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Abstract. The complexity of the general inference problem for propo-
sitional circumscription in Boolean logic (or equivalently over the two-
element domain) has been recently classified. This paper generalizes the
problem to arbitrary finite domains. The problem we study here is para-
meterized by a set of relations (a constraint language), from which we
are allowed to build a knowledge base, and a linear order on the domain,
which is used to compare models.

We use the algebraic approach provided originally in order to under-
stand the complexity of the constraint satisfaction problem to give first
non-trivial dichotomies and tractability results for the minimal inference
problem over finite domains.

1 Introduction

The need for logics that could capture human way of thinking triggered the
development of an area of Artificial Intelligence called nonmonotonic reasoning.
A number of formalisms emerged. One of the most important and best studied is
circumscription introduced by McCarthy [17]. The circumscription of a formula
is the set of its minimal models that are supposed to represent possible situations
that are consistent with common sense.

It is often the case [6,9,11,18] that models are compared according to the
preorder (≤(P,Z)) induced by a partition of variables V into three subsets P,Z,Q
(possibly empty) where P — variables that are subject to minimizing, Q —
variables that maintain the fixed value, and Z — variables whose value can
vary. Now, for two assignments α, β : V → D we will have (α ≤(P,Z) β) if
α[Q] = β[Q] (α is equal to β on variables in Q) and α[P ] ≤ β[P ] (α is less than
or equal to β on variables in P ) where ≤ is the coordinatewise extension of the
natural order on {0, 1} with 0 < 1.

As every logical formalism does, circumscription gives rise to two main com-
putational problems: the model-checking problem and the inference problem. In
this paper we concentrate on the inference problem for propositional circumscrip-
tion, called also the minimal inference problem. In the most general formulation
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an instance of this problem in the Boolean case consists of two CNF formulas:
a knowledge base ϕ and a query ψ over the same set of variables V partitioned
into P,Z,Q. In the minimal inference problem we ask if every (≤(P,Z))-min
model (minimal model wrt. (≤(P,Z))) of ϕ is a model of ψ. Since this task can
be performed for every clause of ψ independently and we are interested in the
complexity of the problem up to polynomial time reduction, we can assume that
ψ is a disjunction of propositional literals (a clause). This problem is in general
ΠP

2 -complete [10]. Thus, one considers the general minimal inference problem
GMININF(Γ) parameterized by a set of relations Γ over {0, 1}.

– Instance of GMININF(Γ): a conjunction of atomic formulas ϕ of the
form: R1(x1

1, . . . , x
1
k1

) ∧ · · · ∧ Rl(xl
1, . . . , x

l
kl

), where every Ri with i ∈ [l]
is a relation symbol in a signature of Γ, over variables V partitioned into
P,Z,Q, and a propositional clause ψ over V .

– Question: is every (≤(P,Z))-min model of ϕ a model of ψ?

The complete complexity classification of GMININF(Γ) with respect to Γ
has been obtained after a series of papers, e.g. [6,8,10,15] in [9]. Under usual
complexity theoretical assumptions, in this case that: P � coNP � ΠP

2 , it is
shown that GMININF(Γ) is either ΠP

2 -complete, or coNP-complete, or in P.
This raises a question about a similar classification in many-valued logics, or,
more generally, over arbitrary finite domains. Especially that circumscription
over larger finite domains has been studied in the literature, e.g. in [7,20].

The same course of events took place in the case of the problem CSP(Γ)
where a question is whether a given conjunction of atomic formulas over the
signature of Γ is satisfiable. In [22], Schaefer established the dichotomy between
NP-complete and in P in the case where Γ is over the two-element domain.
Then researchers turned to a so-called Feder-Vardi conjecture that states that
a similar dichotomy holds for arbitrary finite domains. The understanding and
many advanced partial results1, see [16] for a recent survey, were possible thanks
to the development of the so-called algebraic approach [5,12]. This approach has
been also already applied to the model checking and the inference problem in
propositional circumscription over arbitrary finite domains in [19]. Here we use
algebra for the inference problem in a bit different formulation.

Certainly every relation R ⊆ Dn over any finite domain D can be defined
by a conjunction of disjunctions of disequalities (a CNF of disequalities) of
the form (x �= d) where x is a variable and d ∈ D simply by the formula:∧

(d1,...,dn)/∈R(x1 �= d1 ∨ · · · ∨ xn �= dn). This implies that in the most general
version of the minimal inference problem the input may consist of a CNF of
disequalities that states for a knowledge base, a CNF of disequalities that states
for a query and a linear order O = (D;≤O). The preorder ≤O

(P,Z) is defined as in

1 Recently, three different groups of researchers announced a proof of the dichotomy.
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the two-element case with a difference that we use ≤O on coordinates instead of
0 < 1. Since CNFs of disequalities coincide with clauses if |D| = 2, we have that
the minimal inference problem in this formulation is ΠP

2 -hard. It is straightfor-
ward to show that the problem is in fact ΠP

2 -complete. Thus, it is natural to
ask about the complexity of the parametrized version GMININF(Γ,O) defined
below. As in the Boolean case we can assume that a query consists of a single
disjunction of disequalities.

– Instance of GMININF(Γ,O): a conjunction of atomic formulas ϕ of the
form: R1(x1

1, . . . , x
1
k1

) ∧ · · · ∧ Rl(xl
1, . . . , x

l
kl

), where every Ri with i ∈ [l]
is a relation symbol in a signature of Γ, over variables V partitioned into
P,Z,Q, and a disjunction of disequalities ψ of the form (x1 �= d1 ∨ · · · ∨
xk �= dk) over V .

– Question: is every (≤O
(P,Z))-min model of ϕ a model of ψ?

For an example, consider Γ over D = {1, 2, 3} containing the relation R �= :=
{(d1, d2) ∈ D2 | d1 �= d2} and the order 1 <O 2 <O 3. A formula R �=(x1, x2) ∧
R �=(x2, x3) ∧ R �=(x3, x4) ∧ R �=(x2, x3) and a disjunction (x1 �= 2 ∨ x4 �= 1) form
an instance of GMININF(Γ,O). This problem is ΠP

2 -complete. Throughout the
paper we give parametrizations of GMININF(Γ,O) of lower complexity.

ΓD

Inv(semipr)Inv(maj) Inv(aff)

Inv(unary)

Inv(idem bin)

Inv({�,�}) Inv({�, psm})

[=D]pp

Fig. 1. An illustrative presentation of the lattice of relational clones over a domain D.

Contribution. Our attack on the complexity classification of GMININF(Γ,O)
is based on the algebraic approach. All the notions we use in this paper are
defined carefully in Sect. 2. As explained there in order to complete the classi-
fication task, it is enough to establish the complexity only for relational clones
that are constraint languages closed under primitive positive definitions. Equiv-
alently, a relational clone is the set, denoted by Inv(F ), of all relations invariant
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under (preserved by) all operations in some set F . The relational clones over
D are organized in the lattice ordered by inclusion. The larger is the relational
clone, the complexity of the problem is harder. An illustrative presentation of
the lattice over some D containing only kinds of relational clones we look at in
this paper is presented in Fig. 1. For a pair of relational clones linked by a line
the one placed higher contains the one which is below. The solid lines indicate
that there are no relational clones inbetween, the dashed ones that there might
be some. The top element of the lattice is the set of all relations ΓD over D. The
only operations that preserve all relations in ΓD are projections. The bottom
of the lattice is the set of relations primitively positively definable by means of
equality. Such are preserved by all operations over D.

The problem GMININF(ΓD,O) is ΠP
2 -complete for all |D| ≥ 2. To find sub-

problems of lower complexity we climb down the lattice of relational clones. The
natural choice for the languages to be studied first are maximal constraint lan-
guages that in the lattice lay directly below ΓD. According to Rosenberg’s Five
Types Theorem [21], it is enough to consider languages of the form Inv({f})
where f is a unary operation, a semiprojection, a binary idempotent operation,
a majority operation or an affine operation, see Fig. 1. Their complexity was
analyzed for many problems parametrized by constraint languages: for CSPs
the result can be found in [1,4] We show that GMININF(Γ,O) is coNP-hard
for all such languages. Furthermore for maximal conservative (i.e., containing all
unary relations) languages the problem is either ΠP

2 -complete or coNP-complete.
See [3] for the CSP classification over conservative languages.

In order to find tractable (polynomial-time decidable) classes we climb down
the lattice of relational clones even further. In particular we give dichotomies
between coNP-complete and P for:

– GMININF(Inv({
,�}),O) where 
,� are the join and the meet of some lat-
tice, and

– GMININF(Inv({
, f}),O) where 
 is the meet of some semilattice and f a
newly defined pms-operation.

This gives us new large tractability classes and new coNP-hardness results.
Futhermore, our algorithms are based on polymorphisms which is crucial for fur-
ther generalizations, consult again [16] to see the importance of polymorphisms
in providing algorithms for the CSP.

Related Work. Classifications such as a trichotomy for GMININF(Γ) for Γ over
the two-element domain as one presented in [9] are much easier to be obtained
than analogical results over arbitrary finite domains. The reason is that in the
two-element case, the lattice of relational clones (so-called Post’s lattice) has
countably many and very well described elements. Thus, in order to obtain a
classification it is enough to consider the problem for each of them. The situ-
ation is very different already over the three-element domain where there are
uncountably many relational clones and the lattice is not comprehensible.

The results on the minimal inference problem over arbitrary finite domains
included in [19] concern a version of GMININF(Γ,O) where the query ψ is a
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single atomic formula R(x1, . . . , xk) where R corresponds to some k-ary relation
over the domain of Γ, and the order O is a part of the input. The authors of [19]
provide mainly preliminary results that may be seen as tools for classifying the
problem. Some of these results such as Theorem 1 we reprove here for our version
of the problem and use heavily in our paper. The only complexity result in [19],
however, is a dichotomy between ΠP

2 -complete and in coNP for conservative
languages Γ over the three-element domain2 and even this specific result follows
in a rather straightforward way from the dichotomy for CSP(Γ) over the three-
element domain [2].

In this paper, for the first time, we provide complexity results characteristic
for the minimal inference problem over larger domains. We expect the classifi-
cation for the problem GMININF to be completely different than and not easily
obtainable from the one for CSP. This is already true over two elements. For
the first time, we provide here polynomial algorithms. The tractability results
for GMININF(Inv({
,�}),O) and GMININF(Inv({
, f}),O) substantially gen-
eralize these for GMININF(Inv(∧,∨)) and GMININF(Inv({∧, (x ∧ (y ∨ ¬z))}))
from the two-element world. Our dichotomy: between ΠP

2 -complete and in coNP
for conservative maximal languages generalize a dichotomy between these two
classes for the two-element domain from [9] and for the three-element conserva-
tive case (up to a small difference in the definition of the problems) from [19].

2 Preliminaries

We write t = (t[1], . . . , t[n]) for a tuple of elements and [n] to denote the set
{1, . . . , n}. The reverse of the order O1 = (D;≤O) is O2 = (D; (≤O)−1) where
(≤O)−1 is the relation {(a, b) ∈ D | (b, a) ∈≤O}.

Constraint Languages. In this paper a (constraint) language over (always
finite) domain D, denoted by capital Greek letters such as Γ, is a set of relations
over D. A signature of Γ denoted usually by τ is a set of relation symbols
associated to relations in Γ. For the sake of simplicity we usually use the same
symbols to denote both a relation symbol and the corresponding relation. We
also assume that the domain of a relation or a language under consideration is
the set D.

A primitive positive formula (pp-formula) over a signature τ is a first-order
formula built exclusively from conjunction, existential quantifiers and atomic
formulas over τ and equalities, that is atomic formulas of the form (x = y).
We say that a relation R has a pp-definition over a set of relations Γ if there
exists a pp-formula over the signature of Γ that holds exactly on those tuples
that are contained in R. We say that a set of relations Δ has a pp-definition
over Γ if every relation in Δ has a pp-definition over Γ. A set of relations with
a pp-definition over Γ is denoted by [Γ]pp and called a relational clone.
2 The paper claims that the dichotomy is for all languages over the three-element

domain. However, this is not true since the proof of Theorem 3.6 is flawed for domains
with more than two elements [14].
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We define a Γ-formula to be a conjunction of atomic formulas over a signature
of Γ. Observe that a Γ-formula is a special form of a pp-formula where quantifiers
and equality are not in use. Let ψ := R(x1, . . . , xk) be an atomic Γ-formula with
x1, . . . , xk not necessarily different and W ⊆ {x1, . . . , xk}. We write ψ|W for an
atomic formula R|W (y1, . . . , yl) where R|W is a projection of R to coordinates
corresponding to variables in W and y1, . . . , yl is a subsequence of x1, . . . , xk

containing only variables in W . For a Γ-formula ϕ = ψ1 ∧ . . . ∧ ψn over V and
W ⊆ V we write ϕ|W to indicate ψ1|W ∧ . . . ∧ ψn|W .

Operations, Polymorphisms. Let Γ be a language over domain D. An oper-
ation f : Dn → D is a polymorphism of an m-ary relation R if for all m-tuples
t1, . . . , tn ∈ R, it holds that the tuple (f(t1[1], . . . , tn[1]), . . . , f(t1[m], . . . , tn[m]))
is also in R. An operation f is a polymorphism of a language Γ if it is a poly-
morphism of every relation in Γ. If f : Dn → D is a polymorphism of Γ, R,
we say that f preserves Γ, R. The set of relations preserved by a set of opera-
tions F is denoted by Inv(F ). The following Galois correspondence links sets of
polymorphisms and relational clones, see e.g. [12].

Lemma 1. Let Γ be a constraint language. Then Γ1 ⊆ [Γ2]pp if and only if
Pol(Γ2) ⊆ Pol(Γ1).

Here we list some kinds of operations that are of use for this paper. We
say that an operation f : Dn → D is idempotent if for all x ∈ D we have
f(x, . . . , x) = x. An operation f : D → D that is bijective is said to be a
permutation. An operation f : Dn → D is a projection if there exists i ∈ [n] such
that f(x1, . . . , xi, . . . , xn) = xi for all x1, . . . , xn ∈ D. We say that a ternary
operation f : D3 → D is a majority operation if for all x, y ∈ D we have
f(x, x, y) = f(x, y, x) = f(y, x, x) = x, and that f is affine if for all x1, x2, x3 ∈
D we have f(x1, x2, x3) = x1 − x2 + x3, where + and − are the operations of
an Abelian (commutative) group (D; +,−). An operation f : Dn → D with
D ≥ 3 is said to be a semiprojection if there exists i ∈ [n] such that for all
x1, . . . , xn ∈ D we have f(x1, . . . , xn) = xi whenever |{x1, . . . , xn}| < n and
f is not a projection. A semilattice operation s on a set D is an idempotent
operation satisfying universally the identities s(x, y) = s(y, x) and s(s(x, y), z) =
s(x, s(y, z)). The first of these identities implies that s is commutative and the
other that s is associative. We define a ternary operation f : D3 → D to be
a pms-operation compliant with a semilattice operation s if for all x, y ∈ D it
satisfies: f(x, y, y) = x, f(y, x, y) = y and f(y, y, x) = s(x, y).

The General Minimal Inference Problem. We now give a careful definition
of the GMININF problem and provide basic results that help classifying the
complexity of the problem. Some of them for a variant of the problem we study
here are already available in the literature [8,9,19].

Let V be a set of variables and D a finite set. We use small Greek letters:
α, β, γ to denote assignments of the type V → D. We say that α : V1 → D is
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a restriction of β : V2 → D to (variables in) V1 if V1 ⊆ V2 and for all v ∈ V1,
we have α(v) = β(v). In this case we also say that β is an extension of α to
(variables in) V2. For α : V → D and V1 ⊆ V , we write α[V1] to indicate the
restriction of α to V1.

Let O = (D;≤O) be a linear order. We extend the order to assignments in
the natural way. For α, β : V → D we have α ≤O β if for all v ∈ V it holds
α(v) ≤O β(v). We write α <O β if α ≤O β and for at least one v ∈ V it holds
α(v) <O β(v). For the purposes of this paper we need also a special preorder
on assignments denoted by (≤O

(P,Z)) and defined as follows. Let α, β : V → D

and P,Z,Q be a partition of V . We have (α ≤O
(P,Z) β) if α[Q] = β[Q] and

α[P ] ≤O β[P ] and (α <O
(P,Z) β) if α[Q] = β[Q] and α[P ] <O β[P ]. Let Γ

be a constraint language over D and ϕ be a Γ-formula over variables V . An
assignment α : V → D is a model of ϕ if for every conjunct R(x1, . . . , xk) of ϕ we
have (α(x1), . . . , α(xk)) ∈ R. We say that a model α of ϕ is a (≤O

(P,Z))-minimal
((≤O

(P,Z))-min) model of ϕ if there is no model β of ϕ such that β <O
(P,Z) α.

We now rephrase the definition of GMININF(Γ,O) from the introduction
using new notions introduced in this section. The definitions are equivalent.

Definition 1. [GMININF(Γ,O)]

– INSTANCE: A Γ-formula ϕ over variables V partitioned into three sets
P,Z,Q and a disjunction of disequalities ψ over V .

– QUESTION: Is every (≤O
(P,Z))-min model of ϕ a model of ψ?

For finite Γ we measure the complexity of GMININF(Γ,O) as a function
of the length of a Γ-formula. In this paper we consider Γ and O that make the
problem ΠP

2 -complete, coNP-complete or in P. For an infinite set of relations Γ we
use the usual convention. We say that GMININF(Γ,O) is ΠP

2 -hard (coNP-hard)
if there is a finite Γ′ ⊆ Γ such that GMININF(Γ′,O) is ΠP

2 -hard (coNP-hard)
and that GMININF(Γ,O) is in ΠP

2 , coNP or P if for every finite Γ′ ⊆ Γ the
problem GMININF(Γ′,O) is in ΠP

2 , coNP or P, respectively.
The computational complexity of GMININF(Γ,O) is fully captured by the

relational clone [Γ]pp, or equivalently the set of polymorphisms of Γ.

Theorem 1. Let Γ1,Γ2 be constraint languages such that Γ1 ⊆ [Γ2]pp (or equiv-
alently Pol(Γ2) ⊆ Pol(Γ1)), then there is a polynomial-time reduction from
GMININF(Γ1,O) to GMININF(Γ2,O).

This is usually easier to look at GMINEXT than GMININF.

Definition 2. [GMINEXT(Γ,O)]

– INSTANCE: A Γ-formula ϕ over variables V partitioned into three sets
P,Z,Q and a partial assignment α : V1 → D with V1 ⊆ V .

– QUESTION: Is there an extension β : V → D of α such that β is a (≤O
(P,Z))-

min model of ϕ?
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The following proposition reveals the connection between the problems. We
have that the complement of GMININF(Γ,O) and GMINEXT(Γ,O) are poly-
nomially equivalent. The reduction from the complement of GMININF(Γ,O) to
GMINEXT(Γ,O) comes to replacing a disjunction ψ := (x1 �= d1∨· · ·∨xk �= dk)
with α : {x1, . . . , xk} → D such that α(xi) = di for i ∈ [k]. Now, if there is a
(≤O

(P,Z))-min model β of ϕ (the same for both instances) that is not a model
of ψ it satisfies β(xi) = di for i ∈ [k], and hence β extends α. On the other
hand, if there is a (≤O

(P,Z))-min model β of ϕ extending α, then it certainly does
not satisfy ψ. For the reduction from GMINEXT(Γ,O) to the complement of
GMININF(Γ,O), we replace α with ψ := (x1 �= α(x1)∨· · ·∨xk �= α(xk)), where
{x1, . . . , xk} is the domain of α. The proof is analogous.

Proposition 1. Let O = (D;≤O) be a linear order and Γ a constraint language
over D. The problem GMINEXT(Γ,O) is ΣP

2 -hard, NP-hard, in NP, in P if and
only if GMININF(Γ,O), is ΠP

2 -hard, coNP-hard, in coNP, in P, respectively.

3 Maximal Constraint Languages

In this section we give a lower bound for GMININF(Γ,O) over maximal con-
straint languages Γ and a dichotomy for conservative maximal languages.

Definition 3. Let ΓD be the set of all relations over domain D. A constraint
language Γ ⊆ ΓD is maximal if [Γ]pp � ΓD and for every R /∈ Γ, we have that
[Γ ∪ R]pp = ΓD. A constraint language Γ over D is conservative if Γ contains
all subsets of D as unary relations.

To build the classification we use some methods [4] and some results [6,9]
known from the literature. We start with Rosenberg’s theorem.

Theorem 2 (Rosenberg Theorem). Every maximal constraint language has
the form Inv({f}) where the operation f is of one of the following types:

1. a unary operation which is either a permutation or else acts identically on its
range;

2. a binary operation which is not a projection;
3. a majority operation;
4. an affine operation;
5. a semiprojection.

We need to know the complexity of GMININF(Inv(f),O) for every type
of operations from Theorem 2. In the case where f : D3 → D is an affine
operation we focus on two particular relations R+ and R++ defined as follows.
Let ⊥,� ∈ D be the two least elements in O, i.e., ⊥ <O � <O x for all
x ∈ D \ {⊥,�}. We will have:

– R+ = {(x, y) | x + y = ⊥ + �},
– R++ = {(x, y, z) | x + y + z = ⊥ + ⊥ + �},
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where + comes from an Abelian group (D; +,−). Since R+ and R++ are defined
by a single equation, it is straightforward to show that they are both in Inv(f).

Lemma 2. Let (D; +,−) be an Abelian group and O = (D;≤O) a linear order.
Then GMININF(Γ,O) with Γ = {R+, R++} is coNP-hard.

We first prove that the problem for maximal constraint languages is coNP-hard.

Theorem 3. Let O = (D;≤O) be a linear order and Γ a maximal constraint
language over Γ, then GMININF(Γ,O) is coNP-hard.

We are able to prove the full dichotomy only under an additional assumption
that languages are conservative.

Theorem 4. Let O = (D;≤O) be a linear order and Inv({f}), for some opera-
tion f , a conservative maximal constraint language over D. Then we have exactly
one of the following:

1. f is a unary operation, or there is a two-element D′ ⊆ D such that f |D′ is a
projection and then GMININF(Inv({f}),O) is ΠP

2 -complete.
2. f is a commutative binary operation, a majority operation, or an affine oper-

ation and then GMININF(Inv({f}),O) is coNP-complete.

4 The Minimal Inference Problem and Semilattice
Operations

Let O = (D;≤O) be a linear order, Γ a constraint language over D and ϕ a Γ-
formula. We say that a model α of ϕ is the least (the greatest) model of ϕ wrt.
≤O if for every model β of ϕ, it holds α ≤O β (β ≤O α). The least (the greatest)
model does not have to exist. However, if Γ is preserved by some well-behaved
semilattice operation, then we have the following.

Observation 1. Let O = (D;≤O) be a linear order and Γ a constraint language
over D preserved by the meet 
 (the join �) of some meet-semilattice (join-
semilattice) L = (D;≤L) such that ≤L⊆≤O. Let ϕ be a Γ-formula. Then there
exists a model α of ϕ such that α is the least (the greatest) model of ϕ wrt the
order ≤L and at the same time α is the least (the greatest) model of ϕ wrt the
order ≤O.

In the case described by the previous observation we can quickly compute
the least (the greatest) wrt both ≤L and ≤O model of a Γ-formula extending
a given assignment α. The procedure is very well known [12] and may be per-
formed by enforcing generalized arc consistency. We refer to this procedure by
leastext(O, ϕ, α, V2) (greatext(O, ϕ, α, V2)).

Proposition 2. Let O = (D;≤O) be a linear order and Γ a constraint language
preserved by the meet 
 (the join �) of some meet-semilattice (join-semilattice)
L = (D;≤L) such that ≤L⊆≤O. Then the procedure leastext(O,ϕ, α, V2) (the
procedure greatext (O,ϕ, α, V2)) for a Γ-formula ϕ and a partial assignment
α : V1 → D with V1 ⊆ V2 ⊆ V returns:
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– false if there is no model of ϕ|V2
extending α;

– the least (the greatest), wrt ≤O, model of ϕ|V2
extending α.

The procedures work in polynomial time.

In the case we consider here α[P ] of a (≤O
(P,Z))-min model α is uniquely

determined by α[Q].

Observation 2. Let O = (D;≤) be a linear order and Γ a constraint language
preserved by the meet 
 : D2 → D of some meet-semilattice L = (D;≤L) such
that ≤L⊆≤O. Let ϕ be a Γ-formula over variables V partitioned into P,Z,Q.
Then α is a (≤O

(P,Z))-min model of ϕ if and only if α[P ] = β[P ] where β =
leastext(O, ϕ, α[Q], V ).

Theorem 5.2 in [13] states that a relation R is preserved by the meet 
 of a
linear order L = (D;≤L) iff it can be defined by a conjunction of clauses of the
form (x1 ≥L a1 ∨ · · · ∨ xk ≥L ak) → (xi >L bi) where x1, . . . , xk are variables;
a1, . . . , ak, bi with i ≤ k are in D. We note that this result can be extended to
all semilattices.

5 Lattice

In this section we consider relations in Inv({
,�}) where 
,� are the meet and
the join of some lattice L = (D;≤L). For an example of such a relation consider
D = {⊥, a1, a2, a3, b2,�} and the order ≤L such that ⊥ ≤L a1 ≤L a2 ≤L b2 ≤L

� and a1 ≤L a3 ≤L �. Thus, in particular a2, b2 are not comparable with a3.
It is now straightforward to show that R := ((x1 ≥L a1 ∧ x2 ≥L a2) → x2 ≥L

b2) ∧ (x1 ≥ a1 → x2 ≥ a3) is preserved by � and 
.
In Fig. 2, we present an algorithm for GMINEXT(Inv({
,�}),O) for the case

where 
,� are the meet and the join of some lattice L = (D;≤L) that can be
extended to O. The algorithm works in polynomial time. By Proposition 1, it
gives us a polynomial algorithm for the problem GMININF.

Lemma 3. Let O = (D;≤O) be a linear order and Γ a constraint language
preserved by 
,� that are the meet and the join of some lattice L = (D;≤L)
such that ≤L⊆≤O. For a given Γ-formula ϕ over variables V partitioned into
P,Z,Q and a partial assignment α : V1 → D with V1 ⊆ V we have that α can
be extended to a (≤O

(P,Z))-min model of ϕ iff the algorithm Lattice returns true.
The algorithm Lattice works in polynomial time.

We now turn to the hardness result. We use the notation Zc,d
a,b , where a �= c

and b �= d, for the relation {(a, b), (a, d), (c, d)}.

Lemma 4. Let O = (D;≤O) and a, b, c, d, e, f ∈ D such that a �= b, c <O d and
e <O f . Then GMININF(Γ,O) where Γ = {Za,d

b,c , Zb,f
a,e} is coNP-hard.

Finally we give the dichotomy.
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Fig. 2. Algorithm lattice

Theorem 5. Let O = (D;≤O) be a linear order and �,
 the meet and the join
of some lattice L = (D,≤L). Then we have one of the following.

– If ≤L⊆≤O or (≤L)−1 ⊆≤O, then GMININF(Inv({
,�}),O) is in P.
– If neither ≤L⊆≤O nor (≤L)−1 ⊆≤O, then GMININF(Inv({
,�}),O) is

coNP-hard.

6 Semilattice and a pms-operation

In this section we consider GMININF(Inv({
, f}),O) in the case where 
 is the
meet of some meet-semilattice L = (D,≤L) and f is a pms-operation compliant
with 
. When it comes to examples of relations preserved by both operations, it
is straightforward to prove that all relations definable by conjunctions of clauses
of the form (x ≥L d) and (¬x1 ≥L d1 ∨ · · · ∨ ¬xk ≥L dk) are in Inv({
, f})
where f is a pms-operation that for three pairwise different d1, d2, d3 ∈ D returns
(d1 
 d2 
 d3).

We now turn to the complexity of the problem. Again we work rather with
GMINEXT(Inv, ({
, f}),O) than GMININF(Inv({
, f}),O). The procedure in
Fig. 3 solves the problem in P on the condition that ≤L⊆≤O.

Lemma 5. Let O = (D;≤O) be a linear order and Γ a constraint language
preserved by both the meet 
 of some meet-semilattice L = (D;≤L) such that
≤L⊆≤O and a pms-operation f compliant with 
. For a given Γ-formula ϕ over
variables V partitioned into P,Z,Q and a partial assignment α : V1 → D with
V1 ⊆ V we have that α can be extended to a (≤O

(P,Z))-min model of ϕ iff the
algorithm MeetPMS returns true. The algorithm MeetPMS works in polynomial
time.
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Fig. 3. Algorithm MeetPMS

We close this section by complementing Lemma 5 with a hardness result.

Theorem 6. Let O = (D;≤O) be a linear order, 
 the meet of some meet-
semilattice L = (D;≤L) and f a pms-operation compliant with 
. Then we have
one of the following.

– If ≤L⊆≤O, then GMININF(Inv({
, f}),O) is in P.
– If ≤L�≤O, then GMININF(Inv({
, f}),O) is coNP-hard.

7 Summary and Future Work

In this article we have systematically studied the complexity of the minimal
inference problem over arbitrary finite domains. We considered a version of the
problem parameterized by a constraint language and a linear order. We pro-
vided a dichotomy for maximal conservative languages: between ΠP

2 -complete
and coNP-complete and two tractability results complemented by coNP-hardness
results. This gives two dichotomies: between coNP-complete and in P. Further-
more, one of the tractability results is based on a newly discovered operation: a
pms-operation. Identifying tractable classes and appropriate polymorphisms is
crucial when one works in algebraic approach.

We believe that our research will soon result in more advanced classifica-
tions, e.g., for all conservative languages or all languages over the three-element
domain. Both classifications were provided for the CSP, see [2,3].
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