
Chapter 3
CMS-RCNN: Contextual Multi-Scale
Region-Based CNN for Unconstrained
Face Detection

Chenchen Zhu, Yutong Zheng, Khoa Luu and Marios Savvides

Abstract Robust face detection in the wild is one of the ultimate components to
support various facial related problems, i.e., unconstrained face recognition, facial
periocular recognition, facial landmarking and pose estimation, facial expression
recognition, 3D facial model construction, etc. Although the face detection problem
has been intensely studied for decades with various commercial applications, it still
meets problems in some real-world scenarios due to numerous challenges, e.g., heavy
facial occlusions, extremely low resolutions, strong illumination, exceptional pose
variations, image or video compression artifacts, etc. In this paper, we present a face
detection approach namedContextualMulti-ScaleRegion-basedConvolutionNeural
Network (CMS-RCNN) to robustly solve the problems mentioned above. Similar
to the region-based CNNs, our proposed network consists of the region proposal
component and the region-of-interest (RoI) detection component. However, far apart
of that network, there are two main contributions in our proposed network that play
a significant role to achieve the state-of-the-art performance in face detection. First,
the multi-scale information is grouped both in region proposal and RoI detection
to deal with tiny face regions. Second, our proposed network allows explicit body
contextual reasoning in the network inspired from the intuition of human vision
system. The proposed approach is benchmarked on two recent challenging face
detection databases, i.e., the WIDER FACE Dataset which contains high degree
of variability, as well as the Face Detection Dataset and Benchmark (FDDB). The
experimental results show that our proposed approach trained on WIDER FACE
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Dataset outperforms strong baselines on WIDER FACE Dataset by a large margin,
and consistently achieves competitive results on FDDB against the recent state-of-
the-art face detection methods.

3.1 Introduction

Detection and analysis on human subjects using facial feature based biometrics for
access control, surveillance systems, and other security applications have gained
popularity over the past few years. Several such biometrics systems are deployed
in security checkpoints across the globe with more being deployed every day. Par-
ticularly, face recognition has been one of the most popular biometrics modalities
attractive to security departments. Indeed, the uniqueness of facial features across
individuals can be captured much more easily than other biometrics. In order to take
into account a face recognition algorithm, however, face detection usually needs to
be done first.

The problem of face detection has been intensely studied for decades with the
aim of ensuring the generalization of robust algorithms to unseen face images [2–
13]. Although the detection accuracy in recent face detection algorithms [14–19]
has been highly improved due to the advancement of deep Convolutional Neural
Networks (CNN), they are still far from achieving the same detection capabilities
as a human due to a number of challenges in practice. For example, off-angle faces,
large occlusions, low-resolutions and strong lighting conditions, as shown in Fig. 3.1,
are always the important factors that need to be considered.

This paper presents an advanced CNN-based approach named Contextual Multi-
Scale Region-based CNN (CMS-RCNN) to handle the problem of face detection
in digital face images collected under numerous challenging conditions, e.g., heavy
facial occlusion, illumination, extremeoff-angle, low resolution, scale difference, etc.
Our designed region-based CNN architecture allows the network to simultaneously
look at multi-scale features, as well as to explicitly look outside facial regions as the
potential body regions. In other words, this process tries to mimic the way of face
detection by human in a sense that when humans are not sure about a face, seeing
the body will increase our confidence. Additionally this architecture also helps to
synchronize both the global semantic features in high-level layers and the localization
features in low-level layers for facial representation. Therefore, it is able to robustly
deal with the challenges in the problem of unconstrained face detection.

Our CMS-RCNN method introduces the Multi-Scale Region Proposal Network
(MS-RPN) to generate a set of region candidates and the Contextual Multi-Scale
Convolution Neural Network (CMS-CNN) to do inference on the region candidates
of facial regions. A confidence score and bounding-box regression are computed for
every candidate. In the end, the face detection system is able to decide the quality of
the detection results by thresholding these generated confidence scores in given face
images. The architecture of our proposed CMS-RCNN network for unconstrained
face detection is illustrated in Fig. 3.2.
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Fig. 3.1 An example of face detection results using our proposed CMS-RCNN method. The pro-
posedmethod can robustly detect faces across occlusion, facial expression, pose, illumination, scale
and low-resolution conditions from WIDER FACE Dataset [1]

Our approach is evaluated on two challenging face detection databases and com-
pared against numerous recent face detection methods. First, the proposed CMS-
RCNN method is compared against four strong baselines [1, 11, 16] on the WIDER
FACEDataset [1], a large-scale face detection benchmark database. This experiment
shows its capability to detect face images in the wild, e.g., under occlusions, illu-
mination, facial poses, low-resolution conditions, etc. Our method outperforms the
baselines by a huge margin in all easy, medium, and hard partitions. It is also bench-
marked on the FaceDetectionData Set andBenchmark (FDDB) [20], a dataset of face
regions designed for studying theproblemof unconstrained facedetection.The exper-
imental results show that the proposed CMS-RCNN approach consistently achieves
highly competitive results against the other state-of-the-art face detection methods.

The rest of this paper is organized as follows. In Sect. 3.2, we summarize prior
work in face detection. Section3.3 reviews a general deep learning framework, the
background as well as the limitations of the Faster R-CNN in the problem of face
detection. In Sect. 3.4, we introduce our proposed CMS-RCNN approach for the
problem of unconstrained face detection. Section3.5 presents the experimental face
detection results and comparisons obtained using our proposed approach on two
challenging face detection databases, i.e., the WIDER FACE Dataset and the FDDB
database. Finally, our conclusions in this work are presented in Sect. 3.6.
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Fig. 3.2 Our proposed Contextual Multi-Scale Region-based CNNmodel. It is based on the VGG-
16 model [21], with five sets of convolution layers in the middle. The upper part is the Multi-Scale
Region Proposal Network (MS-RPN) and the lower part is the Contextual Multi-Scale Convolution
Neural Network (CMS-CNN). In the CMS-CNN, the face features labeled as blue blocks and the
body context features labeled as red blocks are processed in parallel and combined in the end for
final outputs, i.e., confidence score and bounding box

3.2 Related Work

Face detection has been a well-studied area of computer vision. One of the first well-
performing approaches to the problem was the Viola–Jones face detector [2]. It was
capable of performing real-time face detection using a cascade of boosted simple
Haar classifiers. The concepts of boosting and using simple features has been the
basis for many different approaches [3] since the Viola–Jones face detector. These
early detectors tended to work well on frontal face images but not very well on faces
in different poses. As time has passed, many of these methods have been able to
deal with off-angle face detection by utilizing multiple models for the various poses
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of the face. This increases the model size but does afford more practical uses of
the methods. Some approaches have moved away from the idea of simple features
but continued to use the boosted learning framework. Li and Zhang [5] used SURF
cascades for general object detection but also showed good results on face detection.

More recent work on face detection has tended to focus on using different models
such as a Deformable Parts Model (DPM) [4, 22]. Zhu and Ramanan’s work was
an interesting approach to the problem of face detection where they combined the
problems of face detection, pose estimation, and facial landmarking into one frame-
work. By utilizing all three aspects in one framework, they were able to outperform
the state of the art at the time on real-world images. Yu et al. [23] extended this work
by incorporating group sparsity in learning which landmarks are the most salient
for face detection as well as incorporating 3D models of the landmarks in order to
deal with pose. Chen et al. [10] have combined ideas from both of these approaches
by utilizing a cascade detection framework while simultaneously localizing features
on the face for alignment of the detectors. Similarly, Ghiasi and Fowlkes [12] have
been able to use heirarchical DPMs not only to achieve good face detection in the
presence of occlusion but also landmark localization. However, Mathias et al. [9]
were able to show that both DPM models and rigid template detectors similar to the
Viola–Jones detector have a lot of potential that has not been adequately explored. By
retraining these models with appropriately controlled training data, they were able to
create face detectors that perform similarly to other, more complex state-of-the-art
face detectors.

All of these approaches to face detection were based on selecting a feature extrac-
tor beforehand. However, there has been work done in using a ConvNet to learn
which features are used to detect faces. Neural Networks have been around for a
long time but have been experiencing a resurgence in popularity due to hardware
improvements and new techniques resulting in the capability to train these networks
on large amounts of training data. Li et al. [14] utilized a cascade of CNNs to perform
face detection. The cascading networks allowed them to process different scales of
faces at different levels of the cascade while also allowing for false positives from
previous networks to be removed at later layers in a similar approach to other cas-
cade detectors. Yang et al. [16] approached the problem from a different perspective
more similar to a DPM approach. In their method, the face is broken into several
facial parts such as hair, eyes, nose, mouth, and beard. By training a detector on each
part and combining the score maps intelligently, they were able to achieve accurate
face detection even under occlusions. Both of these methods require training several
networks in order to achieve their high accuracy. Our method, on the other hand, can
be trained as a single network, end to end, allowing for less annotation of training
data needed while maintaining highly accurate face detection.

The ideas of using contextual information in object detection have been studied in
several recent work with very high detection accuracy. Divvala et al. [24] reviewed
the role of context in a contemporary, challenging object detection in their empirical
evaluation analysis. In their conclusions, the context information not only reduces the
overall detection errors, but also the remaining errors made by the detector are more
reasonable. Bell et al. [25] introduced an advanced object detector method named
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Inside-Outside Network (ION) to exploit information both inside and outside the
region of interest. In their approach, the contextual information outside the region of
interest is incorporated using spatial recurrent neural networks. Inside the network,
skip pooling is used to extract information atmultiple scales and levels of abstraction.
Recently, Zagoruyko et al. [26] have presented the MultiPath network with three
modifications to the standard Fast R-CNN object detector, i.e., skip connections that
give the detector access to features at multiple network layers, a foveal structure to
exploit object context at multiple object resolutions, and an integral loss function
and corresponding network adjustment that improve localization. The information
in their proposed network can flow along multiple paths. Their MultiPath network is
combined with DeepMask object proposals to solve the object detection problem.

Unlike all the previous approaches that select a feature extractor beforehand and
incorporate a linear classifier with the depth descriptor beside RGB channels, our
method solves the problem under a deep learning framework where the global and
the local context features, i.e., multi scaling, are synchronized to Faster Region-based
Convolutional Neural Networks in order to robustly achieve semantic detection.

3.3 Background in Deep Convolution Nets

The recent studies in deep ConvNets have achieved significant results in object detec-
tion, classification and modeling [27]. In this section, we review various well-known
Deep ConvNets. Then, we show the current limitations of the Faster R-CNN, one of
the state-of-the-art deep ConvNet methods in object detection, in the defined context
of the face detection.

3.3.1 Region-Based Convolution Neural Networks

One of the most important approaches for the object detection task is the family of
Region-based Convolution Neural Networks (R-CNN).

R-CNN [28], the first generation of this family, applies the high-capacity deep
ConvNet to classify given bottom-up region proposals. Due to the lack of labeled
training data, it adopts a strategy of supervised pretraining for an auxiliary task fol-
lowed by domain-specific fine-tuning. Then theConvNet is used as a feature extractor
and the system is further trained for object detection with Support Vector Machines
(SVM). Finally, it performs bounding-box regression. The method achieves high
accuracy but is very time-consuming. The system takes a long time to generate region
proposals, extract features from each image, and store these features in a hard disk,
which also takes up a large amount of space. At testing time, the detection process
takes 47s per image using VGG-16 network [21] implemented in GPU due to the
slowness of feature extraction. In other words, R-CNN is slow because it processes
each object proposal independently without sharing computation.
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Fast R-CNN [29] solves this problem by sharing the features between proposals.
The network is designed to only compute a feature map once per image in a fully
convolutional style, and to use ROI pooling to dynamically sample features from the
feature map for each object proposal. The network also adopts a multitask loss, i.e.,
classification loss andbounding-box regression loss.Basedon the two improvements,
the framework is trained end to end. The processing time for each image significantly
reduced to 0.3 s. Fast R-CNNaccelerates the detection network using theROI pooling
layer. However the region proposal step is designed out of the network hence still
remains a bottleneck, which results in suboptimal solution and dependence on the
external region proposal methods.

Faster R-CNN [30] addresses the problem with fast R-CNN by introducing the
Region Proposal Network (RPN). An RPN is implemented in a fully convolutional
style to predict the object bounding boxes and the objectness scores. In addition,
the anchors are defined with different scales and ratios to achieve the translation
invariance. The RPN shares the full-image convolution features with the detection
network. Therefore the whole system is able to complete both proposal generation
and detection computation within 0.2 s using very deep VGG-16 model [21]. With a
smaller ZF model [31], it can reach the level of real-time processing.

3.3.2 Limitations of Faster R-CNN

TheRegion-based CNN family, e.g., Faster R-CNN and its variants [29], achieves the
state-of-the-art performance results in object detection on the PASCALVOCdataset.
These methods can detect objects such as vehicles, animals, people, chairs, etc., with
very high accuracy. In general, the defined objects often occupy the majority of a
given image. However, when these methods are tested on the challenging Microsoft
COCO dataset [32], the performance drops a lot, since images contain more small,
occluded, and incomplete objects. Similar situations happen in the problem of face
detection.We focus on detecting only facial regions that are sometimes small, heavily
occluded and of low resolution (as shown in Fig. 3.1).

The detection network in designed Faster R-CNN is unable to robustly detect such
tiny faces. The intuition point is that the regions of interest pooling layer, i.e., ROI
pooling layer, builds features only from the last single high-level feature map. For
example, the global stride of the ‘conv5’ layer in the VGG-16model is 16. Therefore,
given a facial region with the sizes less than 16 × 16 pixels in an image, the projected
ROI pooling region for that location will be less than 1 pixel in the ‘conv5’ layer,
even if the proposed region is correct. Thus, the detector will have much difficulty
to predict the object class and the bounding-box location based on information from
only one pixel.
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3.3.3 Other Face Detection Method Limitations

Other challenges in object detection in the wild include occlusion and low resolution.
For face detection, it is very common for people to wear stuffs like sunglasses, scarf
and hats, which occlude the face. In such cases, the methods that only extract features
from faces do not work well. For example, Faceness [16] consider finding faces
through scoring facial parts responses by their spatial structure and arrangement,
which works well on clear faces. But when facial parts are missing due to occlusion
orwhen face itself is too small, facial parts becomemore hard to detect. Therefore, the
body context information plays its role. As an example of context-dependent objects,
faces often come together with human body. Even though the faces are occluded,
we can still locate it only by seeing the whole human body. Similar advantages for
faces at low resolution, i.e., tiny faces. The deep features cannot tell much about tiny
faces since their receptive field is too small to be informative. Introducing context
information can extend the area to extract features and make them meaningful. On
the other hand, the context information also helped with reducing false detection
as discussed previously, since context information tells the difference between real
faces with bodies and face-like patterns without bodies.

3.4 Contextual Multi-Scale R-CNN

Our goal is to detect human faces captured under various challenging conditions such
as strong illumination, heavily occlusion, extreme off-angles, and low resolution.
Under these conditions, the current CNN-based detection systems suffer from two
major problems, i.e., (1) tiny faces are hard to identify; (2) only face region is taken
into consideration for classification. In this section, we show why these problems
hinder the ability of a face detection system. Then, our proposed network is presented
to address these problems by using the Multi-Scale Region Proposal Network (MS-
RPN) and the Contextual Multi-Scale Convolution Neural Network (CMS-CNN), as
illustrated in Fig. 3.2. Similar to Faster R-CNN, the MS-RPN outputs several region
candidates and the CMS-CNN computes the confidence score and bounding box for
each candidate.

3.4.1 Identifying Tiny Faces

Why tiny faces are hard to be robustly detected by the previous region-based CNNs?
The reason is that in these networks both the proposed region and the classifica-
tion score are produced from one single high-level convolution feature map. This
representation does not have enough information for the multiple tasks, i.e., region
proposal and RoI detection. For example, Faster R-CNN generates region candidates
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and does RoI pooling from the ‘conv5’ layer of the VGG-16model, which has a over-
all stride of 16. One issue is that the reception field in this layer is quite large. When
the face size is less than 16-by-16 pixels, the corresponding output in ‘conv5’ layer
is less than 1 pixel, which is insufficient to encode informative features. The other
issue is that as the convolution layers go deeper, each pixel in the feature map gather
more and more information outside the original input region so that it contains lower
proportion of information for the region of interest. These two issues together make
the last convolution layer less representative for tiny faces.

3.4.1.1 Multiple Scale Faster-RCNN

Our solution for this problem is a combination of both global and local features, i.e.,
multiple scales. In this architecture, the feature maps are incorporated from lower
level convolution layers with the last convolution layer for both MS-RPN and CMS-
CNN. Features from lower convolution layer help get more information for the tiny
faces, because stride in lower convolution layer will not be too small. Another benefit
is that both low-level feature with localization capability and high-level feature with
semantic information are fused together [33], since face detection needs to localize
the face as well as to identify the face. In the MS-RPN, the whole lower level feature
maps are down-sampled to the size of high-level feature map and then concatenated
with it to form a unified feature map. Then we reduce the dimension of the unified
feature map and use it to generate region candidates. In the CMS-CNN, the region
proposal is projected into feature maps from multiple convolution layers. And RoI
pooling is performed in each layer, resulting in a fixed-size feature tensor. All feature
tensors are normalized, concatenated and dimension-reduced to a single feature blob,
which is forwarded to two fully connected layers to compute a representation of the
region candidate.

3.4.1.2 L2 Normalization

In both MS-RPN and CMS-CNN, concatenation of feature maps is done with L2
normalization layer [34], shown in Fig. 3.2, since the feature maps from different
layer have generally different properties in terms of numbers of channels, scale of
value and norm of feature map pixels. Generally, comparing with values in shallower
layers, the values in deeper layers are usually too small, which leads to the dominance
of shallower layers. In practice, it is impossible for the system to readjust and tune
value from each layer for best performance. Therefore, L2 normalization layers
before concatenation are crucial for the robustness of the system because it keeps
the value from each layer in roughly the same scale.
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The normalization is performed within each pixel, and all feature map is treated
independently

x̂ = x
‖x‖2

‖x‖2 =
(

d∑
i=1

|xi |
) 1

2

(3.1)

where the x and x̂ stand for the original pixel vector and the normalized pixel vector
respectively. d stands for the number of channels in each feature map tensor.

During training, scaling factors γi will be updated to readjust the scale of the
normalized features. For each channel i , the scaling factor follows:

yi = γi x̂i (3.2)

where yi stand for the rescaled feature value.
Following the backpropagation and chain rule, the update for scaling factor γ is

∂l

∂ x̂
= ∂l

∂y
· γ

∂l

∂x
= ∂l

∂ x̂

(
I

‖x‖2 − xxT

‖x‖32

)
∂l

∂γi
=

∑
yi

∂l

∂yi
x̂i (3.3)

where y = [y1, y2, . . . , yd ]T .

3.4.1.3 New Layer in Deep Learning Caffe Framework

The system integrate information from lower layer feature maps, i.e., third and fourth
convolution layers, to extract determinant features for tiny faces. For both parts of
our system, i.e., MS-RPN and CMS-CNN, the L2 normalization layers are inserted
before concatenationof featuremaps from the three layers. The featureswere rescaled
to proper values and concatenated to a single feature map. We set the initial scaling
factor in a special way, following two rules. First, the average scale for each feature
map is roughly identical; second, after the following 1 × 1 convolution, the resulting
tensor should have the same average scale as the conv5 layer in the work of Faster
R-CNN. As implied, after the following 1 × 1 convolution, the tensor should be the
same as the original architecture in Faster R-CNN, in terms of its size, scale of values,
and function for the downstream process.

3.4.2 Integrating Body Context

When humans are searching for faces, they try to look for not only the facial patterns,
e.g., eyes, nose, mouth, but also the human bodies. Sometimes a human body makes
us more convinced about the existence of a face. In addition, sometimes human body
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Fig. 3.3 Examples of body context helping face identification. The first two figures show that
existence of a body can increase the confidence of finding a face. The last two figures show that
what looks like a face turns out to be a mountain on the planet surface when we see more context
information

helps to reject false positives. If we only look at face regions, we may make mistakes
identifying them. For example, Fig. 3.3 shows two cases where body region plays a
significant role for correct detection. This intuition is not only true for human but
also valid in computer vision. Previous research has shown that contextual reasoning
is a critical piece of the object recognition puzzle, and that context not only reduces
the overall detection errors, but, more importantly, the remaining errors made by the
detector are more reasonable [24]. Based on this intuition, our network is designed to
make explicit reference to the human body context information in the RoI detection.

In our proposed network, the contextual body reasoning is implemented by explic-
itly grouping body information from convolution feature maps shown as the red
blocks in Fig. 3.2. Specifically, additional RoI pooling operations are performed
for each region proposal in convolution feature maps to represent the body context
features. Then same as the face feature tensors, these body feature tensors are nor-
malized, concatenated, and dimension-reduced to a single feature blob. After two
fully connected layers the final body representation is concatenated with the face
representation. They together contribute to the computation of confidence score and
bounding-box regression.

With projected region proposal as the face region, the additional RoI pooling
region represents the body region and satisfies a predefined spatial relation with the
face region. In order to model this spatial relation, we make a simple hypothesis that
if there is a face, there must exist a body, and the spatial relation between each face
and body is fixed. This assumption may not be true all the time but should cover
most of the scenarios since most people we see in the real world are either standing
or sitting. Therefore, the spatial relation is roughly fixed between the face and the
vertical body.
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Fig. 3.4 The Vitruvian Man: spatial relation between the face (blue box) and the body (red box)

Mathematically, this spatial relation can be represented by four parameters pre-
sented in Eq.3.4.

tx = (xb − x f )/w f ty = (yb − y f )/h f tw = log(wb/w f )th = log(hb/h f ) (3.4)

where x(∗), y(∗), w(∗), and h(∗) denote the two coordinates of the box center, width,
and height respectively. And b and f stand for body and face respectively. tx , ty , tw,
and th are the parameters. Through out this paper, we fix the for parameters such
that the two projected RoI regions of face and body satisfies a certain spatial ratio
illustrated in the famous drawing in Fig. 3.4.

3.4.3 Information Fusion

It’s worth noticing that in our deep network architecture we have multiple face
feature maps and body context feature maps for each proposed region. A critical
issue is how we effectively fuse these information, i.e., what computation to apply
and in which stage.

In our network, features extracted from different convolution layers need to be
fused together to get a uniform representation. They cannot be naively concatenated
due to the overall differences of the numbers of channels, scales of values, and norms
of featuremap pixels among these layers. The detailed research shows that the deeper
layers often contain smaller values than the shallower layers. Therefore, the larger
values will dominate the smaller ones, making the system rely toomuch on shallower
features rather than a combination of multiple scale features causing the system to no
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longer be robust.We adopt the normalization layer from [34] to address this problem.
The system takes the multiple scale features and apply L2 normalization along the
channel axis of each feature map. Then, since the channel size is different among
layers, the normalized feature map from each layer needed to be reweighted, so that
their values are at the same scale. After that, the feature maps are concatenated to
one single feature map tensor. This modification helps to stabilize the system and
increase the accuracy. Finally, the channel size of the concatenated feature map is
shrunk to fit right in the original architecture for the downstream fully connected
layers.

Another crucial question is whether to fuse the face information and the body
information at a early stage or at the very end of the network. Here we choose the
late fusion strategy in which face features and body context features are extracted
in two parallel pipelines. At the very end of the network two representations for
face and body context are concatenated together to form a long feature vector. Then
this feature vector is forwarded to compute confidence score and bounding-box
regression. The other strategy is the early fusion, inwhich face featuremaps and body
context feature maps get concatenated right after RoI pooling and normalization.
These two strategies combine the information from face and body context, but we
prefer the late fusion. The reason is that we want the network to make decisions in
a more semantic space. We care more about the existence of the face and the body.
The localization information is already encoded in the predefined spatial relation
mentioned in Sect. 3.4.2. Moreover empirical experiments also show that late fusion
strategy works better.

3.4.4 Implementation Details

Our CMS-RCNN is implemented in the Caffe deep learning framework [35]. The
first five sets of convolution layers have the same architecture as the deep VGG-16
model, and during training their parameters are initialized from the pretrained VGG-
16. For simplicity we refer to the last convolution layers in set 3, 4 and 5 as ‘conv3’,
‘conv4’, and ‘conv5’ respectively. All the following layers are connected exclusively
to these three layers. In the MS-RPN, we want ‘conv3’, ‘conv4’, and ‘conv5’ to be
synchronized to the same size so that concatenation can be applied. So ‘conv3’ is
followed by pooling layer to perform down-sampling. Then ‘conv3’, ‘conv4’, and
‘conv5’ are normalized along the channel axis to a learnable reweighting scale and
concatenated together. To ensure training convergence, the initial reweighting scale
needs to be carefully set. Here we set the initial scale of ‘conv3’, ‘conv4’, and ‘conv5’
to be 66.84, 94.52, and 94.52 respectively. In the CMS-CNN, the RoI pooling layer
already ensure that the pooled feature maps have the same size. Again we normalize
the pooled features to make sure the downstream values are at reasonable scales
when training is initialized. Specifically, features pooled from ‘conv3’, ‘conv4’, and
‘conv5’ are initialized with scale to be 57.75, 81.67, and 81.67 respectively, for both
face and body pipelines. TheMS-RPN and the CMS-CNN share the same parameters
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for all convolution layers so that computation can be done once, resulting in higher
efficiency.Additionally, in order to shrink the channel size of the concatenated feature
map, a 1 × 1 convolution layer is then employed. Therefore the channel size of final
featuremap is at the same size as the original fifth convolution layer in Faster R-CNN.

3.5 Experiments

This section presents the face detection benchmarking using our proposed CMS-
RCNN approach on the WIDER FACE dataset [1] and the Face Detection Data Set
and Benchmark (FDDB) [20] database. The WIDER FACE dataset is experimented
with high degree of variability. Using this database, our proposed approach robustly
outperforms strong baseline methods, including Two-stage CNN [1], Multi-scale
Cascade CNN [1], Faceness [16] and Aggregate Channel Features (ACF) [11], by
a large margin. We also show that our model trained on WIDER FACE dataset
generalizes well enough to the FDDB database. The trained model consistently
achieves competitive results against the recent state-of-the-art face detectionmethods
on this database, includingHyperFace [19], DP2MFD [17], CCF [18], Faceness [16],
NPDFace [13], MultiresHPM [12], DDFD [15], CascadeCNN [14], ACF-multiscale
[11], Pico [7], HeadHunter [9], Joint Cascade [10], Boosted Exemplar [8], and PEP-
Adapt [6].

3.5.1 Experiments on WIDER FACE Dataset

Data Description

WIDER FACE is a public face detection benchmark dataset. It contains 393,703
labeled human faces from 32,203 images collected based on 61 event classes from
Internet. The database has many human faces with a high degree of pose variation,
large occlusions, low resolutions, and strong lighting conditions. The images in
this database are organized and split into three subsets, i.e., training, validation and
testing. Each contains 40, 10, and 50% respectively of the original databases. The
images and the ground truth labels of the training and the validation sets are available
online for experiments. However, in the testing set, only the testing images (not the
ground truth labels) are available online. All detection results are sent to the database
server for evaluating and receiving the Precision-Recall curves.

In our experiments, the proposed CMS-RCNN is trained on the training set of
the WIDER FACE dataset containing 159,424 annotated faces collected in 12,880
images. The trained model on this database are used in testing of all databases.
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With Context Versus Without Context

As we show in Sect. 3.4.2 that human vision can benefit from additional context
information for better detection and recognition, we show in this section how does
explicit contextual reasoning in the network help improve the model performance.

To prove this, we test our models with and without body context information
on the validation set of WIDER FACE dataset. The model without body context is
implemented by removing the context pipeline and only use the representation from
face pipeline to compute the confidence score and the bounding-box regression. We
compare their performances as illustrated in Fig. 3.5. The Faster R-CNN method
is setup as a baseline. We also compare our models with different strategies of
information fusion discussed in Sect. 3.4.3, which we call early-fused context and
late-fused context respectively.

Experiment results show that the model with late-fused context has significant
improvement over the one without context, which means that they can handle the
challenging conditions better. Moreover, we observe that early-fused context dose
help detecting more faces because its curve is longer than the one without context.
However, early-fused context gets fired on too many false positives which results
in low AP score and a drop in the beginning of the curve. Figure3.6 illustrates the
false positives compared to late-fused context. This is probably because early-fused
context concatenates all feature maps at a very early stage, resulting in a high-
dimensional feature map. This can cause over-fitting due to the curse of dimension.
Therefore, we fix our model to be late-fused context for other experiments.

To find out the minimum resolution at which our proposed network can detect a
face, we set the threshold such that our detector can reach 90% precision in Fig. 3.5.
Then we collect all the correct faces detected by our method in the WIDER FACE
validation set. It turns out the minimum size of faces we can detect is around 10× 10
pixels.

Fig. 3.5 Precision-Recall
curves on the WIDER FACE
validation set. The baseline
(green curve) is generated by
the Faster R-CNN [30]
model trained on WIDER
FACE training set. We show
that our model without
context (red curve)
outperforms baseline by a
large gap. With late-fused
context, the performance
gets boosted even further
(blue curve). The numbers in
the legend are the average
precision values
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Fig. 3.6 Comparison between early-fused context and late-fused context on some examples in
WIDER FACE validation set. It is clear that early-fused context is easier getting fired on some false
positives, resulting in a lower AP score
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Testing and Comparison

During the testing phase, the face images in the testing set are divided into three
parts based on their detection rates on EdgeBox [36]. In other words, face images
are divided into three levels according to the difficulties of the detection, i.e., Easy,
Medium, andHard [1]. The proposed CMS-RCNNmodel is compared against recent
strong face detection methods, i.e., Two-stage CNN [1], Multi-scale Cascade CNN
[1], Faceness [16], and Aggregate Channel Features (ACF) [11]. All these methods
are trained on the same training set and tested on the same testing set.

The Precision-Recall curves and AP values are shown in Fig. 3.7. Our method
outperforms those strong baselines by a large margin. It achieves the best average
precision in all level faces, i.e., AP=0.902 (Easy), 0.874 (Medium) and 0.643 (Hard),
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Fig. 3.7 Precision-Recall curves obtained by our proposed CMS-RCNN (red) and the other base-
lines, i.e. Two-stage CNN [1], Multi-scale Cascade CNN [1], Faceness [16], and Aggregate Chan-
nel Features (ACF) [11]. All methods trained and tested on the same training and testing set of
the WIDER FACE dataset. a Easy level, b Medium level, and c Hard level. Our method achieves
the state-of-the-art results with the highest AP values of 0.902 (Easy), 0.874 (Medium), and 0.643
(Hard) among the methods on this database. It also outperforms the second best baseline by 26.0%
(Easy), 37.4% (Medium) and 60.8% (Hard)
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Fig. 3.8 Some examples of face detection results using our proposed CMS-RCNN method on
WIDER FACE database [1]

and outperforms the second best baseline by 26.0% (Easy), 37.4% (Medium), and
60.8% (Hard). These results suggest that as the difficulty level goes up, CMS-RCNN
can detect challenging faces better. So it has the ability to handle difficult conditions
hence is more closed to human detection level. Figure3.8 shows some examples of
face detection results using the proposed CMS-RCNN on this database.

Visualization of False Positives

As it is well known that precision-recall curves get dropped due to the false positives,
we are interested in the false positives produced by our CMS-RCNN model. We are
curious about what object can fool our model to treat it as a face. Is it due to over-
fitting, data bias, or miss labeling?

In order to visualize the false positives, we test the CMS-RCNN model on the
WIDER FACE validation set and pick all the false positives according to the ground
truth. Then those positives are sorted by the confidence score in a descending order.
We choose the top 20 false positives as illustrated in Fig. 3.9. Because their confidence
scores are high, they are the objects most likely to cause our model making mistakes.
It turns out that most of the false positives are actually human faces caused by miss
labeling, which is a problem of the dataset itself. For other false positives, we find the
errors made by our model are rather reasonable. They all have the pattern of human
face as well as the shape of human body.

3.5.2 Experiments on FDDB Face Database

To show that our method generalizes well to other database, the proposed CMS-
RCNN is also benchmarked on the FDDB database [20]. It is a standard database
for testing and evaluation of face detection algorithms. It contains annotations for
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Fig. 3.9 Examples of the top 20 false positives from our CMS-RCNNmodel tested on theWIDER
FACE validation set. In fact these false positives include many human faces not in the dataset due
to mislabeling, which means that our method is robust to the noise in the data

5,171 faces in a set of 2,845 images taken from the Faces in the Wild dataset. Most
of the images in the FDDB database contain less than three faces that are clear or
slightly occluded. The faces generally have large sizes and high resolutions compared
to WIDER FACE. We use the same model trained on WIDER FACE training set
presented in Sect. 3.5.1 to perform the evaluation on the FDDB database.

The evaluation is performed based on the discrete criterion following the same
rules in PASCALVOCChallenge [37], i.e., if the ratio of the intersection of a detected
region with an annotated face region is greater than 0.5, it is considered as a true pos-
itive detection. The evaluation is proceeded following the FDDB evaluation protocol
and compared against the published methods provided in the protocol, i.e. Hyper-
Face [19], DP2MFD [17], CCF [18], Faceness [16], NPDFace [13], MultiresHPM
[12], DDFD [15], CascadeCNN [14], ACF-multiscale [11], Pico [7], HeadHunter

Fig. 3.10 ROC curves of our proposed CMS-RCNN and the other published methods on FDDB
database [20]. Our method achieves the best recall rate on this database. Numbers in the legend
show the average precision scores
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Fig. 3.11 Some examples of face detection results using our proposed CMS-RCNN method on
FDDB database [20]

[9], Joint Cascade [10], Boosted Exemplar [8], and PEP-Adapt [6]. The proposed
CMS-RCNN approach outperforms most of the published face detection methods
and achieves a very high recall rate comparing against all other methods (as shown
Fig. 3.10). This is concrete evidence to demonstrate thatCMS-RCNNrobustly detects
unconstrained faces. Figure3.11 shows some examples of the face detection results
using the proposed CMS-RCNN on the FDDB dataset.

3.6 Conclusion and Future Work

This paper has presented our proposed CMS-RCNN approach to robustly detect
human facial regions from images collected under various challenging conditions,
e.g., highly occlusions, low resolutions, facial expressions, illumination variations,
etc. The approach is benchmarked on two challenging face detection databases,
i.e., the WIDER FACE Dataset and the FDDB, and compared against recent other
face detection methods. The experimental results show that our proposed approach
outperforms strong baselines on the WIDER FACE and consistently achieves very
competitive results against state-of-the-art methods on the FDDB.

In our implementation, the proposed CMS-RCNN consists of the MS-RPN and
the CMS-CNN. During training, they are merged together in an approximate joint
training style for each SGD iteration, in which the derivatives w.r.t. the proposal
boxes’ coordinates are ignored. In the future, we want to go to the fully joint training
so that the network can be trained in end-to-end fashion (Fig. 3.12).
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Fig. 3.12 More results of unconstrained face detection under challenging conditions using our
proposed CMS-RCNN
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