
Foundations for a Probabilistic Event Calculus

Fabio Aurelio D’Asaro(B), Antonis Bikakis, Luke Dickens, and Rob Miller

Department of Information Studies, University College London, London, UK
{uczcfad,a.bikakis,l.dickens,r.s.miller}@ucl.ac.uk

Abstract. We present PEC, an Event Calculus (EC) style action lan-
guage for reasoning about probabilistic causal and narrative information.
It has an action language style syntax similar to that of the EC vari-
ant Modular-E . Its semantics is given in terms of possible worlds which
constitute possible evolutions of the domain, and builds on that of Epis-
temic Functional EC (EFEC). We also describe an ASP implementation
of PEC and show the sense in which this is sound and complete.

1 Introduction

The Event Calculus (EC) [6] is a well-known approach to reasoning about the
effects of a narrative of action occurrences (events) along a time line. This paper
briefly summarises [3], which describes PEC, an adaptation of EC able to reason
with probabilistic causal knowledge. There are numerous applications for this
kind of probabilistic reasoning, e.g. in modelling medical, environmental, legal
and commonsense domains, and in complex activity recognition and security
monitoring. Full technical details of PEC are in [3]. Its main characteristics are:
(i) it supports EC-style narrative reasoning, (ii) it uses a tailored action language
syntax and semantics, (iii) it uses a possible worlds semantics to naturally allow
for epistemic extensions, (iv) for a wide subset of domains it has a sound and
complete ASP implementation, and (v) its generality allows in principle for the
use of other models of uncertainty, e.g. truth-functional belief or Dempster-
Schafer theory. Although other formalisms exist for probabilistic reasoning about
actions (see e.g. [1,2,5,11,12]), PEC is, to our knowledge, the only framework
to combine together these features. As shown in [3] it can be used to model
scenarios such as:

Scenario 1 (Coin Toss). A coin initially (instant 0) shows Heads. A robot can
attempt to toss the coin, but there is a small chance that it will fail to pick it up,
leaving the coin unchanged. The robot attempts to toss the coin (instant 1).

Scenario 2 (Antibiotic). A patient has a rash often associated with a bacterial
infection, and can take an antibiotic known to be reasonably effective. Treatment
is not always successful, and if not may still clear the rash. Failed treatment leaves
the bacteria resistant. The patient is treated twice (instants 1 and 3).

Other than the primary author, authors are listed alphabetically.

c© Springer International Publishing AG 2017
M. Balduccini and T. Janhunen (Eds.): LPNMR 2017, LNAI 10377, pp. 57–63, 2017.
DOI: 10.1007/978-3-319-61660-5 7

58 F.A. D’Asaro et al.

2 Overview of PEC’s Syntax and Semantics

A PEC domain language consists of a a finite non-empty set F of fluents, a
finite set A of actions, a finite non-empty set V of values such that {�,⊥} ⊆ V,
a function vals :F ∪A → 2V \∅, and a non-empty set I of instants with minimum
element 0̄ w.r.t. total ordering ≤. For A ∈ A we impose vals(A) = {�,⊥}. Our
approach is to model a given domain with action-language-like propositions that
specify (probabilistic) causal and narrative information. For example, Scenario
1 is modelled using the following domain description DC :

Coin takes-values {Heads,Tails} (C1)

initially-one-of{(Coin=Heads, 1)} (C2)

Toss causes-one-of (C3)
{({Coin=Heads}, 0.49), ({Coin=Tails}, 0.49), (∅, 0.02)}

Tossperformed-at 1 (C4)

More generally v-propositions, such as (C1), have the form

F takes-values {V1, . . . , Vm} (1)

for F ∈ F , m ≥ 1, Vi ∈ V for all 1 ≤ i ≤ m, and {V1, . . . , Vm} = vals(F).
c-propositions such as (C3) modeling causal relationships are of the form

θ causes-one-of {O1, O2, . . . , Om} (2)

where formula θ captures preconditions, and O1, . . . , Om are alternative out-
comes – partial assignments of fluent values paired with probabilities that sum
to 1. Initial conditions are declared via i-propositions of the form

initially-one-of{O1, O2, . . . , Om} (3)

and action occurrences are identified through p-propositions of the form

A performed-at I with-probP+ (4)

for A ∈ A, I ∈ I and P+ ∈ (0, 1]. When P+=1 it is omitted as in (C4).
A domain description is a finite set D of v-, c-, p- and i-propositions such

that: (i) for any two distinct c-propositions in D with bodies θ and θ′, there is no
state compatible1 with both θ and θ′, (ii) D contains exactly one i-proposition,
and (iii) D contains exactly one v-proposition for each F ∈ F .

PEC’s semantics describes how domain descriptions entail h-propositions of
the form

ϕholds-with-probP (5)

where P ∈ [0, 1], and ϕ is an i-formula (time-stamped formula). For example,
DC entails ‘[Coin=Heads]@2 holds-with-prob 0.51’.
1 i.e. Taking literals as propositions, there is no state that is a classical Herbrand

model of both θ and θ′.

Foundations for a Probabilistic Event Calculus 59

PEC has a possible-worlds semantics. A world is an evolution of the envi-
ronment, i.e. a function W : I → S, where S is the set of all states (complete
assignments of values to fluents and actions). W denotes the set of all worlds.
Worlds can be pictured as timelines with information about the current state
attached at each instant. E.g. two worlds for Scenario 1 can be visualised as:

W1
i

{Coin = Heads,

Toss = ⊥}
{Coin = Heads,

Toss = �}
{Coin = Heads,

Toss = ⊥}

0 1 ≥ 2

W2
i

{Coin = Tails,

Toss = ⊥}
{Coin = Heads,

Toss = ⊥}
{Coin = Tails,

Toss = �}

0 1 ≥ 2

Intuitively, W1 is consistent with domain description DC as it represents a
coherent history of what could have happened in Scenario 1, whereas W2 does not
(e.g., changes occur when no action is performed, an infinite number of actions
are performed, etc. . .). For this reason, world W1 said to be well-behaved w.r.t.
DC , whereas W2 is not. The semantics captures this notion with the concept of
a trace – a chain of effects matching both a unique world W and the domain
description D, through consistency with propositions in D and a persistence
condition. In other words, a world W represents an evolution of state, whereas
a trace of W represents a legal causal history w.r.t. W and a corresponding
domain description. For example, two traces for W1 w.r.t. DC are:

t1 = 〈({Coin=Heads}, 1)@ ��, ({Coin=Heads}, 0.49)@1〉

t2 = 〈({Coin=Heads}, 1)@ ��, (∅, 0.02)@1〉
where the special symbol �� is used to deal with the initial condition. The eval-
uation of a trace tr, written ε(tr), is the product of all real values appearing in
it. In our example, ε(t1) = 0.49 and ε(t2) = 0.02. W2 has no trace w.r.t. DC and
so is not well-behaved w.r.t. DC .

PEC’s semantics defines a probability distribution over worlds. To show this,
we first define a [0,1]-interpretation as a function from W to [0, 1], and, given a
domain description D, single out a unique [0,1]-interpretation MD : W
→ [0, 1]
called the model of D. For world W , well-behaved w.r.t. D, MD(W) is the sum
of values ε(tr) for all corresponding traces tr of W . If W is not well-behaved,
then MD(W) = 0. MD is extended to a function M∗

D over i-formulas as follows:

M∗
D(ϕ) =

∑

W ||=ϕ

MD(W) (6)

where W ||= ϕ indicates that ϕ is satisfied in W (in the obvious sense, see [3]).
We say that ‘ϕ holds-with-probP ’ is entailed by D iff M∗

D(ϕ) = P .
In [3], we prove that M∗ is a probability function (see assumptions (P1) and

(P2) from [9, Chap. 1]). Note that M∗ could be alternatively defined to satisfy

60 F.A. D’Asaro et al.

different axioms (see e.g. (DS1–3) from [9, Chap. 1] for Dempster-Schafer belief
functions or [9, Chap. 5] for truth-functional belief functions).

3 ASP Implementation

We have implemented PEC for the class of domains in which the bodies θ of c-
propositions are conjunctive formulas. The implementation and example domain
descriptions can be found at https://github.com/dasaro/pec. For this, a trans-
lator turns a PEC domain description D into an ASP program using standard
lexical analyser Flex and parser generator Bison. A grounder and solver, Clingo
[4], then processes the translator’s output together with the domain-independent
part of the semantics and a query (both in ASP). This returns a collection of
answer sets, each representing a trace and the corresponding well-behaved world.
A standard text processing tool, AWK, then evaluates ε(tr) for each answer set
trace tr and sums these to give a probability for the query using Eq. (6). The
following diagram illustrates this procedure:

Translator

(Flex and

Bison)

Grounder
and Solver

(Clingo)

Text
processing

(AWK)

translatedD.lp
traces as

stable models

inputD.pec
pec.lp

query.lp
answer

A general translation procedure from this class of PEC domain descriptions
to ASP programs is given in [3]. To illustrate, DC is translated to:

fluent(coin). (TC0)
action(toss).
instant(0..maxinst).

possVal(coin, heads). (TC1)
possVal(coin, tails).

belongsTo((coin, heads), id01). (TC2)
initialCondition((id01, 1)).

belongsTo((coin, heads), id11). (TC3.1)
causesOutcome((id11, 49/100), I) ← holds(((toss, true), I)).

belongsTo((coin, tails), id12). (TC3.2)
causesOutcome((id12, 49/100), I) ← holds(((toss, true), I)).

causesOutcome((id13, 2/100), I) ← holds(((toss, true), I)). (TC3.3)

performed(toss, 1). (TC4)

https://github.com/dasaro/pec

Foundations for a Probabilistic Event Calculus 61

The domain-independent part of the implementation is as follows:
possVal(A, true) ← action(A). (PEC1)
possVal(A, false) ← action(A).

fluentOrAction(X) ← fluent(X); action(X). (PEC2)

literal((X,V)) ← possVal(X,V). (PEC3)

iLiteral((L, I)) ← literal(L), instant(I). (PEC4)

1{ holds(((X,V), I)) : iLiteral(((X,V), I)) }1 (PEC5)
← instant(I), fluentOrAction(X).

inOcc(I) ← instant(I), causesOutcome(O, I). (PEC6)

1{ effectChoice(O, I) : causesOutcome(O, I) }1 ← inOcc(I). (PEC7)

1{ initialChoice(O) : initialCondition(O) }1. (PEC8)

⊥ ← action(A), instant(I), (PEC9)
holds(((A, true), I)), not performed(A, I).

⊥ ← action(A), instant(I), (PEC10)
not holds(((A, true), I)), performed(A, I).

⊥ ← initialChoice((S, P)), literal(L), (PEC11)
belongsTo(L, S), not holds((L, 0)).

⊥ ← instant(I), effectChoice((X,P), I), (PEC12)
fluent(F), belongsTo((F, V),X),
not holds(((F, V), I + 1)), I < maxinst.

⊥ ← instant(I), fluent(F), not holds(((F, V), I)), (PEC13)
effectChoice((X,P), I), not belongsTo((F, V),X),
holds(((F, V), I + 1)), I < maxinst.

⊥ ← fluent(F), instant(I), holds(((F, V), I)), not inOcc(I), (PEC14)
not holds(((F, V), I + 1)), I < maxinst.

Correctness of the translation and implementation are guaranteed by the
following proposition, more details of which (including a proof) are given in [3].

Proposition 1 (Soundness and Completeness). Z is a stable model of the
translated domain description D together with the domain-independent part of
PEC iff Z represents a well-behaved world W and one of its traces w.r.t. D.

Intuitively, this proposition states that if we interpret the elements of a stable
model Z of the translated domain description and the domain-independent part
of PEC as their natural semantic counterpart (e.g., holds(((F, V), I)) is inter-
preted as F =V ∈ W (I)), then this interpretation is a trace together with its
corresponding well-behaved world W w.r.t. D. The trace and world are then
said to be represented by Z. Conversely, for every well-behaved world W w.r.t.
D and one of its traces tr there exists a stable model Z of the program such that

62 F.A. D’Asaro et al.

Z represents W and tr. It is in this sense that our implementation is sound and
complete. Our proof in [3] relies on the Splitting Theorem [7].

4 Future Work

PEC semantics is defined in terms of (possible) worlds with a view to adding
epistemic features in the future (see e.g. [10]). Our initial investigations in this
respect focus on representing imperfect sensing actions and actions conditioned
on knowledge acquired in previous instants (similar to the approach in the EFEC
extension of FEC [8]). We envisage including s-propositions such as

See sensesCoinwith-accuracies
(

0.9 0.1
0.3 0.7

)

which represents that our coin-tossing robot can imperfectly sense the current
face showing on the coin, and conditional p-propositions such as

Tossperformed-at 2 if-believes (Coin=Tails, (0.65, 1])

which represents that the robot will toss again if it believes with a greater than
65% probability that the first toss resulted in Tails. Preliminary results indicate
that our possible worlds semantics can be readily extended to cover these notions.

There are several other ways in which the present work can be continued. For
instance, the problem of elaboration tolerance, which plays an important role in
classical reasoning about actions, needs to be reviewed and solved in our setting.
A related point is that of underspecification, i.e. what an agent can reasonably
infer from a domain in which the initial conditions and the effects of actions
are not entirely specified (even probabilistically). Finally, a crucial point is that
of computational efficiency. Indeed, the intractability of several computational
problems arising in this setting (such as temporal projection) suggests that tech-
niques (e.g. Monte Carlo Markov Chain) are needed to efficiently approximate
the correct answer to a given query with an appropriate degree of confidence.

Related Work: For a discussion of related work see [3].

References

1. Bacchus, F., Halpern, J.Y., Levesque, H.J.: Reasoning about noisy sensors and
effectors in the situation calculus. Artif. Intell. 111(1), 171–208 (1999)

2. Baral, C., Tran, N., Tuan, L.C.: Reasoning about actions in a probabilistic setting.
In: AAAI/IAAI, pp. 507–512 (2002)

3. D’Asaro, F.A., Bikakis, A., Dickens, L., Miller, R.: Foundations for a probabilistic
event calculus: Technical report (2017). http://arxiv.org/abs/1703.06815

4. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
Preliminary report (2014). http://arxiv.org/abs/1405.3694

5. Iocchi, L., Lukasiewicz, T., Nardi, D., Rosati, R.: Reasoning about actions with
sensing under qualitative and probabilistic uncertainty. TOCL 10(1), 1–39 (2009)

http://arxiv.org/abs/1703.06815
http://arxiv.org/abs/1405.3694

Foundations for a Probabilistic Event Calculus 63

6. Kowalski, R., Sergot, M.: A logic-based calculus of events. In: Schmidt, J.W.,
Thanos, C. (eds.) Foundations of Knowledge Base Management, pp. 23–55.
Springer, Heidelberg (1989)

7. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP, pp. 23–37 (1994)
8. Ma, J., Miller, R., Morgenstern, L., Patkos, T.: An epistemic event calculus for asp-

based reasoning about knowledge of the past, present and future. In: LPAR-19, vol.
26, pp. 75–87 (2014)

9. Paris, J.B.: The Uncertain Reasoner’s Companion: A Mathematical Perspective,
vol. 39. Cambridge University Press, Cambridge (2006)

10. Scherl, R.B., Levesque, H.J.: Knowledge, action, and the frame problem. Artif.
Intell. 144(1–2), 1–39 (2003)

11. Skarlatidis, A., Artikis, A., Filippou, J., Paliouras, G.: A probabilistic logic pro-
gramming event calculus. TPLP 15, 213–245 (2015)

12. Skarlatidis, A., Paliouras, G., Artikis, A., Vouros, G.A.: Probabilistic event calculus
for event recognition. ACM Trans. Comput. Logic 16(2), 11:1–11:37 (2015)

	Foundations for a Probabilistic Event Calculus
	1 Introduction
	2 Overview of PEC's Syntax and Semantics
	3 ASP Implementation
	4 Future Work
	References

