LP2NORMAL — A Normalization Tool
for Extended Logic Programs

Jori Bomanson (™)

Department of Computer Science, Aalto University, Espoo, Finland
jori.bomanson@aalto.fi

Abstract. Answer set programming (ASP) features a rich rule-based
modeling language for encoding search problems. While normal rules
form the simplest rule type in the language, various forms of extended
rules have been introduced in order to ease modeling of complex con-
ditions and constraints. Normalization means replacing such extended
rules with identically functioning sets of normal rules. In this system
description, we present LP2NORMAL, which is a state-of-the-art normal-
izer that acts as a filter on ground logic programs produced by grounders,
such as GRINGO. It provides options to translate away choice rules, car-
dinality rules, and weight rules, and to rewrite optimization statements
using comparable techniques. The produced logic programs are suitable
inputs to tools that lack support for extended rules, in particular. We
give an overview of the normalization techniques currently supported by
the tool and summarize its features. Moreover, we discuss the typical
application scenarios of normalization, such as when implementing the
search for answer sets using a back-end solver without direct support for
cardinality constraints or pseudo-Boolean constraints.

1 Introduction

Answer set programming (ASP) [9,15] is a declarative programming paradigm
that features a rich rule-based modeling language for encoding search problems.
Normal rules form the base fragment of the language and their declarative inter-
pretation is based on the notion of answer sets also known as stable models [12].
In order to ease modeling of complex conditions and constraints, different syn-
tactic extensions have been introduced. In particular, the extended rule types of
[16], i.e., choice, cardinality, and weight rules and optimization statements are
central primitives for modeling in ASP [11].

When it comes to implementing language extensions, there are two basic
strategies. The first is to extend the underlying answer-set solver to natively
handle extended syntax. The second is to treat extensions as syntactic sugar
and translate them away. The tool described in this paper is motivated by the
latter translation-based strategy in a setting where the used ASP toolchain does
not support extended rules. The normalization [14] of such rules means replacing
them with sets of normal rules that are semantically indistinguishable from them
in any context. For example, the weight rule a:-5 < #sum {2: ;3 : ¢;5 : not d}

© Springer International Publishing AG 2017
M. Balduccini and T. Janhunen (Eds.): LPNMR 2017, LNAI 10377, pp. 222-228, 2017.
DOI: 10.1007/978-3-319-61660-5_20

LP2NORMAL — A Normalization Tool for Extended Logic Programs 223

can be normalized into a :- b,c and a :- not d. While the normalization of
choice rules is straightforward, sophisticated normalization techniques for other
extended rules have been developed in a trilogy of papers [6-8].

In this system description, we present a tool called LP2NORMAL (2.27)!, which
is a state-of-the-art normalizer that can be used to filter ground logic programs
produced by a grounder before forwarding the programs to a solver for the
computation of answer sets. It ships with the functionality required to translate
away extended rules, by which we exclusively refer to choice, cardinality, and
weight rules in the sequel, as well as to rewrite optimization statements in an
analogous way.

The rest of this paper is organized as follows. In Sect.2, we give a brief
overview of translation techniques that can be exploited in the process of nor-
malizing extended rule types. Specific features of LP2NORMAL available through
numerous command-line options are summarized in Sect. 3. Some existing appli-
cation scenarios of normalization are discussed in Sect. 4. Finally, we conclude
the paper in Sect. 5.

2 Overview of Normalization Techniques

In this section, we look into techniques for normalizing cardinality and weight
rules. We also describe methods for simplifying the rules before normalization
and the idea of a cone of influence for pruning the normalized output. Finally, we
turn to the task of rewriting optimization statements. The underlying translation
schemes to be described can be interpreted as specifications of counting and
comparison operations between numbers expressed in unary, binary, or even
mixed-radix bases.

In ASP, to say that at least k out of n literals are satisfied one typically
uses a single cardinality rule. This condition is also expressible in a number of
normal rules, such as in O(n(n—k)) rules and auxiliary atoms that form a Binary
Decision Diagram (BDD) [10] or a counting grid [14,16]. The rows of this grid
are built in a dynamic programming fashion based on the previous rows, and
each row encodes a partial count of satisfied input literals as a unary number.
Translation schemes identical or close to this involve the Sinz counter [17] and
sequential counters (SEQ) [13]. More concise encodings are obtainable via merge
sorting, where again partial counts are built up of smaller counts, but this time by
recursively merging halves of the input. We obtain an ASP encoding of an odd-
even sorting network of size O(n(log n)?) by using odd-even merging networks [5],
and expressing their building blocks, i.e., comparators, in three normal rules
each. On the other hand, we obtain a totalizer of size O(n?) by using direct
mergers that require no additional auxiliary variables [4].

The translations mentioned so far can be encoded without introducing
negated literals beyond those in the input. With the use of additional nega-
tion, even more concise schemes are attainable. For example, an encoding of a

! Available at http://research.ics.aalto.fi/software/asp.

http://research.ics.aalto.fi/software/asp

224 J. Bomanson

binary adder yields no more than O(nlogk) rules and atoms. However, analo-
gous encodings have proven difficult in SAT solving due to their poor propagation
properties. Moreover, they may lead to soundness issues in ASP, where negation
and positive recursion require extra care.

Lower bounds in cardinality rules, such as k above, can be replaced or com-
plemented by upper bounds in typical ASP systems, which convert the latter
to the former in the grounding phase [16]. Hence, only lower bounds remain for
normalization. Similarly, syntactic constructions that combine choice and cardi-
nality rules can be interpreted as short hands for the two types of rules, which
can be normalized separately.

When it comes to weight rules, in which literals are generalized to have
weights w;, we may apply simplifications prior to normalization, potentially
reducing numbers of literals or their weights. Both of these outcomes generally
lower the size of the subsequent normalization. Among these simplifications, we
have some basic ones such as removal of literals with large weights w; > k that
can be compensated with simple normal rules. Also, we may factor out any
common divisor d of the weights and divide the bound, rounding it up. Further-
more, this division is applicable even when one of the weights w; results in a
remainder, as long as the corresponding quotient is afterward incremented by
one in the case that £ < w; (mod d). Other scenarios providing simplification
opportunities include cases where a number of the largest weights in a rule are
always required in order to reach the bound; where a pair of weights together
satisfy the bound; where a weight is too small to ever make a difference; and
certain cases where analysis of the residues resulting from division of the bound
and weights with a heuristically chosen divisor reveals that the division can be
done given minor adjustments to some of the numbers.

The actual normalization techniques in the tool for weight rules mainly
revolve around two types of translations. On the one hand, we have sequen-
tial weight counters (SWC) [13] and Reduced-Ordered Binary Decision Dia-
grams (ROBDDs) [1], both of the size O(nk). They are particularly compact
for small rules, for which the asymptotic size is not relevant in practice. On
the other hand, we have sorting and merging based normalizations, which
are O(n(logn)?log wmax) in size, e.g., when odd-even mergers are used, where
Wmax denotes the largest input weight [6,10]. In the constructions, there are
¢ < logy Wmax sorters, each of which intuitively counts digits of a certain signifi-
cance, which are followed by ¢ — 1 mergers that perform deferred carry propaga-
tion. These normalizations can be compressed with structure sharing [6]. This
sharing method stems from the observation that the sets of inputs to the sorters
overlap significantly in general. When merge sorters are used, the overlap leads
to duplication in their structure, which may be maximized via optimization and
then eliminated.

In normalizations of cardinality and weight rules, there is only a single output
atom per rule that we are interested in. Yet, in their basic form, the outlined
normalization strategies, with the exception of those based on (RO)BDDs, define
sequences of outputs that are not all needed. Namely, counting grids, mergers,

LP2NORMAL — A Normalization Tool for Extended Logic Programs 225

sorters, and SWCs produce entire vectors of atoms with sorted truth values. Now
one may imagine that we mark a single output, and propagate this information
of what is wanted and what is not backward through the rules in the translation,
so as to compute what we call a cone of influence. Then, the actual normalization
may be produced in a forward phase, where only the rules defining atoms that
fell inside the cone are included. From our practical experience, this pruning
technique is important for sorters, and sorter based translations as well as SWCs.
Moreover, it also brings down the asymptotic size of odd-even merge sorting
programs, which it prunes down from a size of O(n(logn)?) to selection programs
of size O(n(logm)?), where m is the lesser of the bound k and n — k + 1. The
resulting size rivals that of selection network designs used in SAT [2].

Whereas the above options concern normalization resulting in purely nor-
mal rules, LP2NORMAL also supports rewriting of optimization statements using
techniques similar to those used in normalization, but which generate modified
optimization statements in adddition to normal rules. The rewritings generally
define auxiliary atoms using normal rules so as to encode the sum, or some par-
tial sums of the weighted literals that make up an optimization statement. Such
a statement is then replaced by one or more statements specified in terms of
the new auxiliary atoms. These rewritings are solely aimed at boosting solving
performance by offering new atoms to branch on and to use in learnt nogoods.
However, these rewritings may grow impractically large in terms of the generated
atoms and rules, especially when applied to optimization statements that carry
substantial amounts of information. To alleviate this issue, we have developed
ways to limit the size increase via refined control over how much rewriting is
done.

3 Implementation

In this section, we cover the usage and highlight some implementation details of
the normalizer tool LP2NORMAL. A summary of the discussed options is shown
in Table 1.

By default, all extended rules are translated into normal rules, while leaving
other rules and statements intact. This behaviour is configurable via command
line options, which are prefixed with -c, -w, and -o for cardinality, weight, and
optimization statements, respectively. Rules can be kept as they are with the
option -k for choice rules and -ck, -wk, —ok for the rest.

Cardinality rules are by default normalized using an automatic scheme -cc
that generates merge sorting programs built recursively of direct mergers and
odd-even mergers. The choice between them is based on trial runs that reveal
which one introduces fewer atoms and rules. The decision can be fixed to direct
mergers with —ct and to odd-even mergers with —ch. Moreover, an option -cs
is available for basing the normalization on selection networks instead.

For weight rules, one may pick the schemes based on SWCs with -wc and
ROBDDs with -wb. Weight rule translations constructed from sorters and merg-
ers are primarily controlled with the option -wq. Due to a design choice in

226 J. Bomanson

Table 1. Command-line options of translations in LP2NORMAL by extended rule
type and with asymptotic sizes after cone-of-influence simplification. Here m =
min {k,n —k + 1}.

Options Rules (Atoms)

Choice O(n)

Cardinality |-cn O(n(n —k)) Counting grid [10,14, 16]

Cardinality | -ct O(nm) (O(nlogm)) | Totalizer [4]

Cardinality | -ch O(n(logm)?) Odd-even merge sort
[5,8,10]

Cardinality | -cc O(n(logm)?) Automatic merge sort

Weight -we O(nk) SWC [13]

Weight -wb O(nk) ROBDD (1]

Weight -wq -cc O(n(logn)? log wmax) | Network of merge sorters
[3,6,10]

Optimization | -ogqn -cc O(n(logn)? log Wmax) | Network of merge sorters [7]

Optimization | —oKpg -oqn -cc | O(ng(logn)?) Rewrite ¢ most significant
digits [7]

LP2NORMAL aiming for simplicity, the choice of sorters and mergers used here
are inferred from any active cardinality rule options. That is, if a user requests
cardinality rules to be translated using odd-even mergers and sorters with -ch
and weight rules with -wq, then those types of mergers and sorters are used in
the weight rule normalizations as well.

For optimization statements, the option -oqn instructs LP2NORMAL to pro-
ceed with optimization statements in the same way as when it applies -wq to
weight rules, but with the following difference. The translation is cut short before
a bound check is encoded, and instead the atoms that the bound check would
have depended on are printed in an optimization statement. Moreover, there is
an option -ox to use certain weight rule translation techniques, primarily those
based on SWCs or ROBDDs, to produce a single sorted and weighted sequence
of atoms that encodes all subset sums of the contents of an optimization state-
ment. This option is not always feasible, but it serves as a proof-of-concept for
how to use these weight rule techniques to rewrite optimization statements in
a natural way. Finally, we highlight a collection of options prefixed by -oK or
-ok that select parts of optimization statements to be rewritten or kept from
being rewritten. For example, with —oKp3 one may instruct LP2NORMAL to first
split every weight after three of its most significant digits and then to apply any
specified rewriting, such as -oqn, to the more significant part only.

4 Applications

Our main driving motivation for normalization in ASP has been to add support
for extended rules to solvers that would otherwise accept only normal rules.

LP2NORMAL — A Normalization Tool for Extended Logic Programs 227

To this end, LP2NORMAL took part in several systems submitted by the Aalto
team to the Sixth Answer Set Programming Competition?. The following is an
example of a pipeline relying on the SAT solver LINGELING for solving ASP
problems. In the pipeline, LP2NORMAL translates away extended rules, while the
tools in the middle take care of translating the resulting normal rules to SAT.

lp2normal | lp2acyc | 1lp2sat -b | lingeling

In the above, we could alternatively use

normalization capabilities of the state-of- % 25

the-art ASP solver cLASP (3.2.2) via its =

options --pre and --trans-ext=all. How- B2

ever, the techniques implemented therein é

generally yield larger output. Figure 1 depicts g L5

the case for cardinality rules on n € 1

{25,50,100} atoms. As another use case, one 20 40 60 80 100
of the systems in the competition combines Lowerbound 1 < k < n

LP2NORMAL and CLASP in a configuration
where the normalizer translates cardinality
and weight rules of only modest size, and
rewrites parts of optimization statements. In
this case, the role of the normalizer is to
alter the solving performance of the solver,
which can handle extended rules natively as well. The impact on performance
varies benchmark by benchmark, which frequently improves but also sometimes
degrades.

Fig. 1. Ratios of the numbers of
integers in the normalizations pro-
duced by CLASP in comparison to
LP2NORMAL.

5 Conclusion

We summarized the most important capabilities of the tool LP2NORMAL con-
cerning the normalization of cardinality and weight rules and rewriting of opti-
mization statements in answer set programs. In future development, we plan to
incorporate optimal sorting networks into the tool together with other compact
networks generated offline for small, fixed ranges of input parameters. Finally,
we continue to explore partial rewriting, which has proven to be an effective way
to limit translation size and enhance optimization performance [7].

References
1. Abio, I., Nieuwenhuis, R., Oliveras, A., Rodriguez-Carbonell, E., Mayer-

Eichberger, V.. A new look at BDDs for pseudo-Boolean constraints. J. Artif.
Intell. Res. 45, 443-480 (2012)

2 Participant systems are available at http://aspcomp2015.dibris.unige.it /partici-
pants.

http://aspcomp2015.dibris.unige.it/participants
http://aspcomp2015.dibris.unige.it/participants

228

10.

11.

12.

13.

14.

15.

16.

17.

J. Bomanson

. Asin, R., Nieuwenhuis, R., Oliveras, A., Rodriguez-Carbonell, E.: Cardinality net-

works: a theoretical and empirical study. Constraints 16(2), 195-221 (2011)

. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-Boolean con-

straints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181-194.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_19

. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of Boolean cardinality con-

straints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108-122. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45193-8_8

. Batcher, K.: Sorting networks and their applications. In: AFIPS Spring Joint Com-

puter Conference, pp. 307-314. ACM (1968)

. Bomanson, J., Gebser, M., Janhunen, T.: Improving the normalization of weight

rules in answer set programs. In: Fermé, E., Leite, J. (eds.) JELIA 2014.
LNCS (LNAI), vol. 8761, pp. 166-180. Springer, Cham (2014). doi:10.1007/
978-3-319-11558-0-12

. Bomanson, J., Gebser, M., Janhunen, T.: Rewriting optimization statements in

answer-set programs. In: Technical Communications of ICLP 2016, vol. 52, OASIcs,
pp. 5:1-5:15 (2016)

Bomanson, J., Janhunen, T.: Normalizing cardinality rules using merging and
sorting constructions. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS
(LNAI), vol. 8148, pp. 187-199. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40564-8_19

Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92-103 (2011)

Eén, N., Sérensson, N.: Translating pseudo-Boolean constraints into SAT. J. Sat-
isfiability Boolean Model. Comput. 2, 1-26 (2006)

Gebser, M., Schaub, T.: Modeling and language extensions. AI Mag. 37(3), 33-44
(2016)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP 1988, pp. 1070-1080. MIT Press (1988)

Hoélldobler, S., Manthey, N., Steinke, P.: A compact encoding of pseudo-Boolean
constraints into SAT. In: Glimm, B., Kriiger, A. (eds.) KI 2012. LNCS (LNAI), vol.
7526, pp. 107-118. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33347-7_10
Janhunen, T., Niemeld, [.: Compact translations of non-disjunctive answer
set programs to propositional clauses. In: Balduccini, M., Son, T.C. (eds.)
Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning.
LNCS (LNAI), vol. 6565, pp. 111-130. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20832-4_8

Janhunen, T., Niemel4, I.: The answer set programming paradigm. AI Mag. 37(3),
13-24 (2016)

Simons, P., Niemel4, I., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1-2), 181-234 (2002)

Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints.
In: Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827-831. Springer, Heidelberg
(2005). doi:10.1007/11564751_73

http://dx.doi.org/10.1007/978-3-642-02777-2_19
http://dx.doi.org/10.1007/978-3-540-45193-8_8
http://dx.doi.org/10.1007/978-3-319-11558-0_12
http://dx.doi.org/10.1007/978-3-319-11558-0_12
http://dx.doi.org/10.1007/978-3-642-40564-8_19
http://dx.doi.org/10.1007/978-3-642-40564-8_19
http://dx.doi.org/10.1007/978-3-642-33347-7_10
http://dx.doi.org/10.1007/978-3-642-20832-4_8
http://dx.doi.org/10.1007/978-3-642-20832-4_8
http://dx.doi.org/10.1007/11564751_73

	LP2NORMAL --- A Normalization Tool for Extended Logic Programs
	1 Introduction
	2 Overview of Normalization Techniques
	3 Implementation
	4 Applications
	5 Conclusion
	References

