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Abstract. Forgetting is an operation that allows the removal, from a
knowledge base, of middle variables no longer deemed relevant, while
preserving all relationships (direct and indirect) between the remaining
variables. When investigated in the context of Answer-Set Programming,
many different approaches to forgetting have been proposed, following
different intuitions, and obeying different sets of properties.

This talk will present a bird’s-eye view of the complex landscape
composed of the properties and operators of forgetting defined over the
years in the context of Answer-Set Programming, zooming in on recent
findings triggered by the formulation of the so-called strong persistence, a
property based on the strong equivalence between an answer-set program
and the result of forgetting modulo the forgotten atoms, which seems to
best encode the requirements of the forgetting operation.
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1 Introduction

Whereas keeping memory of information and knowledge has always been at
the heart of research in Knowledge Representation and Reasoning, with tight
connections to broader areas such as Databases and Artificial Intelligence, we
have recently observed a growing attention being devoted to the complementary
problem of forgetting.

Forgetting – or variable elimination – is an operation that allows the removal
of middle variables no longer deemed relevant. It is most useful when we wish
to eliminate (temporary) variables introduced to represent auxiliary concepts,
with the goal of restoring the declarative nature of some knowledge base, or
just to simplify it. Furthermore, it is becoming increasingly necessary to prop-
erly deal with legal and privacy issues, including, for example, to enforce the
new EU General Data Protection Regulation [3], which includes the right to
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be forgotten. Recent applications of forgetting to cognitive robotics [4–6], resolv-
ing conflicts [7–10], and ontology abstraction and comparison [11–14], further
witness its importance.

With its early roots in Boolean Algebra [15], forgetting has been exten-
sively studied in the context of classical logic [7,16–21] and, more recently, in
the context of logic programming, notably of Answer Set Programming (ASP).
The non-monotonic rule-based nature of ASP creates very unique challenges to
the development of forgetting operators – just as it happened with other belief
change operations such as revision and update, cf. [22–28] – making it a special
endeavour with unique characteristics distinct from those for classical logic.

Over the years, many have proposed different approaches to forgetting in
ASP, through the characterization of the result of forgetting a set of atoms from
a given program up to some equivalence class, and/or through the definition of
concrete operators that produce a specific program for each input program and
atoms to be forgotten [8,9,29–34].

All these approaches were typically proposed to obey some specific set of
properties that their authors deemed adequate, some adapted from the literature
on classical forgetting [30,33,35], others specifically introduced for the case of
ASP [9,29–32,34]. Examples of such properties include strengthened consequence,
which requires that the answer sets of the result of forgetting be bound to the
answer-sets of the original program modulo the forgotten atoms, or the so-called
existence, which requires that the result of forgetting belongs to the same class
of programs admitted by the forgetting operator, so that the same reasoners can
be used and the operator be iterated, among many others.

All this resulted is a complex landscape filled with operators and proper-
ties, with very little effort put into drawing a map that could help to bet-
ter understand the relationships between properties and operators. This was
recently addressed in [1], through the presentation of a systematic study of for-
getting in Answer Set Programming (ASP), thoroughly investigating the differ-
ent approaches found in the literature, their properties and relationships.

In the first part of this invited talk, we will present a bird’s-eye view of this
complex landscape investigated in [1].

One of the main conclusions drawn from observing the landscape of exist-
ing operators and properties is that there cannot be a one-size-fits-all forgetting
operator for ASP, but rather a family of operators, each obeying a specific set
of properties. Furthermore, it is clear that not all properties bear the same rele-
vance. Whereas some properties can be very important, such as existence, since
it guarantees that we can use the same automated reasoners after forgetting,
despite not being a property specific of forgetting operators, other properties
are less important, sometimes perhaps even questionable, as discussed in [1].

There is nevertheless one property – strong persistence [32] – which seems
to best capture the essence of forgetting in the context of ASP. The property
of strong persistence essentially requires that all existing relations between the
atoms not to be forgotten be preserved, captured by requiring that there be a
correspondence between the answer sets of a program before and after forgetting
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a set of atoms, and that such correspondence be preserved in the presence of
additional rules not containing the atoms to be forgotten. Referring to the nota-
tion introduced in the appendix, an operator f is said to obey strong persistence
if, for any program P and any set of atoms to be forgotten V , it holds that
AS(f(P, V ) ∪ R) = AS(P ∪ R)‖V , for all programs R not containing atoms in
V , where f(P, V ) denotes the result of forgetting V from P , AS(P ) the answer
sets of P , and AS(P )‖V their restriction to atoms not in V .

Whereas it seems rather undisputed that strong persistence is a desirable
property, it was not clear to what extent one could define operators that satisfy
it. Whereas in [32], the authors proposed an operator that obeys such property,
it is only defined for a restricted class of programs and can only be applied to
forget a single atom from a program in a very limited range of situations.

The limits of forgetting while obeying strong persistence were investigated
in [2]. There, after showing that sometimes it is simply not possible to forget some
set of atoms from a program, while maintaining the relevant relations between
other atoms, since the atoms to be forgotten play a pivotal role, the following
three fundamental questions addressed: (a) When can’t we forget some set of
atoms from an ASP while obeying strong persistence?, (b) When (and how) can
we forget some set of atoms from an ASP while obeying strong persistence?, and
(c) What can we forget from a specific ASP while obeying strong persistence?

In the second part of this invited talk, we will zoom in on the limits of
forgetting under strong persistence investigated in [2], and point to the future.

2 Forgetting in Answer-Set Programming

Forgetting. The principal idea of forgetting in ASP is to remove or hide certain
atoms from a given program, while preserving its semantics for the remaining
atoms. As the result, rather often, a representative up to some notion of equiva-
lence between programs is considered. In this sense, many notions of forgetting
for logic programs are defined semantically, i.e., they introduce a class of opera-
tors that satisfy a certain semantic characterization. Each single operator in such
a class is then a concrete function that, given a program P and a non-empty set
of atoms V to be forgotten, returns a unique program, the result of forgetting
about V from P . Given a class of logic programs1 C over A, a forgetting opera-
tor (over C) is a partial function f : C × 2A → C s.t. f(P, V ) is a program over
A(P )\V , for each P ∈ C and V ⊆ A. We call f(P, V ) the result of forgetting
about V from P . Unless stated otherwise, we will be focusing on C = Ce, and we
leave C implicit. Furthermore, f is called closed for C′ ⊆ C if, for every P ∈ C′

and V ⊆ A, we have f(P, V ) ∈ C′. A class F of forgetting operators (over C) is
a set of forgetting operators (over C′) s.t. C′ ⊆ C.
Properties. Over the years, many have introduced a variety of properties that
forgetting operators should obey, which we now briefly discuss.

The first three properties were proposed by Eiter and Wang [9], though not
formally introduced as such. The first two were in fact guiding principles for
1 See Appendix for definitions and notation on Answer-Set Programming.
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defining their notion of forgetting, while the third was later formalized by Wang
et al. [31]:

– F2 satisfies strengthened Consequence (sC) if, for each f ∈ F, P ∈ C and
V ⊆ A, we have AS(f(P, V )) ⊆ AS(P )‖V . Strengthened Consequence requires
that the answer sets of the result of forgetting be answer sets of the original
program, ignoring the atoms to be forgotten.

– F satisfies weak Equivalence (wE) if, for each f ∈ F, P, P ′ ∈ C and V ⊆ A,
we have AS(f(P, V )) = AS(f(P ′, V )) whenever AS(P ) = AS(P ′). Weak Equiv-
alence requires that forgetting preserves equivalence of programs.

– F satisfies Strong Equivalence (SE) if, for each f ∈ F, P, P ′ ∈ C and V ⊆ A:
if P ≡ P ′, then f(P, V ) ≡ f(P ′, V ). Strong Equivalence requires that forgetting
preserves strong equivalence of programs.

The next three properties were introduced by Zhang and Zhou [35] in the
context of forgetting in modal logics, and later adopted by Wang et al. [30,33]
for forgetting in ASP:

– F satisfies Weakening (W) if, for each f ∈ F, P ∈ C and V ⊆ A, we have
P |=HT f(P, V ). Weakening requires that the HT -models of the original program
also be HT -models of the result of forgetting, thus implying that the result of
forgetting has at most the same consequences as the original program.

– F satisfies Positive Persistence (PP) if, for each f ∈ F, P ∈ C and V ⊆ A:
if P |=HT P ′, with P ′ ∈ C and A(P ′) ⊆ A\V , then f(P, V ) |=HT P ′. Posi-
tive Persistence requires that the HT-consequences of the original program not
containing atoms to be forgotten be preserved in the result of forgetting.

– F satisfies Negative Persistence (NP) if, for each f ∈ F, P ∈ C and V ⊆ A:
if P �|=HT P ′, with P ′ ∈ C and A(P ′) ⊆ A\V , then f(P, V ) �|=HT P ′. Negative
Persistence requires that a program not containing atoms to be forgotten not
be a HT-consequence of the result of forgetting, unless it was already a HT-
consequence of the original program.

The property Strong (addition) Invariance was introduced by Wong [29], and
assigned this name in [1]:

– F satisfies Strong (addition) Invariance (SI) if, for each f ∈ F, P ∈ C and
V ⊆ A, we have f(P, V ) ∪ R ≡ f(P ∪ R, V ) for all programs R ∈ C with A(R) ⊆
A\V . Strong (addition) Invariance requires that it be (strongly) equivalent to
add a program without the atoms to be forgotten before or after forgetting.

The property called existence was discussed by Wang et al. [30], formalized
by Wang et al. [31], and refined by [1]. It requires that a result of forgetting for
P in C exists in the class C, important to iterate:

– F satisfies Existence for C (EC), i.e., F is closed for a class of programs C
if there exists f ∈ F s.t. f is closed for C. Existence for class C requires that the
a result of forgetting for a program in C exists in the class C. Operators that
satisfy Existence for class C are said to be closed for that class.

The property Consequence Persistence was introduced by Wang et al. [31]
building on the ideas behind (sC) by Eiter and Wang [9]:

2 Unless stated otherwise, F is a class of forgetting operators, and C the class of
programs over A of a given f ∈ F.
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– F satisfies Consequence Persistence (CP) if, for each f ∈ F, P ∈ C and
V ⊆ A, we have AS(f(P, V )) = AS(P )‖V . Consequence persistence requires
that the answer sets of the result of forgetting correspond exactly to the answer
sets of the original program, ignoring the atoms to be forgotten.

The following property was introduced by Knorr and Alferes [32] with the
aim of imposing the preservation of all dependencies contained in the original
program:

– F satisfies Strong Persistence (SP) if, for each f ∈ F, P ∈ C and V ⊆ A, we
have AS(f(P, V )∪R) = AS(P ∪R)‖V , for all programs R ∈ C with A(R) ⊆ A\V .
Strong Persistence strengthens (CP) by imposing that the correspondence
between answer-sets of the result of forgetting and those of the original pro-
gram be preserved in the presence of any additional set of rules not containing
the atoms to be forgotten.

The final property here3 is due to Delgrande and Wang [34], although its
name was assigned in [1]:

– F satisfies weakened Consequence (wC) if, for each f ∈ F, P ∈ C and
V ⊆ A, we have AS(P )‖V ⊆ AS(f(P, V )). Weakened Consequence requires that
the answer sets of the original program be preserved while forgetting, ignoring
the atoms to be forgotten.

These properties are not orthogonal to one another: (CP) is incompatible
with (W) as well as with (NP) (for F closed for C, where C contains normal logic
programs); (W) is equivalent to (NP); (SP) implies (PP); (SP) implies (SE);
(W) and (PP) together imply (SE); (CP) and (SI) together are equivalent to
(SP); (sC) and (wC) together are equivalent to (CP); (CP) implies (wE);
(SE) and (SI) together imply (PP).
Operators. Over the years, many operators of forgetting have been introduced,
implementing certain intuitions and obeying particular sets of properties.

Strong and Weak Forgetting. The first proposals are due to Zhang and Foo [8]
introducing two syntactic operators for normal logic programs, termed Strong
and Weak Forgetting. Both start with computing a reduction corresponding to
the well-known weak partial evaluation (WGPPE) [38]. Then, the two operators
differ on how they subsequently remove rules containing the atom to be forgotten.
In Strong Forgetting, all rules containing the atom to be forgotten are simply
removed. In Weak Forgetting, rules with negative occurrences of the atom to
be forgotten in the body are kept, after such occurrences are removed. The
motivation for this difference is whether such negative occurrences of the atom
to be forgotten are seen as support for the rule head (Strong) or not (Weak).
Both operators are closed for Cn.
Semantic Forgetting. Eiter and Wang [9] proposed Semantic Forgetting to
improve on some of the shortcomings of the two purely syntax-based opera-
tors of Zhang and Foo [8]. The basic idea is to characterize a result of for-
getting just by its answer sets, obtained by considering only the minimal sets
among the answer sets of the initial program ignoring the atoms to be forgotten.
3 An additional set of properties was introduced in [29]. The reader is referred to

[36,37] for a detailed discussion regarding these properties.
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Three concrete algorithms are presented, two based on semantic considerations
and one syntactic. Unlike the former, the latter is not closed for C+

d and C+
n (+

denotes the restriction to consistent programs), since double negation is required
in general.
Semantic Strong and Weak Forgetting. Wong [29] argued that semantic forget-
ting should not be focused on answer sets only, as these do not contain all the
information present in a program. He defined two classes of forgetting oper-
ators for disjunctive programs, building on HT-models. The basic idea is to
start with the set of rules HT-entailed by the original program without those
with positive occurrences of the atoms to be forgotten, and after removing pos-
itive occurrences of the atoms to be forgotten from the head of rules, whenever
their negation appears in the body, and then, in Semantic Strong Forgetting,
rules containing the atoms to be forgotten are removed, while in Semantic Weak
Forgetting rules with negative (resp. positive) occurrences of the atoms to be
forgotten in the body (resp. head) are kept, after such occurrences are removed.
Wong [29] defined one construction closed for Cd.
HT-Forgetting. Wang et al. [30,33] introduced HT-Forgetting, building on prop-
erties introduced by Zhang and Zhou [35] in the context of modal logics, with
the aim of overcoming problems with Wongs notions, namely that each of them
did not satisfy one of the properties (PP) and (W). HT-Forgetting is defined
for extended programs, characterising the set of HT-models of the result of for-
getting as being composed of the HT-models of the original program, modulo
any occurrence of the atoms to be forgotten. A concrete operator is presented
[33] that is shown to be closed for Ce and CH , and it is also shown that no
HT-Forgetting operator exists that is closed for either Cd or Cn.
SM-Forgetting. Wang et al. [31] defined a modification of HT-Forgetting, SM-
Forgetting, for extended programs, with the objective of preserving the answer
sets of the original program (modulo the forgotten atoms). As with HT-
Forgetting, it is defined for extended programs though a characterisation of the
HT-models of the result of forgetting, which are taken to be maximal subsets
of the HT-models of the original program, modulo any occurrence of the atoms
to be forgotten, such that the set of their answer-sets coincides with the set of
answer-sets of the original program, modulo the forgotten atoms. A concrete
operator is provided that is shown to be closed for Ce and CH . It is also shown
that no SM-Forgetting operator exists that is closed for either Cd or Cn.
Strong AS-Forgetting. Knorr and Alferes [32] introduced Strong AS-Forgetting
with the aim of preserving both the answer sets of the original program, and also
those of the original program augmented by any set of rules over the signature
without the atoms to be forgotten. A concrete operator is defined for Cnd, but
not closed for Cn and only defined for certain programs with double negation.
SE-Forgetting. Delgrande and Wang [34] recently introduced SE-Forgetting
based on the idea that forgetting an atom from a program is characterized by the
set of those SE-consequences, i.e., HT-consequences, of the program that do not
mention the atoms to be forgotten. The notion is defined for disjunctive programs
building on an inference system by Wong [39] that preserves strong equivalence.
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sC wE SE W PP NP SI CP SP wC ECH ECn ECd ECnd ECe

Fstrong × × × � × � � × × × � � - - -

Fweak × × × × � × � × × × � � - - -

Fsem � � × × × × × × × × � � � - -

FS × × � � � � × × × × � × � - -

FW � � � × � × � × × × � � � - -

FHT × × � � � � � × × × � × × × �
FSM � � � × � × × � × � � × × × �
FSas � � � × � × � � � � � × × × ×
FSE × × � � � � × × × × � × � - -

Fig. 1. Satisfaction of properties for known classes of forgetting operators. For class F
and property P, ‘�’ represents that F satisfies P, ‘×’ that F does not satisfy P, and
‘-’ that F is not defined for the class C in consideration.

An operator is provided, which is closed for Cd. Gonçalves et al. [1] have shown
SE-Forgetting to coincide with Semantic Strong Forgetting [29].

Figure 1 summarises the satisfaction of properties for known classes of for-
getting operators.

3 Forgetting Under Strong Persistence

Among the desirable properties of classes of forgetting operators recalled in
the previous section, strong persistence (SP) [32] is of particular interest, as it
ensures that forgetting preserves all existing relations between all atoms occur-
ring in the program, but the forgotten. In this sense, a class of operators satisfy-
ing (SP) removes the desired atoms, but has no negative semantical effects on
the remainder. The importance of (SP) is also witnessed by the fact that a class
of operators that satisfies (SP) also satisfies all the other previously mentioned
properties with the exception of (W) and (NP), which happen to be equivalent
and can hardly be considered desirable [1].

However, determining a forgetting operator that satisfies (SP) has been a
difficult problem, since, for the verification whether a certain program P ′ should
be the result of forgetting about V from P , none of the well-established equiva-
lence relations can be used, i.e., neither equivalence nor strong equivalence hold
in general between P and P ′, not even relativized equivalence [40], even though
it is close in spirit to the ideas of (SP). Hence, maybe not surprisingly, there
was no known general class of operators that satisfies (SP) and which is closed
(for the considered class of logic programs).

And, until recently, the two known positive results concerning the satisfiabil-
ity of (SP) were the existence of several known classes of operators that satisfy
(SP) when restricted to Horn programs [1], which is probably of little relevance
given the crucial role played by (default) negation in ASP, and the existence of
one specific operator that permits forgetting about V from P while satisfying
(SP) [32], but only in a very restricted range of situations based on a non-trivial
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syntactical criterion which excludes large classes of cases where forgetting about
V from P is possible.

All this begged the question of whether there exists a forgetting operator,
defined over a class of programs C beyond the class of Horn programs, that
satisfies (SP), which was given a negative answer in [2]: – it is not always possible
to forget a set of atoms from a given logic program satisfying the property (SP).

Whereas this negative result shows that in general it is not always possible
to forget while satisfying (SP), its proof presented in [2] provided some hints
on why this is the case. Some atoms play an important role in the program,
being pivotal in establishing the relations between the remaining atoms, making
it simply not possible to forget them and expect that the relations between other
atoms be preserved. That is precisely what happens with the pair of atoms p
and q in the program

a ← p b ← q p ← not q q ← not p

It is simply not possible to forget them both and expect all the semantic relations
between a and b to be kept. No program over atoms {a, b} would have the same
answer sets as those of the original program (modulo p and q), when both are
extended with an arbitrary set of rules over {a, b}.

This observation lead to another central question: under what circumstances
is it not possible to forget about a given set of atoms V from P while satisfying
(SP)? In particular, given a concrete program, which sets of atoms play such a
pivotal role that they cannot be jointly forgotten without affecting the semantic
relations between the remaining atoms in the original program?

This question was answered in [2] through the introduction of a criterion (Ω)
which characterizing the instances 〈P, V 〉 for which we cannot expect forgetting
operators to satisfy (SP)〈P,V 〉.4

Definition 1 (Criterion Ω). Let P be a program over A and V ⊆ A. An
instance 〈P, V 〉 satisfies criterion Ω if there exists Y ⊆ A \ V such that the set
of sets

RY
〈P,V 〉 = {RY,A

〈P,V 〉 | A ∈ RelY〈P,V 〉}

is non-empty and has no least element, where

RY,A
〈P,V 〉 = {X \ V | 〈X,Y ∪ A〉 ∈ HT (P )}

RelY〈P,V 〉 = {A ⊆ V | 〈Y ∪ A, Y ∪ A〉 ∈ HT (P ) and

�A′ ⊂ A such that 〈Y ∪ A′, Y ∪ A〉 ∈ HT (P )}.

It turns out that Ω is a necessary and sufficient criterion to determine that
some set of atoms V cannot be forgotten from a program P while satisfying
strong persistence.
4 (SP)〈P,V 〉 is a restriction of property (SP) to specific forgetting instances. A for-

getting operator f over C satisfies (SP)〈P,V 〉 if AS(f(P, V ) ∪R) = AS(P ∪R)‖V , for
all programs R ∈ C with A(R) ⊆ A \ V .
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Whereas at a technical level, criterion Ω is closely tied to certain conditions
on the HT-models of the program at hand, it seems that what cannot be for-
gotten from a program are atoms used in rules that are somehow equivalent
to choice rules [41], and those atoms are pivotal in the sense that they play an
active role in determining the truth of other atoms in some answer sets i.e., there
are rules whose bodies mention these atoms and they are true at least in some
answer sets.

Nevertheless, sometimes it is possible to forget while satisfying strong persis-
tence and, in such cases, the following class FSP of forgetting operators, dubbed
SP-Forgetting, precisely characterises the desired result of forgetting:

FSP = {f | HT (f(P, V ))={〈X,Y 〉 | Y ⊆ A(P )\V ∧ X ∈
⋂

RY
〈P,V 〉}}

Thus, given an instance 〈P, V 〉, we can test whether Ω is not satisfied, i.e.,
whether we are allowed to forget V from P while preserving (SP), in which
case the HT-models that characterise a result can be obtained from FSP. It was
further shown in [2] that FSP is closed in the general case and for Horn programs,
but not for disjunctive or normal programs.

If we restrict our attention to the cases where we can forget, i.e., where the
considered instance does not satisfy Ω, then most of the properties mentioned
before are satisfied. In particular, restricted to instances 〈P, V 〉 that do not
satisfy Ω, FSP satisfies (sC), (wE), (SE), (PP), (SI), (CP), (SP) and (wC).
The properties which are not satisfied – (W) and (NP) – have been proved
orthogonal to (SP) [1], hence of little relevance in our view.

4 Outlook

We began by presenting a bird’s-eye view of forgetting in Answer Set Program-
ming (ASP), covering the different approaches found in the literature, their prop-
erties and relationships. We then zoomed in on the important property of strong
persistence, and reviewed the most relevant known results, including that it is
not always possible to forget a set of atoms from a program while obeying this
property, a precise characterisation of what can and cannot be forgotten from
a program established through a necessary and sufficient criterion, and a char-
acterisation of the class of forgetting operators that achieve the correct result
whenever forgetting is possible.

But what happens if we must forget, but cannot do it without violating
strong persistence? This may happen for legal and privacy issues, including, for
example, the implementation of court orders to eliminate certain pieces of illegal
information. Investigating weaker requirements, e.g. by imposing only a subset
of the three properties – (sC), (wC) and (SI) – that together compose (SP), or
by considering weaker notions of equivalence such as uniform equivalence [42,43],
is the subject of ongoing work.

Other interesting avenues for future research include investigating different
forms of forgetting which may be required in practice, such as those that preserve
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some aggregated meta-level information about the forgotten atoms, or even going
beyond maintaining all relationships between non-forgotten atoms which may be
required by certain legislation.

Acknowledgments. I would like to thank my close colleagues Ricardo Gonçalves and
Matthias Knorr for all their dedication and contributions to our joint projects, turning
it into a more fun and rewarding ride.

A Answer-Set Programming

We assume a propositional signature A, a finite set of propositional atoms5. An
(extended) logic program P over A is a finite set of (extended) rules of the form

a1 ∨ . . . ∨ ak ← b1, ..., bl, not c1, ..., not cm, not not d1, ..., not not dn , (1)

where all a1, . . . , ak, b1, . . . , bl, c1, . . . , cm, and d1, . . . , dn are atoms of A.6 Such
rules r are also commonly written in a more succinct way as

A ← B,notC, not notD , (2)

where we have A = {a1, . . . , ak}, B = {b1, . . . , bl}, C = {c1, . . . , cm}, D =
{d1, . . . , dn}, and we will use both forms interchangeably. By A(P ) we denote
the set of atoms appearing in P . This class of logic programs, Ce, includes a
number of special kinds of rules r: if n = 0, then we call r disjunctive; if, in
addition, k ≤ 1, then r is normal ; if on top of that m = 0, then we call r Horn,
and fact if also l = 0. The classes of disjunctive, normal and Horn programs,
Cd, Cn, and CH , are defined resp. as a finite set of disjunctive, normal, and Horn
rules. We also call extended rules with k ≤ 1 non-disjunctive, thus admitting a
non-standard class Cnd, called non-disjunctive programs, different from normal
programs. Given a program P and a set I of atoms, the reduct P I is defined as
P I = {A ← B : r of the form (2) in P,C ∩ I = ∅,D ⊆ I}.

An HT-interpretation is a pair 〈X,Y 〉 s.t. X ⊆ Y ⊆ A. Given a program P ,
an HT-interpretation 〈X,Y 〉 is an HT-model of P if Y |= P and X |= PY , where
|= denotes the standard consequence relation for classical logic. We admit that
the set of HT-models of a program P are restricted to A(P ) even if A(P ) ⊂ A.
We denote by HT (P ) the set of all HT-models of P . A set of atoms Y is
an answer set of P if 〈Y, Y 〉 ∈ HT (P ), but there is no X ⊂ Y such that
〈X,Y 〉 ∈ HT (P ). The set of all answer sets of P is denoted by AS(P ). We
say that two programs P1, P2 are equivalent if AS(P1) = AS(P2) and strongly
equivalent, denoted by P1 ≡ P2, if AS(P1∪R) = AS(P2∪R) for any R ∈ Ce. It is
well-known that P1 ≡ P2 exactly when HT (P1) = HT (P2) [45]. We say that P ′

is an HT-consequence of P , denoted by P |=HT P ′, whenever HT (P ) ⊆ HT (P ′).
The V -exclusion of a set of answer sets (a set of HT-interpretations) M, denoted
M‖V , is {X\V | X ∈ M} ({〈X\V, Y \ V 〉 | 〈X,Y 〉 ∈ M}). Finally, given two
sets of atoms X,X ′ ⊆ A, we write X ∼V X ′ whenever X\V = X ′\V .
5 Often, the term propositional variable is used synonymously.
6 Extended logic programs [44] are actually more expressive, but this form is sufficient

here.
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