
Chapter 8
DeepGender2: A Generative Approach
Toward Occlusion and Low-Resolution
Robust Facial Gender Classification
via Progressively Trained Attention Shift
Convolutional Neural Networks
(PTAS-CNN) and Deep Convolutional
Generative Adversarial Networks (DCGAN)

Felix Juefei-Xu, Eshan Verma and Marios Savvides

Abstract In this work, we have undertaken the task of occlusion and low-resolution
robust facial gender classification. Inspired by the trainable attention model via deep
architecture, and the fact that the periocular region is proven to be the most salient
region for gender classification purposes, we are able to design a progressive con-
volutional neural network training paradigm to enforce the attention shift during the
learning process. The hope is to enable the network to attend to particular high-
profile regions (e.g., the periocular region) without the need to change the network
architecture itself. The network benefits from this attention shift and becomes more
robust toward occlusions and low-resolution degradations. With the progressively
trained attention shift convolutional neural networks (PTAS-CNN) models, we have
achieved better gender classification results on the large-scale PCSO mugshot data-
base with 400K images under occlusion and low-resolution settings, compared to
the one undergone traditional training. In addition, our progressively trained network
is sufficiently generalized so that it can be robust to occlusions of arbitrary types and
at arbitrary locations, as well as low resolution. One way to further improve the
robustness of the proposed gender classification algorithm is to invoke a genera-
tive approach for occluded image recovery, such as using the deep convolutional
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generative adversarial networks (DCGAN). The facial occlusions degradation stud-
ied in this work is a missing data challenge. For the occlusion problems, the missing
data locations are known whether they are randomly scattered, or in a contiguous
fashion. We have shown, on the PCSO mugshot database, that a deep generative
model can very effectively recover the aforementioned degradation, and the recov-
ered images show significant performance improvement on gender classification
tasks.

8.1 Introduction

Facial gender classification has always been one of the most studied soft-biometric
topics. Over the past decade, gender classification on constrained faces has almost
been perfected. However, challenges still remain on less-constrained faces such as
faces with occlusions, of low resolution, and off-angle poses. Traditional methods
such as the support vector machines (SVMs) and its kernel extension can work pretty
well on this classic two-class problem as listed in Table8.8. In this work, we approach
this problem from a very different angle. We are inspired by the booming deep
convolutional neural network (CNN) and the attentionmodel to achieveocclusion and
low-resolution robust facial gender classification via progressively training the CNN
with attention shift. From an orthogonal direction, when images are under severe
degradations such as contiguous occlusions, we utilize a deep generative approach
to recover the missing pixels such that the facial gender classification performance
is further improved on occluded facial images. On one hand, we aim at building
a robust gender classifier that is tolerant to image degradations such as occlusions
and low resolution, and on the other hand, we aim at mitigating and eliminating the
degradations through a generative approach. Together, we stride toward pushing the
boundary of unconstrained facial gender classification.

8.1.1 Motivation

Xu et al. [70] proposed an attention-basedmodel that automatically learns to describe
the content of images which has been inspired by recent work in machine translation
[3] and object detection [2, 57]. In their work, two attention-based image caption
generators were introduced under a common framework: (1) a ‘soft’ deterministic
attention mechanismwhich can be trained by standard back-propagation method and
(2) a ‘hard’ stochastic attention mechanism which can be trained by maximizing an
approximate variational lower bound. The encoder of themodels uses a convolutional
neural network as a feature extractor, and the decoder is composed of a recurrent
neural network (RNN) with long short-term memory (LSTM) architecture where
the attention mechanism is learned. The authors can then visualize that the network
can automatically fix its gaze on the salient objects (regions) in the image while
generating the image caption word by word.
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Fig. 8.1 (Top) Periocular region on human faces exhibits the highest saliency. (Bottom) Foreground
object in focus exhibits the highest saliency. Background is blurred with less high-frequency details
preserved

For facial gender classification, we know from previous work [16, 56] that the
periocular region provides the most important cues for determining the gender infor-
mation. The periocular region is also the most salient region on human faces, such as
shown in the top part of Fig. 8.1, using a general purpose saliency detection algorithm
[14]. Similar results can also be obtained using other saliency detection algorithms
such as [15, 17]. We can observe from the saliency heat map that the periocular
region does fire the most strongly compared to the remainder of the face.

Now we come to think about the following question:

Q: How can we let the CNN shift its attention toward the periocular region,
where gender classification has been proven to be the most effective?
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The answer comes from our day-to-day experience with photography. If you are
using a DSLR camera with a big aperture lens, and fixing the focal point onto an
object in the foreground, all background beyond the object in focus will become out
of focus and blurred. This is illustrated in the bottom part of Fig. 8.1 and as can be
seen, the sharp foreground object (cherry blossom in hand) attracts the most attention
in the saliency heat map.

Thus, we can control the attention region by specifying where the image is blurred
or remains sharp. In the context of gender classification, we know that we can benefit
from fixing the attention onto the periocular region. Therefore, we are ‘forcing’ what
part of the image the network weighs the most, by progressively training the CNN
using images with increasing blur levels, zooming into the periocular region, as
shown in Table8.1. Since we still want to use a full-face model, we hope that by
employing the mentioned strategy, the learned deep model can be at least on par with
other full-face deep models, while harnessing gender cues in the periocular region.

Q: Why not just use the periocular region crop?

Table 8.1 Blurred images with increasing levels of blur

13.33% 27.62% 41.90%

56.19% 68.57% 73.33%
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Although experimentally, periocular is the best facial region for gender classifi-
cation, we still want to resort to other facial parts (beard/mustache) for providing
valuable gender cues. This is especially true when the periocular region is less ideal.
For example, some occlusion like sunglasses could be blocking the eye region, and
we want our network to still be able to generalize well and perform robustly, even
when the periocular region is corrupted.

To strike a good balance between full face-only and periocular-only models, we
carry out a progressive training paradigm for CNN that starts with the full face,
and progressively zooms into the periocular region by leaving other facial regions
blurred. In addition, we hope that the progressively trained network is sufficiently
generalized so that it can be robust to occlusions of arbitrary types and at arbitrary
locations.

Q: Why blurring instead of blackening out?

We justwant to steer the focus, rather than completely eliminating the background,
like the DSLR photo example shown in the bottom part of Fig. 8.1. Blackening would
create abrupt edges that confuse the filters during the training. When blurred, low-
frequency information is still well preserved. One can still recognize the content of
the image, e.g., dog, human face, objects, etc. from a blurred image.

Blurring outside the periocular region, and leaving the high-frequency details at
the periocular region will both help providing global and structural context of the
image, as well as keeping the minute details intact at the region of interest, which
will help the gender classification, and fine-grained categorization in general.

Q: Why not let CNN directly learn the blurring step?

We know that CNN filters operate on the entire image, and blurring only part
of the image is a pixel location dependent operation and thus is difficult to emulate
in the CNN framework. Therefore, we carry out the proposed progressive training
paradigm to enforce where the network attention should be.

8.2 Related Work

In this section, we provide relevant background on facial gender classification and
attention models.

The periocular region is shown to be the best facial region for recognition purposes
[20–22, 24, 27, 31–36, 38, 39, 39, 40, 59, 62, 63], especially for gender classification
tasks [16, 56]. A few recent work also applies CNN for gender classification [4, 50].
More related work on gender classification is consolidated in Table8.8.
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Attention models such as the one used for image captioning [70] have gained
much popularity only very recently. Rather than compressing an entire image into a
static representation, attention allows for salient features to dynamically come to the
forefront as needed. This is especially important when there is a lot of clutter in an
image. It also helps gaining insight and interpreting the results by visualizing where
the model attends to for certain tasks. This mechanism can be viewed as a learnable
saliency detector that can be tailored to various tasks, as opposed to the traditional
ones such as [8, 14, 15, 17].

It is worth mentioning the key difference between the soft attention and the hard
attention. The soft attention is very easy to implement. It produces distribution over
input locations, reweights features, and feeds them as input. It can attend to arbitrary
input locations using spatial transformer networks [19]. On the other hand, the hard
attention can only attend to a single input location, and the optimization cannot utilize
gradient descent. The common practice is to use reinforcement learning.

Other applications involving attention models may include machine translation
which applies attention over input [54]; speech recognition which applies attention
over input sounds [6, 9]; video captioning with attention over input frames [72];
image, question to answer with attention over image itself [69, 75]; and many more
[67, 68].

8.3 Proposed Method

Our proposed method involves two major components: a progressively trained atten-
tion shift convolutional neural networks (PTAS-CNN) framework for training the
unconstrained gender classifier, as well as a deep convolutional generative adversar-
ial networks (DCGAN) for missing pixel recovery on the facial images so that the
gender recognition performance can be further improved on images with occlusions.

8.3.1 Progressively Trained Attention Shift Convolutional
Neural Networks (PTAS-CNN)

In this section we detail our proposed method on progressively training the CNN
with attention shift. The entire training procedure involves (k + 1) epoch groups
from epoch group 0 to k, where each epoch group corresponds to one particular blur
level.

8.3.1.1 Enforcing Attention in the Training Images

In our experiment, we heuristically choose 7 blur levels, including the one with no
blur at all. The example images with increasing blur levels are illustrated in Table8.1.
We use a Gaussian blur kernel with σ = 7 to blur the corresponding image regions.
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Doing this is conceptually enforcing the network attention in the training images
without the need of changing the network architecture.

8.3.1.2 Progressive CNN Training with Attention

We employ the AlexNet [46] architecture for our progressive CNN training. The
AlexNet has 60 million parameters and 650,000 neuron, consisting of 5 convolu-
tion layers and 3 fully connected layers with a final 1000-way softmax. To reduce
overfitting in the fully connected layers, AlexNet employs “dropout” and data aug-
mentation, both of which are preserved in our training. The main difference is that
we only need a 2-way softmax due to the nature of gender classification problems.

As illustrated in Fig. 8.2, the progressive CNN training begins with the first epoch
group (EpochGroup 0, imageswith no blur), and the first CNNmodelM0 is obtained
and frozen after convergence. Then, we input the next epoch group for tuning the
M0 and in the end produce the second model M1, with attention enforced through
training images. The procedure is carried out sequentially until the final modelMk is
obtained. EachM j ( j = 0, . . . , k) is trained with 1000 epochs and with a batchsize
of 128.At the end of the training for step j , themodel corresponding to best validation
accuracy is taken ahead to the next iteration ( j + 1).

8.3.1.3 Implicit Low-Rank Regularization in CNN

Blurring the training images in our paradigm may have more implications. Here
we want to show the similarities between low-pass Fourier analysis and low-rank
approximation in SVD. Through the analysis, we hope to make connections to the
low-rank regularization procedure in the CNN. We have learned from a recent work
[65] that enforcing a low-rank regularization and removing the redundancy in the
convolution kernels is important and can help improve both the classification accu-
racy and the computation speed. Fourier analysis involves expansion of the original
data xi j (taken from the data matrix X ∈ Rm×n) in an orthogonal basis, which is the
inverse Fourier transform:

xi j = 1

m

m−1∑

k=0

cke
i2π jk/m . (8.1)

The connection with SVD can be explicitly illustrated by normalizing the vector
{ei2π jk/m} and by naming it v′

k :

xi j =
m−1∑

k=0

bikv
′
jk =

m−1∑

k=0

u′
iks

′
kv

′
jk, (8.2)
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Fig. 8.2 Progressive CNN training with attention
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which generates the matrix equation X = U′Σ ′V′�. However, unlike the SVD, even
though the {v′

k} are an orthonormal basis, the {u′
k} are not in general orthogonal.

Nevertheless this demonstrates how the SVD is similar to a Fourier transform. Next,
we will show that the low-pass filtering in Fourier analysis is closely related to the
low-rank approximation in SVD.

Suppose we have N image data samples of dimension d in the original two-
dimensional form {x1, x2, . . . , xN }. Let matrix X̂ contain all the data samples under-
gone 2D Fourier transform F(·), in the vectorized form:

X̂ =

⎡

⎢⎢⎣vec(F(x1)) vec(F(x2)) . . . vec(F(xN ))

⎤

⎥⎥⎦

d×N

.

Matrix X̂ can be decomposed using SVD: X̂ = ÛΣ̂V̂�.Without loss of generality,
let us assume that N = d for brevity. Let g and ĝ be the Gaussian filter in spatial
domain and frequency domain, respectively, namely ĝ = F(g). Let Ĝ be a diagonal
matrix with ĝ on its diagonal. The convolution operation becomes dot product in
frequency domain, so the blurring operation becomes

X̂blur = Ĝ · X̂ = Ĝ · ÛΣ̂V̂�, (8.3)

where Σ̂ = diag(σ1,σ2, . . . ,σd) contains the singular values of X̂blur, already sorted
in descending order: σ1 ≥ σ2 ≥ . . . ≥ σd . Suppose we can find a permutation matrix
P such that when applied on the diagonal matrix Ĝ, the diagonal elements are sorted
in descending order according to the magnitude: Ĝ′ = PĜ = diag(ĝ′

1, ĝ
′
2, . . . , ĝ

′
d).

Now, let us apply the same permutation operation on X̂blur, we can thus have the
following relationship:

P · X̂blur = P · Ĝ · ÛΣ̂V̂� (8.4)

X̂′
blur = Ĝ′ · ÛΣ̂V̂� = Û · (Ĝ′Σ̂) · V̂� (8.5)

= Û · diag(ĝ′
1σ1, ĝ

′
2σ2, . . . , ĝ

′
dσd) · V̂�. (8.6)

Due to the fact that Gaussian distribution is not a heavy-tailed distribution, the
already smaller singular values will be brought down to 0 by the Gaussian weights.
Therefore, X̂blur actually becomes low-rank after Gaussian low-pass filtering. To
this end, we can say that low-pass filtering in Fourier analysis is equivalent to the
low-rank approximation in SVD up to a permutation.

This phenomenon is loosely observed through the visualization of the trained
filters, as shown in Fig. 8.15, which will be further analyzed and studied in future
work.
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8.3.2 Occlusion Removal via Deep Convolutional Generative
Adversarial Networks (DCGAN)

In this section, we first review the basics of DCGAN and then show how DCGAN
can be utilized for occlusion removal, or missing pixel recovery on face images.

8.3.2.1 Deep Convolutional Generative Adversarial Networks

The generative adversarial network (GAN) [12] is capable of generating high-quality
images. The framework trains two networks, a generator Gθ(z) : z → x, and a dis-
criminator Dω(x) : x → [0, 1]. G maps a random vector z, sampled from a prior
distribution pz(z), to the image space. D maps an input image to a likelihood. The
purpose of G is to generate realistic images, while D plays an adversarial role to
discriminate between the image generated from G, and the image sampled from data
distribution pdata. The networks are trained by optimizing the following minimax
loss function:

min
G

max
D

V (G,D) = Ex∼pdata(x)

[
log(D(x))

]
+ Ez∼pz(z)

[
log(1 − D(G(z))

]
,

where x is the sample from the pdata distribution; z is randomly generated and lies in
some latent space. There are many ways to structure G(z). The deep convolutional
generative adversarial network (DCGAN) [60] uses fractionally strided convolutions
to upsample images instead of fully connected neurons as shown in Fig. 8.3.

The generator G is updated to fool the discriminator D into wrongly classifying
the generated sample, G(z), while the discriminator D tries not to be fooled. In this
work, both G and D are deep convolutional neural networks and are trained with an
alternating gradient descent algorithm. After convergence,D is able to reject images
that are too fake, and G can produce high-quality images faithful to the training
distribution (true distribution pdata).

8.3.2.2 Occlusion Removal via DCGAN

To take on the missing data challenge, we need to utilize both the G andD networks
from DCGAN, pre-trained with uncorrupted data. After training, G is able to embed
the images from pdata onto some nonlinear manifold of z. An image that is not from
pdata (e.g., corrupted face image with missing pixels) should not lie on the learned
manifold. Therefore, we seek to recover the “closest” image on the manifold to the
corrupted image as the proper reconstruction.

Let us denote the corrupted image asy. To quantify the “closest”mapping fromy to
the reconstruction, we define a function consisting of contextual loss and perceptual
loss, following the work of Yeh et al. [73].

In order to incorporate the information from the uncorrupted portion of the given
image, the contextual loss is used to measure the fidelity between the reconstructed
image portion and the uncorrupted image portion, which is defined as
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Fig. 8.3 Pipeline of a standardDCGANwith the generatorGmapping a randomvector z to an image
and the discriminator D mapping the image (from true distribution or generated) to a probability
value

Lcontextual(z) = ‖M 	 G(z) − M 	 y‖1, (8.7)

where M denotes the binary mask of the uncorrupted region and 	 denotes the
element-wiseHadamard product operation. The corrupted portion, i.e., (1 − M) 	 y,
is not used in the loss. The choice of �1-norm is empirical. From the experiments
carried out in [73], images recovered with �1-norm loss tend to be sharper and with
higher quality compared to ones reconstructed with �2-norm.

The perceptual loss encourages the reconstructed image to be similar to the
samples drawn from the training set (true distribution pdata). This is achieved by
updating z to fool D, or equivalently to have a high value of D(G(z)). As a result,
D will predict G(z) to be from the data with a high probability. The same loss for
fooling D as in DCGAN is used:

Lperceptual(z) = log(1 − D(G(z))). (8.8)

The corrupted image with missing pixels can now be mapped to the closest z
in the latent representation space with the defined perceptual and contextual losses.
We follow the training procedure in [60] and use Adam [45] for optimization. z is
updated using back-propagation with the total loss:

ẑ = argmin
z

(Lcontextual(z) + λLperceptual(z)) (8.9)

where λ is a weighting parameter. After finding the optimal solution ẑ, the halluci-
nated full-face image can be obtained by

xhallucinated = M 	 y + (1 − M) 	 G(ẑ). (8.10)
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Examples of face recovery from contiguous occlusions are shown in Fig. 8.11
usingDCGAN.Applying this deep generative approach for occluded image recovery
is expected to improve the performance of unconstrained gender classification.

8.4 Experiments: Part A

In this section we detail the training and testing protocols employed and various
occlusions and low resolutions modeled in the testing set. Accompanying figures and
tables for each subsection encompass the results and observations and are elaborated
in each section.1

8.4.1 Database and Preprocessing

Training set: We source images from 5 different datasets, each containing samples
of both classes. The datasets are J-Mugshot, O-Mugshot, M-Mugshot, P-Mugshot,
and Pinellas. All the datasets, except Pinellas, are evenly separated into males and
females of different ethnicities. The images are centered, by which, we mean that
we have landmarked certain points on the face, which are then anchored to fixed
points in the resulting training image. For example, the eyes are anchored at the
same coordinates in every image. All of our input images have the same dimension
168 × 210. The details of the training datasets are listed in Table8.2. The images are
partitioned into training and validation and the progressive blur is applied to each
image as explained in the previous section. Hence, for a given model iteration, the
training set consists of ∼90k images.

Testing set: The testing set was built primarily from the following two datasets:
(1) The AR Face database [55] is one of the most widely used face databases with
occlusions. It contains 3,288 color images from 135 subjects (76 male subjects +
59 female subjects). Typical occlusions include sunglasses and scarves. The data-
base also captures expression variations and lighting changes. (2) Pinellas County
Sherrif’s Office (PCSO) mugshot database is a large-scale database of over 1.4 mil-
lion images.We took a subset of around 400K images from this dataset. These images
are not seen during training.

The testing images are centered and cropped in the same way as the training
images, though other preprocessing like the progressive blur are not applied. Instead,
to model real world occlusions we have conducted the following experiments to be
discussed in Sect. 8.4.2.

1A note on legend: (1) SymbolsM correspond to each model trained, withMF corresponding to
the model trained on full face (equivalent toM0),MP to one with just periocular images andMk ,
k ⊆ (1, . . . , 6) to the incremental models trained. (2) The tabular results show model performance
on the original images in column 1 and corrupted images in other columns.
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Table 8.2 Datasets used for progressive CNN training

Database Males Females

J-Mugshot 1900 1371

M-Mugshot 1772 805

Pinellas subset 13215 3394

P-Mugshot 46346 12402

O-Mugshot 4164 3634

67397 21606

Total 89003

8.4.2 Experiment I: Occlusion Robustness

In Experiment I, we carry out occlusion robust gender classification on both the AR
Face database and thePCSOmugshot database.Wemanually add artificial occlusions
to test the efficacy of ourmethod on the PCSOdatabase and test on the various images
sets in the AR Face dataset.

Fig. 8.4 Overall
classification accuracy on the
PCSO (400K). Images are
not corrupted
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Fig. 8.5 Various degradations applied on the testing images for Experiment I and II. Row 1 ran-
dom missing pixel occlusions; Row 2 random additive Gaussian noise occlusions; Row 3 random
contiguous occlusions. Percentage of degradation for Row 1–3 10, 25, 35, 50, 65 and 75%. Row 4
various zooming factors (2x, 4x, 8x, 16x) for low-resolution degradations

8.4.2.1 Experiments on the PCSO Mugshot Database

To begin with, the performance of various models on the clean PCSO data is shown
in Fig. 8.4. As expected, if the testing images are clean, it should be preferable to use
MF , rather than MP . We can see that the progressively trained models M1 − M6

are on par withMF .
We corrupt the testing images (400K) with three types of facial occlusions. These

are visualized in Fig. 8.5 with each row corresponding to some modeled occlusions.

(1) Random Missing Pixels Occlusions
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Table 8.3 Overall classification accuracy on the PCSO (400K). Images are corruptedwith random
missing pixels of various percentages

Corruption 0% 10% 25% 35% 50% 65% 75%

MF 97.66 97.06 93.61 89.15 82.39 79.46 77.40

M1 97.63 96.93 92.68 87.99 81.57 78.97 77.20

M2 97.46 96.83 93.19 89.17 83.03 80.06 77.68

M3 97.40 96.98 94.06 90.65 84.79 81.59 78.56

M4 97.95 97.63 95.63 93.10 87.96 84.41 80.22

M5 97.52 97.26 95.80 94.07 90.40 87.39 83.04

M6 97.60 97.29 95.50 93.27 88.80 85.57 81.42

MP 95.75 95.45 93.84 92.02 88.87 86.59 83.18

Varying factors of the image pixels (10, 25, 35, 50, 65 and 75%) were dropped
to model lost information and grainy images.2 This is corresponding to the first row
in Fig. 8.5. From Table8.3 and Fig. 8.6, M5 performs the best with M6 showing
a dip in accuracy suggesting a tighter periocular region is not well suited for such
applications, i.e., a limit on the periocular region needs to be maintained in the blur
set. There is a flip in performance of the models MP and MF going from the
original to 25% with the periocular model generalizing better for higher corruptions.
As the percentage of missing pixels increases, the performance gap between MP

and MF increases. As hypothesized, the trend of improving performance between
progressively trained models is maintained across factors indicating a better learned
model toward noise.

(2) Random Additive Gaussian Noise Occlusions

Gaussian white noise (σ = 6) was added to image pixels in varying factors (10,
25, 35, 50, 65 and 75%). This is corresponding to the second row in Fig. 8.5 and is
done to model high noise data and bad compression. From Table8.4 and Fig. 8.7,
M4 − M6 perform best for medium noise. For high noise, M5 is the most robust.
Just like before, as the noise increases, the trend undertaken by the performance of
MP & MF and M5 & M6 is maintained and so is the performance trend of the
progressively trained models.

(3) Random Contiguous Occlusions

2This can also model the dead pixel/shot noise of a sensor and these results can be used to accelerate
inline gender detection by using partially demosaiced images.
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Fig. 8.6 Overall classification accuracy on the PCSO (400K). Images are corrupted with random
missing pixels of various percentages

Table 8.4 Overall classification accuracy on the PCSO (400K). Images are corruptedwith additive
Gaussian random noise of various percentages

Corruption 0% 10% 25% 35% 50% 65% 75%

MF 97.66 97.00 94.03 91.19 86.47 83.43 79.94

M1 97.63 96.93 94.00 91.26 87.00 84.27 81.15

M2 97.46 96.87 94.43 92.19 88.75 86.44 83.33

M3 97.40 97.00 95.18 93.27 89.93 87.55 84.16

M4 97.95 97.67 96.45 95.11 92.43 90.28 87.06

M5 97.52 97.29 96.25 95.21 93.21 91.65 89.12

M6 97.60 97.32 96.04 94.77 92.46 90.80 88.08

MP 95.75 95.59 94.85 94.00 92.43 91.15 88.74

Tomodel big occlusions like sunglasses or other contiguous elements, continuous
patches of pixels (10, 25, 35, 50, 65 and 75%) were dropped from the image as
seen in the third row of Fig. 8.5. The most realistic occlusion corresponds to the
first few patches, and other patches are extreme cases. For the former cases, M1 −
M3 are able to predict the classes with the highest accuracy. From Table8.5 and
Fig. 8.8, for such large occlusions and missing data, more contextual information is
needed for correct classification sinceM1 − M3 perform better than other models.
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Fig. 8.7 Overall classification accuracy on the PCSO (400K). Images are corrupted with additive
Gaussian random noise of various percentages

Table 8.5 Overall classification accuracy on the PCSO (400K). Images are corruptedwith random
contiguous occlusions of various percentages

Corruption 0% 10% 25% 35% 50% 65% 75%

MF 97.66 96.69 93.93 88.63 76.54 73.75 64.82

M1 97.63 96.95 94.64 90.20 77.47 75.20 53.04

M2 97.46 96.76 94.56 90.04 75.99 70.83 56.25

M3 97.40 96.63 94.65 90.08 77.13 71.77 68.52

M4 97.95 96.82 92.70 86.64 75.25 70.37 61.63

M5 97.52 96.56 92.03 83.95 70.36 69.94 66.52

M6 97.60 96.61 93.08 86.34 71.91 71.40 69.50

MP 95.75 95.00 93.01 88.34 76.82 67.81 49.73

However, since they perform better thanMF , our scheme of focused saliency helps
generalizing over occlusions.

8.4.2.2 Experiments on the AR Face Database

We partitioned the original set to smaller subsets to better understand our methodol-
ogy’s performance under different conditions. Set 1 consists of neutral expression,
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Fig. 8.8 Overall classification accuracy on the PCSO (400K). Images are corrupted with random
contiguous occlusions of various percentages

full-face subjects. Set 2 has full face but varied expressions. Set 3 includes periocu-
lar occlusions such as sunglasses and Set 4 includes these and other occlusions like
clothing, etc. Set 5 is the entire dataset including illumination variations.

Referring to Table8.6 and Fig. 8.9, for Set 1, the full-face model performs the
best and this is expected as this model was trained on images very similar to this.
Set 2 suggests that the models need more contextual information when expressions
are introduced. Thus, M4 which has focus on periocular but has face information
too performs best. For Set 3, we can see two things: one, MP performs better than
MF indicative of its robustness to periocular occlusions. Two, M5 is the best as
it combines periocular focus with contextual information gained from incremental
training.

Set 4 performance brings out why periocular region is preferred for occluded
faces. We ascertained that some texture and loss of face contour is throwing off the
models M1 − M6. The performance of the models on Set 5 reiterates previously
stated observations of the combined importance of contextual information about
face contours and the importance of periocular region. This is the reason for the best
accuracy reported by M3.



8 DeepGender2: A Generative Approach Toward Occlusion … 201

Table 8.6 Gender classification accuracy on the AR Face database

Sets Set 1 Set 2 Set 3 Set 4 Set 5 (Full Set)

MF 98.44 93.23 89.06 83.04 81.65

M1 97.66 92.71 86.72 81.70 82.82

M2 97.66 92.71 90.62 82.14 85.10

M3 97.66 93.23 91.41 80.80 85.62

M4 98.44 95.31 92.97 77.23 84.61

M5 96.88 93.49 94.53 80.36 84.67

M6 96.09 92.71 92.97 79.02 83.90

MP 96.09 90.62 91.41 86.61 83.44

Model
1 2 3 4 5 6

A
cc

ur
ac

y

96

96.5

97

97.5

98

98.5
Set 1

Model F
Model 1-6
Model P

Model
1 2 3 4 5 6

A
cc

ur
ac

y

90.5

91

91.5

92

92.5

93

93.5

94

94.5

95

95.5
Set 2

Model F
Model 1-6
Model P

Model
1 2 3 4 5 6

A
cc

ur
ac

y

86

87

88

89

90

91

92

93

94

95
Set 3

Model F
Model 1-6
Model P

Model
1 2 3 4 5 6

A
cc

ur
ac

y

77

78

79

80

81

82

83

84

85

86

87
Set 4

Model F
Model 1-6
Model P

Model
1 2 3 4 5 6

A
cc

ur
ac

y

81.5

82

82.5

83

83.5

84

84.5

85

85.5

86
Set 5

Model F
Model 1-6
Model P

Fig. 8.9 Gender classification accuracy on the AR Face database

8.4.3 Experiment II: Low-Resolution Robustness

Our scheme of training on Gaussian blurred images should generalize well to low-
resolution images. To test this hypothesis, we tested our models on images from the
PCSO mugshot dataset by first down-sampling them by a factor and then blowing
them back up (zooming factor for example: 2x, 4x, 8x, 16x).3 This inculcates the
loss of edge information and other higher order information and is captured in the

3Effective pixel for 16x zooming factor is around 10× 13, which is a quite challenging low-
resolution setting.
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Table 8.7 Overall classification accuracy on the PCSO (400K). Images are down-sampled to a
lower resolution with various zooming factors

Zooming factor 1x 2x 4x 8x 16x

MF 97.66 97.55 96.99 94.19 87.45

M1 97.63 97.48 96.91 94.76 87.41

M2 97.46 97.31 96.73 94.77 88.82

M3 97.40 97.20 96.37 93.50 87.57

M4 97.95 97.89 97.56 95.67 90.17

M5 97.52 97.40 96.79 95.26 89.66

M6 97.60 97.51 97.05 95.42 90.79

MP 95.75 95.65 95.27 94.12 91.59
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Fig. 8.10 Overall classification accuracy on the PCSO (400K). Images are down-sampled to a
lower resolution with various zooming factors
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last row of Fig. 8.5. As seen in Table8.7 and Fig. 8.10 for cases, 2x, 4x, 8x, the trend
between M1 − M6 and their performance with respect to MF is maintained. As
mentioned before,M4 performs well due to the balance between focus on periocular
region and saving the contextual information of a face.

8.4.4 Discussion

We have proposed a methodology for building a gender recognition system which
is robust to occlusions. It involves training a deep model incrementally over several
batches of input data preprocessed with progressive blur. The intuition and intent
is twofold, one to have the network focus on periocular regions of the face for
gender recognition. And two, to preserve contextual information of facial contours
to generalize better over occlusions.

Through various experiments we have observed that our hypothesis is indeed true
and that for a given occlusion set, it is possible to have high accuracy from a model
that encompasses both of above-stated properties. Irrespective of the fact that we did
not train on any occluded data, or optimize for a particular set of occlusions, our
models are able to generalize well over synthetic data and real-life facial occlusion
images.

We have summarized the overall experiments and consolidated the results in
Table8.8. For PCSO large-scale experiments, we believe that 35% occlusion is the
right amount of degradations, on which accuracies should be reported. Therefore,
we average the accuracy from our best model on three types of occlusions (missing
pixel, additive Gaussian noise, and contiguous occlusions) which gives 93.12% in
Table8.8. For low-resolution experiments, we believe 8x zooming factor is the right
amount of degradations, so we report the accuracy 95.67% in Table8.8. Many other
related work on gender classification are also listed for a quick comparison. This
table is based on [16].

8.5 Experiments: Part B

In order to boost the classification accuracy and support the models trained in the
previous section,we trained aGANtohallucinate occlusions andmissing information
in the input image. The next two sections detail our curation of the input data and the
selection of the testing sets for our evaluation. The gender model (Mk) definitions
remain the same as in the previous section. And we use Gz and Dx to denote the
Generator and Discriminator models from GAN.
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8.5.1 Network Architecture

The network architectures and approach that we use are similar to the work of [60].
The input size of the image is 64 × 64. While training we used Adam [45] optimiza-
tion method because it does not require hand-tuning of the learning rate, momentum,
and other hyper-parameters.

For learning z we use the same hyper-parameters as learned in the previousmodel.
In our experiments, running 2000 epochs helped converge to a low loss.

8.5.2 Database and Preprocessing

In order to train Gz and Dx our approach initially was to use the same input images
as used to train Mk . However, this resulted in the network not converging to a low
loss. In other words, we were not able to learn a generative distribution that the
generator could sample from. Our analysis and intuition suggested that in order for
the adversarial loss to work, the task had to be a challenge for both Gz and Dx . Our
fully frontal pose images were ill-posed for this model.

Hence to train the GAN, we used the Labeled Faces in the Wild (LFW) database
[47] and aligned the faces using dLib as provided by the OpenFace [1]. We trained
on the entire dataset comprising around 13,000 images with 128 images held out
for the purpose of qualitatively showing the image recovery results as in Fig. 8.11.
In this case, by visual analysis as well by analytical analysis the Gz was better able
to learn a distribution of z, pg , that was a strong representation of the data, pdata.
That is symbolically, pg = pdata. The results and detailed evaluation of the model are
done later in Sect. 8.5.3. In this part of the experiment, we use a subset of the PCSO
database containing 10,000 images (5,000 male and 5,000 female) for testing the
gender classification accuracy. The reason we did not test on the entire 400K PCSO
is simply because the occlusion removal step involves an iterative solver which is
time consuming.

8.5.3 Experiment III: Further Occlusion Robustness via
Deep Generative Approach

As shown in Fig. 8.11, we chose to model occlusions based on percentage of pixels
missing from the center of the image. The shown images are from the held-out portion
of the LFW dataset. We show recovered images in Fig. 8.11 as a visual confirmation
that the DCGAN is able to recover unseen images with high fidelity, even under
pretty heavy occlusions as much as 75% in the face center. The recovery results on
the PCSO datasets to be tested for gender classification are comparable to that of the
LFW, but we are not allowed to display mugshot images in any published work.
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Fig. 8.11 Qualitative results of occlusion removal using DCGAN on images from LFW dataset

For training the Gz and Dx , we used the LFW data that captures a high variance
of poses, illumination, and faces. We found this was critical in helping especially the
Gz converge to a stable weights. The model was able to generalize well to various
faces and poses. As can be seen in Fig. 8.11, the model is able to generate missing
information effectively.
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Fig. 8.12 Quality measure
of occlusion removal on the
PCSO subset
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Table 8.9 Image quality measures (in dB) on the masked and occlusion removed images

Occlusion (%)

PSNR PSNR SNR SNR

10 25.3607 32.5194 18.8488 26.0101

25 16.8941 26.8720 10.3822 20.3627

35 14.112 24.7825 7.6001 18.2732

50 11.0937 22.1043 4.5819 15.5950

65 9.2849 20.3719 2.773 13.8627

75 8.4169 18.8392 1.905 12.3299

Not relying on visual inspection, we plotted the PSNR and SNR of the recov-
ered (occlusion removed) faces from the 10K PCSO subset in Fig. 8.12. This is our
quality measure of occlusion removal using GAN. As can be seen in Table8.9, the
PSNR/SNR is better for completed images and as expected is higher for images with
lesser occlusions.

The primary motivation behind training a GAN was to improve the classification
of Mk models. This is covered in Table8.10. The first column of the table is our
baseline case. This was constructed using upsampled images from the resolution as
needed by Gz and Dx to the resolution expected byMk . All other accuracies should
be evaluated with respect to this case. (Figure8.13)
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Figure8.14 corresponds to the other columns of Table8.10. The accuracies on
completed images using Gz are significantly better than the accuracies on masked
images. This suggests that the hallucinations are able to preserve the gender sensi-
tivity of the original images.

The above statement can also be verified through visual inspection of Fig. 8.11.
Even for high-percentage occlusions, 50 − 75%, the contours and features of the
original face are pretty accurately reproduced by Gz .

8.5.4 Discussion

In the current generative model for image occlusion removal, we assume that the
occlusion mask is known to the algorithm, which is the M in Eq.8.7. Although it is
beyond the scope of this work to study how an algorithm can automatically determine
the occlusion region, it will be an interesting research direction. For example, [61]
is able to automatically tell which part is the face or the non-face region.

One big advantage of the DCGAN or GAN in general is that it is entirely unsu-
pervised. The loss function is based off essentially measuring the similarity of two
distributions (the true image distribution and the generated image distribution), rather
than image-wise comparisons, which may require labeled ground-truth images be
provided. The unsupervised nature of the GAN has made the training process much
easier by not needing careful curating of the labeled data.

Fig. 8.13 Overall
classification accuracy for
Experiment III on the PCSO
subset. Images are not
corrupted
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Fig. 8.14 Overall classification accuracy on the PCSO subset. Images are corrupted with centered
contiguous occlusions of various percentages

The effectiveness of the DCGAN is also salient. It not only can recover the
high-percentage missing data with high fidelity, which translates to significant
improvement on the gender classification tasks, but also can be used for future data
augmentation in a total unsupervised manner. We can essentially generate as much
gender-specific data as needed, which will be an asset for training an even larger
model.

During our experimentation, we find that training the DCGAN using more con-
strained faces (less pose variations, less lighting variations, less expression variations,
etc.) such as the PCSOmugshot images actually degrades the recovery performance.
The reason could be as follows. When the training data is less diversified, let us
use one extreme case, which is a training dataset comprising thousands of images
from only one subject. In this case, the ‘true distribution’ becomes a very densely
clustered mass, which means whatever images the generator G tries to come up with,
the discriminatorD will (almost) always say that the generated ones are not from the
true distribution, because the generated image distribution can hardly hit that densely
clustered mass. This way, we are essentially giving a too easy task for the discrimina-
tor to solve, which prevents the discriminator to become a strong one, which leads to
poorly performing generator as well in this adversarial setting. In a nutshell, during
the DCGAN training, we definitely need more variations in the training corpus.
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8.6 Conclusions and Future Work

In thiswork,wehaveundertaken the taskof occlusion and low-resolution robust facial
gender classification. Inspired by the trainable attention model via deep architecture,
and the fact that the periocular region is proven to be themost salient region for gender
classification purposes, we are able to design a progressive convolutional neural
network training paradigm to enforce the attention shift during the learning process.
The hope is to enable the network to attend to particular high-profile regions (e.g.,
the periocular region) without the need to change the network architecture itself. The
network benefits from this attention shift and becomesmore robust toward occlusions
and low-resolution degradations. With the progressively trained CNN models, we
have achieved better gender classification results on the large-scale PCSO mugshot
databasewith 400K images under occlusion and low-resolution settings, compared to
the one undergone traditional training. In addition, our progressively trained network
is sufficiently generalized so that it can be robust to occlusions of arbitrary types and
at arbitrary locations, as well as low resolution.

To further improve the gender classification performance on occluded facial
images, we invoke a deep generative approach via deep convolutional generative
adversarial networks (DCGAN) to fill in the missing pixels for the occluded facial
regions. The recovered images not only show high fidelity as compared to the original
un-occluded images but also significantly improve the gender classification perfor-
mance.

In summary, on one hand, we aim at building a robust gender classifier that is
tolerant to image degradations such as occlusions and low resolution, and on the other
hand, we aim at mitigating and eliminating the degradations through a generative
approach. Together, we are able to push the boundary of unconstrained facial gender
classification.

Future work: We have carried out a set of large-scale testing experiments on the
PCSO mugshot database with 400K images, shown in the experimental section. We
have noticed that, under the same testing environment, the amount of time it takes to
test on the entire 400K images various dramatically for different progressively trained
models (M0 − M6). As shown in Fig. 8.15, we can observe a trend of testing time
decrease when testing using M0 all the way to M6, where the curves correspond
to the additive Gaussian noise occlusion robust experiments. This same trend is
observed across the board for all the large-scale experiments on PCSO. The time
difference is stunning. For example, if we look at the green curve, M0 takes over
5000 seconds while M6 only around 500. One of the future directions is to study
the cause of this phenomenon. One possible direction is to study the sparsity or the
smoothness of the learned filters.

Shown in our visualization (Fig. 8.15) of the 64 first-layer filters in AlexNet for
modelsM0,M3, andM6, respectively, we can observe that the progressively trained
filters seem to be smoother and thismay be due to the implicit low-rank regularization
phenomenon discussed in Sect. 8.3.1.3. Other future work may include studying how
the ensemble ofmodels [43, 44] can further improve theperformance andhowvarious
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Fig. 8.15 (Top) Testing time for the additive Gaussian noise occlusion experiments on various
models. (Bottom)Visualization of the 64first-layer filters formodelsM0,M3, andM6, respectively

multimodal soft-biometrics traits [5, 23, 25, 26, 28–30, 37, 41, 42, 64, 66, 74] can
be fused for improved gender classification, especially under more unconstrained
scenarios.
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