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Abstract. The paper presents some applications in planning and multi-
agent systems of answer set programming. It highlights the benefits of
answer set programming based techniques in these applications. It also
describes a class of multi-agent planning problems that is challenging to
answer set programming.
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1 Introduction

The invention of answer set programming (ASP) [18,20] and the development of
efficient answer set solvers such as smodels [24], dlv [5], and clingo [8] enable the
use of logic programming under answer set semantics in several practical applications
[6]. The fundamental idea of ASP is to represent solutions to a problem by answer sets
of a logic program. That is, to solve a problem, one first represents it as a logic program
whose answer sets correspond one-to-one to its solutions; next, to find a solution, one
computes an answer set of that program and extracts the solution from the answer set.

Formally, a logic program Π is a set of rules of the form

c1 | . . . | ck ← a1, . . . , am,not am+1, . . . , not an (1)

where 0 ≤ m ≤ n, 0 ≤ k, each ai or cj is a literal of a propositional language1 and not
represents default negation. Both the head and the body can be empty. When the head
is empty, the rule is called a constraint. When the body is empty, the rule is called a
fact. The semantics of a program Π is defined by a set of answer sets [10]. An answer
set is a distinguished model of Π that satisfies all the rules of Π and is minimal and
well-supported.

To increase the expressiveness of logic programs and simplify its use in applications,
the language has been extended with several features such as weight constraints or choice
atoms [24], or aggregates [7,21,25]. Standard syntax for these extensions has been pro-
posed and adopted in most state-of-the-art ASP-solvers such as clingo and dlv.

In recent years, attempts have been made to consider continuously changing logic
programs or external atoms. For example, the system clingo enables the multi-shot
model as oppose to the traditional single-shot model. In this model, ASP programs are

1 Rules with variables are viewed as a shorthand for the set of their ground instances.
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extended with Python procedures that control the answer set solving process along with
the evolving logic programs. This feature provides an effective way for the application
of ASP in a number of applications that were difficult to deal with previously.

This paper describes the application of ASP in planning in the presence of incom-
plete information and sensing actions (Sect. 2), in goal recognition design (Sect. 3), and
in various settings of multi-agent planning (Sect. 4). It highlights the advantage of ASP
in these researches and, when possible, identifies the challenging issues faced by ASP.

2 Planning with Incomplete Information and Sensing
Actions

Answer set planning was one of the earliest applications of answer set programming
[3,16,32]. The logic program encoding proposed in these papers are suitable for classical
planning problems with complete information about the initial state and deterministic
actions. In a series of work, we applied ASP to conformant planning and conditional
planning (e.g., [30,31,34,35]). The former refers to planning with incomplete infor-
mation about the initial state whose solutions are action sequences that achieve the
goal from any possible initial state (and hence, the terms comformant planning). The
latter refers to planning with incomplete information and sensing actions whose solu-
tions often contain branches in the form of conditional statements (e.g., if-then-else
or case-statement) that leads to the terms conditional planning.

Conditional planning is computationally harder than conformant planning which,
in turn, is computationally harder than classical planning. When actions are deter-
ministic and the plan’s length is polynomially bounded by the size of the problem,
the complexity of conditional and comformant planning are PSPACE-complete and
ΣP

2 -complete, respectively, [1]. As such, there are problems that has conditional plan
as solution but does not have conformant plan as solution. The following example
highlights this issue.

Example 1 (From [34]). Consider a security window with a lock that can be in one
of the three states opened, closed2 or locked3. When the window is closed or opened,
pushing it up or down will open or close it respectively. When the window is closed or
locked, flipping the lock will lock or close it respectively.

Suppose that a robot needs to make sure that the window is locked and initially,
the robot knows that the window is not open (but whether it is locked or closed is
unknown).

No conformant plan can achieve the goal. Instead, the robot needs a conditional
plan consisting of the following steps: (1) checks the window to determine the window’s
status; if the window is closed, (2.a) locks the window; otherwise (i.e., the window is
already locked), (2.b) does nothing. ��

The proposed ASP-based systems for conditional and conformant planning in
[30,31,34,35] show that ASP-based planners performed well comparing to state-of-
the-art planning systems of the same kind in several domains. Their performance can
be attributed to the following key ideas:

2 The window is closed and unlocked.
3 The window is closed and locked.
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– The use of an input language that allows for the representation and reasoning with
static causal laws (a.k.a. axiom or domain constraints). It should be noted that
the original specification of the Planning Domain Description Language (PDDL)
– a language frequently used for the specification of planning problems by the
planning community – includes axioms4 which correspond to non-recursive static
causal laws in our terminology [11]. However, the conformant planning benchmarks
designed by the planning community do not use static causal laws.

– The employment of an approximation semantics that reduces the computational
complexity of planning with incomplete information to NP-complete.

The next example highlights the advantage of directly dealing with static causal laws.

Example 2 (Dominos Domain [31]). Suppose that we have n dominos standing on a
line in such a way that if one domino falls then the domino on its right also falls. There
is also a ball hanging close to the leftmost domino. Swinging the ball will cause the
leftmost domino to fall. Initially, the ball stays still and whether or not the dominos
are standing is unknown. The goal is to have the rightmost domino to fall. Obviously,
swinging the ball is the only plan to achieve this goal, no matter how big n is.

The problem can be easily expressed by a theory with a set of objects 1, . . . , n
denoting the dominos from left to right and a single action swing that causes down1

(the leftmost domino falls) to be true, and n − 1 axioms (state constraints) downi ⇒
downi+1 representing the fact that downi+1 is true if downi is true. The goal is to have
downn become true.

State constraints are usually dealt with by compiling them away. According to the
compilation suggested in [33], for each axiom downi ⇒ downi+1, we introduce a new
action ei whose effect is downi+1 and whose precondition is downi. Clearly, under this
compilation, the plan to achieve the goal is the sequence of actions [swing, e1, . . . , en−1].

The main problem with this compilation is that the plan length increases with the
number of objects. Even when it is only linear to the size of the original problem,
it proves to be challenging for planners following this approach. Most planners have
problem when plan length is greater than 500 (i.e., more than 500 dominos). ��

The input language is the action language Ac (in [30,31,35]) and Ac
K (in [34]).

Since Ac
K is an extension of Ac with sensing actions, we summarize the features of Ac

K

below. An action theory in Ac
K is a collection of statements of the following forms:

initially(l) (2)
executable if(a, ψ) (3)

causes(a, l, φ) (4)
if(l, ϕ) (5)

determines(a, θ) (6)

where a is an action, l is a fluent literal, and ψ, φ, ϕ, θ are sets of literals5. (2) says that
l holds in the initial situation. (3) says that a is executable in any situation in which
ψ holds (the precise meaning of hold will be given later). (4) represents a conditional
effect of an action. It says that performing a in a situation in which φ holds causes l
to hold in the successor situation. (5), called a static causal law, states that l holds in
any situation in which ϕ holds. (6) states that the values of literals in θ, sometimes
referred to as sensed-literals, will be known after a is executed.

4 In our view, static causal laws can be used to represent relationships between fluents
and thus could be considered as axioms in PDDL.

5 A set of literals is interpreted as the conjunction of its members. ∅ denotes true.
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The complete semantics of Ac
K can be found in [2]. It defines a transition function

Φ over pairs of actions and sets of belief states. The approximation semantics employed
in the systems in [30,31,34,35] defines a transition function Φa over pairs of actions
and approximation states where an approximation state is a set of consistent literals
satisfying the static causal laws. Φa can be defined in set theoretical terms [31,34] or
by logic program rules [35]. Its precise definition can be found in the aforementioned
papers. Φa can be used for conformant planning in ASP, in the same way that the
transition function of the action language is used for planning as described in [16].

Given a planning problem instance P = (D, I, G), where D is a set of statements
of the forms (3)–(6), I is a set of statements of the form (2), and G is a fluent formula.
Let k be an integer denoting the maximal length of the desirable solutions. We solve
P by translating it into a logic program πk(P) such that each answer set of πk(P)
corresponds to a solution of at most k actions. Besides atoms defining the actions,
fluents, literals, etc., πk(P) uses the following main predicates:

– holds(L, T ): literal L holds at step T .
– poss(A, T ): action A is executable at T .
– occ(A, T ): action A occurs at T .
– pc(L, T ): literal L may change at T + 1.
– goal(T ): the goal is satisfied at T .

The rules for encoding direct effects of actions in πk(P) are similar to the rules
used for classical planning:

holds(L, T + 1) ← occ(A, T ), causes(A, L, ϕ), holds(ϕ, T ).

The difference with classical planning lies in the rules defining pc(L, T ) and the rule
encoding of the inertial axiom:

holds(L, T + 1) ← holds(L, T ),not pc(¬L, T + 1).

Rules in πk(P) ensure that, for an answer set S of πk(P), if δ = {l | holds(l, t) ∈ S},
δ′ = {l | holds(l, t + 1) ∈ S}, and occ(a, t) ∈ S then (a) a is executable in δ; and (b)
δ′ = Φa(a, δ).

As shown in Example 1, conformant plans are insufficient when sensing actions are
needed. In this situation, conditional plans are required. Formally, a conditional plan is
(i) [] is a conditional plan, denoting the empty plan, i.e., the plan containing no action;
(ii) if a is a non-sensing action and p is a conditional plan then [a; p] is a conditional
plan; (iii) if a is a sensing action with proposition (6), where θ = {g1, . . . , gn}, and
pj ’s are conditional plans then [a; cases({gj → pj}n

j=1)] is a conditional plan; and (iv)
Nothing else is a conditional plan.

To encode a conditional planning problem in ASP, we need to accommodate possible
cases of a conditional plan. Let us observe that each conditional plan p corresponds to
a labeled plan tree Tp defined as below.

– If p = [] then Tp is a tree with a single node.
– If p = [a], where a is a non-sensing action, then Tp is a tree with a single node and

this node is labeled with a.
– If p = [a; q], where a is a non-sensing action and q is a non-empty plan, then

Tp is a tree whose root is labeled with a and has only one subtree which is Tq.
Furthermore, the link between a and Tq’s root is labeled with an empty string.
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– If p = [a; cases({gj → pj}n
j=1)], where a is a sensing action that determines gj ’s,

then Tp is a tree whose root is labeled with a and has n subtrees {Tpj | j ∈
{1, . . . , n}}. For each j, the link from a to the root of Tpj is labeled with gj .

For instance, Fig. 1 shows the trees for the following four conditional plans in the
domain of Example 1:

(i) p1 = [push down; flip lock];

(ii) p2 = check; cases

⎛
⎝

open → []
closed → [flip lock]
locked → []

⎞
⎠;

(iii) p3 = check; cases

⎛
⎝

open → [push down; flip lock]
closed → [flip lock; flip lock; flip lock]
locked → []

⎞
⎠ ; and

(iv) p4 = check; cases

⎛
⎝

open → []
closed → p2

locked → []

⎞
⎠

push_down
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op
en
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Fig. 1. Sample plan trees

Observe that each trajectory of the plan p corresponds to a path from the root to
a leave of Tp. Furthermore, let α (or the width of Tp) be the number of leaves of Tp

and β (or the height of Tp) be the number of nodes along the longest path from the
root to the leaves of Tp. Let w and h be two integers such that α ≤ w and β ≤ h and
the leaves of Tp be x1, . . . , xα. We map each node y of Tp to a pair of integers ny =
(ty,py), where ty is the number of nodes along the path from the root to y, and py is
defined in the following way.

– For each leaf xi of Tp, pxi is an arbitrary integer between 1 and w such that (i)
there exists a leaf x with px = 1, and (ii) i 
= j implies pxi 
= pxj .

– For each interior node y of Tp with children y1, . . . , yr, py = min{py1 , . . . , pyr}.

Figure 2 shows some possible mappings for the four trees in Fig. 1. It is easy to
see that if α ≤ w and β ≤ h then such a mapping always exists and (1, 1) is always
assigned to the root. Furthermore, given a labeled tree Tp whose nodes are numbered
according to the about rules, the plan p can easily be reconstructed. This means that
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Fig. 2. Possible mappings for Tpi (i = 1, 2, 3, 4) with w = 5 and h = 4

computing a solution p of a planing problem P = (D, I, G) is equivalent to identifying
its tree Tp. This property allows for the encoding of P as a logic program πh,w(P)
that generates labeled trees corresponding to solutions of P whose width and height
are bounded by w and h, respectively. In addition to the usual predicates defining the
actions, fluents, etc. πh,w(P) uses the following predicates:

– holds(L, T, P ): literal L holds at node (T, P ) (i.e., at step T of path P ).
– poss(A, T, P ): action A is executable at (T, P ).
– occ(A, T, P ): action A occurs at (T, P ).
– pc(L, T, P ): literal L may change at (T + 1, P ).
– goal(T, P ): the goal is satisfied at (T, P ).
– br(G, T, P, P1): there exists a branch from (T, P ) to (T + 1, P1) labeled with G.
– used(T, P ): (T, P ) belongs to some extended trajectory of the constructed plan.

Observe that most of the predicates used in πh,w(P) are similar to those in πk(P)
extended with the third parameter encoding branches of a conditional plan, the last
two predicates are specific to πh,w(P). They encode the cases of the solution. The detail
encoding of πh,w(P) and its soundness and completeness can be found in [34].

One disadvantage of the proposed approach is the incompleteness of the ASP based
planners. To address this issue, we identified completeness condition of the approxima-
tion [35]. Saturation and meta-programming techniques (see Sect. 3) could be used for
a complete ASP-based planner.

3 Answer Set Programming in Goal Recognition Design

Goal recognition, a special form of plan recognition, deals with online problems aiming
at identifying the goal of an agent as quickly as possible given its behavior [9,23]. For
example, Fig. 3(a) shows an example gridworld application, where the agent starts at
cell E3 and can move in any of the four cardinal directions. Its goal is one of three
possible ones G1, G2, and G3. The traditional approach has been to find efficient
algorithms that observe the trajectory of the agent and predict its actual goal [9,23].

Goal recognition design (GRD) [12] aims at identifying possible changes to the
environment in which the agents operate, typically by making a subset of feasible
actions infeasible, so that agents are forced to reveal their goals as early as possible.
For example, under the assumption that agents follow optimal plans to reach their
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Fig. 3. Example Problem

goal, by making the action that moves the agent from cells E3 to D3 infeasible, the
agent is forced to either move left to E2, which would immediately reveal that its goal
is G1, or move right to E4, revealing that it is either G2 or G3. In [12], the authors
introduced the notion of worst-case distinctiveness (wcd), as a goodness measure that
assesses the ease of performing goal recognition within an environment. The wcd of a
problem is the longest sequence of actions an agent can take without revealing its goal.
The objective in GRD is then to find a subset of feasible actions to make infeasible such
that the resulting wcd is minimized. We will next present two ASP-based solutions of
the GRD problem. Abusing the notation, we represent a GRD problem P by the triple
(D, I, G) with the understanding that G is the set of possible goals of the agent. By
wcd(P), we denote the wcd of P.

3.1 A Saturation-Based Meta Encoding

The first encoding of the GRD problem in ASP utilizes meta-programming and satura-
tion techniques. The saturation technique is an advanced guess and check methodology
used in disjunctive ASP to check whether all possible guesses in a problem domain sat-
isfy a certain property [4]. It can be used to encode ΣP

2 -complete problems such as the
satisfiability problem for ∃∀-QBF. For instance, in a typical encoding for satisfiability
of a ∃∀-QBF the guess part uses disjunction to generate all possible truth values for
the propositional atoms that are quantified by ∀ (∀-atoms) and the check part checks
the satisfiability of the formula for all valuations of the ∀-atoms (i.e., it checks whether
the resulting formula after applying choices made for ∃-atoms is a tautology or not). To
achieve this, the fact that answer sets are minimal w.r.t. the atoms defined by disjunc-
tive rules is utilized. To this end, the saturation part of the program derives (saturates)
all atoms defined in the guess part for generating the search space. It should be noted
that the saturation technique puts syntactical restrictions on the program parts by for-
bidding the use of saturated atoms as default negation literals in a rule or as positive
literals in a constraint [4,15].

As it turns out, the wcd of a problem can be formulated as a ∃∀-QBF formula as
follows. Let g ∈ G and π∗

g denote the minimal cost plan achieving g. Let vl(x, y, c)
denote that c is the common prefix of minimal cost plans of π∗

x and π∗
y . The wcd

definition of P can be encoded by the following ∃∀-QBF:

∃x, y, c[vl(x, y, c)∧[∀x′, y′, c′[vl(x′, y′, c′)→|c|≥|c′|]] (7)

where, for the sake of simplicity, we omit some details such as x, y, x′, y′ ∈ G, and that
c and c′ correspond to sequences of actions that are the common prefix of cost-optimal
plans π∗

x and π∗
y , π∗

x′ and π∗
y′ , respectively.
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To compute the wcd using the saturation technique, we only need to encode the sat-
isfiability of formula (7). Two possible implementations of the saturation techniques are
detailed in [29]; one of them performs exceptionally well against the system developed
by the inventor of the GRD problem.

3.2 A Multi-shot ASP Encoding

The second encoding of the GRD problem employs a hybrid implementation made
possible by multi-shot ASP. Given a GRD P = (D, I, G), an integer k denoting the
maximal number of actions that can be blocked for reducing the wcd, and an inte-
ger max be denoting the maximal length of plans in P. We develop a multi-shot
ASP program Π(P) for computing (i) wcd(P); and (ii) a solution of P wrt. k (a set
of actions that should be blocked) to achieve wcd(P). Specifically, Π(P) implements
Algorithm 1 in multi-shot ASP and consists of a logic program π(P) and a Python
program GRD(P, k, max).

Algorithm 1. GRD(P, k,max)
1: Input: a GRD problem P = (D, I, G) & integers k, max.
2: Output: wcd(P), and a solution R of P w.r.t. k or unsolvable if some goal is not

achievable.
3: for each goal g in G do
4: compute the length of minimal plan for g
5: if plan of length i ≤ max exists then set mg = i
6: else return unsolvable
7: end for
8: let π1 = π∗(P)∪{min goal(g, mg), activate(g) | g ∈ G}
9: set len = max{mg | g ∈ G} in π1

10: add the optimization module of π(P) to π1

11: compute an answer set Y of π1

12: let wcd(P) = d where wcd(d) ∈ Y % Note: π1 defines the atom wcd(d)
13: compute a set S of actions that can potentially change wcd(P) when they are

removed
14: set w = wcd(P) and R = ∅
15: for each set X of at most k actions in S do
16: let π2 = π1 ∪ {blocked(a) | a ∈ X}∪ the blocking module of π(P)
17: compute an answer set Z of π2

18: if wcd(d′) ∈ Z & d′ < w then set w = d′ and R = X
19: end for
20: return 〈w, R〉

The program π(P) consists of the following modules:

– Planning : A program encoding the domain information D of P and the rules for
generating optimal plan for each g ∈ G. This module is similar to the standard
encoding in ASP planning [16] with an extension to allow for the generation of
multiple plans for multiple goals at the same time (i.e., similar to that used in
conditional planning in Sect. 2).
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– Optimization: A set of rules for determining the longest prefix between two plans
of two goals gI and gJ on trajectories I 
= J given a set of plans for the goals in
G. It also contains the optimization statement for selecting answer sets containing
wcd(P).

– Blocking : A set of rules that interact with the Python program to block actions
from the original problem.

The multi-shot ASP implementations of the GRD problem performs reasonably well
against the system developed by the inventor of the GRD problem [29].

4 ASP in Multi-agent System

4.1 ASP and Distributed Constraint Optimization Problems

A distributed constraint optimization problem (DCOP) is defined by 〈X , D, F , A, α〉,
where: X = {x1, . . . , xn} is a set of variables; D = {D1, . . . , Dn} is a set of finite
domains, where Di is the domain of variable xi; F = {f1, . . . , fm} is a set of constraints,
where each ki-ary constraint fi : Di1 × Di2 × . . . × Diki

�→ N ∪ {−∞, 0} specifies
the utility of each combination of values of the variables in its scope, scope(fi) =
{xi1 , . . . , xiki

}; A = {a1, . . . , ap} is a set of agents; and α : X → A maps each variable
to one agent.

Figure 4(a,b) shows an example of a DCOP with three agents (see [14]), where each
agent ai controls variable xi with domain {0, 1}. Figure 4(a) shows its constraint graph
and Fig. 4(b) shows the utility functions, assuming that all of the three constraints
have the same function.

x1

x2

x3

xi

i < j

xj Utilities

0 0 5

0 1 8

1 0 20

1 1 3

x1

x2

x3

x1 x2 Utilities

0 0 max( 5+ 5, 8+8)=16

0 1 max( 5+20, 8+3)=25

1 0 max(20+ 5, 3+8)=25

1 1 max(20+20, 3+3)=40

x1 Utilities

0 max( 5+16, 8+25)=33

1 max(20+25, 3+40)=45

(a) (b) (c) (d) (e)

Fig. 4. DCOP graph (a), utility table (b); DPOP graph (c), UTIL-Phase Computation
Table (d, e)

A solution is a value assignment for all variables and its corresponding utility is
the evaluation of all utility functions on such solution. The goal is to find a utility-
maximal solution. Solutions of a DCOP can be computed in three steps [22]: (i)
constructing a pseudo-tree from the constraint graph (Fig. 4(c) for the example); (ii)
UTIL-computation phase: each agent, starting from the leafs of the pseudo-tree, (ii.x)
computes the optimal sum of utilities in its subtree for each value combination of
variables in the set of variables owned by ancestor agents that are constrained with
variables owned by the agents in the subtree (Fig. 4(d) shows the UTIL-computation
of the agent a3) and (ii.xx) sends the maximal value to its parent; and (iii) VALUE-
propagation phase: each agent, starting from the root of the pseudo-tree, determines
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the optimal value for its variables upon receiving the VALUE message from its parent
and sends to its children (Fig. 4(e) shows the VALUE-propagation of the agent a1) in
a VALUE message.

In [14], we presented an ASP-based system, ASP-DPOP, for computing solutions
of DCOP. In this system, each agent consists of two modules, an ASP module and
a controller. The ASP module is responsible for computing the UTIL and VALUE
messages when the agent needs to do so. The controller, written in SICStus c© Prolog,
is responsible for all communications between the agent and other agents. When an
agent receives all UTIL messages from its children, the ASP module computes its UTIL-
message and the controller sends the message to its parent. When an agent receives its
parent’s VALUE message, the ASP module computes its own VALUE message and the
controller sends the message to its children. The flexibility and expressiveness of ASP
allows ASP-DPOP to work with agents who control multiple variables while state-of-
the-art DCOP solvers assume that each agent controls only one variable. ASP-DPOP
performs well against state-of-the-art DCOP solvers in several domains and has better
performance, both in scalability and efficiency, in domains with hard constraints. The
approach has been extended to deal with uncertainty in constraint utilities [13].

4.2 Multi-agent Planning

Multi-agent planning (MAP) is the problem of planning for multiple agents. The pres-
ence of multiple agents that can change the environment simultaneously brings about
a number of issues:

– can the planning process be done centralized or must it be done distributed?
– what is the protocol for agents to communicate with each other?
– what types of actions are available for the agents (e.g., whether group actions are

available? whether knowledge and/or belief changing actions are involved? etc.)?
– what are the representation languages used by individual agents?

For simplicity of the presentation, let us assume that all agents use the same rep-
resentation language. The answer to the other questions depends on the degree of
cooperativeness between agents.

Generally, a MAP for the agents {1, . . . , n} can be represented by a tuple
(P1, . . . , Pn) where Pi is a planning problem for agent i extended with information
about other agents who can affect the view of the environment locally to i.

– When agents are fully cooperative and planning can be done by one single agent,
the encoding for single-agent planning (e.g., in [16]) can be extended to deal with
MAP by

• creating the program πk(Pi) for Pi ; and
• adding constraints to eliminate conflicts that arise due to the (potentially)

parallel execution of actions among agents
A prototype of an ASP based MAP system was proposed in [28]. Recently, we
extend this prototype to deal with an interesting application the Multi-Agent
Path Finding (MAPF) problem that deals with teams of agents that need to find
collision-free paths from their respective starting locations to their respective goal
locations on a graph. This model has attracted a lot of attention due to the suc-
cess of the autonomous warehouse systems [36]. In these systems (illustrated by
Fig. 5), robots (in orange) navigate around a warehouse to pick up inventory pods
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Fig. 5. Layout of an autonomous warehouse system [Wurman et al., 2008] (Color figure
online)

from their storage locations (in green) and drop them off at designated inventory
stations (in purple) in the warehouse.
As it turns out, the ASP based system does not perform very well in this applica-
tion comparing to state-of-the-art (e.g., [17]). The interesting part of this problem
is that the basic ASP encoding is fairly simple. Yet, the problem quickly becomes
unsolvable when its size increases.
By adding domain-knowledge to the encoding and decomposing the problem into
smaller sub-problems, the scalability of the system improves significantly [19]. For
example, it is easy to see that by adding some designated locations to the map, a
path can be seen as multiple segments among the designated locations. As such, a
path can be generated in multiple steps. In the first step, segments of a path are
generated using a simplified map. The final path is then obtained by generating
the concrete path for each segment.

– For self-interested agents, solving an MAP requires that agents negotiate with
each other and thus an integration of a negotiation framework with MAP will be
necessary. As shown in [27], ASP can also be used effectively for the development of
negotiation systems. It is worth noticing that any negotiation framework used for
this purpose must consider the dynamic of the environment. In [26], we developed
an ASP based prototype for planning with negotiation in a dynamic environment.
While the underlying encoding for planning does not change, special attentions
need to be made to deal with the “effects” of negotiations. We envision that this
approach will be necessary for some future extensions of the MAPF problem that
might require stronger interactions between agents. For example, an agent might
request help from another agent to continue its job if it realizes that its battery
will run out before it can complete its job.

5 Conclusions

In this paper, we describe the application of answer set programming in planning with
incomplete information and sensing actions, goal recognition design, distributed con-
straint optimization problem, and various settings of multi-agent planning. We discuss
the key techniques that contribute to the good performance of ASP based solutions
and present a challenging application for ASP.
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