic form  W G ! R, which may be
equivalently defined (as in [74, Section 6, (6.1)], or with more explicit details as
in [50, L. 5.2.4]) by the Apollonius or quadratic functional equation:

 .xy/C  .xy�1/ D 2. .x/C  .y// I

see also [2, Section 11.1; cf. Chapter 8, the related d’Alembert equation], [84,
Chapter 13], and [86, Section 2.2], the latter in connection with the Chebyshev
‘polynomial hypergroup’—for which see [22], Section 9.6 (and presently below).
Their continuous solutions are critical in establishing the characterization of a
Gaussian measure � [27] either on a locally compact abelian G, or in Hilbert space
H; along the following lines.
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The first of the three equations above introduces duality considerations into a
locally compact abelian G, employing the group OG of continuous unitary characters
� W G ! T, with T the unit circle group in C, and draws on the Pontryagin structure
theorem for G. That and the third equation, with OG replacing G; yields a functional
characterization of a Gaussian measure � via its Fourier transform O�: for some
g 2 G,

O�.�/ D �.g/ exp.� .�// .� 2 OG/ :

For details see [74, IV Theorem 6.1], or [50, Section 5.2], [85, Section 3.2]; for an
example see Section 9.3.3 below. A similar result holds in Hilbert space, which is
of course self-dual, so H replaces both G and OG above—see [74, VI Theorem 4.9].

Noteworthy is that the last formula speaks entirely in the language of
homomorphy.

Indeed, also the Fourier transformation taking � to its ‘characteristic function’
(which uniquely determines the measure):

O�.�/ WD
Z

G
�.g/d�.g/ ; (�)

is itself both an additive and multiplicative homomorphism (on the measures on G,
which form a semigroup under convolution).

A further ubiquitous functional equation is the Gołąb–Schinzel equation [43],
cf. [30]:

�.v C u�.v// D �.u/�.v/ .u; v 2 R/ ; (GS)

whose continuous solutions that are positive on RC (briefly: positive) satisfy for
some � � 0

�.t/ � ��.t/ WD 1C �t .t 2 RC/ :

For a new approach to the proof see Section 9.5. We write � 2 GS to mean that
� satisfies (GS). Equation (GS) is the focus for much of the text below, for good
reason: indeed, for three reasons.

The classical theory of regular variation, RV for short, introduced by Karamata,
studies for f W RC ! RC WD .0;1/ the limit function

�.t/ D �f .t/ WD lim
x!1

f .tx/

f .x/
.t 2 A/ ;

or Karamata kernel, with domain A � RC; if A D RC, f is called regularly varying.
This is the multiplicative formulation, thematic here and of practical significance;
for the additive variant, more convenient in theoretical considerations (for instance,
in Section 9.3.1), see Section 9.7(1). The standard text for RV is [21], BGT below.
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(There is also an associated notion of regularly varying measures: see [53], or [79],
and Section 9.7(4) below.) In his seminal text on probability Feller laid claim to RV
as an important tool: the opening second paragraph of [42, VIII.8], motivating the
significance of RV to probability theory, highlights the quantifier weakening aspect
(visited below) of being prepared to work on the premise of good limiting behaviour
(as above) but initially on only a dense set A (cf. Section 9.2.1).

Above, if A D RC and if � � 1, then f is called slowly varying. In general,
however, as � satisfies the multiplicative Cauchy equation:

�.st/ D �.s/�.t/ ;

a regularly varying function that is measurable/Baire (i.e. with the Baire property)
has a natural characterization as the product of a power function with a slowly
varying factor.

For the purposes of extending the Wiener Tauberian theorem (Section 9.2.6
below) to encompass the Borel summability method (cf. [16, Section 1]), Beurling
introduced what we now know as Beurling slow variation, BSV, employing
functions ' W RC ! RC satisfying

'.x C t'.x//

'.x/
! 1;

with '.x/ D o.x/ as x ! 1: This includes the case, significant to the Borel and
Valiron summability method, of

'.x/ WD p
x:

Such functions are called self-neglecting, ' 2 SN; provided a further technical
condition holds, that the convergence is locally uniform in t: Conditions implying
self-neglect are studied in [16], where for ' 2 SN a more comprehensive theory of
'-regular variation is established by studying limit functions

g.t/ WD lim
x!1

f .x C t'.x//

f .x/
.t 2 A/ :

It also emerged in [16, Section 10.3] (a matter followed through in [18]) that an even
more satisfactory development may be had by going beyond BSV to obtain the even
more comprehensive notion of Beurling regular variation, BRV, which encompasses
both the Karamata theory and the related Bojanić-Karamata/de Haan theory (cf.
BGT Chapter 3). BRV is built around functions ' that are self-equivarying, as in
[71]; for these functions a limit value more general than the ‘1’ above is permitted,
so that

'.x C t'.x//

'.x/
! �'.t/ .t 2 A/ ; (SEA)
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here with A D RC (but see Proposition 1 in Section 9.2.3), and this convergence
demands a side-condition of local uniformity as in .SN/ above (and '.x/ D O.x//.
For � � 1; these specialize to the self-neglecting functions of Beurling, as above.
The key result from [71] is that the limit function �'.t/ satisfies (GS), and this is the
first reason for interest in (GS) in RV.

The second reason is that (GS) may be ‘converted’ very simply into an expression
of homomorphism and so throws much light on an alternative form of the equation
occurring in RV, ‘disguised from birth’ in [11] (cf. BGT Lemma 3.2.1), now known
as the Goldie equation. The latter contains a further auxiliary function  and takes
the form:

K.x C y/ � K.y/ D  .y/K.x/ .x; y 2 RC/ : (GFE)

In the functional equations literature this is a special case of the Levi-Civita
functional equation, albeit a conditioned one, as the quantifiers are bounded:
quantifying over RC—cf. [84, Section 5.4]. However, tracing the direct connection
of (GFE) to (GS), and so to homomorphy, brings untold benefits: see Section 9.2.4,
as already mentioned.

The ‘algebraicization’ needed to release these benefits originates with a largely
forgotten contribution, due first to Popa [76] and later Javor [57], based on the binary
operation, generated from an arbitrary � W R ! R:

u ı� v WD u C v�.u/ ;

for which see Section 9.2.3 below (cf. [28]). This may be traced back to the ‘circle
product’ of ring theory:

x ı y WD x C y C xy I

indeed, ı� reduces to just that for

�.x/ D 1C x:

(For historical background see [72, Section 2.1].) This binary operation re-expresses
(GS) as homomorphy:

�.u ı� v/ D �.u/�.v/ ;

where the right-hand side may be interpreted in various group structures (e.g. the
Pompeiu equation of [84, Example 3.24], where the original circle product ı appears
on both sides).

The third reason can now be declared as the benefit of homomorphy: homo-
morphism into .RC;�/ lessens the burdens of proof in the Beurling theory of
regular variation: the algebra becomes virtually identical to that of the RC classical
theory, leaving only the analysis of local uniformity to be undertaken (cf. Theorem 6
below).
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We therefore advocate a more systematic use of the tool of homomorphy, as a
unifier and clarifier.

The bulk of the material below falls naturally into two parts: first Sections 9.2
and 9.3, and then Sections 9.4 and 9.5, as follows.

In the first part, Section 9.2 discusses (GFE), indicating its relation to (GS),
and considers the Popa operation ı�. We then describe the connection with the
Beurling Tauberian Theorem, a proper extension of the celebrated Wiener Tauberian
Theorem. In passing, we indicate briefly how to solve (GFE) using integration,
which also permits a side glance at the rôle of flows—a natural consequence of
the presence of a group action. In Section 9.3 we pass beyond Karamata kernels
to the Beurling kernels of BRV, and as an application sketch how (GFE) helps
to deduce very directly the form of stable laws associated with one-dimensional
random walks (i.e. walks on the additive group R—see [9] for an a very informative
survey of the theory and application of random walks). The starting point is their
characteristic functional equation .ChFE/, which is briefly deduced ab initio and
then reduced after some work to (GFE)—see Section 9.3.3 below. We also indicate
further literature.

The second part, comprising Sections 9.4 and 9.5, contains new contributions as
supporting material: a new theorem about (ChFE) and novel approaches to solutions
of (GS) that are positive (on RC). The latter functions play a significant rôle in RV,
so direct proofs are of interest.

We complete the circle of ideas in Section 9.6, ending as we began: with the
theme of homomorphy—noting how the characteristic functions of random walks
on some other groups give rise to an integrated functional equation (IFE)—for
background here see [78], inspired by the work of Choquet and Deny [32]. However,
the more natural setting for these is that of a hypergroup structure (sketchily
reproduced below) with binary operation ? and involution, within which these
particular IFEs again reduce to a homomorphy:

K.x ? y/ D K.x/K.y/ : (?)

In brief, cf. [22], or [86, 87]: a hypergroup has as underlying domain a topological
space X (possibly a topological group). The topology may be discrete. Upon
this space is imposed (axiomatically) both a measure-theoretic and a group-like
structure: first, the points x of X are identified with probability measures ıx

degenerate at the points of X; then a binary operation ? is introduced on these (later
extended to a wider domain of measures), and is interpreted much as convolution, so
as to yield a probability measure with compact support (continuously mapped to the
hyperspace K .X/ of (nonempty) compact subsets of X, the latter equipped with the
topology inherited from the Vietoris topology [41, 2.7.20] on the (nonempty) closed
subsets, known also as the Michael topology, in view of the contribution [67]); and
lastly, an involution operation is provided on the point-masses.

This allows a very broad algebraicization of random ‘dynamics’, generated by ?,
within which measures describe the location of ‘random points’ of X. Sometimes
the hypergroup is not much more than a group, as when

ıx ? ıy WD ıxy:
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But often the introduction of ? calls for some quite intriguing ingenuity—as the two
examples of Section 9.6 show.

We close in Section 9.7 with complements, including in Section 9.7(4) indica-
tions of some generalizations.

9.2 From Beurling via Goldie to Gołąb–Schinzel

We begin with a discussion of Equation (GFE) introduced in Section 9.1.

9.2.1 The Goldie Equation

In RV Equation (GFE) emerges from asymptotic analysis (see Section 9.3.1) and is
initially valid on a subset of R (as the domain of convergence of a limit operation), so
it is natural to formalize this phenomenon by weakening the quantifiers, as indicated
in Section 9.1, allowing the free variables to range over a set A smaller than R, which
typically will be a subgroup that is dense. (There is an implicit appeal to Kronecker’s
density theorem here and the presence of two incommensurable elements in A.) The
functional equation in the result below, denoted by (GA), is thus a second form of the
Goldie functional equation. As we see in Theorem 1 below, the two coincide in the
principal case of interest—compare the insightful Footnote 3 of [26]. The notation
H
 below (originating in [26]) is from BGT Sections 3.1.7 and 3.2.1, implying

H0.t/ � t:

Equation (GA) below when A D R is a special case of a generalized Pexider
equation studied by Aczél [1]. In Theorem 1 (CEE) is the Cauchy exponential
equation. Versions of the specific result here, taken from [17, Theorem 1] (where the
proof—based on the Cauchy nucleus of K [63, Section 18.5]—may be consulted),
also appear elsewhere in the literature.

Theorem 1 ([26, (2.2)], BGT Lemma 3.2.1; cf. [3], [84, Proposition 5.8]) For  
with  .0/ D 1; if K 6� 0 satisfies

K.u C v/ D  .v/K.u/C K.v/ .u; v 2 A/ ; (GA)

with A a dense subgroup, then:

(i) the following is an additive subgroup on which K is additive:

A WD fu 2 A W  .u/ D 1g I
(ii) if A ¤ A and K 6� 0; there is a constant � ¤ 0 with

K.t/ � �. .t/ � 1/ .t 2 A/ ; (*)
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and  satisfies

 .u C v/ D  .v/ .u/ .u; v 2 A/ : (CEE)

(iii) So for A D R and  locally bounded at 0 with  ¤ 1 except at 0 W

 .x/ � e�
x ;

for some constant 
 ¤ 0; and so K.t/ � cH
 .t/ for some constant c, where

H
 .t/ WD .1 � e�
 t/=
 :

For the needs of Section 9.5 below, we note briefly that the proof rests on
symmetry in the equation:

 .v/K.u/C K.v/ D K.u C v/ D K.v C u/

D  .u/K.v/C K.u/ :

So, for u, v not in fx W  .x/ D 1g, an additive subgroup,

K.u/Œ .v/ � 1� D K.v/Œ .u/ � 1�;
K.u/

 .u/ � 1 D K.v/

 .v/ � 1 D const. D �;

as in BGT Lemma 3.2.1. If K.�/ is to satisfy (GFE),  .�/ needs to satisfy (CEE).

9.2.2 The Disguised GS

By Theorem 1, assuming its local boundedness, the auxiliary function  of (GFE)
is exponential; with this in mind, we can trace the connection to (GS) as follows.

Recall from Section 9.1 that a function is positive if it takes positive values on
RC:

Recall also that the positive (and likewise, ultimately, the continuous) solutions
of (GS) take the form

� � ��.x/ WD 1C �x ;

with � > 0, for x > �� WD ���1—see Section 9.5. Writing (GS) in the form

�.a C �.a/b/ D �.a/�.b/ ;
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put

A WD �.a/ > 0; B WD �.b/ > 0;

and take f WD ��1
� (which exists to the right of ��/I then a D f .A/; b D f .B/:

Applying f to (GS) yields

a C Ab D f .AB/ W f .A/C Af .B/ D f .AB/ :

Apply the logarithmic transformation: u D log A; v D log B; set K.x/ WD f .ex/; then

f .eu/C euf .ev/ D f .euCv/ W K.u/C euK.v/ D K.u C v/ :

The reverse direction can be effected for non-trivial (i.e. invertible) solutions K
of this last equation � see [20, �7].

9.2.3 Popa (Circle) Operation: Basics

The operation

x ı� y WD x C y�.x/ ;

with � W R ! R arbitrary, was introduced in 1965 for the study of Equation (GS) by
Popa [76], and later Javor [57] (in the broader context of � W E ! F, with E a vector
space over a commutative field F), who observed that this equation is equivalent to
the operation ı� being associative on R, and that then ı� confers a group structure
on G� WD fg 2 R W �.g/ ¤ 0g—see [76, Proposition 2], [57, Lemma 1.2]. We term
this a Popa circle group, or Popa group for short, as the case

�1.x/ D 1C x

(i.e. for � D 1 above, so a translation) yields precisely the circle group of the ring
R, as noted in Section 9.1.

The operation ı� turns � into a homomorphism from

G
C
� D fg 2 G� W �.g/ > 0g

to .RC;�/. For � D �' , arising from ' 2 SE as in (SEA) with natural domain
A D RC; one may in fact extend the definition of �' from RC to G

C
� preserving

homomorphy, as we see presently (Proposition 1). Below, when

�.t/ D 1C �t;
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we use the variants .G�; ı�/ and .G�; ı�/ interchangeably and call �� WD ���1 the
Popa centre of G�: Other notation associated with G� includes 1� for the neutral
element, and t�1� for the inverse of t, and obvious variants of these.

Proposition 1 (Non-zero Uniform Involutive Extension, [18, L.1]) For ' 2 SE,
ı D ı� with � D �' > 0; put

�'.t�1ı / D �'.�t=�'.t// WD 1=�'.t/ .t > 0/ I
then (SEA) holds for A D G

�
CD.��;1/:Moreover, this is a maximal non-vanishing

extension: for each s < ��; assuming '.x C s'.x// > 0 is defined for all large x,

lim
x!1 �'x .s/ D lim

x!1'.x C s'.x//='.x/ D 0 D �.��/ :

Here we see the critical rôle of the Popa origin �� D ���1 : the domain of the
limit operation

lim
x!1 �'x .s/;

used to extend �'; is G�
C. So the argument s here has to take values to the right of

the Popa origin. As � ! 0C the Popa centre recedes to �1 and this extension
falls into line with the natural extension to R� (taken for granted) in the Karamata
theory: see BGT (2.11.2).

With this much isomorphy in place (in fact conjugacy with R), it is natural to
seek further group structures in order to allow (GFE), as a statement about K; to
assert homomorphism between Popa groups:

K.x ı� y/ D K.y/ ı	 K.x/ for some 	 2 GS ; (GBE)

with the side-condition

	.K.y// �  .y/:

We term the above the Goldie–Beurling equation .GBE/, acknowledging the
Beurling connection via �I it is a natural extension of the Pompeiu equation to which
it reduces when � � 	 � �1 [84, Example 3.24], and so links with results not only
of Aczél, but also of Chudziak [33–35], and Jabłońska [55], concerned with the
equation

f .x ıg y/ D f .x/ ı f .y/ (ChE)

with f W R ! .S; ı/ for .S; ı/ some group or semigroup, and g W R ! R continuous,
or locally bounded above.

Javor’s observation regarding associativity has interesting corollaries. (Recall
that positive means positive on RC:/

Lemmacom ([72]) If .GBE/ holds for some injective K; 	 with ı	 commutative,
and � W RC ! R, then
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�.u/ � 1C �u;

for some constant �:

Proof Here

K.u C v�.u// D K.u/ ı	 K.v/ D K.v/ ı	 K.u/ D K.v C u�.v//;

as ı	 is commutative. By injectivity, for all u; v � 0,

u C v�.u/ D v C u�.v/ W u.1 � �.v// D v.1 � �.u// ;

so, as in Theorem 1,

.�.u/ � 1/=u � � D const: ;

for u > 0I taking v D 1 above,

�.u/ � 1C �u;

for all u � 0: ut
Lemmaassoc ([72]) If .GBE/ holds for some injective K; 	 with ı	 associative,
and a positive continuous � W R ! R, then

�.u/ D 1C �u .u � 0/;

for some constant �:

Proof This follows, e.g., from Javor’s observation above connecting associativity
with (GS) [57, p. 235].

9.2.4 Creating Homomorphisms

In this section we demonstrate how to convert two functional equations into
expressions of homomorphy. The immediate use this serves is to enable the solutions
to be ‘read back’ from those of the Cauchy functional equation (CFE), as in
Theorem 5 below. This process is captured in the following routine result concerning
.GBE/. For

ı� D ı0 and ı	 D ı1;

the equation reduces to the exponential format of (CFE) ([63, Section 13.1]; cf.
[54]). The critical case for Beurling regular variation is for � 2 .0;1/; with
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positive continuous solutions described in the table below; the four corner formulas
correspond to classical variants of (CFE). The proof, which we omit, proceeds by a
straightforward reduction to a classical variant of (CFE) by an appropriate shift and
rescaling.

Proposition 2 ([72, Proposition A]; cf. [33]) For

ı� D ır; ı	 D ıs;

and K Baire/measurable satisfying .GBE/; there is 
 2 R so that K.t/ is given by:

Popa parameter s D 0 s 2 .0;1/ s D 1
r D 0 
 t .e
 t � 1/=s e
 t

r 2 .0;1/ 
 log.1C rt/ Œ.1C rt/
 � 1�=s .1C rt/


r D 1 
 log t .t
 � 1/=s t


Below and elsewhere a function K is non-trivial if K 6� 0 and K 6� 1:

Theorem 2 (Conversion to Homomorphy, [72, Theorem 1]) For � 2 GS in the
setting above, .GBE/ holds for positive  in the side-condition and a non-trivial K
iff

(i) K is injective;
(ii) 	 DW  K�1 2 GS; equivalently, either  � 1; or, for some s > 0;

K.u/ � . .u/ � 1/=s and  .0/ D 1; so K.0/ D 0 I
(iii)

K.x ı� y/ D K.x/ ı	 K.y/ : (Hom-1)

Then
(iv) for some constants c; 
 ,

K.x/ � c � Œ.1C �x/
 � 1�=�
; or K.t/ � 
 log.1C �t/

.� D �� > 0/;

or K.x/ � c � .e
x � 1/=
 .�� D 0/:

A related functional equation replaces one instance of K on the right of
.GBE/ by a further unknown function � multiplying  , yielding a ‘Pexiderized’
generalization1

K.x C y�.x// � K.y/ D  .y/�.x/ .x; y 2 R/ ; (GBE-P)

1Acknowledging the connection, the qualifier P in (GBE-P) is for ‘Pexiderized’ Goldie–Beurling
equation—referring to Pexider’s equation: f .xy/ D g.x/ C h.y/ and its generalizations—cf. [29,
30], and the recent [54].
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considered also in [36]. Passage to this more general form enables the inclusion of
(GS) as the case

K �  � �

with � � � � 1:
To apply the earlier argument here, an extension of the Popa binary operation

suggests itself; put

u ı v D u ı˛ˇ v WD ˛.u/C vˇ.u/ ;

with ˛; ˇ continuous and ˛ invertible; this seems reminiscent of [3].

Proposition 3 ([72, Proposition A]) The operation ı is a group operation on
A � R with 0 2 A iff A is closed under ı and for some constants b; c with bc D 0

˛.x/ � x C b and ˇ.x/ � 1C cx:

That is:

˛.x/ � x and ˇ.x/ � 1C cx; OR ˛.x/ � x C b and ˇ.x/ � 1 :

So this is either a Popa group with

x ı y D x ıc y WD x C y.1C cx/;

or the b-shifted additive reals with the operation

x Cb y WD x C y C b:

Remark For the b-shifted additive reals, the neutral element is e WD �b and x�1 D
�x � 2b:

Applying Proposition 3, we deduce the circumstances when (GBE-P) may be
transformed to a homomorphism. Here we see that

K.x/ � . .y/ � 1/=s

only in the cases (i) and (iii), but not in (ii)—compare Theorem 2. Note that in all
cases � is a homomorphism between Popa groups.

Theorem 20 (Conversion to Homomorphy, [72, Theorem 10]) If (GBE-P) is
solved by K for  positive, � positive and invertible, �.x/ � 1C �x (with � � 0/;

then in the equation below ı is a group operation and K�1 is a homomorphism
under ı:
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K�1.u ı	 v/ D K�1.u/ ı K�1.v/ .u; v 2 R/ ; (Hom-2)

iff 	 WD  K�1 2 GS and one of the following three conditions holds:

(i) � D 0; ı D ı0 and ı	 D ıs for some s > 0; then, for some 
 2 R;

K.t/ � �.t/ � .e
 t � 1/=s ;  .t/ � e
 t I

(ii) � D 0; ı	 D ı0 and ı D Cb for some b 2 RI then

K.t/ � �.t C b/ D �.t/C �.b/;  .t/ � 1 .t 2 R/ ;

and � W G0 ! G0 is linear;
(iii) � > 0; ı D ı� and ı	 D ıs for some s � 0; then, for some 
 2 R;

K.t/ � �.t/ � Œ.1C �t/
 � 1�=s; .s > 0/; or 
 log.1C rt/ .s D 0/ ;

 .t/ � .1C �t/
 .s > 0/; or  .t/ � 1 .s D 0/ :

This recovers results in [33].

9.2.5 Beck Sequences, Integration, and Flows

Assuming continuity, we show in this section how to use integration to find the
non-trivial solutions of the following variant of (GFE):

K.x C y�.x// � K.y/ D  .y/K.x/ :

A key tool here, and also in later sections, is an appropriate partitioning of any
interval (range of integration); for this we refer to what we term the Beck '-sequence
tm D tm.u/, defined recursively for u > 0 and ' a solution of (GS) by

tmC1 D tm ı' u D tm C u'.tm/ with t0 D 0 :

Albeit present in [43], the systematic use of such iterations seems to stem from
Beck’s oeuvre on continuous flows in the plane—[5, L. 1.6.4]. The Popa notation
inserted above clarifies that this is the sequence of Popa powers of u under
ı' and so may also be written um

' : So, from the group perspective, this is the
natural discretization with ‘mesh’ size u for the purposes of integration. As ' is
a homomorphism,

'.umC1
' / D '.u/'.um

' / D '.u/mC1'.0/ :

So ([17, Theorem 5], or Theorem 8 below) the sequence tm is divergent, since either
'.u/ D 1 and tm D mu (directly, from the inductive definition), or else '.u/ ¤ 1
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and

tm D u
'.u/m � 1
'.u/ � 1 D .'.u/m � 1/

�
'.u/ � 1

u
(**)

—see, e.g., by Ostaszewski [71, L. 4] (cf. a lemma of Bloom: BGT Lemma 2.11.2).
In either case, for u; t > 0 there exists a unique integer m D mt.u/; the jump index
of t, satisfying

tm � t < tmC1 :

Application: Solutions by Integration To solve the equation above for K;  (and
�/ continuous, note that if K is non-trivial with K.0/ D 0, then for all small enough
u > 0 we have K.u/ non-zero; otherwise the ı�-subgroup2

fu W K.u/ D 0g

accumulates at the origin, and so is dense in RC (forcing K into triviality). Now
proceed as follows. Fix x0; x1 > 0; and denote the corresponding jump indices
i0 D i0.u/ and i1 D i1.u/: so for j 2 f0; 1g

tij � xj < tijC1 :

Now, for the Beck �-sequence tm D um
� ,

K.tmC1/ � K.tm/ D K.u/ .tm/ :

Summing, and setting

h.t/ WD  .t/=�.t/ � 0 .t 2 RC/

(valid as � is positive),

K.tm/ D K.tm/ � K.t0/ D K.u/
m�1X
nD0

 .tn/ D K.u/

u

m�1X
nD0

u�.tn/h.tn/ ;

since t0 D 0.
As above, K.u/ > 0 for small enough u > 0; so we may write with the obvious

notation

2

0 D K.0/ D K.1�/ D K.u ı� u�1
� / D  .u�1

� /K.u/C K.u�1
� / D K.u�1

� /:
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K.ti1 /

K.ti0 /
D K.u/

Pi1�1
nD0  .tn/

K.u/
Pi0�1

nD0  .tn/
D
Pi1�1

nD0 u�.tn/h.tn/Pi0�1
nD0 u�.tn/h.tn/

D
Pi1�1

nD0 .tnC1 � tn/h.tn/Pi0�1
nD0 .tnC1 � tn/h.tn/

!
R x1
0

h.t/dtR x0
0

h.t/dt
D H.x1/

H.x0/
:

Here passage to the limit in the rightmost terms is as u # 0: Above we assume
without loss of generality that H.x0/ > 0. (Otherwise  � 0 on Œ0;1/; implying
that K is constant and yielding the trivial case K � 0.) Passing to the limit as u # 0
in the leftmost term above, by continuity of K; as tij ! xj

K.x1/=K.x0/ D H.x1/=H.x0/ :

Put

c WD K.x0/=H.x0/ I
then, with x for x1,

K.x/ D cH.x/ WD c
Z x

0

h.t/ dt ;

valid for x � 0; as K.0/ D 0:

Remark When

�.t/ � 1 ;  .t/ � e
 t ; h.t/ � e
 t ;

the analysis above lends new clarification, via the language of homomorphisms, to
the ‘classical relation’ in RV that

K D c. � 1/ ;
connecting K and the auxiliary function  ; as in Theorem 1.

Flows (‘Translation Equation’) Subject to K.0/ D 0; assuming positivity of K
(i.e. to the right of 0/; and continuity and positivity of  , we have just seen that the
solution K satisfies, for some c � 0;

K.x/ D c � �f .x/ ;

for

�f .x/ WD
Z x

0

du=f .u/; with f WD �= :

Inspired by Beck [5, 5.25], we may interpret �f as the occupation time measure (of
Œ0; x�/ of the continuous f -flow: dx=dt D f .x/;where f as above measures the relative
velocity of � and  : Furthermore, interpreting ı� as a flow or group action (yielding
the translation equation, cf. [69], [77]) it emerges surprisingly that the underlying
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homomorphy is now expressed not by K; but by the relative flow-velocity f : under
mild regularity assumptions, if K solves (GBE-P), then f satisfies

f .x ı� y/ D f .x/f .y/ .x; y 2 RC/ :

There is a converse for  WD �=f : see [17, 72].

9.2.6 Beurling’s Tauberian Theorem

For ' W R ! RC introduce the following ‘Beurling convolution’:

F �' H.x/ WD
Z

F
�x � u

'.x/

�
H.u/

du

'.x/

D
Z

F.�t/H.x C t'.x// dt ;

reducing for ' � 1 to the classical counterpart

F � H.x/ D
Z

F.x � t/H.t/ dt :

See [18] for background. Substitution of t D .u � x/='.x/ yields

u D ux.t/ WD x C t'.x/;

so that t 7! ux.t/ is a ‘speeded-up’ version of the x-shift t 7! x C t. This includes for

H D .1=a/1Œ0;a�

and

G.x/ WD
X
n<x

gn

the moving average ‘speeded up’ by ', introducing alternative summability
methods:

MA'a .x/ D G �' H.x/ D 1

a

Z xCa'.x/

x
G.u/du D 1

a

xCa'.x/X
x

gn :

Theorem BT (Beurling’s Tauberian Theorem) For K 2 L1.R/ with OK non-zero
on R, and ' Beurling slowly varying, i.e. with

'.x C t'.x//='.x/ ! 1; .x ! 1/ .t � 0/ W (BSV)

if H is bounded, and the following holds for some c 2 R
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K �' H.x/ ! c
Z

K.y/ dy ; (K �' H)

then for all F 2 L1.R/

F �' H.x/ ! c
Z

F.y/ dy .x ! 1/ :

As a sample, we note that the Popa algebraicization enables the following
generalization:

Theorem 3 (Extension to Beurling’s Tauberian Theorem, [18, Theorem 2])
Suppose that:

(i) ' 2 SE, i.e. locally uniformly in t

'.x C t'.x//='.x/ ! �.t/ 2 GS .x ! 1/ .t � 0/ ;

(ii) K 2 L1.R/ with OK non-zero on R,
(iii) H is bounded, and
(iv) (K �' H) holds

then for all G 2 L1.R/

G �' H.x/ ! c
Z

G.y/dy .x ! 1/ :

9.3 Beurling Kernels

We begin by describing the context in which Beurling kernels arise.

9.3.1 Asymptotics

We refer below again to the self-equivarying functions defined by (SE/ of Sec-
tion 9.1. We adopt the additive formulation here. At its simplest, a functional
equation such as (GFE) arises when taking limits

KF.t/ WD limx!1ŒF.x C t'.x// � F.x/� D briefly, lim�
'
t F.x/ ; (BK)

for ' 2 SE; then, with � the associated limit as in .SE/ above, for s; t ranging over
the set A on which the limit function KF, the Beurling kernel of F, exists as a locally
uniform limit:

KF.s C t/ D KF.s=�.t//C KF.t/ W KF.t C s�.t// D KF.s/C KF.t/ :
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So with ı� in mind, both A and KF.A/ carry group structures under which KF is
a homomorphism. Thus, even in the classical context, (GS) plays a significant rôle
albeit disguised and previously unnoticed, despite its finger-print: namely, the terms
C1 or �1, appearing in the formulas for KF (as in Theorem 2).

The more general functional equation, arising in Beurling RV, is the generalized
Goldie–Beurling equation on RC WD Œ0;1/; noted in Section 9.2.3:

K.x C y�.x// � K.y/ D  .y/K.x/ .x; y 2 RC/ (GBE )

(in the two unknowns K and  /; where �.x/ D ��.x/ for some � 2 RC. This arises
quite similarly to (BK) in the context

K.t/ D lim �
'
t F.x/

ı
˚.x/ with  .t/ WD lim˚.x C t'.x//=˚.x/ ;

assuming these limits exist.
The classical Karamata case is � D 0 with A D R, and the general Beurling case

� > 0with A D G
C
� (in which case˚.x/ is Beurling '-regularly varying). In the RV

literature this equation appears in [11], in work inspired by Bojanić and Karamata
[26], and is due principally to Goldie. In both these cases the solution K to .GBE/
describes a function derived from the limiting behaviour of some regularly varying
function F for a suitable auxiliary ˚ .

Example ([18, Corollary 2]) For ' 2 SE; if U satisfies

U.x C t'.x// � U.x/

'.x/
! cUt as x ! 1; for all t � 0 ; (BMA')

and

KV.u/ WD lim
x!1�'

u F.x/='.x/ ;

for V.�/ WD U.��1
' .�// with �' as in Section 9.2.5, then for � D �'

KV.s C t/ D KV.s/e
�t C KV.t/ ;

and so with the notation H� of Section 9.2.1 above, for some c,

KV.s/ D cH�.s/ :

9.3.2 Some “Advanced” Popa Theory: Quantifier Weakening

We illustrate the usefulness of the Popa group structure by surveying some further
results from the recent [18]. These culminate in a theorem on quantifier weakening
(Theorem 5 below) in the demanding context of local uniformity; it in turn relies
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on the ‘subgroup property’ of the domain of definition of certain limit operations
(the sets A

' and Au below). For additional motivation see Proposition 10 in
Section 9.7(5).

The definition of SE in Section 9.1 demands locally uniform convergence: this
motivates the introduction of the following weak notion of uniformity, which is key
to Theorem 4 below. Say that fn ! f uniformly near t if for every " > 0 there is
ı > 0 and m 2 N such that

f .t/ � " < fn.s/ < f .t/C " for n > m and s 2 .t � ı; t C ı/ :

For instance, for ' 2 SN, xn divergent, and f .s/ � 1; if fn.s/ WD '.xn C
s'.xn//='.xn/; then ‘fn ! f uniformly near t for all t > 0:’

The notion above is easier to satisfy than Hobson’s ‘uniform convergence at t’
which replaces f .t/ above by f .s/ twice, [52, p. 110]; suffice it to refer to fn � 0;

and f with f .0/ D 0 and f � 1 elsewhere. (See also Klippert and Williams [62],
where though Hobson’s condition is satisfied at all points of a set, the choice of ı
cannot itself be uniform in t:/

The above notion of uniformity may be equivalently stated in limsup language,
which presently (in Proposition 6) brings to the fore the underlying uniform upper
and lower semicontinuity. We refer to [18, Section 5] for details.

For ' 2 SE we now introduce a further binary operation, one in which a point x
appears as a parameter (we think of this as a circle operation localized to x):

s ı'x t WD s C t�'x .s/;

where

�'x .s/ WD '.x C s'.x//='.x/ :

This notation neatly summarizes two frequently used facts in (Karamata/Beurling)
regular variation: firstly,

x ı' .b ı'x a/ D y ı' a; for y WD x ı' b D x C b'.x/

(so an ‘absorption’ property), and secondly, as x ! 1; locally uniformly in s; t W

s ı'x t ! s ı� t; for � WD limx �
'
x 2 GS :

Here � satisfies (GS), by Ostaszewski [71], so the localized operation ı'x is
asymptotic to a Popa operation ı�. This is used in Proposition 8.

An important rôle is played by the corresponding localized Beck �'x -sequence (or
iteration):

anC1
'x D an

'x ı'x a; a1'x D a : (�'x )
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Its properties are listed below; here to avoid excessive bracketing, the usual
arithmetic operations bind more strongly than Popa operations.

Proposition 4 (Arithmetic of Popa Operations, [18, Proposition 2])

(i) a0'x D 1'x D 0 ; a ı'x a�1
'x D 0 ; for a�1

'x WD .�a/=�'x .a/ I
(ii) x ı' .b ı'x a/ D y ı' a ; for y WD x ı' b I

(iii) x ı' .b ı� a/ D y ı' a�.b/=�'x .b/ ; for y WD x ı' b I
(iv) x D y ı' b�1

'x ; for y WD x ı' b I
(v) �

'
x .am

'x/ D
m�1Q
kD0

�
'
yk.a/ ; for yk D x ı' ak

'x :

Definitions Recalling from Section 9.3.1 that

�
'
t h.x/ WD h.x C t'.x// � h.x/;

and, taking limits here and below as x ! 1, as before (rather than sequentially as
n ! 1/; put for ' 2 SE and with � D �' and �� D ���1

A
' WD ft > �� W �'

t h converges to a finite limitg ;
Au WD ft > �� W �'

t h converges to a finite limit locally uniformly near tg :

So

0 2 A
';

but we cannot yet assume either that A' is a subgroup, or that 0 2 Au ; a critical
point in Proposition 5 below. In the Karamata case ' � 1; A' D A

1 is indeed a
subgroup (see [20, Proposition 1] and Section 9.7(5) below).

For t 2 A
' put

K.t/ WD lim
x!1�

'
t h : (K)

So K.0/ D 0:

Proposition 5 ([18, Proposition 6]) For ' 2 SE; Au is a subgroup of G�
C for

� D �' iff 0 2 Au; then K W .Au; ı/ ! .R;C/; defined by (K) above, is a
homomorphism.

Theorem 4 ([18, Theorem 4]) If the pointwise convergence (K) holds on a co-
meagre set in G

�
C with the limit function K upper semicontinuous also on a co-

meagre set, and, furthermore, the one-sided condition

K.t/ D lim
ı#0

lim sup
x!1

supfh.x C s'.x// � h.x/ W s 2 Œt; t C ı/g (UNIFC)

holds at the origin, then two-sided limsup convergence holds everywhere:
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A
' D Au D G

�
C :

This last result is based on the following monotone convergence theorem, akin
to those of Dini and of Pólya-Szegő; the proof relies on the Baire category theorem.

Proposition 6 (Uniform Upper Semicontinuity, [18, Proposition 4]) If quasi
everywhere fn converges pointwise to f , an upper semicontinuous limit satisfying
quasi everywhere in its domain the one-sided condition

f .t/ D lim
ı#0

lim sup
n

supffn.s/ W s 2 Œt; t C ı/g;

then quasi everywhere f is uniformly upper semicontinuous:

f .t/ D lim
ı#0

lim sup
n

supffn.s/ W s 2 .t � ı; t C ı/g :

Definitions For ' 2 SE and � D �'; put

H�.t/ WD lim
ı#0

lim sup
x!1

sup
˚
h.x ı' s/ � h.x/ W s 2 Œt; t C ı/

�
.t > ��/;

A
�
u WD ft > �� W H�.t/ < 1g :

So Au � A
�
u, as H�.t/ D K.t/ on Au.

The following result clarifies the rôle of uniformity in classical ‘Heiberg–Seneta
boundedness’ terms (for background see BGT (3.2.4) and [17, Section 1,2]).

Proposition 7 ([18, Proposition 9]) For ' 2 SE; the following are equivalent:

(i) 0 2 Au (i.e. Au ¤ ; and so a subgroup);
(ii) limx!1Œh.x C u'.x// � h.x/� D 0 uniformly near u D 0;

(iii) H�.t/ satisfies the two-sided Heiberg–Seneta condition:

lim sup
u!0

H�.u/ � 0 : (HS˙.H�/)

Theorem 5 (Quantifier Weakening from Uniformity, [18, Theorem 6]) If Au
is dense in G

�
C and H�.t/ D K.t/ on Au—i.e. H� W .Au; ı�/ ! .R;C/ is a

homomorphism, then Au D G
�
C and for some c 2 R:

H�.t/ D c log.1C �t/ (t > ��/ :

This uses Proposition 2. Below, again working additively, we put for ' 2 SE

H�.t/ WD lim sup
x!1

h.x ı' t/ � h.x/ .t > ��
' /;
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H�.t/ WD lim inf
x!1 h.x ı' t/ � h.x/ .t > ��

' /:

Theorem 6 ([18, Theorem 10]) In the setting of Theorem 5, for ' 2 SE; if the set
S on which H�.t/ and H�.t/ are both finite contains a half-interval Œa;1/ for some
a > 0, then there is a constant K > 0 such that for all large enough x and u

h.u'.x/C x/ � h.x/ � K log u :

The proof parallels a classical result (that of BGT Theorem 2.0.1), but with the
usual powers an replaced by the (localized) Beck �'x -iterates, as in Equation (�'x )
above. But there is heavy reliance on the estimation results below for am

'x that are
uniform in m (this only needs �'x ! �� pointwise):

Proposition 8 ([18, Proposition 11]) If ' 2 SE with � D �' > 0; then for any
a > 1 and 0 < " < 1 W

(i) (am
'x-estimates under �'x ) for all large enough x,

.1 � "/ � �'x .a
m
'x/

1=m=��.a/ � .1C "/ .m 2 N/ ;

(ii) (am
'x-estimates under ��) for all large enough x,

��.a.1 � "//m
1 � " � "

1 � " � ��.a
m
'x/ � ��.a.1C "//m

1C "
C "

1C "
.m 2 N/ ;

(iii) am
'x ! 1; and

(iv) there are C˙ D C˙.�; a; "/ > 0 such that, for all large enough x and u,

am
'x � u < amC1

'x H) mC� � log u � .m C 1/CC :

9.3.3 Random Walks with Stable Laws: GFE Again

A random variable X has a stable law if the probability law (measure) � of the
random walk Sn WD X1 C : : :C Xn; in which the steps are executed on the group of
additive reals R independently and with identical law, is again of the same type. The
latter means that the distribution function

F.x/ D Prob�ŒX � x�

of X and that of each Sn should be equal up to a change of ‘scale and location’:

Sn
DD anX C bn ; (D)
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for some (real) norming constants an; bn with an > 0. Here
DD denotes equality

of distributions. Such a law may be exactly characterized by its characteristic
functional equation, Equation (ChFE) below, obtained from (D) on taking its
Fourier transform (using the linearity and multiplicativity features of the transform).
Since the characteristic function here is

'.t/ D EŒexp.itX/� D
Z
R

exp.itx/ dF.x/

(identifying the characters as

�t.x/ D eitx

—cf. [84, Example 3.7]), (D) above yields

'.t/n D '.ant/ exp.ibnt/ .n 2 N/ : (ChFE)

In what follows we restrict attention to t � 0, without loss of generality (as
'.�t/may be reconstructed via complex conjugation). The standard way of solving
(ChFE) is to derive from it the equations satisfied by the functions a W n 7! an

and b W n 7! an: A direct approach to the characterization of the laws was
recently demonstrated in Pitman and Pitman [75], who proceed by proving the map
a injective, extending both of the maps a and b to RC, and exploiting the classical
Cauchy functional equation (CFE) in both cases. For a background textbook account
see [58] and for subsequent developments, based on the Choquet–Deny Theorem
[45]; the stable laws are given a sketchy account in [78, Chapter 3], and more recent
studies include [46] and [47].

Here, however, we indicate why (ChFE) can be re-configured to (GFE), so that
(GFE) may be used just once, thereby simplifying the Pitman approach and yielding
an even more direct approach. Though we adopt a somewhat cavalier fashion
here, the procedure is made entirely rigorous in [73], and we comment below on
the underlying justification. Take logarithms (trickery!—see below) and, adjusting
notation, pass first to the form

f .g.n/t/ D nf .t/C h.n/t .n 2 N; t 2 RC/ ;

where now RC WD .0;1/: Suppose both that g is injective and that one may
pass to continuous arguments, in the manner of Kendall’s Theorem, for which see
Section 9.7(4) (for the double trickery involved here—again see below); then, taking
s D g.n/; this is

f .st/ D g�1.s/f .t/C h.g�1.s//t .s; t 2 RC/ ;

or with F.t/ WD f .t/=t; G.s/ WD g�1.s/=s; H.s/ WD hg�1.s/=s, by symmetry:

F.st/ D F.t/G.s/C H.s/ D F.s/G.t/C H.t/:
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There are now two cases to consider, both leading to the multiplicative form of
(GFE):

Case (i). If F.1/ D 0; then taking s D 1 yields F.t/ D H.t/, and so

F.st/ � F.s/ D F.t/G.s/ :

So � D F indeed satisfies the multiplicative form of the Goldie equation.

Case (ii). On the other hand, if F.1/ ¤ 0; then passing from F to F=F.1/ and
from H to H=F.1/ we may assume without loss of generality that F.1/ D 1 (i.e.
f .1/ D 1/I then, taking t D 1,

F.s/ D G.s/C H.s/:

Eliminating H gives

F.st/ � F.s/ D .F.st/ � 1/ � .F.s/ � 1/ D .F.t/ � 1/G.s/ ;

so � D F � 1 now satisfies the multiplicative form of the Goldie equation.
Either way, putting s D eu and t D ev; and K.u/ D �.eu/ and  .u/ D G.eu/; we

obtain the additive form:

K.u C v/ � K.u/ D K.v/ .u/ :

So (ChFE) is (GFE), again in disguise!
As to the trickery above: application of the logarithm and the passage from

discrete to continuous in the transformation of (ChFE) into (GFE) is justified in
[73] from knowledge of the norming constants, that an D nk for some k ¤ 0 (as
then a extends to an injective function g; and the values am=an form a dense set).
That is an acceptable way to proceed for probabilists, by virtue of an elementary
probabilistic proof identifying the norming constants (cf. [42, VI.1, Theorem 1], [75,
Lemma 5.3]); the next section (Section 9.4) rids us of this dependence on ‘outside
material’.

The first trick above (taking logarithms) is justified by Lemma 1 below; the
subsequent trick relies on continuity of K and on reference to a dense subset of
R, via the simple Corollary below, the routine proof of which we omit: it is similar
in spirit to the proof of Lemma 1. (Unlike for the constants an; an explicit form for
the bn is not needed.)

Lemma 1 ([73, L. 1]) For continuous ' 6� 0 satisfying (ChFE) with an D nk

(k ¤ 0), ' has no zeros on RC.

Proof If '.�/ D 0 for some � > 0; then '.am�/ D 0 for all m, by (ChFE). Again
by (ChFE),

j'.�am=an/jn D j'.am�/j D 0;
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so ' is zero on the dense subset of points �am=an; then, by continuity, ' � 0 on
RC, a contradiction. ut
Corollary ([73, C. 1]) Equation (ChFE) with an D nk (k ¤ 0) holds on the dense
subgroup

AQ WD fam=an W m; n 2 Ng W

there are constants fbm=ngm;n2N with

'.t/m=n D '.tam=an/ exp.ibm=nt/ .t � 0/ :

Reference to case (ii) in the reduction to (GFE) above and to the known
continuous solutions of (GFE) yields the form of the (non-degenerate) stable law:
for some 
 2 R, � 2 C and with A WD �=
 and B WD 1 � A (for 
 ¤ 0),

f .t/ D log'.t/ D
(

f .1/.At
C1 C Bt/; for 
 ¤ 0;

f .1/.t C �t log t/; for 
 D 0;
.t > 0/ : (�)

Here ˛ WD 
 C 1 is called the characteristic exponent.

Remark The form (�) here takes no account of a further probabilistic ingredient:
restrictions on the two parameters 
 and � (equivalently ˛ and �). Such restrictions
follow from the asymptotic analysis of the ‘initial’ behaviour of the characteristic
function ' (i.e. near the origin). This is equivalent to the ‘final’ or tail behaviour (i.e.
at infinity) of the corresponding distribution function, and relates to its skewness, i.e.
its ‘tail balance’ ratio—the asymptotic ratio of the distribution’s tail difference to its
tail sums; for the details see [75, Section 8].

9.4 The Stable Laws Equation on R

Treating the stable laws equation (ChFE) purely as a functional equation for
determining continuous solutions calls for the removal of spurious probabilistic
assumptions. It emerges that knowledge of an may be deduced from (ChFE)
provided the continuous solution ' is to be non-trivial, i.e. neither j'j � 0 nor
j'j � 1 holds on Œ0;1/. That is: the explicit form of an may be deduced without
assuming that ' is the characteristic function of a (non-degenerate) distribution, as
we now show.

Theorem 7 If ' is a non-trivial continuous function and satisfies (ChFE) for some
sequence an � 0, then an D nk for some k ¤ 0:

We will first need to establish a further lemma and proposition.
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Lemma 2 If (ChFE) is satisfied by a continuous and non-trivial function ', then
the sequence an is either convergent to 0; or divergent (‘convergent to C1’).

Proof Suppose otherwise. Assume first that, as an � 0, for some infinite M � N,
and a > 0;

am ! a through M :

Without loss of generality M D N, otherwise interpret m below as restricted to M.
For any fixed t; amt ! at; so

Kt WD supmfj'.amt/jg

is finite by the continuity of '. Then, for all m,

j'.t/jm D j'.amt/j � Kt;

and so j'.t/j � 1; for each t: Then, by continuity,

j'.at/j D lim
m

j'.amt/j D lim
m

j'.t/jm D 0 or 1 :

So, setting Nk WD ft W j'.at/j D kg;

RC D N0 [ N1 :

By the connectedness of RC, one of N0;N1 is empty, as the disjoint sets Nk are
closed; so respectively j'j � 0 or j'j � 1; contradicting non-triviality.

To complete the proof, suppose there exist M � N and M
0 � N such that

limm2M am D 1 and limm2M0 am D 0: The former implies that j'.0/j D 1 W as
' is non-trivial, we may choose t with j'.t/j ¤ 0I then, by continuity at 0,

j'.0/j D lim
m2M j'.t=am/j D lim

n2M exp

�
1

m
log j'.t/j

�
D 1:

But, again by continuity at 0, for each t;

lim
m2M0

j'.t/jm D lim
m2M0

j'.amt/j D j'.0/j D 1;

and so j'.t/j D 1 for all t; contradicting non-triviality. ut
The next result essentially contains [75, Lemma 5.2]; the latter relies on j'.0/j D

1; the continuity of '; and the existence of some t with '.t/ < 1 (guaranteed below
by the non-triviality of '/: We assume less here, and so must also consider the
possibility that j'.0/j D 0 (automatically excluded if ' is the characteristic function
of a distribution [42, Chapter XV, Lemma 1]).
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Proposition 9 If (ChFE) is satisfied by a continuous and non-trivial function ' and
for some c > 0; j'.t/j D j'.ct/j for all t > 0; then c D 1.

Proof Note first that an > 0 for all nI indeed, otherwise, ak D 0 for some k � 1 and

j'.t/jk D j'.0/j .t � 0/ :

Assume first that k > 1I taking t D 0 yields j'.0/j D 0 or 1; which as in Lemma 2
implies j'j � 0 or j'j � 1: If k D 1; then j'.t/j D j'.0/j; and for all n > 1;

j'.0/jn D j'.0/jI

so again j'.0/j D 0 or 1; which again implies j'j � 0 or j'j � 1:

Applying Lemma 2, the sequence an converges either to 0 or to 1:

We consider these two cases separately.

(i) Suppose that an ! 0: Then, as above (referring again to Kt), we obtain

j'.t/j � 1;

for all t: Now, since

j'.0/j D lim
n

j'.ant/j D lim
n

j'.t/jn ;

if j'.t/j D 1 for some t; then j'.0/j D 1, and that in turn yields, for the very
same reason, that

j'.t/j � 1

for all t; a trivial solution, which is ruled out. So in fact j'.t/j < 1 for all t; and
so j'.0/j D 0:

Now suppose that for some c > 0; j'.t/j D j'.ct/j for all t > 0: We show
that c D 1: If not, without loss of generality c < 1; (otherwise replace c by c�1
and so, by hypothesis, j'.t=c/j D j'.ct=c/j D j'.t/j ); then

0 D j'.0/j D lim
n

j'.cnt/j D j'.t/j; for t > 0 ;

and also for t D 0I so ' is trivial, a contradiction. So indeed c D 1 in this case.
(ii) Suppose now that an ! 1: Choose s with '.s/ ¤ 0I then, by (ChFE),

j'.0/j D lim
n

j'.s=an/j D lim
n

exp

�
1

n
log j'.s/j

�
D 1 ;

i.e. j'.0/j D 1: Again as in case (i) above, suppose that for some c > 0;



9 Homomorphisms from Functional Equations in Probability 199

j'.t/j D j'.ct/j

for all t > 0: To show that c D 1; suppose again without loss of generality that
c < 1I then

1 D j'.0/j D lim
n

j'.cnt/j D j'.t/j for t > 0 ;

and so j'.t/j � 1; for t � 0; again a trivial solution. So again c D 1: ut
Proof of the Theorem 7 (ChFE) implies that

j'.amnt/j D j'.t/jmn D j'.amt/jn D j'.amant/j .t � 0/ :

By Proposition 9, an satisfies the discrete version of the Cauchy equation

amn D aman .m; n 2 N/ ;

whose solution is known to take the form nk, since an > 0 (as at the start of the
proof of Proposition 9). If an D 1 for some n > 1; then, for each t > 0; j'.t/j D 0

or 1 (as j'.t/j D j'.t/jn) and so again, by continuity as in Lemma 2, ' is trivial. So
k ¤ 0: ut
Remark Continuity is essential to the theorem: take an � 1, then a Borel function
' may take the values 0 and 1 arbitrarily.

9.5 Positive Solutions of GS

In this section we include various new arguments providing information on the
positive solutions of (GS) by way of fairly direct links to the equation. Theorem BM,
with a family resemblance to Theorem 1, is derived here more directly than if we
were to specialize results from Brzdęk [29] and Brzdęk-Mureńko [31]. Theorem B,
which follows it and in combination yields the dichotomy: f is either never 1 or
always 1 on RC WD .0;1/, is taken from these papers, but again the proof here is
more direct, and shorter. The final result is Theorem 9, suggested by the recent [71,
Theorem 6].

For completeness, as it is needed in Theorem B (and obliquely referred to in
Section 9.2.5 above), we begin with the following, which we quote verbatim, as it
is short.

Theorem 8 (From [17, Theorem 5]) If ' W RC ! RC satisfies (GS), then '.x/ �
1 for all x > 0:

Proof Suppose that '.u/ < 1 for some u > 0I then v WD u=.1 � '.u// > 0 and so,
since v D u C v'.u/;

0 < '.v/ D ' .u C v'.u// D '.u/'.v/ :

So, cancelling by '.v/ > 0; one has '.u/ D 1; a contradiction. ut
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In Theorems BM and B below we use f rather than ' for ease of comparison
with [31].

Theorem BM ([31, Lemma 7]) For f > 0 on RC a solution of (GS), if f ¤ 1 at
all points, then f .x/ D 1C cx .x > 0/ for some c > 0:

Proof By symmetry, for any x; y > 0

f .x C yf .x// D f .x/f .y/ D f .y C xf .y// :

Fix x and y and put u WD x C yf .x/ and v WD y C xf .y/: If these are unequal, without
loss of generality suppose that v > u: Then .v � u/=f .u/ > 0; so

0 < f .u/ D f .v/ D f .u C f .u/.u � v/=f .u// D f .u/f ..u � v/=f .u// :

Cancelling by f .u/ > 0 gives f ..u �v/=f .u// D 1; contradicting the hypothesis that
f is never 1: So u D v: that is, for all x; y > 0

x C yf .x/ D y C xf .y/ I

equivalently, for all x; y > 0

x=.1 � f .x// D y=.1 � f .y// D const. D c ;

say. Then f .x/ D 1C cx for all x > 0: So c > 0: ut
Below we suppose that f .a/ D 1; for some fixed a > 0: Note that tn WD na is

a Beck sequence under ıf with step size aI so f .na/ D 1; since f .tn/ D f .t1/n (see
Section 9.2.5).

For f a positive solution of (GS), we denote here the positive range of f by

Rf WD fw W .9x > 0/w D f .x/g:

If f � 1; then Rf D f1g:
Lemma B ([29, Corollary 1], cf. [31, Lemmas 1,2]) If the value 1 is achieved at
a > 0 by a solution f > 0 on RC of (GS), then

(i) the range set Rf is a multiplicative subgroup;
(ii) f .x C a/ D f .x/ for all x > 0I

(iii) f .wa/ D 1 for w 2 Rf :

Proof For (i), (GS) itself implies that Rf is a semigroup. We only need to find the
inverse of w WD f .x/ with x > 0: Choose n 2 N with na > x: Put y D .na � x/=f .x/I
then y > 0 and

f .x/f .y/ D f .x C yf .x// D f .na/ D 1 :
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So f .y/ 2 Rf . For (ii), note that, as f .a/ D 1;

f .x/ D f .x/f .a/ D f .a C xf .a// D f .x C a/:

For (iii), since (i) holds, this time write w D 1=f .x/ for some x > 0; then by (ii)

f .x/ D f .x C a/ D f .x C f .x/a=f .x// D f .x/f .aw/ ;

and cancelling by f .x/ > 0 gives f .aw/ D 1: ut
Theorem B ([29, Theorem 3]) For f a positive solution of (GS), if 1 2 Rf , then
f � 1:

Proof Suppose otherwise; then, by Theorem 8 above, f .u/ > 1; for some u > 0:

Choose a > 0 with f .a/ D 1 and n 2 N with

na > u=.f .u/ � 1/ > 0:
Put

v WD na C u=.1 � f .u// > 0 I v C naf .u/ D u C vf .u/C na :

So, since f .u/ 2 Rf ; applying Lemma B (first (iii) with f .u/ in place of w giving
f .af .u// D 1, then (ii) repeatedly, but with af .u/ in place of a, and then again (ii)
repeatedly, but this time with a)

0 < f .v/ D f .v C naf .u// D f .u C vf .u/C na/

D f .u C vf .u// D f .u/f .v/ ;

yielding the contradiction f .u/ D 1: Hence f .x/ D 1 for all x: ut
We now revert to the ' notation. In Section 9.2.5 above, K.u/ > 0 was posited

for u > 0 near 0: Below a similar assumption, justified by Theorem 8 above, is made
for K WD ' � 1: For ' W Œ0;1/ ! R; denote its level set above unity by:

LC.'/ WD ft 2 RC W '.t/ > 1g :

Theorem 9 If the continuous solution ' of (GS) with '.0/ D 1 has a nonempty
level set LC.'/ containing an interval .0; ı/ for some ı > 0, then ' is differentiable
and for some � > 0

'.t/ D 1C �t :

Proof For T 2 LC WD LC.'/ and u > 0; write m.u/ D mT.u/ for the jump index of
T for the Beck sequence tm.u/; as in Section 9.2.5 above; then

tm.u/.u/ � T < tm.u/C1.u/ :



202 A.J. Ostaszewski

By (**) of Section 9.2.5 (with m D m.u/) and continuity at 0 of ',

�m.u/.u/ WD tm.u/C1.u/ � tm.u/.u/ D u'.u/m.u/

� T.'.u/ � 1/C u ! 0 as u ! 0 ;

for u 2 LC uniformly in T > 0 on compacts. Likewise for u … LC, as then

�m.u/.u/ D u:

Consider any null sequence un ! 0 with un > 0: We will show that

f.'.un/ � 1/ =un g

is convergent, by showing that down every subsequence f.'.un/� 1/ =un gn2M there
is a convergent sub-subsequence with limit independent of M.

Without loss of generality we take 0 < un 2 LC for all n (so un < ı/: Now
consider an arbitrary T 2 LC: Passing, if necessary, to a subsequence (dependent on
T/ of f.'.un/ � 1/ =un gn2M, we may suppose, for k.n/ WD mT.un/; that

�k.n/.un/ ! 0 I

then along M

jT � tm.un/.un/j � �m.un/.un/ ;

and so

tk.n/.un/ D tm.un/.un/ ! T:

Again by (**) and continuity at T of '; putting � WD .'.T/ � 1/=T > 0;

'.un/ � 1
un

D '.un/
m.un/ � 1

tm.un/.un/
D '.tm.n/.un// � 1

tm.un/.un/
! '.T/ � 1

T
D � ;

along M to a limit � dependent only on T (and not on M). So f.'.un/ � 1/ =un g
is itself convergent to �: But this holds for any null sequence fung in RC; so the
function ' is differentiable at 0; and so is right-differentiable everywhere in LC (see
[71, Lemma 3]). It is also left-differentiable at any x > 0, as follows. For y with
0 < y < x; put

t WD .x � y/='.y/ > 0:

Then x D y C t'.y/; so
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'.x/ � '.y/
x � y

D '.y C t'.y// � '.y/
x � y

D Œ'.t/ � 1�'.y/
x � y

D '.t/ � 1
t

:

But t # 0 as y " x (by continuity of ' at x/; and

.'.t/ � 1/=t ! '0.0/:

So ' is left-differentiable at x and so differentiable; from here

'0.x/ D '0.0/:

Integration then yields the form of '.x/; also, since T above was arbitrary, for
any T 2 LC and with un ! 0 as above,

� D lim
n2N

f.'.un/ � 1/ =un g D '0.0/ D .'.T/ � 1/=T W

'.x/ D 1C �x .x 2 RC/ :

ut

9.6 Two Random Walks in R
3

We close by taking note of two higher-dimensional analogues of the random walk
of Section 9.3.2, one unbounded, the other not. These are random walks involving
independence both of the step size and of the direction, the latter with (directional)
symmetry, i.e. its probability law is invariant under rotation; the object of study is
the distribution of the distance from a designated starting point o. The unbounded,
locally compact, case is a motion in space starting from the origin with spherical
symmetry (which can thus be described by the distribution of its radial component),
the other, compact, case a motion on the sphere with starting point o at its north
pole (yielding angular, or great circle, distance from o). The correspondingly radial
or angular-wise characteristic function satisfies a functional equation involving an
‘averaging homomorphy’:

K.x/K.y/ D
Z 1

�1
K.x ı� y/ d .�/ ; (AH)

with the auxiliary function  a direction-cosine distribution, and two corresponding
commutative binary operations with real parameter �:

x ı� y D .x2 C y2 C 2�xy/1=2 ;

x ı� y D xy C �
p
1 � x2

p
1 � y2 :
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These expressions arise from the cosine rules for Euclidean and spherical Triangles,
respectively. The first of the two gives the radial distance generated by the two step
lengths x; y with � the direction-cosine of the angle between them (note the relation
to the Gauss functional equation [2, Chapter 3, Example 6]); similarly, the second
measures angular distance. As the action which generates motion is not associative
in the usual sense, associativity has to be replaced by a probabilistic variant.
Replacing the step-length realizations by random variables, the usual associativity

property is re-interpreted modulo ‘equality in distribution’ (cf.
DD in Section 9.3.2)

for the corresponding random outcomes ‘.X ı Y/ı Z’ and ‘X ı .Y ı Z/’ (with  
denoting the law of �/: The two kinds of motion were studied, respectively, first by
Kingman [61] and next by Bingham [8]. They were very much driven by the work
of Bochner, especially [23–25]; indeed, on the basis of this link, one may regard
Bochner as the forerunner to/founding father of hypergroups.

The Kingman non-degenerate case finds that probabilistic associativity holds iff
the direction-determining auxiliary function is  	 with

d 	.�/ / .1 � �2/	�1=2d�

(for a parameter 	 > �1=2/; a matter earlier recognized by Haldane [48]; the
(radial) characteristic function of the walk is then

K.u/ D
Z 1

�1
eiu�d 	.�/ � �	.u/ ;

where the lambda Bessel function is defined by

�	.t/ WD .t=2/�	J	 .t/� .	 C 1/ :

The Bingham non-degenerate case finds that probabilistic associativity holds iff the
auxiliary function  again has the same  	 form and, up to normalization, the
corresponding (angular) characteristic functions K are the Gegenbauer orthogonal
polynomials (ultraspherical polynomials): Gegenbauer’s original analysis plays a
rôle in both random walks.

The two degenerate cases of (AH) in the spherical case correspond to  

representing either ı0—a unit point-mass at 0; or 1
2
.ı�1 C ıC1/—two half-unit

masses at ˙1: The former yields the Cauchy multiplicative equation on Œ�1; 1�;
as may be expected, the latter the cosine functional equation.

The general framework for non-deterministic binary operations is provided by
the theory of hypergroups, as noted in the introduction. Thus the two examples
above yield Kingman’s Bessel hypergroups [22, 3.5.68] (cf. [86, Section 4.1], [87]),
and Bingham’s Gegenbauer polynomial hypergroups [22, 3.4.23] (cf. [86, Chapter
2]). A few words may help to provide some context.

The latter ‘polynomial hypergroup’ is the easier to describe. Its underlying
topological space is discrete: N. Convolution is defined using a family of orthogonal
polynomials fCn.t/g acting as a base in the linear space of all polynomials; the
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binary operation on the pair k; l 2 N is computed from the product CkCl via
its ‘linearization’—its orthogonal expansion. The indices n for Cn with non-zero
coefficients in the expansion (the direction cosines) are the possible locations in N,
with the cosines prescribing the probability of random selection. This calculation is
also at the heart of [8, Proposition 3b], which uses classical orthogonal polynomials
with weight function  	 .

The other example is a hypergroup on RC WD Œ0;1/ with Euclidean topology.
The connection with Bessel’s differential equation makes Kingman’s random walks
a canonical example of hypergroups generated by a standard Sturm–Liouville (S-L)
differential operator

Lx WD �@2x � p0.x/
p.x/

@x ;

where p.x/ denotes, as usual, the S-L coefficient function, so that the subscript x
signifies the variable of differentiation (cf. [22, 3.5]). The convolution of two unit
point-masses at x and y is determined by their action on a C1.RC/ function f , which
action maps f to the evaluation uf .x; y/ at .x; y/ of the unique function u D uf .:; :/

defined on R
2C and satisfying the p.d.e.

Lxu.x; y/ D Lyu.x; y/ ;

with boundary information along the axes x D 0 and y D 0 provided by f .
The upshot of this is to fulfil a like aim as in the earlier example: to define a

binary operation ?. The continuous analogue, based on (AH) above, is

f .x ? y/ D
Z
R

C

f .t/.ıx ? ıy/.dt/ WD
Z 1

�1
f .x ı� y/ .d�/ ;

where f .x ? y/ stands for f .ıx ? ıy/, and so is the mean value of f under the measure
ıx ? ıy, and the function u.x; y/ WD f .ıx ? ıy/ is to satisfy the S-L p.d.e. as above.
(This assumes f is integrable with respect to such measures.)

The characteristic function K now solves (AH) above iff it solves the functional
equation

K.x ? y/ D K.x/K.y/ ; (?)

and now this again expresses homomorphy. In the Sturm–Liouville case, by dint of
the construction of the hypergroup relying on the operator Lx, Equation (?) reduces
(via separation of variables) to solving a Sturm–Liouville eigenvalue problem:

LxK.x/ D const. ;
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with

p.x/=p0.x/ � x ;

which identifies that K is a lambda Bessel function [22, 3.5.23]. In the polynomial
case, Equation (?) reduces to a polynomial recurrence equation, with solution
yielding the Gegenbauer polynomials.

Remarks We note two significant underlying features, correlated with the homo-
morphy asserted by (?).

Firstly, the r-th normalized coefficient (i.e. modulo division by the usual binomial
coefficients) �r in any valid finite Taylor expansions of log K.t/ is ‘additive’:

�r.X ı Y/ D �r.X/C �r.Y/

(these are the Haldane ‘cumulants’)—see [61, Section 4]; here by a valid expansion
is meant that the powers in the expansion corresponding to r are taken only as far as
the finiteness of the corresponding moments allows.

Secondly, the radial characteristic function encodes homomorphy:

EŒK.tX/�EŒK.tY/� D EŒK.t.X ı Y//� :

9.7 Complements

1. Additive Versus Multiplicative, and Double Sweep The definition of a regularly
varying f defined on RC is usually given in multiplicative form, as that is generally
found most useful in applications; the definition immediately suggests a connection
with scaling phenomena, as in the Fechner theorem in physics—see [10]. One is
tempted to interpret these phenomena as functional equations of absent scaling: to
solve f .x/ D '.g.x// in the absence of any natural scaling effect between f and g.
This is solved on the assumption of asymptotic scale independence of f from g W

f .�x/ 
  .�/f .x/

for some  , i.e. on the assumption that f is regularly varying. [10] is a very
illuminating survey of the applications of RV also in other fields.

The theoretical work in RV, on the other hand, prefers the equivalent additive
form of regular variation (as in Section 9.3.1), with f defined on R satisfying

f .x C t/ � f .x/ ! k.t/ ;

so that k will satisfy the additive Cauchy equation. This limit function k may be
regarded as the first-order derivative of f ‘at infinity’. Of interest is then a second-
order asymptotic form arising from the divided difference:
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Œf .x C t/ � f .x/� =g.x/

(comparing growth rates) studied in the Bojanić-Karamata/de Haan theory, BGT
Chapter 3. The general denominator yields the advantages of ‘double sweep’ (BGT
3.13.1) by capturing both first- and second-order at once (setting g � 1 in the former
case). Consequently, the Beurling divided difference story of BRV captures the best
of both worlds and encompasses all the forms of RV see especially [20, �7].

2. Automatic Continuity In the presence of even the merest hint of additional
good behaviour, an additive function is beautifully well-behaved—it is (continuous,
and hence) linear. The general context for results like this is that of automatic
continuity, studied, e.g., by us [12, 13, 15, 17] for real analysis, Hoffmann-Jørgensen
in [80, Part 3, Section 2], [83] and [82] for groups, etc. For Banach algebras and
Gelfand theory, see, e.g., Dales [37, 38], Helson [49, p. 51], [39, 40], and the recent
[60, esp. Corollary 16.7]. The pathology of discontinuity in the absence of good
behaviour here is tied to set-theoretic axioms (cf. the foundational discussion in [19,
Appendix 1]).

For a study of these features and the up-grade phenomenon (as in Theorem 9),
that continuity implies differentiability, see [44] and the textbook [56].

3. Generalized Quantifiers Relevant for us are weakenings of the universal quanti-
fier, along such lines as ‘for quasi all x’, i.e. for x off a negligible set (and elsewhere
‘there exist an infinite subset of N’ [20]). Mostowski [68] was the first in modern
times to begin a study of generalized quantifiers, followed by Lindström [66] (for
a textbook treatment see [6, Chapter 13]), and most notably Barwise [4]—see
[89] for an account of this important development, and e.g. [65] for some recent
developments in this field. Van Lambalgen [88] traces connections here with the
conditional expectation of probability theory.

4. Sequential Limits The quantifier weakening here has been concerned with
thinning as much as possible the set of � occurring in � C x or �x. Related,
and equally important, is the question of thinning the set of x here—that is, in
letting x ! 1 through not all the reals, but some thinned subset. The most
familiar case is taking limits sequentially, as in Kendall’s theorem (BGT, Theorem
1.9.2; cf. [10] and Section 9.3.3): for any sequence fxng with lim supxn D 1
and lim supxnC1=xn ! 1 (for instance, xn D n/; if f is smooth enough (e.g.
continuous) and

anf .�xn/ ! g.�/ 2 .0;1/ 8� 2 I

for some finite interval I � .0;1/ and some sequence an ! 1, then f is regularly
varying. (Here an regularly varying follows from smoothness of f :) The question
arises of simultaneous thinning of � and x together. Another case here is regular
variation—in many dimensions, or of measures:

nP.a�1
n x 2 :/ ! �.:/ .n ! 1/ ;



208 A.J. Ostaszewski

(here regular variation of an ! 1 is assumed) and the limit (spectral) measure �
is on the unit sphere S; see, e.g., Hult et al. [53] or [79, Chapter 6] for background.
Now thinning is to be done on subsets of S on which convergence is assumed.
For convergence-determining classes here, see, e.g., Billingsley [7, Section 1.2],
Landers [64], Rogge [81].

5. Regular Variation Without Limits In the absence of limit functions one studies the
‘limsup’ variants. As these are subadditive, one asks when does this subadditivity
lead to additivity. The following identifies where naturally to apply quantifier
weakening; Theorem 5 of Section 9.3.2 yields a sample answer: see also [18, 20].

Proposition 10 (Additive Kernel, [20, Proposition 1]) For F W R ! R put

AF WD fu W lim
x!1ŒF.u C x/ � F.x/� exists and is finiteg ;

and, for a 2 AF; put G.a/ WD limx!1ŒF.a C x/ � F.x/�: For u 2 R define

F�.u/ WD lim supx!1ŒF.u C x/ � F.x/� :

Then:

(i) AF is an additive subgroup;
(ii) G is an additive function on AF;

(iii) F� W R ! R [ f�1;C1g is a subadditive extension of G;
(iv) F� is finite-valued and additive iff AF D R and F�.u/ D G.u/ for all u.

This directly connects to Theorem 1 in Section 9.2, as the identity

uv � u � v C 1 � .1 � u/.1 � v/

gives that .1�e�
x/=
 is subadditive on RC WD .0;1/ for 
 � 0; and superadditive
on RC for 
 � 0:

6. Functional Equations of Associativity The equivalence noticed by Javor of (GS)
with the associativity of ı� has further analogues in connecting functional equations
with the associativity of binary operations. For example, one may consider the
operations

x �� y WD xy ˙ �2p.x/p.y/

with p either involutary or skew-involutary. These are associative iff g.x/ WD
�p.x/=x solves the equation

g.x �� y/ D g.x/C g.y/

1� g.x/g.y/=�2
I
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converting g into a homomorphism calls for the right-hand side to be interpreted
as the combination of the elements u D g.x/ and v D g.y/ by means of a group
operation on the interval .��; �/, ı� say, given by

u ı� v D u C v

1˙ uv=�2
:

Then g is seen to satisfy the functional equation of competition introduced recently
by Kahlig and Matkowski [59]; cf. the hyperbolic semi-group of [51, 8.3]. As there,
the choice of sign ‘�’ or ‘C’ yields the familiar tangent or hyperbolic tangent
addition formulas. In the skew case the operations �� include both

xy ˙ �2.1 � x/.1 � y/

and the ‘cosine formula’, similarly as in Section 9.6:

xy ˙ �2
p
1 � x2

p
1 � y2 :

The operation

x � y D xy C p.x/C p.y/ ;

with p.0/ D 0, is associative only for p.x/ � 0 and p.x/ � x:

7. The Cocycle Equation The cocycle functional equation

F.st; x/ D F.s; tx/F.t; x/

for F W G � X ! G may be regarded as an entry-point into RV, using flow
language, as in [70, Section 4] and [14]; indeed, if F is to be a h-coboundary for
some continuous h; then

h.tx/ D F.t; x/h.x/ :
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functional equation. Aequationes Math. 89, 725–744 (2015)
72. Ostaszewski, A.J.: Homomorphisms from functional equations: the Goldie equation. Aequa-

tiones Math. 90, 427–448 (2016)
73. Ostaszewski, A.J.: Stable laws and Beurling kernels. Adv. Appl. Probab. 48A (N. H. Bingham

Festschrift), 239–248 (2016)
74. Parthasarathy, K.R.: Probability Measures on Metric Spaces. AMS Chelsea Publishing,

Providence, RI (2005); Reprint of the 1967 original
75. Pitman, E.J.G., Pitman, J.: A direct approach to the stable distributions. Adv. Appl. Probab.

48A (N. H. Bingham Festschrift), 261–282 (2016)
76. Popa, C.G.: Sur l’équation fonctionelle f .x C yf .x// D f .x/f .y/: Ann. Polon. Math. 17,

193–198 (1965)
77. Przebieracz, B.: Recent developments in the translation equation and its stability. In: Brzdȩk, J.,
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Chapter 10
Recent Developments in the Translation
Equation and Its Stability

Barbara Przebieracz

Abstract The aim of this chapter is to present some of the recent results concerning
the theory of the translation equation and its stability.
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roots • Embeddability in iteration groups
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10.1 Introduction

The functional equation

F.s;F.t; x// D F.s � t; x/; s; t 2 G; x 2 X;

where FW G � X ! X, G is a set with binary operation �, and X is an arbitrary
set, is called the translation equation. Here, we gather only a personal choice of
results concerning the translation equation and its stability published in recent years.
We focus in a more detailed way only on these results, which are not discussed in
the previous survey papers.1 We refer the reader to the earlier survey papers on
this topic:

1Especially the recent ones: [6, 25, 26] are published as open access papers, and [13] is also free
available.
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1. In paper [11], Moszner listed several mathematical domains in which the
translation equation appears. It includes among others abstract geometric and
algebraic objects, groups of transformations, iterations, and dynamical systems.
The author then presents many results concerning the solutions of the translation
equation, including his own construction for the general solution on some
domain. Continuity problems are also discussed.

2. In [13], Moszner continues the presentation of achievements in the theory.
Further results on structure of solutions are listed. This paper also contains
survey on regular (continuous, differentiable, analytic, and monotonic) solutions,
problem of extendability of solutions to bigger domain, and papers of Smajdor
on set-valued iteration semigroups.

3. The survey [14] covers among others the results on stability of the translation
equation obtained by Mach and Moszner.

4. Zdun and Solarz [26] is an extensive survey on iteration theory. Here, we consider
G an additive subgroup or subsemigroup of R or C; in case G D R or G D RC,
we say about iteration group (flow) or semigroup (semiflow), respectively. We
usually write Ft.x/ instead of F.t; x/, hence, the translation equation takes the
form

Ft ı Fs.x/ D FsCt.x/:

The origin of the notion of iteration group is extending the iterates Fn, n 2 N,
of a given FW X ! X, to “real” iterates Ft, t 2 R. We often interpret Ft.x/ as the
state of a point (object) x at the time t.

Topics covered in this paper (quite in detail)2:

• Measurable iteration semigroups: results of Baron, Chojnacki, Jarczyk, and
Zdun on the problem under what condition the measurability of iteration
group/semigroup implies its continuity;

• Embeddability of f into iteration groups or semigroups: when for a given f
there exists fFtg such that F1 D f , moreover, we can demand that iteration
group or semigroup is of suitable regularity. This issue was examined for
diffeomorphisms in R

N , Brouwer homeomorphisms on the plane (mainly
Leśniak’s results), and interval homeomorphisms (mainly the result obtained
by Zdun, Krassowska, and Zhang);

• When two commuting functions (f and g defined on an open interval, without
fixed points) can be embeddable in the same iteration group (i.e. f ; g 2 fFtg)
(mainly the results of Zdun, Krassowska, and Ciepliński);

• Problem of existence of iterative roots (' is an iterative root of order n of a
given f , if 'n D f , where 'n denotes n-th iterate of ') of piecewise monotonic
functions, homeomorphism of the circle, and homeomorphisms of the plane
(Zhang, Liu, Li, Yang, Jarczyk, Jarczyk, Zdun, and Solarz);

2Here, we signal them only, and mention some main authors; for detailed references, we refer the
reader to [26].
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• The structure of iteration groups of homeomorphisms of an interval, and of
homeomorphisms of the circle (Zdun and Ciepliński);

• Different notions of “near” embeddability into iteration semigroup and char-
acterization of such functions (Jarczyk and Przebieracz);

• A few problems concerning set-valued iteration semigroups (existence of
iteration semigroup of single valued functions which is a selection of a given
set-valued iteration group, and existence of majorizing iteration semigroups
(Smajdor, Olko, Piszczek, and Łydzińska);

• Theorems of Matkowski and Jarczyk on iterates of mean-type mappings; and
• Stability of the translation equation (Moszner, Mach, Chudziak, Przebieracz,

Reich, and Jabłoński).

5. The readers interested in the topic of iterative roots should read [6], where many
results (recent and older) are presented in detail, also some open problems are
listed. Here (in Section 10.3), we develop only the topic of conjugacy between F
and its iterative root, for piecewise monotonic F.

6. In [25], Zdun discussed the existence of embeddings of given mappings in
real iteration groups with suitable regularity, the conditions which imply the
uniqueness of embeddings, and the formulas expressing the above embeddings
or their general constructions. Here, in the next section, we refine some new
approach to this subject proposed in [7].

10.2 Recent Advances in the Problem of Embeddability in
Iteration Groups: Embeddability of Homeomorphisms
of the Circle in Set-Valued Iteration Groups

Let S1 D fz 2 C W jzj D 1g be the unit circle with positive orientation, ccŒS1� be
the family of all non-empty convex and compact subsets of S1 (that is, the family of
closed arcs and points of S1). Let FWS1 ! S

1 be a homeomorphism without periodic
points (its rotation number � is irrational). Let LF be the set of all limit points of
orbits of F (it is known that LF is either equal to S

1 or is a nowhere dense perfect
set [4]). Moreover, F is embeddable in continuous iteration group3 if and only if
LF D S

1; in such a case, the continuous embedding is unique up to a constant
[24]. Necessary and sufficient conditions for embeddability in the discontinuous
iteration groups were given in [2] (in this case, F has infinitely many nonmeasurable
embeddings).

In the paper [7], authors proposed a new approach to the problem of embed-
dability. They constructed some substitution of an iteration group in which F can be
embedded.

3That is, there exists an iteration group ff tW S1 ! S
1I t 2 Rg, such that F D f 1 and for every z the

orbits t 7! f t.z/ are continuous.
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Before formulating main theorems from that paper, let us fix some notation.
We assume that LF ¤ S

1. In this case, the set S1 n LF is a countable sum of pairwise
disjoint open arcs, let A be a family of these arcs, ˛.I/ be the middle point of the
arc I, M WD f˛.I/ W I 2 A g, and Ip WD ˛�1.p/ for p 2 M. Hence,

S
p2M Ip is a

decomposition of S1nLF into open pairwise disjoint arcs. Let L� WD S
1nSp2M cl Ip.

There exists exactly one continuous solution ˚ of equation

˚.F.z// D e2� i�˚.z/; z 2 S
1;

such that ˚.1/ D 1. This solution is surjective and increasing (see [3, 23]). Define
Ft.z/ as preimages of singletons:

Ft.z/ WD ˚�1Œfe2� it�˚.z/g�; t 2 R; z 2 S
1:

The family fFtWS1 ! ccŒS1�I t 2 Rg is an iteration group such that F.z/ 2 F1.z/ for
z 2 S

1. It will be called the main set-valued embedding of F. It has the following
properties:

(A1) 8t2R; z2S1 Ft.z/ is either a closed arc cl Ip for some p 2 M or a singleton
belonging to L�;

(A2) 8t2R the function z 7! Ft.z/ is increasing and constant on the arcs
cl Ip, p 2 M;

(A3) 8z2S1 the function t 7! Ft.z/ is periodic with the period 1
�

and strictly
increasing on the arcs cl Ip, p 2 M;

(A4) if Fu.z/ \ Fv.z/ ¤ ;, then u D v C k
�

for a k 2 Z;

(A5) 8p2M F0 is constant on cl Ip, F0Œcl Ip� D cl Ip; F0.z/ D z for z 2 L�;
(A6) 8z2S1

S
t2R Ft.z/ D S

1; and
(A7) 8z2S1 9t1;t22R Ft1 .z/ is an arc, Ft2 .z/ is a singleton.

Some of the above properties characterize the main set-valued embeddings of
F, namely, if a set-valued group fFtWS1 ! ccŒS1�I t 2 Rg fulfills conditions (A1),
(A3), and (A6) (only for one point z0 2 S

1, not necessarily for all z 2 S
1) and

F.z/ 2 F1.z/, then it is the main set-valued embedding of F.
Moreover, the set

T WD ft 2 RI ˚ŒS1 n LF� D e2� it�˚ŒS1 n LF�g;

is an additive, countable, and dense subgroup of R and 1 2 T . It will be called the
supporting group of F.

Let F WD fFtWS1 ! ccŒS1�I t 2 Rg be the main set-valued embedding of F.
It turns out that for every t 2 R and every p 2 M the function Ft is constant on
cl Ip, whence, for every z 2 Ip, Ft.z/ D FtŒcl Ip�. The set FtŒcl Ip� is either an arc
or a point. Similarly, if z 2 L�, then Ft.z/ is either an arc or a point. Group T
characterizes these indices for which Ft maps arcs cl Ip onto arcs and points from
L� onto points from L�.
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The subgroup fFtWS1 ! ccŒS1�I t 2 Tg of F is said to be the refinement set-
valued embedding of F. It possesses a piecewise linear selection fvtWS1 ! S

1I t 2
Tg of homeomorphisms. Moreover, H 2 F has a continuous and injective selection
if and only if H belongs to the refinement set-valued embedding of F.

10.3 Recent Advances in the Subject of Iterative Roots:
Conjugacy Between Piecewise Monotonic Functions
and Their Iterative Roots

First, we set some notations in order to formulate theorems in this section in a more
concise way.

Let I WD Œa; b� for a < b < 1 and FW I ! R be a continuous function. A point
c 2 .a; b/ is called a fort of F if F is not strictly monotonic in any neighbourhood
of c. We say that F is piecewise monotonic (F 2 PM ŒI�) if the number N.F/ of
forts of F is finite.

We put S.F/ WD fc1; c2; : : : ; cN.F/g for the set of all forts of piecewise mono-
tonic F. Additionally, put c0 D a and cN.F/C1 D b and define Ii WD Œci; ciC1� for
i D 0; 1; : : : ;N.F/. It is known that [27, 28] either there exists an integer r 2 N[f0g
such that

0 D N.F0/ < N.F/ < N.F2/ < : : : < N.Fr/ D N.FrC1/ D N.FrC2/ D : : : ;

or for every k 2 N[f0g we have N.Fk/ < N.FkC1/. In the first case, we put H.F/ WD
r, and in the second H.F/ WD 1, where H.F/ is called the non-monotonicity height
of piecewise monotonic F.

For F 2 PM ŒI�with H.F/ D 1, the maximal interval K.F/, containing FŒI� and
such that F is monotonic on it, is called the characteristic interval of F [27, 28].

If f is a continuous iterative root of F of order n, then for every i 2 f0; : : : ;N.F/g
there exists a positive integer k � minfn;N.F/g and i1; : : : ik�1 2 f0; : : : ;N.F/g
such that

Ii ! Ii1 ! : : : ! Iik�1 ! K.F/;

where by Il1 ! Il2 we mean f .Il1 / � Il2 . Let kf .i/ denote the number k described
above. The pace `, of iterative root f , is defined as maxfkf .i/I i 2 f0; 1; : : : ;N.F/gg.

Every iterative root f of F can be extended from the characteristic interval
K.F/ [9].

It turns out that all continuous monotonic functions are conjugate to their iterative
roots [29] (we say that f is conjugate to g if there exists a homeomorphism ˚ such
that ˚ ı f D g ı˚). It enables us to understand the topological dynamics properties
of iterative root f (explicit formulas can be complicated) having given F D f n.
In [8], authors gave examples of continuous piecewise monotonic but not monotonic
functions, in order to prove that such functions:
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• May have no iterative roots conjugate to them;
• May have some iterative roots not conjugate to them; and
• May have some iterative roots (n ¤ 1) conjugate to them.

Moreover, they give necessary and sufficient conditions under which piecewise
monotonic F is conjugate to its iterative root f .

Theorem 10.1 Suppose that the mapping F 2 PM ŒI� with N.F/ � 1 and its
continuous iterative root F having pace 1 are conjugate. Suppose that F is strictly
increasing on its characteristic interval K.F/. Moreover, assume that K.F/ D
Fix.f / [ J1 [ J2 [ : : : [ Jd, where Fix.f / is the set of all fixed points of f and J0

ms
(m D 1; 2; : : : d) are pairwise different intervals with endpoints being fixed points
of f and interiors without fixed points. Then, f is strictly increasing on K.F/ and for
each interval Jm, m D 1; : : : ; d, either

(H1) ff .ci/I i D 1; 2 : : : ;N.F/g \ int Jm D ;, or
(H2) There is a point c� 2 int Jm such that(

f .cj/ 2 .f 2.c�/; f .c�/�; if f .c�/ < c� or

f .cj/ 2 .c�; f .c�/�; if f .c�/ > c�

for all cj
0s (j D 1; 2; : : : ;N.F/) satisfying f .cj/ 2 int Jm.

Also,

(H1’) fF.ci/I i D 1; 2 : : : ;N.F/g \ int Jm D ;, or
(H2’) There is a point c� 2 int Jm such that(

F.cj/ 2 .F ı .f jK.F//.c�/;F.c�/�; if F.c�/ < c� or

F.cj/ 2 .F ı .f jK.F//�1.c�/;F.c�/�; if F.c�/ > c�

for all cj
0s (j D 1; 2; : : : ;N.F/) satisfying F.cj/ 2 int Jm.

Theorem 10.2 Suppose that the mapping F 2 PM ŒI� with N.F/ � 1 is strictly
increasing on its characteristic interval K.F/. Assume that K.F/ D Fix.F/ [ J1 [
J2[: : :[Jd, where Fix.F/ is the set of all fixed points of F and Jm

0s (m D 1; 2; : : : d)
are pairwise different intervals with endpoints being fixed points of F and interiors
without fixed points. Suppose that a continuous iterative root f of F is strictly
increasing on K.F/. Moreover, let F and f satisfy either

(H3) fF.ci/I i D 0; 1; 2 : : : ;N.F/C 1g \ int Jm D ;, or
(H4) There is a point c� 2 int Jm such that(

F.cj/ 2 .F ı .f jK.F//.c�/;F.c�/�; if F.c�/ < c� or

F.cj/ 2 .F ı .f jK.F//�1.c�/;F.c�/�; if F.c�/ > c�

for all cj
0s (j D 0; 1; 2; : : : ;N.F/C 1) satisfying F.cj/ 2 int Jm.

Then, F is conjugate to f .
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10.4 Different Definitions of Stability of the Translation
Equation

The question of Ulam, concerning the stability of group homomorphisms, posed
in 1940, and the partial affirmative answer of Hyers [5] is often considered as
the origin of the theory of stability of functional equations. But, even in these
papers: [5, 21, 22], the precise formulation of what to understand as stability differs.
Moszner devoted a few papers to define different kind of stabilities and examined
the relations between them. See [10, 12, 14–17]. In this section, we present some
of the results concerning the different stabilities of the translation equation and,
in the next section, of the systems of functional equations defining (equivalently)
dynamical systems (see [17, 18] and [16]).

In this section, let .S; d/ be a metric space, .G; �/ a groupoid. We start with
reminding some definitions.

Definition 10.1 We say that the translation equation is stable in the Hyers–Ulam
sense (shortly stable) if there exists a function ˚ W .0;1/ ! .0;1/ (called measure
of stability) such that for every " > 0 and every function HW G � S ! S, if

d.H.x;H.y; ˛//;H.x � y; ˛// � ˚."/; ˛ 2 S; x; y 2 G;

then there exists a solution FW G � S ! S of the translation equation

F.x;F.y; ˛// D F.x � y; ˛/ (10.1)

such that

d.G.x; ˛/;F.x; ˛// � "; x 2 G; ˛ 2 S:

Moreover, if there exists such a function ˚ which is unbounded, we say that
Equation (10.1) is normally stable.

If there exists such ˚ of the form ˚."/ D K", we say that Equation (10.1) is
strongly stable.

Definition 10.2 We say that the translation equation is uniformly b-stable if there
exists a function � W .0;1/ ! .0;1/ (called measure of uniform b-stability), such
that for every ı > 0 and every function HW G � S ! S, if

d.H.x;H.y; ˛//;H.x � y; ˛// � ı; ˛ 2 S; x; y 2 G;

then there exists a solution FW G � S ! S of the translation equation (10.1) such that

d.H.x; ˛/;F.x; ˛// � �.ı/; ˛ 2 S; x 2 G:
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Moreover, if there exists such a function � which is unbounded, we say that the
uniform b-stability is normal.

If there exists such � of the form �.ı/ D kı, we say that Equation (10.1) is
strongly b-stable.

Definition 10.3 We say that the translation equation is b-stable if for every function
HW G � S ! S such that

G � G � S 3 .x; y; ˛/ 7! d.H.x;H.y; ˛//;H.x � y; ˛//

is bounded there exists a solution F of (10.1) such that

G � S 3 .x; ˛/ 7! d.H.x; ˛/;F.x; ˛//

is bounded.
Notice that uniform b-stability implies b-stability.

We have the following results concerning these notions.

Theorem 10.3 (1–4 in [17], 5 in [19] and [1])

1. If the stability of (10.1) is normal, then this equation is uniformly b-stable.
2. Stable equation (10.1) does not need to be necessarily b-stable.
3. If the b-stability of (10.1) is uniform and normal, then this equation is normally

stable.
4. Uniform b-stability of (10.1) does not necessarily imply stability.
5. The translation equation is normally stable with ˚."/ D "=10 and normally

uniformly b-stable with �.ı/ D 10ı, in the class of continuous functions with
.G; �/ D .R;C/ and S being a real interval.

10.5 Stability of Dynamical Systems

In this section, we confine ourselves to continuous function R � I ! I, where
I � R is nondegenerate interval. Such class of function is natural for consideration
of dynamical systems.

Definition 10.4 The continuous function FWR � I ! I is called dynamical system
if F is a solution of the translation equation

F.s;F.t; x// D F.s C t; x/; s; t 2 R; x 2 I; (10.2)

and satisfies one or (equivalently, as it appears), every, of the following condi-
tions:

1. F.0; x/ D x, for x 2 I,
2. .F0/0.x/ D 1, for x 2 I, where F0 D F.0; �/,
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3. I 3 x 7! F.0; x/ is strictly increasing,
4. .F0/0 exists, and
5. F is a surjection.

Hence, we can consider stability problem for systems: translation equation and
one of the equations appearing in the first two of the above conditions; and stability
problem of the translation equation in the class of functions described by one of the
last three of the above conditions. Full research on this topic can be found in [16–
18]. Here, we present the selected results. The definitions from the previous section
can be complemented by the notion of restricted uniform b-stability (definition
almost the same as the definition of uniform b-stability, only the function � is
defined on some interval .0; ı0/ instead of on the whole positive halfline).

Theorem 10.4 1. The translation equation is normally stable and normally uni-
formly b-stable in the class of surjective functions.

2. The translation equation is not stable in any of the classes: such F that F0 is
strictly increasing, and such F that the derivative of F0 exists.

3. The translation equation is b-stable, uniformly b-stable, restrictedly uniformly
b-stable, and normally uniformly b-stable only for I bounded , in both classes:
such F that F0 is strictly increasing, and such F that the derivative of F0 exists.

4. The system of equations: “(10.2) & .F0/0 � 1” is stable and restrictedly
normally uniformly b-stable for every I; normally stable, normally uniformly
b-stable, b-stable, and uniformly b-stable only for I bounded.

5. The system of equations:“(10.2) & F0 D id” is stable and normally stable only
for I D R; b-stable, uniformly b-stable, restrictedly uniformly b-stable, and
normally uniformly b-stable only for I bounded and I D R.

10.6 Approximate Continuous Solutions of the Translation
Equation

In this section, we concentrate only on a class of continuous function R � I ! I,
where I � R is a nondegenerate interval.

In paper [20], there were listed some conditions which every approximate
continuous solution of the translation equation, G, satisfies. These conditions show
similarities between an exact solution and approximate solution of the translation
equation. One of them is the existence of an exact solution of the translation equation
in some neighbourhood of G. It is of interest that assuming only the existence of
a solution of the translation equation in a neighbourhood of GWR � I ! I does
not suffice to obtain that G satisfies the translation equation approximately. More
precisely, in paper [18] it was shown that
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• The translation equation is not inversely stable (i.e. it is not true that
for every " > 0 there exists a ı > 0 such that for every continuous function

HWR � I ! I if there exists a continuous solution F of the translation equation
such that

jF.t; x/ � H.t; x/j � ı; t 2 R; x 2 I;

then

jH.s;H.t; x// � H.t C s; x/j � "; s; t 2 R; x 2 I/I

• The translation equation is not inversely b-stable for unbounded intervals I (i.e.
it is not true that

for every continuous F;HWR � I ! I if F is a solution of the translation
equation and

R � I 3 .t; x/ 7! jF.t; x/ � H.t; x/j

is bounded, then

R � R � I 3 .t; s; x/ 7! jH.s;H.t; x// � H.t C s; x/j

is bounded); and
• The translation equation is not inversely uniformly b-stable for unbounded

intervals I (i.e. it is not true that
for every ı > 0 there exists a " > 0 such that for every continuous function

HWR � I ! I if there exists a continuous solution F of the translation equation
such that

jF.t; x/ � H.t; x/j � ı; t 2 R; x 2 I;

then

jH.s;H.t; x// � H.t C s; x/j � "; s; t 2 R; x 2 I/:

Now, we are going to remind the characterization of a continuous solution of the
translation equation (Theorem 10.5). Next, we present the necessary (Theorem 10.6)
and sufficient condition (Theorem 10.7) for satisfying the translation equation
approximately.

Theorem 10.5 Let FWR � I ! I be a solution of the translation equation, i.e.

F.s;F.t; x// D F.s C t; x/; s; t 2 R; x 2 I:
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Put V D H.R � I/. Then, there exist open, disjoint, intervals Un � V and
homeomorphisms hnWR ! Un such that for every x 2 Un

F.t; x/ D hn.h
�1
n .x/C t/; t 2 R;

and

F.t; x/ D x; x 2 V n
[

n

Un; t 2 R:

Moreover, there exists a continuous function f W I ! V, such that f .x/ D x for x 2 V
and

F.t; x/ D F.t; f .x//; t 2 R; x 2 I n V:

Conversely, for every continuous f W I ! I such that f ı f D f , a family of
open, disjoint intervals fUnI n 2 N � Ng such that Un � f .I/, and a family of
homeomorphisms hnWR ! Un, n 2 N, every function of the form

F.t; x/ D
�

hn.h�1
n .f .x//C t/; if f .x/ 2 Un; t 2 RI

f .x/; if f .x/ … Sn2N Un; t 2 R

is a continuous solution of the translation equation.

Theorem 10.6 Suppose that HWR � I ! I is a continuous solution of 4

jH.s;H.t; x// � H.s C t; x/j � ı; x 2 I; s; t 2 R:

Then,

(a) There exist open, disjoint intervals Un � I, n 2 N, of the length greater or
equal to 6ı, homeomorphisms hnWR ! Un, n 2 N, and a continuous function
f W I ! I, such that f ı f D f , Un � f .I/, n 2 N,

jH.t; x/ � f .x/j � 10ı; t 2 R; f .x/ …
[
n2N

Un;

jH.t; x/ � hn.h
�1
n .f .x//C t/j � 10ı; t 2 R; f .x/ 2 Un; n 2 NI

(b) 8.x2I; n2N/ .f .x/ 2 Un ) H.R; x/ D Un/;
(c) 8.x2I; n2N/ .x 2 Un ) f .x/ D x/;
(d) 8.x2I; t2R/ .jf .H.t; x// � H.t; x/j � 2ı/;

4The proof of this theorem can be found in [19] and [20], and the construction of homeomorphisms
hnWR ! Un was done in [1].
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(e) 8x2I

�
f .x/ … S

n2N
Un )

�
8t2R f .H.t; x// … S

n2N
Un

��
I

(f) 8x2I

�
f .x/ … S

n2N
Un ) .8s1;s22R jH.s1; x/ � H.s2; x/j � 6ı/

�
I

(g) The set of values of function f , Vf , is contained in the set of values of function
H, VH, i.e. Vf � VH;

(h) Every interval Un is “invariant”, more precisely

H.R; x/ D Un; x 2 Un; n 2 N;

and

H.t;Un/ D Un; t 2 R; n 2 NI

(i) For every n 2 N, put an WD infUn, bn WD supUn. Either hn is an increasing
homeomorphism,

lim
t!1 H.t; x/ D bn; lim

t!�1 H.t; x/ D an; x 2 Un;

and H.�; x/ “almost increases”, i.e. for every t 2 R we have H.s; x/ > H.t; x/�
2ı for s > t; or hn is a decreasing homeomorphism,

lim
t!1 H.t; x/ D an; lim

t!�1 H.t; x/ D bn; x 2 Un;

and H.�; x/ “almost decreases”, i.e. for every t 2 R we have H.s; x/ < H.t; x/C
2ı for s > t;

(j) For every n 2 N

H.t; an/ D an; H.t; bn/ D bn; t;2 R;

whenever an, bn are in I;
(k) For every x 2 I such that x … S

n2N
Un but there are n;m 2 N with bn � x � am,

we have

jH.t; x/ � xj � 6ı; t 2 RI

(l)

jH.t; x/ � H.t; f .x//j � 10ı; t 2 R; x 2 II and
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(m) Moreover, for every n 2 N there are two possibilities:

• Either there exists �n > 0 such that

jt1 � t2j � �n ) jhn.t1/ � hn.t2/j � 21ı; t1; t2 2 R; (10.3)

for ��
n WD supf�n > 0 W (10.3) holdsg 2 .0;1� we have5

hn.t���
n Ch�1

n .f .x/// � H.t; x/ � hn.tC��
n Ch�1

n .f .x///; t 2 R; f .x/ 2 Un;

if hn is increasing,

hn.t���
n Ch�1

n .f .x/// � H.t; x/ � hn.tC��
n Ch�1

n .f .x///; t 2 R; f .x/ 2 Un;

if hn is decreasing,
• or such �n, for which (10.3) holds, does not exist and

H.t; x/ D hn.t C h�1
n .f .x//; t 2 R; f .x/ 2 Un:

Theorem 10.7 Let I be a nondegenerate real interval, ı;A1;A2;B;C;D > 0,
suppose that HWR � I ! I is a continuous function. If

(a) There exist open, disjoint intervals Un � I, n 2 N, homeomorphisms hnWR !
Un, n 2 N, and a continuous function f W I ! I, such that f ı f D f , Un � f .I/,
n 2 N,

jH.t; x/ � f .x/j � A1ı; t 2 R; f .x/ …
[
n2N

Un;

jH.t; x/ � hn.h
�1
n .f .x//C t/j � A2ı; t 2 R; f .x/ 2 Un; n 2 NI

(b) 8.x2I; n2N/ .f .x/ 2 Un ) H.R; x/ � Un/;
(c) 8.x2I; n2N/ .x 2 Un ) f .x/ D x/;
(d) 8.x2I; t2R/ .jf .H.t; x// � H.t; x/j � Bı/;

(e) 8x2I

�
f .x/ … S

n2N
Un )

�
8t2R f .H.t; x// … S

n2N
Un

��
I

(f) 8x2I

�
f .x/ … S

n2N
Un ) .8s1;s22R jH.s1; x/ � H.s2; x/j � Cı/

�
I and

(g) Moreover, for every n 2 N there are two possibilities:

• Either there exists �n > 0 such that

jt1 � t2j � �n ) jhn.t1/ � hn.t2/j � Dı; t1; t2 2 R; (10.4)

5If ��

n D 1, then by hn.˙1/ we understand lim
t!˙1

hn.t/.
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for ��
n WD supf�n > 0 W (10.4) holdsg 2 .0;1� we have6

hn.t � ��
n C h�1

n .f .x/// � H.t; x/ � hn.t C ��
n C h�1

n .f .x///; t 2 R; f .x/ 2 Un;

if hn is increasing,

hn.t � ��
n C h�1

n .f .x/// � H.t; x/ � hn.t C ��
n C h�1

n .f .x///; t 2 R; f .x/ 2 Un;

if hn is decreasing,
• or such �n, for which (10.4) holds, does not exist and

H.t; x/ D hn.t C h�1
n .f .x//; t 2 R; f .x/ 2 Un;

then

jH.s;H.t; x// � H.t C s; x/j � Eı; s; t 2 R; x 2 I;

where E WD maxf.2A2 C D/;minf3A1 C B;A1 C B C Cgg.
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Chapter 11
On Some Recent Applications of Stochastic
Convex Ordering Theorems to Some Functional
Inequalities for Convex Functions: A Survey
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Abstract This is a survey paper concerning some theorems on stochastic convex
ordering and their applications to functional inequalities for convex functions. We
present the recent results on those subjects.
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11.1 Introduction

In the present paper, we look at Hermite–Hadamard type inequalities from the per-
spective provided by the stochastic convex order. This approach is mainly due to
Cal and Cárcamo. In the paper [12], the Hermite–Hadamard type inequalities are
interpreted in terms of the convex stochastic ordering between random variables.
Recently, also in [19, 32, 35–38, 40–42], the Hermite–Hadamard inequalities are
studied based on the convex ordering properties. Here, we want to attract the reader’s
attention to some selected topics by presenting some theorems on the convex
ordering that can be useful in the study of the Hermite–Hadamard type inequalities.

The Ohlin lemma [31] on sufficient conditions for convex stochastic ordering
was first used in [36], to get a simple proof of some known Hermite–Hadamard
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type inequalities as well as to obtaining new Hermite–Hadamard type inequalities.
In [32, 41, 42], the authors used the Levin–Stečkin theorem [25] to study Hermite–
Hadamard type inequalities.

Many results on higher-order generalizations of the Hermite–Hadamard type
inequality one can find, among others, in [1–5, 16, 36, 37]. In recent papers [36, 37],
the theorem of Denuit, Lefèvre, and Shaked [13] was used to prove Hermite–
Hadamard type inequalities for higher-order convex functions. The theorem of
Denuit, Lefèvre, and Shaked [13] on sufficient conditions for s-convex ordering
is a counterpart of the Ohlin lemma concerning convex ordering. A theorem on
necessary and sufficient conditions for higher-order convex stochastic ordering,
which is a counterpart of the Levin–Stečkin theorem [25] concerning convex
stochastic ordering, is given in the paper [38]. Based on this theorem, useful
criteria for the verification of higher-order convex stochastic ordering are given.
These criteria can be useful in the study of Hermite–Hadamard type inequalities for
higher-order convex functions, and in particular inequalities between the quadrature
operators. They may be easier to verify the higher-order convex orders, than those
given in [13, 22].

In Section 11.2, we give simple proofs of known as well as new Hermite–
Hadamard type inequalities, using Ohlin’s lemma and the Levin–Stečkin theorem.

In Sections 11.3 and 11.4, we study inequalities of the Hermite–Hadamard type
involving numerical differentiation formulas of the first order and the second order,
respectively.

In Section 11.5, we give simple proofs of Hermite–Hadamard type inequalities
for higher-order convex functions, using the theorem of Denuit, Lefèvre, and
Shaked, and a generalization of the Levin–Stečkin theorem to higher orders. These
results are applied to derive some inequalities between quadrature operators.

11.2 Some Generalizations of the Hermite–Hadamard
Inequality

Let f W Œa; b� ! R be a convex function (a; b 2 R; a < b). The following double
inequality

f

�
a C b

2

�
� 1

b � a

Z b

a
f .x/ dx � f .a/C f .b/

2
(11.1)

is known as the Hermite–Hadamard inequality (see [16] for many generalizations
and applications of (11.1)).

In many papers, the Hermite–Hadamard type inequalities are studied based on
the convex stochastic ordering properties (see, for example, [19, 32, 35–37, 40, 41]).
In the paper [36], the Ohlin lemma on sufficient conditions for convex stochastic
ordering is used to get a simple proof of some known Hermite–Hadamard type
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inequalities as well as to obtain new Hermite–Hadamard type inequalities. Recently,
the Ohlin lemma is also used to study the inequalities of the Hermite–Hadamard
type for convex functions in [32, 35, 40, 41]. In [37], also the inequalities of the
Hermite–Hadamard type for delta-convex functions are studied by using the Ohlin
lemma. In the papers [32, 40, 41], furthermore, the Levin–Stečkin theorem [25] (see
also [30]) is used to examine the Hermite–Hadamard type inequalities. This theorem
gives necessary and sufficient conditions for the stochastic convex ordering.

Let us recall some basic notions and results on the stochastic convex order (see,
for example, [13]). As usual, FX denotes the distribution function of a random
variable X and �X is the distribution corresponding to X. For real-valued random
variables X;Y with a finite expectation, we say that X is dominated by Y in convex
ordering sense, if

Ef .X/ � Ef .Y/

for all convex functions f WR ! R (for which the expectations exist). In that case,
we write X �cx Y , or �X �cx �Y .

In the following Ohlin’s lemma [31], are given sufficient conditions for convex
stochastic ordering.

Lemma 11.1 (Ohlin [31]) Let X;Y be two random variables such that EX D EY.
If the distribution functions FX;FY cross exactly one time, i.e., for some x0 holds

FX.x/ � FY.x/ if x < x0 and FX.x/ � FY.x/ if x > x0;

then

Ef .X/ � Ef .Y/ (11.2)

for all convex functions f WR ! R.
The inequality (11.1) may be easily proved with the use of the Ohlin lemma

(see[36]). Indeed, let X, Y , Z be three random variables with the distributions �X D
ı.aCb/=2, �Y which is equally distributed in Œa; b� and �Z D 1

2
.ıa Cıb/, respectively.

Then, it is easy to see that the pairs .X;Y/ and .Y;Z/ satisfy the assumptions of the
Ohlin lemma, and using (11.2), we obtain (11.1).

Let a < c < d < b. Let f W I ! R be a convex function, a; b 2 I. Then (see [21]),

f .c/C f .d/

2
� f

�
c C d

2

�
� f .a/C f .b/

2
� f

�
a C b

2

�
: (11.3)

To prove (11.3) from the Ohlin lemma, it suffices to take random variables X;Y
(see [27]) with

�X D 1

4
.ıc C ıd/C 1

2
ı.aCb/=2;

�Y D 1

4
.ıa C ıb/C 1

2
ıı.cCd/=2 :
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Then, by Lemma 11.1, we obtain

f .c/C f .d/

2
C f

�
a C b

2

�
� f .a/C f .b/

2
C f

�
c C d

2

�
; (11.4)

which implies (11.3).
Similarly, it can be proved the Popoviciu inequality

2

3

�
f

�
x C y

2

�
C f

�
y C z

2

�
C f

�
z C x

2

��
� f .x/C f .y/C f .z/

3
C f

�
x C y C z

3

�
;

(11.5)

where x; y; z 2 I and f W I ! R is a convex function. To prove (11.5) from the Ohlin
lemma, it suffices (assuming x � y � z ) to take random variables X;Y (see [27])
with

�X D 1

4

�
ı.xCy/=2 C ı.yCz/=2 C ı.zCx/=2

	
;

�Y D 1

6

�
ıx C ıy C ız

	C 1

2
ı.xCyCz/=3:

Convexity has a nice probabilistic characterization, known as Jensen’s inequality
(see [6]).

Proposition 11.1 ([6]) A function f W .a; b/ ! R is convex if, and only if,

f .EX/ � Ef .X/ (11.6)

for all .a; b/-valued integrable random variables X.
To prove (11.6) from the Ohlin lemma, it suffices to take a random variable Y

(see [35]) with

�Y D ıEX;

then we have

Ef .Y/ D f .EX/: (11.7)

By the Ohlin lemma, we obtain Ef .Y/ � Ef .X/, then taking into account (11.7),
this implies (11.6).

Remark 11.1 Note that in [29], the Ohlin lemma was used to obtain a solution of
the problem of Raşa concerning inequalities for Bernstein operators.

In [17], Fejér gave a generalization of the inequality (11.1).

Proposition 11.2 ([17]) Let f W I ! R be a convex function defined on a real
interval I, a; b 2 I with a < b and let gW Œa; b� ! R be nonnegative and symmetric
with respect to the point .a C b/=2 (the existence of integrals is assumed in all
formulas). Then,
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f

�
a C b

2

�
�
Z b

a
g.x/ dx �

Z b

a
f .x/g.x/ dx � f .a/C f .b/

2
�
Z b

a
g.x/ dx: (11.8)

The double inequality (11.8) is known in the literature as the Fejér inequality
or the Hermite–Hadamard-Fejér inequality (see [16, 28, 33] for the historical
background).

Remark 11.2 ([36]) Using the Ohlin lemma (Lemma 11.1), we get a simple proof
of (11.8). Let f and g satisfy the assumptions of Proposition 11.2. Let X, Y , Z be
three random variables such that �X D ı.aCb/=2, �Y.dx/ D .

R b
a g.x/dx/�1g.x/dx,

�Z D 1
2
.ıa C ıb/. Then, by Lemma 11.1, we obtain that X �cx Y and Y �cx Z,

which implies (11.8).

Remark 11.3 Note that for g.x/ D w.x/ such that
R b

a w.x/dx D 1, the inequal-
ity (11.8) can be rewritten in the form

f

�
a C b

2

�
�
Z b

a
f .x/w.x/dx � f .a/C f .b/

2
: (11.9)

Conversely, from the inequality (11.9), it follows (11.8). Indeed, if
R b

a g.x/dx >

0, it suffices to take w.x/ D
�R b

a g.x/dx
��1

g.x/. If
R b

a g.x/dx D 0, then (11.8) is

obvious.
For various modifications of (11.1) and (11.8), see, e.g., [3–5, 10, 11, 16], and

the references given there.
As Fink noted in [18], one wonders what the symmetry has to do with the

inequality (11.8) and if such an inequality holds for other functions (cf. [16, p. 53]).
As an immediate consequence of Lemma 11.1, we obtain the following theorem,

which is a generalization of the Fejér inequality.

Theorem 11.1 ([36]) Let 0 < p < 1. Let f W I ! R be a convex function, a; b 2 I
with a < b. Let � be a finite measure on B.Œa; b�/ such that: (i) �.Œa; pa C qb�/ �
pP0, (ii) �..pa C qb; b�/ � qP0, and (iii)

R
Œa;b� x�.dx/ D .pa C qb/P0, where q D

1 � p, P0 D �.Œa; b�/. Then,

f .pa C qb/P0 �
Z
Œa;b�

f .x/�.dx/ � Œpf .a/C qf .b/�P0: (11.10)

Fink proved in [18] a general weighted version of the Hermite–Hadamard
inequality. In particular, we have the following probabilistic version of this
inequality.

Proposition 11.3 ([18]) Let X be a random variable taking values in the interval
Œa; b� such that m is the expectation of X and �X is the distribution corresponding
to X. Then,
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f .m/ �
Z b

a
f .x/ �X.dx/ � b � m

b � a
f .a/C m � a

b � a
f .b/: (11.11)

Moreover, in [19] it was proved that, starting from such a fixed random
variable X, we can fill the whole space between the Hermite–Hadamard bounds
by highlighting some parametric families of random variables. The authors propose
two alternative constructions based on the convex ordering properties.

In [35], based on Lemma 11.1, a very simple proof of Proposition 11.3 is given.
Let X be a random variable satisfying the assumptions of Proposition 11.3. Let Y ,
Z be two random variables such that �Y D ım, �Z D b�m

b�a ıa C m�a
b�a ıb/. Then, by

Lemma 11.1, we obtain that Y �cx X and X �cx Z, which implies (11.11).
In [36], some results related to the Brenner–Alzer inequality are given. In

the paper [23] by Klaričić Bakula, Pečarić, and Perić, some improvements of
various forms of the Hermite–Hadamard inequality can be found; namely, that of
Fejér, Lupas, Brenner–Alzer, and Beesack–Pečarić. These improvements imply the
Hammer–Bullen inequality. In 1991, Brenner and Alzer [9] obtained the following
result generalizing Fejér’s result as well as the result of Vasić and Lacković [43] and
Lupas [26] (see also [33]).

Proposition 11.4 ([9]) Let p; q be the given positive numbers and a1 � a < b
� b1. Then, the inequalities

f

�
pa C qb

p C q

�
� 1

2y

Z ACy

A�y
f .t/dt � pf .a/C qf .b/

p C q
(11.12)

hold for A D paCqb
pCq , y > 0, and all continuous convex functions f W Œa1; b1� ! R if,

and only if,

y � b � a

p C q
minfp; qg:

Remark 11.4 It is known [33, p. 144] that under the same conditions Hermite–
Hadamard’s inequality holds, the following refinement of (11.12):

f

�
pa C qb

p C q

�
� 1

2y

Z ACy

A�y
f .t/dt � 1

2
ff .A � y/C f .A C y/g � pf .a/C qf .b/

p C q
(11.13)

holds.
In the following theorem, we give some generalization of the Brenner and Alzer

inequalities (11.13), which we prove using the Ohlin lemma.

Theorem 11.2 ([36]) Let p; q be the given positive numbers, a1 � a < b � b1,
0 < y � b�a

pCq minfp; qg and let f W Œa1; b1� ! R be a convex function. Then,
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f

�
pa C qb

p C q

�
�

˛

2
ff .A � .1 � ˛/y/C f .A C .1 � ˛/y/g C 1

2y

Z AC.1�˛/y

A�.1�˛/y
f .t/dt �

˛

2n

nX
kD1

n
f
�

A � y C k
˛y

n

�
C f

�
A C y � k

˛y

n

�o
C 1

2y

Z AC.1�˛/y

A�.1�˛/y
f .t/dt �

1

2y

Z ACy

A�y
f .t/dt; (11.14)

where 0 � ˛ � 1, n D 1; 2; : : :,

1

2y

Z ACy

A�y
f .t/dt � ˇ

2
ff .A � y/C f .A C y/g C .1 � ˇ/ 1

2y

Z ACy

A�y
f .t/dt

� 1

2
ff .A � y/C f .A C y/g; (11.15)

where 0 � ˇ � 1,

1

2
ff .A � y/C f .A C y/g �

.
1

2
� 
/ff .A � y � c/C f .A C y C c/g C 
ff .A � y/C f .A C y/g �

pf .a/C qf .b/

p C q
; (11.16)

where c D minfb � .A C y/; .A � y/ � ag, 
 D ˇ̌
1
2

� p
ˇ̌
.

To prove this theorem, it suffices to consider random variables X, Y , W, Z, �n, �
and � such that:

�X D ı paCqb
pCq

;

�Y.dx/ D 1

2y
�ŒA�y;ACy�.x/dx;

�Z D p

p C q
ıa C q

p C q
ıb; �W D 1

2
ıA�y C 1

2
ıACy;

��n.dx/ D ˛

2n

nX
kD1

fıA�yCk ˛y
n

C ıACy�k ˛y
n

g C 1

2y
�ŒA�.1�˛/y;AC.1�˛/y�.x/dx;
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��.dx/ D ˇ

2
fıA�y C ıACyg C 1 � ˇ

2y
�ŒA�y;ACy�.x/dx;

�� D .
1

2
� 
/fıA�y�c C ıACyCcg C 
fıA�y C ıACyg:

Then, using the Ohlin lemma, we obtain:

• X �cx Y , Y �cx W, and W �cx Z, which implies the inequalities (11.13),
• X �cx �1, �1 �cx �n, and �n �cx Y , which implies (11.14),
• Y �cx � and � �cx W, which implies (11.15), and
• W �cx � and � �cx Z, which implies (11.16).

Theorem 11.3 ([36]) Let p; q be the given positive numbers, 0 < ˛ < 1, a1 � a <
b � b1, 0 < y � b�a

pCq minfp; qg and 0 � ˛
1�˛ y � b�a

pCq minfp; qg. Let f W Œa1; b1� ! R

be a convex function. Then,

f .A/ � ˛

y

Z A

A�y
f .t/dt C .1 � ˛/2

˛y

Z AC ˛
1�˛ y

A
f .t/dt

� ˛f .A � y/C .1 � ˛/f .A C ˛

1 � ˛ y/

� p

p C q
f .a/C q

p C q
f .b/; (11.17)

where A D paCqb
pCq .

Let X, Y , Z, and W be random variables such that:

�X D ıA;

�Y.dx/ D ˛

y
�ŒA�y;A�.x/dx C .1 � ˛/2

˛y
�ŒA;AC ˛

1�˛ y�.x/dx;

�W D ˛ıA�y C .1 � ˛/ıAC ˛
1�˛ y;

�Z D p

p C q
ıa C q

p C q
ıb:

Then, using the Ohlin lemma, we obtain X �cx Y , Y �cx W, W �cx Z, which implies
the inequalities (11.17).

Remark 11.5 If we choose ˛ D 1
2

in Theorem 11.3, then the inequalities (11.17)
reduce to the inequalities (11.15).

Remark 11.6 If we choose ˛ D p
pCq and y D .1 � p/z in Theorem 11.3, then we

have

f .A/ � p

qz

Z A

A� q
pCq z

f .t/dt C q

pz

Z AC p
pCq z

A
f .t/dt
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� p

p C q
f .A � q

p C q
z/C q

p C q
f .A C p

p C q
z/

� p

p C q
f .a/C q

p C q
f .b/;

where A D paCqb
pCq , 0 < z � b � a.

In the paper [40], the author used Ohlin’s lemma to prove some new inequalities
of the Hermite–Hadamard type, which are a generalization of known Hermite–
Hadamard type inequalities.

Theorem 11.4 ([40]) The inequality

af .˛x C .1 � ˛/y/C .1 � a/f .ˇx C .1 � ˇ/y/ � 1

y � x

Z y

x
f .t/dt; (11.18)

with some a; ˛; ˇ 2 Œ0; 1�; ˛ > ˇ is satisfied for all x; y 2 R and all continuous and
convex functions f W Œx; y� ! R if, and only if,

a˛ C .1 � a/ˇ D 1

2
; (11.19)

and one of the following conditions holds true:

(i) a C ˛ � 1,
(ii) a C ˇ � 1, and

(iii) a C ˛ > 1; a C ˇ < 1, and a C 2˛ � 2:

Theorem 11.5 ([40]) Let a; b; c; ˛ 2 .0; 1/ be numbers such that a C b C c D 1.
Then, the inequality

af .x/C bf .˛x C .1 � ˛/y/C cf .y/ � 1

y � x

Z y

x
f .t/dt (11.20)

is satisfied for all x; y 2 R and all continuous and convex functions f W Œx; y� ! R

if, and only if,

b.1 � ˛/C c D 1

2
(11.21)

and one of the following conditions holds true:

(i) a C ˛ � 1;

(ii) a C b C ˛ � 1; and
(iii) a C ˛ < 1; a C b C ˛ > 1, and 2a C ˛ � 1:

Note that the original Hermite–Hadamard inequality consists of two parts.
We treated these cases separately. However, it is possible to formulate a result
containing both inequalities.
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Corollary 11.1 ([40]) If a; ˛; ˇ 2 .0; 1/ satisfy (11.19) and one of the conditions
.i/–.iii/ of Theorem 11.4, then the inequality

af .˛x C .1 � ˛y/C .1 � a/f .ˇx C .1 � ˇ/y/ � 1

y � x

Z y

x
f .t/dt �

.1 � ˛/f .x/C .˛ � ˇ/f .ax C .1 � a/y/C ˇf .y/

is satisfied for all x; y 2 R and for all continuous and convex functions f W R ! R:

As we can see, the Ohlin lemma is very useful; however, it is worth noticing that
in the case of some inequalities, the distribution functions cross more than once.
Therefore, a simple application of the Ohlin lemma is impossible.

In the papers [32, 41], the authors used the Levin–Stečkin theorem [25] (see also
[30, Theorem 4.2.7]), which gives necessary and sufficient conditions for convex
ordering of functions with bounded variation, which are distribution functions of
signed measures.

Theorem 11.6 (Levin, Stečkin [25]) Let a; b 2 R, a < b and let F1;F2W Œa; b� !
R be functions with bounded variation such that F1.a/ D F2.a/. Then, in order that

Z b

a
f .x/dF1.x/ �

Z b

a
f .x/dF2.x/ (11.22)

for all continuous convex functions f W Œa; b� ! R; it is necessary and sufficient that
F1 and F2 verify the following three conditions:

F1.b/ D F2.b/; (11.23)Z b

a
F1.x/dx D

Z b

a
F2.x/dx; (11.24)

Z x

a
F1.t/dt �

Z x

a
F2.t/dt for all x 2 .a; b/: (11.25)

Define the number of sign changes of a function 'WR ! R by

S�.'/ D supfS�Œ'.x1/; '.x2/; : : : ; '.xk/�W x1 < x2 < : : : xk 2 R; k 2 Ng;

where S�Œy1; y2; : : : ; yk� denotes the number of sign changes in the sequence y1,
y2,: : : ; yk (zero terms are being discarded). Two real functions '1; '2 are said to
have n crossing points (or cross each other n-times) if S�.'1 � '2/ D n. Let a D
x0 < x1 < : : : < xn < xnC1 D b. We say that the functions '1; '2 cross n-times
at the points x1; x2; : : : ; ; xn (or that x1; x2; : : : ; ; xn are the points of sign changes of
'1�'2) if S�.'1�'2/ D n and there exist a < �1 < x1 < : : : < �n < xn < �nC1 < b
such that S�Œ�1; �2; : : : ; �nC1� D n.
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Szostok [41] used Theorem 11.6 to make an observation, which is more general
than Ohlin’s lemma and concerns the situation when the functions F1 and F2 have
more crossing points than one. In [41] is given some useful modification of the
Levin–Stečkin theorem [25], which can be rewritten in the following form.

Lemma 11.2 ([41]) Let a; b 2 R, a < b and let F1;F2W .a; b/ ! R be functions
with bounded variation such that F.a/ D F.b/ D 0,

R b
a F.x/dx D 0, where F D

F2 � F1. Let a < x1 < : : : < xm < b be the points of sign changes of the function F.
Assume that F.t/ � 0 for t 2 .a; x1/.
• If m is even, then the inequality

Z b

a
f .x/dF1.x/ �

Z b

a
f .x/dF2.x/ (11.26)

is not satisfied by all continuous convex functions f W Œa; b� ! R.
• If m is odd, define Ai (i D 0; 1; : : : ;m, x0 D a, xmC1 D b)

Ai D
Z xiC1

xi

jF.x/jdx:

Then, the inequality (11.26) is satisfied for all continuous convex functions
f W Œa; b� ! R; if, and only if, the following inequalities hold true:

A0 � A1;

A0 C A2 � A1 C A3;

:::

A0 C A2 C : : :C Am�3 � A1 C A3 C : : :C Am�2:

(11.27)

Remark 11.7 ([38]) Let

H.x/ D
Z x

a
F.t/dt:

Then, the inequalities (11.27) are equivalent to the following inequalities

H.x2/ � 0; H.x4/ � 0; H.x6/ � 0; : : : ; H.xm�1/ � 0:

In [41], Lemma 11.2 is used to prove results, which extend the inequali-
ties (11.18) and (11.20) and inequalities between quadrature operators.

Theorem 11.7 ([41]) Let numbers a1; a2; a3; ˛1; ˛2; ˛3 2 .0; 1/ satisfy a1 C a2 C
a3 D 1 and ˛1 > ˛2 > ˛3:
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Then, the inequality

3X
iD1

aif .˛ix C .1 � ˛i/y/ � 1

y � x

Z y

x
f .t/ (11.28)

is satisfied by all convex functions f W Œx; y� ! R if, and only if, we have

3X
iD1

ai.1 � ˛i/ D 1

2
(11.29)

and one of the following conditions is satisfied

(i) a1 � 1 � ˛1 and a1 C a2 � 1 � ˛3;
(ii) a1 � 1 � ˛2 and a1 C a2 � 1 � ˛3;

(iii) a1 � 1 � ˛1 and a1 C a2 � 1 � ˛2;
(iv) a1 � 1 � ˛1; a1 C a2 2 .1 � ˛2; 1 � ˛3/, and 2˛3 � a3;
(v) a1 � 1 � ˛2; a1 C a2 < 1 � ˛3, and 2˛3 � a3;

(vi) a1 > 1 � ˛1; a1 C a2 � 1 � ˛2, and 1 � ˛1 � a1
2
;

(vii) a1 2 .1 � ˛1; 1 � ˛2/; a1 C a2 � 1 � ˛3; and 1 � ˛1 � a1
2

, and
(viii) a1 2 .1 � ˛1; 1 � ˛2/; a1 C a2 2 .1 � ˛2; 1 � ˛3/; 1 � ˛1 � a1

2
, and

2a1.1 � ˛1/C 2a2.1 � ˛2/ � .a1 C a2/2:

To prove Theorem 11.7, we note that, if the inequality (11.28) is satisfied for
every convex function f defined on the interval Œ0; 1�, then it is satisfied by every
convex function f defined on a given interval Œx; y�: Therefore, without loss of
generality, it suffices to consider the interval Œ0; 1� in place of Œx; y�:

To prove Theorem 11.7, we consider the functions F1;F2 W R ! R given by the
following formulas

F1.t/ WD

8̂̂<
ˆ̂:
0; t < 1 � ˛1;
a1; t 2 Œ1 � ˛1; 1 � ˛2/;
a1 C a2; t 2 Œ1 � ˛2; 1 � ˛3/;
1; t � 1 � ˛3;

(11.30)

and

F2.t/ WD
8<
:
0; t < 0;
t; t 2 Œ0; 1/;
1; t � 1:

(11.31)

Observe that the equality (11.29) gives us

Z 1

0

tdF1.t/ D
Z 1

0

tdF2.t/:
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Further, it is easy to see that in the cases .i/–.iii/ the pair .F1;F2/ crosses exactly
once and, consequently, the inequality (11.28) follows from the Ohlin lemma.

In the case .iv/, the pair .F1;F2/ crosses three times. Let A0; : : : ;A3 be defined
as in Lemma 11.2. In order to prove the inequality (11.28), we note that A0 � A1:
However, since A0 � A1 C A2 � A3 D 0; we shall show that A2 � A3: We have

A2 D
Z 1�˛3

a1Ca2

.t � a1 � a2/dt D .1 � ˛3 � a1 � a2/2

2
D a23 � 2a3˛3 C ˛23

2

and

A3 D
Z 1

1�˛3
.1 � t/dt D ˛23

2
:

This means that A2 � A3 is equivalent to 2˛3 � a3; as claimed.
We omit similar proofs in the cases .v/–.vii/ and we pass to the case .vii/: In

this case, the pair .F1;F2/ crosses five times. We have

A0 D
Z 1�˛1

0

tdt D .1 � ˛1/2
2

and

A1 D
Z a1

1�˛1
.a1 � t/dt D a1.a1 � .1 � ˛1// � a21 � .1 � ˛1/2

2
D Œa1 � .1 � ˛1/�2

2
:

This means that the inequality A0 � A1 is satisfied if, and only if, 1 � ˛1 � a1
2

.
Further,

A2 D
Z 1�˛2

a1

.t � a1/dt D .1 � ˛2/2 � a21
2

� a1.1 � ˛2 � a1/

and

A3 D
Z a1Ca2

1�˛2
.a1Ca2�t/dt D .a1Ca2/.a1Ca2�.1�˛2//� .a1 C a2/2 � .1 � ˛2/2

2
;

therefore, the inequality A0 C A2 � A3 C A1 is satisfied if, and only if,

.1 � ˛1/2 C .1 � ˛2 � a1/
2 � .a1 � 1 � ˛1/2 C .a1 C a2 � 1C ˛2/

2;

which, after some calculations, gives us the last inequality from .vii/.
Using assertions (i) and (vii) of Theorem 11.7, it is easy to get the following

example.
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Example 11.1 ([41]) Let x; y 2 R; ˛ 2 . 1
2
; 1/, and a; b 2 .0; 1/ be such that

2a C b D 1: Then, the inequality

af .˛xC.1�˛/y/Cbf

�
x C y

2

�
Caf ..1�˛/xC˛y/ � 1

y � x

Z y

x
f .t/dt (11.32)

is satisfied by all convex functions f W Œx; y� ! R if, and only if, a � 2 � 2˛:
In the next theorem, we obtain inequalities, which extend the second of the

Hermite–Hadamard inequalities.

Theorem 11.8 ([41]) Let numbers a1; a2; a3; a4 2 .0; 1/; ˛1; ˛2; ˛3; ˛4 2 Œ0; 1�

satisfy a1 C a2 C a3 C a4 D 1 and 1 D ˛1 > ˛2 > ˛3 > ˛4 D 0.
Then, the inequality

4X
iD1

aif .˛ix C .1 � ˛i/y/ � 1

y � x

Z y

x
f .t/ (11.33)

is satisfied by all convex functions f W Œx; y� ! R if, and only if, we have

4X
iD1

ai.1 � ˛i/ D 1

2
(11.34)

and one of the following conditions is satisfied:

(i) a1 � 1 � ˛2 and a1 C a2 � 1 � ˛3;
(ii) a1 C a2 � 1 � ˛2 and a1 C a2 C a3 � 1 � ˛3;

(iii) 1 � ˛2 � a1 and 1 � ˛3 � a1 C a2 C a3;
(iv) 1 � ˛2 � a1; 1 � ˛3 2 .a1 C a2; a1 C a2 C a3/, and ˛3 � 2a4;
(v) 1 � ˛2 � a1 C a2; a1 C a2 C a3 > 1 � ˛3, and ˛3 � 2a4;

(vi) a1 < 1 � ˛2; a1 C a2 � 1 � ˛3, and 2a1 C ˛2 � 1;

(vii) a1 < 1 � ˛2; a1 C a2 > 1 � ˛2; a1 C a2 C a3 � 1 � ˛3, and 2a1 C ˛2 � 1;

(viii) 1 � ˛2 2 .a1; a1 C a2/; 1 � ˛3 2 .a1 C a2; a1 C a2 C a3/; 2a1 C ˛2 � 1, and
2a1.1 � ˛3/C 2a2.˛2 � ˛3/ � .1 � ˛3/2:

To prove Theorem 11.8, we assume that F1 W R ! R is the function given by the
following formula

F1.t/ WD

8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:

0; t < 0;
a1; t 2 Œ0; 1 � ˛1/;
a1 C a2; t 2 Œ1 � ˛1; 1 � ˛2/;
a1 C a2 C a3; t 2 Œ1 � ˛2; 1/;
1; t � 1:

(11.35)
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and let F2 be the function given by (11.31). In view of (11.34), we haveZ 1

0

F1.t/dt D
Z 1

0

F2.t/dt:

In cases .i/–.iii/, there is only one crossing point of .F2;F1/ and our assertion is
a consequence of the Ohlin lemma.

In the cases .iv/–.vii/, the pair .F2;F1/ crosses three times and, therefore, we
have to use Lemma 11.2.

In the case .iv/, the inequality (11.33) is satisfied by all convex functions f if,
and only if, A0 � A1: Further, we know that

A0 � A1 C A2 � A3 D 0;

which implies that the inequality A0 � A1 is equivalent to A3 � A2: Clearly, we
have

A2 D
Z 1�a4

1�˛3
.F1.t/ � F2.t//dt D .˛3 � a4/.1 � a4/ � .1 � a4/2 � .1 � ˛3/2

2

D.˛3 � a4/

�
1 � a4 C 2 � .˛3 C a4/

2

�
(11.36)

and

A3 D
Z 1

1�a4

.t � .1 � a4//dt D 1 � .1 � a4/2

2
� .1 � a4/a4 (11.37)

that is, A3 � A2 is equivalent to ˛3 � 2a4.
We omit similar reasoning in the cases .v/–.vii/ and we pass to the most

interesting case .viii/: In this case, .F2;F1/ has five crossing points and, therefore,
we must check that the inequalities

A0 � A1 and A0 � A1 C A2 � A3

are equivalent to the inequalities of the condition .viii/, respectively. To this end,
we write

A0 D
Z a1

0

.a1 � t/dt D a21
2
;

A1 D
Z 1�˛1

a1

.t � .a1 C a2//dt D .a1 C a2 � 1C ˛1/
2

2
;

which means that A0 � A1 if, and only if, 2a1 C ˛2 � 1: Further, A2 and A3 are
given by formulas (11.36) and (11.37). Thus, A0 � A1 C A2 � A3 is equivalent to

a21 C .a1 C a2 � .1 � ˛2//2 � .1 � ˛2 � a1/
2 C .1 � ˛3 � a1 � a2/

2;
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which yields

2a1.1 � ˛3/C 2a2.˛2 � ˛3/ � .1 � ˛3/2:

Using assertions .ii/ and .vii/ of Theorem 11.8, we get the following example.

Example 11.2 ([41]) Let x; y 2 R; let ˛ 2 . 1
2
; 1/, and let a; b 2 .0; 1/ be such that

2a C 2b D 1: Then, the inequality

af .x/C bf .˛x C .1 � ˛/y/C bf ..1 � ˛/x C ˛y/C af .y/ � 1

y � x

Z y

x
f .t/dt

is satisfied by all convex functions f W Œx; y� ! R if, and only if, a � 1�˛
2
:

In the next theorem, we show that the same tools may be used to obtain some
inequalities between quadrature operators, which do not involve the integral mean.

Theorem 11.9 ([41]) Let a; ˛1; ˛2; ˇ 2 .0; 1/ and let b1; b2; b3 2 .0; 1/ satisfy
b1 C b2 C b3 D 1:

Then, the inequality

af .˛1x C .1 � ˛1/y/C .1 � a/f .˛2x C .1 � ˛2/y/ �

b1f .x/C b2f .ˇx C .1 � ˇ/y/C b3f .y/ (11.38)

is satisfied by all convex functions f W Œx; y� ! R if, and only if, we have

b2.1 � ˇ/C b3 D a.1 � ˛1/C .1 � a/.1 � ˛2/ (11.39)

and one of the following conditions is satisfied:

(i) a � b1;
(ii) a � b1 C b2; and

(iii) ˛2 � ˇ

or

(iv) a 2 .b1; b1 C b2/; ˛2 < ˇ, and .1 � ˛1/b1 � .˛1 � ˇ/.a � b1/:

Now, using this theorem, we shall present positive and negative examples of
inequalities of the type (11.38).

Example 11.3 ([41]) Let ˛ 2 � 1
2
; 1
	
: The inequality

f .˛x C .1 � ˛/y/C f ..1 � ˛/x C ˛y/

2
�

f .x/C f
�

xCy
2

�
C f .y/

3

is satisfied by all convex functions f W Œx; y� ! R if, and only if, ˛ � 5
6
:
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Example 11.4 ([41]) Let ˛ 2 � 1
2
; 1
	
: The inequality

f .˛x C .1 � ˛/y/C f ..1 � ˛/x C ˛y/

2
� 1

6
f .x/C 2

3
f

�
x C y

2

�
C 1

6
f .y/

is satisfied by all convex functions f W Œx; y� ! R if, and only if, ˛ � 2
3
:

11.3 Inequalities of the Hermite–Hadamard Type Involving
Numerical Differentiation Formulas of the First Order

In the paper [32], expressions connected with numerical differentiation formulas
of order 1 are studied. The authors used the Ohlin lemma and the Levin–Stečkin
theorem to study inequalities of the Hermite–Hadamard type connected with these
expressions.

First, we recall the classical Hermite–Hadamard inequality

f

�
x C y

2

�
� 1

y � x

Z y

x
f .t/dt � f .x/C f .y/

2
: (11.40)

Now, let us write (11.40) in the form

f

�
x C y

2

�
� F.y/ � F.x/

y � x
� f .x/C f .y/

2
: (11.41)

Clearly, this inequality is satisfied by every convex function f and its primitive
function F. However, (11.41) may be viewed as an inequality involving two types of
expressions used, in numerical integration and differentiation, respectively. Namely,

f
�

xCy
2

�
and f .x/Cf .y/

2
are the simplest quadrature formulas used to approximate the

definite integral, whereas F.y/�F.x/
y�x is the simplest expression used to approximate

the derivative of F: Moreover, as it is known from numerical analysis, if F0 D f ,
then the following equality is satisfied

f .x/ D F.x C h/ � F.x � h/

2h
� h2

6
f 00.�/ (11.42)

for some � 2 .x � h; x C h/: This means that (11.42) provides an alternate proof
of (11.41) (for twice differentiable f ).

This new formulation of the Hermite–Hadamard inequality was inspiration
in [32] to replace the middle term of Hermite–Hadamard inequality by more
complicated expressions than those used in (11.40). In [32], the authors study
inequalities of the form
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f

�
x C y

2

�
� a1F.x/C a2F.˛x C .1 � ˛/y/C a3F.ˇx C .1 � ˇ/y/C a4F.y/

y � x

and

a1F.x/C a2F.˛x C .1 � ˛/y/C a3F.ˇx C .1 � ˇ/y/C a4F.y/

y � x
� f .x/C f .y/

2
;

where f W Œx; y� ! R is a convex function, F0 D f ; ˛; ˇ 2 .0; 1/, and a1 C a2 C a3 C
a4 D 0:

Proposition 11.5 ([32]) Let n 2 N; ˛i 2 .0; 1/, ai 2 R, i D 1; : : : ; n be such that
˛1 > ˛2 > � � � > ˛n and a1 C a2 C � � � C an D 0, and let F be a differentiable
function with F0 D f : Then,

Pn
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
D
Z

fd�;

with

�.A/ D � 1

y � x

n�1X
iD1
.a1 C � � � C ai/l1.A \ Œ˛ix C .1 � ˛i/y; ˛iC1x C .1 � ˛iC1/y�/;

where l1 stands for the one-dimensional Lebesgue measure.

Remark 11.8 ([32]) Taking F1.t/ WD �..�1; t�/ with � from Proposition 11.5, we
can see that Pn

iD1 aiF.˛ix C .1 � ˛i/y/

y � x
D
Z

fdF1: (11.43)

Next proposition will show that, in order to get some inequalities of the Hermite–
Hadamard type, we have to use sums containing more than three summands.

Proposition 11.6 ([32]) There are no numbers ˛i; ai 2 R; i D 1; 2; 3, satisfying
1 D ˛1 > ˛2 > ˛3 D 0 such that any of the inequalities

f

�
x C y

2

�
�
P3

iD1 aiF.˛ix C .1 � ˛i/y/

y � x

or

P3
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
� f .x/C f .y/

2

is fulfilled by every continuous and convex function f and its antiderivative F:
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To prove Proposition 11.6, we note that by Proposition 11.5, we can see that

P3
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
D
Z y

x
fd�;

with

�.A/ D � 1

y � x

�
a1l1.A \ Œx; ˛2x C .1 � ˛2/y�/C

.a2 C a1/l1.A \ Œ˛2x C .1 � ˛2/y; y�/
	
;

and

P3
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
D
Z y

x
f .t/dF1.t/;

where

F1.t/ D �f.�1; t�g: (11.44)

Now, if

F2.t/ D 1

y � x
l1f.�1; t� \ Œx; y�g;

then F1 lies strictly above or below F2 (on Œx; y�). This means that

Z y

x
F2.t/dt ¤

Z y

x
F1.t/dt: (11.45)

But, on the other hand, if

F3.t/ WD
8<
:
0; t < x;
1
2
; t 2 Œx; y/;

1; t � y;
(11.46)

and

F4.t/ WD
�
0; t < xCy

2
;

1; t � xCy
2
;

(11.47)

then Z y

x
F2.t/dt D

Z y

x
F3.t/dt D

Z y

x
F4.t/dt D y � x

2
:
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This, together with (11.45), shows that neither

Z y

x
fdF2 �

Z y

x
fdF3

nor Z y

x
fdF2 �

Z y

x
fdF4

is satisfied. To complete the proof, it suffices to observe that

Z y

x
fdF3 D f .x/C f .y/

2
;

Z y

x
fdF4 D f

�
x C y

2

�
:

Remark 11.9 ([32]) Observe that the assumptions of Proposition 11.6, ˛1 D 1

and ˛3 D 0, are essential. For example, it follows from the Ohlin lemma that the
inequality

f

�
x C y

2

�
� �3F. 3

4
x C 1

4
y/C 25

11
F. 11

20
x C 9

20
y/C 8

11
F.y/

y � x
� 1

y � x

Z
f .t/dt

is satisfied by all continuous and convex functions f (where F0 D f ). Clearly, there
are many more examples of inequalities of this type.

Lemma 11.3 ([32]) If any of the inequalities

f

�
x C y

2

�
�
P4

iD1 aiF.˛ix C .1 � ˛i/y/

y � x
(11.48)

or

P4
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
� f .x/C f .y/

2
(11.49)

is satisfied for all continuous and convex functions f W Œx; y� ! R (where F0 D f ),
then

a1.˛2 � ˛1/C .a2 C a1/.˛3 � ˛2/C .a3 C a2 C a1/.˛4 � ˛3/ D 1 (11.50)

and

a1.˛
2
2 � ˛21/C .a2 C a1/.˛

2
3 � ˛22/C .a3 C a2 C a1/.˛

2
4 � ˛23/ D 1: (11.51)
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To prove this lemma, we take x D 0, y D 1. Then, using Proposition 11.5, we
can see that

4X
iD1

aiF.1 � ˛i/ D
Z 1

0

fd� D �a1

Z 1�˛2

1�˛1
f .x/dxC

�.a1 C a2/
Z 1�˛2

1�˛3
f .x/dx � .a1 C a2 C a3/

Z 1�˛3

1�˛4
f .x/dx:

Now, we consider the functions F1;F3, and F4 given by the formulas (11.44), (11.46),
and (11.47), respectively. Then, the inequalities (11.48) and (11.49) may be written
in the form Z

fdF4 �
Z

fdF1

and Z
fdF1 �

Z
fdF3:

This means that, if, for example, the inequality (11.48) is satisfied, then we have
F1.1/ D F4.1/ D 1, which yields (11.50). Further,

Z 1

0

F1.t/dt D
Z 1

0

F4.t/dt D 1

2
;

which gives us (11.51).

Proposition 11.7 ([32]) Let ˛i 2 .0; 1/, ai 2 R, i D 1; : : : ; 4; be such that 1 D
˛1 > ˛2 > ˛3 > ˛4 D 0, a1 C a2 C a3 C a4 D 0, and the equalities (11.50)
and (11.51) are satisfied. If F1 is such that

P4
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
D
Z y

x
fdF1

and F2 is the distribution function of a measure which is uniformly distributed in the
interval Œx; y�, then .F1;F2/ crosses exactly once.

Indeed, from (11.50) we can see that F1.x/ D F2.x/ D 0 and F1.y/ D F2.y/ D 1:

Note that, in view of Proposition 11.5, the graph of the restriction of F1 to the
interval Œx; y� consists of three segments. Therefore, F1 and F2 cannot have more
than one crossing point. On the other hand, if graphs F1 and F2 do not cross, then

Z y

x
tdF1.t/ ¤

Z y

x
tdF1.t/

that is, (11.51) is not satisfied.
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Theorem 11.10 Let ˛i 2 .0; 1/, ai 2 R, i D 1; : : : ; 4; be such that 1 D ˛1 > ˛2 >

˛3 > ˛4 D 0, a1 C a2 C a3 C a4 D 0, and the equalities (11.50) and (11.51) are
satisfied. Let F; f W Œx; y� ! R be functions such that f is continuous and convex and
F0 D f : Then,

(i) If a1 > �1, then

P4
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
� 1

y � x

Z y

x
f .t/dt � f .x/C f .y/

2
;

(ii) If a1 < �1, then

f

�
x C y

2

�
� 1

y � x

Z y

x
f .t/dt �

P4
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
;

(iii) If a1 2 .�1; 0�, then

f

�
x C y

2

�
�
P4

iD1 aiF.˛ix C .1 � ˛i/y/

y � x
� 1

y � x

Z y

x
f .t/dt; and

(iv) If a1 < �1 and a2 C a1 � 0, then

1

y � x

Z y

x
f .t/dt �

P4
iD1 aiF.˛ix C .1 � ˛i/y/

y � x
� f .x/C f .y/

2
:

We shall prove the first assertion. Other proofs are similar and will be omitted.
It is easy to see that if inequalities which we consider are satisfied by every contin-
uous and convex function defined on the interval Œ0; 1�, then they are true for every
continuous and convex function on a given interval Œx; y�: Therefore, we assume
that x D 0 and y D 1: Let F1 be such that (11.43) is satisfied and let F2 be the
distribution function of a measure, which is uniformly distributed in the interval
Œ0; 1�: From Proposition 11.5 and Remark 11.8, we can see that the graph of F1
consists of three segments and, since a1 > �1; the slope of the first segment is
smaller than 1; i.e., F1 lies below F2 on some right-hand neighborhood of x: In view
of the Proposition 11.7, this means that the assumptions of the Ohlin lemma are
satisfied and we get our result from this lemma.

Now, we shall present examples of inequalities, which may be obtained from this
theorem.

Example 11.5 ([32]) Using (i), we can see that the inequality

1

3
F.x/ � 8

3
F

�
3x C y

4

�
C 8

3
F

�
x C 3y

4

�
� 1

3
F.y/ �

R y
x f .t/dt

y � x

is satisfied for every continuous and convex f and its antiderivative F:
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Example 11.6 ([32]) Using (ii), we can see that the inequality

�2F.x/C 3F

�
2x C y

3

�
� 3F

�
x C 2y

3

�
C 2F.y/ �

R y
x f .t/dt

y � x

is satisfied by every continuous and convex function f and its antiderivative F:

Example 11.7 ([32]) Using (iii), we can see that the inequality

R y
x f .t/dt

y � x
�

� 1
2
F.x/ � 3

2
F
�
2xCy
3

�
C 3

2
F
�

xC2y
3

�
C 1

2
F.y/

y � x
� f

�
x C y

2

�

is satisfied by every continuous and convex function f and its antiderivative F:

Example 11.8 ([32]) Using (iv), we can see that the inequality

R y
x f .t/dt

y � x
�

� 3
2
F.x/C 2F

�
3xCy
4

�
� 2F

�
xC3y
4

�
C 3

2
F.y/

y � x
� f .x/C f .y/

2

is satisfied by every continuous and convex function f and its antiderivative F:
In all cases considered in the above theorem, we used only the Ohlin lemma.

Using Lemma 11.2, it is possible to obtain more subtle inequalities. However (for
the sake of simplicity), in the next result, we shall restrict our considerations to

expressions of the simplified form. Note that the inequality between f
�

xCy
2

�
and

expressions which we consider is a bit unexpected.

Theorem 11.11 ([32]) Let ˛ 2 �0; 1
2

	
, a; b 2 R.

(i) If a > 0, then the inequality

f

�
x C y

2

�
� aF.x/C bF.˛x C .1 � ˛/y/ � bF..1 � ˛/x C ˛y/ � aF.y/

y � x

is satisfied by every continuous and convex f and its antiderivative F if, and
only if,

.1 � ˛/2 ab

a C b
>
1

2
� .1 � ˛/ b

a C b
; and (11.52)

(ii) If a < �1 and a1 C a2 > 0, then the inequality

aF.x/C bF.˛x C .1 � ˛/y/ � bF..1 � ˛/x C ˛y/ � aF.y/

y � x
� f .x/C f .y/

2



254 T. Rajba

is satisfied by every continuous and convex f and its antiderivative F if, and
only if,

� 1

4a
>

�
�a.1 � ˛/ � 1

2

��
1

2
C 1

2a

�
:

We shall prove the assertion (i) of Theorem 11.11. The proof of (ii) is similar and
will be omitted. Similarly as before, we may assume without loss of generality that
x D 0; y D 1. Let F1 be such that

aF.0/C bF.1 � ˛/ � bF.˛/C aF.1/ D
Z 1

0

fdF1

and let F4 be given by (11.47). Then, it is easy to see that .F1;F4/ crosses three
times: at .1�˛/baCb ; 1

2
, and at aC˛b

aCb .
We are going to use Lemma 11.2. Since, from (11.51), we have that

A0 C A1 C A2 C A3 D 0;

it suffices to check that A0 � A1 if, and only if, the inequality (11.52) is satisfied.
Since, F4.x/ D 0; for x 2 �0; 1

2

	
; we get

A0 D �
Z .1�˛/b

aCb

0

F1.t/dt

and

A1 D
Z 1

2

.1�˛/b
aCb

F1.t/dt;

which yields our assertion.

Example 11.9 ([32]) Neither inequality

f

�
x C y

2

�
�

1
3
F.x/ � 8

3
F
�
3xCy
4

�
C 8

3
F
�

xC3y
4

�
� 1

3
F.y/

y � x
(11.53)

nor

f

�
x C y

2

�
�

1
3
F.x/ � 8

3
F
�
3xCy
4

�
C 8

3
F
�

xC3y
4

�
� 1

3
F.y/

y � x
(11.54)
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is satisfied for all continuous and convex f W Œx; y� ! R: Indeed, if F1 is such that

Z y

x
f .t/dF1.t/ D

1
3
F.x/ � 8

3
F
�
3xCy
4

�
C 8

3
F
�

xC3y
4

�
� 1

3
F.y/

y � x
;

then

Z 3xCy
4

x
F1.t/dt <

Z 3xCy
4

x
F4.t/dt;

thus inequality (11.53) cannot be satisfied. On the other hand, the coefficients and
nodes of the expression considered do not satisfy (11.52). Therefore, (11.54) is also
not satisfied for all continuous and convex f W Œx; y� ! R:

Example 11.10 ([32]) Using assertion (i) of Theorem 11.11, we can see that the
inequality

2F.x/ � 3F
�
3xCy
4

�
C 3F

�
xC3y
4

�
� 2F.y/

y � x
� f

�
x C y

2

�

is satisfied for every continuous and convex f and its antiderivative F:

Example 11.11 ([32]) Using assertion (ii) of Theorem 11.11, we can see that the
inequality

�2F.x/C 3F
�
2xCy
3

�
� 3F

�
xC2y
3

�
C 2F.y/

y � x
� f .x/C f .y/

2

is satisfied for every continuous and convex f and its antiderivative F:

11.4 Inequalities of the Hermite–Hadamard Type Involving
Numerical Differentiation Formulas of Order Two

In the paper [42], expressions connected with numerical differentiation formulas
of order 2 are studied. The author used the Ohlin lemma and the Levin–Stečkin
theorem to study inequalities connected with these expressions. In particular, the
author presents a new proof of the inequality

f

�
x C y

2

�
� 1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
ds dt � 1

y � x

Z y

x
f .t/dt; (11.55)
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satisfied by every convex function f W R ! R and he obtains extensions of (11.55).
In the previous section, inequalities involving expressions of the formPn

iD1 aiF.˛ix C ˇiy/

y � x
;

where
Pn

iD1 ai D 0; ˛i C ˇi D 1, and F0 D f were considered. In this section, we
study inequalities for expressions of the formPn

iD1 aiF.˛ix C ˇiy/

.y � x/2
;

which we use to approximate the second order derivative of F and, surprisingly, we
discover a connection between our approach and the inequality (11.55) (see [42]).

First, we make the following simple observation.

Remark 11.10 ([42]) Let f ;F; ˚ W Œx; y� ! R be such that ˚ 0 D F;F0 D f . Let
ni;mi 2 N [ f0g, i D 1; 2; 3; ai;j 2 R, ˛i;j, ˇi;j 2 Œ0; 1�, i D 1; 2; 3; j D 1; : : : ; ni;

bi;j 2 R, 
i;j, ıi;j 2 Œ0; 1�, i D 1; 2; 3; j D 1; : : : ;mi: If the inequality

n1X
iD1

a1;if .˛1;ix C ˇ1;iy/C
Pn2

iD1 a2;iF.˛2;ix C ˇ2;iy/

y � x

C
Pn3

iD1 a3;i˚.˛3;ix C ˇ3;iy/

.y � x/2
�

m1X
iD1

b1;if .
1;ix C ı1;iy/

C
Pm2

iD1 b2;iF.
2;ix C ı2;iy/

y � x
C
Pm3

iD1 b3;i˚.
3;ix C ı3;iy/

.y � x/2
(11.56)

is satisfied for x D 0; y D 1 and for all continuous and convex functions f W Œ0; 1� !
R, then it is satisfied for all x; y 2 R, x < y and for each continuous and convex
function f W Œx; y� ! R: To see this, it is enough to observe that expressions
from (11.56) remain unchanged if we replace f W Œx; y� ! R by ' W Œ0; 1� ! R

given by '.t/ WD f
�

x C t
y�x

�
:

The simplest expression used to approximate the second order derivative of f is
of the form

f 00
�

x C y

2

�
	

f .x/ � 2f
�

xCy
2

�
C f .y/� y�x

2

	2 :

Remark 11.11 ([42]) From numerical analysis, it is known that

f 00
�

x C y

2

�
D

f .x/ � 2f
�

xCy
2

�
C f .y/� y�x

2

	2 �
� y�x
2

	2
12

f .4/.�/:
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This means that for a convex function g and for G such that G00 D g we have

g

�
x C y

2

�
�

G.x/ � 2G
�

xCy
2

�
C G.y/� y�x

2

	2 :

In the paper [42], some inequalities for convex functions which do not follow from
formulas used in numerical differentiation are obtained.

Let now f W Œx; y� ! R be any function and let F; ˚ W Œx; y� ! R be such that
F0 D f and ˚ 00 D f : We need to write the expression

˚.x/ � 2˚
�

xCy
2

�
C ˚.y/� y�x

2

	2 (11.57)

in the form Z y

x
fdF1

for some F1: In the next proposition, we show that it is possible—here for the sake
of simplicity we shall work on the interval Œ0; 1�:

Proposition 11.8 ([42]) Let f W Œ0; 1� ! R be any function and let ˚ W Œ0; 1� ! R

be such that ˚ 00 D f : Then, we have

4

�
˚.0/ � 2˚

�
1

2

�
C ˚.1/

�
D
Z y

x
fdF1;

where F1 W Œ0; 1� ! R is given by

F1.t/ WD
�
2x2; x � 1

2
;

�2x2 C 4x � 1; x > 1
2
:

(11.58)

Now, we observe that the following equality is satisfied

˚.x/ � 2˚
�

xCy
2

�
C ˚.y/� y�x

2

	2 D 1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
ds dt:

After this observation, it turns out that inequalities involving the expression (11.57)
were considered in the paper of Dragomir [14], where (among others) the following
inequalities were obtained

f

�
x C y

2

�
� 1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
ds dt � 1

y � x

Z y

x
f .t/dt: (11.59)
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As we already know (Remark 11.11), the first one of the above inequalities may be
obtained using the numerical analysis results.

Now, the inequalities from the Dragomir’s paper easily follow from the Ohlin
lemma but there are many possibilities of generalizations and modifications of
inequalities (11.59). These generalizations will be discussed in this section.

First, we consider the symmetric case. We start with the following remark.

Remark 11.12 ([42]) Let F�.t/ D at2 C bt C c for some a; b; c 2 R; a ¤ 0: It is
impossible to obtain inequalities involving

R y
x fdF� and any of the expressions:

1

y � x

Z y

x
f .t/dt; f

�
x C y

2

�
;

f .x/C f .y/

2
;

which are satisfied for all convex functions f W Œx; y� ! R: Indeed, suppose that we
have Z y

x
fdF� � 1

y � x

Z y

x
f .t/dt

for all convex f W Œx; y� ! R: Without loss of generality, we may assume that
F�.x/ D 0; then from Theorem 11.6 we have F�.y/ D 1. Also from Theorem 11.6
we get

Z y

x
F�.t/dt D

Z y

x
F0dt;

where F0.t/ D t�x
y�x , t 2 Œx; y�, which is impossible, because F� is either strictly

convex or concave.
This remark means that in order to get some new inequalities of the Hermite–

Hadamard type we have to integrate with respect to functions constructed with the
use of (at least) two quadratic functions.

Now, we present the main result of this section.

Theorem 11.12 ([42]) Let x; y be some real numbers such that x < y and let a 2 R:

Let f ;F; ˚ W Œx; y� ! R be any functions such that F0 D f and ˚ 0 D F and let
Taf .x; y/ be the function defined by the following formula

Taf .x; y/ D
�
1 � a

2

� F.y/ � F.x/

y � x
C 2a

˚.x/ � 2˚
�

xCy
2

�
C ˚.x/

.y � x/2
:

Then, the following inequalities hold for all convex functions f W Œx; y� ! R W
• If a � 0, then

Taf .x; y/ � 1

y � x

Z y

x
f .t/dt; (11.60)
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• If a � 0, then

Taf .x; y/ � 1

y � x

Z y

x
f .t/dt; (11.61)

• If a � 2, then

f

�
x C y

2

�
� Taf .x; y/; (11.62)

• If a � 6, then

Taf .x; y/ � f

�
x C y

2

�
; (11.63)

• If a � �6, then

Taf .x; y/ � f .x/C f .y/

2
; (11.64)

Furthermore,

• If a 2 .2; 6/, then the expressions Taf .x; y/; f
�

xCy
2

�
are not comparable in the

class of convex functions, and
• If a < �6, then expressions Taf .x; y/; f .x/Cf .y/

2
are not comparable in the class

of convex functions.

To prove Theorem 11.12, we note that we may restrict ourselves to the case
x D 0; y D 1: Take a 2 R; let f W Œ0; 1� W! R be any convex function, and let
F; ˚ W Œ0; 1� ! R be such that F0 D f ; ˚ 0 D F: Define F1 W Œ0; 1� ! R by the
formula

F1.t/ WD
�

at2 C �
1 � a

2

	
t; t < 1

2
;

�at2 C �
1C 3a

2

	
t � a

2
; t � 1

2
:

(11.65)

First, we prove that Taf .0; 1/ D R 1
0

fdF1: Now, let F2.t/ D t, t 2 Œ0; 1�: Then, the
functions F1;F2 have exactly one crossing point (at 1

2
) and

Z 1

0

F1.t/dt D 1

2
D
Z 1

0

tdt:

Moreover, if a > 0, then the function F1 is convex on the interval .0; 1
2
/ and concave

on . 1
2
; 1/: Therefore, it follows from the Ohlin lemma that for a > 0 we have

Z 1

0

fdF1 �
Z 1

0

fdF2;
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which, in view of Remark 11.10, yields (11.60) and for a < 0 the opposite inequality
is satisfied, which gives (11.61). Take

F3.t/ WD
�
0; t � 1

2
;

1; t > 1
2
:

It is easy to calculate that for a � 2 we have F1.t/ � F3.t/ for t 2 

0; 1

2

�
;

and F1.t/ � F3.t/ for t 2 

1
2
; 1
�
, and this means that from the Ohlin lemma we

get (11.62). Let now

F4.t/ WD
8<
:
0; t D 0;
1
2
; t 2 .0; 1/;
1; t D 1:

Similarly as before, if a � �2, then we have F1.t/ � F4.t/ for t 2 

0; 1

2

�
and

F1.t/ � F4.t/ for t 2 
 1
2
; 1
�
: Therefore, from the Ohlin lemma, we get (11.63).

Suppose that a > 2: Then there are three crossing points of the functions F1 and
F3 W x0;

1
2
; x1; where x0 2 .0; 1

2
/; x1 2 . 1

2
; 1/. The function

'.s/ WD
Z s

0

.F3.t/ � F1.t//dt; s 2 Œ0; 1�

is increasing on the intervals Œ0; x0�; Œ 12 ; x1� and decreasing on Œx0; 12 � and on Œx1; 1�:
This means that ' takes its absolute minimum at 1

2
: It is easy to calculate that

'
�
1
2

	 � 0, if a � 6, which, in view of Theorem 11.6, gives us (11.63).

To see that, for a 2 .2; 6/, the expressions Taf .x; y/ and f
�

xCy
2

�
are not

comparable in the class of convex functions, it is enough to observe that in this
case '.x0/ > 0 and '

�
1
2

	
< 0:

Analogously (using functions F1 and F4), we show that for a 2 .�2;�6� we
have (11.64), and in the case a < �6 the expressions Taf .x; y/ and f .x/Cf .y/

2
are

not comparable in the class of convex functions. This theorem provides us with a
full description of inequalities, which may be obtained using Stieltjes integral with
respect to a function of the form (11.65). Some of the obtained inequalities are
already known. For example, from (11.60) and (11.61) we obtain the inequality

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
ds dt � 1

y � x

Z y

x
f .t/dt;

whereas from (11.62) for a D 2 we get the inequality

f

�
x C y

2

�
� 1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
ds dt:
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However, inequalities obtained for “critical” values of a, i.e., �6; 6: are here
particularly interesting. In the following corollary, we explicitly write these inequal-
ities.

Corollary 11.2 ([42]) For every convex function f W Œx; y� ! R, the following
inequalities are satisfied

3
1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt � 2

y � x

Z y

x
f .t/dt C f

�
x C y

2

�
; (11.66)

4

y � x

Z y

x
f .t/dt � 3

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt C f .x/C f .y/

2
: (11.67)

Remark 11.13 ([42]) In the paper [15], Dragomir and Gomm obtained the follow-
ing inequality

3

Z y

x
f .t/dt � 2

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt C f .x/C f .y/

2
: (11.68)

Inequality (11.67) from Corollary 11.2 is stronger than (11.68). Moreover, as it
was observed in Theorem 11.12, the inequalities (11.66) and (11.67) cannot be
improved, i.e., the inequality

1

y � x

Z y

x
f .t/dt � �

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt C .1 � �/ f .x/C f .y/

2

for � > 3
4

is not satisfied by every convex function f W Œx; y� ! R and the inequality

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt � 


1

y � x

Z y

x
f .t/dt C .1 � 
/f

�
x C y

2

�

with 
 > 2
3

is not true for all convex functions f W Œx; y� ! R:

In Corollary 11.2, we obtained inequalities for the triples:

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt;

Z y

x
f .t/dt;

f .x/C f .y/

2

and

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt;

Z y

x
f .t/dt; f

�
x C y

2

�
:
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In the next remark, we present an analogous result for expressions

1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt;

f .x/C f .y/

2
; f

�
x C y

2

�
:

Remark 11.14 ([42]) Using the functions: F1 defined by (11.58) and F5 given by

F5.t/ WD

8̂̂
<
ˆ̂:
0; t D 0;
1
6
; t 2 �0; 1

2

	
;

5
6
; t 2 
 1

2
; 1
	
;

1; t D 1;

we can see that

1

6
f .x/C 2

3
f

�
x C y

2

�
C 1

6
f .y/ � 1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt

for all convex functions f W Œx; y� ! R:

Moreover, it is easy to see that the above inequality cannot be strengthened,
which means that if a ; b � 0, 2a C b D 1 and a < 1

6
, then the inequality

af .x/C bf

�
x C y

2

�
C af .y/ � 1

.y � x/2

Z y

x

Z y

x
f

�
s C t

2

�
dsdt;

is not satisfied by all convex functions f .
In [42], inequalities for f .˛x C .1 � ˛/y/ and for ˛f .x/C .1 � ˛/f .y/; where ˛

is not necessarily equal to 1
2

(the nonsymmetric case), are also obtained.

Theorem 11.13 ([42]) Let x; y be some real numbers such that x < y and let ˛ 2
Œ0; 1�: Let f W Œx; y� ! R be a convex function, let F be such that F0 D f , and let ˚
satisfy ˚ 0 D F: If S2˛f .x; y/ is defined by

S2˛f .x; y/ WD .4 � 6˛/F.y/C .2 � 6˛/F.x/
y � x

C .6 � 12˛/.˚.y/ � ˚.x//
.y � x/2

;

then the following conditions hold true:

•

S2˛f .x; y/ � ˛f .x/C .1 � ˛/f .y/;

• If ˛ 2 
 1
3
; 2
3

�
, then

S2˛f .x; y/ � f .˛x C .1 � ˛/y/;
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• If ˛ 2 Œ0; 1� n 
 1
3
; 2
3

�
, then the expressions S2˛f .x; y/ and f .˛x C .1 � ˛/y/ are

incomparable in the class of convex functions,
• If ˛ 2 �0; 1

3

� [ 

2
3
; 1
	
; then

S2˛f .x; y/ � S1˛f .x; y/; and

• If ˛ 2 � 1
3
; 1
2

	[ � 1
2
; 2
3

	
, then S1˛f .x; y/ and S2˛f .x; y/ are incomparable in the class

of convex functions.

11.5 The Hermite–Hadamard Type Inequalities for
n-th Order Convex Functions

Now, we are going to study Hermite–Hadamard type inequalities for higher-order
convex functions. Many results on higher-order generalizations of the Hermite–
Hadamard type inequality one can find, among others, in [1–5, 16, 20, 36, 37].
In recent papers [36, 37], the theorem of Denuit, Lefèvre, and Shaked [13] on
sufficient conditions for s-convex ordering was used, to prove Hermite–Hadamard
type inequalities for higher-order convex functions.

Let us review some notations. The convexity of n-th order (or n-convexity) was
defined in terms of divided differences by Popoviciu [34]; however, we will not state
it here. Instead, we list some properties of n-th order convexity which are equivalent
to Popoviciu’s definition (see [24]).

Proposition 11.9 A function f W .a; b/ ! R is n-convex on .a; b/ .n � 1/ if, and
only if, its derivative f .n�1/ exists and is convex on .a; b/ (with the convention
f .0/.x/ D f .x/).

Proposition 11.10 Assume that f W Œa; b� ! R is .n C 1/-times differentiable on
.a; b/ and continuous on Œa; b� (n � 1). Then, f is n-convex if, and only if, f .nC1/.x/ �
0, x 2 .a; b/.

For real-valued random variables X;Y and any integer s � 2, we say that X is
dominated by Y in s-convex ordering sense if Ef .X/ � Ef .Y/ for all .s � 1/-convex
functions f WR ! R, for which the expectations exist [13]. In that case, we write
X �s�cx Y , or �X �s�cx �Y , or FX �s�cx FY . Then, the order �2�cx is just the usual
convex order �cx.

A very useful criterion for the verification of the s-convex order is given by
Denuit, Lefèvre, and Shaked in [13].

Proposition 11.11 ([13]) Let X and Y be two random variables such that E.Xj �
Yj/ D 0, j D 1; 2; : : : ; s � 1 (s � 2). If S�.FX � FY/ D s � 1 and the last sign of
FX � FY is positive, then X �s�cx Y.
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We now apply Proposition 11.11 to obtain the following results.

Theorem 11.14 ([36]) Let n � 1, a1 � a < b � b1.
Let a.n/ D 


n
2

�C 1, b.n/ D 

nC1
2

�C 1.
Let ˛1; : : : ; ˛a.n/, x1; : : : ; xa.n/, ˇ1; : : : ; ˇb.n/, y1; : : : ; yb.n/ be real numbers

such that

• If n is even, then

0 < ˇ1 < ˛1 < ˇ1 C ˇ2 < ˛1 C ˛2 < : : : < ˛1 C : : :C ˛a.n/ D ˇ1 C : : :C ˇb.n/ D 1;

a � y1 < x1 < y2 < x2 < : : : < xa.n/ < yb.n/ � b;

• If n is odd, then

0 < ˇ1 < ˛1 < ˇ1 C ˇ2 < ˛1 C ˛2 < : : : < ˇ1 C : : :C ˇb.n/ < ˛1 C : : :C ˛a.n/ D 1

a � y1 < x1 < y2 < x2 < : : : < yb.n/ < xa.n/ � bI

and

a.n/X
kD1

xk
i ˛i D

b.n/X
jD1

yk
jˇj

for any k D 1; 2; : : : ; n.
Let f W Œa1; b1� ! R be an n-convex function. Then, we have the following

inequalities:

• If n is even, then

a.n/X
iD1

˛if .xi/ �
b.n/X
jD1

ˇjf .yj/;

• If n is odd, then

b.n/X
jD1

ˇjf .yj/ �
a.n/X
iD1

˛if .xi/:

Theorem 11.15 ([36]) Let n � 1, a1 � a < b � b1. Let a.n/; b.n/ 2 N. Let
˛1; : : : ; ˛a.n/, ˇ1; : : : ; ˇb.n/ be positive real numbers such that ˛1 C : : : C ˛a.n/ D
ˇ1 C : : :C ˇb.n/ D 1. Let x1; : : : ; xa.n/, y1; : : : ; yb.n/ be real numbers such that

• a � x1 � x2 � : : : � xa.n/ � b and a � y1 � y2 � : : : � yb.n/ � b,

•
Pa.n/

kD1 xk
i ˛i D Pb.n/

jD1 yk
jˇj; for any k D 1; 2; : : : ; n.
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Let ˛0 D ˇ0 D 0, x0 D y0 D �1. Let F1;F2WR ! R be two functions given
by the following formulas: F1.x/ D ˛0 C ˛1 C : : : C ˛k if xk < x � xkC1 .k D
0; 1; : : : ; a.n/ � 1/ and F1.x/ D 1 if x > xa.n/; F2.x/ D ˇ0 C ˇ1 C : : : C ˇk if
yk < x � ykC1 .k D 0; 1; : : : ; b.n/ � 1/ and F2.x/ D 1 if x > yb.n/. If the functions
F1;F2 have n crossing points and the last sign of F1�F2 is a+, then for any n-convex
function f W Œa1; b1� ! R we have the following inequality

a.n/X
iD1

˛if .xi/ �
b.n/X
jD1

ˇjf .yj/:

Theorem 11.16 ([36]) Let n � 1, a1 � a < b � b1. Let a.n/ D 

n
2

� C 1,
b.n/ D 


nC1
2

�C 1. Let x1; : : : ; xa.n/; y1; : : : ; yb.n/ be real numbers, and ˛1; : : : ; ˛a.n/,
ˇ1; : : : ; ˇb.n/ be positive numbers, such that ˛1C: : :C˛a.n/ D 1, ˇ1C: : :Cˇb.n/ D 1,

1

b � a

Z b

a
xkdx D

b.n/X
jD1

yk
jˇj D

a.n/X
iD1

xk
i ˛i .k D 1; 2; : : : ; n/;

a � x1 < x2 < : : : < xa.n/ � b, a � y1 < y2 < : : : < yb.n/ < b,

x1�a
b�a < ˛1 <

x2�a
b�a ;

x2�a
b�a < ˛1 C ˛2 <

x3�a
b�a ;

: : :

xa.n/�1�a
b�a < ˛1 C : : :C ˛a.n/�1 <

xa.n/�a
b�a ;

y1�a
b�a < ˇ1 <

y2�a
b�a ;

y2�a
b�a < ˇ1 C ˇ2 <

y2�a
b�a ;

: : :

yb.n/�1�a
b�a < ˇ1 C : : :C ˇb.n/�1 <

yb.n/�a
b�a I

if n is even, then y1 D a, yb.n/ D b, x1 > a, xa.n/ < b;
if n is odd, then y1 D a, yb.n/ < b, x1 > a, xa.n/ D b.
Let f W Œa1; b1� ! R be an n-convex function. Then, we have the following

inequalities:

• If n is even, then

a.n/X
iD1

˛if .xi/ � 1

b � a

Z b

a
f .x/dx �

b.n/X
jD1

ˇjf .yj/;
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• If n is odd, then

b.n/X
jD1

ˇjf .yj/ � 1

b � a

Z b

a
f .x/dx �

a.n/X
iD1

˛if .xi/:

Note that Proposition 11.11 can be rewritten in the following form.

Proposition 11.12 ([13]) Let X and Y be two random variables such that

E.Xj � Yj/ D 0; j D 1; 2; : : : ; s .s � 1/:

If the distribution functions FX and FY cross exactly s-times at points x1 < x2 <
: : : < xs and

.�1/sC1 .FY.x/ � FX.x// � 0 for all x � x1;

then

Ef .X/ � Ef .Y/ (11.69)

for all s-convex functions f WR ! R.
Proposition 11.11 is a counterpart of the Ohlin lemma concerning convex

ordering. This proposition gives sufficient conditions for s-convex ordering and is
very useful for the verification of higher-order convex orders. However, it is worth
noticing that in the case of some inequalities, the distribution functions cross more
than s-times. Therefore, a simple application of this proposition is impossible.

In the paper [38], a theorem on necessary and sufficient conditions for higher-
order convex stochastic ordering is given. This theorem is a counterpart of the
Levin–Stečkin theorem [25] concerning convex stochastic ordering. Based on
this theorem, useful criteria for the verification of higher-order convex stochastic
ordering are given. These results can be useful in the study of Hermite–Hadamard
type inequalities for higher-order convex functions, and in particular inequalities
between the quadrature operators. It is worth noticing that these criteria can be easier
to checking of higher-order convex orders, than those given in [13, 22].

Let F1;F2W Œa; b� ! R be two functions with bounded variation and �1, �2 be the
signed measures corresponding to F1, F2, respectively. We say that F1 is dominated
by F2 in .n C 1/-convex ordering sense .n � 1/ if

Z 1

�1
f .x/dF1.x/ �

Z 1

�1
f .x/dF2.x/

for all n-convex functions f W Œa; b� ! R. In that case, we write F1 �.nC1/�cx F2,
or �1 �.nC1/�cx �2. In the following theorem, we give necessary and sufficient
conditions for .n C 1/-convex ordering of two functions with bounded variation.
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Theorem 11.17 ([38]) Let a; b 2 R, a < b, n 2 N and let F1;F2W Œa; b� ! R be
two functions with bounded variation such that F1.a/ D F2.a/. Then, in order that

Z b

a
f .x/dF1.x/ �

Z b

a
f .x/dF2.x/

for all continuous n-convex functions f W Œa; b� ! R; it is necessary and sufficient
that F1 and F2 verify the following conditions:

F1.b/ D F2.b/;

Z b

a
F1.x/dx D

Z b

a
F2.x/dx;

Z b

a

Z xk�1

a
: : :

Z x1

a
F1.t/dtdx1 : : : dxk�1 D

Z b

a

Z xk�1

a
: : :

Z x1

a
F2.t/dtdx1 : : : dxk�1 for k D 2; : : : ; n; (11.70)

.�1/nC1
Z x

a

Z xn�1

a
: : :

Z x1

a
F1.t/dtdx1 : : : dxn�1 �

.�1/nC1
Z x

a

Z xn�1

a
: : :

Z x1

a
F2.t/dtdx1 : : : dxn�1 for all x 2 .a; b/: (11.71)

Corollary 11.3 ([38]) Let �1, �2 be two signed measures on B.R/, which are
concentrated on .a; b/, and such that

R b
a jxjn�i.dx/ < 1, i D 1; 2. Then, in

order that

Z b

a
f .x/d�1.x/ �

Z b

a
f .x/d�2.x/

for continuous n-convex functions f W Œa; b� ! R, it is necessary and sufficient that
�1, �2 verify the following conditions:

�1 ..a; b// D �2 ..a; b// ; (11.72)Z b

a
xk�1.dx/ D

Z b

a
xk�2.dx/ for k D 1; : : : ; n; (11.73)

Z b

a

�
t � x

	n

C�1.dt/ D
Z b

a

�
t � x

	n

C�2.dt/ for all x 2 .a; b/; (11.74)

where ynC D
n

maxfy; 0g
on

, y 2 R.
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In [13], it can be found the following necessary and sufficient conditions for the
verification of the .s C 1/-convex order.

Proposition 11.13 ([13]) If X and Y are two real-valued random variables such
that EjXjs < 1 and EjYjs < 1, then

Ef .X/ � Ef .Y/

for all continuous s-convex functions f WR ! R if, and only if,

EXk D EYk for k D 1; 2; : : : ; s; (11.75)

E.X � t/sC � E.Y � t/sC for all t 2 R: (11.76)

Remark 11.15 ([38]) Note that if the measures �X , �Y , corresponding to the ran-
dom variables X, Y , respectively, occurring in Proposition 11.13, are concentrated on
some interval Œa; b�, then this proposition is an easy consequence of Corollary 11.3.

Theorem 11.17 can be rewritten in the following form.

Theorem 11.18 ([38]) Let F1;F2W Œa; b� ! R be two functions with bounded
variation such that F1.a/ D F2.a/. Let

H0.t0/ D F2.t0/ � F1.t0/ for t0 2 Œa; b�;

Hk.tk/ D
Z tk�1

a
Hk�1.tk�1/dtk�1 for tk 2 Œa; b�; k D 1; 2; : : : ; n:

Then, in order that

Z b

a
f .x/dF1.x/ �

Z b

a
f .x/dF2.x/

for all continuous n-convex functions f W Œa; b� ! R; it is necessary and sufficient
that the following conditions are satisfied:

Hk.b/ D 0 for k D 0; 1; 2; : : : ; n;

.�1/nC1Hn.x/ � 0 for all x 2 .a; b/:

Remark 11.16 ([38]) The functions H1; : : : ;Hn that appear in Theorem 11.18 can
be obtained from the following formulas

Hn.x/ D .�1/nC1
Z b

a

.t � x/nC
nŠ

d.F2.t/ � F1.t//; (11.77)

Hk�1.x/ D H
0

k .x/; k D 2; 3; : : : ; n: (11.78)
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Note that the function .�1/nC1Hn�1, that appears in Theorem 11.18, plays a role
similar to the role of the function F D F2 � F1 in Lemma 11.2. Consequently, from
Theorem 11.18, Lemma 11.2, and Remarks 11.7, 11.16, we obtain immediately the
following criterion, which can be useful for the verification of higher-order convex
ordering.

Corollary 11.4 ([38]) Let F1;F2W Œa; b� ! R be functions with bounded variation
such that F1.a/ D F2.a/, F1.b/ D F2.b/ and Hk.b/ D 0 .k D 1; 2; : : : ; n/, where
Hk.x/ .k D 1; 2; : : : ; n/ are given by (11.77) and (11.78). Let a < x1 < : : : < xm <

b be the points of sign changes of the function Hn�1 and let .�1/nC1Hn�1.x/ � 0

for x 2 .a; x1/.
• If m is even, then the inequality

Z b

a
f .x/dF1.x/ �

Z b

a
f .x/dF2.x/; (11.79)

is not satisfied by all continuous n-convex functions f W Œa; b� ! R.
• If m is odd, then the inequality (11.79) is satisfied for all continuous n-convex

functions f W Œa; b� ! R if, and only if,

.�1/nC1Hn.x2/ � 0; .�1/nC1Hn.x4/ � 0; : : : ; .�1/nC1Hn.xm�1/ � 0:

(11.80)

In the numerical analysis, some inequalities, which are connected with quadra-
ture operators, are studied. These inequalities, called extremalities, are a particular
case of the Hermite–Hadamard type inequalities. Many extremalities are known
in the numerical analysis (cf. [1, 7, 8] and the references therein). The numerical
analysts prove them using the suitable differentiability assumptions. As proved
by Wąsowicz in the papers [44, 45, 47], for convex functions of higher order,
some extremalities can be obtained without assumptions of this kind, using only
the higher-order convexity itself. The support-type properties play here the crucial
role. As we show in [36, 37], some extremalities can be proved using a probabilistic
characterization. The extremalities, which we study, are known; however, our
method using the Ohlin lemma [31] and the Denuit–Lefèvre–Shaked theorem [13]
on sufficient conditions for the convex stochastic ordering seems to be quite easy.
It is worth noticing that these theorems concern only the sufficient conditions, and
they cannot be used to the proof some extremalities (see [36, 37]). In these cases,
results given in the paper [38] may be useful.

For a function f W Œ�1; 1� ! R, we consider six operators approximating the
integral mean value

I .f / WD 1
2

1Z
�1

f .x/dx:
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They are given by

C.f / WD 1
3

�
f
� �

p
2
2

	C f .0/C f
�p

2
2

	�
;

G2.f / WD 1
2

�
f
� �

p
3
3

	C f
�p

3
3

	�
;

G3.f / WD 4
9
f .0/C 5

18

�
f
� �

p
15
5

	C f
�p

15
5

	�
;

L4.f / WD 1
12

�
f .�1/C f .1/

	C 5
12

�
f
� �

p
5
5

	C f
�p

5
5

	�
;

L5.f / WD 16
45

f .0/C 1
20

�
f .�1/C f .1/

	C 49
180

�
f
� �

p
21
7

	C f
�p

21
7

	�
; and

S.f / WD 1
6

�
f .�1/C f .1/

	C 2
3
f .0/:

The operators G2 and G3 are connected with Gauss–Legendre rules. The operators
L4 and L5 are connected with Lobatto quadratures. The operators S and C concern
Simpson and Chebyshev quadrature rules, respectively. The operator I stands for
the integral mean value (see, e.g., [39, 48–51]).

We will establish all possible inequalities between these operators in the class of
higher-order convex functions.

Remark 11.17 Let X2, X3, Y4, Y5, U, V , and Z be random variables such that

�X2 D 1

2

�
ı�

p

3
3

C ıp

3
3

�
;

�X3 D 4

9
ı0 C 5

18

�
ı�

p

15
5

C ıp

15
5

�
;

�Y4 D 1

12
.ı�1 C ı1/C 5

12

�
ı�

p

5
5

C ıp

5
5

�
;

�Y5 D 16

45
ı0 C 1

20
.ı�1 C ı1/C 49

180

�
ı�

p

21
7

C ıp

21
7

�
;

�U D 2

3
ı0 C 1

6
.ı�1 C ı1/;

�V D 1

3

�
ı�

p

2
2

C ı0 C ıp

2
2

�
; and

�Z.dx/ D 1

2
�Œ�1;1�.x/dx:

Then, we have

G2.f / D EŒf .X2/�; G3.f / D EŒf .X3/�;
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L4.f / D EŒf .Y4/�; L5.f / D EŒf .Y5/�;

S.f / D EŒf .U/�; C.f / D EŒf .V/�; I .f / D EŒf .Z/�:

Theorem 11.19 Let f W Œ�1; 1� ! R be 5-convex. Then,

G3.f / � I .f / � L4.f /; (11.81)

G3.f / � L5.f / � L4.f /: (11.82)

Note that the inequalities (11.81) and (11.82) can be simply derived from
Theorems 11.16 and 11.15 (see [38]).

Remark 11.18 The inequalities (11.82) can be found in [45, 47]. Wąsowicz [45]
proved that in the class of 5-convex functions the operators G2;C; S are not
comparable both with each other and with G3;L4;L5.

Theorem 11.20 Let f W Œ�1; 1� ! R be 3-convex. Then,

G2.f / � I .f / � S.f /; (11.83)

G2.f / � C.f / � T.f / � S.f /; (11.84)

where T 2 fG3;L5g.
In [38] is given a new simple proof of Theorem 11.20. Note that from Theo-

rem 11.16, we obtain G3.f / � I .f / and I .f / � S.f /, which implies (11.83). From
Theorem 11.14, we obtain G2.f / � C.f /. By Theorem 11.15, we get C.f / � G3.f /,
C.f / � L5.f /, G3.f / � S.f /, L5.f / � S.f /.

Remark 11.19 The inequalities (11.84) can be found in [44]. Wąsowicz [44] proved
that the quadratures L4, L5, and G3 are not comparable in the class of 3-convex
functions.

Remark 11.20 Moreover, Wąsowicz [44, 46] proved that

C.f / � L4.f /; (11.85)

if f is 3-convex.
The proof given in [44] is rather complicated. This was done using computer

software. In [46], can be found a new proof of (11.85), without the use of any
computer software, based on the spline approximation of convex functions of higher
order. It is worth noticing that Proposition 11.11 does not apply to proving (11.85),
because the distribution functions FV and FY4 cross exactly five-times.

In [38], the following new proof of (11.85) is given. In this proof of (11.85), we
use Corollary 11.4. Note that we have F1 D FV , F2 D FY4 , and H0 D F D FY4 �FV .
By (11.77) and (11.78), we obtain
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H3.x/ D 1
72

�
.�1 � x/3C C .1 � x/3C C 5

��
�

p
5
5

� x
�3

C C
�p

5
5

� x
�3

C

�

�4
�
.�1 � x/3C C

�
�

p
2
2

� x
�3

C C .�x/3C C
�p

2
2

� x
�3

C

�

;

H2.x/ D 1
24

�
� .�1 � x/2C � .1 � x/2C � 5

��
�

p
5
5

� x
�2

C C
�p

5
5

� x
�2

C

�

C4
�
.�1 � x/2C C

�
�

p
2
2

� x
�2

C C .�x/2C C
�p

2
2

� x
�2

C

�

:

Similarly, H1.x/ can be obtained from the equality H1.x/ D H
0

2.x/. We compute
that x1 D �1 � p

5 C 2
p
2, x2 D 0, and x3 D 1 C p

5 � 2
p
2 are the points of

sign changes of the function H2.x/. It is not difficult to check that the assumptions
of Corollary 11.4 are satisfied. Since

.�1/3C1H3.x2/ D .�1/3C1H3.0/ D 1
72

C
p
5

360
�

p
2

72
> 0;

it follows that the inequalities (11.80) are satisfied. From Corollary 11.4, we
conclude that the relation (11.85) holds.
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Chapter 12
On the Construction of the Field of Reals
by Means of Functional Equations and Their
Stability and Related Topics

Jens Schwaiger

Abstract There are certain approaches to the construction of the field of real
numbers which do not refer to the field of rationals. Two of these ideas are closely
related to stability investigations for the Cauchy equation and for some homogeneity
equation. The a priory different subgroups of Z

Z used are shown to be more or
less identical. Extension of these investigations shows that given a commutative
semigroup G and a normed space X with completion Xc the group Hom.G;Xc/

is isomorphic to A .G;X/=B.G;X/ where B.G;X/ is the subgroup of XG of all
bounded functions and A .G;X/ the subgroup of those f W G ! X for which the
Cauchy difference .x; y/ 7! f .x C y/ � f .x/ � f .y/ is bounded.

The space Hom.N;Xc/may be identified with Xc itself. With this in mind, we are
able to show directly that A .N;X/=B.N;X/ is a completion of the normed space X.

Keywords Stability of the Cauchy equation • Completion of normed spaces

Mathematics Subject Classification (2010) 39B82, 46B99, 54D35

12.1 Introduction

Stability of functional equations is a very active and topical field of research. The
example par excellence is the famous result found in Hyers [6].

Theorem 12.1 Let G be an abelian semigroup and X a complete normed space.
Given f W G ! X, assume that 
f W G � G ! X, 
f .x; y/ WD f .x C y/ � f .x/ � f .y/,
is bounded. Then, there is a unique g 2 Hom.G;X/ such that f � g is bounded.
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Moreover,
��
f

��1 WD supf��
f .x; y/
�� j x; y 2 Gg � " implies that kf .x/ � g.x/k � "

for all x 2 G.
Similar results hold true if the abelian group .G; �/ operates on some set M when

considering the inequality

kf .g � x/ � '.g/f .x/k � c .g/; x 2 M; g 2 G; (12.1)

where '; 2 Hom.G;R n f0g/ and c � 0. See Jabłoński and Schwaiger [7] for
even more general results.

There are many construction methods for the field R of real numbers. They use
many different principles and ideas. Contrasting most of these ideas some of them
do not require the field of rationals as a tool. The starting point there is the ring of
integers. In Faltin et al. [4], a subring of the ring of formal Laurent series over Z
factored by some maximal ideal, namely the principal ideal generated by a certain
carry string, is used.

Two other ones are closely related to functional equations and their stability.
Schönhage [11] uses the subgroup S WD S

c2N Sc of ZN, where

Sc WD fg 2 Z
N j jg.kn/ � kg.n/j � ck for all n; k 2 Ng: (12.2)

In A’Campo [1], the starting point for the construction is the subgroup A WDS
c2N Ac of ZZ, where

Ac WD ff 2 Z
Z j jf .n C m/ � f .n/ � f .m/j � c for all n;m 2 Zg: (12.3)

Some basic tools are the following ones.

Theorem 12.2 Let G be an abelian semigroup and X a normed vector space over
the field Q of rationals. Given c � 0, let f 2 Ac.G;X/ WD fh 2 XG j k
hk1 � cg;
where 
h.x; y/ WD h.x C y/ � h.x/ � h.y/ is the Cauchy difference of h and

k
hk1 WD supx;y2Gk
h.x; y/k:

Then

kf .nx/ � nf .x/k � .n � 1/c; x 2 G; n 2 N; (12.4)

and the sequence .f .nx/=n/n2N is a Cauchy sequence, since it satisfies

���� f .nx/

n
� f .mx/

m

���� �
�
1

n
C 1

m

�
c; x 2 G; n;m 2 N:

Moreover, if this sequence converges for all x 2 G, the limit function a,

a.x/ WD lim
n!1

f .nx/

n
;
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is an element of Hom.G;X/, the set of homomorphisms from G to X. This a satisfies
kf � ak1 � c and it is the only homomorphism b, such that f � b is bounded.

Proof The first assertion is clear for n D 1. If it is true for n, we get

kf ..n C 1/x/ � .n C 1/f .x/k D kf .nx C x/ � f .nx/ � f .x/C f .nx/ � nf .x/k
� kf .nx C x/ � f .nx/ � f .x/k C kf .nx/ � nf .x/k
� c C .n � 1/c D nc:

By the first part, kf .nmx/ � nf .mx/k � .n�1/c and kf .mnx/ � mf .nx/k � .m�1/c.
Thus,

knf .mx/ � mf .nx/k � knf .mx/ � f .nmx/k C kf .nmx/ � mf .nx/k
� .n � 1C m � 1/c:

Dividing by nm gives the desired result. So, the second assertion also is proved.
Finally, let

an.x/ WD f .nx/

n
:

The properties of f imply

kan.x C y/ � an.x/ � an.y/k � c

n
:

Thus a,

a.x/ WD lim
n!1 an.x/;

lies in Hom.G;X/. Moreover, the second part with n D 1 gives

kf .x/ � am.x/k � .1C 1

m
/c:

Taking the limit for m to 1 shows that kf � ak1 � c.
Finally, assume that for b 2 Hom.G;X/ the difference f � b is bounded. Then

the homomorphism b � a is bounded as well. This implies b � a D 0. ut
Let now G be merely a set on which .N; �/ operates via .n; x/ 7! nx such that

n.mx/ D .nm/x and 1x D 1. Furthermore, let

Sc.G;X/ WD ff 2 XG j kf .nx/ � nf .x/k � nc; x 2 G; n 2 Ng:

Then we have the following result.
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Theorem 12.3 For any f 2 Sc.G;X/ and any x 2 G, the sequence of the values
an.x/ WD f .nx/=n satisfies

kan.x/ � am.x/k �
�
1

n
C 1

m

�
c:

Therefore, it is a Cauchy sequence. If it converges for all x, the limit function a,

a.x/ WD lim
n!1 an.x/;

satisfies a.nx/ D na.x/ for all n and all x. Moreover,

kf � ak1 � c

and a is the only homogeneous function b (i. e., b.nx/ D nb.x/ for all x 2 G and all
n 2 N), such that f � b is bounded.

Proof f 2 Sc.X/ implies kf .nmx/ � nf .mx/k � nc and kf .mnx/ � mf .nx/k � mc.
As in the proof above, this means

kan.x/ � am.x/k �
�
1

n
C 1

m

�
c:

This with n D 1 implies kf .x/ � a.x/k � c. Using kf .mnx/ � mf .nx/k � mc or

���� f .nmx/

n
� m

f .nx/

n

���� � m

n
c

in the limit case n ! 1 shows that a.mx/ � ma.x/ D 0 for all m and x. If f � b is
bounded and b homogeneous, then a � b is also bounded and homogeneous. Thus,
a � b D 0. ut
Remark 12.1 Rational normed vector spaces are considered by Bourbaki, where in
[3, TVS I.6] it is shown that the completion of such a space exists and that it is a real
Banach space. Normed vector spaces over the rationals are special cases of normed
abelian groups introduced in [13]: The homogeneity condition in normed abelian
groups X reads as knxk D jnj kxk for all n 2 Z and all x 2 X.

Remark 12.2 For abelian semigroups G and normed abelian groups X, the set

A .G;X/ WD
[
c�0

Ac.G;X/

is a subgroup of the abelian group XG containing B.G;X/ the subgroup of bounded
functions in XG.
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If G is a set on which N operates in the above sense, the set

S .G;X/ WD
[
c�0

Sc.G;X/

is also a subgroup of XG containing B.G;X/.
If additionally X is a module over some subring R of C, the above subgroups are

also modules over that ring. In particular, this applies to rational vector spaces X.

Proof Ac.G;X/ � Ad.G;X/ for all 0 � c � d implies 0 2 A0.G;X/ � A .G;X/.
Moreover, by the triangle inequality

Ac.G;X/C Ad.G;X/ � AcCd.G;X/:

Finally,

rAc.G;X/ � Ajrjc.G;X/ for all r 2 R:

Any f 2 B.G;X/ with kf .x/k � c for all x is contained in A3c.G;X/.
The arguments are similar for S .G;X/. In this case, kf .x/k � c implies that

f 2 S2c.G;X/. ut
Remark 12.3 (Least Absolute and Least Nonnegative Remainder) For further use,
we also note that given m 2 N any integer n may be written uniquely as n D ˛mC�

with ˛; � 2 Z provided that � satisfies �m � 2� < m. The uniquely determined ˛
will be denoted by hnW mi. Thus,

�m � 2.n � hnW mim/ < m

(and therefore a fortiori jn � hnW mimj < m).
n may also be written uniquely in the form n D ˇm C 	 with integers ˇ; 	 such

that 0 � 	 < m. ˇ will be denoted by Œn W m� and satisfies

0 � n � Œn W m�m < m:

12.2 Two Constructions of the Reals and the Interplay
Between Them

12.2.1 Schönhage

The base of construction in [11] is the set

S WD
[
c2N

Sc
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with

Sc WD Sc.N;Z/:

It is shown that S =B.N;Z/ is an ordered field in which every subset bounded from
above admits a supremum. Thus, this quotient group is a model of the set R of reals.
All constructions are done completely in Z, no noninteger rational numbers have to
be used.

Addition is the one inherited from S . A quasiorder on S is defined by

f � gW ” there is some integer c such that f .n/ � g.n/C c for all n 2 N:

This quasiorder is compatible with the addition. Both f � g and g � f are satisfied
if and only if f � g 2 B.N;Z/. This quasiorder is a total order, too. Accordingly,
the relation

f C B.N;Z/ � g C B.N;Z/W ” f � g

on S =B.N;Z/ is well defined and, by the properties of the quasiorder on S , it is
a total order compatible with the addition of equivalence classes. A convenient fact,

for any f 2 Sc there is some f 0 2 S2 such that f � f 0 2 B.N;Z/;

is used several times, for instance, in the proof that any non-empty subset A of
S =B.N;Z/, which is bounded from above, admits a supremum. To this aim, A is
written as

A D ff C B.N;Z/ j f 2 A0g

with A0 � S2. In the same manner, the set B of upper bounds of A is written as

B D ff C B.N;Z/ j f 2 B0g

with B0 � S2. Then, f .n/ � g.n/C 8 for all n 2 N; f 2 A0; g 2 B0. Accordingly, we
may define h 2 Z

N by

h.n/ WD max
f 2A0

ff .n/g:

Then, h.n/ � g.n/ C 8 for all n 2 N; g 2 B0. Moreover, it is shown that h 2 S .
This and the definition of h implies that

h C B.N;Z/

is a supremum of A.
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Remark 12.4 Given f 2 Sc, Schönhage uses the function

n 7! Œf .kn/ W k� DW g.n/

and shows that g 2 f C B.N;Z/ and that g 2 S2 for sufficiently large k. Using h,
h.n/ WD hf .kn/W ki, instead of g, it turns out that also f � h is bounded and that even
h 2 S1 is true provided that k is suitably large.

In fact:

kh.n/ D f .kn/C u.kn/ with 2 ju.kn/j � k and

2k jh.n/ � f .n/j D j2.f .kn/ � kf .n// � 2u.kn/j � 2kc C k < 2.c C 1/k:

Thus, h � f is bounded. Moreover,

2k .h.mn/ � mh.n// D 2f .kmn/C 2u.kmn/ � 2mf .kn/ � 2mu.kn/

and

2k jh.mn/ � mh.n/j � 2 jf .kmn/ � mf .kn/j C j2u.kmn/ � 2mu.kn/j
� 2cm C .m C 1/k:

For k � 2c, this implies 2k jh.mn/ � mh.n/j � .2mC1/k or 2 jh.mn/ � mh.n/j �
2m C 1. Since only integers are involved, this finally shows that

jh.mn/ � mh.n/j � 1 � m:

Multiplication for f ; g 2 S can be defined by

n 7! hf .n/g.n/W nin:

(Schönhage used n 7! Œf .n/g.n/ W n� instead.) Denoting this by f � g, it is verified
that f � g 2 S in the following way:

Without loss of generality, we may assume that there is some c common to f and
g such that f ; g 2 Sc. Thus, jf .n/ � nf .1/j ; jg.n/ � ng.1/j � cn imply

jf .n/j ; jg.n/j � c0n

for c0 WD c C maxfjf .1j ; jg.1/j/g. According to

nk.hf .nk/g.nk/W nki � khf .n/g.n/W ni/
D .nkhf .nk/g.nk/W nki � f .nk/g.nk//

C f .nk/ .g.nk/ � kg.n//C kg.n/ .f .nk/ � kf .n//

C k2 .f .n/g.n/ � nhf .n/g.n/W ni/
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we get for all n; k that

jnk .hf .nk/g.nk/W nki � khf .n/g.n/W ni/j � nk C c0nkck C kc0nkc C k2n;

implying that

j.hf .nk/g.nk/W nki � khf .n/g.n/W ni/j � 1C 2cc0k C k � 2.1C cc0/k:

So,

f � g 2 S2.1Ccc0/:

For bounded h1; h2, it is seen easily that

.f C h1/ � .g C h2/ D f � g C h3

for some bounded h3. Thus, a product on

S =B.N;Z/

may be defined by

.f C B.N;Z// � .g C B.N;Z// WD f � g C B.N;Z/:

This product makes S =B.N;Z/ to a commutative ring with unit element

idN C B.N;Z/ DW 1:

Since f �g � 0 for f ; g � 0, this is also an ordered ring. Finally, one verifies that this
ring is even a field. If f 2 S and f C B.N;Z/ > 0, we may additionally assume
that mf .n/ � n, f .n/ � 1, and f .n/ � dn for some m; d, and all n. Then, f 0WN ! Z,

f 0.n/ WD hn2W f .n/i;

is contained in S :

kn2
ˇ̌hk2n2W f .kn/i � khn2W f .n/iˇ̌
� m2f .kn/f .n/

ˇ̌hk2n2W f .kn/i � khn2W f .n/iˇ̌
D m2

ˇ̌
f .n/

�
k2n2 � r1

	 � kf .nk/
�
n2 � r2

	ˇ̌
with jr1j < f .kn/, jr2j < f .n/. Therefore,

kn2
ˇ̌hk2n2W f .kn/i � khn2W f .n/iˇ̌
� m2 jf .n/r1 C kf .nk/r2j C kn2 jkf .n/ � f .nk/j
� m2.dnnk C kdnkn C kn2kc/ D m2n2k.d C dk C kc/
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when we assume that f 2 Sc. This impliesˇ̌hk2n2W f .kn/i � khn2W f .n/iˇ̌ � m2n2k.2d C c/k

and ˇ̌hk2n2W f .kn/i � khn2W f .n/iˇ̌ � m2.2d C c/k:

An (easier) calculation shows that

f � f 0 � idN 2 B.N;Z/:

This implies

.f C B.N;Z// � .f 0 C B.N;Z// D 1:

For g < 0, g 62 B.N;Z/, choose f 2 g C B.N;Z/ such that

.�f / � .�f /0 � idN 2 B.N;Z/:

Then, �.�f /0 C B.N;Z/ is the multiplicative inverse of g C B.N;Z/.

12.2.2 A’Campo et al.

Street [14] gave some hints on how to construct the reals using A WD A .Z;Z/.
Street [15] contains a report of what happened since then. Ross Street refers to
several papers, in particular to A’Campo [1]. Nadine Manschek, one of my students,
gave full worked out proofs of all important steps in [10].

From Remark 12.2, it immediately follows that A is an abelian group with
subgroup B.Z;Z/. Multiplication is defined by .f ; g/ 7! f ı g. The proof that
f ı g 2 A strongly depends on the fact that for f 2 Z

Z the boundedness of 
f

as defined in Theorem 12.1 implies that 
f .Z � Z/ is finite.

Remark 12.5 This is not true for A .X;X/ in general. In particular, there is some
f 2 A .R;R/ such that f ı f 62 A .R;R/.

An example is given by f D a C r with a additive and r bounded such that
a.��n/ D 2n for all n and r.n/ D ��n. (There is some additive a with this property,
since f��n j n 2 Ng is linearly independent in the Q-vector space R.) Note that

f .f .x// D a.a.x//C a.r.x//C r.f .x//:

Assuming f ı f 2 A .R;R/ would imply the existence of some additive b such
that f ı f � b were bounded. By Theorem 12.2,

b.x/ D lim
n!1

.f ı f /.nx/

n
:
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But for x D 1

f .f .n � 1//=n D a.a.1//C 2n=n C r.f .n//=n

produces a divergent sequence.
Then, it is shown that f ı g � g ı f is bounded and that f ı g � f 0 ı g is bounded

provided that f � f 0 is. Thus, A .Z;Z/=B.Z;Z/ becomes a commutative ring with
unit idZ C B.Z;Z/ and

.f C B.Z;Z// � .g C B.Z;Z// WD .f ı g C B.Z;Z//:

f 2 Ac implies jf .nm/ � nf .m/j � nc for all m 2 Z and all n 2 N. In particular, the
restriction of f to N, f jN, is contained in Sc for f 2 Ac. Accordingly, the quasiorder
defined in S is meaningful in A and defines a total order in A .Z;Z/=B.Z;Z/.

To make this ring a field, several additional steps have to be considered:

1. If f > 0 and f 62 B.Z;Z/, there is some f 0 2 f C B.Z;Z/ which is also > 0 and
additionally odd.

2. For this f 0 and all m 2 Z, the set Mm WD f 0�1.fk 2 Z j k � mg/ is non-empty and
bounded from above.

3. g 2 Z
Z, g.m/ WD max Mm, is contained in A .Z;Z/.

4. f 0 ı g � idZ 2 B.Z;Z/.

Thus, any unbounded f CB.Z;Z/ > 0 is invertible. Inverses for f CB.Z;Z/ < 0 are
constructed as the additive inverse of the multiplicative inverse of .�f /C B.Z;Z/.

Finally, it is shown that any non-empty subset A of A .Z;Z/=B.Z;Z/ has a
supremum. Writing

A D ff C B.Z;Z/ j f 2 A0g

with A0 � A .Z;Z/, one may assume that all f 0 2 A0 are odd and elements of
A1.Z;Z/. For any odd g 2 A .Z;Z/ such that g CB.Z;Z/ is an upper bound of A,
it is seen that f .n/ � g.n/C 2 for all n 2 N0. Thus, h 2 Z

Z with

h.n/ WD maxff .n/ j f 2 A0g

for n 2 N0 and h.n/ WD �h.�n/ for n 2 Z; n < 0 is well defined. Then, some
tedious calculation shows that h 2 A5. Finally, it is shown that h C B.Z;Z/ is a
least upper bound of A. (The definition of h is similar to the corresponding definition
in Schönhage’s approach.)

Remark 12.6 The abovementioned fact that f 0 may be chosen in A1 is shown by
defining for given f 2 Ac the function f 0 by

f 0.n/ WD hf .nk/W ki:
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Then,

f � f 0 2 B.Z;Z/

and f 0 2 A1 for sufficiently large k. The proof for this is similar to that contained in
Remark 12.4.

12.2.3 Synthesis

In Blatter [2], you may find the opinion that Schönhage’s setting is a kind of
predecessor of A’Campo’s setting. In fact, in some sense, the settings are identical.

Theorem 12.4

S D A jN WD ff jN j f 2 A g D A .N;Z/

and

A =B.Z;Z/ Š S =B.N;Z/:

Proof Certainly, A jN � S by the inequality (12.4) of Theorem 12.2, which also
applies when X is an abelian normed group only. Now, take any f 2 Sc. Then,

jf .k/ � hkf .m/W mij � 2c C 1

provided that k � m:

2m jf .k/ � hkf .m/W mij � j2mf .k/ � 2kf .m/C 2rj

for some r such that

2 jrj � m:

Thus,

2m jf .k/ � hkf .m/W mij � 2c.m C k/C m � .4c C 1/m < 2.2c C 1/m

since jf .km/ � kf .m/j � kc and jf .km/ � mf .k/j � mc imply

jmf .k/ � kf .m/j � .k C m/c:

Using this and the easy to verify inequality

2m jha C bW mi � haW mi � hbW mij � 3m
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we may estimate f .k C l/ � f .k/ � f .l/ as follows:

jf .k C l/ � f .k/ � f .l/j � jf .k C l/ � h.k C l/f .m/W mij
C jf .k/ � hkf .m/W mij C jf .l/ � hlf .m/W mij
C jh.kf .m/C lf .m//W mi � h.kf .m/W mi � h.lf .m/W mij
� 3.2c C 1/C 3 D 6.c C 1/ if k; l 2 N; k C l � m:

(Observe that the inequality 2m jha C bW mi � haW mi � hbW mij � 3m implies

jha C bW mi � haW mi � hbW mij � 1:/

Therefore,

f 2 A6.cC1/.N;Z/ � A .N;Z/:

For g 2 A .N;Z/, we define (the odd extension) g� 2 Z
Z by

g�jN WD g;

g�.0/ WD 0, and g�.n/ WD �g.�n/ for n 2 Z; n < 0. By considering the cases

(a) n;m > 0,
(b) m D 0 or n D 0,
(c) n;m < 0,
(d) n < 0; m > 0; n C m D 0,
(e) n < 0; m > 0; n C m > 0, and
(f) n < 0; m > 0; n C m < 0

and by observing that g�.n C m/ � g�.n/ � g�.m/ is symmetric with respect to n
and m, it can be verified that f � 2 A6.cC1/.Z;Z/.

Altogether this shows that S D A jN and A jN D A .N;Z/.
Now, we prove the second assertion. Let 'WA .N;Z/ ! A .Z;Z/=B.Z;Z/ be

defined by

'.f / WD f � C B.Z;Z/

with f � as above. Then, ' is a homomorphism of abelian groups. Since f � 2
B.Z;Z/ is equivalent to

f 2 B.N;Z/

the kernel of ' equals B.N;Z/.
It remains to show that ' is surjective. For given gCB.Z;Z/ with g 2 A .Z;Z/,

assume that g 2 Ac.Z;Z/. Then,

jg.0/ � g.n/ � g.�n/j � c:
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Thus, jg.0/j � c and

jg.n/ � .�g.�n//j � c C jg.0/j � 2c

for all n which with

f WD gjN 2 A .N;Z/

implies g � f � 2 B.Z;Z/. Accordingly,

'.f / D f � C B.Z;Z/ D g C B.Z;Z/:

ut
Remark 12.7 From the proof, it follows that an isomorphism b' between
S =B.N;Z/ and A =B.Z;Z/ is given by

f C B.N;Z/ 7! f � C B.Z;Z/:

Till now, the usage of the set of real or even of the rational numbers has been
avoided. Since at present we already have (two) models for the field R and since

Z � Q � R

we may conclude from Theorem 12.2 that for any f 2 A .N;Z/ and any g 2
A .Z;Z/ there are real numbers ˛; ˇ such that the set of jf .n/ � ˛nj ; n 2 N, is
bounded and that the same holds true for the set of jg.n/ � nˇj ; n 2 Z. (The Cauchy
sequences appearing in that theorem converge, since order completeness implies
sequentially completeness; see, for example, Lang [9, Chapter 2, Theorem 1.5].)
Moreover, any homomorphism a defined on N or Z is of the form n 7! 
n with

 D a.1/. This will be used to show the following result, where, given any real x
also the Gaussian bracket

Œx� WD maxfm 2 Z j m � xg

is involved.

Theorem 12.5 For any f ; g 2 S D A .N;Z/, we have

b'.f � g C B.N;Z// D .f � ı g�/C B.Z;Z/:

Thus, the multiplication in the sense of Schönhage and A’Campo coincides.

Proof Let ˛; ˇ 2 R be such that

f .n/ D ˛n C u.n/
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and

g.n/ D ˇn C v.n/

for all n 2 N with certain bounded functions u; v. Then,

f .n/g.n/ D ˛ˇn2 C n.˛v.n/C ˇu.n//C u.n/v.n/:

Let

f .n/g.n/ D nhf .n/g.n/W ni C r.n/

with some function r satisfying 2 jr.n/j � n. Then,

n jhf .n/g.n/W ni � ˛ˇnj � cn

for all n with suitable c. Note that

˛ˇn D Œ˛ˇn�C s.n/;

where 0 � s.n/ < 1. Thus,

n 7! ..f � g/.n/ � Œ˛ˇn�/

is bounded. Obviously,

Z 3 n 7! Œ˛ˇn� 2 A .Z;Z/:

Thus,

f � g � int˛ˇjN 2 B.N;Z/;

where

int
 .n/ WD Œ
n�:

So,

b'.f � g C B.N;Z// D int˛ˇj�
N

C B.N;Z/:

If f �; g� 2 A .Z;Z/ are the odd extensions of f ; g, we may write

f � D ˛idZ C u�; g� D ˇidZ C v�:

Then,

f � ı g� D ˛ˇidZ C ˛v� C u� ı g�



12 Reals and Stability 289

is implying that

f � ı g� � ˛ˇidZ

is bounded. But, therefore also

f � ı g� � int˛ˇ

and

f � ı g� � int˛ˇj�
N

are bounded. This finally implies the assertion. ut

12.3 Stability and Completeness

Now, the interplay between the stability of the Cauchy equation and the com-
pleteness of the involved normed space will be investigated. In the following,
Remark 12.2 should be taken into account.

Theorem 12.6 Let G be an abelian semigroup, suppose X to be a normed vector
space (over Q) with completion Xc. Then, A .G;X/=B.G;X/ Š Hom.G;Xc/, the
group of homomorphisms defined on G with values in Xc.

Proof Since

A .G;X/ � A .G;Xc/

Theorem 12.2 may be applied. Thus, given f 2 A .G;X/ the mapping af with

af .x/ WD lim
n!1

f .nx/

n

is contained in Hom.G;Xc/. Moreover, f � af is bounded. Let

'WA .G;X/ ! Hom.G;Xc/

be defined by '.f / WD af . Then, obviously ' is a homomorphism. Since f is bounded
iff af is bounded, the kernel of ' equals B.G;X/. Since

A .G;X/= ker.'/ Š '.A .G;X//

it remains to show that ' is surjective.
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To this aim, let a 2 Hom.G;Xc/ be arbitrary. For any x 2 G, we may choose
some f .x/ 2 X such that ka.x/ � f .x/k < 1. Then, f is an element of A3.G;X/
because of

kf .x C y/ � f .x/ � f .y/k � kf .x C y/ � a.x C y/k
C kf .x/ � a.x/k C kf .y/ � a.y/k < 3:

The definition of f implies '.f / D a. ut
Corollary 12.1 The groups A .N;X/=B.N;X/, A .Z;X/=B.Z;X/ both are iso-
morphic to Xc. In particular, for X D Q these groups are isomorphic to R.

Proof In both cases for G, the mapping Hom.G;Xc/ 3 a 7! a.1/ 2 Xc is an
isomorphism. ut

It was proved for G D Z in Schwaiger [12] and for arbitrary abelian groups G
containing at least one element of infinite order in Forti and Schwaiger [5] that the
following theorem holds true.

Theorem 12.7 (Hyers’ Theorem and Completeness) If G is an abelian group as
above and X a normed space such that for any f 2 A .G;X/ there is some a 2
Hom.G;X/ such that f � a is bounded, then X necessarily must be complete.

Proof (Alternative Method) In Forti and Schwaiger [5], it was shown that it is
enough to prove the result for G D Z. There the latter task was managed by
constructing to any Cauchy sequence .xn/n2N a suitable f 2 A .Z;X/ and to use
the hypotheses of the theorem for this f . Here, it is done in the following way:
Choose any ˛ 2 Xc and f WZ ! X such that

kf .n/ � ˛nk < 1
for all n 2 Z. Then, f 2 A .Z;X/ and by assumption there is some a 2 Hom.Z;X/
such that f � a is bonded. Since a is a homomorphism defined on Z, there is some
ˇ 2 X such that

a.n/ D ˇn

for all n 2 Z. Thus, also ˛idZ � a is bounded implying ˛ D ˇ 2 X. Therefore,
Xc D X. ut

12.4 A Construction Method for the Completion of a
Normed Space

There are well-known methods to construct the completion of metric and normed
spaces. The most common ones use the set of Cauchy sequences on the underlying
space. A different one, probably first mentioned by Kunugui [8], is contained in the
following remark.
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Remark 12.8 Let .X; d/ be any (non-empty) metric space. Then, there is an
isometry j from X into the Banach space B.X;R/ of real-valued bounded functions
defined on X. Thus, the closure of j.X/ is a completion of X.

The embedding is constructed by fixing some x0 in X and by defining j.x/
pointwise as

j.x/.y/ WD d.y; x/ � d.y; x0/:

If X has some additional structure, say of a normed space, this can be carried over
easily to the completion j.X/.

In the context of the present considerations, it has already been shown that
for any normed space the factor group A .N;X/=B.N;X/ is isomorphic to the
completion Xc of X. But, it seems to be desirable and interesting to give a proof
that A .N;X/=.N;X/ is a completion of X not using the existence of a completion
of X a priori.

Theorem 12.8 Let X be a real normed space, let A WD A .N;X/ and B WD
B.N;X/. Then, A =B is a completion of X, if addition and multiplication by a
real number are defined as usual and if kf C Bk is given by the well-defined limit

lim
n!1

���� f .n/

n

���� :
Proof If X is a normed space, the abelian groups A and B are not only abelian
groups but vector spaces by Remark 12.2. Thus, A =B is a real vector space. Given
f 2 A , we know by Theorem 12.2 that the sequence .f .n/=n/n2N is Cauchy in X. In
detail ���� f .n/

n
� f .m/

m

���� � c

�
1

n
C 1

m

�

for f 2 Ac WD Ac.N;X/. Thus, by the reversed triangle inequality

jkak � kbkj � ka � bk
the sequence .kf .n/=nk/n2N is Cauchy in the complete normed space R. Thus, we
may define

kf k WD lim
n!1

���� f .n/

n

���� :
Obviously, this is a seminorm on A . Now, it is shown that

ff 2 A j kf k D 0g D B:

If f 2 B, the sequence of f .n/ is bounded. Thus,

kf k D lim
n!1

���� f .n/

n

���� D 0:
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On the other hand, let f 2 A satisfy kf k D 0. Then, kf .n/=nk tends to 0 for
n tending to 1. Therefore, the sequence of f .n/=n converges to 0 in X. This
implies that

lim
n!1

f .nm/

n
D m lim

n!1
f .nm/

nm
D 0

for all m 2 N. Theorem 12.2 thus implies that f � 0 D f is bounded.
Accordingly, we may define a norm on A =B by

kf C Bk WD kf k :

To show that A =B equipped with this norm is complete, we need the following
result.

Claim For any f 2 A and any " > 0, there is some g 2 .f C B/ \ A".
For the proof, let f 2 Ac, i. e.,

kf .n C m/ � f .n/ � f .m/k � c

for all n;m 2 N. Taking any m 2 N such that c=m � ", the function g is defined by

g.n/ WD f .mn/

m
;

a construction similar to some used earlier. Then,

kg.k C l/ � g.k/ � g.l/k D 1

m
kf .mk C ml/ � f .ml/ � f .mk/k � c

m
� ":

Accordingly, g 2 A". The estimation

kf .mn/ � mf .n/k � cm

from Theorem 12.2 implies that g 2 f C B.
To show the completeness of the normed space A =B, it is enough to show that

any Cauchy sequence admits a convergent subsequence. So, let the Cauchy sequence
.fn C B/ with fn 2 A be given. By eventually passing to a subsequence, we may
assume that

kfnC1 C B � .fn C B/k � 1

2nC1 ; n 2 N:

Additionally, by the claim above, we may also assume that

fn 2 A 1
2n
; n 2 N:
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Using

kfnC1 C B � .fn C B/k � 1

2nC1

the triangle inequality shows that

kfnCm C B � .fn C B/k � 1

2nC1 C : : :C 1

2nCm
<
1

2n
; n;m 2 N:

Moreover,

fnCm � fn 2 A 1

2nCm
C A 1

2n
� A 1

2nC1 C 1
2n

D A 3

2nC1
:

Thus, by Theorem 12.2

k.fnCm � fn/.k/ � k.fnCm � fn/.1/k � k
3

2nC1

and

k.fnCm � fn/.1/k � 3

2nC1 C
���� .fnCm � fn/.k/

k

���� ;
which for k ! 1 results in

kfnCm.1/ � fn.1/k � 5

2nC1 :

Now, let f 2 XN be defined by f .n/ WD nfn.1/ for all n 2 N. Then,

.n C m/fnCm.1/ � nfn.1/ � mfm.1/

D n.fnCm.1/ � fn.1//C m.fnCm.1/ � fm.1/

implies

kf .n C m/ � f .n/ � f .m/k � 5n

2nC1 C 5m

2mC1 D 5

2

� n

2n
C m

2m

�

� 5

2
2
1

2
D 5

2

and thus f 2 A 5
2
.

Next, we consider f � fn. The equality

.f � fn/.n C m/ D .n C m/fnCm.1/ � .n C m/fn.1/

C ..n C m/fn.1/ � fn.n C m//
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implies

k.f � fn/.n C m/k � .n C m/ kfnCm.1/ � fn.1/k C 1

2nC1 .n C m/

and ���� .f � fn/.n C m/

n C m

���� � kfnCm.1/ � fn.1/k C 1

2nC1

� 5

2nC1 C 1

2nC1 D 3

2n
:

Thus,

k.f � fn/C Bk D lim
m!1

���� .f � fn/.n C m/

n C m

���� � 3

2n

implying that fn C B tends to f C B in X .
Finally, we find an isometry jW X ! A =B such that j.X/ is dense in A =B.

Given x 2 X, the function ˛x,

˛x.n/ WD nx;

is contained in A0. Let

j.x/ WD ˛x C B:

Then, j is a vector space homomorphism from X onto j.X/. This is also an isometry
since k˛xk D kxk. Let f C B 2 A =B and " > 0. We may assume that f 2 A".
Then, with x WD f .1/ we have

kf .n/ � nxk � n";

which implies that

kf C B � ˛xk � ":

ut
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13. Steprāns, J.: A characterization of free Abelian groups. Proc. Am. Math. Soc. 93, 347–349

(1985)
14. Street, R.: An efficient construction of the real numbers. Gazette Austral. Math. Soc. 12, 57–58

(1985)
15. Street, R.: Update on the efficient reals. http://www.maths.mq.edu.au/~street/reals.pdf (2003)

http://www.math.ethz.ch/{~}salamon/PREPRINTS/acampo-real.pdf
http://www.math.ethz.ch/{~}salamon/PREPRINTS/acampo-real.pdf
10.4171/EM/140
http://www.maths.mq.edu.au/{~}street/reals.pdf


Chapter 13
Generalized Dhombres Functional Equation

Jaroslav Smítal and Marta Štefánková

Abstract We consider the equation f .xf .x// D '.f .x//; x > 0, where ' is given,
and f is an unknown continuous function .0;1/ ! .0;1/. This equation was for
the first time studied in 1975 by Dhombres (with '.y/ D y2), later it was considered
for other particular choices of ', and since 2001 for arbitrary continuous function
'. The main problem, a classification of possible solutions and a description of the
structure of periodic points contained in the range of the solutions (which appeared
to be important way of the classification of solutions), was basically solved. This
process involved not only methods from one-dimensional dynamics but also some
new methods which could be useful in other problems. In this paper we provide a
brief survey.

Keywords Iterative functional equations • Invariant curves • Real solutions •
Topological entropy • Periodic orbits

Mathematics Subject Classification (2010) Primary 39B12; Secondary 26A18

13.1 Introduction

We consider the equation f .xf .x// D '.f .x//; x > 0, where ' is given, and f is
an unknown continuous function .0;1/ ! .0;1/. This equation was for the first
time studied in 1975 by Dhombres [1] (with '.y/ D y2), later it was considered
in many papers for other particular choices of ', see, e.g., [2] or [3], and since
2001 in about ten papers for arbitrary continuous function '. The main problem,
a classification of possible solutions and a description of the structure of periodic
points contained in the range of the solutions (which appeared to be important
way of the classification of solutions), was basically solved. This process involved
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methods from one-dimensional dynamics but also some new methods which could
be useful in other problems. In this paper we provide a brief survey. Note that the
equation is considered also in the complex domain; in this case complex analysis
and theory of formal power series are useful tools rather than dynamical systems
theory. There is no space to go into details, the reader is referred, e.g., to survey
papers [7] and [8].

It is a difficult task to give an explicit form of solutions of the equation, the
main problem in the theory of functional equations, if we allow arbitrary given
continuous '. But important basic information like classification of solutions is
possible. Notice that the equation has a continuous solution (possibly only trivial,
i.e., constant) if ' has a fixed point. On the other hand, it is an easy exercise to find
a ' without fixed points such that the equation has no solution. Therefore results
of “classical type” concerning existence of continuous solutions are not interesting.
Classification and basic characterizations of solutions are given in the next section;
to prove such results, e.g., Sharkovsky’s theorem on coexistence of periodic orbits
or structure of continuous maps of the interval with zero topological entropy play
an essential role. Section 13.3 is devoted to the special case when ' is an increasing
homeomorphism; then a characterization of monotone solutions is possible. These
results can be proved using standard tools from the theory of iterative functional
equations like functions defined by infinite products; basic information on such
equations can be found, e.g., in [6]. Section 13.4 contains survey for increasing
homeomorphisms ' and non-monotone continuous solutions; it appears that they
can be, e.g., strongly non-differentiable, see Theorem 13.6. Finally, Section 13.5
contains results concerning distribution of periodic points of ' in the range of
regular solutions; they can have periods 1 and 2, only. Note that for singular
solutions, which can have periodic points of arbitrary periods in the range, similar
description would be complicated.

13.2 Equation with Arbitrary Continuous '

Generalized Dhombres functional equation is the equation of the form

f .xf .x// D '.f .x//; x 2 RC WD .0;1/; (13.1)

where ' W RC ! RC is a given continuous map, and f W RC ! RC is an unknown
continuous map. We denote by Rf the range of f , and by S .'/ the set of all solutions
of (13.1). Notice that the point 1 has an important role for solutions of (13.1) since
1 2 Rf implies '.1/ D 1. This makes possible to introduce the notion of conjugate
equation (see [7]) of the form

ef .xef .x// De'.ef .x//; whereef .x/ WD 1=f .1=x/; e'.y/ WD 1='.1=y/: (13.2)
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It is easy to verify that f 2 S .'/ if and only ifef 2 S .e'/, that the transformation
f 7!ef is a bijection between the solutions of (13.1) and (13.2), and Rf � .0; 1� if
and only if Ref � Œ1;1/. Finally, let

˚ W RC ! RC; ˚.x; y/ D .xy; '.y//: (13.3)

This map is closely related to (13.1). Obviously, for f 2 S .'/, ˚.f / � f , if f is
identified with its graph.

Definition 13.1 (See [7]) A map f 2 S .'/ is

• singular if for some 0 < a � b < 1, f .x/ > 1 if x < a, f .x/ < 1 for x > b, and
f .x/ D 1 otherwise,

• regular if it is not singular.

It is easy to see that the conjugate equation preserves the classes of regular and
singular solutions, respectively. Notice that the definition of regular solutions is
implicit. Only recently the following explicit characterization was proved.

Theorem 13.1 (See [14]) An f 2 S .'/ is a regular solution of (13.1) if and only
if one of the following conditions is satisfied:

1. Rf � .0; 1�;
2. Rf � Œ1;1/;
3. there are 0 < a � b < 1 such that f .x/ < 1 for x < a, f .x/ > 1 for x > b, and

f .x/ D 1 otherwise.

It is difficult, if not even impossible, to describe the class S .'/ for arbitrary
continuous '. But some results are available, thanks to the Sharkovsky’s result on
coexistence of periodic orbits.

Theorem 13.2 (See [12]) There is a singular f 2 S .'/ such that 'jRf has periodic
orbits of all periods.

In particular, 'jRf can have positive topological entropy. Methods of constructing
singular solutions possessing prescribed sets of periodic points 'jRf , compatible
with the Sharkovsky’s ordering, are indicated in [12]. On the other hand, properties
of Equation (13.1) with regular solutions are quite different.

Theorem 13.3 (See [13]; cf also [14]) Let f 2 S .'/ be a regular solution
of (13.1). Then every periodic point of 'jRf has period 1 or 2.

Theorem 13.4 (See [13]) There is a ', and an infinitely smooth function f 2 S .'/

such that all points in Rf � .0; 1/ are periodic points of ' of period 2, except for
one fixed point.

Notice that the first example with similar properties, which, however, had not
differentiable f , was given in [10].

A natural question arises whether 'jRf can contain exactly one periodic point of
period 2. We suspect that it is impossible.
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Conjecture Let f 2 S .'/ be a regular solution with Rf � .0; 1/, and let P be the
set of periodic points of 'jRf . Then P is a closed connected set, and contains exactly
one fixed point p. Consequently, by Theorem 13.4, P n fpg is the set of periodic
points, possibly empty, of 'jRf of period 2.

Let us finish this section with the following result which is implicitly contained
in [11].

Theorem 13.5 For every regular f 2 S .'/ with .p; 1� � Rf � Œp; 1� there is a
continuous  and a regular g 2 S . / with .p; 1=p/ � Rg D Rf [ Ref � Œp; 1=p�,

where 1=0means 1, andef is the solution of the conjugate equation (13.2). If f .x/ D
1 for some x < 1, then  D '.

Proof We may assume p < 1. Let f .a/ D 1. If a < 1=a DW b put g.x/ D f .x/ for
0 < x � a, g.x/ D ef .x/ for x � b, and g.x/ D 1 otherwise. Then g 2 S .'/. If
b < a let b0 � b be a point where f j.0;b� attains maximum ˇ; such a point exists since
ˇ � lim supx!0 f .x/ (see, e.g., Proposition 2.2 in [7]), and by Theorem 13.1, ˇ WD
f .b0/ < 1. Similarly find a0 � a with ˛ WDef .a0/ > 1. Using techniques described
in [11], it is possible to connect the pieces g0 D f j.0; b0� and g1 D ef jŒa0;1/ by
a nondecreasing continuous function gm W Œb0; a0� ! Œˇ; ˛� and modify ' on the
interval .˛; ˇ/ to get  such that g D g0 [ gm [ g1 2 S . /. ut

13.3 Monotone Solutions with ' an Increasing
Homeomorphism

In this section we survey results in the case when ' is an increasing homeomor-
phism.

Theorem 13.6 (See [4]) Let ' be an increasing homeomorphism of an interval
J � .0;1/, and Rf � J. Then

1. any f 2 S .'/ is regular;
2. ˚ given by (13.3) is a homeomorphism;
3. for any f 2 S .'/, ˚.f / D f ;
4. if f 2 S .'/ and p 2 Rf , p ¤ 1, is a fixed point of ', then Rf D fpg and f � p.

Now we are able to characterize monotone solutions of (13.1), see [5]. They
are assigned by a family of monotone continuous functions defined on a compact
interval. Their iterations by ˚ are then “pieces” composing a solution. Assume ' W
J ! J is an increasing homeomorphism,

0 � p < q � 1; J D .p; q/; p; q are fixed points of '; and '.y/ ¤ y otherwise:
(13.4)

Note that the assumption J � .0; 1� is not too restrictive since using (13.2) we
can get analogous results concerning solutions f with Rf � .1;1/. Moreover,
for solutions with 1 2 Rf (like in Theorems 13.8 and 13.10), this follows by
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Theorem 13.5. Actually, if ' is a homeomorphism with 1 2 R' , then it is easy
to modify the proof of Theorem 13.5 to get  D '.

For .x0; y0/ 2 RC � J define the orbit fxn; yng1
nD�1 of .x0; y0/ by .xn; yn/ D

˚n.x0; y0/, n 2 Z (where ˚n denotes the nth iterate of ˚). By Theorem 13.6 this
definition is correct since ˚ is a homeomorphism. Let

P.y; z; '/ D
1Y

kD1

'k.y/

'k.z/
:

If P.v; u; '/ is finite for some u < v, then P.y; u; '/ is a continuous strictly
increasing function of y in Œu; v�. Finally, if '.y/ < y on J, then y1 < y0. Let
M .x0; y0/ be the class of nondecreasing continuous functions g from Œx1; x0� onto
Œy1; y0� such that

v=u � P.g.v/; g.u/; '�1/ for u < v in Œx1; x0�:

In the dual case, if '.y/ > y on J, then y1 > y0 and we can define M .x0; y0/ in a
similar way.

Theorem 13.7 (See [4]) The class M .x0; y0/ is nonempty and closed with respect
to the uniform convergence. If q < 1, then it contains a continuum of functions.

Theorem 13.8 (See [4]) For g 2 M .x0; y0/ put f:=
S1

nD�1˚n.g/. Then f is a
continuous monotone solution of (13.1) on its domain Df . If q < 1, then Df D
.0;1/. If q D 1, then Df is one of the intervals .0;1/; .0; ˛/, or .˛;1/, with
˛ > 0 a real number. In the last two cases f can be extended, possibly not in a
unique way, to a monotone solution defined on .0;1/.

On the other hand, the class M .x0; y0/ is complete in the following sense:

Theorem 13.9 (See [4]) If f 2 S .'/ is monotone with f .x0/ D y0, then g D
f jŒx1;x0� 2 M .x0; y0/.

Even with ' an increasing homeomorphism, S .'/ can contain non-monotone
solutions.

Theorem 13.10 (See [5]) Assume (13.4) with q D 1. Then any f 2 S .'/ is
monotone. In particular if '.y/ < y for any y 2 J, then f is nondecreasing, and
if '.y/ > y for any y 2 J, then f is nonincreasing.

Theorem 13.11 (See [5]) Assume (13.4) with q < 1. Then every f 2 S .'/ is
nondecreasing if and only if

P.y; z; '/ D 1 for any y > z; y; z 2 J;

and every f 2 S .'/ is nonincreasing if and only if

P.y; z; '�1/ D 1 for any y > z; y; z 2 J:
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13.4 Non-monotone Solutions with ' an Increasing
Homeomorphism

When assuming (13.4) with q D 1 then, by Theorem 13.10, there are no non-
monotone solutions. So throughout this section we assume q < 1. Then, by
Theorem 13.11, there can exist non-monotone solutions (and such a solution can
be non-monotone in a very strong sense), and every solution can be approximated
almost uniformly (i.e., uniformly on every compact interval) by piecewise monotone
solutions. (Recall that by a piecewise monotone function we mean a function with
finite number of pieces of monotonicity.)

Theorem 13.12 (See [9]) Assume (13.4) with q < 1. Then for every f 2 S .'/

there is a sequence fn 2 S .'/ of functions piecewise monotone on every compact
interval, which uniformly converges to f on every compact interval.

Theorem 13.13 (See [9]) Assume (13.4) and let S .'/ contain a non-monotone
solution (hence q < 1). Then there is an f 2 S .'/ and a compact interval I � RC
such that f is monotone on no subinterval of I.

There are also results saying for which monotone functions f W RC ! RC there
is a ' satisfying (13.4) with q < 1 such that f 2 S .'/, the so-called converse
problem (see [10]). Analogous result is available for continuous functions f which
need not be monotone. The results are rather technical so we omit the details. In [10],
there is also shown that for decreasing homeomorphisms ' it is difficult to obtain
results of similar type as above; in particular, for decreasing homeomorphisms there
can exist no non-constant solutions at all.

Problem Give a characterization of solutions of (13.1) in the case when ' is a
decreasing homeomorphism of an open subinterval of .0; 1/ hence with Rf � .0; 1/.
The results could be extended to any open subinterval of RC using the methods
indicated in Theorem 13.5, see also [11].

13.5 Periodic Points in the Range of Regular Solutions

By Theorem 13.3, for regular solutions only periods 1 and 2 are possible. The results
concerning fixed points can be summarized as follows:

Theorem 13.14 (See [3, 7], and [11], Respectively) Let f 2 S .'/, and Rf �
.0; 1�. Denote by F the set of fixed points of ' contained in Rf . Then

1. if ' is an increasing homeomorphism, then F � f1g,
2. F contains at most one point ¤ 1,
3. if every periodic point of ' is a fixed point, then

F D ;, or F D fpg; p � 1, or F D fp; 1g; p < 1;

and all types are possible.
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By Theorem 13.4, Conjecture from Section 13.2, Theorem 13.5, and techniques
described in its proof we can get a characterization of sets of periodic points in the
range of a regular solutions: If Rf is a neighborhood of 1, then there can be at most
three fixed points, and two families of periodic orbits, one contained in .0; 1/ and
the other in .1;1/. It is easy to verify that there can be no periodic orbit fp; qg of '
in Rf with p < 1 < q.
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Chapter 14
Functional Equations and Stability Problems
on Hypergroups

László Székelyhidi

Abstract This is a survey paper about functional equations on hypergroups.
We show how some fundamental functional equations can be treated on some types
of hypergroups. We also present stability and superstability results using invariant
means and other tools.
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14.1 Basics on Hypergroups

The concept of DJS-hypergroup (according to the initials of Dunkl, Jewett and
Spector) depends on a set of axioms which can be formulated in several different
ways. The way of formulating these axioms we follow here is due to Lasser (see,
e.g., [3, 20]). One begins with a locally compact Hausdorff space K and with the
space Cc.K/ of all compactly supported complex valued functions on the space K.
The space Cc.K/ will be topologized as the inductive limit of the spaces

CE.K/ D ff 2 Cc.K/ W supp .F/ � Eg ;

where E is a compact subset of K carrying the uniform topology. A (complex) Radon
measure � is a continuous linear functional on Cc.K/. Thus, for every compact
subset E in K there exists a constant ˛E such that j�.f /j � ˛E kf k1 for all f
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in CE.K/. The set of Radon measures on K will be denoted by M .K/. In the sequel
by a measure we always mean a Radon measure. For each measure � we write

k�k D supfj�.f /j W f 2 Cc.K/; kf k1 � 1g:

A measure � is said to be bounded, if k�k < C1. In addition, � is called a
probability measure, if � is nonnegative and k�k D 1. The set of all bounded
measures, the set of all compactly supported measures, the set of all probability
measures, and the set of all probability measures with compact support in M .K/
will be denoted by Mb.K/, Mc.K/, M1.K/, and M1;c.K/, respectively. The point
mass concentrated at x is denoted by ıx. Via integration theory we are able to
consider measures as functions on the 	 -algebra B.K/ of Borel subsets of K and we
use the notation

R
K f d� rather than �.f /. We use the notation MC.K/ for the set

of positive measures on the 	 -algebra B.K/ that means, for measures which take
values in Œ0;C1�.

Now we formulate the first part of the axioms. Suppose that we have the
following:

1. .H�/ There is a continuous mapping .x; y/ 7! ıx � ıy from K � K into M1;c.K/.
This mapping is called convolution.

2. .H_/ There is an involutive homeomorphism x 7! Lx from K to K. This mapping
is called involution.

3. .He/ There is a fixed element e in K. This element is called identity.

Identifying x by ıx the mapping in .H�/ has a unique extension to a continuous
bilinear mapping from Mb.K/� Mb.K/ to Mb.K/. The involution on K extends to
a continuous involution on Mb.K/. Convolution maps M1.K/�M1.K/ into M1.K/
and involution maps M1.K/ onto M1.K/. Then a DJS-hypergroup, or simply a
hypergroup is a quadruple .K;�;_; e/ satisfying the following axioms: for each
x; y; z in K we have

1. (H1) ıx � .ıy � ız/ D .ıx � ıy/ � ız ,
2. (H2) .ıx � ıy/LD ıLy � ıLx ,
3. (H3) ıx � ıe D ıe � ıx D ıx ,
4. (H4) e is in the support of ıx � ıLy if and only if x D y ,
5. (H5) the mapping .x; y/ 7! supp .ıx � ıy/ from K � K into the space of nonvoid

compact subsets of K is continuous, the latter being endowed with the Michael
topology (also called finite topology, see [3, 14]).

For arbitrary measures�; � in Mb.K/ the symbol��� denotes their convolution,
and L� denotes the involution of �. With these operations Mb.K/ is an algebra with
involution. If the topology of K is discrete, then we call the hypergroup discrete. In
case of discrete hypergroups the above axioms have a simpler form. Here we present
a set of axioms for these types of hypergroups. Clearly, in the discrete case we can
simply forget about the topological requirements in the previous axioms to get a
purely algebraic system.
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Let K be a set and suppose that the following properties are satisfied:

1. .D�/ There is a mapping .x; y/ 7! ıx�ıy from K�K into M1;c.K/, the space of all
finitely supported probability measures on K. This mapping is called convolution.

2. .DL/ There is an involutive bijection x 7! Lx from K to K. This mapping is called
involution.

3. .De/ There is a fixed element e in K. This element is called identity.

Identifying x by ıx as above, and extending convolution and involution, a discrete
DJS-hypergroup is a quadruple .K;�;L; e/ satisfying the following axioms : for each
x; y; z in K we have

1. (D1) ıx � .ıy � ız/ D .ıx � ıy/ � ız ,
2. (D2) .ıx � ıy/LD ıLy � ıLx ,
3. (D3) ıx � ıe D ıe � ıx D ıx ,
4. (D4) e is in the support of ıx � ıLy if and only if x D y .

If ıx�ıy D ıy�ıx holds for all x; y in K, then we call the hypergroup commutative.
If Lx D x holds for all x in K, then we call the hypergroup Hermitian. By (H2),
every Hermitian hypergroup is commutative. In any case we have Le D e. For
instance, if K D G is a locally compact Hausdorff group, ıx � ıy D ıxy for
all x; y in K, Lx is the inverse of x and e is the identity of G, then we obviously
have a hypergroup .K;�; L; e/, which is commutative if and only if the group G is
commutative. However, not every hypergroup originates in this way.

The simplest hypergroup is obviously the trivial one, consisting of a singleton.
The next simplest hypergroup structure can be introduced on a set consisting of two
elements. As an example we describe all hypergroups of this type.

Let K D f0; 1g. Clearly, the only Hausdorff topology on K is the discrete one.
We specify e D 0 as the identity element. In this case the only involution satisfying
the above axioms is the identity, that is, L0 D 0 and L1 D 1. Consequently, we
have a Hermitian hypergroup, which is necessarily commutative. Now we have to
define the four possible products ı0 � ı0, ı0 � ı1, ı1 � ı0, and ı1 � ı1. As ı0 is the
identity, the first three products are uniquely determined and the fourth one must
have the form

ı1 � ı1 D � � ı0 C .1 � �/ � ı1
with some number � satisfying 0 � � � 1. It turns out that � ¤ 0, as a consequence
of (D4). We shall denote this hypergroup by D.�/. It is clear that in this way we
have a complete description of all possible hypergroup structures on a set consisting
of two elements. Observe that in the case � D 1 we have a group isomorphic to Z2,
the integers modulo 2, in any other case the resulting structure is not a group.

If K is any hypergroup and H is an arbitrary set, then for the function f W K ! H
we define Lf by the formula

Lf .x/ D f .Lx/
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for each x in K. Obviously, LLf D f . Each measure � in Mb.K/ satisfies

L�.f / D �.Lf /

whenever f W K ! C is a bounded Borel function.
Let K be an arbitrary hypergroup. Then, for each x; y in K the measure ıx � ıy is a

compactly supported probability measure on K which makes the measurable space
.K;B.K/; ıx � ıy/ a probability space. An arbitrary function f W K 7! C, which is
ıx�ıy-measurable, can be considered as a random variable on this probability space.
In particular, each continuous complex valued function on K is a random variable
with respect to every measure of the form ıx � ıy. Clearly, each f is integrable with
respect to every ıx, and its expectation is

Ex.f / D
Z

f dıx D f .x/ ;

hence it seems to be reasonable to define the “value” of f at ıx as f .x/. This can be
extended to an arbitrary probability measure � on K by defining

f .�/ D E�.f / D
Z

f d� ;

whenever f is integrable with respect to �. In particular,

f .ıx � ıy/ D
Z

f d.ıx � ıy/ ;

whenever f is integrable with respect to ıx � ıy. In this case we shall use the
suggestive notation f .x � y/ for f .ıx � ıy/. In fact, in every hypergroup K we identify
x by ıx.

Here we call the attention to the fact that f .x � y/ has no meaning on its own,
because x � y is in general not an element of K, hence f is not defined at x � y. The
expression x � y denotes a kind of “blurred” product. If B is a Borel subset of K,
then ıx � ıy.B/ expresses the probability of the event that this “blurred” product of
x and y belongs to the set B. In the special case of groups this probability is 1, if B
contains xy and is 0 otherwise, that is, exactly ıxy.B/.

We define the right translation operator �y by the element y in K according to
the formula

�yf .x/ D
Z

K
f d.ıx � ıy/

for each f integrable with respect to ıx � ıy. In particular, �y is defined for every
continuous complex valued function on K. Similarly, we can define left translation
operators, denoted by y� . In general one uses the above notation
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f .x � y/ D
Z

K
f d.ıx � ıy/ ;

for each x; y in K. Obviously, in case of commutative hypergroups the simple term
translation operator is used. The function �yf is the translate of f by y.

As an example, we consider a function f W D.�/ ! C on the D.�/ hypergroup.
Then we have

f .1 � 1/ D
Z

f .t/ d.ı1 � ı1/ D
Z

f .t/ d.� � ı0 C .1 � �/ � ı1/ D � f .0/C .1 � �/f .1/ :

Convolution of functions and measures is defined in the following obvious
way: for each measure � in Mb.K/ and for every continuous bounded function
f W K ! C we let

f � �.x/ D
Z

K
f .x � Ly/ d�.y/

whenever x is in K. Then f � � is a continuous bounded function on K. For more
details see [3].

In what follows we simply refer to the hypergroup .K;�;L; e/ as a hypergroup K.

14.2 Functional Equations

The presence of translation operators makes it possible to introduce and to study
some basic functional equations on hypergroups.

Let K be a hypergroup. The non-identically zero continuous function m W K ! C

is called an exponential, if it satisfies

m.x � y/ D m.x/m.y/ (14.1)

for each x; y in K. Exponentials play a basic role in harmonic analysis, spectral
synthesis, and functional equations. More explicitly, the above functional equation
can be written in the form of the integral equation

Z
K

m.t/ d.ıx � ıy/.t/ D m.x/m.y/ :

For each exponential m we have m.e/ D 1. An exponential m with m.Lx/ D m.x/
for all x in K is called a semi-character, and bounded semi-characters are called
characters. We note the inconvenient facts that, in contrast with the case of groups,
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exponentials can take the value zero, and the product of two exponentials is not
necessary an exponential.

Here we give a simple illustration by describing all exponential functions on the
hypergroup D.�/ with 0 < � � 1.

Suppose that m W D.�/ ! C is an exponential that is

Z
D.�/

m.t/ d.ıx � ıy/.t/ D m.x/m.y/

holds for each x; y in D.�/. According to the definition of convolution in D.�/ the
only nontrivial consequence of this equation we obtain in the case x D y D 1, by
our above remark:

�m.0/C .1 � �/m.1/ D m.1/m.1/ :

Using m.0/ D 1 and solving the quadratic equation for m.1/ we have the two
possibilities: m.1/ D 1 or m.1/ D �� . The first case gives the trivial exponential
which is identically 1, and the second case is the nontrivial one: m.0/ D 1 and
m.1/ D �� . Obviously, both are characters.

Another important function class is the following. Given the commutative
hypergroup K the continuous function a W K ! C is called additive, if it satisfies

a.x � y/ D a.x/C a.y/ (14.2)

for each x; y in K. This equation can be written in the integral form

Z
K

a.t/ d.ıx � ıy/.t/ D a.x/C a.y/ :

Every additive function a satisfies a.e/ D 0, and all additive functions on K form a
complex linear space.

Considering the hypergroup D.�/ again, let a W D.�/ ! C be an additive
function. Then we have

�a.0/C .1 � �/a.1/ D a.0/C a.1/ ;

and a.0/ D 0 implies a.1/ D 0, as � ¤ 0. Hence every additive function is zero
on D.�/. We note that, more generally, every additive function is zero on compact
hypergroups.

Exponential and additive functions are fundamental—they are the solutions of
the basic Cauchy functional equations on hypergroups. We remark that, obviously,
these functions can be defined on non-commutative hypergroups, too. We can also
consider their pexiderized versions.

Moment functions and moment function sequences play an important role in
probability theory. These functions can be defined in the following manner. Let K
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be a hypergroup. The sequence of continuous complex valued functions .'n/n2N on
K is called a generalized moment function sequence, if '0 is not identically zero and
for each natural number n we have

'n.x � y/ D
nX

kD0

 
n

k

!
'k.x/'n�k.y/ (14.3)

for each x; y in K and for every natural number n. Obviously, '0 is an exponential.
If '0 D 1, then this sequence is called a moment function sequence, and, in general,
we say that the generalized moment function sequence .'n/n2N is associated with
the exponential '0. Given a natural number N we say that the functions

f'k W k D 0; 1; : : : ;Ng

form a generalized moment function sequence of order N if the above equations hold
for n D 0; 1; : : : ;N.

The second equation of the above system is

'1.x � y/ D '0.x/'1.y/C '1.x/'0.y/ ; (14.4)

which is called sine equation, for obvious reasons.
An important functional equation related to involution is the square norm

functional equation which has the form

f .x � y/C f .x � Ly/ D 2f .x/C 2f .y/ (14.5)

for each x; y in K, where f W K ! C is a continuous function on the hypergroup K.
Clearly, on Hermitian hypergroups this equation is identical with the additive
Cauchy equation.

On Abelian groups an important function class is formed by the so-called
polynomial functions. There are several different ways to introduce these functions,
and in some cases they result in different function classes. In the subsequent sections
we follow the approach used in [28, 30].

14.3 The Measure Algebra

Exponential monomials are the basic building blocks of spectral analysis and
spectral synthesis on Abelian groups. Recently there have been some attempts to
extend the most important results in spectral analysis and spectral synthesis from
groups to hypergroups. For this purpose it is necessary to introduce a reasonable
concept of exponential monomials. In the group case this concept arises from
additive and exponential functions. Roughly speaking, in that case exponential
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monomials are the functions which can be represented as the product of an
exponential and an ordinary polynomial in additive functions. It turns out that this
definition will not work in the case of hypergroups. In fact, even in the simplest
case, when we consider the square of an exponential, it will not be an exponential. In
[30] we reconsidered this problem, and using a ring-theoretical approach we proved
characterization theorems for particular function classes, which can be considered
as “exponential monomials” on commutative hypergroups. Some of those ideas can
be extended to the non-commutative case too. Nevertheless, here we consider the
commutative setting only.

The basic structure is the measure algebra. If K D K.�;L; e/ is a commutative
hypergroup, then C .K/ denotes the locally convex topological vector space of all
continuous complex valued functions defined on K, equipped with the pointwise
linear operations and the topology of compact convergence.

It is well known (see, e.g., [10, p. 551]) that the dual of C .K/ can be identified
with Mc.K/, the space of all compactly supported complex measures on K. If K
is discrete, then this space is also identified with the set of all finitely supported
complex valued functions on K. The pairing between C .K/ and Mc.K/ is given by
the formula

h�; f i D
Z

f d� :

Convolution on Mc.K/ is defined by

� � �.x/ D
Z
�.x � Ly/ d�.y/;

for each �; � in Mc.K/ and x in K. Convolution converts the space Mc.K/ into a
commutative algebra with unit ıe. We call this algebra the measure algebra of K.
If K is discrete, then we call it the hypergroup algebra of K, since in the case when
K is a group it is identical with the group algebra of this group.

We also define convolution of measures in Mc.K/ with arbitrary functions in
C .K/ by the same formula

� � f .x/ D
Z

f .x � Ly/ d�.y/

for each � in Mc.K/, f in C .K/, and x in K. It is easy to see that equipped with this
action C .K/ turns into a module over the measure algebra.

Translation operators are closely related to convolution. In fact, �y is a convolu-
tion operator, namely it is the convolution with the measure ıLy. A subset of C .K/
is called translation invariant, if it contains all translates of its elements. A closed
linear subspace of C .K/ is called a variety on K, if it is translation invariant. For
each function f the smallest variety containing f is called the variety generated by f ,
or simply the variety of f and is denoted by �.f /. It is the intersection of all varieties
containing f .
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We recall the concept of the annihilator. Given a subset H in C .K/ its annihilator
in Mc.K/ is the set

Ann H D f� W � 2 Mc.K/; � � f D 0 for each f 2 Hg :

It is easy to see that this is an ideal in Mc.K/. Analogously, for each subset L in
Mc.K/ its annihilator in C .K/ is defined by

Ann L D ff W f 2 C .K/; � � f D 0 for each � 2 Lg :

It follows that Ann L is a variety in C .K/.
The concept of the annihilator is closely related to the notion of the orthogonal

complement. Given a subset H in C .K/ its orthogonal complement in Mc.K/ is
the set

H? D f� W � 2 Mc.K/; �.f / D 0 for each f 2 Hg :

It is easy to see again that this is an ideal in Mc.K/. Analogously, for each subset L
in Mc.K/ its orthogonal complement in C .K/ is defined by

L? D ff W f 2 C .K/; �.f / D 0 for each � 2 Lg :

It follows that Ann L is a variety in C .K/. The relation between annihilators and
orthogonal complements of varieties and ideals is easy to describe. Indeed, we have
for each variety V in C .K/ and for each ideal I in Mc.K/ the identities

Ann LV D .Ann V/L; Ann LI D .Ann I/L;

further

V? D Ann LV; I? D Ann LI :

Hence, in the case of varieties and ideals the use of annihilators or orthogonal
complements is more or less a question of taste.

It is also obvious that V � V?? and I � I?? hold for each variety V on K
and for each ideal I in Mc.K/ and similar relations hold for Ann V and Ann I.
Moreover, using the Hahn–Banach Theorem, it is easy to show that V D V??
and V D Ann .Ann V/ hold for each variety. Unfortunately, we do not have the
corresponding equality for ideals, as is shown by an example in [12] in the case,
when K is a group. However, if K is a discrete hypergroup, then I D Ann .Ann I/
holds for each ideal in Mc.K/. This is also shown in [12] in the group case, and one
can see immediately that the proof given there also works on hypergroups.
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14.4 Exponential Polynomials

Exponential polynomials play a fundamental role in the theory of functional equa-
tions. In fact, all the functional equations mentioned above characterize functions
on Abelian groups which belong to the class of exponential polynomials. Hence in
order to build up a satisfactory theory of functional equations on hypergroups it is
necessary to find a reasonable definition of exponential polynomials which, in the
group case, coincides with the usual concept. As we mentioned above, an obvious
copy of the definitions, obtained by replacing the group operation with convolution,
does not work at all. Now we shortly summarize the way forward we have offered
in the papers [28, 30]. For the sake of simplicity here we consider the commutative
case only. Nevertheless, it will be clear for the reader that some of the methods can
be extended to non-commutative hypergroups as well.

The basic idea is the use of modified difference operators. Given a hypergroup
K, a continuous function f W K ! C, and an element y in K we define the modified
difference �f Iy as the measure

�f Iy D ıLy � f .y/ıe ;

where e is the identity of K. For the products of such elements we use the following
notation: given a natural number n and elements y1; y2; : : : ; ynC1 in K we write

�f Iy1;y2;:::;ynC1
D ˘ nC1

kD1 �f Iyk ;

where the product means convolution. In the case f being the exponential m D 1 we
use the simplified notation �y for �1Iy and �y1;y2;:::;ynC1

for �1Iy1;y2;:::;ynC1
.

A fundamental role is played by the ideals generated by modified differences.
Given the continuous function f W K ! C the closure of the ideal in the measure
algebra generated by all modified differences of the form �f Iy with y in K will be
denoted by Mf . The following theorem shows that this ideal is appropriate if and
only if f is an exponential.

Theorem 14.1 Let K be a commutative hypergroup and f W K ! C a function with
f .e/ D 1. Then the following statements are equivalent:

1. f is an exponential.
2. The ideal Mf is proper.
3. The ideal Mf is maximal.
4. Mf D Ann �.f /.

This theorem can be proved following the lines of [31] (see also [30]). We use this
result to define generalized exponential monomials on commutative hypergroups as
follows. Let K be a commutative hypergroup. The continuous function f W K ! C

is called a generalized exponential monomial, if there exists an exponential m, and
a natural number n such that the inclusion

MnC1
m � Ann �.f / (14.6)
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holds. It can be shown that if f is nonzero, then m is uniquely determined and we
say that f is associated with m. In other words, the continuous function f W K ! C

is a generalized exponential monomial associated with m if and only if there exists
a natural number n such that

�mIy1;y2;:::;ynC1
� f D 0 (14.7)

holds for each y1; y2; : : : ; ynC1 in K. If f is nonzero, then the smallest n with
this property is defined to be the degree of f . Obviously, every exponential is a
generalized exponential monomial of degree zero, associated with itself. Indeed,
the exponential m clearly satisfies �mIy � m D 0 for each y. To understand the
difference between the group case and the case of general hypergroups we note that,
for instance, in the group case every generalized exponential monomial ' of degree
at most 1 associated with the given exponential m has the form

'.x/ D �
a.x/C c

	
m.x/

for some complex number c, and a additive, while on hypergroups there are
other functions of this type. This can be verified using the general description of
exponentials and additive functions on some special hypergroups, like polynomial
hypergroups, Sturm–Liouville hypergroups, etc. The interested reader will find
further details in [29].

Generalized exponential monomials associated with the exponential identically 1
are called generalized polynomials. It is known that on Abelian groups generalized
polynomials can be represented in a unique manner as the sum of the diagonaliza-
tions of symmetric multi-additive functions. To the best of our knowledge a similar
result on hypergroups has not yet been found. Linear combinations of generalized
exponential monomials are called generalized exponential polynomials.

An important subclass of generalized exponential monomials is formed by
the ones whose variety is finite dimensional. In fact, the generalized exponential
monomial f is called simply an exponential monomial, if �.f / is a finite dimensional
vector space. Similarly, a generalized polynomial f is called a polynomial, if �.f / is
a finite dimensional vector space. Accordingly, linear combinations of exponential
monomials are called exponential polynomials. As we noted above in the group
case an exponential monomial is always the product of an exponential and an
ordinary polynomial of additive functions. However, in the hypergroup case we have
a different situation. In fact, a complete description of all exponential monomials
on commutative hypergroups is still lacking. In other words, the solution space of
the functional equation (14.7) on arbitrary commutative hypergroups has not been
characterized yet. Still there are some types of hypergroups on which a complete
description of some of the above function classes is available (see, e.g., [15–
18, 21, 24, 26, 29, 33]). In the subsequent sections we present some examples where
such a description has been obtained.
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14.5 Polynomial Hypergroups

An important special class of Hermitian hypergroups is closely related to orthogonal
polynomials.

Let .an/n2N, .bn/n2N, and .cn/n2N be real sequences with the following properties:
cn > 0, bn � 0, anC1 > 0 for each n in N, moreover a0 D b0 D 0 and an Cbn Ccn D
1 for each n in N. We define the sequence of polynomials .Pn/n2N by P0.�/ D 1,
P1.�/ D � and by the recursive formula

�Pn.�/ D anPn�1.�/C bnPn.�/C cnPnC1.�/

for each n � 1 and � in R. The following theorem holds (see [3]).

Theorem 14.2 If the sequence of polynomials .Pn/n2N satisfies the above condi-
tions, then there exist constants c.n; l; k/ for each n; l; k in N such that

Pn � Pl D
nClX

kDjn�lj
c.n; l; k/Pk

holds for each n; l in N.
The formula in the theorem is called linearization formula and the coefficients

c.n; l; k/ are called linearization coefficients. The recursive formula for the sequence
.Pn/n2N implies Pn.1/ D 1 for each n in N, hence we have

nClX
kDjn�lj

c.n; l; k/ D 1

for each n in N. If the linearization is nonnegative, that is, the linearization
coefficients are nonnegative: c.n; l; k/ � 0 for each n; l; k in N, then we can define a
hypergroup structure on N by the following rule:

ın � ıl D
nClX

kDjn�lj
c.n; l; k/ ık

for each n; l in N, with involution as the identity mapping and with e as 0.
The resulting discrete Hermitian (hence commutative) hypergroup is called the
polynomial hypergroup associated with the sequence .Pn/n2N. We shall denote it
by .N; .Pn/n2N/.

As an example we consider the hypergroup associated with the Legendre
polynomials. The corresponding recurrence relation is

�Pn.�/ D n C 1

2n C 1
PnC1.�/C n

2n C 1
Pn�1.�/
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for each n � 1 and � in R. It can easily be seen that the linearization coefficients are
nonnegative and the resulting hypergroup associated with the Legendre polynomials
is the Legendre hypergroup.

Another interesting example for polynomial hypergroups is presented by the
Chebyshev polynomials. The corresponding recurrence relation in the case of
Chebyshev polynomials of the first kind is

�Tn.�/ D 1

2
TnC1.�/C 1

2
Tn�1.�/

for each n � 1 and � in R. Again, it is easy to see that the linearization coefficients
are nonnegative and the resulting hypergroup associated with the Chebyshev
polynomials of the first kind is the Chebyshev hypergroup.

The previous examples about the exponential and additive functions on the
hypergroup D.�/ suggest that there is some hope to describe all exponential and
additive functions on different polynomial hypergroups, too. We start with the
Chebyshev hypergroup. We recall that m W N ! C is an exponential on the
Chebyshev hypergroup if and only if it satisfies

m.k � l/ D m.k/m.l/

for each k; l in N. From the linearization formula it follows easily by induction that

Tk.�/Tl.�/ D 1

2

�
TkCl.�/C Tjk�lj.�/

	
holds for each k; l in N and � in C. This means that for each function f W N ! C

we have

f .k � l/ D 1

2

�
f .k C l/C f .jk � lj/

�

for each k; l in N. Consequently, exponentials of the Chebyshev hypergroup are
exactly the nonzero solutions of the functional equation

m.k C l/C m.jk � lj/ D 2m.k/m.l/

for each k; l in N. This functional equation is closely related to d’Alembert’s
functional equation and has been treated—among others—in [6] independently of
hypergroups and in [21] on hypergroups. From our consideration it is clear that
the functions k 7! Tk.�/ satisfy this functional equation. In other words, the
Chebyshev polynomials evaluated at any complex � as functions of the subscript
present exponential functions on the Chebyshev hypergroup. It turns out that this
is true for every polynomial hypergroup. It turns out that the converse is also true:
every exponential on a polynomial hypergroup is generated in this way. As different
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complex values of � produce different exponentials, this means that the set of
all exponentials of a polynomial hypergroup can be identified with the set of all
complex numbers.

The following theorem presents a complete description of the exponentials on
arbitrary polynomial hypergroups (see [3, 24]).

Theorem 14.3 Let K be the polynomial hypergroup associated with the sequence
of polynomials .Pn/n2N. The function m W N ! C is an exponential on K if and only
if there exists a complex number � such that

m.k/ D Pk.�/

holds for each k in N.
Applying this result for the Legendre hypergroup we have that the exponential

functions in that case are exactly the functions n 7! Pn.�/ on N, where � is any
complex number and Pn is the n-th Legendre polynomial.

For the description of the additive functions on the Chebyshev hypergroup we
know that a W N ! C is additive on the Chebyshev hypergroup if and only if it
satisfies the functional equation

a.k C l/C a.jk � lj/ D 2a.k/C 2a.l/

for each k; l in N. Surprisingly, this functional equation is closely related to the
square-norm functional equation and to Apollonius Theorem (see, e.g., [8]). In fact,
any solution of this functional equation has the form a.k/ D c�k2 with some complex
number c. This means that additive functions on the Chebyshev hypergroup are
exactly the quadratic functions on N. We can interpret this result in a somewhat
surprising manner by observing that T 0

n.1/ D n2 holds for each n in N, where T 0
n

is the derivative of the n-th Chebyshev polynomial of the first kind. Consequently,
additive functions of the Chebyshev hypergroup have the general form: n 7! c�T 0

n.1/

with some complex number c. This is a special case of the following remarkable
result (see [24]).

Theorem 14.4 Let K be the polynomial hypergroup associated with the sequence
of polynomials .Pn/n2N. The function a W N ! C is an additive function on K if and
only if there exists a complex number c such that

a.n/ D c P0
n.1/

holds for each n in N.
Finally, we note that the study of generalized moment functions on hypergroups

leads to the study of the system of functional equation (14.3). We remark that a
similar system of functional equation on groupoids has been investigated and solved
in [1]. The following theorem describes the generalized moment function sequences
of order N in the case of polynomial hypergroups (see [17]).
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Theorem 14.5 Let K be the polynomial hypergroup associated with the sequence
of polynomials .Pn/n2N. The functions '0; '1; : : :; 'N W K ! C form a generalized
moment function sequence of order N on K if and only if

'k.n/ D .Pn ı f /.k/.0/

holds for each n in N and for k D 0; 1; : : : ;N, where

f .t/ D
NX

jD0

cj

jŠ
tj (14.8)

for each t in R, where cj is a complex number .j D 0; 1; : : : ;N/.

14.6 Stability of Additive Functions

The study of stability problems concerning functional equations started with
S. Ulam’s question at the Mathematics Club of the University of Wisconsin:
Suppose that a group G and a metric group H are given. For any " > 0, does there
exist a ı > 0 such that if a function f W G ! H satisfies

d.f .xy/; f .x/f .y// < ı

for all x; y in G, then a homomorphism a W G ! H exists with

d.f .x/; a.x// < "

for all x in G ? These kind of questions form the material of stability theory and
Hyers obtained the first important result on this field (see [11]). Later several
mathematicians joined these investigations (see the survey papers [4, 25]) but the
work of Hyers is still decisive. In fact, he proved the following theorem.

Theorem 14.6 Let X;Y be Banach spaces and let f W X ! Y be a mapping
satisfying

kf .x C y/ � f .x/ � f .y/k � "

for all x; y in X. Then the limit

a.x/ D lim
n!1

f .2nx/

2n

exists for all x in X and a W X ! Y is the unique additive function satisfying

kf .x/ � a.x/k � "

for all x in X.
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We note that uniqueness follows immediately from the obvious fact that the
difference of two additive functions is also additive, and the only bounded additive
function is 0.

This pioneering result of Hyers can be expressed in the following way: Cauchy’s
functional equation is stable for any pair of Banach spaces. The function

.x; y/ 7! f .x C y/ � f .x/ � f .y/

is called the Cauchy difference of the function f . Functions with bounded Cauchy
difference are called approximately additive mappings. The sequence

� f .2nx/

2n

�
n2N

is called the Hyers–Ulam sequence.
There are several possible ways to generalize the result of Hyers. A natural way

is to generalize the domain X depending on a more general result of Rätz [19]. Here
we give a corresponding result on hypergroups. Our proof has the novelty of using
Banach limits (see, e.g., [5]).

Theorem 14.7 Let K be a hypergroup with the property that for each x; y in K there
exists an integer N � 2 such that for n � N we have

.x � y/n D xn � yn : (14.9)

Then the functional equation (14.2) is stable for the pair .K;C/.
We note that here powers are convolution powers which is associative by virtue

of the hypergroup axiom (H1) above.

Proof By assumption, the function f W K ! C satisfies

jf .x � y/ � f .x/ � f .y/j � L (14.10)

for each x; y in K with some positive number L. Putting x D y we have

jf .x2/ � 2f .x/j � L (14.11)

for each x in K. For x2 in place of x this yields

jf .x4/ � 2f .x2/j � L ;

hence, by (14.11), it follows

jf .x4/ � 4f .x/j � 3L :
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Repeating this argument we get by induction

jf .x2n
/ � 2nf .x/j � .2n � 1/L

for each x in K. Division by 2n gives

ˇ̌̌ f .x2n
/

2n
� f .x/

ˇ̌̌
� �

1 � 1

2n

	
L ; (14.12)

which shows that the Hyers–Ulam sequence

� f .x2
n
/

2n

�
n2N

is bounded. Let LIM denote any Banach limit on N, then, by (14.12), we have that
the function a W K ! C defined by

a.x/ D LIM
f .x2

n
/

2n
(14.13)

is well-defined for x in K, and satisfies

ja.x/ � f .x/j � L

for each x in K. On the other hand, for each x; y in K we have

a.x � y/ � a.x/ � a.y/ D LIM
� f
�
.x � y/2

n	 � f .x2
n
/ � f .y2

n
/

2n

�
: (14.14)

By assumption, if n is large enough, then we have

jf �.x � y/2
n	 � f .x2

n
/ � f .y2

n
/j D jf .x2n � y2

n
/ � f .x2

n
/ � f .y2

n
/j � L ;

which implies, by (14.11), that a is additive.
This theorem gives the stability of Cauchy’s functional equation also in the group

case, moreover, in contrast with Hyers’ Theorem, we do not need the commutativity
of the domain. Nevertheless, the condition of Theorem 14.7 is quite sophisticated
and artificial. On non-commutative groups and semigroups the present author
proposed another approach based on the concept of invariant means (see [23]). Now
we show the application of this method on hypergroups.

Let K be a hypergroup and let B.K/ denote the Banach space of all bounded
complex valued functions on K equipped with the sup norm k:k. A linear functional
M of the space B.K/ is called a right invariant mean, if M.1/ D 1 and M.�yf / D
M.f / holds for each y in K and f in B.K/. We call K left amenable, if there exists
a left invariant mean on B.K/. Right invariant means and right amenability are
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defined similarly. In the case of commutative hypergroups we simply use the terms
invariant mean and amenable hypergroup. For more about invariant means, see,
e.g., [9]. It turns out that wide classes of groups and even semigroups are amenable.
Amenability of commutative hypergroups has been proved in [31] (see also [13]).
Now we prove the stability of additive functions on right amenable hypergroups.

Theorem 14.8 Let K be a right amenable hypergroup. Then the functional equa-
tion (14.2) is stable for the pair .K;C/.

Proof Let M be a left invariant mean on K and f W K ! C a function satisfying

jf .x � y/ � f .x/ � f .y/j � L (14.15)

for each x; y in K with some positive number L. For each y in K the function
x 7! f .x � y/ � f .x/ is bounded, and we define

a.y/ D Mx
�
f .x � y/ � f .x/

	
: (14.16)

Here Mx denotes that M is applied to the argument as a function of x. Now we have

a.y � z/ � a.y/ � a.z/ D Mx
�
f .x � y � z/ � f .x � y/ � f .x � z/C f .x/

	 D

Mx
�
f .x � y � z/ � f .x � y/

	 � Mx
�
f .x � z/ � f .x/

	 D 0 ;

as the argument of M in the first term is the right translate of the second term by y.
It follows that a is additive. On the other hand, for each y in K we have

jf .y/ � a.y/j D jf .y/ � Mx
�
f .x � y/ � f .x/

	j D jMx
�
f .x/C f .y/ � f .x � y/

	j �

Mx
�jf .x/C f .y/ � f .x � y/j	 � L :

The theorem is proved.
This result extends easily to the pexiderized equation of additive functions as is

shown in the following theorem.

Theorem 14.9 Let K be a right amenable hypergroup and let f ; g; h W K ! C be
functions such that the function .x; y/ 7! f .x � y/ � g.x/ � h.y/ is bounded. Then
there exists an additive function a W K ! C such that f � a; g � a, and h � a are
bounded.

14.7 Stability of Exponential Functions

The stability of exponential functions was first proved in [2] for real valued functions
defined on linear spaces. By the results in [22] we have the following result.
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Theorem 14.10 Let S be a commutative semigroup with identity, and suppose that
for the functions f ;m W S ! C the function x 7! f .x C y/� f .x/m.y/ is bounded for
each y in S. Then either f is bounded, or m is an exponential.

This result shows the so-called superstability property of the exponential func-
tional equation: the difference f .x C y/� f .x/f .y/ can be bounded if and only if it is
either zero, or f itself is bounded. Now we study this problem on hypergroups.

Theorem 14.11 Let K be a hypergroup and let f ; g; h W K ! C be continuous
functions. If the function

x 7! f .x � y/ � g.x/h.y/

is bounded for each y in K, then either f is bounded, or h.e/ ¤ 0 and h=h.e/ is an
exponential.

Proof Suppose that f is unbounded. Then, putting y D e into the above condition,
h.e/ ¤ 0 follows, and we have that f � h.e/g is bounded. Moreover, by assumption,
we have

jh.e/g.x � y/ � g.x/h.y/j � l.y/;

for each x; y in K with some function l W K ! C. Dividing by h.e/2 it follows that
the function

x 7! 1

h.e/
g.x � y/ � 1

h.e/
g.x/ � 1

h.e/
h.y/

is bounded for each y in K. Theorem 11.1 in [29] implies that either g is bounded,
or h.e/ ¤ 0 and h=h.e/ is an exponential. However, g cannot be bounded, otherwise
f is bounded, too. This implies that h.e/ ¤ 0 and h=h.e/ is an exponential.

Obviously, this result implies the following.

Theorem 14.12 Let K be a hypergroup and f W K ! C a continuous function such
that the function

.x; y/ 7! f .x � y/ � f .x/f .y/

is bounded. Then f is either bounded or an exponential.
In other words, the exponential functional equation is superstable on any

hypergroup. In the following section we will have an application of this result for
spherical functions.
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14.8 Double Coset Hypergroups

In this section we exhibit another important type of hypergroups: the double coset
hypergroups. The idea is that if G is a locally compact group and K is a subgroup
then, in general, the left, or right, or double coset spaces with respect to K do not
bear any reasonable structure. Nevertheless, if K is a compact subgroup, then a
quite useful hypergroup structure can be introduced on the double coset space with
respect to K. In particular, this hypergroup structure reduces to the usual group
structure if K is a normal subgroup. In the subsequent paragraphs we present the
details (see also [3]).

Let G be a locally compact group with identity e and K a compact subgroup with
normalized Haar measure !:

R
K d!.k/ D 1. As K is unimodular ! is left and right

invariant, and also inversion invariant. For each x in G we define the double coset of
x as the set

KxK D fkxl W k; l 2 Kg:
We introduce a hypergroup structure on the set L D G==K of all double cosets: the
topology of L is the quotient topology, which is locally compact. The identity o is
the coset K D KeK itself and the involution is defined by

.KxK/_ D Kx�1K :

Finally, the convolution of ıKxK and ıKyK is defined by

ıKxK � ıKyK D
Z

K
ıKxkyK d!.k/ :

It is known that this gives a hypergroup structure on L (see [3, p. 12]), which, in
general, is non-commutative. If K is a normal subgroup, then L is isomorphic to the
hypergroup arising from the factor group G=K.

We note that continuous functions on L can be identified with those continuous
functions on G which are K-invariant: f .x/ D f .kxl/ for each x in G and k; l in K.
Hence, for a continuous function f W L ! C the simplified—and somewhat loose—
notation f .x/ can be used for the function value f .KxK/. Using this convention we
can write for each continuous function f W L ! C and for each x; y in G:

f .x � y/ D
Z

K
f .xky/ d!.k/:

The following theorem exhibits a close connection between exponentials on
double coset hypergroups and spherical functions on locally compact groups.
Following the terminology of [3] (see also [7]) we recall the concept of spherical
functions. Let G be a locally compact group and K a compact subgroup with Haar
measure !. The continuous bounded K-invariant function f W G ! C is called a
K-spherical function if f .e/ D 1 and
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Z
K

f .xky/ d!.k/ D f .x/f .y/ (14.17)

holds for each x; y in G. A generalized K spherical function on G is the same
as above without the boundedness hypothesis. For the sake of simplicity in this
paper we use the term spherical function for continuous functions satisfying (14.17)
without the boundedness assumption. The following theorem, which is an imme-
diate consequence of the previous considerations gives the link between spherical
functions and exponentials of double coset hypergroups.

Theorem 14.13 Let G be a locally compact group, and K � G a compact
subgroup. Then the nonzero continuous complex valued function m is a K-spherical
function on G if and only if it is an exponential on the double coset hypergroup
G==K. In particular, K-spherical functions on G can be identified with the charac-
ters of G==K.

By virtue of this theorem, as an application of Theorem 14.11, we obtain the
following result on the superstability of functional equations related to spherical
functions (see [32]).

Theorem 14.14 Let G be a locally compact group and K a compact subgroup with
normed Haar measure !. Let f ; g; h W G ! C be continuous K-invariant functions
such that the function

x 7!
Z

K
f .xky/ d!.k/ � g.x/h.y/

is bounded for each y in G. Then either f is bounded, or h.e/ ¤ 0 and h=h.e/ is a
K-spherical function.

14.9 Superstability of Generalized Moment Functions

In this section we prove that generalized moment functions on hypergroups also
have the remarkable superstability property (see also [27, 29]).

Theorem 14.15 Let K be a hypergroup, n a nonnegative integer, and suppose that
for the unbounded functions fk W K ! C (k D 0; 1; : : : ; n/ the functions

.x; y/ 7! fk.x � y/ �
kX

jD0

 
k

j

!
fj.x/fk�j.y/

are bounded on K �K. Then the sequence .fk/k�n forms a moment function sequence
of order n on K.
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Proof We prove the theorem for a fixed n by induction on k. For k D 0, by our
assumption, the function

.x; y/ 7! f0.x � y/ � f0.x/f0.y/

is bounded on K � K. By Theorem 14.11, this implies that f0 is an exponential on K.
Suppose now that k � 1 and we have proved that the functions fj for

j D 0; 1; : : : ; k � 1 form a moment function sequence of order k � 1 on K. By
assumption, we have that the function

.x; y; z/ 7! F.x; y; z/ D fk.x � y � z/ �
kX

jD0

 
k

j

!
fj.x � y/fk�j.z/ ;

and also the function

.x; y; z/ 7! G.x; y; z/ D fk.x � y � z/ �
kX

jD0

 
k

j

!
fj.x/fk�j.y � z/

is bounded on K � K � K. Then their difference

.x; y; z/ 7! F.x; y; z/ � G.x; y; z/ D
kX

jD0

 
k

j

!
fj.x � y/fk�j.z/ �

kX
jD0

 
k

j

!
fj.x/fk�j.y � z/

is also bounded. By our induction hypothesis, this means that the function

.x; y; z/ 7! F.x; y; z/ � G.x; y; z/ D H.x; y; z/

D
k�1X
jD1

 
k

j

!
fj.x/

k�jX
iD0

 
k�j

i

!
fi.y/fk�j�i.z/ �

k�1X
jD1

 
k

j

!
jX

iD0

 
j

i

!
fi.x/fj�i.y/fk�j.z/

C f0.x/fk.y � z/ � fk.x � y/f0.z/C fk.x/f0.y/f0.z/ � f0.x/f0.y/fk.z/

is bounded, too. By reordering the terms in this sum we obtain

H.x; y; z/ D f0.x/


fk.y � z/ �

kX
jD0

 
k

j

!
fj.y/fk�j.z/

�

� f0.z/


fk.x � y/ �

kX
jD0

 
k

j

!
fj.x/fk�j.y/

�C k�1X
jD1

k�j�1X
iD0

 
k

j

! 
k � j

i

!
fj.x/fi.y/fk�j�i.z/

�
k�1X
jD1

jX
iD1

 
k

j

! 
j

i

!
fi.x/fj�i.y/fk�j.z/
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for all x; y; z in K. We show that the two terms on the right-hand side of the
last equality cancel. In the first term replacing i by t � j, and in the second term
interchanging the sums we have

H.x; y; z/ D f0.x/


fk.y � z/ �

kX
jD0

 
k

j

!
fj.y/fk�j.z/

�

�f0.z/


fk.x � y/�

kX
jD0

 
k

j

!
fj.x/fk�j.y/

�C k�1X
jD1

k�1X
tDj

 
k

j

! 
k � j

k � t

!
fj.x/ft�j.y/fk�t.z/

�
k�1X
iD1

k�1X
jDi

 
k

j

! 
j

i

!
fi.x/fj�i.y/fk�j.z/

for all x; y; z in K. In the second term we write j for i and t for j to get

H.x; y; z/ D f0.x/


fk.y � z/ �

kX
jD0

 
k

j

!
fj.y/fk�j.z/

�

�f0.z/


fk.x � y/�

kX
jD0

 
k

j

!
fj.x/fk�j.y/

�C k�1X
jD1

k�1X
tDj

 
k

j

! 
k � j

k � t

!
fj.x/ft�j.y/fk�t.z/

�
k�1X
jD1

k�1X
tDj

 
k

t

! 
t

j

!
fj.x/ft�j.y/fk�t.z/

for all x; y; z in K. On the other hand, we have

 
k

j

! 
k � j

k � t

!
D kŠ

jŠ.k � j/Š

.k � j/Š

.k � t/Š .t � j/Š
D kŠ

tŠ.k � t/Š

tŠ

jŠ.t � j/Š
D
 

k

t

! 
t

j

!
;

hence the function

.x; y; z/ 7! L.x; y; z/ D f0.x/


fk.y � z/ �

kX
jD0

 
k

j

!
fj.y/fk�j.z/

�

� f0.z/


fk.x � y/ �

kX
jD0

 
k

j

!
fj.x/fk�j.y/

�

is bounded. If there are y; z in K such that

fk.y � z/ �
kX

jD0

 
k

j

!
fj.y/fk�j.z/ ¤ 0 ;
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then f0 is bounded, which is impossible. Thus we have

fk.y � z/ �
kX

jD0

 
k

j

!
fj.y/fk�j.z/ D 0

for all y; z in K, and the proof is complete.

14.10 Stability Problems of Other Functional Equations

In the previous sections we discussed two different types of stability: one of them
for additive-type equations, where the method is based on invariant means, and the
other for exponential-type equations, where superstability appears, and the method
is direct. The question arises concerning stability results of mixed type, where both
the additive and exponential equations come into the picture and we can combine
the two methods.

We mentioned above that the second equation of the system defining generalized
moment function sequences is in itself interesting: we can consider it independently
from the other equations. It has the form

f .x � y/ D f .x/g.y/C g.x/f .y/ : (14.18)

It turns out that the pexiderized version

f .x � y/ D g.x/h.y/C l.x/k.y/ ; (14.19)

can be treated in the case l D 1. We have also considered another similar equation
in [29]. In the special case of this equation when k D 0, we have the pexiderized
exponential equation, and in the case h D l D 1 we obtain the pexiderized additive
equation. We recall the corresponding results of [29].

Theorem 14.16 Let K be an amenable discrete hypergroup and suppose that the
functions f ; g; h; k W K ! C are given and f is unbounded. Then the function

x 7! f .x � y/ � g.x/h.y/ � k.y/

is bounded for each y in K if and only if we have

f .x/ D '.x/C b1.x/

g.x/ D '.x/C b2.x/

h.x/ D m.x/

k.x/ D '.x/C b3.x/
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where m W K ! C is an exponential, b1; b2; b3 W K ! C are bounded functions, and
' W K ! C satisfies the functional equation

'.x � y/ D '.x/m.y/C '.y/ (14.20)

for each x; y in K, further, if b2 is nonzero, then m is bounded.
We can see here that we have superstability with respect to h and stability with

respect to the other three functions. Another special feature is that we have the
stability result without knowing the general solution of the corresponding functional
equation

f .x � y/ D g.x/h.y/C k.y/ : (14.21)

At this point we mention the open problem concerning the stability of the sine
equation (14.18). Another related stability result in [29] is the following.

Theorem 14.17 Let K be a discrete commutative hypergroup and suppose that
functions f ; g; h; k; l W K ! C are unbounded. Then the function

x 7! f .x � y/ � g.x/h.y/ � k.x/ � l.y/ (14.22)

is bounded for each y in K if and only if either

f .x/ D �

2
a.x/2 C d0a.x/C a0.x/C b1.x/ (14.23)

g.x/ D a.x/C c0; h.x/ D �a.x/C d0

k.x/ D �

2
a.x/2 C a0.x/C b2.x/

l.x/ D �

2
a.x/2 C .d0 � �c0/a.x/C a0.x/C b3.x/ ;

or

f .x/ D cdŒm.x/ � 1�C a.x/C b1.x/ (14.24)

g.x/ D cŒm.x/ � 1�C c0; h.x/ D dŒm.x/ � 1�C d0

k.x/ D c.d � d0/Œm.x/ � 1�C a.x/C b2.x/

l.x/ D d.c � c0/Œm.x/ � 1�C a.x/C b3.x/ ;

where m W K ! C is an exponential, a; a0 W K ! C are additive functions,
b1; b2; b3 W K ! C are bounded functions, and �; c; d; c0; d0 are complex numbers.
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The proof is again a combination of direct methods and of the invariant mean
technique. We note that—in contrast with the previous theorem—commutativity is
used instead of amenability.
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Stability of Systems of General Functional
Equations in the Compact-Open Topology
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Abstract We introduce a fairly general concept of functional equation for k-tuples
of functions f1; : : : ; fkW X ! Y between arbitrary sets. The homomorphy equa-
tions for mappings between groups and other algebraic systems, as well as
various types of functional equations and recursion formulas occurring in mathe-
matical analysis or combinatorics, respectively, become special cases (of systems)
of such equations. Assuming that X is a locally compact and Y is a completely
regular topological space, we show that systems of such functional equations,
with parameters satisfying rather a modest continuity condition, are stable in the
following intuitive sense: Every k-tuple of “sufficiently continuous,” “reasonably
bounded” functions X ! Y satisfying the given system with a “sufficient precision”
on a “big enough” compact set is already “arbitrarily close” on an “arbitrarily big”
compact set to a k-tuple of continuous functions solving the system. The result is
derived as a consequence of certain intuitively appealing “almost-near” principle
using the relation of infinitesimal nearness formulated in terms of nonstandard
analysis.
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15.1 Introduction

The study of stability of functional equations in the spirit of Ulam started with
examining the stability of additive functions and more generally of homomorphisms
between metrizable topological groups, cf. [3, 13, 14, 19, 20, 27, 28]. Since that
time it has developed to an established topic in mathematical and functional
analysis and extended to a variety of (systems of) functional equations—see, e.g.,
[6, 9, 15, 21, 22, 26]. However, in most cases the stability issue was considered
(explicitly or implicitly) either within the topology of uniform convergence or within
the (strong) topology given by a norm on some functional space. On the other
hand, especially when dealing with spaces of continuous functions defined on a
locally compact space, the compact-open topology (i.e., the topology of uniform
convergence on compact sets) is the most natural one. The systematic study of such
local stability on compacts and its relation to the “usual” global or uniform stability
was commenced by the author for homomorphisms between topological groups in
[30] and extended to homomorphisms between topological universal algebras in
[31]; cf. also [18, 24].

In the present paper we introduce a fairly general concept of functional equation
for k-tuples of functions f1; : : : ; fkW X ! Y between arbitrary sets. Then the homo-
morphy equations for mappings between groups and other algebraic systems, as well
as various types of functional equations occurring in mathematical analysis (like,
e.g., the sine and cosine addition formulas) or various recursion formulas occurring
in combinatorics become just special cases (of systems) of such equations. Assum-
ing that X is a locally compact and Y is a completely regular (i.e., uniformizable)
topological space, we will show that systems of such functional equations, with
functional parameters satisfying rather a modest continuity condition, are stable in
the following intuitive sense, which will be made precise in the final Section 15.4
(Theorems 15.2, 15.3): Every k-tuple of “sufficiently continuous,” “reasonably
bounded” functions X ! Y satisfying the given system with a “sufficient precision”
on a “big enough” compact set is already “arbitrarily close” on an “arbitrarily big”
compact set to a k-tuple of continuous functions solving the system. The result is a
generalization comprising several former results by the author and his collaborators
[24, 25, 29–31], as special cases. It is derived as a consequence of certain intuitively
appealing stability or “almost-near” principle (in the sense of [2, 5]) using the
relation of infinitesimal nearness formulated in terms of nonstandard analysis in
Section 15.3 (Theorem 15.1, Corollary 15.2), generalizing a more specific principle
of this kind from [24].

15.2 General Form of Functional Equations

Let X, Y be arbitrary nonempty sets and k;m; n � 1, p � 0 be integers. A k-tuple
of functions fff D .f1; : : : ; fk/, fiW X ! Y , is viewed as a single function fff W X ! Yk.
Further, let ˛̨̨ D .˛1; : : : ; ˛m/ be an m-tuple of p-ary operations ˛jW Xp ! X
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(if p D 0, a nullary operation ˛ on X is simply a constant ˛ 2 X). We use the
tensor product notation to denote the function fff ˝ ˛̨̨ W Xp ! Yk�m assigning to every
p-tuple xxx D .x1; : : : ; xp/ 2 Xp the k � m matrix

.fff ˝ ˛̨̨ /.xxx/ D �
.fi ı ˛j/.xxx/

	 D

0
B@

f1
�
˛1.xxx/

	
: : : f1

�
˛m.xxx/

	
:::

: : :
:::

fk
�
˛1.xxx/

	
: : : fk

�
˛m.xxx/

	
1
CA :

In the trivial case when k D m D 1 we can identify fff D f , ˛̨̨ D ˛; then fff ˝ ˛̨̨ is just
the composition of functions f ı ˛W Xp ! Y . If m D 1 and ˛.x/ D x is the identity
IdX on X, then fff ˝ ˛ D .f1; : : : ; fk/ D fff . If m D p and ˛̨̨ D ��� D .�1; : : : ; �m/,
where �jW Xm ! X is the jth projection, i.e., �j.x1; : : : ; xm/ D xj, then .fff ˝���/.xxx/ D�
fi.xj/

	 2 Yk�m. In general, the function fff ˝ ˛̨̨ can be identified with the matrix of
composed functions fi ı ˛jW Xp ! Y (i � k, j � m).

Additionally, if FW Yk�m ! Y is a .k � m/-ary operation on Y , then F.fff ˝ ˛̨̨ / D
F ı .fff ˝ ˛̨̨ /W Xp ! Y denotes the function given by

F. f ˝ ˛̨̨ /.xxx/ D F
�
.fff ˝ ˛̨̨ /.xxx/

	
;

for xxx 2 Xp. More generally, for any mapping FW Yk�m � Xp ! Y we denote byeF.fff ˝ ˛̨̨/W Xp ! Y the function given by

eF.fff ˝ ˛̨̨ /.xxx/ D F
�
.fff ˝ ˛̨̨ /.xxx/;xxx

	
;

for xxx 2 Xp. Further on (except for some Examples) we will study exclusively the
latter more general case which includes the former one, when the mapping F does
not depend on xxx, i.e., when F.AAA;xxx/ D F.AAA;xxx 000/ for any matrix AAA 2 Yk�m and all
xxx;xxx 000 2 Xp.

A general functional equation, briefly a GFE, of type .k;m; n; p/, with k;m; n �
1, p � 0, is a functional equation of the form

eF.fff ˝ ˛̨̨/ D eG.fff ˝ ˇ̌̌/ ; (15.1)

where fff D .f1; : : : ; fk/ is a k-tuple of functional variables or “unknown” functions
fiW X ! Y , ˛̨̨ D .˛1; : : : ; ˛m/ is an m-tuple and ˇ̌̌ D .ˇ1; : : : ; ˇn/ is an n-tuple
of p-ary operations on the set X, and, finally, FW Yk�m � Xp ! Y and GW Yk�n �
Xp ! Y are any mappings. The operations (mappings) ˛i, ˇj, F, and G are called
the functional coefficients or parameters of the equation. A k-tuple of functions
fff D .f1; : : : ; fk/W X ! Yk satisfies the GFE (15.1), or it is a solution of it, if the
functionseF.fff ˝ ˛̨̨/, eG.fff ˝ ˇ̌̌/ coincide, i.e., if

F
�
.fff ˝ ˛̨̨/.xxx/;xxx

	 D G
�
.fff ˝ ˇ̌̌/.xxx/;xxx

	
;
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for all xxx 2 Xp. More generally, fff satisfies the GFE (15.1) on a set S � Xp if the
above equation holds for each xxx 2 S; we say that fff satisfies the GFE (15.1) on a set
A � X if it satisfies (15.1) on the set Ap � Xp.

A system of GFEs

eF�.fff ˝ ˛̨̨�/ D eG�.fff ˝ ˇ̌̌�/ .� 2 �/ ; (15.2)

with (finite or infinite) index set � ¤ ;, consist of GFEs of particular types
.k;m�; n�; p�/ (with k fixed and m�, n�, p� depending on � 2 �). Then f D
.f1; : : : ; fk/ is a solution of the system if fff satisfies all the equations in it. Satisfaction
of the system on some set A � X is defined in the obvious way.

We do not maintain that the (systems of) GFEs of the form just defined cover
all the (systems of) functional equations one can meet, as such a claim would be
too ambitious and, obviously, not founded well enough. In particular, functional
equations dealing with compositions of functional variables fi ı fj or with iterated
compositions like f , f 2 D f ı f , f 3 D f ı f ı f , etc., do not fall under this scheme. On
the other hand, as indicated by the examples below, they still comprise a large and
representative variety of (systems of) functional equations studied so far.

Let us start with three closely related examples of algebraic nature.

Example 15.1 Let .X;�/, .Y; ?/ be two groupoids, i.e., algebraic structures with
arbitrary binary operations �, ? on the sets X and Y , respectively. Let ˛W X2 ! X be
the operation ˛.x1; x2/ D x1 � x2 on X, �1; �2W X2 ! X be the projections on the
first and the second variable, respectively, F D IdY W Y ! Y be the identity mapping
and GW Y2 ! Y be the operation G.y1; y2/ D y1 ? y2 on Y . Then the GFE

F.fff ˝ ˛̨̨ / D G.fff ˝���/

of type .1; 1; 2; 2/, with fff D f W X ! Y , ˛̨̨ D ˛ and ��� D .�1; �2/, which rewrites as

f ı ˛ D G
�
f ˝ .�1; �2/

	
;

simply means that

f .x1 � x2/ D f .x1/ ? f .x2/

for all x2; x2 2 X. In other words, a function f satisfies the above GFE if and only if
it is a homomorphism f W .X;�/ ! .Y; ?/.

If both .X;�/, .Y; ?/ coincide with the additive group .R;C/ of reals, we get the
Cauchy functional equation

f .x C y/ D f .x/C f .y/ :

If .X;�/ D .R;C/ and .Y; ?/ is the multiplicative group .RC; �/ of positive reals,
we obtain the equation

f .x C y/ D f .x/f .y/ ;
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characterizing exponential functions. If both .X;�/, .Y; ?/ denote the set R with the
arithmetical mean x � y D x ? y D .x C y/=2, we have Jensen’s functional equation

f

�
x C y

2

�
D f .x/C f .y/

2
:

And the list could be continued indefinitely.

Example 15.2 More generally, let� be a set of operation symbols with finite arities
p� (� 2 �), and X D .X; ˛�/�2�, Y D .Y;G�/�2� be two universal algebras
of signature .p�/�2�, i.e., ˛� D �XW Xp� ! X, G� D �YW Yp� ! Y are p�-ary
operations on the sets X, Y , respectively, corresponding to the symbol � 2 �,
cf. [10]. A function f W X ! Y is called a homomorphism from X to Y, briefly
f WX ! Y, if for each � 2 � and any p�-tuple xxx D .x1; : : : ; xp�/ 2 Xp� we have

f
�
˛�.x1; : : : ; xp�/

	 D G�

�
f .x1/; : : : ; f .xp�/

	
;

(for nullary operation symbols � 2 � this simply means that f .˛�/ D G�). Similarly
as in the previous Example 15.1, we see immediately that this is the case if and only
if f satisfies the system of GFEs

f ı ˛� D G�

�
f ˝ .�1; : : : ; �p�/

	
.� 2 �/ ;

of types .1; 1; p�; p�/, where �jW Xp� ! X, �j.xxx/ D xj, is the jth projection for
j � p�.

Example 15.3 Let .�;C; �; 0; 1/, be a ring with unit 1 ¤ 0. A (left) �-module X
is an abelian group .X;C/ with scalar multiplication � � X ! X, sending each
pair .�; x/ 2 � � X to the scalar multiple �x 2 X, satisfying the usual axioms.
Then each scalar � 2 � can be regarded as an endomorphism �XW X ! X of the
abelian group .X;C/, and the assignment � 7! �X becomes a homomorphism of
rings .�;C; �; 0; 1/ ! �

End.X;C/;C; ı; 0; IdX
	
, cf. [12]. In particular, if � is a

field, then a �-module is just a vector space over �.
A homomorphism of �-modules X, Y is a mapping f W X ! Y , preserving the

addition and scalar multiplication, i.e., satisfying

f .x C y/ D f .x/C f .y/ ;

f .�x/ D �f .x/

for any x; y 2 X, � 2 �. If � is a field, then this is the usual definition of a linear
mapping between the vector spaces X, Y .

Regarding �C D fCg [ � as a set of operation symbols (+ binary, and each
� 2 � unary), every �-module is simply a universal algebra X D .X;C; �/�2�,
satisfying the �-module axioms, and a �-module homomorphism is a homomor-
phism of such algebras. Now, the previous Example 15.2 applies, i.e., f W X ! Y is a
�-module homomorphism if and only if it satisfies the system of GFEs consisting of
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f ı ˛ D G
�
f ˝ .�1; �2/

	
;

where ˛ is the addition in X and G is the addition in Y , and

f ı �X D �Y ı f .� 2 �/ :

We continue with two examples of more analytic character.

Example 15.4 Let ˛WR2 ! R be the addition on R, F1 D �1; F2 D �2WR2 ! R

denote the projections, and the functions G1;G2WR2�2 ! R be given by

G1

�
a11 a12
a21 a22

�
D Per

�
a11 a12
a21 a22

�
D a11a22 C a21a12 ;

G2

�
a11 a12
a21 a22

�
D Det

�
a21 a12
a11 a22

�
D a21a22 � a11a12 ;

(notice the reversed order of elements in the first column of the determinant). Then
the system of the following two GFEs, both of type .2; 1; 2; 2/, in the couple of
functional variables fff D .f1; f2/, standing for the sine and cosine, respectively,

�1.fff ˝ ˛/ D G1

�
fff ˝ .�1; �2/

	
;

�2.fff ˝ ˛/ D G2

�
fff ˝ .�1; �2/

	
;

is nothing else but the well-known sine and cosine addition formulas

sin.x C y/ D sin x cos y C cos x sin y ;

cos.x C y/ D cos x cos y � sin x sin y :

Example 15.5 Let 	 WC ! C denote the shift 	.x/ D x C 1 and GWC � C ! C be
the multiplication G.y; x/ D yx on C. Then the GFE

f ı 	 D eG.f /
of type .1; 1; 1; 1/ is the functional equation

f .x C 1/ D f .x/ x ;

satisfied by the Euler function # on the open complex half plane fx 2 C j Re x > 0g.
We conclude with two examples dealing with recursion in one and two variables.

Example 15.6 Let
�
f .x/

	
x2N be a sequence of elements of a set A, i.e., a function

f WN ! A, satisfying the recursion

f .x C n/ D G
�
f .x/; : : : ; f .x C n � 1/	
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for a fixed n � 1 and an n-ary operation GW An ! A given in advance. For each
j 2 N we denote by 	 jWN ! N the shift 	 j.x/ D x C j. Then the above recursion
formula takes the form of the GFE

f ı 	n D G
�
f ˝ �

	0; : : : ; 	n�1		
of type .1; 1; n; 1/. The more general recursion formula

f .x C n/ D G
�
f .x/; : : : ; f .x C n � 1/; x	 ;

where GW An � N ! A, takes the form of the GFE of type .1; 1; n; 1/

f ı 	n D eG�f ˝ �
	0; : : : ; 	n�1		 :

Example 15.7 Let A be a set and GW A3�N
2 ! A be an arbitrary mapping. Consider

the following recursion formula:

f .x C 1; y C 1/ D G
�
f .x; y/; f .x C 1; y/; f .x; y C 1/; x; y

	
;

expressing the value of a function f WN2 ! A at .x C 1; y C 1/ in terms of its values
at the preceding neighbors .x; y/, .x C 1; y/, .x; y C 1/, and the position .x; y/ itself.
The notorious recursion formulas 

n C 1

k C 1

!
D
 

n

k

!
C
 

n

k C 1

!
;

c.k C 1; l C 1/ D c.k C 1; l/C c.k; l C 1/ ;

s.n C 1; k C 1/ D s.n; k/ � n s.n; k C 1/ ;

S.n C 1; k C 1/ D S.n; k/C .k C 1/S.n; k C 1/ ;

for binomial coefficients (both in the usual form or for c.k; l/ D �kCl
k

	
), as well as for

Stirling numbers of the first and the second kind, respectively, are just some special
cases of such functional equations for functions f WN2 ! Z.

Let 	1; 	2WN2 ! N
2 denote the shifts in the first and the second variable,

respectively, i.e., 	1.x; y/ D .x C 1; y/, 	2.x; y/ D .x; y C 1/, and 	12 D 	1 ı 	2 D
	2 ı 	1WN2 ! N

2 be the double shift, i.e., 	12.x; y/ D .x C 1; y C 1/. Then the
original recursion formula can be written as the GFE

f ı 	12 D eG�f ˝ .	0; 	1; 	2/
	
;

with 	0 D IdN2 WN2 ! N
2 denoting the identity. The generalization to recursion

formulas for functions f WNn ! A with n � 2 variables is straightforward.
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15.3 Infinitesimal Nearness and S-Continuity

In this section we modify the short introduction to the nonstandard approach to
continuity of mappings between topological groups from [24] to the more general
situation of mappings between completely regular topological spaces. We use [8]
as a reference source for general topology. In order to simplify our terminology, we
assume that all (standard) topological or uniform spaces dealt with are Hausdorff.

The reader is assumed to have some basic acquaintance with nonstandard
analysis in an extent covered either by the original Robinson’s monograph [23]
or, e.g., by Albeverio et al. [1], or Davis [7], or Arkeryd et al. [4], mainly in the
parts [11] and [17]. In particular, some knowledge of the nonstandard approach to
topology, based on the equivalence relation of infinitesimal nearness, is desirable.

Our exposition takes place in a nonstandard universe which is an elementary
extension �V of a superstructure V over some set of individuals containing at
least all (classical) complex numbers and the elements of the universal algebras
or topological spaces dealt with. In particular, this means that every standard
universal algebra A D .A;F�/�2� is embedded into its nonstandard extension
�A D .�A; �F�/�2� via the canonic elementary embedding a 7! �a, and identified
with its image under �, in such a way that for any formula ˆ.v1; : : : ; vn/ of the
first-order language built upon the operation symbols � 2 � and any a1; : : : ; an 2 A
we have

ˆ.a1; : : : ; an/ holds in A if and only if �ˆ.a1; : : : ; an/ holds in �A;

where �ˆ is the formula obtained from ˆ by replacing each operation F�W Ap� ! A
by its extension �F�W �Ap� ! �A. This rule is referred to as the transfer principle.
However, this principle applies to any tuples of functions fff D .f1; : : : ; fk/W X ! Yk

and their nonstandard extensions �fff D .�f1; : : : ; �fk/W �X ! �Yk, as well.
Objects belonging to the original universe are called standard and objects

belonging to its nonstandard extension are called internal. Taking the advantage
of the relation between the universes of standard and internal objects, we cannot
avoid the so-called external sets, i.e., sets of internal objects, which themselves are
not necessarily internal.

We assume that our nonstandard universe is �-saturated for some sufficiently
big uncountable cardinal �, which will be specified later on. This is to say that any
system of less than � internal sets with the finite intersection property has itself
nonempty intersection. Informally, we refer to this situation by the phrase that our
nonstandard universe is sufficiently saturated. In a similar vein, a set of admissible
size means a set of cardinality < �.

If .X;T / is a topological space, then the topology T (i.e., the system of open
sets in X) gives rise to two different topologies on its nonstandard extension �X.

The Q-topology is given by the base �T ; it is Hausdorff if and only if the original
topology T on X is Hausdorff. This topology plays rather an auxiliary role in our
accounts.
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The S-topology is given by the base f�A j A 2 T g. Obviously, the S-topology is
coarser than the Q-topology and it is not Hausdorff, unless .X;T / is discrete.

We will systematically take advantage of the fact that if .X;T / is a (Hausdorff)
completely regular space, whose topology is induced by a uniformity U on X, then,
in a sufficiently saturated nonstandard universe, the S-topology is fully determined
by a single external equivalence relation

x 	 y , 8 U 2 U W .x; y/ 2 �U ;

called the relation of infinitesimal nearness on �X. At the same time the system
f�U j U 2 U g is a base of the S-uniformity on �X. Uniform continuity with respect
to it is referred to as the uniform S-continuity.

The external set of all elements indiscernible from x 2 �X is called the monad of
x, i.e.,

Mon.x/ D fy 2 �X j y 	 xg :

An element x 2 �X is called nearstandard if x 	 x0 for some x0 2 X. The (external)
set of all nearstandard elements in �X is denoted by Ns.�X/, i.e.,

Ns.�X/ D
[
x2X

Mon.x/ :

For x 2 Ns.�X/ we denote by ıx the unique element x0 2 X infinitesimally close
to x, called the standard part or shadow of x.

For the rest of this section .X;TX/ and .Y;TY/ denote some completely regular
topological spaces, whose topologies are induced by some uniformities UX , UY ,
respectively, and �X, �Y are their canonical extensions in a sufficiently saturated
nonstandard universe; more precisely, we assume that our nonstandard universe is
�-saturated for some cardinal � bigger than the cardinalities of some bases of the
uniformities UX , UY .

While the Q-continuity of internal functions f W �X ! �Y is just the �continuity,
their S-continuity can be characterized in the following intuitively appealing way
in the spirit of the original infinitesimal calculus (below, we denote the relations of
infinitesimal nearness on �X, �Y by 	X , 	Y , respectively):

Proposition 15.1 Let f W �X ! �Y be an internal function. Then

(a) f is S-continuous in a point x0 2 �X if and only if

8 x 2 �X W x 	X x0 ) f .x/ 	Y f .x0/ I

(b) f is S-continuous on a set A � �X (i.e., f is S-continuous in every point a 2 A)
if and only if

8 a 2 A 8 x 2 �X W x 	X y ) f .x/ 	Y f .y/ I
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(c) if A � �X is an intersection of admissibly many internal sets, then f is
S-continuous on A if and only if f is uniformly S-continuous on A.

In view of (a) and (b), S-continuity of an internal function f W �X ! �Y can be
alternatively defined as preservation of the relation of infinitesimal nearness by f . In
particular, for the canonic extension �f W �X ! �Y of a standard function f W X ! Y
we have the following criteria (notice the subtle difference between (b) and (c)).

Corollary 15.1 Let f W X ! Y be a function. Then

(a) f is continuous in a point x0 2 X if and only if

8 x 2 �X W x 	X x0 ) �f .x/ 	Y f .x0/ I

(b) f is continuous on a set A � X (i.e., f is continuous in every point a 2 A) if and
only if

8 a 2 A 8 x 2 �X W x 	X a ) �f .x/ 	Y f .a/ I

(c) f is uniformly continuous on a set A � X if and only if

8 x; y 2 �A W x 	X y ) �f .x/ 	Y
�f .y/ :

Notice that under the assumption of (b), �f is Q-continuous on �A, as well.
An internal function f W �X ! �Y is called nearstandard if f .x/ 2 Ns.�Y/ for

each x 2 X. Let us remark that this is indeed equivalent to f be a nearstandard point
in the nonstandard extension ��YX

	
of the Tikhonov product YX D ff j f W X ! Yg.

Any nearstandard function f W �X ! �Y gives rise to a function ıf W X ! Y given by

.ıf /.x/ D ı.f .x// ;

for x 2 X, called the standard part of f . If f is additionally S-continuous on Ns.�X/,
then its standard part can be extended to a map ıf W Ns.�X/ ! Y (denoted in the same
way), such that

ıf .x/ D ıf .ıx/ D ı.f .x//

for any x 2 Ns.�X/. The situation can be depicted by the following commutative
diagram:

Ns.�X/
f�����! Ns.�Y/

ı
??y ??yı

X �����!
ıf

Y
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A function f W �X ! �Y is called NS-continuous if it is S-continuous on Ns.�X/.
Now we have the following supplement to Proposition 15.1 and its Corollary 15.1.

Proposition 15.2 Let f W �X ! �Y be a nearstandard internal function. Then the
following implications hold:

(a) if f is NS-continuous, then its standard part ıf W X ! Y is continuous and
�.ıf /.x/ 	Y f .x/ for x 2 Ns.�X/;

(b) if f is S-continuous on some internal set A � Ns.�X/, then its standard part
ıf W X ! Y is uniformly continuous.

Notice that the function �.ıf / is also Q-continuous. However, even if f were
S-continuous on the whole of �X, the second conclusion in (a) still cannot be
strengthened to �.ıf /.x/ 	Y f .x/ for all x 2 �X.

Proof We will prove just the first statement in (a); then the second statement easily
follows and (b) can be proved in a similar way.

Assume that f is NS-continuous and denote g D ıf W X ! Y its standard part.
In order to prove the continuity of g, pick an arbitrary x0 2 X and V 2 UY . Let
W 2 UY be symmetric, such that W3 D W ı W ı W � V . As f is internal and
NS-continuous, it is also continuous in x0 with respect to the S-topology on �X,
hence there is a U 2 UX such that .x; x0/ 2 �U implies

�
f .x/; f .x0/

	 2 �W for
any x 2 �X. In particular, for x 2 X such that .x; x0/ 2 U, we have g.x/ 	Y f .x/,�
f .x/; f .x0/

	 2 �U, as well as f .x0/ 	Y g.x0/, hence
�
g.x/; g.x0/

	 2 �W3 � �V .
Since g.x/; g.x0/ 2 Y , by transfer principle

�
g.x/; g.x0/

	 2 V .
Let us conclude this section with a remark that the introduced continuity notions

can be easily generalized to tuples of functions fff D .f1; : : : ; fk/W X ! Yk. As well
known, fff has whatever standard continuity property if and only if all the functions
fi have this property. The relation of infinitesimal nearness 	Y can be extended to
�Yk by

y 	Y z , y1 	Y z1 & : : : & yk 	Y zk ;

(similarly, 	X can be extended to �Xp). Then an internal function fff W �X ! �Yk is
nearstandard if and only if all the functions fi are nearstandard; fff has anyone of the
S-continuity properties if and only if all the functions fi have the corresponding
property. If fff is nearstandard, then the k-tuple ıf D �ıf1; : : : ; ıfk

	
of functions

ıfiW X ! Y is called the standard part of fff .

15.4 An Infinitesimal “Almost-Near” Principle for Systems
of General Functional Equations

Let .X;TX/, .Y;TY/ be two completely regular topological spaces with topologies
induced by some uniformities UX , UY , respectively. If there is no danger of
confusion, we omit the subscripts X, Y in the notation of the relations of infinitesimal
nearness 	X , 	Y on �X, �Y , respectively.
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Consider the GFE (15.1) for a k-tuple of functional variables fff D .f1; : : : ; fk/.
Embedding the situation into some nonstandard universe we say that an internal
function fff D .f1; : : : ; fk/W �X ! �Yk, almost satisfies Equation (15.1) on Ns.�X/ if

�eF.fff ˝ �˛̨̨/.xxx/ 	 �eG.fff ˝ �ˇ̌̌/.xxx/

for all xxx D .x1 : : : ; xp/ 2 Ns.�Xp/. Similarly, fff almost satisfies the system of
GFEs (15.2) on Ns.�X/ if it almost satisfies on Ns.�X/ every equation in it. (Notice
that, due to the transfer principle, ��eF	 D e�F, and similarly for G, hence the notation
�eF, �eG is unambiguous.)

Theorem 15.1 Let the mappings FW Yk�m � Xp ! Y, GW Yk�n � Xp ! Y be
continuous in the “matrix” variables yij 2 Y for all i � k and j � m; n, respectively.
If a nearstandard internal function fff D .f1; : : : ; fk/W �X ! �Yk almost satisfies the
GFE (15.1) on Ns.�X/, then its standard part ıf D �ıf1; : : : ; ıfk

	
is a solution of the

GFE (15.1).

Proof Take an arbitrary xxx D .x1; : : : ; xp/ 2 Xp. We have

�eF.fff ˝ �˛̨̨/.xxx/ 	 �eG.fff ˝ �ˇ̌̌/.xxx/ :

As xxx is standard, �˛̨̨.xxx/ D ˛̨̨.xxx/ is standard, as well, hence fi
�
˛j.xxx/

	 	 ıfi
�
˛j.xxx/

	
for

any i � k, j � m, and, as �F is NS-continuous in the matrix variables yij,

�eF.fff ˝ �˛̨̨ /.xxx/ D �F
�
.fff ˝ �˛̨̨ /.xxx/;xxx

	 D �F
�
.fff ˝ ˛̨̨ /.xxx/;xxx

	
	 �F

�
.ıf ˝ ˛̨̨ /.xxx/;xxx

	 D F
�
.ıf ˝ ˛̨̨ /.xxx/;xxx

	 D eF.ıf ˝ ˛̨̨/.xxx/ :

Similarly we can get

�eG.fff ˝ �ˇ̌̌/.xxx/ 	 eG.ıf ˝ ˇ̌̌/.xxx/ :

Therefore,

eF.ıf ˝ ˛̨̨ /.xxx/ 	 eG.ıf ˝ ˇ̌̌/.xxx/ ;

and, as both the expressions are standard,

eF.ıf ˝ ˛̨̨ /.xxx/ D eG.ıf ˝ ˇ̌̌/.xxx/ ;

i.e., ıf is a solution of the GFE (15.1).
From Theorem 15.1 and Proposition 15.2 (b) we readily obtain the following con-

sequence generalizing Theorem 2.2 from [24], dealing just with the homomorphy
equation in topological groups.
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Corollary 15.2 Assume that F, G are continuous in the matrix variables yij. Then
for every nearstandard NS-continuous internal function fff D .f1; : : : ; fk/W �X ! �Yk

which almost satisfies the system of GFEs (15.2) on Ns.�X/, there is a continuous
solution ''' D .'1; : : : ; 'k/ of the system, such that '''.x/ 	 fff .x/ for each x 2 X.

15.5 Stability of Systems of General Functional Equations

In order to formulate a standard version of the just established nonstandard stability
principle, we need to introduce some notions—cf. [24, 30, 31].

Definition 15.1 Let .X;TX/ be a topological space and .Y;UY/ be a uniform
space.

(a) A .TX;UY/ continuity scale is a mapping � W X � B ! TX , such that B is
a base of the uniformity UY and � .x;V/ is a neighborhood of x in .X;TX/,
satisfying

V � W ) � .x;V/ � � .x;W/

for any x 2 X, and V;W 2 B.
(b) Given a continuity scale � W X � B ! TX , a function f W X ! Y is called

� -continuous in a point x0 2 X, or continuous in x0 with respect to � , if

x 2 � .x0;V/ ) �
f .x/; f .x0/

	 2 V

for each x 2 X; f is � -continuous on a set A � X if it is � -continuous in each
point a 2 A; it is � -continuous if it is � -continuous on X.

(c) Given a continuity scale � W X � B ! TX and an entourage U 2 B, a function
f W X ! Y is .�;U/-precontinuous in a point x0 2 X if

x 2 � .x0;V/ ) �
f .x/; f .x0/

	 2 V

for any V 2 B, such that U � V , and each x 2 X; .�;U/-precontinuity on a set
A � X and on X are defined in the obvious way.

(d) If .X;UX/ is a uniform space, too, then a .UX;UY/ uniform continuity scale is
a mapping � WB ! UX such that B is some base of the uniformity UY and

V � W ) � .V/ � � .W/

for any V;W 2 B.
(e) Given a uniform continuity scale � WB ! UX , a function f W X ! Y is uniformly

� -continuous on a set A � X if

.x; y/ 2 � .V/ ) �
f .x/; f .y/

	 2 V
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for any x; y 2 A; f is uniformly � -continuous if it is uniformly � -continuous
on X.

(f) Given a uniform continuity scale � WB ! UX and an entourage U 2 B,
a function f W X ! Y is uniformly .�;U/-precontinuous on a set A � X if

.x; y/ 2 � .V/ ) �
f .x/; f .y/

	 2 V

for any V 2 B, such that U � V and all x; y 2 A; f is uniformly .�;U/-
precontinuous if it is .�;U/-precontinuous on X.

Obviously, if a function f W X ! Y is � -continuous with respect to some
continuity scale � , then it is continuous. Conversely, if f is continuous, then, given
any base B of UY , the assignment

� .x0;V/ D ˚
x 2 X

ˇ̌ �
f .x/; f .x0/

	 2 V
�
;

for x0 2 X, V 2 B, defines a .TX;UY/ continuity scale � W X � B ! TX , and, of
course, f is continuous with respect to it.

The other way round, f is � -continuous if and only if it is .�;U/-precontinuous
for all U 2 B. Thus each particular condition of .�;U/-precontinuity for an
entourage U 2 UY can be regarded as an approximate continuity property. Infor-
mally, f is “almost � -continuous” if it is .�;U/-precontinuous for a “sufficiently
small” U 2 B. The relation between the uniform versions of these notions is similar.

If .X; d/, .Y; e/ are metric spaces, then a .d; e/-continuity scale is just a mapping

 W X � R

C ! R
C such that 
.x; �/ � 
.x; �0/ for any x 2 X, �0 � � > 0. Then a

function f W X ! Y is 
 -continuous in x0 2 X if

d.x; x0/ < 
.x0; �/ ) e
�
f .x/; f .x0/

	
< �

for all � > 0 and x 2 X. A uniform .d; e/-continuity scale is an isotone mapping

 WRC ! R

C. A function f W X ! Y is uniformly 
 -continuous if

d.x; y/ < 
.�/ ) e
�
f .x/; f .y/

	
< �

for all � > 0 and x; y 2 X.

Definition 15.2 Let X, Y be arbitrary sets.

(a) A bounding relation from X to Y is any binary relation R � X � Y such that all
its stalks RŒx� D fy 2 Y j .x; y/ 2 Rg, for x 2 X, are nonempty.

(b) Given a bounding relation R � X � Y , a function f W X ! Y is R-bounded on a
set A � X if f .a/ 2 RŒa� for each a 2 A; f is R-bounded if it is R-bounded on X,
i.e., if f � R.

(c) A bounding relation R � X�Y is stalkwise finite if all its stalks RŒx� are finite. If,
additionally, .Y;TY/ is a topological space, then R is called stalkwise compact
if all its stalks RŒx� are compact.
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Definition 15.3 Let X be any set, .Y;UY/ be a uniform space and V 2 UY .

(a) Two functions f ; gW X ! Y are V-close on a set A � X if
�
f .a/; g.a/

	 2 V for
all a 2 A.

(b) A k-tuple fff D .f1; : : : ; fk/ of functions fiW X ! Y is a V-solution of the
GFE (15.1) on a set S � Xp if

�eF.fff ˝ ˛̨̨ /.xxx/; eG.fff ˝ ˇ̌̌/.xxx/
	 2 V

for all xxx 2 S; fff is a V-solution the GFE (15.1) on a set A � X if it is its V-
solution on Ap; fff is a V-solution of the system of GFEs (15.2) on A � X if it is
a V-solution of every equation in the system on A.

For brevity’s sake we say that a function fff D .f1; : : : ; fk/W X ! Yk has any of
the just introduced � -continuity properties if and only if each particular function fi
has the corresponding property. Similarly, fff is R-bounded (on a set A � X) if and
only each function fi is R-bounded. We say that two such functions fff ;gggW X ! Yk are
V-close on A � X if fi, gi are V-close on A for each i � k.

The system of all nonempty compact sets of a topological space .X;TX/ is
denoted by K .X/.

Theorem 15.2 Let .X;TX/ be a locally compact topological space, .Y;UY/ be a
uniform space, � W X � B ! TX be a .TX;UY/ continuity scale, and R � X � Y be
a stalkwise compact bounding relation. Assume that all the functional coefficients
F�W Yk�m� � Xp� ! Y, G�W Yk�n� � Xp� ! Y in the system of GFEs (15.2) are
continuous in the matrix variables yij. Then for each pair D 2 K .X/, V 2 UY there
exists a pair C 2 K .X/, U 2 UY such that D � C and the following implication
holds true:

If a U-solution fff D .f1; : : : ; fk/W X ! Yk of the system (15.2) on C is both .�;U/-
precontinuous and R-bounded on C, then there exists a continuous solution ''' D
.'1; : : : ; 'k/ of the system, such that fff , ''' are V-close on D.

Proof Let .X;TX/, .Y;UY/, � W X � B ! TX , R � X � Y , as well as the system
of GFEs (15.2) satisfy the assumptions of the theorem. Then .X;TX/ is completely
regular, as well, hence its topology is induced by some uniformity UX . Admit, in
order to obtain a contradiction, that there is a pair D 2 K .X/, V 2 UY for which the
conclusion of the theorem fails. For each pair C 2 K .X/, U 2 B such that C � D
we denote by F .C;U/ the set of all U-solutions fff D .f1; : : : ; fk/W X ! Yk of the
system of GFEs (15.2) on C which are both .�;U/-precontinuous and R-bounded on
C, nonetheless, fff is not V-close on D to any continuous solution''' D .'1; : : : ; 'k/ of
the system (15.2). According to our assumption, all the sets F .C;U/ are nonempty,
and, for all C;C0 2 K .X/, U;U0 2 B, we obviously have

D � C � C0 & U0 � U ) F .C0;U0/ � F .C;U/ :

Let us embed the situation into a sufficiently saturated nonstandard universe.
More precisely, we assume that it is �-saturated for some uncountable cardinal �
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such that cardB < �, as well as cardC < � for some cofinal subset C � K .X/
such that D � C for each C 2 C . Then\

C2C ;U2B
�F .C;U/ ¤ ; :

Let fff D .f1; : : : ; fk/ belong to this intersection. Then fff W �X ! �Yk is an internal
function, for all U 2 UY , C 2 C , fff is �.�;U/-precontinuous and �R-bounded on �C
and it satisfies

��eF�.fff ˝ �˛̨̨�/.xxx/; �eG�.fff ˝ �ˇ̌̌�/.xxx/
	 2 �U

for any � 2 � and xxx 2 �Cp� . Since X is locally compact, Ns.�X/ D S
C2C �C.

It follows that fff is NS-continuous and almost satisfies the system (15.2) on Ns.�X/.
Finally, fff .x/ 2 ��RŒx�

	k
for any C 2 C and x 2 �C. As RŒx� is compact for x 2 X, in

that case we have fff .x/ 2 ��RŒx�
	k � Ns

��Yk
	
. Thus fff is nearstandard. According to

Corollary 15.2, there is a continuous solution ''' D .'1; : : : ; 'k/ of the system (15.2),
such that fff .x/ 	 '''.x/ each x 2 X. On the other hand, �''' is Q-continuous (i.e.,
�continuous), hence fff and �''' cannot be �V-close on �D. Thus there are an i � k and
an x 2 �D such that

�
fi.x/; �'i.x/

	 … �V . However, as D is compact, �D � Ns.�X/.
Since both fi and �'i are NS-continuous, taking an x0 2 X such that x 	 x0, we
obtain

�'i.x/ 	 'i.x0/ 	 fi.x0/ 	 fi.x/ ;

i.e., a contradiction.
Like in Theorem 15.2, we assume in the next three Corollaries that all the

mappings F�, G� in the system of GFEs (15.2) are continuous in the matrix
variables yij (but, for brevity’s sake, we do not mention that explicitly). In the fourth
Corollary 15.6 this assumption is superfluous as it is satisfied automatically.

If .Y;UY/ is compact, then R D X � Y is a stalkwise compact bounding relation
such that every function fff W X ! Yk is R-bounded. This makes possible to avoid
mentioning any bounding relation in the formulation of Theorem 15.2.

Corollary 15.3 Let .X;TX/ be a locally compact topological space, .Y;UY/ be a
compact uniform space, and � W X �B ! TX be a .TX;UY/ continuity scale. Then
for each pair D 2 K .X/, V 2 UY there is a pair C 2 K .X/, U 2 UY such that
D � C and the following implication holds true:

If a U-solution fff D .f1; : : : ; fk/W X ! Yk of the system of GFEs (15.2) on C is
.�;U/-precontinuous on C, then there exists a continuous solution''' D .'1; : : : ; 'k/

of the system, such that fff , ''' are V-close on D.
If .X;TX/ is compact, then its topology is induced by a unique uniformity UX

and, at the same time, it is enough to control the continuity of functions fff W X ! Yk

by means of a uniform continuity scale. Choosing D D X we get the following
global version of Theorem 15.2.
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Corollary 15.4 Let .X;UX/ be a compact and .Y;UY/ be an arbitrary uniform
space, � WB ! UX be a .UX;UY/ uniform continuity scale and R � X � Y be a
stalkwise compact bounding relation. Then for each V 2 UY there is a U 2 UY such
that the following implication holds true:

If fff D .f1; : : : ; fk/W X ! Yk is a uniformly .�;U/-precontinuous and R-bounded
U-solution of the system of GFEs (15.2), then there exists a (uniformly) continuous
solution ''' D .'1; : : : ; 'k/ of the system, such that fff , ''' are V-close on X.

Under the assumptions of both Corollaries 15.3 and 15.4 we have

Corollary 15.5 Let .X;UX/, .Y;UY/ be compact uniform spaces and � WB ! UX

be a .UX;UY/ uniform continuity scale. Then for each V 2 UY there is a U 2 UY

such that the following implication holds true:
If fff D .f1; : : : ; fk/W X ! Yk is a uniformly .�;U/-precontinuous U-solution of

the system of GFEs (15.2), then there exists a (uniformly) continuous solution ''' D
.'1; : : : ; 'k/ of the system, such that fff , ''' are V-close on X.

The interested reader can easily formulate the metric versions of Theorem 15.2,
as well as of Corollaries 15.3–15.5.

Endowing both the sets X, Y with discrete topologies (uniformities), all the
functions X ! Y become (uniformly) continuous. Then compact subsets of X are
just the finite ones and, similarly, a stalkwise compact bounding relation R � X � Y
is a stalkwise finite one. In that case, choosing U D IdY in Theorem 15.2, we obtain
the following result on extendability of functions satisfying a system of GFEs (15.2)
on some finite set to its (global) solutions.

Corollary 15.6 Let X and Y be arbitrary sets and R � X � Y be a stalkwise finite
bounding relation. Then for each finite set D � X there is a finite set C � X such
that D � C and for every R-bounded partial solution fff D .f1; : : : ; fk/W X ! Yk

of the system of GFEs (15.2) on C there exists a solution ''' D .'1; : : : ; 'k/ of the
system, such that '''.x/ D fff .x/ for all x 2 D.

If the arity numbers p� in the system of GFEs (15.2) have a common upper
bound p, then all the particular equations in the system can be considered as being
of types .k;m�; n�; p/. In such a case, given a U 2 UY , we say that a function fff W X !
Yk is a U-solution of the system (15.2) on a set S � Xp if it is a U-solution of each
its particular equation on S. Then we have the following variant of Theorem 15.2.
Its proof can be obtained by slight modifications of the proof of Theorem 15.2 and
is left to the reader.

Theorem 15.3 Let .X;TX/ be any topological space, .Y;UY/ be a uniform space,
� W X � B ! TX be a .TX;UY/ continuity scale, and R � X � Yk be a
stalkwise compact bounding relation. Assume that all the equations in the system
of GFEs (15.2) have the same arity p� D p, S is a locally compact subspace of Xp

and each of the maps F�W Yk�m� � Xp ! Y, G�W Yk�n� � Xp ! Y is continuous in
the matrix variables yij. Then for each pair D 2 K .X/, V 2 UY , such that Dp � S,
there is a triple C 2 K .X/, K 2 K

�
Xp
	
, U 2 UY , such that D � C, Dp � K � S

and the following implication holds true:



350 P. Zlatoš

If a U-solution fff D .f1; : : : ; fk/W X ! Yk of the system (15.2) on K is both .�;U/-
precontinuous and R-bounded on C, then there exists a continuous solution ''' D
.'1; : : : ; 'k/ of the system on S, such that fff , ''' are V-close on D.

Formulation of the corresponding modified versions of Corollaries 15.3–15.6 is
left to the reader, as well.

Comparing the “local” stability Theorems 15.2, 15.3 and Corollaries 15.3, 15.6
with “global” Corollaries 15.4, 15.5 and other global stability results we see that
while global stability deals with approximation of functions fff D .f1; : : : ; fk/W X !
Yk by continuous solutions ''' D .'1; : : : 'k/ of the given (system of) functional
equation(s) on the whole space X, local stability deals with approximate extension
(and if Y is discrete, then right by extension) of restrictions fff �D D .f1�D; : : : ; fk �
D/ of such functions to some (in the present setting compact) subset D � X to
continuous solutions of the (system of) functional equation(s).

The interested reader can find a brief discussion of the role of nonstandard
analysis in establishing our results as well of the possibility to replace it by some
standard methods in the final part of [24].

Final Remark The general form of functional equations introduced in Section 15.1
was designed with the aim to prove the stability Theorems 15.2, 15.3 for all of them
in a uniform way. I expected that in order to achieve this goal it will be necessary to
assume that all the functional coefficients F�, G�, ˛̨̨�, ˇ̌̌� are continuous (in all their
variables). Having succeeded just with the continuity of F� and G� in the “matrix”
variables yij 2 Y , only, without requiring their continuity in the remaining variables
xi 2 X, and, at the same time, without any continuity assumption on the tuples of
operations ˛̨̨�, ˇ̌̌�, was then a true surprise for me.

A revision of the results established in [24, 25, 29–31] from such a point of
view reveals that in most of them some continuity assumptions can be omitted.
For instance, Theorem 3 from [30] (as well as Theorem 2.6 from [24]) on stability
of continuous homomorphisms from a locally compact topological group G into
any topological group H remains true without assuming that G is a topological
group. It suffices that G be both a group and a locally compact topological space.
Similarly, Theorem 3.1 from [31] on stability of continuous homomorphisms from
a locally compact topological algebra A into a completely regular topological
algebra B remains true for any universal algebra A endowed with a locally compact
(Hausdorff) topology, without assuming continuity of the operations in A.

Theorems 15.2, 15.3 also show that both the above-mentioned results admit
a generalization in yet another direction, for the former one stated already in
Theorem 2.6 in [24]. Namely for a mapping f W G ! H or f W A ! B in order
to be close to a continuous homomorphism it is not necessary to assume that it
is � -continuous with respect to the given continuity scale � (as both the above-
mentioned theorems in [30] and [31] do); it is enough that f be .�;U/-precontinuous
for a sufficiently small entourage U.

On the other hand, as shown by several counterexamples in [25] and [30], even
in those weaker results one cannot manage without the control of the examined
functions by means of some continuity scale and a stalkwise compact bounding
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relation. The more interesting are then the stability results not requiring the
continuity scale and/or the bounding relation in their formulation. This is, e.g.,
the case of the global stability result for homomorphisms from amenable groups
into the group of unitary operators on a Hilbert space in [16] (covering many more
specific results proved both before and afterwards), as well as of the local stability
result for homomorphisms from amenable groups into the unit circle T in [30].

Acknowledgements Research supported by grants no. 1/0608/13 and 1/0333/17 of the Slovak
grant agency VEGA.
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18. Mačaj, M., Zlatoš, P.: Approximate extension of partial �-characters of abelian groups to
characters with application to integral point lattices. Indag. Math. 16, 237–250 (2005)

19. Mauldin, R.D.: The Scottish Book. Birkhäuser Verlag, Boston (1981)
20. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc.

72, 297–300 (1978)
21. Rassias, T.M.: On the stability of functional equations and a problem of Ulam. Acta Appl.

Math. 62, 23–130 (2000)



352 P. Zlatoš

22. Rassias, T.M. (ed.): Functional Equations and Inequalities. Mathematics and Its Applications,
vol. 518. Kluwer Academic Publishers, Dordrecht (2000)

23. Robinson A.: Non-Standard Analysis (revised edn.). Princeton University Press, Princeton
(1996)

24. Sládek, F., Zlatoš, P.: A local stability principle for continuous group homomorphisms in
nonstandard setting. Aequationes Math. 89, 991–1001 (2015)

25. Špakula, J., Zlatoš, P.: Almost homomorphisms of compact groups. Ill. J. Math. 48, 1183–1189
(2004)

26. Székelyhidi, L.: Ulam’s problem, Hyers’s solution — and where they led. In: Rassias, T.M.
(ed.) Functional Equations and Inequalities. Mathematics and Its Applications, vol. 518,
pp. 259–285. Kluwer, Dordrecht (2000)

27. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publications, New York
(1961)

28. Ulam, S.M.: Problems in Modern Mathematics. Wiley, New York (1964)
29. Zlatoš, P.: Stability of homomorphisms between compact algebras. Acta Univ. M. Belii. Ser.

Math. 15, 73–78 (2009)
30. Zlatoš, P.: Stability of group homomorphisms in the compact-open topology. J. Log. Anal. 2:3,

1–15 (2010)
31. Zlatoš, P.: Stability of homomorphisms in the compact-open topology. Algebra Univers. 64,

203–212 (2010)


	Preface
	Contents
	List of Contributors
	1 The Behavior of the Difference Between Two Means
	1.1 Introduction
	1.2 The Behavior of Mp( x1,x2) -Wq(x1,x2)
	1.3 Inequalities for Quasi-Arithmetic Means and Subquadracity
	References

	2 Isometric Approximation in Bounded Sets and Its Applications
	2.1 Introduction
	2.2 Isometric Approximation in Bounded Sets
	2.3 From Approximation to Bilipschitz Extension
	2.4 From Approximation to Quasisymmetric Extension
	References

	3 On the Indicator Plurality Function
	3.1 Introduction
	3.2 The Plurality Function and the Indicator Plurality Function
	3.3 On the Functions Which Are Consistent
	3.4 Construction of All m-Elements Consistent System
	3.5 On the Multifunctions Related to the Plurality Function
	References

	4 The Translation Equation in the Ring of Formal Power Series Over C and Formal Functional Equations
	4.1 Introduction
	4.1.1 The Embedding Problem
	4.1.2 The Ring of Formal Power Series with Complex Coefficients
	4.1.3 Iteration Groups
	4.1.4 The Main Problems

	4.2 First Classification of Iteration Groups
	4.2.1 Systems of Functional Equations for the Coefficient Functions
	4.2.2 Formal Functional Equations
	4.2.3 Differential Equations Obtained from the Translation Equation
	4.2.4 The Relevance of Aczél–Jabotinsky Differential Equations
	4.2.5 Reordering the Summands

	4.3 Solving the Translation Equation by a Purely Algebraic Differentiation Process
	4.3.1 Formal Iteration Groups of Type I Obtained from (PDform,I) and (B,I)
	4.3.2 Formal Iteration Groups of Type I Obtained from (Dform,I) and (B,I)
	4.3.3 Formal Iteration Groups of Type I Obtained from (AJform,I) and (B,I)
	4.3.4 Normal Forms of Iteration Groups of Type I
	4.3.5 Formal Iteration Groups of Type (II,k)  Obtained from the Three Differential Equations
	4.3.6 Normal Forms of Iteration Groups of Type (II,k) 

	4.4 Concluding Remarks and Open Problems
	References

	5 Fischer–Muszély Additivity: A Half Century Story
	5.1 Background
	5.2 Fischer–Muszély Equation
	5.3 General Solution
	5.3.1 Preliminary Results
	5.3.2 Main Result
	5.3.3 Derivation of Earlier Results

	5.4 The Hierarchy of (Non)Commutativity
	5.5 Pexiderization
	5.5.1 Solutions Admitting Zeros
	5.5.2 Basic Equation and Additivity
	5.5.3 Solutions with Values in Inner Product Spaces

	5.6 Inequality Case
	5.7 Stability
	References

	6 Alien Functional Equations: A Selective Survey of Results
	6.1 Introduction
	6.2 Extension of Dhombres's Results
	6.2.1 Even Solutions
	6.2.2 A Generalized Ring Homomorphisms Equation
	6.2.3 The Alienation of Additivity and Exponentiality
	6.2.3.1 Some Lemmas
	6.2.3.2 Main Results
	6.2.3.3 Quadratic Equivalence and the Crucial Result

	6.2.4 Alienation of Additive and Logarithmic Equations

	6.3 Functional Equations Stemming from Actuarial Mathematics
	6.3.1 Positive Results on Alienation of Hosszú and Other Cauchy Equations
	6.3.2 Alienation of Hosszú and Exponential Equations

	6.4 Further Developments
	6.4.1 Alienation of Exponential and Logarithmic Cauchy Equations
	6.4.2 The Alienation Phenomenon and Associative Rational Operations
	6.4.3 Alienation of Cauchy and Leibniz Equations
	6.4.4 Exponential, Jensen and d'Alembert Equations
	6.4.4.1 Exponential and Jensen Equations
	6.4.4.2 Jensen and d'Alembert's Equations
	6.4.4.3 Exponential and d'Alembert's Equations

	6.4.5 Trigonometric Equations
	6.4.6 Cauchy, Jensen and Lagrange Equations

	6.5 Inequalities
	6.5.1 Stability
	6.5.2 More Inequalities

	References

	7 Remarks on Analogies Between Haar Meager Sets and Haar Null Sets
	7.1 Introduction
	7.2 Basic Similarities
	7.3 Generically Haar Meager Sets and Generically Haar Null Sets
	7.4 Analogies in Functional Equations
	7.5 Modified Darji's and Christensen's Definitions
	References

	8 On Some Inequalities Inspired by the Stabilityof Dynamical System
	8.1 Introduction
	8.2 Stability
	8.2.1 Remarks

	8.3 b-Stability
	8.4 Inverse Stability
	8.5 Inverse b-Stability
	8.6 Absolute Stability
	References

	9 Homomorphisms from Functional Equations in Probability
	9.1 Introduction
	9.2 From Beurling via Goldie to Gołąb–Schinzel
	9.2.1 The Goldie Equation
	9.2.2 The Disguised GS
	9.2.3 Popa (Circle) Operation: Basics
	9.2.4 Creating Homomorphisms
	9.2.5 Beck Sequences, Integration, and Flows
	9.2.6 Beurling's Tauberian Theorem

	9.3 Beurling Kernels
	9.3.1 Asymptotics
	9.3.2 Some “Advanced” Popa Theory: Quantifier Weakening
	9.3.3 Random Walks with Stable Laws: GFE Again

	9.4 The Stable Laws Equation on R
	9.5 Positive Solutions of GS
	9.6 Two Random Walks in R3
	9.7 Complements
	References

	10 Recent Developments in the Translation Equationand Its Stability
	10.1 Introduction
	10.2 Recent Advances in the Problem of Embeddability in Iteration Groups: Embeddability of Homeomorphisms of the Circle in Set-Valued Iteration Groups
	10.3 Recent Advances in the Subject of Iterative Roots: Conjugacy Between Piecewise Monotonic Functions and Their Iterative Roots
	10.4 Different Definitions of Stability of the Translation Equation
	10.5 Stability of Dynamical Systems
	10.6 Approximate Continuous Solutions of the Translation Equation
	References

	11 On Some Recent Applications of Stochastic Convex Ordering Theorems to Some Functional Inequalities for Convex Functions: A Survey
	11.1 Introduction
	11.2 Some Generalizations of the Hermite–Hadamard Inequality
	11.3 Inequalities of the Hermite–Hadamard Type Involving Numerical Differentiation Formulas of the First Order
	11.4 Inequalities of the Hermite–Hadamard Type Involving Numerical Differentiation Formulas of Order Two
	11.5 The Hermite–Hadamard Type Inequalities for n-th Order Convex Functions
	References

	12 On the Construction of the Field of Reals by Means of Functional Equations and Their Stability and Related Topics
	12.1 Introduction
	12.2 Two Constructions of the Reals and the Interplay Between Them
	12.2.1 Schönhage
	12.2.2 A'Campo et al.
	12.2.3 Synthesis

	12.3 Stability and Completeness
	12.4 A Construction Method for the Completion of a Normed Space
	References

	13 Generalized Dhombres Functional Equation
	13.1 Introduction
	13.2 Equation with Arbitrary Continuous φ
	13.3 Monotone Solutions with φ an Increasing Homeomorphism
	13.4 Non-monotone Solutions with φ an Increasing Homeomorphism
	13.5 Periodic Points in the Range of Regular Solutions
	References

	14 Functional Equations and Stability Problems on Hypergroups
	14.1 Basics on Hypergroups
	14.2 Functional Equations
	14.3 The Measure Algebra
	14.4 Exponential Polynomials
	14.5 Polynomial Hypergroups
	14.6 Stability of Additive Functions
	14.7 Stability of Exponential Functions
	14.8 Double Coset Hypergroups
	14.9 Superstability of Generalized Moment Functions
	14.10 Stability Problems of Other Functional Equations
	References

	15 Stability of Systems of General Functional Equations in the Compact-Open Topology
	15.1 Introduction
	15.2 General Form of Functional Equations
	15.3 Infinitesimal Nearness and S-Continuity
	15.4 An Infinitesimal ``Almost-Near'' Principle for Systems of General Functional Equations
	15.5 Stability of Systems of General Functional Equations
	References




