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Abstract. We provide an initial study on the Hasse diagram that rep-
resents the partial order -w.r.t. set inclusion- among weighted scepti-
cal semantics in Argumentation: grounded, ideal, and eager. Being our
framework based on a parametric structure of weights, we can directly
compare weighted and classical approaches. We define a unique-status
weighted grounded semantics, and we prove that the lattice of strongly-
admissible extensions becomes a semi-lattice.

1 Introduction

An Abstract Argumentation Framework (AAF ) [9] is essentially a pair 〈Args , R〉
consisting of a set of arguments and a binary oriented relation of attack defined
among them (e.g., a, b ∈ Args , and R(a, b)). The key idea behind extension-
based semantics is to identify some subsets of arguments (called extensions)
that survive the conflict “together”. For example, the arguments in an admissible
extension [9] B are not in conflict and they counter-attack attacked arguments
in B, i.e., arguments in B are defended.

Several notions of weighted defence have been defined in the literature
[4,5,8,11,12]. Attacks are associated with a weight indicating a “strength” value,
thus generalising the notion of AAF into Weighted AAF (WAAF ) [4,5,11]. In
[3] we provide a new definition of defence for WAAFs, called w-defence, and we
use this to redefine classical semantics [9] to their weighted counterpart, that is
w-semantics [3] (e.g., w-admissible).

In formal Abstract Argumentation, as well as in non-monotonic inference in
general, it is possible for a semantics to yield more than one extension: in a
framework with two arguments a and b, if R(a, b) and R(b, a) then both {a}
and {b} are admissible. Often, this is dealt with by using a sceptical approach:
hence, it is desirable to also have sceptical semantics that always yields exactly
one extension. The most well-known example of such unique-status semantics is
the grounded semantics [9]; however, in the literature it is sometimes supposed
to be too sceptical [7]. The ideal [10] and eager [7] semantics try to be less
sceptical, i.e., grounded ⊆ ideal ⊆ eager [7].1

1 The eager is a unique-status semantics only for finite AAFs [1], which we study in
this paper.
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In the paper we provide an initial study on the Hasse diagram that repre-
sents the partially order set (or poset) -w.r.t. set inclusion- among w-extensions;
in particular, we curb to sceptical semantics. In a Hasse diagram, each vertex
corresponds to an extension B, and there is an edge between extensions B and
C whenever B ⊆ C and there is no extension D such that B ⊆ D ⊆ C . We
will build this study on a parametric framework based on an algebraic structure,
which can represent [3] the frameworks in [8,9,12]. Differently from [8,11,12],
our solution always provides a single grounded extension.

2 Background

C-semirings are commutative semirings where ⊗ is used to compose values, while
an idempotent ⊕ is used to represent a partial order among them.

Definition 1 (C-semirings [2]). A c-semiring is a five-tuple S = 〈S,⊕,⊗,
⊥,	〉 such that S is a set, 	,⊥ ∈ S, and ⊕,⊗ : S × S → S are binary opera-
tors making the triples 〈S,⊕,⊥〉 and 〈S,⊗,	〉 commutative monoids, satisfying,
(i) distributivity ∀a, b, c ∈ S.a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c), (ii) annihilator
∀a ∈ A.a ⊗ ⊥ = ⊥, and (iii) absorptivity ∀a, b ∈ S.a ⊕ (a ⊗ b) = a.

The idempotency of ⊕, which derives from absorptivity, leads to the defi-
nition of a partial order ≤S over S: a ≤S b iff a ⊕ b = b, which means that
b is “better” than a. ⊕ is the least upper bound of the lattice 〈S,≤S〉. Some
c-semiring instances are: Boolean 〈{F ,T},∨,∧,F ,T 〉, Fuzzy 〈[0, 1], max,min,
0, 1〉, and Weighted 〈R+∪{+∞},min,+,+∞, 0〉. Thus, the definition of WAAFs
can represent different problems.

Definition 2 (c-semiring-based WAAF [5]). A semiring-based Argumenta-
tion Framework (WAAF S) is a quadruple 〈Args, R,W,S〉, where S is a semiring
〈S,⊕,⊗,⊥,	〉, Args is a set of arguments, R the attack binary-relation on Args,
and W : Args × Args → S is a binary function. Given a, b ∈ Args, ∀(a, b) ∈ R,
W (a, b) = s means that a attacks b with a weight s ∈ S. Moreover, we require
that R(a, b) iff W (a, b) <S 	.

In [3] we define w-defence: a set B defends an argument b from a if the
set-wise ⊗ of the attacks from all c ∈ B that defend b, i.e., W (B, a) =⊗

c∈B W (c, a), is worse than (i.e., stronger) or equal to the attacks to b and
all the arguments in B, i.e., W (a,B ∪ b).

Definition 3 (w-defence [3]). Given WF = 〈Args, R,W, S〉, B ⊆ Args w-
defends b ∈ Args from a ∈ Args s.t. R(a, b), iff W (a,B ∪ {b}) ≥S W (B, a); B
w-defends b iff it defends b from any a s.t. R(a, b).

Note that (the weights of) counter-attacks of b can be exploited in the defence
offered by B, as in [9] happens for self-defence: this is why we consider all the
attacks from B ∪ {b} to a, and vice-versa. From [3] we report the definitions of
w-semantics.
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Definition 4 (w-semantics [3]). Given WF = 〈Args, R,W,S〉, B is a conflict-
free set [9] iff W (B,B) = 	 (where W (B,D) =

⊗
b∈B,d∈D W (b, d)). B can be:

– a w-admissible (wadm) extension iff all the arguments in B are w-defended
by B;

– a w-complete (wcom) extension iff each argument b ∈ Args s.t. B ∪ {b} is
w-admissible belongs to B;

– a w-preferred (wprf) extension iff it is a maximal (w.r.t. set inclusion)
w-admissible subset of Args;

– w-semi-stable (wsst) iff, given the range of B defined as B ∪ B+, where
B+ = {a ∈ Args : W (B, a) <S 	}, B is a w-complete extension with
maximal (w.r.t. set inclusion) range.2

– a w-stable extension (wstb) iff ∀a �∈ B,∃b ∈ B.W (b, a) <S 	.

If we use the Boolean c-semiring and consider W (a, b) = false whenever
R(a, b), for each semantics in Definition 4 we exactly obtain the corresponding
original Dung’s one [3]: i.e., respectively admissible (adm), complete (com), pre-
ferred (prf ), semi-stable (sst), and stable (stb) [9,13]. In this case, the notion of
w-defence collapses to classical defence [9]: B w-defends a iff B defends a.3

We conclude the background by recalling in Definition 5 the definitions of the
classical sceptical semantics, which we will later weigh in Sect. 3.

Definition 5 (Sceptical semantics). Given a framework F = 〈Args, R〉:
(a) B ⊆ Args is grounded ( grd) iff B is complete and ∀B′ ∈ com(F ), B ⊆ B′.

The grounded extension is the minimal (w.r.t. set inclusion) complete set [9].
(b) B ⊆ Args is ideal ( ide) iff B is admissible and ∀B′ ∈ prf (F ), B ⊆ B′.

The ideal extension is the maximal (w.r.t. set inclusion) ideal set [10].
(c) B ⊆ Args is eager ( eag) iff B is admissible and ∀B′ ∈ sst(F ), B ⊆ B′.

The eager extension is the maximal (w.r.t. set inclusion) eager set [7].

In the following, we use WF⇓ to denote the classical framework F =
〈Args, R〉 of Dung [9] that can be obtained by just lifting W and S from
WF = 〈Args, R,W,S〉. In practice, WF⇓ drops the weighted system in WF .

3 Definitions and Formal Results

We focus on weighted sceptical semantics, starting from the grounded one. If
we directly extend Definition 5a to WAAFs, there are frameworks where the
set of complete extensions has more than one minimal element: hence, there
is no unique least-set as it happens in [9], and as we also desire for WAAFs.

2 Even if new and not in [3], we introduce this semantics in Definition 4 for the sake
of presentation.

3 Since Dung’s definitions of semantics are directly encompassed by our framework
(just by using the Boolean semiring), we do not introduce them in this paper for the
sake of brevity.
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For example, we consider a WAAF with arguments Args = {a, b, c, d}, and
R(a, b), R(b, c), R(b, d), all with a weight of 1 (using the Weighted semiring):
W (a, b) = 1,W (b, c) = 1,W (b, d) = 1. The set of w-complete extensions is
{{a, c}, {a, d}}, and then there is no single least element. According to [9] instead,
the grounded extension in WF⇓ is {a, c, d}: the least element exists.

Since our goal is to preserve its uniqueness in WAAFs, we improve Defini-
tion 5 in order to always have one single solution. We follow the same approach
used in [1] to define the ideal and eager semantics.

Definition 6 (w-grounded). Given WF = 〈Args, R,W,S〉, an extension B ∈
wgrd(F ), iff B ∈ wadm(WF ), and B ⊆ ⋂

wcom(WF ), and �B′ ∈ wadm(WF )
satisfying B′ ⊆ ⋂

wcom(WF ) s.t. B � B′.

In words, the w-grounded extension is any maximal (w.r.t. set inclusion)
w-admissible extension included in the intersection of w-complete extensions.
We now relate the w-grounded semantics in Definition 6 to the classical one by
Dung [9].

Proposition 1. In WF = 〈Args, R,W,S〉, if S is Boolean then the w-grounded
extension is equivalent to the classical grounded extension on WF⇓.

Moreover, from Definition 6 we can derive some noticeable properties in the
following.

Proposition 2. The w-grounded extension always exists and is unique.

Proposition 3. The w-grounded extension corresponds to the set of sceptically
accepted arguments in wcom(WF ): grd(WF) = {a ∈ Args | ∀B ∈ wcom(WF ),
a ∈ B}.

According to Proposition 2, the w-grounded extension is a subset of⋂
wcom(WF ), which always exists, is unique and w-admissible. This uniqueness

is novel w.r.t. [8,11,12], where the described frameworks offer several grounded
scenarios. Furthermore, when there is only one minimal w-complete extension,
it corresponds to the w-grounded one.

Theorem 1. Given WF = 〈Args, R,W,S〉, and S any semiring, if ∀B′ ∈
wcom(F ), B ∈ wcom(F ) s.t. B ⊆ B′, then B = wgrd(WF). Consequently,
B is w-complete.

Theorem 1 is always satisfied when the Boolean semiring is used. Moreover,
we have that the w-grounded extension is a subset of each minimal w-complete
extension.

Proposition 4. Given WF = 〈Args, R,W,S〉, S any semiring, and wcom⊆
(WF ) = {B ∈ wcom(WF ) | �B′ ∈ wcom(WF ).B′ ⊂ B′}, then ∀B ∈
wcom⊆(WF ).wgrd(WF ) ⊆ B.

In addition, each minimal w.r.t. set inclusion of the w-complete extensions
is always a subset of the classical grounded extension in Definition 5a.
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Proposition 5. Given WF = 〈Args, R,W,S〉, S any semiring, and wcom⊆
(WF ) = {B ∈ wcom(WF ) | �B′ ∈ wcom(WF ).B′ ⊂ B′}, then ∀B ∈
wcom⊆(WF ).B ⊆ grd(WF⇓).

We now introduce the w-strongly-admissible semantics, from which Proposi-
tion 6 follows, relating it with the w-grounded one.

Definition 7 (w-strongly-admissible). Given WF = 〈Args, R,W,S〉, B ⊆
Args is w-strongly-admissible iff every b ∈ B is w-defended by some B′ ⊆
B \ {b}.
Proposition 6. The w-grounded extension is w-strongly-admissible.

In Fig. 1 we present a Hasse diagram summarising some of the formal results
above. The reference WAAF is Args = {a, b, c, d}, and R(a, b), R(b, c), R(b, d).
The w-grounded extension is {a}, the minimal w-complete ones are {a, c} and
{a, d}, and the grounded extension (Definition 5) is {a, c, d}. Hence, {a} cor-
responds to the set of sceptically accepted arguments in wcom(WF ) (Proposi-
tion 3), {a} ⊆ {a, c} and {a} ⊆ {a, d} (Proposition 4), and both {a, c} and {a, d}
are a subset of {a, c, d} (Proposition 5). In the following we extend the other two
well-known sceptical semantics in order to make them consider weights:

Definition 8 (w-ideal). Given WF = 〈Args, R,W,S〉, B = w-ideal(F) (wide),
iff B is w-admissible and ∀B′ ∈ wprf (WF ), B ⊆ B′. The w-ideal extension is
the maximal (w.r.t. set inclusion) w-ideal set.

{a,c,d}

{a,c} {a,d}

{a}

Fig. 1. Given the WAAF with Args =
{a, b, c, d}, and R(a, b), R(b, c), R(b, d), the
w-grounded extension is {a}, the mini-
mal w-complete (they are w-admissible and
include all w-defended arguments) ones are
{a, c} and {a, d}, and the grounded exten-
sion [9] is {a, c, d}.

w-grounded

• •

/0

w-ideal

w-eager

• ••

w-strongly-admissible

minimal w-complete

Fig. 2. The partial ordered for
sceptical w-semantics.
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Definition 9 (w-eager). Given WF =〈Args, R,W,S〉, B=w-eager(F) (weag),
iff B is admissible and ∀B′ ∈ wsst(F ), B ⊆ B′. The w-eager extension is the
maximal (w.r.t. set inclusion) w-eager set.

As done in Proposition 1 for the w-grounded semantics, we relate the w-ideal
and w-eager semantics to their classical counterparts:

Proposition 7. In WF = 〈Args, R,W,S〉, if S is Boolean then the w-ideal and
w-eager extensions are equivalent to the classical ideal and eager extension, i.e.,
wide(WF ) = ide(WF⇓) and weag(WF ) = eag(WF⇓).

We prove the semantics in Definitions 8 and 9 are satisfied by only one
extension:

Proposition 8. The w-ideal and the w-eager are unique-status semantics.

From Definitions 6, 8 and 9 we obtain the same inclusion-result as for their
corresponding unweighted semantics [7]: grd(F ) ⊆ ide(F ) ⊆ eag(F ).

Theorem 2. Given WF = 〈Args, R,W,S〉, then wgrd(WF ) ⊆ wide(WF ) ⊆
weag(WF ).

Then, we can relate sceptical w-semantics to their unweighted counterpart
given in Definition 5: each of such extensions results to be a subset of the corre-
sponding original one:

Theorem 3. Given WF = 〈Args, R,W,S〉 and F = 〈Args, R〉 (same Args and
R), then wgrd(WF ) ⊆ grd(WF⇓), wide(WF ) ⊆ ide(WF⇓), and weag(WF ) ⊆
eag(WF⇓).

Classical strongly-admissible extensions form a lattice w.r.t. ⊆ [7], that is a
partial order where all the subsets of elements have an infimum, in this case ∅, and
a supremum, in this case the grounded extension. With w-strongly-admissible
ones instead, only a semi-lattice can be obtained: ∅ is still the infimum, but no
supremum in this case. The minimal w-complete extensions are the maximal
elements of such a semi-lattice.

Theorem 4. Given WF = 〈Args, R,W,S〉, the set of w-strongly-admissible
extensions forms a semi-lattice w.r.t. ⊆, with ∅ as the infimum. With WF =
〈Args, R,W,Boolean〉, the lattice structure is preserved, with ∅ as infimum and
grd(WF⇓) as supremum.

Figure 2 presents the Hasse diagram (w.r.t. ⊆) for sceptical semantics, consid-
ering a generic semiring: in case of a Boolean semiring, we still have a complete
lattice. Note that w-ideal and w-eager are not w-strongly-admissible, as for clas-
sical frameworks [7].
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4 Conclusion

We have extended the weighted framework in [3] by proposing a unique-status
grounded semantics, and a Hasse diagram that represents the partial order -
w.r.t. set inclusion- among sceptical extensions and w-strongly admissible ones.
By having a general framework based on semirings, it is easier to check which
relations among semantics change when the defence considers weights. According
to its sceptical nature, it is desirable to provide a single grounded extension,
differently from the frameworks in [8,11,12].

In the future we will study the framework in [6], which partitions the argu-
ments into sets satisfying the same semantics. In addition, we would like to define
the upper part of the Hasse diagram: for instance, what the relation is between
w-preferred and w-stable extensions, or the conditions when the preferred or
stable extensions are unique.
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