
Chapter 5
Finger Vein Identification Using
Convolutional Neural Network
and Supervised Discrete Hashing

Cihui Xie and Ajay Kumar

Abstract Automated personal identification using vascular biometrics, such as from
the finger vein images, is highly desirable as it helps to protect the personal privacy
and anonymity in during the identification process. The Convolutional Neural Net-
work (CNN) has shown remarkable capability for learning biometric features that can
offer robust and accurate matching. We introduce a new approach for the finger vein
authentication using the CNN and supervised discrete hashing. We also systemati-
cally investigate comparative performance using several popular CNN architectures
in other domains, i.e., Light CNN, VGG-16, Siamese and the CNN with Bayesian
inference-based matching. The experimental results are presented using a publicly
available two-session finger vein images database. Most accurate performance is
achieved by incorporating supervised discrete hashing from a CNN trained using the
triplet-based loss function. The proposed approach not only achieves outperforming
results over other considered CNN architecture available in the literature but also
offers significantly reduced template size as compared with those over the other
finger vein images matching methods available in the literature to date.

5.1 Introduction

Automated personal identification using unique physiological characteristics of
humans, like face, fingerprint, or iris, is widely employed for e-security in a range of
applications. In the past decade, there has been significant increase in the detection
of surgically altered fingerprints, fake iris stamps, or the usage of sophisticated face
masks, to thwart integrity of deployed biometrics systems. Vascular biometrics iden-
tification, like using finger vein patterns which are located at about three millimetres
below the skin surface, can help to preserve the integrity of biometrics system as it
is extremely difficult to surgically alter vascular biometrics. Another advantage of
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using finger vein biometrics is related to high degree of personal privacy as finger
vein patterns are hidden underneath the skin surface and extremely difficult to acquire
then covertly.

The possibility of personal identification using vascular patterns imaged using
the light transmitted through hands was indicated in 1992 [6], but was not known
to be demonstrated until 2000 [7]. Such earliest work demonstrated feasibility of
finger vein identification using normalized-cross correlation. Miura et al. [12] later
introduced repeated line tracking approach to improve the performance of finger vein
identification, and they further enhanced the performance with maximum curvature
[13]. Kumar and Zhou [8] introduced first publicly accessible finger vein database
in public domain and comparatively evaluated a range of handcrafted features for
the finger vein identification problem. The method introduced in [8] using Gabor
filter-based enhancement and morphological operations is still regarded the best
performingmethods formatching finger vein images.A range of handcrafted features
[2, 3, 8–13, 21], primarily obtained from the careful evaluation of the registered
images, have been introduced in the literature to investigate finger-vein identification
performance.Multiple features acquired from the two cameras [10] or usingmultiple
feature extractors [22] can be combined to significantly improve performance for
the vascular matching. One of the limitations of finger vein identification methods
introduced in the literature is related to their large template size. Smaller template size
is desirable to reduce storage and/or enhance the matching speed for the mobile and
online applications. There have also been successful attempts to reduce the finger
vein template size, like in [3, 9] or recently in [2] using sparse representation of
enhanced finger vein images using the Gabor filters.

The finger vein matching methods available in the literature to date have judi-
ciously introduced handcrafted features and demonstrated promising performance.
However, the remarkable capabilities of the deep learning algorithms in automatically
learning the most relevant vascular features are yet to be investigated or established.
The objective of this work is to fairly investigate the effectiveness of self-learned fea-
tures using popular convolutional neural network (CNN) architectures and develop
more efficient and effective alternative for the automated finger vein identification.
The experimental results and comparisons detailed in this chapter used light CNN
[20], modified VGG-16 [16], CNN with Bayesian inference, and Siamese network
with triplet loss function. Our reproducible [5] experimental results using publicly
available database indicate that supervised discrete hashing in conjunctionwith CNN
not only achieves outperforming results, but also significantly reduce the finger vein
template size which offers increased matching speed. Table5.1 in the following sum-
marizes promising methods for the finger vein matching that have been introduced in
the literature. This table also presents the template size in respective reference, which
has been estimated from the details provided in respective reference, performance
in terms of EER, and the database used for the performance evaluation. Reference
[4] provides good summary of publicly available finger vein image databases intro-
duced in the literature. The usage of two-session databases, particularly for the less
constrained or contactless imaging setups as in [8], generates high intra-class varia-
tions and is highly desirable to generate fair evaluation of the matching algorithms



5 Finger Vein Identification Using Convolutional Neural Network … 111

Table 5.1 Comparative summary of handcrafted finger vein features in the literature with this
work

Ref. Feature Database Two
session

Template
size
(bytes)

EER No. of
subjects

No. of
genuine
scores

No. of
impostor
scores

[8] Handcrafted
(Even Gabor)

Public Yes 106384 4.61% 105 1260 263,340

[8] Handcrafted
(Morphological)

Public Yes 6710 4.99% 105 1260 263,340

[12] Handcrafted
(Repeated line
tracking)

Proprietary No 43200* 0.145% 678 678* 458,328*

[13] Handcrafted
(Maximum
curvature)

Proprietary No 43200* 0.0009% 678 678* 458,328*

[3] Handcrafted
(Local binary
pattern)

Public No ≤260* 3.53% 156 624 194,064

[2] Handcrafted
(Sparse
representation
using l1-norm)

Proprietary No 630* Unknown 17 Unknown Unknown

[9] Handcrafted
(Extended local
binary pattern)

Public Yes 131328* 7.22% 105 1260 263,340

[21] Handcrafted
(Unknown
algorithm)

Proprietary Yes 20480* 0.77% Unknown 10,000 499,500

[11] Handcrafted
(Histogram of
salient edge
orientation map)

Public No ≤3496* 0.9% 100 3000 1,797,000

Ours CNN with
triplet similarity
loss

Public Yes 1024 13.16% 105 1260 263,340

Ours Supervised
discrete hashing
with CNN

Public Yes 250 9.77% 105 1260 263,340

*Computed by us from the details available in the respective reference

under more realistic usage/environments. Similarly, the usage of publicly available
database can ensure reproducibility of results. Therefore, our all experiments in this
chapter incorporate two-session and publicly available database from [8]. The last
two rows in this table summarize best performing results from our investigation
detailed in this work [19].

The rest of this chapter is organized as follows. Section5.2 briefly describes on
the preprocessing of the finger vein images and includes relevant steps for the image
normalization, segmentation and enhancement. The CNN architectures, LCNN,
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VGG, LCNN with triplet similarity loss function, and LCNN with joint Bayesian
formulation investigated in this are introduced in Sect. 5.3 while Sect. 5.4 details
the supervised discrete hashing algorithm investigated to enhance performance and
reduce the template size. The experimental results are presented in Sect. 5.4 and
includes discussion on our findings, comparison with earlier methods. Finally, the
key conclusions from this work are summarized in Sect. 5.5.

5.2 Image Normalization for Finger Vein Images

5.2.1 Preprocessing

Acquisition of finger vein images can introduce translational and rotational changes
in different images acquired from the same finger or subject. Therefore, automated
extraction of fixed region of interest (ROI) that can minimize such intra-class varia-
tions is highly desirable. The method of ROI localization considered in this work is
same as detailed in [8] as it works well in most cases. Figure5.1 illustrates samples
of the acquired images using the near infrared camera.

Once the region of interest is localized, we can recover the binary masks corre-
sponding to the ROI which can be used for alignment of finger vein samples, so that
the adverse influence from the rotational changes in fingers can be minimized. The
method for estimating the rotation is same as described in [8]. This estimated angle
is used to align ROI, before the segmentation, in a preferred direction.

5.2.2 Image Enhancement

The finger vein details from the normalized images are subjected to the contrast
enhancement to enhance clarity in vascular patterns which can be more reliable for

Fig. 5.1 Finger vein image samples before preprocessing (first row) and thebinary images generated
during the preprocessing (second row) stage
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the training. Since vascular patterns are generally continuous, if a pixel belongs to the
vascular pattern, there is a high possibility that its surrounding pixels are also part of
the same vascular pattern and have similar gray level. Such observation is the same
for nonvascular parts. Therefore, enhancement by computing the average gray level
surrounding a pixel can help to enlarge the difference between the vascular parts and
nonvascular parts, and makes the finger vein details more obvious as a result. After
such enhancement, the vascular patterns become clearer with details as shown from
sample images in Fig. 5.2.

The vascular patterns in the normalized image samples can be further enhanced
by spatial filtering from orientation selective band pass filters, similar to as used in
the enhancement of fingerprint images. We also attempted to ascertain usefulness
of such enhanced finger vein images using the Gabor filters. These filters from the
twelve different orientations are selected to generate enhanced finger vein images
as shown in Fig. 5.4. Such enhanced images [8] using Gabor filters are effective in
accentuating the vascular features and therefore its possible usage in automatically
vascular features (Fig. 5.3) from CNN was also investigated in the experiments.

The finger vein image-processing operations essentially generates two kinds of
enhanced images, ROI-A and ROI-B shown in Fig. 5.4, that were considered for the
performance evaluation using the CNNs.

Fig. 5.2 Enhanced ROI vein images after rotation

Fig. 5.3 Samples from even Gabor filtered finger vein images

Fig. 5.4 Key steps in the generation of enhanced finger vein images for the CNNs
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5.3 Convolutional Neural Network Architectures

A variety of models for the deep learning have been developed to learn useful feature
representation but largely for the face biometric image patterns. A variety of such
models using CNN have been introduced in the literature and were investigated
to ascertain performance for the finger vein image matching. A brief introduction
to various CNN architectures considered in this work is provided in the following
sections.

5.3.1 Light CNN

The light CNN (LCNN) framework introduces a Max-Feature-Map (MFM) oper-
ation [20] between convolutional layers which establish a competitive relationship
for superior generalization capability and reduce parameter space (compact fea-
ture representation). Suchmaxout activation (Fig. 5.5) function significantly reduces
complexity and makes CNN lighter, where conv stands for convolutional layer.

For a convolutional layer without MFM, suppose that input size is N1 × W1 × H1

and output size is N2 × W2 × H2 then the required complexity using big ‘O’ notation
can be represented as follows:

O (N1N2�) where � = W1 × H1 × W2 × H2 (5.1)

Fig. 5.5 Illustration for computing the Max-Feature Map in LCNN
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Fig. 5.6 The architecture for LCNN investigated in our experiments

For a convolutional layer with MFM, we could slice input into two equal-size parts,

each with N1
2 × W1 × H1. Then for each corresponding element in two sliced parts

we generate an output using maxout activation, which has a size of N1
2 × W1 × H1.

With this smaller or lighter data as the input, complexity of convolutional layer
reduces to

O

(
N1N2�

2

)
where � = W1 × H1 × W2 × H2 (5.2)

Comparing (5.1) and (5.2) we can infer that the usage of MFM can help to signifi-
cantly reduce the complexity or make CNN lighter.

The loss function we used in this structure is softmax loss function. The basic
idea is to combine softmax function with a negative log-likelihood, and the last layer
information is used to estimate the identity of the class.

The architecture ofLCNNemployed inour experiments is shown inFig. 5.6 (MFM
part is excluded tomaintain the clarity). This network contains 9 convolutional layers
(conv), 4 pooling layers (pooling) and 2 fully connected layers (fc) and some assistant
layers which are summarized in Table5.2.

5.3.2 LCNN with Triplet Similarity Loss Function

Deep Siamese networks have been successfully incorporated to learn a similarity
metric between a pair of images. We incorporated similar triplet similarity loss func-
tion as detailed in [14] for LCNN to learn the similarity metric.

We randomly select an image xr from training set as random sample in Fig. 5.7.
Then, we choose image x p which is from the same class referred to as positive sample
and image xn which is from a different class referred to as negative sample. After
LCNN, we get the features f (xr ), f (xn), and f (x p). Our objective is to decrease the
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Table 5.2 Details of layer
information of LCNN

Index Type Filter
size

Num Stride Pad

1 conv1 5 96 1 2

2 MFM1 – 48 – –

3 pooling1 2 – 2 0

4 conv2a 1 96 1 0

5 MFM2a – 48 – –

6 conv2 3 192 1 1

7 MFM2 – 96 – –

8 pooling2 2 – 2 0

9 conv3a 1 192 1 1

10 MFM3a – 96 – –

11 conv3 3 384 1 1

12 MFM3 – 192 – –

13 pooling3 2 – 2 0

14 conv4a 1 384 1 1

15 MFM4a – 192 – –

16 conv4 3 256 1 1

17 MFM4 – 128 – –

18 conv5a 1 256 1 1

19 MFM5a – 128 – –

20 conv5 3 256 1 1

21 MFM5 – 128 – –

22 pooling4 2 – 2 0

23 fc1 – 512 – –

24 MFMfc – 256 – –

25 fc2 – 500 – –

Fig. 5.7 The architecture for LCNN with triplet similarity loss function

similarity distance between random and positive features, and increase it between
random and negative features, which indicates why it is named as triplet similarity
loss. At the same time, we also need to ensure that there is a sufficientmargin between
them.
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Suppose we have a random set Xr = {xri }Ni=1 and its corresponding positive set
X p = {x p

i }Ni=1 and negative set Xn = {xni }Ni=1. Considering these notations, we can
write our loss function as follows:

∑N

i=1
[‖ f

(
xri

) − f
(
x p
i

) ‖2 − ‖ f
(
xri

) − f
(
xni

) ‖2 + margin]+ (5.3)

where [·]+ presents that we maintain positive values and change others to zero. The
architecture of LCNN with such triplet similarity loss function is shown in Fig. 5.7
and detailed in Table5.3. When the set of input consists of n random samples, n
positives and n negatives, we generate 3n × 500 features. These pairs were split into
three parts, each with the size of n× 500, and used as the input for computing triplet
similarity loss for updating the neuron weights during the network training.

5.3.3 Modified VGG-16

The Visual Geometry Group architecture with 16 layers (VGG-16) [16] was modi-
fied for the CNN to directly recover the match scores, instead of the feature vectors,
in our experiment. Our modification was motivated to fit the rectangular finger vein
ROI images without introducing the distortion. We used pair of images rather than
single image as input in conventional VGG-16 since we want to compare the sim-
ilarity between two finger vein images. The input image size is also different from
conventional VGG-16, which is 224× 224, while it’s 128× 488 pixels for our finger
vein ROI images. The training phase utilized the cross-entropy loss function which
can be written as follows:

− 1

n

∑n

i=1

[
yi log

(̂
yl

) + (1 − yi ) log
(
1 − ŷl

)]
(5.4)

where ŷl = g(wT xi )g(·) is the logistic function, xi is the extracted feature and w
is the weight that needs optimized during the training. The architecture of Modified
VGG-16 (MVGG) is shown in Fig. 5.8 and Table5.4.

5.3.4 LCNN with Joint Bayesian Formulation

The principal component analysis (PCA) is a classical method to extract the most
important features and is popular for the dimensionality reduction of the features. In
another set of experiments, we incorporated PCA for the dimensionality reduction
of features extracted from LCNN and then employed joint Bayesian [1] approach as
distance metrics for matching finger vein images.

For any feature f extracted from LCNN, we regard it as combination of two parts
μ and ε where μ is the average feature of the class to which f belongs and ε is
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Table 5.3 Details of layer information of LCNN with triplet similarity loss

Index Type Input
index

Output
index

Filter size Output
size

Stride Pad

1 DataR – 4 – N*W*H – –

2 DataP – 4 – N*W*H – –

3 DataN – 4 – N*W*H – –

4 Data 1,2,3 5 – 3N*W*H – –

5 conv1 4 6 5 3N*96 1 2

6 MFM1 5 7 – 3N*48 – –

7 pooling1 6 8 2 – 2 0

8 conv2a 7 9 1 3N*96 1 0

9 MFM2a 8 10 – 3N*48 – –

10 conv2 9 11 3 3N*192 1 1

11 MFM2 10 12 – 3N*96 – –

12 pooling2 11 13 2 – 2 0

13 conv3a 12 14 1 3N*192 1 1

14 MFM3a 13 15 – 3N*96 – –

15 conv3 14 16 3 3N*384 1 1

16 MFM3 15 17 – 3N*192 – –

17 pooling3 16 18 2 – 2 0

18 conv4a 17 19 1 3N*384 1 1

19 MFM4a 18 20 – 3N*192 – –

20 conv4 19 21 3 3N*256 1 1

21 MFM4 20 22 – 3N*128 – –

22 conv5a 21 23 1 3N*256 1 1

23 MFM5a 22 24 – 3N*128 – –

24 conv5 23 25 3 3N*256 1 1

25 MFM5 24 26 – 3N*128 – –

26 pooling4 25 27 2 – 2 0

27 fc1 26 28 – 3N*512 – –

28 MFMfc 27 29 – 3N*256 – –

29 fc2 28 30,31,32 – 3N*500 – –

30 SliceR 29 33 – N*500 – –

31 SliceP 29 33 – N*500 – –

32 SliceN 29 33 – N*500 – –

33 Loss 30,31,32 – – – – –



5 Finger Vein Identification Using Convolutional Neural Network … 119

Fig. 5.8 The architecture for Modified VGG-16 for finger vein image matching

Table 5.4 Details of layer
information of Modified
VGG-16

Index Type Filter
size

Num Stride Pad

1 conv1a 3 64 1 1

2 ReLU1a – – – –

3 conv1b 3 64 1 1

4 ReLU1b – – – –

5 conv1c 3 64 1 1

6 ReLU1c – – – –

7 pooling1 2 – 2 0

8 conv2a 3 128 1 1

9 ReLU2a – – – –

10 conv2b 3 128 1 1

11 ReLU2b – – – –

12 conv2c 3 128 1 1

13 ReLU2c – – – –

14 pooling2 2 – 2 0

15 conv3a 3 256 1 1

16 ReLU3a – – – –

17 conv3b 3 256 1 1

18 ReLU3b – – – –

19 conv3c 3 256 1 1

20 ReLU3c – – – –

21 pooling3 2 – 2 0

22 fc1 – 512 – –

23 Dropout – – – –

24 fc2 – 1 – –
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the intra-class variation, and we suppose that μ and ε are two independent variables
with Gaussian distribution N (0, σμ) and N (0, σε).

Let I be the hypothesis that f 1 and f 2 are from the same class, and E mean that

they are from different class. Thus we could write the goal as to enlarge P( f 1 f 2|I )
P( f 1 f 2|E)

where P(·) is the distribution. For simplicity, we use log formulation r( f 1, f 2) =
log P( f 1 f 2|I )

P( f 1 f 2|E)
and the computations are as detailed in [1].

Our objective has been to enlarge r( f 1, f 2) and therefore we compute maximum
of results rather than the minimum while using the L2-norm. The CNN training part
is the same as LCNN. After extraction of features, we retain 80 dimensions instead of
original 500 to accelerate computations and use these features to compute matrices
for the joint Bayesian formulation based classification.

5.4 Supervised Discrete Hashing

One of the key challenges for the successful usage of biometrics technologies are
related to efficient search speed (fast retrieval) and template storage/size. Hashing is
one of the most effective approaches to address such challenges and can efficiently
encode the biometrics templates using binary numbers (2000 in our experiments)
that closely reflect similarity with the input data/templates. With such strategy we
can only store the corresponding short/compact binary codes, instead of original
feature templates, and significantly improve the search or the matching speed by
highly efficient pairwise comparisons using the Hamming distance.

This framework for an effective supervised hashing scheme is introduced in
[15] and the objective in the learning phase is to generate binary codes for the
linear classification. We firstly define the problem and assume that we have n
samples/features X = [x1x2 . . . xn] and our goal is to recover corresponding binary
codes B = [b1b2 . . . bn] where bi ∈ {−1, 1} , i = 1, 2, . . . , n. Since we have labels,
in order to make good use of these information, we define a multi-class classification
function:

ŷ = WTbwhereW = [w1w2 . . .wC ] , (5.5)

where C is the total number of classes, and ŷ ∈ R
C×1 is the label vector, where

the maximum one indicates its class of input x. Now we can formulate the hashing
problem as follows:

min
B,W , F

∑n

i=1
L( yi ,W

Tbi ) + λ‖W‖2, s.t.bi = sgn(F (xi )) (5.6)

where L(·) represents the loss function used by us which is the L2-norm in our
experiments, λ is the regularization parameter, and at the same time, bi is generated
by the hash function sgn(F (xi )) where sgn(·) is the sign function. With the help of
Lagrange Multiplier, we can then rewrite (5.6) as:
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min
B,W , F

∑n

i=1
L( yi ,W

Tbi ) + λ‖W‖2 + μ
∑n

i=1
‖bi − F (xi ) ‖2 (5.7)

where μ is the Lagrange multiplier. We further select a nonlinear form of function
for F (x):

F(x = UTφ(x) (5.8)

where U is the parameter matrix and φ(x) is a k-dimensional kernel that

φ (x) =
⎡
⎣ exp(‖ x−a1‖2

σ
)

. . .

exp(‖ x−ak‖2
σ

)

⎤
⎦ (5.9)

a j , j = 1, 2, . . . , k are randomly selected anchor vectors from input. In order to
compute U in the function, we can rewrite (5.6) as follows:

min
U

∑n

i=1
‖bi − F (xi ) ‖2 = min

U
‖UT�(X) − B‖2 (5.10)

where �(X) = {φ(xi )}ni=1 and our purpose is to set the gradient to zero, which is

∇U
(‖UT�(X) − B‖2) = 2

(
UT�(X) − B

)
�(X)T = 0 (5.11)

It is simpler to achieve the final computation for U as follows:

U = (� (X) � (X)T)−1�(X)BT (5.12)

In order to solve for W, we make use of the same method, first simplify (5.6) to

min
W

∑n

i=1
L( yi ,W

Tbi ) + λ‖W‖2 = min
W

‖Y − WTB‖2 + λ‖W‖2, (5.13)

and then calculate its gradient based on W

∇W(‖Y − WTB‖2 + λ‖W‖2) = 2B
(
BTW − YT

) + 2λW, (5.14)

which can be set as zero and we get

W = (
BBT + λI

)−1
BYT, (5.15)

Finally, we can solve for B and we exclude those variables which have no relation
to B and then rewrite (5.6) as follows.
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min
B

‖Y − WTB‖2 + μ‖B − F (X) ‖2 = min
B

‖Y‖2 − 2tr
(
YTWTB

)

+ ‖WTB‖2 + μ(‖B‖2 + 2tr
(
BTF (X)

) + ‖F (X) ‖2) (5.16)

or we can further simplify the above formulation as follows:

min
B

‖WTB‖2 − 2tr
(
BT(F (X) + WY)

)
(5.17)

‖B‖2 is excluded here because bi ∈ {−1, 1} , i = 1, 2, . . . , n, indicating that ‖B‖2
is some constant.

We can now solve this problem bit-by-bit. Let pT represent the lth row of B, and
B′ is the matrix without pT. Similarly let vT be the lth row ofW and let qT be the lth
row of Q where Q = F (X) + WY then we can ignore W′ and Q′ While moving a
row to the end for all matrices would not cause problems but help to better understand
the problem. In order to enhance clarity of the problem, we can move all the lth row

to the end and rewrite B =
[
B′
pT

]
, and the same for W and Q We can then rewrite

first term in (5.17) as follows.

‖WTB‖2 =
∥∥∥∥[

W′T v
] [

B′
pT

]∥∥∥∥
2

= ‖W′TB′‖2 + ‖vpT‖2 + 2tr
(
B′TW′vpT

)

= ‖W′TB′‖2 + tr
(
vpTpvT

) + 2
(
W′v

)T
B′p (5.18)

While ‖W′TB′‖2 + tr
(
vpTpvT

)
is equal to some constant, and because our goal is

to solve for p we can regard other parts as constant. Here ‖vpT‖2 is ignored because
‖vpT‖2 = ‖pvT‖2 = tr

(
vpTpvT

) = n tr
(
vvT

)
where pTp = n. The other part can be

simplified as follows:

tr
(
BTQ

) = tr
(
B′TQ′ + pqT

) = tr
(
B′TQ′) + tr(pqT

) = tr(B′TQ′) + qT p (5.19)

Combining these terms, we can rewrite (5.17) as follows.

min
B

vTW′TB′p − qTp = min
B

(vTW′TB′ − qT)p (5.20)

This is an optimization problem, and p ∈ {−1, 1}n , therefore we just need to incor-
porate the opposite sign for its first argument.
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p = −sgn
(
vTW′TB′ − qT) = sgn(qT − vTW′TB′) (5.21)

We can now explicitly outline computed parts in the following.

W = (
BBT + λI

)−1
BYT, (5.15)

U = (� (X)� (X)T)−1�(X)BT (5.12)

p = sgn(qT − vTW′TB′) (5.21)

Shen et al. [15] have provided another computation based on the hinge loss. How-
ever for the simplicity, we incorporated L2-norm in our experiments and therefore
this part is excluded here. We now have the required equations here and can summa-
rize this algorithm as follows.

Algorithm: Supervised Discrete Hashing

Input: Training data {X,Y}
Output: Binary codes B

1. Randomly select k anchors a j , j = 1, 2, . . . , k from X and calculate � (X)

2. Randomly initiate B
3. Loop until converge or reach maximum iterations

– CalculateW and U which are described in (5.15) and (5.12)
– Learn B bit by bit, with the help of (5.21)

5.5 Experiments and Results

This section provides details on the experiments performed using various CNN archi-
tectures discussed in previous sections.

5.5.1 Database and Evaluation Protocol

In order to ensure reproducibility of experimental results, we utilized publicly avail-
able two-sessionfinger vein images database from [17]. This database of 6264 images
has been acquired from 156 different subjects and includes finger vein images from
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two fingers for each subject. However, second session images are only from 105
different subjects. This database has high intra-class variations in the images and
includes significant variations in the quality of images which makes it most suitable
for benchmarking the finger vein matching algorithms for the real applications. In
our experiments, we only used first session images to train different network archi-
tectures discussed in previous section, and initially excluded 51 subjects without
second session images. The experimental results are presented using independent
second session test data. Therefore, each of the receiver operating characteristics
uses 1260 (210 × 6) genuine scores and 263340 (210 × 209 × 6) impostor scores.

We experimented on ROI images, enhanced ROI images, and even Gabor- filtered
images separately. The ROI images have 256 × 513 pixels, enhanced ROI images
have 218 × 488 pixels, and even Gabor filtered images have 218 × 488 pixels. The
experimental results using ROC and CMC from the respective CNN architecture are
presented in the following.

5.5.2 Results Using LCNN

We first performed the experiments using the LCNN trained using the ROI images,
enhanced ROI images, and the enhanced images using even Gabor filters (Figs. 5.2,
5.3, and 5.4). The experimental results using respective second session dataset are
shown in Fig. 5.9. The respective ROC andCMC illustrate that enhancedROI images
can achieve superior matching performance than those from using ROI images. The
enhanced ROI images using even Gabor filters significantly helps to suppress the
noisy pixels and accentuate the vascular regions and is the plausible reason for
superior accuracy.

Fig. 5.9 Comparative ROC (left) and CMC (right) performance using LCNN



5 Finger Vein Identification Using Convolutional Neural Network … 125

Fig. 5.10 ComparativeROC(left) andCMC(right) performanceusingLCNNwith triplet similarity
loss

5.5.3 Results Using LCNN with Triplet Similarity Loss
Function

The experimental results using LCNN trained with Siamese triplet similarity loss
function are presented in Fig. 5.10. These results consistently illustrate superior per-
formance using the architecture than the LCNN. The performance from the ROC of
enhanced ROI with Gabor filters is significantly superior and this observation is in
line with the trend observed from results using LCNN in Fig. 5.9 (the dash lines in
Fig. 5.10 are previous results using LCNN for ease in the comparison). However, this
approach has little influence on CMC.

The LCNN without triplet similarity loss tries to match a sample with its label,
while LCNN with similarity loss focuses on the similarities of the images which
could contribute to the better ROC performance. However, at the same time, label
information is not sufficiently exploited with the triplet similarity loss and therefore
the CMC performance has not changed significantly.

5.5.4 Results Using CNN and Joint Bayesian Formulation

Another scheme that has shown superior performance for ocular classification in
[23] uses joint Bayesian [1] instead of L2-norm as the metrics for the similarity. The
LCNN with the joint Bayesian classification scheme was also attempted to ascertain
the performance. The ROC using this approach is illustrated in Fig. 5.11 where dash
lines are previous results using LCNN and indicates performance improvement over
LCNN.
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Fig. 5.11 Comparative ROC (left) and CMC (right) performance using LCNNwith Joint Bayesian

5.5.5 Comparisons and Results Using Supervised Discrete
Hashing

The supervised discrete hashing (SDH) scheme detailed in Sect. 5.4 was also investi-
gated for the performance improvement. Only first session data was employed for the
training part and the used for generating binarized bits that were used for matching
using Hamming distance. The results using the ROC and CMC in Fig. 5.12 illustrates
consistent performance improvement with the usage of SDH and the trends in the
usage of enhanced ROI images are also consistent with our earlier observations.

The LCNN trained with triplet similarity loss function was also employed and
usedwith the SDH to evaluate the performance.We attempted to ascertain the perfor-
mance with different number of bits. Higher number of bits for SDH can be generally
expected to offer superior results, but requires more training time. It should be noted
that this method is actually a second-step training, and tries to map features from

Fig. 5.12 Comparative ROC (left) and CMC (right) performance using LCNN with SDH
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Fig. 5.13 Comparative ROC (left) and CMC (right) performance using SDHwith triplet similarity
loss function

the Euclidian space to the binary space. The training phase and hamming distance
metrics can contribute to its superior performance. The combination of CNNwith the
hashing to reduce for the faster and real-time identification has also been attempted
earlier [18] but for the face recognition problem. Authors in [18] introduced incorpo-
rated Boosted Hashing Forest (BHF) for the hashing and therefore we also attempted
to incorporate BHF scheme to comparatively evaluate the performance.However, our
results illustrated superiority of SDH over BHF and the template size using BHFwas
also fixed to 2000 bits. Although our results did not achieve significant improvement
in the performance using BHF, its usage helps in remarkably reducing the template
size. In order to ascertain comparative performance for matching finger vein images
using the handcrafted features, we also performed additional experiments. The ROC
from the same test images and matching protocols but using repeated line track-
ing [1] (also used as baseline in [21]) and curvatures [13] method is illustrated in
Fig. 5.13. We can observe that the experimental results using SDH and LCNN offer
superior performance and significantly reduced template size. Our results over the
method using [8] are can be considered as competing and not yet superior but offers
significantly reduced template size (∼26 times smaller) over the best of the methods
in [8] which is still the state-of-the-art method to date.

5.5.6 Results Using Modified VGG-16

The experimental results using modified VGG-16, as detailed in Sect. 5.3.3 are pre-
sented in Fig. 5.14. It should be noted that this CNN architecture generates single
match score and therefore we cannot use SDH scheme to the infer features. We
can infer from the ROCs in Fig. 5.14, that modified VGG-16 architecture generates
superior performance for matching finger vein images as compared to the network
trained using LCNN. This architecture directly generates the matching scores and
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Fig. 5.14 Comparative
performance using SDH with
MVGG

therefore canminimize the problems from the inappropriate choice of distancemetric
(or weighting of features), which may be a convincible reason for its superior per-
formance/results. It should however be noted that different training of the network
can lead to variations in the results.

5.5.7 Results Using Single Fingers and Unregistered Fingers

Since we used both finger vein images from two fingers to form larger dataset (as
in [8]) for above experiments, it is judicious to ascertain the performance when
only one, i.e., index or middle, finger vein images are used in the training and test
phase. The results using respective finger vein images from 105 different subjects are
comparatively shown in Fig. 5.15 using the ROC. The performance using the images
from both fingers (using 210 class formed by combination of index andmiddle finger
for 105 different subjects) is superior to single finger, and index finger shows better
performance than middle finger. Similar trends are also observed in [8] and can be
attributed to the nature of dataset.

In earlier experiments, the first session data had images acquired from the same
subjects whowere providing their images during the second session andwere used as
test set for the performance. In order to ascertain robustness of self-learned features
using the best scheme so far, we also evaluated the performance from the 51 subjects
in this dataset which did not have any two-session finger vein images Therefore,
images from none of these subject’s images were employed during the training for
CNN in any of the earlier experiments. The six images from these 51 subjects were
used to ascertain performance using challenging protocol, i.e., all-to-all, so that we
generated a total of 1530 genuine scores and 185436 impostor scores to ascertain
such performance. The ROC corresponding to this independent test subjects finger
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Fig. 5.15 Comparative ROC (left) and CMC (right) performance using SDHwith triplet similarity
loss experimented on single finger

Fig. 5.16 The performance
using independent test
subjects in [17] for matching
finger vein images

vein data is shown in Fig. 5.16 and the results indicate promising performance from
the self-learned features using a model trained (in Sect. 5.3.2 and SDH) for matching
finger vein images from unknown subjects.

5.6 Discussion

This chapter has investigated finger vein matching performance using various con-
volutional neural network architectures. Unlike earlier work on finger vein image
matching which largely employed handcrafted features, our emphasis has been to
investigate automatically learned features using the capabilities of deep learning. We
systematically investigated the performance improvement using just the ROI images
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and the systematically enhanced images that mainly emphasizes on subsurface vas-
cular network. Our results consistently indicate superior performance from the CNN
that are trained with images which have such enhanced vascular features.

According to our experimental results in Sect. 5.5.6, modified VGG-16 (MVGG)
achieves superior performance than LCNN. However, MVGG requires significantly
higher time for the training (also for the test phase). This can be largely attributed
to the fact that it directly generates the match scores and therefore the loss function
outputs propagate iteratively through the whole network to ascertain the similarity
between a pair of finger vein images. At the same time, we cannot incorporate SDH
(hashing scheme) with the MVGG, due to nonavailability of intermediate features,
while the usage of SDH has shown to offer remarkable improvement in the perfor-
mance.

It should be noted that the triplet similarity loss function helps to significantly
improve the experimental performance using the LCNN. However, this approach
cannot adequately make use of the label information, because it attempts to decrease
the feature similarity between the pairwise images from the same subject, but cannot
accurately locate the labels, i.e., identity of the subjects they are associated with.
Supervised discrete hashing approach significantly improves performance and the
retrieval speed, and decrease the storage which requires only 250 bytes (2000 bits)
for the one template (feature vector). However, it should also be noted that this
method needs a separate training phase and training time rapidly increases when the
bit length or number of features are increased.

The work detailed in this chapter also had several constraints and therefore should
be considered only preliminary. The database employed, although one of the largest
two-session finger vein databases available in public domain, is still of smaller size
for the deep learning based algorithms. There are several references in the literature
that have shown promising performance but yet to demonstrate superior matching
performance over the method in [8] using fair comparison or the same matching
protocols. Therefore, we are justified in using the performance from [8], for this
publicly available dataset, as the reference.

5.7 Conclusions and Further Work

This chapter has systematically investigated finger vein identification using the vari-
ous CNN architectures. Unlike earlier work on finger veinmatching which employed
handcrafted features, our emphasis has been to investigate performance from the
automatically learned features using the capabilities of deep learning. We systemat-
ically investigated the performance improvement using the ROI finger vein images,
and the enhances images and consistently observed that the usage of ROI images
with enhanced vascular features and attenuation of background (noise) can signif-
icantly improve the performance. The factors that most influence the accuracy of
matching finger vein images is the depth of the network, the pretraining and the data
augmentation in terms of random crops and rotations.
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The LCNN architecture detailed in Sect. 5.3.2 that uses triplet similarity loss func-
tion achieves superior performance than those from the original softmax loss. Our
experimental results using SDH illustrates that this hashing method significantly
improves the matching performance and offers better alternative than BHF for the
finger vein identification problem. Apart from two-session identification on same
subjects, we also experimented on the datasets from subjects whose data was never
available for training theCNNand this remarkable performance indicates high gener-
alization capability for the finger vein identification problem. Our proposal for finger
vein identification detailed in this chapter achieves smallest template size than using
any other methods available in the literature to date. This work however had sev-
eral constraints and therefore should be considered only preliminary. The database
employed, although the largest two session finger vein images database available
in public domain, is still of smaller size for the deep learning algorithms. Despite
promising improvements in the accuracy from the publicly available (limited) train-
ing data, more work needs to be done to achieve significantly superior results than
using the best performing method in [8]. Further work should use larger training
dataset but should provide performance using the independent test data or using the
publicly available dataset [17] to achieve more accurate alternative for the automated
finger vein identification.
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