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Abstract Liveness detection is a fundamental element for all biometric systems that
have to be safe against spoofing attacks at sensor level. In particular, for an attacker it
is relatively easy to build a fake replica of a legitimate finger and apply it directly to
the sensor, thereby fooling the systembydeclaring its corresponding identity. In order
to ensure that the declared identity is genuine and it corresponds to the individual
present at the time of capture, the task is usually formulated as a binary classification
problem, where a classifier is trained to detect whether the fingerprint at hand is real
or an artificial replica. In this chapter, unlike the binary classification model, a metric
learning approach based on triplet convolutional networks is proposed. A representa-
tion of the fingerprint images is generated, where the distance between feature points
reflects how much the real fingerprints are dissimilar from the ones generated artifi-
cially. A variant of the triplet objective function is employed, that considers patches
taken from two real fingerprint and a replica (or two replicas and a real fingerprint),
and gives a high penalty if the distance between the matching couple is greater than
the mismatched one. Given a test fingerprint image, its liveness is established by
matching its patches against a set of reference genuine and fake patches taken from
the training set. The use of small networks along with a patch-based representation
allows the system to perform the acquisitions in real time and provide state-of-the-art
performances. Experiments are presented on several benchmark datasets for liveness
detection including different sensors and fake fingerprint materials. The approach is
validated on the cross-sensor and cross-material scenarios, to understand how well
it generalizes to new acquisition devices, and how robust it is to new presentation
attacks.
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12.1 Introduction

Biometrics authentication systems have become part of the daily routine for millions
of people around the world. A large number of people use their fingerprints every
day in order to pass the security checkpoints at airports, to access their personal
mobile devices [1] and to access restricted areas. The popularity of this biometric
with respect of others such as face and iris recognition lies on its reliability, that has
been proven during the last decades, its implementation at an affordable cost, and
especially on the simplicity of touching a surface to get immediately authenticated.

Unfortunately, all these advantages comewith various security and privacy issues.
Different attacks can be performed to the authentication system in order to grant
access to some exclusive area or to steal confidential data. For instance, the software
and the network configuration can have security holes or bugs, and the matching
algorithms can be fooled if the attacker knows the software implementation details
[2]. Moreover, whereas a physical key or badge can be replaced, fingerprints are
permanent and the pattern on their surface can be easily captured and reproduced.
It can be taken from a high-resolution photograph or from a print left on a surface
such as a mug or even a piece of paper. A high-quality reproduction of the pattern on
some gummy material can be simply applied to the scanner [3] so that the attacker
can fool the authentication system by declaring its corresponding identity. Since
the sensor device is inevitably at a direct contact of the user being captured, it is
considered one of the weakest point in the entire biometrics system. Because of
this, there is a growing interest in automatically analyzing the acquired fingerprint
images in order to catch potential malignant users [4]. This kind of attacks are known
as presentation attacks [5], and liveness detection techniques are designed to spot
them by formulating a binary classification problem with the aim of establishing
whether a given biometrics comes from the subject present at the time of capture [6].

The liveness of a fingerprint can be established by designing a software system
that analyzes the same images used by the recognition algorithm, or by equipping
the scanner with additional hardware. These last prevention measures are called
hardware-based systems [7] and are generally more accurate since they take advan-
tage of additional cues. Anyway, the software of a fingerprint scanner can be updated
with no additional cost, and if a software technique is robust to a variety of attacks
and does not annoy the users with too many false positives, it can be an alternative
with regard to acquiring new sensing devices.

Recently, different studies [8–10] have shown the effectiveness of deep learning
algorithms for the task of fingerprint liveness detection. Deep learning has seriously
improved the state of the art in many fields such as speech recognition, natural
language processing, and object recognition [11–13]. The ability to generate hier-
archical representations and discover complex structures in raw images allows for
better representations with respect to traditional methods based on handcrafted fea-
tures. Software-based systems for fingerprint liveness detection can take advantage
of the very broad literature where similar tasks have already been addressed. Among
the recent works, we noticed that it has not yet directly modeled a notion of similarity
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among real and fake fingerprints that can capture the underlying factors that explain
their inter- and intra-class variations. We make a step in this direction by proposing
a deep metric learning approach based on Triplet networks [14]. Specifically, these
networks map the fingerprint images into a representation space, where the learned
distance captures the similarity of the examples coming from the same class and push
away the real samples from the fake ones. Unlike other metric learning approaches,
such as the ones involving Siamese networks [15], the triplet objective function puts
in direct comparison the relation among the classes, giving a notion of context that
does not require a threshold selection in order make the prediction [14].

We propose a framework that learns a representation from fingerprint patches,
starting from a set of real and fake samples given as a training set. Since at test time
only a fingerprint image is given, we make our decision on the basis of a match-
ing score, computed against a set of real and fake patches given as a reference.
The similarity metric is learned using an improved version [16, 17] of the original
triplet objective formulation [14] that adds a pairwise term that more firmly forces
the closeness of two examples of the same class. We performed extensive experi-
ments using ten datasets taken from the fingerprint liveness detection competitions
LivDet1 organized by the Department of Electrical and Electronic Engineering of the
University of Cagliari, in cooperation with the Department of Electrical and Com-
puter Engineering of the Clarkson University, held in the years 2009 [7], 2011 [18]
and 2013 [19]. We compare our approach with respect to the state of the art, getting
competitive performance for all the examined datasets. We also perform the cross-
dataset and cross-material experiments, in order to evaluate if the obtained fingerprint
representation can be reused in different settings or to spot materials that have not
been seen during training.

The chapter is structured as follows. In Sect. 12.2 we present some of the current
approaches for designing fingerprint liveness detection systems, and the current state
of the art. In Sect. 12.3 we explain the details of the proposed framework and in
Sect. 12.4 we provide the experimental results. The final Sect. 12.5 is dedicated to
the conclusions.

12.2 Background and Previous Work

In this section, we describe various fingerprint liveness detection techniques, partic-
ularly with a focus on the ones related to our method, which can be considered as
a static software-based technique [6]. Subsequently, we provide details on some of
the most recently proposed software-based approaches in order to contextualize our
method and highlight our contributions.

1http://livdet.org/.

http://livdet.org/
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12.2.1 Background

A first categorization of liveness detection systems can be made by distinguishing
between hardware and software systems. As already mentioned, hardware-based
systems, also called sensor-based [6], use additional information in order to spot the
characteristics of living human fingerprints. Useful clues can be found for instance
by detecting the pattern of veins underlying the fingerprints surface [20], measuring
the pulse [21], by performing odor analysis [22] and by employing near-infrared
sensors [23].

Software, also called feature-based systems, are algorithms that can be intro-
duced into a sensor software in order to add the liveness detection functionality. Our
approach falls in this category and can also be considered static, to distinguish it from
methods that use multiple images taken during the acquisition process. For instance,
dynamic methods can exploit the distortion of the fingertip skin since with respect
to gummy materials, it differs in terms of flexibility. In the approach proposed by
[24], the user is asked to rotate the finger while touching the sensor. The distortion
of the different regions at a direct contact of the sensor are characterized in terms of
optical flow and the liveness prediction is based on matching the encoded distortion
code sequences over time.

In order to design a software-based system based onmachine learning algorithms,
a database of real and fake examples of fingerprints is needed. The more spoofing
techniques are used, the more the algorithm will be able to generalize to new kind of
attacks. In a second categorization of liveness detection systems, we consider how
the fingertip pattern is taken from the victim. In the cooperative method, the victim
voluntarily puts his/her finger on some workable material that is used to create a
mold. From this mold, it is possible to generate high-quality reproductions by fill-
ing it with materials such as gelatin, silicone, and wooden glue. Figure12.1 shows
some photographs of artificial fingers. Noncooperative methods instead, capture the
scenarios where the pattern has been taken from a latent fingerprint. After taking a
high-resolution picture, it is reproduced by generating a three-dimensional surface,

Fig. 12.1 Examples of artificial finger replicas made using different silicon rubber materials:
a GLS, b Ecoflex, c Liquid Ecoflex and d a Modasil mold
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Fig. 12.2 Examples of fake acquisitions from the LivDet 2011 competition (cooperative). From
Biometrika a Latex, b Silicone, fromDigital c Latex, dGelatine, from Sagem e Silicone, f Play-doh

Fig. 12.3 Examples of fake acquisitions from the LivDet 2013 competition. Noncooperative: from
Biometrika a Gelatine, b Wooden Glue, from Italdata c Ecoflex, d Modasil. Cooperative: from
Swipe e Latex, f Wooden Glue

for instance, by printing it into a circuit board. At this point, a mold can be generated
and filled with the above-mentioned materials. The quality of images is inferior as
compared to the cooperative methods, and usually, software-based systems have bet-
ter performance on rejecting these reproductions. Figures12.2 and 12.3 show several
acquisitions, where the fingertip pattern has been captured using the cooperative and
noncooperative methods.

12.2.2 Previous Work

In this subsection, we discuss some of the previous work on static software-based
fingerprint liveness detection systems. We start by presenting some hand crafted
feature-based approaches and conclude with the more recently proposed deep learn-
ing techniques.

One of the first approaches to fingerprint liveness detection has been proposed by
[25]. It is based on the perspiration pattern of the skin that manifests itself into static
and dynamic patterns on the dielectric mosaic structure of the skin. The classification
is based on a set of measures extracted from the data and classified using a neural
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network. In [26], the same phenomenon is captured by a wavelet transform applied
to the ridge signal extracted along the ridge mask. After extracting a set of measures
from multiple scales, the decision rule is based on classification trees.

Other approaches build some descriptors from different kind of features that are
conceived specifically for fingerprint images. In [27] Local binary pattern (LBP)
histograms are proposed along with wavelet energy features. The classification is
performed by a hybrid classifier composed of a neural network, a support vector
machine (SVM) and a k-nearest neighbor classifier. Similar to LBP, the Binary Sta-
tistical Image Features (BSIF) [28], encode local textural characteristics into a feature
vector and SVM is used for classification. In [29] a Local Contrast Phase Descriptor
(LCPD) is extracted by performing image analysis in both the spatial and frequency
domains. The same authors propose the use of the Shift-Invariant Descriptor (SID)
[30], originally introduced by [31], which provides rotation and scale invariance
properties. SID, along with LCPD provides competitive and robust performances on
several datasets.

Recently, deep learning algorithms have been applied to fingerprint liveness detec-
tionwith the aim of automatically finding a hierarchical representation of fingerprints
directly from the training data. In [9] the use of convolutional networks has been pro-
posed. In particular, the best results [9] are obtained by fine-tuning the AlexNet and
VGG architectures proposed by [11, 32], previously trained on the Imagenet dataset
of natural images [33]. From their experimental results, it seems that the factors that
most influence the classification accuracy are the depth of the network, the pretrain-
ing and the data augmentation they performed in terms of random crops. Since we
use a patch-based representation we employ a smaller, but reasonably deep architec-
ture. The use of patches does not require resizing all the images to a fixed dimension,
and at the same time, the number of examples is increased so that pretraining can be
avoided.

In [8], deep representations are learned from fingerprint, face, and iris images.
They are used as traditional features and fed into SVM classifiers to get a liveness
score. The authors focus on the choice of the convolutional neural network parameters
and architecture.

In [34] deep Siamese networks have been considered along with classical pre-
trained convolutional networks. This can be considered the most similar work to
this chapter since they also learn a similarity metric between a pair of fingerprints.
However, their use of metric learning is different since they assume a scenario where
the enrollment fingerprint is available for each test image. That is, the decision is
made by comparing fingerprints of the same individual. Our approach instead ismore
versatile and can be applied even if the enrollment fingerprint image is not available.

Different from the above studies, [10, 35] do not give the entire image to the deep
learning algorithm but extract patches from the fingerprint acquisition after removing
the background. [35] uses classical ConvNets with a binary cross-entropy loss, along
with a majority voting scheme to make the final prediction. [10] proposes deep belief
networks and use contrastive divergence [36] for pretraining and fine-tunes on the
real and fake fingerprint images. The decision is based on a simple threshold applied
to the output of the network. Our work is substantially different because it proposes
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a framework where triplet architectures are used along with a triplet and pairwise
objective function.

Summarizing, the contribution of this chapter are (i) a novel deep metric learning
based framework, targeted to fingerprint liveness detection, able to work in real time
with state-of-the-art performance, (ii) a patch-based and fine-grained representation
of the fingerprint images that makes it possible to train a reasonably deep archi-
tecture from scratch, even with few hundreds of examples, and that shows superior
performance even in settings different from the ones used for training.

12.3 A Deep Triplet Embedding for Fingerprint Liveness
Detection

In this section, we describe the proposed method for fingerprint liveness detection
based on triplet loss embedding. We start by describing the overall framework; sub-
sequently, we introduce the network architecture and the training algorithm. Finally,
we describe the matching procedure that leads to the final decision on the liveness
of a given fingerprint image.

12.3.1 Framework

As depicted in Fig. 12.4, the proposed framework requires a collection of real and
fake fingerprint images taken from a sensor and used as a training set. From each
image, we randomly extract one fixed sized patch and arrange them in a certain
number of triplets {xi , x+

j , x−
k }, where xi (anchor) and x+

j are two examples of the
same class, and x−

k comes from the other class. We alternatively set the anchor to be
a real or a fake fingerprint patch.

The architecture is composed of three convolutional networkswith sharedweights
so that three patches can be processed at the same time and mapped into a common
feature space.We denote by r(·) the representation of a given patch obtained from the
output of one of the three networks. The deep features extracted from the live and fake
fingerprints are compared in order to extract an intra-class distance d(r(x), r(x+))

and an inter-class distance d(r(x), r(x−)). The objective is to learn d so that the two
examples of the same class are closer than two examples taken from different classes,
and the distance between two examples of the same class is as short as possible. After
training the networks with a certain number of triplets, we extract a new patch from
each training sample and generate a new set of triplets. This procedure is repeated
until convergence, see more details in Sect. 12.4.2.

After the training procedure is completed, the learnedmetric is used as amatching
distance in order to establish the liveness of a new fingerprint image. Given a query
fingerprint, we can extract p (possibly overlapping) patches and give them as input to
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Fig. 12.4 The overall architecture of the proposed fingerprint liveness detection system. From the
training set a of real and fake fingerprint acquisitions, we train a triplet network b using alternatively
two patches of one class and one patch of the other one. The output of each input patch is used to
compute the inter- and intra-class distances c in order to compute the objective function d that is used
to train the parameters of the networks. After training, a set of real and a set of fake reference patches
e are extracted from the training set (one for each fingerprint) and the corresponding representation
is computed forwarding them through the trained networks. At test time, a set of patches is extracted
from the fingerprint image f in order to map it to the same representation space as the reference
gallery and are matched g in order to get a prediction on its liveness

the networks in order to get a representation Q = {r(Q1), r(Q2), . . . , r(Qp)}. Since
we are not directly mapping each patch to a binary liveness label, but generating a
more fine-grained representation, the prediction can bemade by a decision rule based
on the learned metric d computed with respect to a set RL and RF of real and fake
reference fingerprints:

RL = {r(xL1), r(xL2), . . . , r(xLn )} (12.1a)

RF = {r(xF1), r(xF2), . . . , r(xFn )} (12.1b)

where the patches xLi and xFi can be taken from the training set or from a specially
made design set.
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Table 12.1 Architecture of the proposed embedding network

Layer name Layer description Output

input 32× 32 gray level image

conv1 5× 5 conv. filters, stride 1, 1 → 64 feat. maps 64× 28× 28

batchnorm1 Batch normalization 64× 28× 28

relu1 Rectifier linear unit 64× 28× 28

conv2 3× 3 conv. filters, stride 2, padding 1, 64 → 64 feat.
maps

64× 14× 14

conv3 3× 3 conv. filters, stride 1, 64 → 128 feat. maps 64× 12× 12

batchnorm2 Batch normalization 64× 12× 12

relu2 Rectifier linear unit 64× 12× 12

conv4 3× 3 conv. filters, stride 2, padding 1, 128 → 128
feat. maps

128× 6× 6

conv5 3× 3 conv. filters, stride 1, 128 → 256 feat. maps 256× 4× 4

batchnorm3 Batch normalization 256× 4× 4

relu3 Rectifier linear unit 256× 4× 4

conv6 3× 3 conv. filters, stride 2, padding 1, 256 → 256
feat. maps

256× 2× 2

fc1 Fully connected layer 4× 256 → 256 256

dropout Dropout p = 0.4 256

relu5 Rectifier linear unit 256

fc2 Fully connected layer 256 → 256 256

output Softmax 256

12.3.2 Network Architecture

We employ a network architecture inspired by [37] where max pooling units, widely
used for downsampling purposes, are replaced by simple convolution layers with
increased stride. Table12.1 contains the list of the operations performed by each
layer of the embedding networks.

The architecture is composed of a first convolutional layer that takes the 32× 32
grayscale fingerprint patches and outputs 64 feature maps by using filters of size
5× 5. Then, batch normalization [38] is applied in order to get a faster training
convergence and rectified linear units (ReLU) are used as nonlinearities. Another
convolutional layer with a stride equal to 2, padding of 1 and filters of size 3× 3
performs a downsampling operation by a factor of two in both directions.

The same structure is replicated two times, reducing the filter size to 3× 3 and
increasing the number of feature maps from 64 to 128 and from 128 to 256. At this
point, the feature maps have the size of 128× 2× 2 and are further processed by two
fully connected layerswith 256outputs followedby a softmax layer. This nonlinearity
helps in getting a better convergence of the training algorithm and ensures that the
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Fig. 12.5 The training procedure uses examples as triplets formed by a two real fingerprints (in
green) and one impostor (in yellow) and b two impostors and one genuine. The training procedure
using the triplet loss will result in an attraction for the fingerprints of the same class (either real or
fake) so that their distance will be as close as possible. At the same time, real and fake fingerprints
will be pushed away from each other (c)

distance among to outputs does not exceed one. Dropout [39] with probability 0.4 is
applied to the first fully connected layer for regularization purposes.

The complete network is composed of three instances of this architecture: from
three batches of fingerprint images we get the L2 distances between the matching
and mismatching images. At test, we take the output of one of the three networks
to obtain the representation for a given patch. If there are memory limitations, an
alternative consists of using just one network, collapse the three batches into a single
one, and computing the distances among the examples corresponding to the training
triplets.

12.3.3 Training

As schematized in Fig. 12.5, the triplet architecture alongwith the triplet loss function
aims to learn a metric that makes two patches of the same class closer with respect
to two coming from different classes. The objective is to capture the cues that make
two fingerprints both real or fake. The real ones come from different people and
fingers, and their comparison is performed in order to find some characteristics that
make them genuine. At the same time, fake fingerprints come from different people
and can be built using several materials. The objective is to detect anomalies that
characterize fingerprints coming from a fake replica, without regard to the material
they are made of.

Given a set of triplets {xi , x+
j , x−

k }, where xi is the anchor and x+
j and x−

k are two
examples of the same and the other class, respectively, the objective of the original
triplet loss [14] is to give a penalty if the following condition is violated:
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d(r(xi ), r(x+
j )) − d(r(xi ), r(x−

k )) + 1 ≤ 0 (12.2)

At the same time, we would like to have the examples of the same class as close as
possible so that, whenmatching a new fingerprint against the reference patches of the
same class, the distance d(r(xi ), r(x+

j )) is as low as possible. If we denote by y(xi )
the class of a generic patch xi , we can obtain the desired behavior by formulating
the following loss function:

L =
∑

i, j,k

{
c(xi , x

+
j , x−

k ) + βc(xi , x
+
j )

}
+ λ‖θ‖2 (12.3)

where θ is a one-dimensional vector containing all the trainable parameters of the
network, y(xi ) = y(x j ), y(x

−
k ) �= y(xi ) and

c(xi , x
+
j , x−

k ) = max
{
0, d(r(xi ), r(x+

j )) − d(r(xi ), r(x−
k )) + 1

}
(12.4a)

c(xi , x
+
j ) = d(r(xi ), r(x+

j )) (12.4b)

During training, we compute the subgradients and use backpropagation through the
network in order to get the desired representation. Contextualizing towhat depicted in
Fig. 12.5, c(xi , x

+
j , x−

k ) is the inter-class and c(xi , x
+
j ) the intra-class distance term.

λ‖θ‖2 is an additional weight decay term added to the loss function for regularization
purposes.

After a certain number of iterations k, we periodically generate a new set of triplets
by extracting a different patch from each training fingerprint. It is essential to not
update the triplets after too many iterations because it can result in overfitting. At
the same time, generating new triplets too often or mining hard examples can cause
convergence issues.

12.3.4 Matching

In principle, any distance among bag of features can be used in order to match the
query fingerprint Q = {r(Q1), r(Q2), . . . , r(Qp)} against the reference sets RL and
RF . Since the training objective drastically pushes the distances to be very close to
zero or to one, a decision on the liveness can be made by setting a simple threshold
τ = 0.5. An alternative could consists of measuring the Hausdorff distance between
bags, but it would be too much sensitive to outliers since it involves the computation
of the minimum distance between a test patch and each patch of each reference set.
Even if using the k-th Hausdorff distance [40], that considers the k-th value instead
of the minimum, we obtained better performance by following a simple majority
voting strategy. It is also faster since it does not involve sorting out the distances.

Given a fingerprint Q, for each patch Q j we count how many distances for each
reference set are below the given threshold
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D(RL , Q j ) = |{i ∈ {1, . . . , n} : d(RLi , Q j ) < τ }| (12.5a)

D(RF , Q j ) = |{i ∈ {1, . . . , n} : d(RFi , Q j ) < τ }| (12.5b)

then we make the decision evaluating how many patches belong to the real or the
fake class:

y(Q) =
{
real if

∑p
j=1 D(RL , Q j ) ≥ ∑p

j=1 D(RF , Q j )

fake otherwise
(12.6)

The above method can also be applied in scenarios where multiple fingerprints are
acquired from the same individual, as usually happens on passport checks at airports.
For instance, the patches coming from different fingers can be accumulated in order
to apply the same majority rule of Eq.12.6 or the decision can be made on the most
suspicious fingerprint.

12.4 Experiments

We evaluated the proposed approach with ten of the most popular benchmark for
fingerprint liveness detection, coming from the LivDet competitions held in 2009 [7],
2011 [18] and 2013 [19].We compare ourmethodwith the state of the art, specifically
the VGG pretrained network of [9], the Local Contrast Phase Descriptor LCPD [29],
the dense Scale Invariant Descriptor SID [30] and the Binarized Statistical Image
Features [28]. For the main experiments, we strictly follow the competition rules
using the training/test splits provided by the organizers while for the cross-dataset
and cross-material scenarios, we follow the setup of [9].

The network architecture along with the overall framework have been imple-
mented using the Torch7 computing framework [41] on an NVIDIA® DIGITSTM

DevBox with four TITAN X GPUs with seven TFlops of single precision, 336.5
GB/s of memory bandwidth, and 12 GB of memory per board. MATLAB® has been
used for image segmentation.

12.4.1 Datasets

The LivDet 2009 datasets [7] were released with the first international fingerprint
liveness detection competition, with the aim of becoming a reference and allowing
researchers to compare the performance of their algorithms or systems. The fin-
gerprints were acquired using the cooperative approach (see Sect. 12.2.1) and the
replicas are created using the materials: gelatin, silicone, and play-doh. The orga-
nizers released three datasets, acquired using three different sensors: Biometrika
(FX2000), Identix (DFR2100), and Crossmatch (Verifier 300 LC).
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Table 12.2 Details of the LivDet 2009 and 2013 competitions. The last row indicates the spoof
materials: S = Silicone, G = Gelatine, P = Play-Doh, E = Ecoflex, L = Latex, M = Modasil, B =
Body Double, W = Wooden glue

Competition LivDet2009 LivDet2013

Dataset Biometrika CrossMatch Identix Biometrika Italdata Swipe

Size 312× 372 480× 640 720× 720 312× 372 480× 640 1500× 208

DPI 569 500 686 569 500 96

Subjects 50 254 160 50 50 100

Live
samples

2000 2000 1500 2000 2000 2500

Spoof
samples

2000 2000 1500 2000 2000 2000

Materials S GPS GPS EGLMW EGLMW BLPW

The LivDet 2011 competition [18] released four datasets, acquired using the
scanners Biometrika (FX2000), Digital Persona (4000B), ItalData (ETT10) and
Sagem (MSO300). The materials used for fake fingerprints are gelatin, latex, Ecoflex
(platinum-catalyzed silicone), silicone and wooden glue. The spoof fingerprints have
been obtained as in LivDet 2009 with the cooperative method.

The LivDet 2013 competition [19] consists of four datasets acquired using the
scanners Biometrika (FX2000), ItalData (ETT10), Crossmatch (L SCANGUARDI-
AN) and Swipe. Differently fromLivDet 2011, two datasets, Biometrika and Italdata,
havebeen acquiredusing the non-cooperativemethod.That is, latent fingerprints have
been acquired from a surface, and then printed on a circuit board (PCB) in order to
generate a three-dimensional structure of the fingerprint that can be used to build a
mold. To replicate the fingerprints they used Body Double, latex, PlayDoh and wood
glue for the Crossmatch and Swipe datasets and gelatin, latex, Ecoflex, Modasil and
wood glue for Biometrika and Italdata.

The size of the images, the scanner resolution, the number of acquired subject
and of live and fake samples are detailed in Tables12.2 and 12.3. The partition of
training and test examples is provided by the organizers of the competition.

12.4.2 Experimental Setup

For all the experiments we evaluate performance in terms of average classification
error. This is the measure used to evaluate the entries in the LivDet competitions and
is the average of the Spoof False Positive Rate (SFPR) and the Spoof False Negative
Rate (SFNR). For all the experiments on the LivDet test sets we follow the standard
protocol and since a validation set is not provided, we reserved a fixed amount of
120 fingerprints. For the cross-dataset experiments, we used for validation purposes
the Biometrika 2009 and Crossmatch 2013 datasets.
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Table 12.3 Details of the LivDet 2011 competition. The last row indicates the spoof materials:
Sg = Silgum, the others are the same as in Table12.2

Competition LivDet2011

Dataset Biometrika Digital persona Italdata Sagem

Size 312× 372 355× 391 640× 480 352× 384

DPI 500 500 500 500

Subjects 200 82 92 200

Live samples 2000 2000 2000 2000

Spoof samples 2000 2000 2000 2000

Materials EGLSgW GLPSW EGLSgW GLPSW

The triplets set for training is generated by taking one patch from each fingerprint
and arranging them alternatively in two examples of one class and one of the other
class. The set is updated every k = 100,000 triplets that are fed to the networks in
batches of 100. In the remainder of the chapter, we refer to each update as the start
of a new iteration. We use stochastic gradient descent to minimize the triplet loss
function, setting a learning rate of 0.5 and a momentum of 0.9. The learning rate η0
is annealed by following the form:

η = η0

1 + 10−4 · b (12.7)

where b is the progressive number of batches that are being processed. That is, after
ten iterations the learning rate is reduced by half. The weight decay term of Eq.12.3
is set to λ = 10−4 and β = 0.002 as in [17].

After each iteration, we check the validation error. Instead of using the same
accuracy measured at test (the average classification error), we construct 100,000
triplets using the validation set patches, but taking as anchor the reference patches
taken from the training set and used to match the test samples. The error consists of
the number of violating triplets and reflects how much the reference patches failed
to classify patches never seen before. Instead of fixing the number of iterations, we
employ early stopping based on the concept of patience [42]. Each time the validation
error decrease, we save a snapshot of the network parameters, and if in 20 consecutive
iterations the validation error is not decreasing anymore, we stop the training and
evaluate the accuracy on the test set using the last saved snapshot.

12.4.3 Preprocessing

Since the images coming from the scanners contain a wide background area sur-
rounding the fingerprint, we segmented the images in order to avoid extracting back-
ground patches. The performance is highly affected by the quality of the background
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subtraction, therefore, we employed an algorithm [43], that divides the fingerprint
image into 16× 16 blocks, and classifies a block as foreground only if its standard
deviation is more than a given threshold. The rationale is that a higher standard
deviation corresponds to the ridge regions of a fingerprint. In order to exclude back-
ground noise that can interfere with the segmentation, we compute the connected
components of the foreground mask and take the fingerprint region as the one with
the largest area. In order to get a smooth segmentation, we generate the convex hull
image from the binary mask using morphological operations.

We also tried to employ data augmentation techniques in terms of random rota-
tions, flipping and general affine transformation. Anyway, they significantly slowed
down the training procedure and we did not get any performance improvement on
either the main and cross-dataset experiments.

12.4.4 Experimental Results

In this section, we present the performance of the proposed fingerprint liveness detec-
tion system in different scenarios. In Table12.4 we list the performance in terms
of average classification error on the LivDet competition test sets. With respect to
the currently best-performing methods [9, 29, 30] we obtained competitive perfor-
mance for all the datasets, especially on Italdata 2011, and Swipe 2013. This means
that the approach works properly also on the images coming from swipe scanners,
where the fingerprints are acquired by swiping the finger across the sensor surface
(see Fig. 12.3e, f). Overall, our approach has an average error of 1.75% in comparison

Table 12.4 Average classification error for the LivDet Test Datasets. In column 2 our TripletNet
based approach, in column 2 the VGG deep network pretrained on the Imagenet dataset and fine-
tuned by [9], in column 3 the Local Contrast Phase Descriptor [29] based approach, in column 4
the dense Scale Invariant Descriptor [30] based approach and in column 5 the Binarized Statistical
Image Features [28] based approach

Dataset TripletNet VGG [9] LCPD [29] SID [30] BSIF [28]

Biometrika 2009 0.71 4.1 1 3.8 9

CrossMatch 2009 1.57 0.6 3.4 3.3 5.8

Identix 2009 0.044 0.2 1.3 0.7 0.7

Biometrika 2011 5.15 5.2 4.9 5.8 6.8

Digital 2011 1.85 3.2 4.7 2.0 4.1

Italdata 2011 5.1 8 12.3 11.2 13.9

Sagem 2011 1.23 1.7 3.2 4.2 5.6

Biometrika 2013 0.65 1.8 1.2 2.5 1.1

Italdata 2013 0.5 0.4 1.3 2.7 3

Swipe 2013 0.66 3.7 4.7 9.3 5.2

Average 1.75% 2.89% 3.8% 4.5% 5.5%
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to the 2.89% of [9] which results in a performance improvement of 65%. We point
out that we did not use the dataset CrossMatch 2013 for evaluation purposes because
the organizers of the competition found anomalies in the data and discouraged its use
for comparative evaluations [4]. In Fig. 12.6 we depict a 2D representation of the test
set of Biometrika 2013, specifically one patch for every fingerprint image, computed
from an application of t-SNE [44] to the generated embedding. This dimensional-
ity reduction technique is particularly insightful since it maps the high-dimensional
representation in a space where the vicinity of points is preserved. We can see that
the real and fake fingerprints are well separated and only a few samples are in the
wrong place, for the major part Wooden Glue andModasil. Ecoflex and gelatin repli-
cas seem more easy to reject. Examining the patch images, we can see that going
top to bottom, the quality of the fingerprint pattern degrades. This may be due to
the perspiration of the fingertips that makes the ridges not as uniform as the fake
replicas.

12.4.4.1 Cross-Dataset Evaluation

As in [9], we present some cross-dataset evaluation and directly compare our perfor-
mance with respect to their deep learning and Local Binary Pattern approach. The
results are shown in Table12.5 and reflect a significant drop in performance with
respect to the previous experiments. With respect to [9] the average classification
error is slightly better, anyway it is too high to possibly consider doing liveness
detection in the wild. Similar results have been obtained by [34]. We point out that
different sensors, settings and climatic conditions can extremely alter the fingerprint
images, and if the training set is not representative of the particular conditions, any
machine learning approach, not just deep learning algorithms, would not be effective
at generalization.

12.4.4.2 Cross-Material Evaluation

We also evaluated the robustness of our system to new spoofing materials. We fol-
lowed the protocol of [9] by training the networks using a subset of materials and
testing on the remaining ones. The results are shown in Table12.6. With respect to
the cross-dataset experiments, the method appears to bemore robust to newmaterials
rather than a change of the sensor. Also in this scenario, if we exclude the Biometrika
2011 dataset, our approach has a significative improvement with respect to [9].

12.4.4.3 Computational Efficiency

One of the main benefits of our approach is the computational time since the archi-
tecture we employed is smaller in comparison to other deep learning approaches
such as [9, 34]. Moreover, the patch representation allows for scaling the matching
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Fig. 12.6 T-SNE visualization of the embedding generated from the live and fake fingerprints
composing the test set of Biometrika 2013 (one patch for each acquisition). The high dimensional
representation ismapped into a two-dimensional scatter plotwhere the vicinity of points is preserved
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Table 12.5 Average classification error for the cross-dataset scenarios. The first column is the
dataset used for training and the second the one used for the test. The third column is our TripletNet
approach, the fourth and the fifth are the deep learning and the Local Binary Patterns (LBP) based
approaches proposed by [9]

Training set Test set TripletNet VGG LBP

Biometrika 2011 Biometrika 2013 14 15.5 16.5

Biometrika 2013 Biometrika 2011 34.05 46.8 47.9

Italdata 2011 Italdata 2013 8.3 14.6 10.6

Italdata 2013 Italdata 2011 44.65 46.0 50.0

Biometrika 2011 Italdata 2011 29.35 37.2 47.1

Italdata 2011 Biometrika 2011 27.65 31.0 49.4

Biometrika 2013 Italdata 2013 1.55 8.8 43.7

Italdata 2013 Biometrika 2013 3.8 2.3 48.4

Table 12.6 Average Classification Error for the cross-material scenario. In column 2 are the mate-
rials used for training and in column 3 the ones used for the test. The abbreviations are the same as
in Tables12.2 and 12.3

Dataset Train
materials

Test
materials

TripletNet VGG LBP

Biometrika 2011 EGL SgW 13.1 10.1 17.7

Biometrika 2013 MW EGL 2.1 4.9 8.5

Italdata 2011 EGL SgW 7 22.1 30.9

Italdata 2013 MW EGL 1.25 6.3 10.7

procedure on different computational units, so that it can be used also in heavily
populated environments. In our experiments, we extract 100 patches from each test
fingerprint and the time to get their corresponding representation is about 0.6ms using
a single GPU and 0.3 s using a Core i7-5930K 6 Core 3.5GHz desktop processor
(single thread). Considering the most common dataset configuration of 880 real and
880 fake reference patches, the matching procedure takes 5.2ms on a single GPU
and 14ms on the CPU. Finally, the training time varies depending on the particu-
lar dataset, and on the average, the procedure converges in 135 iterations. A single
iteration takes 84 and 20s are needed to check the validation error.

12.5 Conclusions

In this chapter, we introduced a novel framework for fingerprint liveness detection
which embeds the recent advancements in deep metric learning. We validated the
effectiveness of our approach in a scenario where the fingerprints are acquired using
the same sensing devices that are used for training. We also presented quantified
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results on the generalization capability of the proposed approach for new acquisition
devices, and unseen spoofing materials. The approach is able to work in real time
and surpasses the state-of-the-art on several benchmark datasets.

In conclusion, we point out that the employment of software-based liveness detec-
tion systems should never give a sense of false security to their users. As in other
areas such as cyber-security, the attackers become more resourceful every day and
new ways to fool a biometric system will be discovered. Therefore, such systems
should be constantly updated and monitored, especially in critical applications such
as airport controls. It would be desirable to have large datasets that contain fingerprint
images of people with different age, sex, ethnicity, and skin conditions and that are
acquired under different time periods, environments and using a variety of sensors
with a multitude of spoofing materials.
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