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Abstract Advances in computing technologies allow machine learning algorithms 
to automatically, repeatedly and quickly apply complex mathematical calculations 
to water resources and environmental security challenges. The concomitant increase 
in “big data” research, development, and applications is also driving the popularity 
of real-time automated model building and data mining for these security problems 
under conditions of climate change. The last decade has seen considerable growth 
in the theory and application in Artificial Intelligence (AI). It is shown that machine 
learning, a subset of AI, constitutes a data analysis method that focuses on the devel-
opment of algorithms that can iteratively learn from data to uncover previously 
“hidden insights” for environmental security managers in the Asia Pacific. It is con-
cluded that deep machine learning (i.e. deep learning) can help to reduce losses to 
ecosystems, livelihoods, and businesses. In particular, these losses can be more 
likely prevented and minimized through the use of data and algorithmic modeling 
that improves community resilience by institutionalizing sustainable hazard mitiga-
tion within accepted processes of water resources community planning and eco-
nomic development before disasters happen. Key environmental threats including 
foods, population extinction, water quality and climate change are considered. The 
difference between the algorithmic modeling and data modeling cultures are sum-
marized with reference to the schools in which they originate, the assumptions they 
work on, the type of data they deal with, and the techniques used.
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1  Introduction

The last decade has seen considerable growth in the theory and application in 
Artificial Intelligence (AI). Machine learning is a type of AI in which an algorithm 
(i.e. a “machine” comprised of equations and matrices) analyzes data (without being 
limited to a particular representation of data) in order to learn a model and look for 
patterns. In this way, the algorithm both learns from and makes predictions on data, 
without explicitly relying on rules-based programming. In the broadest sense, these 
fields aim to ‘learn valuable information’ about the environment within which the 
system operates. In other words, machine learning constitutes a data analysis 
method that focuses on the development of algorithms that iteratively learn from 
data to uncover previously “hidden insights”. As these models are exposed to new 
data they are able to independently adapt and learn from previous computations, 
historical relationships and data trends to “produce reliable, repeatable decisions 
and results” (SAS 2016). In this way, machine learning automates the analytical 
model building process. By training a machine learning model with existing data 
(model training) one fits the model parameters.

Resurging interest in machine learning is due to a number of factors. First, there 
has been an exponential growth in the volumes and varieties of available data (i.e. 
the ubiquity of big data in every field). Computers are storing terabytes of data 
which are now generated at an unprecedented rate from many sources (including 
telescopes scanning the skies, sensors collecting pollution and natural resources 
data, social media feeds, industrial quality control data, and information about the 
commercial preferences of consumers). Second, there is an urgent need to automate 
the analysis and comprehension of the data. Physicians must scan thousands of 
images in search of tumors, astronomers attempt to recognize novel objects based 
on planetary and stellar images stored on tape or disk while geneticists study micro- 
array data to understand genetic effects. Third, the data is more publically available 
due to the rise in the open-source and open-content movements (from crowd- 
sourcing to open-source policy and governance). Fourth, there has been a rise in 
cheaper and more powerful computational processing, together with less expensive 
data storage. Advances in computing technologies provide modern machine learn-
ing algorithms with the ability to automatically, repeatedly and quickly apply com-
plex mathematical calculations. Fifth, the concomitant increase in “big data” 
research, development, applications and its intelligence is also driving the popular-
ity of real-time automated model building and data mining.

Machine learning provides environmental security managers in the Asia Pacific 
with the ability to perform real-time optimization (based on the environmental data-
sets available) as the programs can teach themselves to learn, look for patterns and 
make predictions. In deep machine learning (i.e. deep learning), hierarchical repre-
sentations of the observational data are calculated, where the higher-level features 
are defined from lower-level ones using multiple information processing stages 
(Schmidhuber 2015). Machine learning approaches now are capable of quickly and 
automatically (without human intervention) producing realistic models, analyzing 
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complex datasets and delivering high-value predictions to accurately guide deci-
sions – even on a very large scale. Recent years have seen many widely publicized 
examples of machine learning applications including image processing (e.g. the 
detection of tumors in x-rays and endangered marine species in the environment), 
self-driving vehicles, online recommendation offers (e.g. offers provided by 
Amazon and Netflix), and fraud detection.

Algorithms have been developed to process large, complex datasets and to deal 
with the uncertainty in the gathered high dimensional data. They can also be used as 
a more accurate and informative alternative to data modeling on smaller data sets 
(Breiman 2003). In the early stages of research in machine learning and related 
areas, similar techniques were discovered in relatively isolated academic silos, but 
there is now a broader collaboration among various research communities. The 
machine learning paradigm is anticipated to become even more pervasive and dis-
ruptive than the previous technologic waves of personal computing, the internet and 
mobile smartphones. In the early stages of research in machine learning and related 
areas, advances were carried out in relatively isolated academic silos, but there is 
now a broader collaboration among various research communities. The machine 
learning (ML) paradigm is anticipated to become even more pervasive and disrup-
tive than the previous technologic waves of personal computing, the internet and 
mobile smartphones.

Sometimes conflated with the data mining subfield (which focuses more on 
exploratory data analysis), the main two subfields of machine learning are super-
vised learning and unsupervised learning. In supervised learning, a machine learn-
ing algorithm is trained using a “training dataset” (i.e. prototypical/representative/
exemplar situations for which the desired output is known). “Validation data” (not 
encountered during training) is then used to test the algorithm’s ability to predict the 
output. Here, the focus is on accurate prediction and the “generalization perfor-
mance” of a method to previously unseen data, i.e. the method ‘generalizes’ to this 
unseen data.

On the other hand, in unsupervised learning the aim is to find accurate and dense 
(compressed) data descriptions. Conceptually, there are two sources of data for 
model training and evaluation: test data and training data. The training data (only) 
is used to set and adjust the model parameters. Note that if the test data was used to 
parameterize the model there would no longer be an independent evaluation of 
model performance. An unbiased estimate of this “generalization performance” can 
be obtained by measuring the test data performance of the trained model. However, 
the test data must be generated from the same underlying process that generated the 
training data. While the Bayesian statistical approach is not the only paradigm for 
describing machine learning and information processing, it is often convenient to 
consider the process of machine learning as updating (learning) the prior and poste-
rior distributions as new data arrives. The more data that is input into algorithms the 
better the resulting predictions and decisions. However, the increased reliance and 
pace of machine learning advances bring new challenges. For example, the training 
data in machine learning applications use historic data to predict future trends and 
needs, providing old answers to new questions. This so called “algorithmic 
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 determinism” problem tends to reinforce prior biases, reproduce established pat-
terns of behavior, and deepen social divisions.

The foundation of the scientific process involves working with data and checking 
theory against data. While in many situations data models are the most appropriate 
approach to solve an environmental security problem, the field of statistics has dis-
played an unjustified vested interest in data models, even given large quantities of 
error-filled data (Dempster 1998; Breiman 2003). In order to remain a relevant and 
creative field, the environmental security community must reach out to other disci-
plines for collaborative work and apply tools to solve real world problems (rather 
than focus on the type of data model that can be created). While the best solution 
could be a combination of an algorithmic model and a data model (or maybe either 
in isolation) scientific rigor requires being open to the use a wide variety of tools. 
Algorithmic modeling and data modeling use different names for similar concepts 
as shown in Table 1.

2  A Tale of Two Paradigms for Modeling Security 
Challenges in the Asia-Pacific

When analyzing data, statistics is used to achieve two goals: prediction and infer-
ence: Inferential statistical analysis includes testing hypotheses and deriving esti-
mates to infer properties about a population and obtain information about the 
underlying data mechanism. There are two paradigms in the statistical modeling 
community:

• Generative modeling culture which uses statistical data models (data modeling) 
and

• Predictive modeling culture which uses algorithms (algorithmic modeling).

Table 1 Concepts pertaining to algorithmic modeling and data modeling

Algorithmic modeling Data modeling

Artificial intelligence/machine learning/
computational statistics/statistical learning/
computational intelligence/soft computing

Statistical modeling

Training, learning and automation Fitting
Supervised learning Regression/classification
Networks, graphs
Deep learning (hierarchical representations and 
Hyperparameters)

Model

Weights Parameters (numerical characteristic of 
a population)

Data mining algorithm, machine learning algorithm Predictive modeling
Generalization Test set performance
Unsupervised learning/data mining Exploratory analysis, density 

estimation, clustering
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The selection of either data modeling or algorithmic modeling must be justified 
based on the nature of the problem and on the data. Statistical data models, over-
whelmingly favored by the statistical community, assumes that a given stochastic 
data model generates the data (“generative modeling”). Data modeling involves 
developing stochastic models which fit the data and then making inferences about 
the data-generating mechanism to deduce properties of the underlying distribution. 
Breiman (2003) notes the over-reliance of the statistical community on data models 
to the exclusion of a more diverse set of tools. This has resulted in a number of 
shortcomings in the statistical community: the inability to solve some of the most 
complex, interesting and important contemporary problems.

On the other hand, the theory of algorithms prioritizes prediction (the goal of 
modeling is predictive accuracy) and assumes the data generation mechanism to be 
unknown. Accordingly, data models are rarely used in the algorithmic community. 
While industrial statisticians have used algorithmic modeling for decades (Daniel 
and Wood 1971) there is little work in statistics that focuses on predictive modeling. 
As an exception Grace Wahba’s smoothing spline algorithm research is built on 
reproducing kernels in Hilbert Space (Wahba 1990). Machine learning approaches 
have also made significant impacts in the interdisciplinary field of bioinformatics by 
facilitating discoveries in genomics and proteomics. Zhang and Singer (1999) 
applied recursive partitioning in the health sciences.

Beginning in the mid-1980s, important new machine learning algorithms for 
data fitting became available including neural nets and decision trees. A burgeoning 
predictive modeling community began using the new algorithmic modeling tools to 
solve complex prediction problems that are less applicable to data models: self- 
driving vehicles, speech recognition, image recognition, nonlinear time series pre-
diction, handwriting recognition, and prediction in financial markets. The “black 
box” theory of the algorithmic approach observes a set of inputs (X1, X2, …,Xn), a set 
of outputs (Y1, Y2, …,Yn) and seeks to find an algorithm (fx) that will be a good pre-
dictor of (Y1, Y2, …,Yn) in the test set. One assumption made in the theory of algo-
rithms is that the data (X1, X2, …,Xn) is drawn independent and identically distributed 
(iid) from an unknown multivariate distribution. The “strength” of fx as a predictor 
provides their predictive accuracy. In the case of iterative algorithms, convergence 
is desired (i.e. candidate solutions for each iteration tend to get closer and closer to 
the desired solution). For example, in their work on Classification and Regression 
Trees (CART), Breiman et al. (1984) demonstrates the asymptotic convergence of 
the CART algorithm to the Bayes risk by letting the trees grow as the sample size 
increases. Vladimir Vapnik’s support vector machines – based on the construction 
informative bounds on the generalization error (infinite test set error) of classifica-
tion algorithms—have proved to be more accurate predictors in classification and 
regression then neural nets (Vapnik 1995, 1998). Since the mid-1980s advances in 
the methodology of machine learning approaches has been explosive, together with 
concomitant increases in predictive accuracy.

The field of environmental security is witnessing an inflection point in which arti-
ficial intelligence (AI) becomes the next technologic shift: in many environmental 
security fields AI paradigms are replacing data modeling approaches in general and 
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statistical models in particular. Environmental managers can leverage AI technology 
in multiple ways when searching for environmental patterns. Within the data analyt-
ics field, AI focuses on making predictions (known as predictive analytics in com-
mercial settings). While machine learning makes fewer assumptions than statistical 
modeling there is not a clear dichotomy between the two approaches. Key lessons in 
the development of algorithmic models are discussed by Breiman (2003): the multi-
plicity of good models (Rashomonic effect), the conflict between simplicity and 
accuracy (Occam’s razor) and the curse (or blessing) of dimensionality (Bellman).

3  Stochastic Water Modeling in the Asia-Pacific Region: 
Climate Change, Environmental Quality and Extinction 
Risk

Water-related problems are particularly acute in Asia. Although Asia is home to 
more than half of the world’s population, it has less freshwater—3920 cubic meters 
per person per year—than any continent other than Antarctica. Almost two-thirds of 
global population growth is occurring in Asia, where the population is expected to 
increase by nearly 500 million people within the next 10 years. Asia’s rural popula-
tion will remain almost the same between now and 2025, but the urban population 
is likely to increase by a staggering 60%. As population growth and urbanization 
rates in Asia rise rapidly, stress on the region’s water resources is intensifying. 
Climate change is expected to worsen the situation significantly. Experts agree that 
reduced access to freshwater will lead to a cascading set of consequences, including 
impaired food production, the loss of livelihood security, large-scale migration 
within and across borders, and increased economic and geopolitical tensions and 
instabilities. Over time, these effects will have a profound impact on security 
throughout the region (DeRusha et al. 2017).

Southeast Asian countries such as Cambodia which border the Mekong River are 
extremely vulnerable to flooding. In the last decade, Cambodia has halved its pov-
erty rate and improved the living conditions of its population. However, because of 
extreme climate events that regularly descend on the country, Cambodia remains 
one of the most disaster-vulnerable countries in Southeast Asia. In 2013 alone, 
losses caused by floods added up to USD $356 million. However, disasters and cli-
mate change also present an opportunity to promote what the United Nations 
Development Program (UNDP) refers to as “risk-informed development” (UNDP 
2015). Communities affected by climate disasters learn to work together to create 
effective, multi-disciplinary approaches to respond to and recover from disasters as 
well as promote disaster risk reduction.

In 2013, a combination of heavy rains and the swelling of the Mekong River 
caused widespread damage to infrastructure and crops, the death of 168 people, 
most of them children, and devastation to 20 provinces. Following the floods, the 
Cambodian government requested that UNDP work with various partners to carry 
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out a post flood early recover needs assessment. Drawing on the expertise of 
UNDP’s country office, as well as the skills and knowledge of government partners, 
NGOs, and civil society organizations, measurements of the flood damage and an 
assessment that clearly articulated the needs of the various communities were 
accomplished (UNDP 2015).

Sea-level rise, erosion, and coastal flooding are some of the greatest challenges 
facing humanity from climate change. Recently at least five reef islands in the 
remote Solomon Islands have been lost completely to sea-level rise and coastal ero-
sion, and a further six islands have been severely eroded. This is the first scientific 
evidence that confirms the numerous anecdotal accounts from across the Pacific of 
the dramatic impacts of climate change on coastlines and people (Albert et al. 2016). 
These islands lost to the sea range in size from one to five hectares. They supported 
dense tropical vegetation that was at least 300 years old. Nuatambu Island, home to 
25 families, has lost more than half of its habitable area, with 11 houses washed into 
the sea since 2011. This is the first scientific evidence, that confirms the numerous 
anecdotal accounts from across the Pacific of the dramatic impacts of climate 
change on coastlines and people (Albert et al. 2016). Previous studies examining the 
risk of coastal inundation in the Pacific region have found that islands can actually 
keep pace with sea-level rise and sometimes even expand. However, these studies 
have been conducted in areas of the Pacific with rates of sea level rise of 3–5 mm 
per year – broadly in line with the global average of 3 mm per year. For the past 
20 years, the Solomon Islands have been a hotspot for sea-level rise. Here the sea 
has risen at almost three times the global average, around 7–10 mm per year since 
1993. This higher local rate is partly the result of natural climate variability. These 
higher rates are in line with what we can expect across much of the Pacific in the 
second half of this century as a result of human-induced sea-level rise.

Many areas will experience long-term rates of sea-level rise similar to that 
already experienced in Solomon Islands in all but the very lowest-emission scenar-
ios. Natural variations and geological movements will be superimposed on these 
higher rates of global average sea level rise, resulting in periods when local rates of 
rise will be substantially larger than that recently observed in Solomon Islands. We 
can therefore see the current conditions in Solomon Islands as an insight into the 
future impacts of accelerated sea-level rise. The study included the coastlines of 33 
reef islands using aerial and satellite imagery from 1947 to 2015. This information 
was integrated with local traditional knowledge, radiocarbon dating of trees, sea- 
level records, and wave models (Albert et al. 2016).

Other new sea rise research relevant to the Asia Pacific revealed that important 
focal parameters of tsunamigenic earthquakes, particularly fault dip direction, can 
be extracted from tsunami-borne EM fields with the potential of electromagnetic 
(EM) fields being used in tsunami early warning. Knowing the direction in which 
the fault dips could be helpful for tsunami early warning, as the direction sometimes 
determines whether a rise wave or a backwash hits a particular costal area. By 2100, 
a realistic low-end projection is an additional 1 foot of sea level rise globally, with 
an upper end projection of 4 feet or higher causing sea level rise which not only 
threatens infrastructure over the long-term but a rising sea exacerbates the flooding 
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effects of storm surges and high tides (Walsh et  al. 2014). During severe storm 
events, water that surges onto US military installations from the sea can damage 
installation infrastructure or training areas and risk from sea level rise and storm 
surge are not limited to low-lying islands and atolls. While portions of Guam are 
well above sea level, most of the infrastructure is on or near the coasts and remains 
exposed to sea level rise and storm surge (ORLN 2015). Potentially heavier and 
more frequent precipitation will also affect installation maintenance costs and 
require additional flood or erosion control measures. Military capabilities and readi-
ness are degraded when airstrips, piers, roadways, communication, energy and 
other infrastructure are unavailable due to flooding or erosion. Losing access to 
these facilities is potentially equivalent to temporary anti-access to an area, requir-
ing the US Department of Defense (USDOD) to consider the capability thresholds 
required in the Area of Responsibility (military geographic region) (AOR), and 
design resiliency and redundancy into infrastructure plans to maintain these thresh-
olds (Walsh et al. 2014). Pacific installations also need to be especially resilient to 
natural disasters such as tropical cyclones, as they not only need to maintain capa-
bilities after an event, but often serve as a base of operations (Walsh et al. 2014).

Global climate variability and change is increasing the frequency and severity of 
natural disaster events and environmental security risks in the Asia-Pacific region. 
Climate change threatens the fabric of life for people throughout the Asia Pacific – it 
affects key health, environmental and social dimensions including access to clean 
water, food production, and the sustainability of ecological systems and the urban 
built environment. Severe weather is predicted to become more frequent and 
destructive. For example, higher temperatures may lead to droughts, crop failures, 
food insecurity, the mass migration of “climate refugees” across international bor-
ders and increased conflict among nations competing for scarce resources (particu-
larly among upstream and downstream nations). Warmer air holds more moisture, 
which portends record-breaking rainfall and more intense storms. Even the conser-
vative estimates for the rising temperatures and changing ocean levels will cause 
some significant issues in the Asia-Pacific Region. Sea rise for coastal cities may be 
extremely damaging, especially as people and population densities continue to 
increase in coastal areas of the Asia-Pacific. Emergency managers, security profes-
sionals and governments must promote climate adaptation and mitigation measures 
that protect communities in the Asia-Pacific region. In particular, citizens of states 
in the Asia Pacific are highly vulnerable to the negative impacts of climate change 
and many inhabitants are already suffering from increasing heavy rainfall and 
floods, water shortages, storm surge, hurricanes, coastal erosion and droughts. 
Accordingly, the inhabitants of many regions have become “canaries in a coal mine” 
with respect to the adverse effects of climate change. For example, a small com-
munity living in the Pacific island chain of Vanuatu has become the first in the world 
to be formally relocated as a result of climate change.

Climate change may also contribute to a more energetic hydrological cycle, lead-
ing to more intense and frequent storms that cause runoff which carries pollutants 
from industrial and agricultural areas to nearby waterways. Heavy storms can also 
overwhelm the sewer system and send raw sewage and polluted stormwater into 
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nearby streams and rivers. There are additional threats to rivers from climate change 
in the Asia-Pacific region: lower flows, rising temperature, more frequent droughts 
and changing precipitation patterns contribute to higher pollution levels (less water 
to dilute pollutants in rivers, lakes and streams). Higher water temperatures also 
lower dissolved oxygen levels and cause algal blooms which can kill marine life and 
degrade ecosystems (biochemical processes and organism growth rates are regu-
lated to a large extent by temperature). An increase of atmospheric carbon dioxide 
and/or other greenhouse gases is projected to cause climate warming in the Asia- 
Pacific region which could significantly alter Dissolved Oxygen (DO) characteris-
tics in water bodies. These changes are in turn expected to have a profound effect on 
indigenous fish populations. The earliest models of water quality involved two lin-
ear deterministic differential equations of biochemical oxygen demand (BOD) and 
dissolved oxygen (DO) based on the pioneering work of Streeter and Phelps (1925). 
The seminal Streeter-Phelps equations form the foundation for many of today’s 
sophisticated water quality models in the Asia-Pacific region. A water quality mode1 
typically describes the chemical, physical, and biological processes that occur in a 
water body, such as the reaction of chemical constituents and the uptake of nutrients 
by living organisms. The propagation of uncertainty through a stochastic water 
quality model is shown in Fig. 1.

Consider a river with multiple reaches and a treatment plant discharging at the 
head of the reach, as illustrated in Fig. 2. Mass or energy balance equations are often 
used to describe the dynamics of constituent concentrations of natural water bodies. 
The health of aquatic systems (algae, fish, micro-organisms, etc.), aesthetics (such 
as odor and color), potability, taste, and so on depend upon the resulting 
 concentrations of dissolved oxygen. DO levels naturally cycle over the course of a 
day (and throughout the year) as shown in Fig. 3. In the steady state conditions 
resulting from the natural balance of various chemical and biological processes, the 
DO concentration fluctuates about a saturation concentration (Os). Whenever 

x1

x2

y = f (x1,x2)Fig. 1 Propagation of the 
continuous probability 
distributions through a 
water quality mode1
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untreated waste waters are discharged into the stream, the concentration of DO may 
be adversely affected. Consider a steady-state stochastic DO models which address 
three water quality constituents: DO, carbonaceous biochemical oxygen demanding 
substances (CBOD) and nitrogenous oxygen demanding substances (NOD). 
Coupled CBOD- NODDO reactions are an important component of water quality 
modeling. It is known that CBOD is increased by nonpoint load sources of carbon 
(Sc) and decreased by oxidation (ki), sedimentation, and adsorption (ℒ). NOD is also 
increased by nonpoint load sources (SN) and decreased by oxidation (k2). Finally, 
DO is supplied by re-aeration (k3) and photosynthesis (P) and decreased by respira-

Fig. 2 River with multiple reaches
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tion (R), CBOD (kl), and NOD (k2). The following three deterministic differential 
equations have been used for describing the water quality of a river (Zielinski 1988):

 

dC

dt
k C SC= − +( ) +1 

 
(1)

 

dN

dt
k N SN= − +2

 

 

dO

dt
k O O k C k N P Rs= −( ) − − + −3 1 2

 

Where the photosynthetic term, P, in Eq. 5.4 is represented by

 
P v tm sin +∅( )   

(2)

These equations describe how a spike input of CBOD, NOD (or other organic 
material) generates the classic transient DO “sag curve” (Fig. 3). In Eq. 2, Pm is the 
maximum rate of photosynthesis. The units of the state variables in Eq. 1 are now 
defined:

• C is the carbonaceous biochemical oxygen demand (CBOD) in mg/L;
• N is the nitrogenous oxygen demand (NOD) in mg/L;
• O is the dissolved oxygen concentration (DO) in mg/L

Next, the four decay constants are defined:

• k1 is the CBOD decay rate per day;
• L is the sedimentary and adsorption loss rate for CBOD per day;
• k2 is the decay rate of NOD per day; and k3 is the reaeration rate per day.

In addition, Os is the saturation concentration of oxygen in mg/L while R is the 
loss rate of DO due to respiration in mg/L/day. Finally, Sc and SN are the nonpoint 
source loads of carbon and nitrogen respectively in mg/L/day. Replacing the state 
variables C, N, and O with X1, X2,and X3 respectively, Eq. 1 can be re-written in 
matrix form:

 

dx

dt
Ax b= +

 
(3)

Where the 3×1 column vector x is
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The 3×3 matrix A is given by
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While the 3×1 column vector b is

 

S

S

P v t R k O

C

N

m Ssin +∅( )  − +

















3  

(6)

Accordingly, Eq. 3 becomes
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Sample paths of DO vs. time are calculated in MATLAB and shown in Fig. 4 
which illustrates four sample paths of DO vs time. Given any specific location along 
a river, the probability density function (pdf) of DO that corresponding to this loca-
tion can be produced. Figure 4 illustrates the DO density functions corresponding to 
locations X1 and X2.

Climate change may already be causing a reduction in the amount of the life- 
giving gas that is dissolved in sea water in the Asia-Pacific region, thereby causing 
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many sea creatures, including fish, squid, crabs and shellfish, to struggle to breathe 
(Long et al. 2016). Tropical regions are suffering from oxygen loss while much of 
the Pacific Ocean will be hit in by around 2040 as shown in Fig. 5. The effects of 
this loss of oxygen will start become noticeable across widespread areas of the 
oceans between 2030 and 2040.

4  Statistical Models of Extinction in the Asia Pacific Region

While the threats of global warming pose a grave threat to the well-being and sur-
vival of species in the Asia Pacific region, many models for population dynamics 
fail to consider the risk of extinction. Consider the exponential population growth 
model for a population P:

 
′ = >P aP a, 0  (8)

Since the exponential growth pattern cannot continue indefinitely, the logistic 
(inhibited growth) model is often used:

 
′ = ( ) = − =P bP L P aP bP– /2 withL a b

 
(9)

Fig. 5 Climate change and oxygen loss in the oceans (Long et al. 2016)
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When a > 1 and b is a positive constant less than a the solution has the S-shaped 
logistic pattern shown in Fig. 6a where the horizontal asymptote ℒ is referred to as 
the carrying capacity of the environment. Note that the change in the population 
depends on both the size of the population P and the difference between the current 
population and L (also referred to as the limit to growth and the maximum sustain-
able population). The inflection point seen in the S-shaped logistic curve of Fig. 6a, 
shows where the population is growing most rapidly and occurs at P = ½ ℒ = ½(a/b). 
Three other growth possibilities are shown in Fig. 6a. Under conditions of climate 
change it is important to consider how to model the extinction of species. A cata-
strophic change in the local conditions such as a significant rise in temperature can 
change to such an extent that a species may become extinct. Accordingly, the classic 
logistic growth model should take into account the risk that a population decays 
toward extinction. As shown in Fig. 4a there is a minimum sustainable population, 
K, a level below which a species cannot be maintained. Throughout the Asia Pacific 
region, experts predict that populations of many different species are dropping below 
K for a number of reasons linked to global climate variability and change. Once this 
occurs, it is mathematically expected that the population begins to decay toward 
zero. We now highlight three equilibrium levels, one for a zero population, another 
corresponding to the maximum sustainable population ℒ, and a third corresponding 
to the minimum sustainable population K, These three equilibria create four regions 
in the t-P plane for logistic-growth and extinction, as illustrated in Fig. 6b. Consider 
the behavior of the solutions in each of the four regions of Fig. 6b. In both Region I 
(where P > L) and Region II (where K < P < L), the solutions behave similar to the 
logistic model: the solution tends toward L. Specifically, in Region I the solution 
decays toward ℒ whereas in Region II the solutions rise toward ℒ, eventually in an 
asymptotic manner. Finally, in Region III (0 < P < K), the solutions decay toward 
zero whereas in Region IV (P < 0) the solutions decay toward negative infinity.

The one-dimensional first passage time problem is now considered, where the 
region under consideration is an interval x1 ≤ x0 ≤ x2. We are interested in examining 

Fig. 6 Extinction and growth models. Solution patterns for logistic-type growth and for extinction 
(a) growth curves (b) growth regions. Different regions of the t-P plane for logistic-type growth 
and extinction
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the time T it takes the process x(t) starting at x0 to first reach the boundary x = x1 or 
x = x2 as shown in Fig. 7. This so-called First passage time varies from realization to 
realization, so the mean (expected) first passage time M(x0) is of interest. Other 
notations for M(x0) include time E[Tx] .Consider a practical first passage time exam-
ple: a bomb has exploded a few miles outside of Tokyo, the capital of Japan. It is of 
interest to estimate the expected time it will take the dispersing molecules of poi-
sonous gas to first reach the urban boundary of Tokyo under the molecular bom-
bardment of air molecules. As another, consider a recent oil spill off the coast of 
China. It is of interest to estimate the first time that the oil will reach Hainan island 
or other ecologically sensitive areas. The first passage times for type-B and type-D 
barriers are shown in Figs. 7, 8 and 9.

Fig. 7 First-passage time T for type-B barrier (x < b is safe)
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First passage time problems have been studied extensively using linear oscilla-
tors: consider the oscillator with response y(t) which is related to the wide-band 
random excitation F(t) by the differential equation:

 
F t y y yn n( ) = + +2 2ζω ω

¨


 
(10)

where the constants ωn and ζ represent, respectively, the undamped natural fre-
quency and the damping ratio of the vibratory system. The excitation F(t) is taken 
to be a wide-band random process with zero mean. A commonly studied first pas-
sage time problem for linear oscillators is to determine the probability distribution 
of the time T that it takes for y(t) starting from an initial amplitude level T to reach 

Fig. 8 First-passage time T† for type-B barrier (x > −b is safe)

Fig. 9 First passage time T for type-D barriers
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the barrier R (see Fig. 10). Political and economic forces often lead to extinction 
pressures. Stochastic simulations can help to calculate the “risk” of stock collapse 
at low abundance or high fishing pressure.

5  Climate Informatics and Extinction Risks in the Asia- 
Pacific: A Machine Learning Approach

The impacts of present and potential future climate change loom large in the Asia- 
Pacific region. Algorithmic models can help to improve understanding of the cli-
mate system. The global climate system is characterized by complex phenomena 
that are imperfectly observed and simulated. Machine learning approaches consti-
tute a valuable approach given the growing supply of climate data from satellites 
and environmental sensors. Given the massive scale of the climate data an algorith-
mic model should be considered to analyze these challenges. There is a growing 
discipline known as climate informatics: it is proposed that the field of climate 
informatics will improve knowledge discovery and help to address key climate sci-
ence questions in the Asia-Pacific. Recent achievements in machine learning for 
climate informatics highlight important new problems for machine learning and 
possible collaborations. The dugong (“sea cow”) is one of the species highly sensi-
tive to climate change. Like other populations of large marine mammals dugongs 
are under threat of extinction.

Found in waters off the northern half of Australia globally dugongs are classed 
as “vulnerable to extinction”. To assist in conservation efforts, scientists in the Asia- 

Fig. 10 Sketch of y(t) and a(t) crossing the barrier R

From Data Modeling to Algorithmic Modeling in the Big Data Era: Water Resources…



214

Pacific region track these endangered populations to identify their numbers, size 
and location. However, manually identifying dugong population from small planes 
is slow, expensive and sometimes hazardous. Accordingly, marine mammal 
researcher Dr. Hodgson from Murdoch University in Western Australia and Dr. 
Frederic Maire, a computer scientist at Queensland University of Technology are 
using drones fitted with cameras to help collect dugong data. In particular, Maire’s 
automated detection system uses Google’s machine-learning program TensorFlow 
(a free open source machine learning platform), to provide easier and more accurate 
population estimates. In particular, the deep learning neural network identifies 
dugongs by their size and color. The system currently has an 80% accuracy rate (i.e. 
it identifies 80% of dugongs they found manually in images.) The detector’s accu-
racy improves as it learns from a wider set of negative examples (anything in the sea 
that might look like a dugong, like wave crests and shadows) and positive examples 
(Maire et  al. 2015). The machine learning tools helps the scientists to identify 
dugongs from aerial photography of the ocean on tens of thousands of images. By 
being able to improve detection performance over time and to identify threatened 
populations on a large scale, conservationists will have a more accurate way to 
understand the impact of human activities and climate change on endangered spe-
cies. It is expected this approach may scale well for dugongs and other sea mam-
mals such as humpback whales and dolphins.

6  Policy Solutions to Promote Water and Climate Security

Both machine learning and statistical modeling approaches must be supplemented 
by robust policy solutions to enhance resilience to climate and water hazards. In 
February 2015, mayors and municipal leaders from the Asia Pacific region met to 
discuss a more coordinated response to and recovery from the effects of climate 
change. The resulting report called for community engagement, innovation, and 
local and global partnerships that would help prevent and manage risk. On March 
18, 2015, the World Conference on Disaster Risk Reduction (DRR) was held in 
Sendai, Japan and attended by over 6500 participants including 2800 government 
representatives from 187 governments. The Public Forum had 143,000 visitors over 
the 5 days of the conference making it one of the largest UN gatherings ever held in 
Japan (UN 2015). Representatives from the 187 UN member states adopted the 
Sendai Framework for Disaster Risk Reduction 2015–2030, the first major agree-
ment of the Post-2015 development agenda. The Sendai Framework is a far reaching 
document for disaster risk reduction with seven targets and four priorities for action.

The seven global targets to be achieved over the next 15 years include substantial 
reduction in (1) global disaster mortality, (2) numbers of affected people, (3) eco-
nomic losses in relation to global GDP, and (4) disaster damage to critical infra-
structure and disruption of basic services. It also aims to achieve (5) an increase in 
the number of countries with national and local DRR strategies by 2020, (6) 
enhanced international cooperation, and (7) increased access to multi-hazard early 
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warning systems and disaster risk information and assessments. The four priority 
actions are (1) understanding disaster risk, (2) strengthening disaster risk gover-
nance to manage disaster risk, (3) investing in DRR for resilience, and (4) enhanc-
ing disaster preparedness for effective response and to ‘Build Back Better’ in 
recovery, rehabilitation, and reconstruction (UNOPS 2015)

The Sendai Framework calls for concrete indicators of progress towards set goals 
to be measured against the disaster losses in the decade after the adoption of the 
2005 Hyogo Framework for Action. To reach its goals, the Framework calls for 
actions to not only protect populations and promote quick recovery, but also to pre-
vent new risks such as those caused by ill planned urban growth in areas subject to 
flooding, landslides, and effects of climate change (Weru 2015). Integration with 
global regimes to mitigate and adapt to climate change and promote sustainable 
development is among the key objectives of the Sendai Framework, as is inclusively 
addressing risk through economic, governmental, structural, legal, social, cultural, 
educational, and health-related sectors, and UN organizations.

6.1  Australia Climate Change Adaptation

Like other countries in the Asia Pacific region, Australia faces the twin challenges of 
dealing with extreme weather-related disasters and adapting to the impacts of cli-
mate change. Recognizing the enormous environmental and socio-economic toll 
climate disasters have on the country, the Australian government called for action to 
develop an integrated approach across and between the different levels of govern-
ment to address the impacts of climate change. A team of researchers from Griffith 
University and RMIT University was funded over 1 year (2012) by the National 
Climate Change Adaptation Research Facility (NCCARF) to develop the founda-
tions for a nationally consistent approach to disaster risk management and climate 
change adaptation that would provide a set of appropriate reforms to governing 
institutions. The research team focused on a three-way comparative case study of 
the 2009 Victorian bushfires, the 2011 Perth Hills bushfires, and the 2011 Brisbane 
floods. The research involved an analysis of the reports generated by the official 
inquiries into these disasters, interviews with key stakeholders, and stakeholder 
workshops in Perth, Melbourne, and Brisbane. The final research report, entitled 
“The Right Tool for the Job: Achieving Climate Change Adaptation Outcomes 
through Improved Disaster Management Policies, Planning and Risk Management 
Strategies”, offered data driven insights and recommendations that range from the 
conceptual to the practical. First, it was argued that a reconceptualization of terms 
such as ‘community’ and ‘resilience’ is necessary to take into account socio-eco-
nomic diversity and allow for more tailored, context- specific risk analyses and 
responses. This is particularly important with regard to policymaking and planning 
processes and community engagement. Second, it was suggested that the high level 
of uncertainty inherent in disaster risk management and climate change adaptation 
requires a more interactive approach to policymaking and planning. Third, some 
specific institutional reforms were proposed that included:
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 1. Creating a new funding mechanism that would encourage communication and 
collaboration between and across different levels of government as well as pro-
mote partnerships with businesses and the community,

 2. Improving community engagement through new resilience grants run by local 
councils,

 3. Embedding climate change researchers within disaster risk management agen-
cies to promote institutional learning and more integrated risk-context analyses, 
and

 4. Creating an inter-agency network that encourages collaboration among organi-
zations to support the proposed reforms.

The Australian research project is an example of how government can overcome 
political, social, and economic barriers in the interest of national preparedness for 
impending disasters. The findings of the research project offer guidelines for 
improving mitigation and adaptive responses as well as a starting point for better 
integration of disaster risk management and climate change adaptation. Efforts such 
as this one are of benefit to countries of the Asia Pacific region and the world.

6.2  Role of International Organizations in Climate Change 
Preparedness in the Asia-Pacific Region

In 2011, the United Nations Office for Disaster Risk Reduction – Regional Office 
for Asia and Pacific (UNISDR AP) issued a comprehensive report that provided a 
summary of how disaster risk reduction (DRR) and climate change adaptation 
(CCA) are undertaken and integrated in the Asia Pacific region. DRR is the concept 
and practice of reducing disaster risks through analysis and management of causal 
factors. It reduces exposure to hazards and lessens the vulnerability of people and 
assets. DRR also improves management of the land, the environment, and prepared-
ness for adverse events. As experience with DRR and CCA grows, there is increas-
ing recognition that both share a common focus: reducing the vulnerability of 
communities and contributing to sustainable development. The high level of climate 
related risks in the Asia Pacific region make DRR and CCA key policy goals. The 
2011 UNISDR AP report provides best practices on how to improve the Asia Pacific 
regional planning and programming for DRR and CCA and highlights areas for 
cooperation among regional and sub-regional organizations. It proposes ways and 
means to support both national and regional stakeholders in DRR and CCA, such as 
governments, UN agencies, intergovernmental organizations, research and techni-
cal organizations, non-government organizations (NGOs), and especially the UN 
International Strategy for Disaster Reduction (UNISDR) Asia Partnership on 
Disaster Reduction members, in order to enhance regional planning, programming, 
and cooperation (UNISDR AP 2011). Follow up on the United Nations (UN) 
UNISDR AP report showed actual improvement in climate change preparedness in 
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the Asia-Pacific region. This was noted in a subsequent UN report in 2014, “10 years 
after Indian Ocean Tsunami, Asia-Pacific Region Better Prepared” (UNNC 2014).

The Indian Ocean Tsunami, the world’s worst recorded natural disaster, hit the 
Asia Pacific region in December 2004, killing more than 200,000 people, leaving 
1.4 million survivors homeless, and destroying the entire food production systems 
on which whole populations depended (UNNC 2014). The devastation alarmed the 
world community. The UN Economic and Social Commission for Asia and the 
Pacific (ESCAP) and the German Federal Ministry for Economic Cooperation and 
Development (BMZ) have partnered with the German Ministry contributing 250,000 
euros to the ESCAP Multi-Donor Trust Fund for Tsunami, Disaster, and Climate 
Preparedness, adding to an initial 500,000 euros contribution made in December 
2013 (UNNC 2014). The UN report noted that some of the countries that were worst 
affected by the Indian Ocean Tsunami are now better prepared for disasters and bet-
ter positioned to respond more effectively.

In the Pacific, as elsewhere, global climate change disasters have their greatest 
impact at the local level. Studies show that the accumulated impacts of small and 
medium disasters may be equivalent to, or exceed, those of large disasters. Increases 
in the frequency of these lower intensity hazards have a major impact on poverty. 
The countries studied are typical in terms of the current low level of integration of 
DRR and CCA. While there may be institutional arrangements that suggest some 
progress with integration at the national policy and institutional levels, the practical 
reality is that little is happening on the ground at the operational level. Although 
there is much work to be done, progress at the local level is being made. Tonga is 
clearly the lead example of local level integration of DRR and CCA. Tonga devel-
oped an integrated plan for Disaster Risk Management (DRM) and climate change 
(including the reduction of GHG emissions) and established a National Advisory 
Committee on Climate Change to take responsibility for DRM (World Bank 2013). 
Mainstreaming DRM in development planning can help to address some of the root 
causes of rising disaster impact. The annual damages from unabated economic 
development, population growth, and rapid urbanization that exacerbate climate 
change are expected to triple to $185 billion by 2100, even without factoring in 
climate change. DRM can help to reverse the current trend of rising disaster impact 
by acting swiftly and decisively to cut costs and losses due to problems of unchecked 
development. Lives and assets can be protected with wise policy and planning. 
However, many developing countries lack the tools, expertise, and instruments to 
factor the potential impacts of adverse natural events in their investment decisions 
(World Bank 2013)

The goals of the United Nations Climate Summit in September 2014, were to 
reduce GHG emissions, strengthen climate resilience, and mobilize political will 
for a meaningful legal global agreement in 2015, because the ‘Hyogo Framework 
for Action 2005–2015: Building Resilience of Nations and Communities for 
Disasters’ was scheduled to end in 2015. The United Nations General Assembly 
Resolution 66/199 requested UNISDR to facilitate the development of a Post-2015 
Framework for Disaster Risk Reduction. A report which synthesizes consultations 
held at the regional, national, and community levels throughout the Asia Pacific 
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region on the Post-2015 Framework for Disaster Risk Reduction was particularly 
targeted at countries and stakeholders from the region. The report describes the 
consultation approach that has been adopted in the Asia Pacific region and summa-
rizes the key issues and proposals resulting from these consultations. The findings 
from the report add to the growing body of information needed to deal with climate 
change.

As more research is conducted, trend analyses of disaster occurrence and impact 
will address whether their determinants can be established. In Asia and elsewhere, 
factors that play a role in determining disaster trends are a mix of physical charac-
teristics of the event itself and the socioeconomic context in which they occur. 
Earthquakes, for example, have short prediction times and therefore allow little time 
for disaster preparedness. In contrast, slower onset disasters such as droughts and 
floods are more predictable and generally result in fewer direct victims, but their 
real cost is in the medium- and long-term and is usually not assessed. Population 
density, urbanization, and demographic profiles are context-specific factors that are 
likely to contribute to the number of deaths and degree of damages. DRM policies 
and practices that are based on evidence can help to prepare for and reduce these 
and other risk factors.

To provide evidence-based information, reliable and time series data on impact is 
central. Global databases such as the International Disaster Data Base (EM-DAT), 
NatCat (Munich Re), or Dartmouth Flood Observatory provide valuable insights into 
trends and patterns. Substantial progress has been made in standardizing classification 
systems and definitions at global levels by Munich Re and EM-DAT, but international 
norms are still needed. Higher resolution impact monitoring data, sample surveys of 
risk factors, and other methods of gathering information will be required to provide 
data to develop more effective international DRM policy and practice. Because the 
cost to accomplish this will be great realistic financing options are essential.

In light of the significant costs of risk financing instruments, the challenge is to 
identify the appropriate layers of risk to cover, including a risk acceptance thresh-
old, the lowest cost/risk solutions, and links to risk reduction. Strengthening the 
current innovative financing systems will be key. External involvement of govern-
ments, donors, and multi-lateral development banks is required to support commu-
nities and local institutions, build risk culture, reduce transaction costs in terms of 
bringing the products to the people (e.g., by providing support for mobile phone 
infrastructure), and pay or subsidize premiums. International organizations will 
continue to play an active role in advancing climate change preparedness in the Asia 
Pacific region and the world.

7  Conclusions

Algorithmic modeling and data modeling for water resources and environmental 
security challenges under conditions of climate change in the Asia-Pacific were 
compared and contrasted. The difference between the algorithmic modeling and 
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data modeling cultures are discussed with reference to the schools in which they 
originate, the assumptions they work on, the type of data they deal with, and the 
techniques used. The 2011 Great East Japan Earthquake and other disasters confirm 
that government’s capacity to manage disaster risks is critical in terms of preven-
tion, preparation, response, recovery, and reconstruction. DRM governance must be 
streamlined as part of the development agenda for most developing countries. The 
structure and quality of governance of governing bodies at all levels, from central to 
local to community levels throughout Asia and the Pacific need to be improved to 
lead DRM initiatives. Moreover, DRM planning calls for widespread public involve-
ment from all sectors of the community as well as from non-governmental organiza-
tions (NGOs). Existing evidence points to the crucial role of governance for an 
effective national DRM strategy and program. This relates to DRM policy and prac-
tices both at the national and local level. At the local level, primary issues include:

 1. Linking local and national disaster preparedness: Disasters are usually local phe-
nomena and the local governments along with the communities are the first 
responders. However, large-scale disasters require national or international 
efforts. Thus, for effective preparedness it is important to have specific links in 
terms of policy, plan, and action at the national and local level.

 2. Coping with the changing nature of disasters: The nature of disasters, especially 
hydro-meteorological disasters, is changing and becoming more of a local phe-
nomenon (especially in terms of rainfall patterns). This creates an increasing 
need for local capacities at the government, non-government, and community 
levels to cope with such disasters.

 3. Addressing the needs of diverse communities: Communities vary from place to 
place and their perception and ways of responding to disasters also vary. 
Therefore, it is important to decentralize policies and customize them according 
to local needs and priorities.

 4. Learning from past disasters: Accumulating evidence from past disasters suggest 
that informed and well-prepared local governments and local communities can 
minimize the impacts of disasters. This is the case even with mega disasters like 
the Great East Japan Earthquake in which over 18,000 people died mostly from 
drowning.

 5. Increasing global awareness of local needs: Over the past two decades, there has 
been growing global and regional awareness about the effectiveness of focusing 
on local needs and priorities. Most of the global and regional frameworks call for 
local capacity building and policymaking, national developmental strategies, and 
cooperation among emerging economies of Asia to improve their disaster risk 
management practices.
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