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Preface

With a very security-conscious society, biometrics-based authentication and iden-
tification have become the focus of many important applications as it is widely
believed that biometrics can provide accurate and reliable identification. Biometrics
research and technology continue to mature rapidly, driven by pressing industrial
and government needs and supported by industrial and government funding. As the
number and types of biometrics architectures, sensors, and techniques increases, the
need to disseminate research results increases as well.

Advanced deep learning capabilities, and deep convolutional neural networks
(CNN) in particular, are significantly advancing the state of the art in computer
vision and pattern recognition. The deep CNN is a biologically inspired variant of
multilayer perceptron and represents a typical deep learning architecture.

Since 2006, we have organized a series of high-quality Annual Biometrics
Workshops under the auspices of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR). This series has emerged as the
premier forum for showcasing cutting-edge research from academia, industry, and
government laboratories. During the past few years the CNN-based techniques, as
evidenced by the increasing number of papers at CVPR and the biometrics work-
shop, have shown strong ability to learn effective feature representation from input
data, especially for the perceptual and biometrics-related tasks.

The book is based on a selection of topics and authors from the proceedings
of the 2016 biometrics workshop and a general call for chapters to the computer
vision, pattern recognition, and the biometrics communities at large. The selection
of chapters in this book is made after two rounds of rigorous review process.

Outline of the Book and Chapter Synopsis

Many of the biometrics applications require the highest level of accuracy that is
being made available with the advanced deep learning capabilities. This book
addresses many aspects of biometrics research issues relating to different biometrics
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modalities with the sole goal of improving performance for the biometrics identi-
fication. A brief and orderly introduction to the chapters is provided in the
following.

The book chapters in this book on Deep Learning for Biometrics are organized
under four major parts. Part I deals with deep learning for face biometrics and it
includes three chapters on this topic in the book.

Chapter 1 by Grill-Spector, Kay, and Weiner on the functional neuroanatomy of
face processing: insights from neuroimaging and implications for deep learning
provides insightful details on the connections between currently popular deep neural
network architectures for the biometrics and neural architectures in the human brain.
The authors in this chapter detail a range of findings from the neuroimaging tech-
niques on the anatomical features of the face network and the computations per-
formed by the face-selective regions in the human brain. These empirical findings
can lead to more accurate deep neural networks for face recognition.

One of the challenges related to the applications of the deep learning-based
biometrics solutions is the computational complexity of the selected network. Many
applications of face recognition demand highly efficient search capabilities from the
large databases and in a database which requires smaller template size and faster
template-matching capabilities.

Chapter 2 by Vizilter, Gorbatsevich, Vorotnikov, and Kostromov on real-time
face identification via a multi-convolutional neural network and boosted hashing
forest describes the development of boosted hashing-based real-time face recog-
nition system using convolutional neural networks. This chapter presents a new
biometric-specific objective function for the binary hashing that enables joint
optimization of the face verification and identification.

Despite significant improvement in the accuracy of the face detection algorithms
in the past decade, their accuracy is still far from that displayed by humans, par-
ticularly for the images acquired under challenging imaging environments, like with
large occlusions or off-poses. Therefore, Chap. 3 by Zhu, Zheng, Luu, and Savvides
on CMS-RCNN: contextual multi-scale region-based CNN for unconstrained face
detection introduces a new architecture, a contextual multi-scale region-based
CNN, to accurately detect human faces from a complex background and under
challenging imaging conditions.

Part II of the book deals with deep learning for fingerprint, finger vein, and iris
recognition. It includes three chapters that are described below.

Some of the challenging open problems in the fingerprint identification are
related to accurately segmenting latent fingerprint images. Chapter 4 by Ezeobiejesi
and Bhanu on latent fingerprint image segmentation using deep neural networks
describes how deep neural networks can be employed to accurately segment latent
fingerprint regions from complex image backgrounds. The authors present a latent
fingerprint image patch and noise image patch-based classification strategy that
outperforms the results on publicly available latent fingerprint databases.

Vascular biometrics identification has attracted several applications and is
believed to significantly improve the integrity of biometrics systems, while
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preserving the privacy of an individual during authentication. Chapter 5 by Xie and
Kumar on finger vein identification using convolutional neural networks and
supervised discrete hashing presents a detailed deep learning-based investigation
into finger vein identification. The development of competing deep learning-based
solutions that can be operational using limited training data is among one of the
open challenges in biometrics. Biometrics modalities like finger vein have very
limited dataset in the public domain, primarily due to enhanced privacy concerns
and/or due to cooperative imaging requirements. The experimental results presented
in this chapter, using publicly available but limited two-session dataset indicate
promises from supervised discrete hashing and provide insights into the compar-
ative performance with state-of-the-art methods for finger vein identification.

Almost all the iris recognition systems deployed today operate using stop and
stare mode. Such systems operate in constrained imaging environment and deliver
remarkable accuracy. Application of iris recognition technologies for surveillance
and at-a-distance applications require accurate segmentation capabilities from such
images acquired with visible and near-infrared illuminations. Chapter 6 by Jalilian
and Uhl on iris segmentation using fully convolutional encoder–decoder networks
details the segmentation of challenging iris images using fully convolutional
encoder–decoder networks.

Part III of the book deals with deep learning for soft biometrics and it includes
four interesting chapters on this topic.

Accurate identification of soft biometrics features is vital for improving the
accuracy of biometrics-based surveillance systems. Chapter 7 by Wu, Chen, Ishwar,
and Konrad on two-stream CNNs for gesture-based verification and identification:
learning user style details a deep learning framework that simultaneously leverages
on the spatial and temporal information in video sequences. The experimental
results presented by the authors for the identification and verification on two
biometrics-oriented gesture datasets indicate results that outperform the state-of-art
methods in the literature.

Developing accurate capabilities to automatically detect the soft biometrics
features, like the gender, from the low resolution, off angle, and occluded face
images is highly desirable for a range of biometrics applications. Chapter 8 by
Juefei-Xu, Verma, and Savvides is on DeepGender2: a generative approach toward
occlusion and low-resolution robust facial gender classification via progressively
trained attention shift convolutional neural networks (PTAS-CNN) and deep con-
volutional generative adversarial networks (DCGAN). It describes the development
of a deep learning-based gender classification approach. The authors describe how a
progressive training strategy and the deep generative approach to recover the
missing pixels can achieve excellent results for the gender classification using
occluded face images.

Chapter 9 by Tapia and Aravena is on gender classification from near-infrared
(NIR) iris images using deep learning. Like the previous chapter, it is also devoted
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to the gender classification problem but using NIR iris images. Such images are
typically available during the iris acquisition and authors use a pretrained deep
belief network to identify gender from these images.

Several law enforcement departments use tattoos to identify the personal beliefs
and characteristics, similar to many popular soft biometrics features. Chapter 10 by
Di and Patel on deep learning for tattoo recognition describes how the Siamese
networks with the conventional triplet function can be used to identify tattoos in
publicly available databases, with very good results.

Part IV of the book deals with deep learning for biometrics security and tem-
plate protection and it consists of two chapters.

Ensuring the security of biometrics templates and the systems is an integral part
of biometrics infrastructure. Chapter 11 by Pandey, Zhou, Kota, and Govindaraju
on learning representations for cryptographic hash-based face template protection
introduces challenges and the techniques for the protection of biometrics template.
The authors in this chapter introduce template representations that are learned by
CNN for the cryptographic hash-based protection of face image templates.

The last chapter in this book, i.e., Chap. 12 by Pala and Bhanu on deep triplet
embedding representations for liveness detection considers widely discussed
problems relating to the protection of biometrics systems against fake biometrics
samples. The authors introduce a metric learning strategy that uses a variant of
triplet loss function to identify fake fingerprints in image patches. Experimental
results presented on publicly available database indicate outperforming
state-of-the-art results from this deep learning-based strategy.

Challenges for the Future

A brief summary of the book chapters in the above paragraphs indicates that there
has been significant interest in the advancement of biometrics technologies using
the deep learning architectures. The work underlines challenges in deep learning
when the training sample size available from a particular biometrics modality is
quite small. Several authors have underlined that the factors that most influence the
accuracy from deep neural networks is the depth of the network, pretraining, and
the data augmentation in terms of random crops and rotations.

Several classical biometrics feature extraction and matching algorithms work very
well when the images are acquired under relatively constrained environments, e.g.,
fingerprint and iris, with no constraints on the need for huge training samples. It is
unclear how learned deep neural networks could aid, improve, or replace such
popular classical methods that have been matured in past three decades, like the
popular iriscode-based iris recognition or the minutiae matching-based fingerprint
recognition widely deployed today. In this context, it is important that emerging deep
learning based algorithms for biometrics should also present careful performance
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comparisons, on public datasets using appropriate protocols, and under open set
environments or cross-dataset evaluations to make a convincing case for the benefits
of biometrics community in academia, industry, and the Government.

Riverside, CA, USA Bir Bhanu
April 2017 Ajay Kumar
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Fig. 1.1 Face-selective regions in human ventral occipito-temporal
cortex. a Face-selective regions are identified based on higher
responses to faces compared to a variety of other stimuli
(faces > bodies, objects, places, and characters, t > 3, voxel
level). The figure shows an inflated cortical surface of an
individual subject depicting the three typical clusters of
face-selective regions in ventral occipito-temporal cortex. One
cluster is on the inferior occipital gyrus referred to as
IOG-faces (also as occipital face area, OFA); a second cluster
is on the posterior aspect of the fusiform gyrus, extending to
the occipito-temporal sulcus, referred to as pFus-faces (also
fusiform face area one, FFA-1); a third cluster is located about
1–1.5 cm more anterior on the lateral aspect of the fusiform
gyrus overlapping the anterior tip of the mid-fusiform sulcus
(MFS) and is referred to as mFus-faces (also FFA-2). White
lines boundaries of retinotopic areas. b Independent analysis
of response amplitudes of mFus-faces showing the typical
higher responses to faces compared to other stimuli. Adapted
from Stigliani et al. 2015. c Responses to single images in
pFus- and mFus-faces. Each cell shows the normalized
electrocorticography responses to single images averaged over
5 presentations and a 100–350 ms time window. The first
column shows responses in an intracranially implanted
electrode over pFus-faces/FFA-1 and the second shows
responses from an electrode over mFus-faces/FFA-2.
Responses to face images are consistently higher than
responses to any of the nonface images. Adapted from [66].
d Responses in ventral face-selective regions to face
silhouettes are significantly higher than two-tone shapes and
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scrambled images. Adapted from [24]. e Responses in ventral
face-selective regions are highest when faces are identified,
intermediate when they are detected but not identified, and
lowest when they are missed. Adapted from [50] . . . . . . . . . . . 6

Fig. 1.2 Regular spatial structure of functional and anatomical
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voxel level, red) mFus-face/FFA-2 and pFus-faces/FFA-1 are
predicted by the anterior and posterior tips of the MFS,
respectively. Center MFS serves as a boundary between
distributed representations of animate and inanimate
representations. Right The MFS serves as a boundary
separating lateral cytoarchitectonic regions FG4 and FG2
from medial cytoarchitectonic regions FG3 and FG1,
respectively. Cytoarchitectonic areas are indicated with
separate colors (see legend). FG: fusiform gyrus. b
Histological slice showing the cell body staining and the gray
level index (GLI, line) across cortical layers from a
representative 20-micron slice through FG4 (left) and FG2
(right). There are different cell distributions and cell sizes
across cortical layers between the two example slices . . . . . . . . 9
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regions: IOG: inferior occipital gyrus; pFus: posterior
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Gaussian that characterizes the response of the pRF to point
stimuli. b Median eccentricity of pRF centers for each area. c
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features processed across the hierarchy. Circles indicate pRFs
at 1� eccentricity (as derived from panel c). Each circle is
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Chapter 1
The Functional Neuroanatomy of Face
Processing: Insights from Neuroimaging
and Implications for Deep Learning

Kalanit Grill-Spector, Kendrick Kay and Kevin S. Weiner

Abstract Face perception is critical for normal social functioning, and is mediated
by a cortical network of regions in the ventral visual stream. Comparative analysis
between present deep neural network architectures for biometrics and neural archi-
tectures in the human brain is necessary for developing artificial systems with human
abilities. Neuroimaging research has advanced our understanding regarding the func-
tional architecture of the human ventral face network. Here, we describe recent neu-
roimaging findings in three domains: (1) the macro- and microscopic anatomical
features of the ventral face network in the human brain, (2) the characteristics of
white matter connections, and (3) the basic computations performed by population
receptive fields within face-selective regions composing this network. Then, we con-
sider how empirical findings can inform the development of accurate computational
deep neural networks for face recognition as well as shed light on computational
benefits of specific neural implementational features.

Introduction

Face perception is critical for normal social functioning. For example, faces pro-
vide key visual information that we use to discriminate one person from another
every single day. Since face perception is ecologically and evolutionarily relevant
across species [39, 52, 152, 167] a fundamental question is:What neuroanatomical
and functional features of the human brain contribute to the visual perception and
recognition of faces?
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To tackle this question, many influential theories regarding the cognitive neuro-
science of face perception [12, 29, 39, 58, 67, 71, 123] have examined how regions
within the brain fill the representations proposed by classical theories of face per-
ception in cognitive psychology [14, 82, 154]. This approach has been successful in
identifying a network of functional regions in the human occipito-temporal cortex
that is specialized for processing faces. Indeed, many influential studies have func-
tionally differentiated both ventral from dorsal components of this network [39], as
well as functional regions from one another within these dorsal and ventral compo-
nents, respectively [77, 110, 112, 125, 129, 165, 169]. This chapter focuses on the
ventral component of this network and differs from prior papers and book chapters
in two main ways. First, while prior articles focus on the face network as an inde-
pendent system, a repetitive theme throughout this chapter is that the ventral face
network is embedded within the visual system more generally. Thus, we discuss and
propose that visual processing in regions outside the face network and their inter-
action with the face network—for example, through white matter connections—is
meaningful and contributes to the efficiency of face processing. Second, in addition
to understanding the functional characteristics of each region within the ventral face
network, this chapter zooms into the cellular structure of neural tissue composing
each region. Both of these topics are important and necessary stepping-stones toward
building a mechanistic model that would inform how the anatomical structure of the
face network subserves computations underlying fast and efficient face recognition.

From both neuroscience and computational perspectives, a complete mechanistic
model explaining the functional neuroanatomy of face perception would (1) define
each component of the ventral face network, (2) determine the anatomical features of
each component, as well as their connections, (3) understand the functional charac-
teristics (e.g., the representations and information) containedwithin each component,
(4) derive the computations within and across components to the point that they can
be modeled and cross-validated, and (5) provide an understanding regarding how
anatomical features of the underlying neural circuits and their connections imple-
ment computations relevant for face perception and recognition.

This chapter synthesizes recent findings and shows that the field has made sig-
nificant progress toward generating this model. First, we describe functional charac-
teristics of the human ventral face network from well-established research findings.
Second, we summarize novel macro- and microanatomical features of the ventral
face network as well as features of white matter connections. Third, we discuss basic
computations of the ventral face network performed by population receptive fields
(pRFs). In the fourth section, we consider how recent empirical findings regarding
the human ventral face network could be implemented and tested in computational
models including deep convolutional neural networks (CNNs) that contain archi-
tectural features inspired by the hierarchical architecture of the ventral stream [41,
121, 136]. While deep CNN architectures are broadly “neurally inspired” by neu-
robiological architectural features of the ventral visual stream, they also differ from
the neural architecture in the human brain in several fundamental ways (Table1.1).
Therefore, in this fourth section, we highlight some of architectural and functional
features that have not yet been implemented in deep neural network architectures
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and consider potential computational benefits of specific functional and anatomical
features of the neurobiological implementation.

1.1 The Functional Characteristics and Organization
of the Ventral Face Network in the Human Brain

1.1.1 Functional Characteristics of the Ventral Face Network

Face-selective regions, which exhibit higher responses to faces compared to other
stimuli have been identified with neuroimaging methods first with Positron Emis-
sion Tomography [134, 135], then with intracranial electroencephalography [1–3,
95, 116], and later with functional magnetic resonance imaging (fMRI) [72, 94, 108,
114, 150, 165]. Based on this functional characteristic, scientists identify a constel-
lation of face-selective regions using fMRI [58]. In the occipital and temporal lobes,
scientists identify face-selective regions in both ventral occipito-temporal cortex
(Fig. 1.1a), as well as superior temporal cortex [39, 167]. The former are associated
with face perception and recognition [35, 50, 97, 150] and the latter are associated
with dynamic aspects of face perception [4, 17, 18, 110, 115, 175]. As the focus
of this chapter is understanding the neural basis of face recognition, we focus on
three regions of the ventral face network: IOG-faces, pFus-faces, and mFus-faces1

(Fig. 1.1a). The former region is synonymous with the occipital face area (OFA, [42,
109]). The latter two regions are anatomically and functionally distinct components
of the fusiform face area (FFA, [72, 165, 166]): pFus-faces is synonymous with
FFA-1 [108] while mFus-faces is synonymous with FFA-2 [108]. Additional face-
selective regions have been identified in the anterior temporal lobe [10, 70, 118,
153], but these regions are not considered part of the core face network (but see [21])
as they are not just driven by visual stimulation and are more elusive due to lower
signals and susceptibility artifacts in fMRI.

The basic functional characteristic of functional regions within the ventral face
network is higher neural responses to the visual presentation of faces compared
to a variety of other stimuli including animate stimuli (such as limbs, bodies, and
animals), familiar and unfamiliar objects, scenes, characters, and textures (Fig. 1.1b).
Within each region, functional responses to face exemplars are higher than exemplars
of other categories [26, 66, 98, 113] (Fig. 1.1c).

This characteristic response is maintained across sessions [13, 106, 165], tasks
[15, 165], and stimulus formats (Fig. 1.1d), including photographs [65, 72], line
drawings [65, 72], two-tone stimuli [24, 151], texture [36], and spatial frequency
[160].

While the preferential response to faces over other stimuli is maintained across
image transformations and face information can be read out from distributed

1See Appendix for abbreviations and definitions.
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(a) (c)

(b) (d) (e)

Fig. 1.1 Face-selective regions in human ventral occipito-temporal cortex. a Face-selective
regions are identified based on higher responses to faces compared to a variety of other stimuli
(faces > bodies, objects, places, and characters, t > 3, voxel level). The figure shows an inflated
cortical surface of an individual subject depicting the three typical clusters of face-selective regions
in ventral occipito-temporal cortex. One cluster is on the inferior occipital gyrus referred to as IOG-
faces (also as occipital face area, OFA); a second cluster is on the posterior aspect of the fusiform
gyrus, extending to the occipito-temporal sulcus, referred to as pFus-faces (also fusiform face area
one, FFA-1); a third cluster is located about 1–1.5cm more anterior on the lateral aspect of the
fusiform gyrus overlapping the anterior tip of the mid-fusiform sulcus (MFS) and is referred to as
mFus-faces (also FFA-2). White lines boundaries of retinotopic areas. b Independent analysis of
response amplitudes of mFus-faces showing the typical higher responses to faces compared to other
stimuli. Adapted from Stigliani et al. 2015. c Responses to single images in pFus- and mFus-faces.
Each cell shows the normalized electrocorticography responses to single images averaged over 5
presentations and a 100–350ms time window. The first column shows responses in an intracranially
implanted electrode over pFus-faces/FFA-1 and the second shows responses from an electrode
over mFus-faces/FFA-2. Responses to face images are consistently higher than responses to any
of the nonface images. Adapted from [66]. d Responses in ventral face-selective regions to face
silhouettes are significantly higher than two-tone shapes and scrambled images. Adapted from [24].
e Responses in ventral face-selective regions are highest when faces are identified, intermediate
when they are detected but not identified, and lowest when they are missed. Adapted from [50]
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responses patterns [5, 9, 19, 79, 102, 132], functional responses of the ventral face
network are modulated by stimulus position [89, 183], size [183], illumination [49],
contrast [126, 183], and viewpoint [49, 79, 102, 159]. For example, responses in
ventral face-selective regions are higher for upright than upside down faces [24, 73,
182] and are higher for centrally presented than peripheral faces [57, 89]. Addition-
ally, responses in face-selective regions aremodulated by top-down effects, including
attention [23, 25, 104], expectation [32, 143], and familiarity [6, 34, 56, 101, 164].

Critically, fMRI-adaptation [47, 49, 51] experiments have been pivotal in showing
that responses in ventral face-selective regions are sensitive to face identity. For exam-
ple, repeating the same face produces reduced responses due to neural adaptation [47,
49, 51, 124] and parametrically increasing the dissimilarity among face identities
systematically increases the responses in face-selective regions due to release from
adaptation [24, 43, 67, 90, 100]. Additionally, and consistent with behavioral aspects
of face perception, (a) neural sensitivity to face identity is higher for upright than
upside down faces [44] and (b) both changes in facial features and in the metric rela-
tion among features [129, 181] cause a recovery from adaptation which is associated
with the perceived change in identity [26, 126, 129, 130]. Finally, neural responses
to faces in ventral face-selective regions are correlated with the perception of indi-
vidual participants [35, 50, 97, 150] and also causally involved in the perception of
faces [68, 69, 95, 105, 111, 112, 119, 123]. For example, neural responses within
mFus- and pFus-faces are low when faces are present but not detected, intermediate
when faces are detected but not identified, and highest when they are identified ([50];
see Fig. 1.1e).

Altogether, these foundational studies reveal that the amplitudes of neural
responses in the ventral face network are both higher for faces than nonfaces across
formats and correlate with the perception of faces.

1.2 The Neural Architecture and Connections
of the Ventral Face Network

1.2.1 The Functional Organization of the Face Network
Is Consistent Across Participants

A striking characteristic feature of the functional architecture of the ventral face
network is that the cortical location of functional regions is highly consistent across
people. At the centimeter scale, face-selective regions are identifiable on specific
gyri: occipital face-selective regions are located on the inferior occipital gyrus (IOG,
Fig. 1.1a), while face-selective regions in ventral temporal cortex (VTC) are located
on the lateral aspect of the fusiform gyrus (FG).

It is important to emphasize that gyri are not small—they are typically several
centimeters long and wide and thus, have a rather large surface area. Thus, limit-
ing a functional region to anywhere on these macroanatomical structures results in
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extensive across-subject variability with low predictability for identifying these
regions from cortical folding alone [40]. However, in the last 5 years, we have
gained new insights regarding the structural-functional coupling of face-selective
regions at the millimeter scale. These advancements have been possible due to rig-
orous measurements of the variability of the cortical folding patterns of the FG and
neighboring sulci [168, 170] as well as precise measurements of the relationship
between functional regions and macroanatomical landmarks [99, 165, 170].

One such macroanatomical landmark to note is the mid-fusiform sulcus (MFS),
which is a shallow longitudinal sulcus that bisects the fusiform gyrus (FG) into a
lateral and medial portion (Fig. 1.2a). While there is anatomical variability across
individuals in the length and fractionation of the MFS [170], it serves as a con-
sistent landmark identifying functional representations. For example, irrespective
of inter-individual variability in MFS morphology, the anterior tip of the MFS pre-
dicts the location of the mid-fusiform face-selective region, identifying about 80% of
voxels within mFus-faces/FFA-2 (Fig. 1.2a-left [165, 170]). By comparison, the pos-
terior tip of the MFS predicts about 50% of pFus-faces/FFA-1 (Fig. 1.2a-left). This
lower functional-macroanatomical coupling is due to higher anatomical variability
of the posterior compared to anterior end of the MFS. Interestingly, the structural-
functional coupling extends to large-scalemaps spanning several centimeters inVTC.
For example, the MFS also identifies a transition within a large-scale animacy map
spanning VTC [48] in which voxels that prefer animate stimuli are located lateral
to the MFS and voxels that prefer inanimate stimuli are located medial to the MFS
(Fig. 1.2a-center). Consequently, this consistent functional-macroanatomical cou-
pling generates a consistent spatial relationship between multiple representations in
VTC. That is, face-selective regions are consistently embedded within a larger scale
representation of animate stimuli [22, 48, 93].

Given that it is more neurobiologically costly for the brain to spend the energy
to generate orderly compared to disorderly representations (and not all visual repre-
sentations align with anatomical axes on the cortical sheet as described above), these
findings raise the following questions: (1) Are there anatomical constraints that con-
tribute to the consistency of this functional architecture? (2) Is there a computational
benefit to the regular spatial topography of functional representations in VTC?

1.2.2 The Cytoarchitecture of Face-Selective Regions

What might explain the predictable spatial arrangement of both fine-scale clusters
and large-scale functional representations relative to macroanatomical landmarks?
Recent evidence indicates that anatomical constraints may underlie the predictable
topologies in the VTC.
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(a)

(b)

Fig. 1.2 Regular spatial structure of functional and anatomical parcellations of ventral tem-
poral cortex. a Multiple representations are aligned to the mid-fusiform sulcus (MFS). Data are
shown on an inflated cortical surface zoomed on ventral temporal cortex (VTC) of the right hemi-
sphere of a representative brain. MFS is indicated by the white outline. Left Face-selective regions
(faces> other categories; t> 3, voxel level, red) mFus-face/FFA-2 and pFus-faces/FFA-1 are pre-
dicted by the anterior and posterior tips of the MFS, respectively. CenterMFS serves as a boundary
betweendistributed representations of animate and inanimate representations.RightTheMFS serves
as a boundary separating lateral cytoarchitectonic regions FG4 and FG2 from medial cytoarchitec-
tonic regions FG3 and FG1, respectively. Cytoarchitectonic areas are indicated with separate colors
(see legend). FG: fusiform gyrus. b Histological slice showing the cell body staining and the gray
level index (GLI, line) across cortical layers from a representative 20-micron slice through FG4
(left) and FG2 (right). There are different cell distributions and cell sizes across cortical layers
between the two example slices
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1.2.2.1 The Cytoarchitecture of the FG

The size, shape, and organization of cells across the six-layered cortical ribbon (the
combination ofwhich is referred to as cytoarchitecture) is awell-established criterion
to parcellate the brain into areas because differences in cellular structure across
cortical layers are believed to be indicative of specialized neural hardware that is
utilized for particular brain functions.

In the last 4 years, four cytoarchitectonic areas have been discovered inVTCusing
data-driven, observer-independent techniques, which are blind to cortical folding. In
the posterior aspect of the fusiform gyrus (FG) and neighboring sulci, there are two
cytoarchitectonic areas referred to as FG1 and FG2 [20]. FG1 is located on themedial
aspect of the FG and is characterized by a columnar structure, while FG2 is situated
on the lateral aspect of the FG and has a higher cell density than FG1. Anteriorly,
there are two additional cytoarchitectonic areas referred to as FG3 and FG4 ([92];
Fig. 1.2a-right). Many architectural features differentiate FG3 from FG4. For exam-
ple, FG3 is characterized by a compact and dense layer II, while FG4 is characterized
by a less dense layer II compared to FG3, as well as large layers III and V. Inter-
estingly, the MFS not only serves as a landmark identifying face-selective regions
and functional transitions in large-scale maps, but also serves as a landmark iden-
tifying microarchitectural boundaries separating medial fusiform cytoarchitectonic
areas (FG1/FG3) from lateral fusiform cytoarchitectonic areas (FG2/FG4, Fig. 1.2a-
right). Specifically, the cytoarchitectonic transition between FG1, medially, to FG2,
laterally, occurs 5.41 ± 1.6mm from the posterior MFS, while the cytoarchitectonic
transition between FG3, medially, and FG4, laterally, occurs 1.42± .54mm from the
anterior MFS (Fig. 1.2a-right). Since the MFS predicts both functional and anatom-
ical transitions in the human brain, it is natural to ask: Is there relationship between
functional regions and cytoarchitectonic areas in the fusiform gyrus?

1.2.2.2 The Relationship Between FG Cytoarchitectonic Areas
and the Ventral Face Network

Quantifying the relationship between cytoarchitectonic areas and face-selective
regions is challenging because cytoarchitectonic areas are delineated in postmortem
brains, while face-selective regions are defined in living brains. Presently, it is impos-
sible to relate these cortical divisions within the same individual. Nevertheless, it is
possible to quantitatively relate these structures by aligning them to a common cor-
tical reference frame. This is done using cortex-based alignment, which leverages
cortical folding patterns to align one brain to another, irrespective if the brains are
from living or postmortem individuals [38, 122]. Implementing this novel approach
revealed that functionally defined face-selective regions within the FG are cytoarchi-
tectonically dissociable. That is, different face-selective regions are located within
different cytoarchitectonic areas: mFus-faces/FFA2 is largely within FG4 (81% ±
24%, mean ± standard deviation), while pFus-faces/FFA1 is largely within FG2
(49.5% ± 24%) and not in other cytoarchitectonic areas of the FG [173]. These
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results suggest that microanatomical properties contribute to the macroanatomical
positioning of mFus-faces/FFA-2 and pFus-faces/FFA-1 (even though they are both
located on the fusiform gyrus). For example, pFus-faces/FFA-1 displays features of
FG2 (Fig. 1.2b), which has a conspicuous layer III with larger pyramidal cells than
those of mFus-faces/FFA-2, as well as a prominent and dense layer IV compared to
mFus-faces/FFA-2, which has a thin and moderately dense layer IV.

These results have three important theoretical ramifications. First, distinct cytoar-
chitecture is evidence for differential neural hardware optimized for specialized
computations. Thus, it is likely that the cytoarchitectonic differences between
mFus-faces/FFA-2 and pFus-faces/FFA-1 are reflective of different computations
implemented by these regions. Second, as cytoarchitectonic differences are used to
parcellate brain areas, our data suggest that distinct functional regions correspond-
ing to pFus- and mFus-faces, respectively, have distinct cytoarchitectonic structure.
Third, since IOG-faces is located outside the FG, it does not overlap with any of the
FG cytoarchitectonic areas. This suggests that IOG-faces/OFA is also cytoarchitec-
tonically distinct from pFus-faces/FFA-1 and mFus-faces/FFA-2.

Together these findings suggest that the brain may have different neural hardware
for specific computations implemented in each of the three faces-selective regions of
the ventral face network. Nevertheless, future research is necessary to elucidate the
computations that are produced by this elaborate microcircuitry as well as detailed
properties of this circuitry including the precise cell types, their connections, and
their 3D structure.

1.2.3 White Matter Connections of the Ventral Face Network

In addition to local cytoarchitecture, there is consensus that white matter connec-
tions also constrain the function of the brain [147, 158, 184]. Recent evidence has
begun to elucidate the nature of white matter connections of the face network with
four main findings. First, ventral face-selective regions IOG-, pFus-, and mFus-faces
are highly interconnected with direct white matter connections [54, 117, 171]. Sec-
ond, longitudinal white matter tracts connect early visual retinotopic areas located
outside the face network to ventral face-selective regions [54, 80, 171]. Third, ver-
tical white matter tracts connect dorsal stream visual regions located outside the
face network to ventral face-selective regions. For example, portions of the verti-
cal occipital fasciculus (VOF; [146, 172, 179]) connect a retinotopic region in the
posterior intraparietal sulcus (IPS-0) and pFus-faces [171]. Fourth, there are distinct
white matter tracts associated with the ventral face network compared to networks
associated with processing other domains. For example, long-range white matter
connections of pFus- and mFus-faces are distinct from white matter connections of a
place-selective region in the collateral sulcus (CoS-places/PPA; [45, 117, 128, 149]).

A schematic summarizing these white matter connections is shown in Fig. 1.3.
We note that this diagram is incomplete because it does not provide information
regarding (1) the entire connectivity of the ventral face network, (2) the direction of



12 K. Grill-Spector et al.

Fig. 1.3 Schematic diagram of white matter tracts of the ventral face network. Black ovals
indicate core face-selective regions and gray ovals indicate regions that are considered external to
the core face network. The schematic is arranged such that the hierarchical axis is from left to right.
Acronyms: face-selective regions: IOG: inferior occipital gyrus; pFus: posterior fusiform; mFus:
mid-fusiform: AT: anterior temporal; IPS0: a region in the intraparietal sulcus that is part of the
attention network

connections (though research in animals suggests that they are bidirectional [37]),
or (3) the functionality of these white matter tracts.

Nevertheless, the schematic diagram provides four important insights regarding
the connectivity features of the ventral face network. First, these findings illustrate
hierarchical connections from IOG- to pFus-faces and from pFus- to mFus-faces,
which may provide the connectivity scaffolding for hierarchical features of the ven-
tral face network described in the following section. Second, the network contains
redundant connections: there are multiple white matter tracts reaching each region.
Third, there are bypass connections that do not follow a strict hierarchical organiza-
tion. For example, mFus-faces, which is considered a later stage of the processing
hierarchy following pFus-faces, is connected not only to the preceding stage (pFus-
faces), but also to IOG-faces and early visual cortex. Finally, there are vertical white
matter tracts connecting IPS-0, which is thought to be part of the attention network
[64, 137, 138, 144], to pFus-faces. These vertical tracts may facilitate top-down
processing [74].

One important functional feature of redundant and bypass connections is that they
may provide network resiliency in the face of injury or disease. For example, recently
we had the unique opportunity to measure the face network before (1 month and
4 days) and after (1 and 8 months) a surgical resection of the IOG in a patient (SP)
who underwent surgery to treat intractable epilepsy [171]. Surprisingly, downstream
regions remained functionally intact despite the resection of the IOG, which would
not have been predicted by a strict hierarchical organization [58]. Interestingly, this
resiliency of FG face-selective regions is also reported in patients with long-term
(>10 years) damage to the inferior occipital cortex [129, 140, 142]. By measuring
white matter connections in SP, we identified the longitudinal and vertical tracts
discussed above suggesting that these tracts may contribute to the resiliency of the
face network after resection by enabling signals to reach these downstream regions
using alternate routes from early visual cortex and/or parietal cortex [171].
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While identifying white matter tracts of the ventral face network is a major
stepping-stone, we recognize that future work is necessary to uncover many remain-
ing unknowns regarding the connectivity of the ventral face network including:
(1) What is the functional utility of white matter connections both within the face
network as well as to regions outside the network? (2) What is the contribution of
white matter connection to the spatial segregation of face-selective regions of the
ventral face network? (3) What is the contribution of white matter connections to
behavior?

1.3 Computations by Population Receptive Fields
in the Ventral Face Network

As described in Sect. 1.2 above, the field has accrued a considerable body of knowl-
edge regarding the functional characteristics of ventral face-selective regions, the
anatomical composition and connectivity of regions within the ventral face network,
and their role in perception. However, how underlying features contribute to the
computations of each region and the network as a whole remains elusive. In this
section, we describe progress in understanding basic computations performed across
the ventral stream by population receptive fields (pRFs).

A logical starting point for developing computational models of the ventral face
network is to determine receptive field properties (the region of the visual field
within which a stimulus elicits a response from a neuron) for neurons in ventral
face-selective regions for three reasons. First, receptive fields are a fundamental
aspect of the processing performed by neurons in the visual system [53, 63]. Since
neurons with similar RFs are spatially clustered and fMRI measures the population
response of all neurons within each brain voxel (volume pixel), we can measure
the population receptive field (pRF)—the region of the visual field that drives the
population of neurons within a voxel [31, 76, 77, 162]. Second, face recognition
is thought to require spatial integration across facial features rather than processing
isolated facial features [148, 155, 156]. Thus, determining the location and size of
pRFs in the ventral face network may inform our understanding of which parts of the
face are processed in different stages of the face network. Third, understanding pRFs
may shed light on fixation/viewing behavior. For example, when asked to recognize
a face, participants typically fixate on the center of the face and the eyes, but when
asked to judge the emotion of the face, people also fixate on the mouth [107]. These
fixation behaviors suggest that the spatial capacity of face processing is not only
limited, but may also be task dependent.
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1.3.1 pRF Measurements Reveal a Hierarchical
Organization of the Face Network

Recently, we performed a series of experiments in which we built encoding models
(computational models that explicitly identify a set of features and computations that
predict evoked brain responses) that characterize pRFs in the ventral face network.
Subjects were scanned while viewing faces at different positions and sizes that sys-
tematically tiled the central visual field (12.5◦). From these data, we obtained the
amplitude of fMRI response of each voxel as a function of face position and size.
Then, for each voxel we fit a model that predicts the response by computing the
overlap of the stimulus with a 2D Gaussian, followed by a compressive nonlinearity
[76, 77]. This model-based analysis (1) provides estimates of pRF properties such
as size and eccentricity (distance from fixation), (2) allows comparison of pRF prop-
erties across the ventral stream hierarchy, and (3) provides insight into how space is
represented in the ventral face network.

PRFmapping shows that voxels in the ventral face network are substantially mod-
ulated by the location and spatial extent of faces in the visual field, and our simple
pRF model explains these modulations well. PRFs in the ventral face network illus-
trate several characteristics. First, pRF centers are located in the contralateral visual
field [60, 77]—a finding that is consistent with retinotopic organization of visual
cortex more generally [62]. That is, pRF centers of voxels in the right hemisphere
are centered in the left visual field and vice versa. Second, pRFs in the ventral face
network tend to be located close to the center of gaze [77, 176] rather than distrib-
uted across the visual field as in early and intermediate retinotopic areas (V1-hV4,
Fig. 1.4b). Third, the average pRF size progressively increases fromV1 to subsequent
retinotopic areas (V2-hV4) and into the face network (IOG-, pFus- and mFus-faces;
[77, 176], Fig. 1.4a). This progressive increase of average pRF size is consistent with
a hierarchical organization [157]. Fourth, pRF size linearly increases with eccentric-
ity in the face network (Fig. 1.4c; [77, 176] as in earlier regions [162]). Additionally,
the slope of this relationship increases across the visual hierarchy. Consequently, the
size of pRFs in the ventral face network is larger than their eccentricity. Thus, pRFs
in the ventral face network always cover the center of gaze (fovea) and extend into
the ipsilateral visual field, processing information from both right and left visual
fields.

An intuitive illustration of the visual information processed by pRFs across the
ventral processing stream is shown in Fig. 1.4d. Here, we show example pRFs at
1◦ eccentricity across several regions spanning the ventral stream; these pRFs are
superimposed on a face sized to approximate typical conversational distance [91, 96].
The figure illustrates that a V1 pRF processes local information, such as the corner
of the eye, while a pRF within hV4 may process an entire facial feature, such as an
eye. However, the large and foveal pRFs in the face network process information
across multiple facial features from both sides of the face. These data suggest a
potential explanation for fixation behavior: when people fixate faces, they attempt to
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Fig. 1.4 pRFs reveal a hierarchical organization of the ventral face network. a Median pRF
size for each area from V1 to mFus-faces (error bars indicate 68% confidence intervals, CIs).
pRF size is defined as the standard deviation of a 2D Gaussian that characterizes the response of the
pRF to point stimuli.bMedian eccentricity of pRF centers for each area. cRelationship between pRF
size and eccentricity (shaded area indicates a 68% CI on a line fitted to the data). d Facial features
processed across the hierarchy. Circles indicate pRFs at 1◦ eccentricity (as derived from panel c).
Each circle is drawn at +/− 2 pRF sizes. The depicted face is sized to simulate a conversational
distance of 1m (approximately 6.5◦ based on average male head sizes [91, 96]). Ascending the
hierarchy, spatial information is integrated across increasingly large regions of the face, until the
latest stages where entire faces are processed by neural populations within a voxel. Adapted from
[77, 167]

position pRFs in face-selective regions in order to optimally integrate information
across facial features.

Data comparing pRFs in the ventral face network between developmental
prosopagnosics (DPs) and typical participants support the idea that spatial integra-
tion across facial features obtained by large and central pRFs is necessary for face
perception [176]. DPs are individuals without brain damage, but who are impaired
at face recognition without showing other visual or cognitive deficits [8, 11, 28,
30, 88]. PRF measurements reveal that pRFs in the face network (and hV4) of
DPs are smaller, and rarely extend to the peripheral or ipsilateral visual field com-
pared to typical controls. Notably, across both typicals and DPs, face recognition
ability is positively correlated with pRF size in the ventral face network: partici-
pants with larger pRFs perform better than those with smaller pRFs (r(15) = 0.63,
p<0.007). In contrast, face recognition ability does not correlate with pRF size in
early retinotopic areas. These data provide empirical evidence suggesting that smaller
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pRF sizes in DPs may reflect a deficit in spatial integration, consequently affecting
face recognition.

1.3.2 Attention Modulates pRF Properties, Enhancing
Peripheral Representations Where Visual Acuity
Is the Worst

Responses in the ventral face network are not just driven by the stimulus, but are also
modulated by internal top-down goals [7, 104, 143, 180].We characterized how top-
down factors modulate pRF properties and spatial information by measuring pRFs
under different attentional states [77]. PRFs were estimated separately for different
tasks using identical visual stimulation, including a digit task during which attention

Fig. 1.5 Attention modulates pRF properties in the ventral face network, enhancing spatial
representations. PRFs were measured under different tasks using the same stimulus. For the data
in this panel, subjects either performed a one-back task on centrally presented digits (digit task) or
a one-back task on the presented face (face task) while fixating centrally. a Task-induced changes
in pRF properties (bars indicate median across voxels; error bars indicate 68% CIs). pRFs in IOG-,
pFus-, and mFus-faces, and hV4 are larger (left), more eccentric (middle) and have increased gain
(right) during the face task (gray) compared to the digit task (black). b Tiling of visual field by
100 randomly selected pRFs from left pFus-faces (dots indicate pRF centers; circles indicate pRFs
drawn at+/− 2 pRF sizes). An example face is shown at 5-deg eccentricity. c Spatial uncertainty in
discrimination of stimulus positions. Bars indicate amount of uncertainty for reference positions at
5-deg eccentricity (median across angular positions+/− 68%CI). During the digit task, uncertainty
in IOG-, pFus-, and mFus-faces is large. However, during the face task, uncertainty is substantially
reduced and is commensurate with spatial uncertainty in V1. Adapted from [77, 167]
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was directed toward digits presented centrally, at fixation, and a face task, during
which attention was directed toward faces, which appeared at various locations tiling
the visual field (while fixating, subjects performed a one-back judgment on digits
and faces, respectively).

Fitting the pRFmodel separately to brain responses observed under different tasks,
we found that pRFs in the ventral face network and hV4 are dependent on the task. In
these regions, pRFs are larger (Fig. 1.5a-left), located more peripherally (Fig. 1.5a-
center), and have a higher gain (Fig. 1.5a-right) when participants attended to the
faces compared to when they attended to digits presented at fixation. In contrast,
pRFs in early visual areas V1–V3 were relatively stable and did not substantially
change across tasks (Fig. 1.5a).

To obtain an intuitive understanding of the effect of attentional modulation of
pRFs in the ventral face network, we visualize the collection of pRFs from left pFus-
faces measured in the digit task (Fig. 1.5b-left) and in the face task (Fig. 1.5b-right).
As pRFs are larger and more eccentric in the face than digit task, there is extended
coverage of the peripheral visual field during the face task compared to the digit task.
For example, while a face presented at 5◦ eccentricity from fixation is processed by
only a handful of pRFs during the digit task, it is processed by many pRFs during
the face task.

To interpret the change in spatial representations across tasks, we used a model-
based decoding approach (inferring information from distributed patterns of brain
activity across a collection of pRFs) and quantified the spatial uncertainty of the
location of a face presented at 5◦ eccentricity from responses of a collection of pRFs
spanning each visual area. Results show that the spatial uncertainly in decoding
the location of the face from the collection of pRFs in the face network substantially
decreases from the digit to face task (Fig. 1.5c). Surprisingly, the spatial uncertainty in
the face network during the face task is similar to that obtained byV1 pRFs which are
considerably smaller. These results illuminate another aspect of spatial coding: what
determines the spatial resolution of processing by a collection of pRFs is not only
their size, but also their scatter. In other words, large and partially overlapping pRFs
may provide similar spatial precision as small and nonoverlapping pRFs, consistent
with the notion of coarse coding [139, 174].

Our research of pRF properties is only a first stepping-stone of building accurate
encoding models of the face network, as we have implemented a rudimentary spatial
filter that performs only spatial summation, and the same type of spatial filtering
throughout the ventral stream. Thus, important future elaborations of the pRF model
would be to (1) include additional dimensions to themodel that explain computations
related to other aspects of the stimulus (e.g., its shape and/or features), and (2) deter-
mine whether and how additional pRF properties vary within each cortical region
and across regions. For example, implementing an array of orientation selective fil-
ters for each V1 voxel, rather than just Gaussian filters, provides better predictive
power in explaining V1 responses to natural images [75]. In the domain of face
processing, elaborating pRFs is necessary for explaining basic response properties
of face-selective regions not explained by the present pRFmodel, such as preferential
responses and tuning to individual faces [46, 84, 103] and face parts [27, 61].
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1.4 Eyes to the Future: Computational Insights
from Anatomical and Functional Features
of the Face Network

1.4.1 What Is the Computational Utility of the Organized
Structure of the Cortical Face Network?

The empirical findings reviewed here reveal an organized and reproducible imple-
mentation of a neural processing system for face perception in the human brain. Since
generating an organized structure is more effortful than a disorganized structure, it
is possible that certain principles reflecting optimized computational strategies are
produced from this functional architecture over the course of evolution or develop-
ment. Therefore, computational insights can be gleaned from the specific features
of the physical implementation of the ventral face network in the brain. Here, we
highlight some of the architectural and functional features that have not yet been
implemented in computational models and consider putative computational aspects
of these features that can be tested in future research.

For example, an important aspect of computational models that can be further
developed is explicitly modeling how anatomical features may contribute to the
formation of dynamic, task-dependent pRFs. The present pRF approach simply treats
each task as a distinct entity and estimates a model of the stimulus representation
separately for each task. This provides useful insight, but further research is necessary
to identify the neural mechanisms that underlie the source of the task modulations
originating from other brain areas. To better understand how attention may modulate
pRFs, one could consider the characteristics of white matter connections of the face
network. For example, top-down connections from cortical regions outside the face
network (such as the connection from IPS-0 to pFus-faces) may provide a route for
top-down information to flow from parietal regions involved in attentional gating to
face-selective regions. Thus, dynamic pRFs may be an outcome of an interaction
between a static pRF generated by bottom-up connections and an attention field
[81, 120, 141] mediated by top-down connections from IPS-0. Developing new
encoding models that incorporate these anatomical features may reveal insight into
the interplay between top-down and bottom-up processing in the face network—a
topic that has been elusive thus far.

In addition to macroscopic anatomical features such as white matter connectiv-
ity, we believe there is also utility in incorporating microanatomical features into
computational models. For example, cytoarchitectonic differences between pFus-
and mFus-faces suggest that these regions have different neural hardware that may
be optimized to perform different types of computations. These data therefore sug-
gest that computational models should not necessarily implement a single generic
neural computation or filter type that is duplicated across processing stages. Instead,
there are likely different specialized computations occurring at different stages of
processing. Furthermore, an ambitious and interesting direction for future work is to
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forge explicit links between anatomical properties such as cytoarchitecture, receptor
architecture, myeloarchitecture, cell types, and microcircuit connections relative to
the computational properties of neurons in the ventral face network.

1.4.2 What Can Deep Convolutional Networks Inform About
Computational Strategies of the Brain?

Another promising avenue for future research will be to incorporate recent neuro-
science findings into computational models implementing deep convolutional neural
networks (CNNs; [41, 67, 85, 121, 136]),whichhave seen significant recent advance-
ment. In brief, deep CNNs are neural networks composed from a series of stacked
layers, in which the first layer performs operations on the input image and subsequent
layers perform operations on the output of the prior layer. As such, CNNs have a
feedforward architecture. Additionally, layers in a CNN typically alternate between
layers performing linear operations (e.g., convolution), layers performing nonlinear
operations (e.g., ReLU), and pooling layers. After several stacked layers of this sort,
there are often one or more fully connected layers. The layers that perform linear
operations typically contain multiple arrays of filters in which each filter performs
an operation on a local region in the visual input (akin to computations by RFs in the
human visual system), and the same filters are repeated across locations tiling the
entire visual field. Additionally, filters in subsequent layers pool information from a
local neighborhood from the prior layer, which yields an overall increase in pooling
moving up the CNN hierarchy. Once the architecture of the deep CNN is built, the
network is then trained to perform a task (e.g., face recognition). During training, the
weights of the connections between layers are altered typically using a backpropa-
gation algorithm [87, 127], which functions to reduce the error between the network
output and the desired answer. After training, the weights are no longer changed and
the processing in deep CNNs is strictly feedforward.

Deep CNN architectures are appealing because (1) they are inspired by architec-
tural features of the ventral visual stream [41, 121, 136], (2) their performance
reaches human-like performance in complex object recognition tasks [83, 177]
including face recognition [145], and (3) they can predict—to a noteworthy level
of accuracy—experimentally measured responses in the primate and human ventral
stream [16, 33, 55, 67, 78, 86, 178]. We suggest that CNNs can be used as a tool
(e.g., through simulations and analysis) to understand the computations being per-
formed within the face network. However, as a first step, it is important to consider
in what aspects the artificial architecture of deep CNNs is similar to or different than
the neurobiological architecture of the human ventral visual stream.

Several aspects of deep CNNs are similar to the architecture of the human ventral
visual stream (Table1.1). For example, both systems implement: (1) computations
by local filters, (2) hierarchical processing across a series of stages, (3) feedforward
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Table 1.1 Computational hypotheses generated from comparisons between deep convolutional
neural networks (CNNs) and neural architecture

computations, (4) linear–nonlinear operations, (5) redundant connections, and (6)
modification of weights during training.

While deep CNN architectures are broadly “neurally inspired” by neurobiological
architectural features of the ventral visual stream, they also differ from the neural
architecture in the humanbrain in several fundamentalways (Table1.1).As examples,
we note four differences between current deep CNNs such as AlexNet [85]) or
FaceNet [131] and what is known about the ventral visual stream. First, after the
training stage, filters in CNNs are fixed rather than dynamic, but in the brain, pRFs
are dynamic and can be modified by top-down attention. Second, filters in CNNs
are identical in size across the visual field, but in the brain, pRFs are larger in the
periphery than the center of gaze. Third, in a given layer of a CNN there is no
significance to the spatial arrangement of filters in a given layer, but the visual system
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exhibits a spatial topography of representations across spatial scales of the cortical
sheet that is reproducible across individuals. Fourth, in standard CNNs, beyond the
training stage, there is typically no influence of top-down connections or bypass
routes, but both types of connections are present and are used by the brain. By
modifying the CNN architecture in order to implement features that more accurately
reflect neurobiologically plausible brain architectures, it might be possible to explore
and better understand the computational benefits of specific neurobiological features
(Table1.1 – right column). Below, we give examples of three such tests.

First, the computational architecture of most current deep CNNs such as AlexNet
[85] or FaceNet [131] is strictly serial, which does not respect the biological reality
that the ventral face network contains bypass routes that skip stages of the processing
hierarchy. Therefore, incorporating recent empirical findings of bypass routes into the
architectures ofCNNsmay (1)makeCNNsmore accuratemodels of the humanvisual
system and (2) could advance our understanding regarding hypothesized benefits of
specific architecture features such as bypass routes. For example, the hypothesis
that bypass connections provide resiliency to cortical damage could be tested by
comparing the effect of a virtual lesion to an intermediate layer of a strictly serial
neural network versus a virtual lesion in a non-serial neural network containing
bypass connections.

Second, deep CNNs contain fixed filters (beyond the training stage) and do
not incorporate top-down connections from other processing stages. Consequently,
processing in deep CNNs is purely stimulus-driven and therefore, does not account
for known empirical effects of task and attention on responses in the ventral face
network, such as attention-modulated pRFs. Thus, one could adapt a present deep
CNN like FaceNet [131] to include top-down connections in order to test whether
this addition explains task and attention effects on pRF properties and if so, if it
improves the efficiency and/or performance of the network.

Third, as described in Sect. 1.2.1, there is a regular spatial topography of functional
representations in the human brain. This topography is evident in all stages of the
visual processing hierarchy—from an orderly structure of pRF arrangement across
the cortex generating spatial maps of the visual field in early and intermediate visual
areas [133, 161, 163], to the object form topography [22, 59] and regularity of
face-selective regions relative to macroanatomical landmarks [165, 170] in ventral
temporal cortex. In contrast to the spatial regularity of fine-scale functional regions
and large-scale representations in the brain, there is (1) no spatial organization to
nodes in a particular layer of a CNN and (2) neurobiological costs (such as wiring
length) are not explicitly accounted for by CNNs, whereas biological systems are
affected by those costs. Thus, future research can examine (1) what architectonical
constraints need to be added to a deep CNN for it to develop a spatial structure
(perhaps guided by the cytoarchitectonic and connectivity structure of face-selective
regions summarized in Sect. 1.2 and (2) what computational benefit does cortical
organization provide? For example, does spatial topography enhance CNN speed or
efficiency?



22 K. Grill-Spector et al.

1.5 Conclusions

As described in this chapter, neuroimaging research has advanced our understanding
regarding the functional architecture of the human ventral face network. For example,
the scale of our understanding of the spatial arrangement of regions in the ventral
face network has improved from centimeters to millimeters. Recent research has
linked this consistent spatial arrangement of the ventral face network to underlying
microanatomical features such as cytoarchitecture, as well as whitematter connectiv-
ity. Mechanistically, the development of new methods deriving population receptive
fields has begun to elucidate computational principles of the ventral face network.
While there are key questions that remain unanswered, these new research direc-
tions have opened exciting new opportunities for understanding how the functional
neuroanatomical features of the face network contribute to computations underlying
human face perception. Importantly, incorporating these recent findings in up-to-date
computational models will further advance the field by providing enhanced under-
standing of the computational benefits of specific implementational features of the
human brain by integrating such features into state-of-the-art deep convolutional
neural network architectures.
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Appendix: Abbreviations and Definitions

Collateral sulcus (CoS): a primary sulcus in human ventral temporal cortex; the
medial boundary of the fusiform gyrus

Cytoarchitecture: cellular organization across the six-layered cortical ribbon; a
property used to parcellate brain areas from one another

Developmental prosopagnosia (DP): an impairment in recognizing faces despite
normal vision, intelligence, and socio-cognitive abilities and no history of brain
damage

Fusiform face area (FFA): once considered a homogenous face-selective area, it
contains (at least) two cytoarchitectonically and functionally distinct components

Fusiform gyrus (FG): a hominoid-specific macroanatomical structure in ventral
temporal cortex that contains (at least) four cytoarchitectonic areas and multiple
functional regions

FG1–4: Labels for four cytoarchitectonic areas in the fusiformgyrus and neighboring
sulci

http://www.annualreviews.org/doi/10.1146/annurev-vision-102016-061214
http://www.annualreviews.org/doi/10.1146/annurev-vision-102016-061214
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Inferior occipital gyrus (IOG): a gyrus that is posterior-lateral to the fusiformgyrus;
considered the first processing stage of the ventral face network

Mid-fusiform sulcus (MFS): a shallow, longitudinal sulcus bisecting the fusiform
gyrus; a landmark identifying cytoarchitectonic and functional boundaries

mFus-faces/FFA-2: a face-selective region overlapping the anterior-lateral tip of
the mid-fusiform sulcus, located within cytoarchitectonic area FG4, and 1–1.5cm
anterior to pFus-faces/FFA-1

Occipito-temporal sulcus (OTS): a primary sulcus in human ventral temporal cor-
tex; the lateral boundary of the fusiform gyrus

Parahippocampal place area (PPA): a place-selective region in the collateral sulcus
and parahippocampal cortex

pFus-faces/FFA-1: a face-selective region typically overlapping the posterior-lateral
tip of the mid-fusiform sulcus, located within cytoarchitectonic area FG2, and
1–1.5cm posterior to mFus-faces/FFA-2

Population receptive field (pRF): in fMRI, the region of visual space that stimulates
a voxel

Receptive field (RF): the region of the visual field which elicits a response from a
neuron

Ventral Temporal Cortex (VTC): a cortical expanse spanning the inferior aspect of
the temporal lobe containing high-level visual regions involved in “what” perception
and recognition.
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Chapter 2
Real-Time Face Identification
via Multi-convolutional Neural Network
and Boosted Hashing Forest

Yury Vizilter, Vladimir Gorbatsevich, Andrey Vorotnikov and Nikita
Kostromov

Abstract The family of real-time face representations is obtained via Convolu-
tional Network with Hashing Forest (CNHF). We learn the CNN, then transform
CNN to the multiple convolution architecture and finally learn the output hashing
transform via new Boosted Hashing Forest (BHF) technique. This BHF generalizes
the Boosted Similarity Sensitive Coding (SSC) approach for hashing learning with
joint optimization of face verification and identification. CNHF is trained on CASIA-
WebFace dataset and evaluated on LFW dataset. We code the output of single CNN
with 97% on LFW. For Hamming embedding we get CBHF-200 bit (25 byte) code
with 96.3% and 2,000-bit code with 98.14% on LFW. CNHFwith 2,000×7-bit hash-
ing trees achieves 93% rank-1 on LFW relative to basic CNN 89.9% rank-1. CNHF
generates templates at the rate of 40+ fps with CPU Core i7 and 120+ fps with GPU
GeForce GTX 650.

2.1 Introduction

Various face recognition applications presume different priorities of template size,
template generation speed, template matching speed, and recognition rates.We know
that the fastest search in a database is provided by binary templates with Hamming
distance [1, 7–10, 12, 14, 18, 20, 21, 30, 34]. On the other hand, the best face
recognition rates are achieved by deep convolutional neural networks (CNN) with
non-binary face representations [3, 5, 23–25, 27, 29, 31, 35]. These approaches can
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be fused in the special CNN architecture with binary output layer, which we refer as
Convolutional Network with Hashing Layer (CNHL). The most promising CNHL
is described in [6], where CNN and hashing layer are learned together via back
propagation technique. But now we need the family of face representations, which
continuously varies from small Hamming codes to coded features with larger size,
better metrics and higher recognition rates. So, in this chapter we propose to combine
the CNN and additional hashing transform based on Hashing Forest (HF). Our HF
forms the vector of features coded by binary trees.HFwith different depth of trees and
different coding objectives allows obtaining the family of face representations based
on the same CNN. We refer such CNN+HF architecture as Convolutional Network
withHashing Forrest (CNHF). In case of 1-bit coding trees CNHF degrades to CNHL
and provides the Hamming embedding.

The architecture of our CNHF is based on the Max-Feature-Map (MFM) CNN
architecture proposed byXiangWu [31]. For real-time implementationwe accelerate
our CNN via transforming to the multiple convolution architecture.

We propose the new Boosted Hashing Forest (BHF) technique, which generalizes
the Boosted Similarity Sensitive Coding (Boosted SSC) [20, 21] for discriminative
data coding by forest hashing with direct optimization of objective function and
given properties of coded feature space. We also introduce and implement the new
biometric-specific objective function for joint optimization of face verification and
identification.

Proposed CNHF face representations are trained on CASIA-WebFace dataset
and evaluated on LFW dataset. Our experiments demonstrate both compact binary
face representations and increasing of face verification and identification rates. In
the Hamming embedding task BHF essentially outperforms the original Boosted
SSC. Our CNHF 200 bit (25 byte) hash achieves 96.3% on LFW with 70-time gain
in a matching speed. CNHF 2,000 bit hash provides 98.14% on LFW. CNHF with
2,000×7-bit hashing trees achieves 93% rank-1 onLFWrelative to basic CNN89.9%
rank-1.

The remainder of this chapter is organized as follows. Section2.2 briefly describes
the related work. Section2.3 describes the architecture and learning of our CNHF
with multiple convolutional layers. Section2.4 contains the outline of proposed BHF
technique and its implementation for face hashing. Experimental results are presented
in Sect. 2.5. Conclusion and discussion are presented in Sect. 2.6.

2.2 Related Work

A lot of face representation techniques were proposed [4, 16, 26], but all state-of-the-
art results are obtained now via deep CNN. One can learn CNN for multi-class face
identification with classes corresponding to persons [27, 35], or learn the similar-
ity metric by training two identical CNNs (Siamese Architecture [5, 29], or com-
bine these approaches [23, 25, 32]). Best modern results on LFW are obtained by
ensembles of deep nets learned on different parts (patches) of face [13, 23, 25].



2 Real-Time Face Identification via Multi-convolutional Neural Network … 35

Nevertheless, some single nets can be efficient enough with essentially lower com-
putational cost [3, 31].Most frequently the CNN-based face representation is formed
as an output of top hidden layer [5, 23, 27, 29, 31, 35]. Sometimes the PCA is applied
for size reduction [23, 24]. The L2-distance [4, 29] or cosine similarity [23, 27, 31]
are of use for matching of face representations.

Binary hashing means the assigning of binary code to each input feature vec-
tor. The review of classical hashing techniques is presented in [9]. The simplest
binary hashing idea is to use some dimensionality reduction transform and then
apply some quantization technique. The optimization-based hashing approach pre-
sumes the similarity-driven data embedding into the Hamming space. In [7] the
similarity search is proposed based on linear binary coders and vectors of weights
obtained by random rotations. The Iterative Quantization (ITQ) technique [8] con-
siders the hashing problem as a search of rotation, which minimizes the quantization
error. Kernel-Based Supervised Hashing (KSH) [14] utilizes a kernel formulation for
the target hash functions. The affinity-preserving algorithm [10] performs k-means
clustering and learns the binary indices of the quantized cells. The manifold hash-
ing techniques follow the ideas of manifold learning. The Spectral Hashing [30]
relaxes the hashing problem in the manner of Laplacian Eigenmaps [1]. Topology
Preserving Hashing (TPH) [34] performs the Hamming embedding with additional
preserving the neighbor ranks. Locally Linear Hashing (LLH) [12] presumes both
preserving distances and reconstructing the locally linear structures. The Semantic
Hashing (SH) [18] solves the hashing problem with the use of Restricted Boltzmann
Machines (RBM). Boosted Similarity Sensitive Coding (Boosted SSC) proposed by
Shaknarovich, Voila and Darrell [20, 21] performs the sequential bit-by-bit growing
of the hash codewith reweighting of samples in themanner of AdaBoost and forming
the weighted Hamming space.

The idea of binary face coding based on deep learning is well implemented in [6].
The CNN and hashing layer are learned together via back propagation technique,
and 32-bit binary face representation is generated with 91% verification on LFW.
Unfortunately, the direct optimization of more complex face coding criterions is not
available in this one-step CNHL learning framework. In particular, it cannot provide
the immediate optimization of Cumulative Matching Curve (CMC). Due to this we
implement the two-step CNHF learning procedure: learning basic CNN first and
hashing transform second.

Our hashing transform is based on hashing forest. Look at some previous for-
est hashing techniques. Qiu, Sapiro, and Bronstein [17] propose the random forest
semantic hashing schemewith information-theoretic code aggregation for large-scale
data retrieval. The feature induction based on random forest for learning regression
and multi-label classification is proposed by Vens and Costa [28]. Yu and Yuan [33]
implement a forest hashing with special order-sensitive Hamming distance. The for-
est hashing by Springer et al. [22] combines kd-trees with hashing technique. The
Boosted Random Forest algorithm proposed by Mishina, Tsuchiya, and Fujiyoshi
[15] is out of the binary hashing topic. Our approach performs the feature space
coding via boosted forest hashing in the manner of Boosted SSC with optimizing
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of task-specific objective function. So, we mainly consider our BHF technique as a
generalization of Boosted SSC.

2.3 CNHF with Multiple Convolution CNN

Our CNHF contains the basic deep CNN and additional hashing transform based
on Hashing Forrest (HF). This hashing forest forms the output CNHF binary face
representation, which semantically corresponds to some objective vector of features
coded by these binary trees (Fig. 2.1). For obtaining the family of optimized face rep-
resentations based on the same CNNwe use the two-step CNHF learning procedure.
At the first step the CNN is formed and trained for multi-class face identification.
At the second step the hashing transform is trained for combined face verification
and identification. We start from learning the source CNN with softmax output layer
for face identification. Then we transform its convolutional layers to the multiple
convolution form. Finally we cut the output softmax layer and use the activations of
top hidden layer as a basic face representation for further hashing. In this chapter, we
use the Max-Feature-Map (MFM) CNN architecture proposed by Xiang Wu [31]. It
is based on the Max-Feature-Map activation function instead of ReLU. Reference
[31] demonstrates that Max-Feature-Map can get the compact and discriminative
feature vectors. The source network architecture contains four convolutional layers,
four layers of pooling + MFM pooling, one fully connected layer and the softmax
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Fig. 2.1 Architecture of CNHF: CNN + hashing transform based on hashing forest
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Fig. 2.2 Architecture of source MFM deep net [25]

layer (Fig. 2.2). Following the approach of XiangWu [31] we start from learning this
source MFM deep net for multi-class face identification with classes corresponding
to persons in the manner [24, 31] using the backpropagation technique.

Unfortunately, we cannot directly implement the architecture (Fig. 2.2) for the
real-time face identification with CPU. We need to optimize this architecture in
order to obtain essentially higher calculation speed. So, we propose and apply the
new approach for sequential transformation of deep network topology based on the
following tricks:

1. We use the small-sized filters instead of large-sized filters in the convolutional
layers. For example, we substitute one layer with 5 × 5 filters by the sequence of
two layers with 3 × 3 filters, which is 1.38 times faster on CPU.

2. We decrease the number of filters in each layer. For example, the first layer of
source net (Fig. 2.2) contains 96 filters, but the first layer of our transformed net
contains 20 filters only, which is more than 4 times faster on CPU.

3. The each layer is transformed and relearned separately. For this purpose we need
to provide the equal input and output dimensionalities for the source layer and
corresponding part of transformed net, which is used for its substitution. We do
this by adding the 1 × 1 × n layers to the transformed net, where n is the number
of filters in the substituted source layer. For example, we substitute the one 9 ×
9 × 96 layer of source network (Fig. 2.2) by the sequence of two layers 9 × 9 ×
20 and 1 × 1 × 96, which is still more than 4 times faster on CPU.

Thus, we simplify the network topology sequentially, layer by layer, without the
relearning of the whole CNN. In this process we represent the each convolution as a
combination of convolutions, so, we refer the resultant architecture of transformed
net as “multiple convolutional” or briefly “multiconv”. At the each step of one layer
substitution we use the Euclidean loss for minimization of difference between the
output response of this source layer and corresponding part of transformed net,
which is used for its substitution, for the same input values. Figure2.3 illustrates
the proposed scheme for topology transformation and relearning. The training set at
this stage contains face images without pointing to persons. We use the open source
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Fig. 2.3 The proposed scheme for network topology transformation and relearning

framework Caffe for learning of transformed layers by standard back propagation
technique as well as for the whole network training (see Sect. 2.5.1).

Finally, we could represent the proposed process for deep net architecture sequen-
tial transformation as the following informal Algorithm 0.
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Table 2.1 Iteration 1

Layer Convolutional
layer 2
(Fig. 2.2)

Convolutional
layer 3
(Fig. 2.4)

Convolutional
layer 4
(Fig. 2.4)

Convolutional
layer 5
(Fig. 2.4)

Convolutional
layer 6
(Fig. 2.4)

Filter size 5 × 5 × 48 3 × 3 × 48 1 × 1 × 24 3 × 3 × 32 1 × 1 × 32

Number of
filters

192 24 32 32 192

Number of
operations
(mult.)

722,534,400 34,877,952 2,583,552 28,901,376 19,267,584

Fig. 2.4 Architecture of CNHF based on MFM net with multiple convolutions

Table 2.2 Iteration 2

Layer Convolutional
layer 3 (Fig. 2.2)

Convolutional
layer 7 (Fig. 2.4)

Convolutional
layer 8 (Fig. 2.4)

Convolutional
layer 9 (Fig. 2.4)

Filter size 5 × 5 × 96 3 × 3 × 96 3 × 3 × 64 1 × 1 × 128

Number of filters 256 64 128 256

Number of
operations (mult.)

353,894,400 37,380,096 42,467,328 18,874,368

Actually, only three iterations of the Algorithm 0 were used.

Iteration 1: Convolutional layer 2 (Fig. 2.2) was replaced by layers 3, 4, 5, 6 (see
the Table2.1):

The original layer (layer 2 in Fig. 2.2) requires more than 700 million multipli-
cations and produces the output with the dimensions of 56 × 56 × 192, the layer
sequence (layers 3, 4, 5, 6 in Fig. 2.4) requires about 90 million of multiplications
(about 7 times less than the original layer) with the same output size.

Iteration 2: Convolutional layer 3 (Fig. 2.2)was replaced by layers 7, 8, 9 (Table2.2):
The original layer (layer 3 in Fig. 2.2) requires more than 350 million multipli-

cations and produces the output with the dimensions of 24 × 24 × 256, the layer
sequence (layers 7, 8, 9 in Fig. 2.4) requires about 100 million multiplications (about
3 times less than the original layer) with the same output size.
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Table 2.3 Iteration 3

Layer Convolutional layer 1
(Fig. 2.2)

Convolutional layer 1
(Fig. 2.4)

Convolutional layer 2
(Fig. 2.4)

Filter size 9 × 9 × 1 9 × 9 × 1 1 × 1 × 20

Number of filters 96 20 96

Number of operations
(mult.)

111,974,400 23,328,000 27,648,000

Iteration 3: Convolutional layer 1 (Fig. 2.2) was replaced by layers 1, 2 (Table2.3):
The original layer (layer 1 in Fig. 2.2) requires more than 110 million multipli-

cations and produces the output with the dimensions of 120 × 120 × 96, the layer
sequence (layers 1, 2 in Fig. 2.4) requires about 50 million multiplications (about 2
times less than the original layer) with the same output size.

Unfortunately, all our attempts to replace layer 4 from the original network led to
significant loss in accuracy (greater than 10%), but this layer requires relatively less
computations – about 90 million multiplications.

The main advantage of this approach is a relatively high speed of learning at the
steps of layer substitutions. We used the GTX 1080 card for this learning and trained
the one multiconv substitution approximately in 10–15min. This allows performing
the multiconv transformation of any source CNN architecture in the very convenient
and partially automated way.

After all simplifying substitutions, the transformedCNN is trained again formulti-
class face identification with classes corresponding to persons in the manner [24, 31]
using the backpropagation technique. Finally the output softmax layer of transformed
MFMnet is replaced by hashing forest, andwe obtain the CNHF based onMFMwith
multiple convolutional layers (Fig. 2.4). In result ourCNHFcontains 10 convolutional
layers, four layers of MFM+pooling, fully connected layer and hashing forest. This
CNHF generates face templates at the rate of 40+ fps with CPU Core i7 and 120+
fps with GPUGeForce GTX650. Thus, we can conclude that the proposedmulticonv
approach makes our CNHF 5 times faster on CPU than source CNN. It is enough for
the real-time operation.

2.4 Learning Face Representation via Boosted Hashing
Forest

2.4.1 Boosted SSC, Forest Hashing and Boosted Hashing
Forest

Welearn our hashing transformvia the newBoostedHashingForest (BHF) technique,
which combines the algorithmic structure of Boosted SSC [20, 21] and the binary
code structure of forest hashing [15, 17, 22, 28, 33].
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Boosted SSC algorithms optimize the performance of L1 distance in the embed-
ding space as a proxy for the pairwise similarity function, which is conveyed by a
set of examples of positive (similar) and negative (dissimilar) pairs. The SSC algo-
rithm takes pairs labeled by similarity and produces a binary embedding space. The
embedding is learned by independent collecting thresholded projections of the input
data. The threshold is selected by optimal splitting the projections of negative pairs
and non-splitting the projections of positive pairs. Boosted SSC algorithm collects
the embedding dimensions greedily with adaptive weighting of samples and dimen-
sions in the manner of AdaBoost. BoostPro algorithm uses a soft thresholding for
gradient-based learning of projections.

The differences of proposed BHF w.r.t. Boosted SSC are the following:

1. BHF performs the binary coding of output feature space, which is not binary in
general, but can be binary Hamming, if required.

2. BHF performs the direct optimization of any given objective function of output
features.

3. BHF learns the objective-driven data projections via RANSAC algorithmwithout
gradient-based optimization.

4. BHF performs the recursive coding by binary trees and forms the hashing forest,
whileBoostedSSCperforms the iterative feature coding and formshashingvector.

5. BHF performs the adaptive reweighting of training pairs based on their contribu-
tion to the objective function, unlike the AdaBoost-style reweighting of Boosted
SSC.

6. Boosted SSC forms the weighted Hamming space. Our BHF forms the any given
metric space, including non-weighted Hamming space for fastest data search.

The main differences of proposed BHF w.r.t. other forest hashing techniques:
we obtain the hashing forest via RANSAC projections and boosting process in the
manner ofBoosted SSC;we optimize the task-specific objective function in the coded
feature space, but not the similarity in the binary code space.

BHF implementation for face recognition has some additional original features:
new biometric-specific objective function with joint optimization of face verification
and identification; selection and processing of subvectors of the input feature vector;
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creation of ensemble of independent hash codes for overcoming the limitations of
greedy learning. In the next subsections we describe our BHF algorithms in detail.

2.4.2 BHF: Objective-Driven Recurrent Coding

Let the training set X = {xi∈Rm}i=1,...,N contains N objects described by
m-dimensional feature vectors. Map X to the n-dimensional binary space: X =
{xi ∈ Rm}i=1,...,N → B = {bi ∈ {0, 1}n}i=1,...,N . This mapping is an n-bit coder:

h(x) : x ∈ Rm → b ∈ {0, 1}n (2.1)

The elementary coder is called the 1-bit hashing function

h(x) : x ∈ Rm → b ∈ {0, 1} (2.2)

Let some objective function (coding criterion) is given and required to be mini-
mized

J (X, h) → min(h). (2.3)

Denote h(k)(x) = (h(1)(x),…,h(k)(x)). The operation of coders concatenation
is h(k)(x) := (h(k−1)(x), h(k)(x)). The Greedy Objective-driven Recurrent Coding
(Greedy ORC) algorithm (Algorithm 1) sequentially forms the bits of our coder
in a recurrent manner: h(k)(x) = h(k)(x,h(k−1)). The proper procedure for learning the
each kth bit is described in the next subsections.
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2.4.3 BHF: Learning Elementary Projection via RANSAC
Algorithm

At the kth step of coder growing

J (X, h(k)) = J (X, h(k−1), h(k)) → min{h(k) ∈ H}, (2.4)

where H is a class of coders. Consider the class of elementary coders based on
thresholded linear projections

(a) (b) (c)

Fig. 2.5 RANSAC Learn1ProjectionHash: a Step 1, b Steps 2, c Steps 3 of Algorithm 2
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h(w, t, x) = sgn(
∑

k=1,...,m wkxk + t), (2.5)

where w – vector of weights, t – threshold of hashing function, sgn(u) = {1, if u>

0; 0 - otherwise}. In case of (2.5) function (2.4) takes the form

J (X, h(k−1), h(k)) = J (X, h(k−1), w, t) → min{w ∈ Rm, t ∈ R}. (2.6)

Weuse theRANSACalgorithm for approximate solving (2.6). RANSAChypothe-
ses about w parameters are generated based on the random choice of dissimilar pairs
in a training set (Algorithm 2, Fig. 2.5).

In general case the determination of optimal threshold at the step 3 of this Algo-
rithm 2 could require a lot of time. But in important particular case, the objective
function can be represented as a sum of some values corresponded to all pairs of
samples from the training set. If these values for each pair depend only on the fact,
whether the threshold separates the projections of these samples, or not, then the
objective function will be a stepwise function

J (X, h(k−1), w, t) = ∑
i=1,...,N

∑
j=1,...,N Ji j (h(k−1), w, t), (2.7)

Ji j (h(k−1), w, t) =
{
J (in)
i j , if t ∈ [(xi , w), (x j , w)];

J (out)
i j , otherwise;

and the procedure for optimal threshold search can be implemented more effi-
ciently. For this case (2.7) we propose the special algorithm (Algorithm 3, Fig. 2.6),
which requires O(N 2) computations, and the number of computations for each pair
from the training set is low enough. For the fixed hypothesis w = wk , we arrange

Fig. 2.6 Optimal threshold
selection (Algorithm 3):
stepwise objective function
recovering via accumulation
of step values from left to
right
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projections t (k)i = (xi , wk) by increasing and test them as possible threshold values
via calculating theJ (X , h(k−1),wk , t (k)i ). The idea of this algorithm is to calculate the
step values at each projection point and then recover the stepwise objective function
via accumulation of step values from left to right.

2.4.4 BHF: Boosted Hashing Forest

Our Learn1BitHash procedure (see Algorithm 1) contains the recursive call of
Learn1ProjectionHash procedure (Algorithm 2). Consider the tessellation of X by
n-bit coder: XB = {Xb, b∈{0,1}n}, Xb = {x∈X : h(x) = b}, X = ∪b∈{0,1}n Xb.
The process of recursive coding is a dichotomy splitting of training set with finding
the optimized elementary coder for each subset at each level of tessellation. So, the
recursive coder for kth bit

h(k)(x, h(k−1)) = h(w(h(k−1)(x)), t (h(k−1)(x)), x), (2.8)

is a combination of 2(k−1) thresholded projections

h(k)(x, h(k−1)) = Learn1BitHash(J , X, h(k−1))

= {Learn1ProjectionHash(J , X (h(k−1), b), h(k−1)), b ∈ {0, 1}(k−1)}. (2.9)

Such recursive n-bit coder h(x) is a tree of thresholded projections (Fig. 2.7),
which hasmuchmore recognition power relative to the n-bit sequence of thresholded
projections.

We know that one coding tree cannot provide the fine recognition rate. Besides, the
number of projections in a tree grows exponentially with tree depth. So, the training
set of some fixed size allows learning the trees with some limited depth only. Due to
this, we form the hashing forest via the boosting of hashing trees with optimization
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Fig. 2.7 The scheme of recursive coding by binary trees

Fig. 2.8 Output binary code
forming via concatenation of
binary codes formed by trees
of hashing forest
(Algorithm 4)

of joint objective function for all trees. We call such approach as Boosted Hashing
Forest (BHF) (Algorithm 4, Fig. 2.8).

Here we use the following notation: nORC = p is a depth of coding tree;
nBHF = n/p is a number of trees; h[1,l] = (h(1)(x),…,h(lp)(x)), h[1,l−1] = (h(1)(x),…,
h(lp−p)(x)), h[l,l] = (h(lp−p+1)(x),…,h(lp)(x)).

2.4.5 BHF: Hashing Forest as a Metric Space

We call the metric space (Y , dY ) with dY : Y×Y →R+ as n-bit binary coded,
if the each y∈Y corresponds to unique b∈{0,1}n , and two decoding functions
are given: feature decoder f y(b): {0,1}n → Y and distance decoder f d (b1,b2):
{0,1}n×{0,1}n → R+, f d (b1,b2) = dY ( f y(b1), f y(b2)). This allows define the
distance-based objective function (DBOF) for coder h(x) of the form

(X, h) → min(h) ⇔ J (DY ) → min(DY ),

DY = {di j = fd(h(xi ), h(x j )), xi , x j ∈ X, h(x) ∈ H}i, j=1,...,N .
(2.10)
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Fig. 2.9 Search index distance as a geodesic distance between codes as corresponding leaves on a
coding tree

Such objective function depends on the set of coded distances di j only. In our
current implementation of BHF we match p-bit binary trees via the search index
distance (Fig. 2.9). It is a geodesic distance between codes as corresponding leaves
on a coding tree

dT (y1, y2) = fdT (b1, b2) = 2
∑

k=1,...,p(1 − ∏
l=1,...,k(1 − |b(l)

1 − b(l)
2 |)).

(2.11)
Finally, we form a matching distance for total n-dimensional forest containing

q = n/p trees as a sum of distances between individual p-bit trees

di j = ∑
l=1,...,q fdT (h[l,l](xi ), h[l,l](x j )). (2.12)

2.4.6 BHF: Objective Function for Face Verification
and Identification

Let the similarity function s describes positive (authentic) and negative (imposter)
pairs

si j =
{
1, if class (xi ) = class

(
x j

)
,

0, otherwise.
(2.13)

The “ideal” distance for k-bit binary code, is

g(k)
i j =

{
0, if si j = 1,

dmax (k) , otherwise,
(2.14)

where dmax (k) is a maximal possible distance. So, the distance supervision objective
function can be formed as

JDist (DY ) = ∑
i=1,...,N

∑
j=1,...,N vi j (di j − gi j )

2 → min(DY = {di j }i, j=1,...,N ),

(2.15)
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where vi j are the different weights for authentic and imposter pairs. This objective
function (2.15) controls the verification performance (FAR and FRR).

In the identification-targeted biometric applications we need to control both dis-
tances and ordering of distances. Let d1

k = maxl{dkl : skl = 1} is a distance to the
most far authentic and d0

k = minl{dkl : skl = 0} is a distance to the closest imposter
for the query h(xk). Then the ordering error ei j for a pair (xi ,x j ) can be expressed as

ei j =
⎧
⎨

⎩

1, if (si j = 0 and hi j < max(d1
i , d

1
j ))

or (si j = 1 and hi j > min(d0
i , d

0
j ))

0, otherwise
(2.16)

The ordering error occurs if imposter is closer than authentic or authentic is more
far than imposter. So, the distance order supervision objective function can be formed
as

JOrd(DY ) = ∑
i=1,...,N

∑
j=1,...,N vi j (di j − gi j )

2ei j → min(DY = {di j }i, j=1,...,N ).

(2.17)
Here we penalize the difference between di j and objective distance gi j like in

(2.15), but only in case that the ordering error (2.16) occurs for this pair. So, criterion
(2.17) directly controls the face identification characteristics (CMC).

Finally, for obtaining both verification and identification we combine the (2.15)
and (2.17) resulting in

(DY ) = αJDist (DY ) + (1 − α)JOrd(DY )

= ∑
i=1,...,N

∑
j=1,...,N vi j (di j − gi j )

2(ei j + α(1 − ei j ))
→ min(DY = {di j }i, j=1,...,N ),

(2.18)

where α ∈ [0,1] is a tuning parameter.

2.4.7 BHF Implementation for Learning Face
Representation

For enhancement of our face representation learning we use some additional semi-
heuristic modifications of described scheme. The goal distance (2.14) is modified

g(k)
i j =

{
0, if si j = 1,

m(k−1)
1 + 3σ (k−1)

1, otherwise,
(2.19)

where m(k−1)
1 and σ(k−1)

1 are the mean value and standard deviation of authentic
coded distances. Such goal distance (2.19) excludes the penalizing of imposter pairs,
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which could not be treated as authentic. In (2.18) we use the adaptive weighting of
pairs at each kth step of boosting

v(k)
i j =

{
γ /a(k), if si j = 1,
1/b(k), otherwise,

(2.20)

a(k) = ∑
i=1,...,N

∑
j=1,...,N si j (di j − gi j )

2(ei j + α(1 − ei j )),
b(k) = ∑

i=1,...,N

∑
j=1,...,N (1 − si j )(di j − gi j )

2(ei j + α(1 − ei j )),
(2.21)

where a(k) and b(k) provide the basic equal weight for all authentic and imposter
pairs, and tuning parameter γ > 1 gives the slightly larger weights to authentic pairs.

We split the inputm-dimensional feature vector to the set of independently coded
subvectors with fixed sizes from the set m = {mmin,…,mmax}. At the each step of
boosting we get the subvector with corresponding BHF elementary coder providing
the best contribution to the objective function. The output binary vector of size n
consists of some independently grown parts of size nBHF<n. Such learning strategy
prevents the premature saturation of objective function.

So, our binary face hashing is implemented with the following set of free para-
meters: m, nORC , nBHF , kRANSAC , α and γ. The type of coded metrics is a free
parameter of our approach too.

2.5 Experiments

In this section, we describe our methodology for learning and testing CNHF, report
our results in Hamming embedding task, compare proposed BHF to original Boosted
SSC, explore the CNHF performancew.r.t. depth of coding trees and compare CNHL
and CNHF to best methods on LFW.We test the verification accuracy by the standard
LFW unrestricted with outside labeled data protocol. Our CMC and rank-1 tests
follow the methodology described in [2].

2.5.1 Methodology: Learning and Testing CNHF

The basic CNN is trained on CASIA-WebFace dataset. Face images are aligned by
rotation of eye points to horizontal position with fixed eye-to-eye distance and crop
to 128 × 128 size. The open source deep learning framework Caffe (http://caffe.
berkeleyvision.org/) is used for training the basic CNN for multi-class face identifi-
cation in the manner [24, 31]. The hashing forest is trained on the dataset containing
1,000 authentic pairs and correspondingly 999,000 imposter pairs of Faces in the
Wild images (not from the testing LFW set). Finally, the family of CNHF coders is
formed by proposed BHF: Hamming embedding coders 2,000 × 1 bit (250 byte),
200× 1 bit (25 byte) and 32× 1 bit (4 byte) of size; Hashing forest coders containing

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
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Fig. 2.10 Example of nBHF parameter selection

2,000 trees with 2–7 bits depth (0.5–1.75Kbyte of size).We used the common setting
of BHF parameters: m = {8, 16, 32}, kRANSAC = 50, α = 0.25, γ = 1.1. But we
set nBHF = 200 for CNN+BHF-200 × 1, nBHF = 500 for CNN+BHF-2,000 × 1
and nBHF = 100 for CNHF-2,000× 7. Such nBHF parameter values are determined
experimentally based on the analysis of the speed of identification rate growing w.r.t.
number of code bits in the hashing process. We determine the minimal number of
generated code bits, which provides the best identification rate on training database
in the hashing process. Figure2.10 demonstrates the example of nBHF parameter
selection. Graphs for identification score w.r.t. number of coding trees are shown
both for training and for testing set. One can see that on the training set the identi-
fication stabilizes approximately at the level of 150 coding trees. Correspondingly
in testing the identification rate for nBHF = 150 (600 coding trees are divided into
four independent coding forests) outperforms the identification rate for nBHF = ∞
(600 coding trees are not divided to independent parts) by ≈2%. The evaluation is
performed on the Labeled Faces in the Wild (LFW) dataset. All the images in LFW
dataset are processed by the same pipeline as in [11] and normalized to 128 × 128.

2.5.2 Hamming Embedding: CNHL Versus CNN, BHF
Versus Boosted SSC

In this subsection, we test our approach in Hamming embedding task, so, CNHF
degrades to CNHL. We compare CNHL to basic CNN on LFW via verification
accuracy and ROC curve (Table2.4 and Fig. 2.11a). The CNN face representation is
formed like in [34] as a vector of activations of 256 top hidden layer neurons. The
cosine similarity (CNN+CS) and L2-distance (CNN+L2) are applied for match-
ing. CNHL coders 2,000 and 200 bit of size are trained by BHF and matched by
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Table 2.4 Verification accuracy on LFW, code size, and matching speed of CNN and CNHL

Solution Accuracy Template size Matches in sec

CNN+L2 0.947 8,192 bit 2,713,222

CNN+BHF-200×1 0.963 200 bit 194,986,071

CNN+CS 0.975 8,192 bit 2,787,632

CNN+BHF-2000×1 0.9814 2,000 bit 27,855,153

Hamming distance (CNN+BHF-2,000 × 1 and CNN+BHF-200 × 1 correspond-
ingly). Our solution CNN+BHF-2,000 × 1 achieves verification accuracy 98.14%
on LFW, which outperforms all other CNN-based solutions. Moreover, our 25-byte
length solution CNN+BHF-200 × 1 outperforms CNN+L2. Table2.4 additionally
demonstrates the gain in template size and matching speed.

We compare CNHL trained by BHF to CNHL trained by original Boosted SSC.
Figure2.11c demonstrates that proposed BHF essentially outperforms Boosted SSC
in identification (rank-1) on LFW for all binary template sizes. The maximal rank-1
is 0.91 for BHF-2,000 × 1 and 0.865 for BoostSSC-2,000 × 1 (relative to 0.899
for CNN+CS). The ROC graph for CNN+BHF is monotonously better than for
CNN+BoostSSC with same template size (Fig. 2.11a). Figure2.11b contains the
CMC graphs (ranks 1–10), which demonstrate that BHF outperforms Boosted SSC
with same template size (additionally note that CNN+BHF-2,000 × 1 outperforms
CNN+CS).

2.5.3 CNHF: Performance w.r.t. Depth of Trees

CNHF with 2,000 output features formed by 7-bit coding trees (CNHF-2,000 × 7)
achieves 98.59% on LFW. The identification result of CNHF-2,000× 7 is 93% rank-
1 on LFW relative to 89.9% rank-1 for CNN+CS. Figure2.11f presents the ROC
curves for CNHF with different depth coding trees. The forest with 7-bit coding
trees is the best by ROC, but 6-bit and 5-bit depth solutions are very close. We
suppose that the reason of this result is a limited amount of hashing forest training
set. Figure2.11d, e demonstrates that CNHF-2,000× 7 outperforms basic CNN+CS
and CNHF-2,000 × 1 both in verification (ROC) and in identification (CMC). So,
we can conclude that the adding of hashing forest on the top of CNN allows both
generating the compact binary face representation and increasing the face verification
and especially identification rates.
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Fig. 2.11 a ROC curves, b CMC curves, c identification performance (rank 1) on LFW relative
to the size of biometric template in bits for proposed BHF(CNN+BHF) and original Boosted
SSC(CNN +BoostSSC) and best basic CNN solution without hashing - CNN + Last hidden layer
+ cosine similarity (CNN+CS), d ROC curves, e CMC curves for CNN+CS, CNHF-2000 × 1,
CNHF-2000 × 7, f ROC curves for CNHF-1000 × p-bit trees
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Table 2.5 Verification accuracy on LFW

Method Accuracy

WebFace [24] 0.9613

CNHL-200×1 0.963 ± 0.00494

DeepFace-ensemble [21] 0.9730 ± 0.0025

DeepID [19] 0.9745 ± 0.0026

MFM Net [25] 0.9777

CNHL-2000×1 0.9814

CNHF-2000×7 0.9859

DeepID2 [17] 0.9915 ± 0.0013

DeepID3 [18] 0.9953 ± 0.0010

Baidu [11] 0.9977 ± 0.0006

2.5.4 CNHL and CNHF Versus Best Methods on LFW

We compare our CNHF solutions to state-of-the-art methods (best on LFW) via
verification accuracy (Table2.5). CNHF-2,000× 1 outperformsDeepFace-ensemble
[30], DeepID [27], WebFace [35] and MFM Net [34]. The DeepID2 [24], DeepID3
[26] and Baidu [14] multi-patch CNNs outperform our CNHF-2,000 × 1 based on
single net.

Note that our CNHF-200 × 1 (25 byte) hash demonstrates 96.3% on LFW. Com-
pare this result to previous best CNHL result [6]. On the one hand, the extreme-short
32-bit binary face representation [6] achieves 91% verification on LFW. Our CNHF
32 × 1 provides 90% only. On the other hand, face representation [6] requires 1000
bit for achieving the 96% verification on LFW. So, our CNHF-200 × 1 solution
improves this face packing result in 5 times.

The identification result (rank-1) of our real-time coder CNHF-2,000 × 7 is
0.93 on LFW. It is close enough to best reported identification result of essentially
deeper and slower multi-patch DeepID3 CNN [25] (0.96 rank-1 on LFW). Baidu
[13] declares even better result (0.98 rank-1 on LFW), but they use the training set
1.2 million images of size w.r.t. 400 thousand images in our case.

2.6 Conclusion and Discussion

We develop the family of CNN-based binary face representations for real-time face
identification. Our Convolutional Network with Hashing Forest (CNHF) generates
binary face templates at the rate of 40+ fpswith CPUCore i7 and 120+ fpswithGPU
GeForce GTX 650. Our 2,000 × 1-bit face coder provides the compact face coding
(250 byte) with simultaneous increasing of verification (98.14%) and identification
(91% rank-1) on LFW. Our 200 × 1-bit face coder provides the 40-time gain in
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template size and 70-time gain in amatching speedwith 1%decreasing of verification
accuracy relative to basic CNN (96.3% on LFW). Our CNHF with 2000 output 7-bit
coding trees (CNHF-2,000 × 7) achieves 98.59% verification accuracy and 93%
rank-1 on LFW (add 3% to rank-1 of basic CNN).

We use the multiple convolution deep network architecture for acceleration of
source Max-Feature-Map (MFM) CNN architecture [31]. We propose and imple-
ment the new binary hashing technique, which forms the output feature space with
given metric properties via joint optimization of face verification and identification.
This Boosted Hashing Forest (BHF) technique combines the algorithmic structure
of Boosted SSC approach and the binary code structure of forest hashing. Our exper-
iments demonstrate that BHF essentially outperforms the original Boosted SSC in
face identification test.

In the future we will try to achieve the better recognition rates via CNHF based on
multi-patch CNN, which we can use for nonreal-time applications. We will evolve
and apply the proposed BHF technique for different data coding and dimension
reduction problems (supervised, semi-supervised and unsupervised). Additionally,
we will investigate the influence of the output metric space properties in the process
of hashing forest learning.

Acknowledgements This work is supported by grant from Russian Science Foundation (Project
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Chapter 3
CMS-RCNN: Contextual Multi-Scale
Region-Based CNN for Unconstrained
Face Detection

Chenchen Zhu, Yutong Zheng, Khoa Luu and Marios Savvides

Abstract Robust face detection in the wild is one of the ultimate components to
support various facial related problems, i.e., unconstrained face recognition, facial
periocular recognition, facial landmarking and pose estimation, facial expression
recognition, 3D facial model construction, etc. Although the face detection problem
has been intensely studied for decades with various commercial applications, it still
meets problems in some real-world scenarios due to numerous challenges, e.g., heavy
facial occlusions, extremely low resolutions, strong illumination, exceptional pose
variations, image or video compression artifacts, etc. In this paper, we present a face
detection approach namedContextualMulti-ScaleRegion-basedConvolutionNeural
Network (CMS-RCNN) to robustly solve the problems mentioned above. Similar
to the region-based CNNs, our proposed network consists of the region proposal
component and the region-of-interest (RoI) detection component. However, far apart
of that network, there are two main contributions in our proposed network that play
a significant role to achieve the state-of-the-art performance in face detection. First,
the multi-scale information is grouped both in region proposal and RoI detection
to deal with tiny face regions. Second, our proposed network allows explicit body
contextual reasoning in the network inspired from the intuition of human vision
system. The proposed approach is benchmarked on two recent challenging face
detection databases, i.e., the WIDER FACE Dataset which contains high degree
of variability, as well as the Face Detection Dataset and Benchmark (FDDB). The
experimental results show that our proposed approach trained on WIDER FACE
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Dataset outperforms strong baselines on WIDER FACE Dataset by a large margin,
and consistently achieves competitive results on FDDB against the recent state-of-
the-art face detection methods.

3.1 Introduction

Detection and analysis on human subjects using facial feature based biometrics for
access control, surveillance systems, and other security applications have gained
popularity over the past few years. Several such biometrics systems are deployed
in security checkpoints across the globe with more being deployed every day. Par-
ticularly, face recognition has been one of the most popular biometrics modalities
attractive to security departments. Indeed, the uniqueness of facial features across
individuals can be captured much more easily than other biometrics. In order to take
into account a face recognition algorithm, however, face detection usually needs to
be done first.

The problem of face detection has been intensely studied for decades with the
aim of ensuring the generalization of robust algorithms to unseen face images [2–
13]. Although the detection accuracy in recent face detection algorithms [14–19]
has been highly improved due to the advancement of deep Convolutional Neural
Networks (CNN), they are still far from achieving the same detection capabilities
as a human due to a number of challenges in practice. For example, off-angle faces,
large occlusions, low-resolutions and strong lighting conditions, as shown in Fig. 3.1,
are always the important factors that need to be considered.

This paper presents an advanced CNN-based approach named Contextual Multi-
Scale Region-based CNN (CMS-RCNN) to handle the problem of face detection
in digital face images collected under numerous challenging conditions, e.g., heavy
facial occlusion, illumination, extremeoff-angle, low resolution, scale difference, etc.
Our designed region-based CNN architecture allows the network to simultaneously
look at multi-scale features, as well as to explicitly look outside facial regions as the
potential body regions. In other words, this process tries to mimic the way of face
detection by human in a sense that when humans are not sure about a face, seeing
the body will increase our confidence. Additionally this architecture also helps to
synchronize both the global semantic features in high-level layers and the localization
features in low-level layers for facial representation. Therefore, it is able to robustly
deal with the challenges in the problem of unconstrained face detection.

Our CMS-RCNN method introduces the Multi-Scale Region Proposal Network
(MS-RPN) to generate a set of region candidates and the Contextual Multi-Scale
Convolution Neural Network (CMS-CNN) to do inference on the region candidates
of facial regions. A confidence score and bounding-box regression are computed for
every candidate. In the end, the face detection system is able to decide the quality of
the detection results by thresholding these generated confidence scores in given face
images. The architecture of our proposed CMS-RCNN network for unconstrained
face detection is illustrated in Fig. 3.2.
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Fig. 3.1 An example of face detection results using our proposed CMS-RCNN method. The pro-
posedmethod can robustly detect faces across occlusion, facial expression, pose, illumination, scale
and low-resolution conditions from WIDER FACE Dataset [1]

Our approach is evaluated on two challenging face detection databases and com-
pared against numerous recent face detection methods. First, the proposed CMS-
RCNN method is compared against four strong baselines [1, 11, 16] on the WIDER
FACEDataset [1], a large-scale face detection benchmark database. This experiment
shows its capability to detect face images in the wild, e.g., under occlusions, illu-
mination, facial poses, low-resolution conditions, etc. Our method outperforms the
baselines by a huge margin in all easy, medium, and hard partitions. It is also bench-
marked on the FaceDetectionData Set andBenchmark (FDDB) [20], a dataset of face
regions designed for studying theproblemof unconstrained facedetection.The exper-
imental results show that the proposed CMS-RCNN approach consistently achieves
highly competitive results against the other state-of-the-art face detection methods.

The rest of this paper is organized as follows. In Sect. 3.2, we summarize prior
work in face detection. Section3.3 reviews a general deep learning framework, the
background as well as the limitations of the Faster R-CNN in the problem of face
detection. In Sect. 3.4, we introduce our proposed CMS-RCNN approach for the
problem of unconstrained face detection. Section3.5 presents the experimental face
detection results and comparisons obtained using our proposed approach on two
challenging face detection databases, i.e., the WIDER FACE Dataset and the FDDB
database. Finally, our conclusions in this work are presented in Sect. 3.6.
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Fig. 3.2 Our proposed Contextual Multi-Scale Region-based CNNmodel. It is based on the VGG-
16 model [21], with five sets of convolution layers in the middle. The upper part is the Multi-Scale
Region Proposal Network (MS-RPN) and the lower part is the Contextual Multi-Scale Convolution
Neural Network (CMS-CNN). In the CMS-CNN, the face features labeled as blue blocks and the
body context features labeled as red blocks are processed in parallel and combined in the end for
final outputs, i.e., confidence score and bounding box

3.2 Related Work

Face detection has been a well-studied area of computer vision. One of the first well-
performing approaches to the problem was the Viola–Jones face detector [2]. It was
capable of performing real-time face detection using a cascade of boosted simple
Haar classifiers. The concepts of boosting and using simple features has been the
basis for many different approaches [3] since the Viola–Jones face detector. These
early detectors tended to work well on frontal face images but not very well on faces
in different poses. As time has passed, many of these methods have been able to
deal with off-angle face detection by utilizing multiple models for the various poses
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of the face. This increases the model size but does afford more practical uses of
the methods. Some approaches have moved away from the idea of simple features
but continued to use the boosted learning framework. Li and Zhang [5] used SURF
cascades for general object detection but also showed good results on face detection.

More recent work on face detection has tended to focus on using different models
such as a Deformable Parts Model (DPM) [4, 22]. Zhu and Ramanan’s work was
an interesting approach to the problem of face detection where they combined the
problems of face detection, pose estimation, and facial landmarking into one frame-
work. By utilizing all three aspects in one framework, they were able to outperform
the state of the art at the time on real-world images. Yu et al. [23] extended this work
by incorporating group sparsity in learning which landmarks are the most salient
for face detection as well as incorporating 3D models of the landmarks in order to
deal with pose. Chen et al. [10] have combined ideas from both of these approaches
by utilizing a cascade detection framework while simultaneously localizing features
on the face for alignment of the detectors. Similarly, Ghiasi and Fowlkes [12] have
been able to use heirarchical DPMs not only to achieve good face detection in the
presence of occlusion but also landmark localization. However, Mathias et al. [9]
were able to show that both DPM models and rigid template detectors similar to the
Viola–Jones detector have a lot of potential that has not been adequately explored. By
retraining these models with appropriately controlled training data, they were able to
create face detectors that perform similarly to other, more complex state-of-the-art
face detectors.

All of these approaches to face detection were based on selecting a feature extrac-
tor beforehand. However, there has been work done in using a ConvNet to learn
which features are used to detect faces. Neural Networks have been around for a
long time but have been experiencing a resurgence in popularity due to hardware
improvements and new techniques resulting in the capability to train these networks
on large amounts of training data. Li et al. [14] utilized a cascade of CNNs to perform
face detection. The cascading networks allowed them to process different scales of
faces at different levels of the cascade while also allowing for false positives from
previous networks to be removed at later layers in a similar approach to other cas-
cade detectors. Yang et al. [16] approached the problem from a different perspective
more similar to a DPM approach. In their method, the face is broken into several
facial parts such as hair, eyes, nose, mouth, and beard. By training a detector on each
part and combining the score maps intelligently, they were able to achieve accurate
face detection even under occlusions. Both of these methods require training several
networks in order to achieve their high accuracy. Our method, on the other hand, can
be trained as a single network, end to end, allowing for less annotation of training
data needed while maintaining highly accurate face detection.

The ideas of using contextual information in object detection have been studied in
several recent work with very high detection accuracy. Divvala et al. [24] reviewed
the role of context in a contemporary, challenging object detection in their empirical
evaluation analysis. In their conclusions, the context information not only reduces the
overall detection errors, but also the remaining errors made by the detector are more
reasonable. Bell et al. [25] introduced an advanced object detector method named
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Inside-Outside Network (ION) to exploit information both inside and outside the
region of interest. In their approach, the contextual information outside the region of
interest is incorporated using spatial recurrent neural networks. Inside the network,
skip pooling is used to extract information atmultiple scales and levels of abstraction.
Recently, Zagoruyko et al. [26] have presented the MultiPath network with three
modifications to the standard Fast R-CNN object detector, i.e., skip connections that
give the detector access to features at multiple network layers, a foveal structure to
exploit object context at multiple object resolutions, and an integral loss function
and corresponding network adjustment that improve localization. The information
in their proposed network can flow along multiple paths. Their MultiPath network is
combined with DeepMask object proposals to solve the object detection problem.

Unlike all the previous approaches that select a feature extractor beforehand and
incorporate a linear classifier with the depth descriptor beside RGB channels, our
method solves the problem under a deep learning framework where the global and
the local context features, i.e., multi scaling, are synchronized to Faster Region-based
Convolutional Neural Networks in order to robustly achieve semantic detection.

3.3 Background in Deep Convolution Nets

The recent studies in deep ConvNets have achieved significant results in object detec-
tion, classification and modeling [27]. In this section, we review various well-known
Deep ConvNets. Then, we show the current limitations of the Faster R-CNN, one of
the state-of-the-art deep ConvNet methods in object detection, in the defined context
of the face detection.

3.3.1 Region-Based Convolution Neural Networks

One of the most important approaches for the object detection task is the family of
Region-based Convolution Neural Networks (R-CNN).

R-CNN [28], the first generation of this family, applies the high-capacity deep
ConvNet to classify given bottom-up region proposals. Due to the lack of labeled
training data, it adopts a strategy of supervised pretraining for an auxiliary task fol-
lowed by domain-specific fine-tuning. Then theConvNet is used as a feature extractor
and the system is further trained for object detection with Support Vector Machines
(SVM). Finally, it performs bounding-box regression. The method achieves high
accuracy but is very time-consuming. The system takes a long time to generate region
proposals, extract features from each image, and store these features in a hard disk,
which also takes up a large amount of space. At testing time, the detection process
takes 47s per image using VGG-16 network [21] implemented in GPU due to the
slowness of feature extraction. In other words, R-CNN is slow because it processes
each object proposal independently without sharing computation.
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Fast R-CNN [29] solves this problem by sharing the features between proposals.
The network is designed to only compute a feature map once per image in a fully
convolutional style, and to use ROI pooling to dynamically sample features from the
feature map for each object proposal. The network also adopts a multitask loss, i.e.,
classification loss andbounding-box regression loss.Basedon the two improvements,
the framework is trained end to end. The processing time for each image significantly
reduced to 0.3 s. Fast R-CNNaccelerates the detection network using theROI pooling
layer. However the region proposal step is designed out of the network hence still
remains a bottleneck, which results in suboptimal solution and dependence on the
external region proposal methods.

Faster R-CNN [30] addresses the problem with fast R-CNN by introducing the
Region Proposal Network (RPN). An RPN is implemented in a fully convolutional
style to predict the object bounding boxes and the objectness scores. In addition,
the anchors are defined with different scales and ratios to achieve the translation
invariance. The RPN shares the full-image convolution features with the detection
network. Therefore the whole system is able to complete both proposal generation
and detection computation within 0.2 s using very deep VGG-16 model [21]. With a
smaller ZF model [31], it can reach the level of real-time processing.

3.3.2 Limitations of Faster R-CNN

TheRegion-based CNN family, e.g., Faster R-CNN and its variants [29], achieves the
state-of-the-art performance results in object detection on the PASCALVOCdataset.
These methods can detect objects such as vehicles, animals, people, chairs, etc., with
very high accuracy. In general, the defined objects often occupy the majority of a
given image. However, when these methods are tested on the challenging Microsoft
COCO dataset [32], the performance drops a lot, since images contain more small,
occluded, and incomplete objects. Similar situations happen in the problem of face
detection.We focus on detecting only facial regions that are sometimes small, heavily
occluded and of low resolution (as shown in Fig. 3.1).

The detection network in designed Faster R-CNN is unable to robustly detect such
tiny faces. The intuition point is that the regions of interest pooling layer, i.e., ROI
pooling layer, builds features only from the last single high-level feature map. For
example, the global stride of the ‘conv5’ layer in the VGG-16model is 16. Therefore,
given a facial region with the sizes less than 16 × 16 pixels in an image, the projected
ROI pooling region for that location will be less than 1 pixel in the ‘conv5’ layer,
even if the proposed region is correct. Thus, the detector will have much difficulty
to predict the object class and the bounding-box location based on information from
only one pixel.
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3.3.3 Other Face Detection Method Limitations

Other challenges in object detection in the wild include occlusion and low resolution.
For face detection, it is very common for people to wear stuffs like sunglasses, scarf
and hats, which occlude the face. In such cases, the methods that only extract features
from faces do not work well. For example, Faceness [16] consider finding faces
through scoring facial parts responses by their spatial structure and arrangement,
which works well on clear faces. But when facial parts are missing due to occlusion
orwhen face itself is too small, facial parts becomemore hard to detect. Therefore, the
body context information plays its role. As an example of context-dependent objects,
faces often come together with human body. Even though the faces are occluded,
we can still locate it only by seeing the whole human body. Similar advantages for
faces at low resolution, i.e., tiny faces. The deep features cannot tell much about tiny
faces since their receptive field is too small to be informative. Introducing context
information can extend the area to extract features and make them meaningful. On
the other hand, the context information also helped with reducing false detection
as discussed previously, since context information tells the difference between real
faces with bodies and face-like patterns without bodies.

3.4 Contextual Multi-Scale R-CNN

Our goal is to detect human faces captured under various challenging conditions such
as strong illumination, heavily occlusion, extreme off-angles, and low resolution.
Under these conditions, the current CNN-based detection systems suffer from two
major problems, i.e., (1) tiny faces are hard to identify; (2) only face region is taken
into consideration for classification. In this section, we show why these problems
hinder the ability of a face detection system. Then, our proposed network is presented
to address these problems by using the Multi-Scale Region Proposal Network (MS-
RPN) and the Contextual Multi-Scale Convolution Neural Network (CMS-CNN), as
illustrated in Fig. 3.2. Similar to Faster R-CNN, the MS-RPN outputs several region
candidates and the CMS-CNN computes the confidence score and bounding box for
each candidate.

3.4.1 Identifying Tiny Faces

Why tiny faces are hard to be robustly detected by the previous region-based CNNs?
The reason is that in these networks both the proposed region and the classifica-
tion score are produced from one single high-level convolution feature map. This
representation does not have enough information for the multiple tasks, i.e., region
proposal and RoI detection. For example, Faster R-CNN generates region candidates
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and does RoI pooling from the ‘conv5’ layer of the VGG-16model, which has a over-
all stride of 16. One issue is that the reception field in this layer is quite large. When
the face size is less than 16-by-16 pixels, the corresponding output in ‘conv5’ layer
is less than 1 pixel, which is insufficient to encode informative features. The other
issue is that as the convolution layers go deeper, each pixel in the feature map gather
more and more information outside the original input region so that it contains lower
proportion of information for the region of interest. These two issues together make
the last convolution layer less representative for tiny faces.

3.4.1.1 Multiple Scale Faster-RCNN

Our solution for this problem is a combination of both global and local features, i.e.,
multiple scales. In this architecture, the feature maps are incorporated from lower
level convolution layers with the last convolution layer for both MS-RPN and CMS-
CNN. Features from lower convolution layer help get more information for the tiny
faces, because stride in lower convolution layer will not be too small. Another benefit
is that both low-level feature with localization capability and high-level feature with
semantic information are fused together [33], since face detection needs to localize
the face as well as to identify the face. In the MS-RPN, the whole lower level feature
maps are down-sampled to the size of high-level feature map and then concatenated
with it to form a unified feature map. Then we reduce the dimension of the unified
feature map and use it to generate region candidates. In the CMS-CNN, the region
proposal is projected into feature maps from multiple convolution layers. And RoI
pooling is performed in each layer, resulting in a fixed-size feature tensor. All feature
tensors are normalized, concatenated and dimension-reduced to a single feature blob,
which is forwarded to two fully connected layers to compute a representation of the
region candidate.

3.4.1.2 L2 Normalization

In both MS-RPN and CMS-CNN, concatenation of feature maps is done with L2
normalization layer [34], shown in Fig. 3.2, since the feature maps from different
layer have generally different properties in terms of numbers of channels, scale of
value and norm of feature map pixels. Generally, comparing with values in shallower
layers, the values in deeper layers are usually too small, which leads to the dominance
of shallower layers. In practice, it is impossible for the system to readjust and tune
value from each layer for best performance. Therefore, L2 normalization layers
before concatenation are crucial for the robustness of the system because it keeps
the value from each layer in roughly the same scale.
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The normalization is performed within each pixel, and all feature map is treated
independently

x̂ = x
‖x‖2

‖x‖2 =
(

d∑
i=1

|xi |
) 1

2

(3.1)

where the x and x̂ stand for the original pixel vector and the normalized pixel vector
respectively. d stands for the number of channels in each feature map tensor.

During training, scaling factors γi will be updated to readjust the scale of the
normalized features. For each channel i , the scaling factor follows:

yi = γi x̂i (3.2)

where yi stand for the rescaled feature value.
Following the backpropagation and chain rule, the update for scaling factor γ is
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where y = [y1, y2, . . . , yd ]T .

3.4.1.3 New Layer in Deep Learning Caffe Framework

The system integrate information from lower layer feature maps, i.e., third and fourth
convolution layers, to extract determinant features for tiny faces. For both parts of
our system, i.e., MS-RPN and CMS-CNN, the L2 normalization layers are inserted
before concatenationof featuremaps from the three layers. The featureswere rescaled
to proper values and concatenated to a single feature map. We set the initial scaling
factor in a special way, following two rules. First, the average scale for each feature
map is roughly identical; second, after the following 1 × 1 convolution, the resulting
tensor should have the same average scale as the conv5 layer in the work of Faster
R-CNN. As implied, after the following 1 × 1 convolution, the tensor should be the
same as the original architecture in Faster R-CNN, in terms of its size, scale of values,
and function for the downstream process.

3.4.2 Integrating Body Context

When humans are searching for faces, they try to look for not only the facial patterns,
e.g., eyes, nose, mouth, but also the human bodies. Sometimes a human body makes
us more convinced about the existence of a face. In addition, sometimes human body
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Fig. 3.3 Examples of body context helping face identification. The first two figures show that
existence of a body can increase the confidence of finding a face. The last two figures show that
what looks like a face turns out to be a mountain on the planet surface when we see more context
information

helps to reject false positives. If we only look at face regions, we may make mistakes
identifying them. For example, Fig. 3.3 shows two cases where body region plays a
significant role for correct detection. This intuition is not only true for human but
also valid in computer vision. Previous research has shown that contextual reasoning
is a critical piece of the object recognition puzzle, and that context not only reduces
the overall detection errors, but, more importantly, the remaining errors made by the
detector are more reasonable [24]. Based on this intuition, our network is designed to
make explicit reference to the human body context information in the RoI detection.

In our proposed network, the contextual body reasoning is implemented by explic-
itly grouping body information from convolution feature maps shown as the red
blocks in Fig. 3.2. Specifically, additional RoI pooling operations are performed
for each region proposal in convolution feature maps to represent the body context
features. Then same as the face feature tensors, these body feature tensors are nor-
malized, concatenated, and dimension-reduced to a single feature blob. After two
fully connected layers the final body representation is concatenated with the face
representation. They together contribute to the computation of confidence score and
bounding-box regression.

With projected region proposal as the face region, the additional RoI pooling
region represents the body region and satisfies a predefined spatial relation with the
face region. In order to model this spatial relation, we make a simple hypothesis that
if there is a face, there must exist a body, and the spatial relation between each face
and body is fixed. This assumption may not be true all the time but should cover
most of the scenarios since most people we see in the real world are either standing
or sitting. Therefore, the spatial relation is roughly fixed between the face and the
vertical body.
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Fig. 3.4 The Vitruvian Man: spatial relation between the face (blue box) and the body (red box)

Mathematically, this spatial relation can be represented by four parameters pre-
sented in Eq.3.4.

tx = (xb − x f )/w f ty = (yb − y f )/h f tw = log(wb/w f )th = log(hb/h f ) (3.4)

where x(∗), y(∗), w(∗), and h(∗) denote the two coordinates of the box center, width,
and height respectively. And b and f stand for body and face respectively. tx , ty , tw,
and th are the parameters. Through out this paper, we fix the for parameters such
that the two projected RoI regions of face and body satisfies a certain spatial ratio
illustrated in the famous drawing in Fig. 3.4.

3.4.3 Information Fusion

It’s worth noticing that in our deep network architecture we have multiple face
feature maps and body context feature maps for each proposed region. A critical
issue is how we effectively fuse these information, i.e., what computation to apply
and in which stage.

In our network, features extracted from different convolution layers need to be
fused together to get a uniform representation. They cannot be naively concatenated
due to the overall differences of the numbers of channels, scales of values, and norms
of featuremap pixels among these layers. The detailed research shows that the deeper
layers often contain smaller values than the shallower layers. Therefore, the larger
values will dominate the smaller ones, making the system rely toomuch on shallower
features rather than a combination of multiple scale features causing the system to no
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longer be robust.We adopt the normalization layer from [34] to address this problem.
The system takes the multiple scale features and apply L2 normalization along the
channel axis of each feature map. Then, since the channel size is different among
layers, the normalized feature map from each layer needed to be reweighted, so that
their values are at the same scale. After that, the feature maps are concatenated to
one single feature map tensor. This modification helps to stabilize the system and
increase the accuracy. Finally, the channel size of the concatenated feature map is
shrunk to fit right in the original architecture for the downstream fully connected
layers.

Another crucial question is whether to fuse the face information and the body
information at a early stage or at the very end of the network. Here we choose the
late fusion strategy in which face features and body context features are extracted
in two parallel pipelines. At the very end of the network two representations for
face and body context are concatenated together to form a long feature vector. Then
this feature vector is forwarded to compute confidence score and bounding-box
regression. The other strategy is the early fusion, inwhich face featuremaps and body
context feature maps get concatenated right after RoI pooling and normalization.
These two strategies combine the information from face and body context, but we
prefer the late fusion. The reason is that we want the network to make decisions in
a more semantic space. We care more about the existence of the face and the body.
The localization information is already encoded in the predefined spatial relation
mentioned in Sect. 3.4.2. Moreover empirical experiments also show that late fusion
strategy works better.

3.4.4 Implementation Details

Our CMS-RCNN is implemented in the Caffe deep learning framework [35]. The
first five sets of convolution layers have the same architecture as the deep VGG-16
model, and during training their parameters are initialized from the pretrained VGG-
16. For simplicity we refer to the last convolution layers in set 3, 4 and 5 as ‘conv3’,
‘conv4’, and ‘conv5’ respectively. All the following layers are connected exclusively
to these three layers. In the MS-RPN, we want ‘conv3’, ‘conv4’, and ‘conv5’ to be
synchronized to the same size so that concatenation can be applied. So ‘conv3’ is
followed by pooling layer to perform down-sampling. Then ‘conv3’, ‘conv4’, and
‘conv5’ are normalized along the channel axis to a learnable reweighting scale and
concatenated together. To ensure training convergence, the initial reweighting scale
needs to be carefully set. Here we set the initial scale of ‘conv3’, ‘conv4’, and ‘conv5’
to be 66.84, 94.52, and 94.52 respectively. In the CMS-CNN, the RoI pooling layer
already ensure that the pooled feature maps have the same size. Again we normalize
the pooled features to make sure the downstream values are at reasonable scales
when training is initialized. Specifically, features pooled from ‘conv3’, ‘conv4’, and
‘conv5’ are initialized with scale to be 57.75, 81.67, and 81.67 respectively, for both
face and body pipelines. TheMS-RPN and the CMS-CNN share the same parameters
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for all convolution layers so that computation can be done once, resulting in higher
efficiency.Additionally, in order to shrink the channel size of the concatenated feature
map, a 1 × 1 convolution layer is then employed. Therefore the channel size of final
featuremap is at the same size as the original fifth convolution layer in Faster R-CNN.

3.5 Experiments

This section presents the face detection benchmarking using our proposed CMS-
RCNN approach on the WIDER FACE dataset [1] and the Face Detection Data Set
and Benchmark (FDDB) [20] database. The WIDER FACE dataset is experimented
with high degree of variability. Using this database, our proposed approach robustly
outperforms strong baseline methods, including Two-stage CNN [1], Multi-scale
Cascade CNN [1], Faceness [16] and Aggregate Channel Features (ACF) [11], by
a large margin. We also show that our model trained on WIDER FACE dataset
generalizes well enough to the FDDB database. The trained model consistently
achieves competitive results against the recent state-of-the-art face detectionmethods
on this database, includingHyperFace [19], DP2MFD [17], CCF [18], Faceness [16],
NPDFace [13], MultiresHPM [12], DDFD [15], CascadeCNN [14], ACF-multiscale
[11], Pico [7], HeadHunter [9], Joint Cascade [10], Boosted Exemplar [8], and PEP-
Adapt [6].

3.5.1 Experiments on WIDER FACE Dataset

Data Description

WIDER FACE is a public face detection benchmark dataset. It contains 393,703
labeled human faces from 32,203 images collected based on 61 event classes from
Internet. The database has many human faces with a high degree of pose variation,
large occlusions, low resolutions, and strong lighting conditions. The images in
this database are organized and split into three subsets, i.e., training, validation and
testing. Each contains 40, 10, and 50% respectively of the original databases. The
images and the ground truth labels of the training and the validation sets are available
online for experiments. However, in the testing set, only the testing images (not the
ground truth labels) are available online. All detection results are sent to the database
server for evaluating and receiving the Precision-Recall curves.

In our experiments, the proposed CMS-RCNN is trained on the training set of
the WIDER FACE dataset containing 159,424 annotated faces collected in 12,880
images. The trained model on this database are used in testing of all databases.
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With Context Versus Without Context

As we show in Sect. 3.4.2 that human vision can benefit from additional context
information for better detection and recognition, we show in this section how does
explicit contextual reasoning in the network help improve the model performance.

To prove this, we test our models with and without body context information
on the validation set of WIDER FACE dataset. The model without body context is
implemented by removing the context pipeline and only use the representation from
face pipeline to compute the confidence score and the bounding-box regression. We
compare their performances as illustrated in Fig. 3.5. The Faster R-CNN method
is setup as a baseline. We also compare our models with different strategies of
information fusion discussed in Sect. 3.4.3, which we call early-fused context and
late-fused context respectively.

Experiment results show that the model with late-fused context has significant
improvement over the one without context, which means that they can handle the
challenging conditions better. Moreover, we observe that early-fused context dose
help detecting more faces because its curve is longer than the one without context.
However, early-fused context gets fired on too many false positives which results
in low AP score and a drop in the beginning of the curve. Figure3.6 illustrates the
false positives compared to late-fused context. This is probably because early-fused
context concatenates all feature maps at a very early stage, resulting in a high-
dimensional feature map. This can cause over-fitting due to the curse of dimension.
Therefore, we fix our model to be late-fused context for other experiments.

To find out the minimum resolution at which our proposed network can detect a
face, we set the threshold such that our detector can reach 90% precision in Fig. 3.5.
Then we collect all the correct faces detected by our method in the WIDER FACE
validation set. It turns out the minimum size of faces we can detect is around 10× 10
pixels.

Fig. 3.5 Precision-Recall
curves on the WIDER FACE
validation set. The baseline
(green curve) is generated by
the Faster R-CNN [30]
model trained on WIDER
FACE training set. We show
that our model without
context (red curve)
outperforms baseline by a
large gap. With late-fused
context, the performance
gets boosted even further
(blue curve). The numbers in
the legend are the average
precision values
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Fig. 3.6 Comparison between early-fused context and late-fused context on some examples in
WIDER FACE validation set. It is clear that early-fused context is easier getting fired on some false
positives, resulting in a lower AP score
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Testing and Comparison

During the testing phase, the face images in the testing set are divided into three
parts based on their detection rates on EdgeBox [36]. In other words, face images
are divided into three levels according to the difficulties of the detection, i.e., Easy,
Medium, andHard [1]. The proposed CMS-RCNNmodel is compared against recent
strong face detection methods, i.e., Two-stage CNN [1], Multi-scale Cascade CNN
[1], Faceness [16], and Aggregate Channel Features (ACF) [11]. All these methods
are trained on the same training set and tested on the same testing set.

The Precision-Recall curves and AP values are shown in Fig. 3.7. Our method
outperforms those strong baselines by a large margin. It achieves the best average
precision in all level faces, i.e., AP=0.902 (Easy), 0.874 (Medium) and 0.643 (Hard),
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Fig. 3.7 Precision-Recall curves obtained by our proposed CMS-RCNN (red) and the other base-
lines, i.e. Two-stage CNN [1], Multi-scale Cascade CNN [1], Faceness [16], and Aggregate Chan-
nel Features (ACF) [11]. All methods trained and tested on the same training and testing set of
the WIDER FACE dataset. a Easy level, b Medium level, and c Hard level. Our method achieves
the state-of-the-art results with the highest AP values of 0.902 (Easy), 0.874 (Medium), and 0.643
(Hard) among the methods on this database. It also outperforms the second best baseline by 26.0%
(Easy), 37.4% (Medium) and 60.8% (Hard)
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Fig. 3.8 Some examples of face detection results using our proposed CMS-RCNN method on
WIDER FACE database [1]

and outperforms the second best baseline by 26.0% (Easy), 37.4% (Medium), and
60.8% (Hard). These results suggest that as the difficulty level goes up, CMS-RCNN
can detect challenging faces better. So it has the ability to handle difficult conditions
hence is more closed to human detection level. Figure3.8 shows some examples of
face detection results using the proposed CMS-RCNN on this database.

Visualization of False Positives

As it is well known that precision-recall curves get dropped due to the false positives,
we are interested in the false positives produced by our CMS-RCNN model. We are
curious about what object can fool our model to treat it as a face. Is it due to over-
fitting, data bias, or miss labeling?

In order to visualize the false positives, we test the CMS-RCNN model on the
WIDER FACE validation set and pick all the false positives according to the ground
truth. Then those positives are sorted by the confidence score in a descending order.
We choose the top 20 false positives as illustrated in Fig. 3.9. Because their confidence
scores are high, they are the objects most likely to cause our model making mistakes.
It turns out that most of the false positives are actually human faces caused by miss
labeling, which is a problem of the dataset itself. For other false positives, we find the
errors made by our model are rather reasonable. They all have the pattern of human
face as well as the shape of human body.

3.5.2 Experiments on FDDB Face Database

To show that our method generalizes well to other database, the proposed CMS-
RCNN is also benchmarked on the FDDB database [20]. It is a standard database
for testing and evaluation of face detection algorithms. It contains annotations for
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Fig. 3.9 Examples of the top 20 false positives from our CMS-RCNNmodel tested on theWIDER
FACE validation set. In fact these false positives include many human faces not in the dataset due
to mislabeling, which means that our method is robust to the noise in the data

5,171 faces in a set of 2,845 images taken from the Faces in the Wild dataset. Most
of the images in the FDDB database contain less than three faces that are clear or
slightly occluded. The faces generally have large sizes and high resolutions compared
to WIDER FACE. We use the same model trained on WIDER FACE training set
presented in Sect. 3.5.1 to perform the evaluation on the FDDB database.

The evaluation is performed based on the discrete criterion following the same
rules in PASCALVOCChallenge [37], i.e., if the ratio of the intersection of a detected
region with an annotated face region is greater than 0.5, it is considered as a true pos-
itive detection. The evaluation is proceeded following the FDDB evaluation protocol
and compared against the published methods provided in the protocol, i.e. Hyper-
Face [19], DP2MFD [17], CCF [18], Faceness [16], NPDFace [13], MultiresHPM
[12], DDFD [15], CascadeCNN [14], ACF-multiscale [11], Pico [7], HeadHunter

Fig. 3.10 ROC curves of our proposed CMS-RCNN and the other published methods on FDDB
database [20]. Our method achieves the best recall rate on this database. Numbers in the legend
show the average precision scores
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Fig. 3.11 Some examples of face detection results using our proposed CMS-RCNN method on
FDDB database [20]

[9], Joint Cascade [10], Boosted Exemplar [8], and PEP-Adapt [6]. The proposed
CMS-RCNN approach outperforms most of the published face detection methods
and achieves a very high recall rate comparing against all other methods (as shown
Fig. 3.10). This is concrete evidence to demonstrate thatCMS-RCNNrobustly detects
unconstrained faces. Figure3.11 shows some examples of the face detection results
using the proposed CMS-RCNN on the FDDB dataset.

3.6 Conclusion and Future Work

This paper has presented our proposed CMS-RCNN approach to robustly detect
human facial regions from images collected under various challenging conditions,
e.g., highly occlusions, low resolutions, facial expressions, illumination variations,
etc. The approach is benchmarked on two challenging face detection databases,
i.e., the WIDER FACE Dataset and the FDDB, and compared against recent other
face detection methods. The experimental results show that our proposed approach
outperforms strong baselines on the WIDER FACE and consistently achieves very
competitive results against state-of-the-art methods on the FDDB.

In our implementation, the proposed CMS-RCNN consists of the MS-RPN and
the CMS-CNN. During training, they are merged together in an approximate joint
training style for each SGD iteration, in which the derivatives w.r.t. the proposal
boxes’ coordinates are ignored. In the future, we want to go to the fully joint training
so that the network can be trained in end-to-end fashion (Fig. 3.12).
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Fig. 3.12 More results of unconstrained face detection under challenging conditions using our
proposed CMS-RCNN
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Part II
Deep Learning for Fingerprint,
Fingervein and Iris Recognition



Chapter 4
Latent Fingerprint Image Segmentation
Using Deep Neural Network

Jude Ezeobiejesi and Bir Bhanu

Abstract We present a deep artificial neural network (DANN) model that learns
latent fingerprint image patches using a stack of restricted Boltzmann machines
(RBMs), and uses it to perform segmentation of latent fingerprint images. Artificial
neural networks (ANN) are biologically inspired architectures that produce hierar-
chies of maps through learned weights or filters. Latent fingerprints are fingerprint
impressions unintentionally left on surfaces at a crime scene. Tomake identifications
or exclusions of suspects, latent fingerprint examiners analyze and compare latent fin-
gerprints to known fingerprints of individuals. Due to the poor quality and often com-
plex image background and overlapping patterns characteristic of latent fingerprint
images, separating the fingerprint region of interest from complex image background
and overlapping patterns is very challenging. Our proposed DANN model based on
RBMs learns fingerprint image patches in two phases. The first phase (unsupervised
pre-training) involves learning an identity mapping of the input image patches. In
the second phase, fine-tuning and gradient updates are performed to minimize the
cost function on the training dataset. The resulting trained model is used to classify
the image patches into fingerprint and non-fingerprint classes. We use the fingerprint
patches to reconstruct the latent fingerprint image and discard the non-fingerprint
patches which contain the structured noise in the original latent fingerprint. The pro-
posed model is evaluated by comparing the results from the state-of-the-art latent
fingerprint segmentation models. The results of our evaluation show the superior
performance of the proposed method.
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4.1 Introduction

Deep learning is a technique for learning features using hierarchical layers of neural
networks. There are usually two phases in deep learning. The first phase commonly
referred to as pre-training involves unsupervised, layer-wise training. The second
phase (fine-tuning) involves supervised training that exploits the results of the first
phase. In deep learning, hierarchical layers of learned abstraction are used to accom-
plish high level tasks [3]. In recent years, deep learning techniques have been applied
to a wide variety of problems in different domains [3]. Some of the notable areas that
have benefited from deep learning include pattern recognition [21], computer vision
[16], natural language processing, and medical image segmentation [17]. In many
of these domains, deep learning algorithms outperformed previous state-of-the-art
algorithms.

Latent fingerprints are fingerprint impressions unintentionally left on surfaces at a
crime scene. Latent examiners analyze and compare latent fingerprints to known fin-
gerprints of individuals tomake identifications or exclusions of suspects [9]. Reliable
latent fingerprint segmentation is an important step in the automation of latent finger-
print processing. Better latent fingerprint matching results can be achieved by having
automatic latent fingerprint segmentation with a high degree of accuracy. In recent
years, the accuracy of latent fingerprint identification by latent fingerprint forensic
examiners has been the subject of increased study, scrutiny, and commentary in the
legal system and the forensic science literature. Errors in latent fingerprint match-
ing can be devastating, resulting in missed opportunities to apprehend criminals or
wrongful convictions of innocent people. Several high-profile cases in the United
States and abroad have shown that forensic examiners can sometimes make mistakes
when analyzing or comparing fingerprints [14] manually. Latent fingerprints have
significantly poor quality ridge structure and large nonlinear distortions compared to
rolled and plain fingerprints. As shown in Fig. 4.1, latent fingerprint images contain
background structured noise such as stains, lines, arcs, and sometimes text. The poor
quality and often complex image background and overlapping patterns characteris-
tic of latent fingerprint images make it very challenging to separate the fingerprint
regions of interest from complex image background and overlapping patterns [29].
To process latent fingerprints, latent experts manually mark the regions of interest
(ROIs) in latent fingerprints and use the ROIs to search large databases of reference
full fingerprints and identify a small number of potential matches for manual exam-
ination. Given the large size of law enforcement databases containing rolled and
plain fingerprints, it is very desirable to perform latent fingerprint processing in a
fully automated way. As a step in this direction, this chapter proposes an efficient
technique for separating latent fingerprints from the complex image background
using deep learning. We learn a set of features using a hierarchy of RBMs. These
features are then passed to a supervised learning algorithm to learn a classifier for
patch classification.We use the result of the classification for latent fingerprint image
segmentation. To the best of our knowledge, no previous work has used this strategy
to segment latent fingerprints.
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Fig. 4.1 Sample latent fingerprints from NIST SD27 showing three different quality levels a good,
b bad, and c ugly

The rest of the chapter is organized as follows: Sect. 4.2.1 reviews recent works in
latent fingerprint segmentation while Sect. 4.2.1.1 describes the contributions of this
chapter. Section4.3 highlights our technical approach and presents an overview of
RBMaswell discussion on learningwithRBMs. The experimental results and perfor-
mance evaluation of our proposed approach are presented in Sect. 4.4. Section4.4.5
highlights the impacts of diffusing the training dataset with fractal dimension and
lacunarity features on the performance of the network while Sect. 4.5 contains the
conclusions and future work.

4.2 Related Work and Contributions

4.2.1 Related Work

Recent studies carried out on latent fingerprint segmentation can be grouped into
three categories:

• Techniques based on classification of image patches
• Techniques based on clustering
• Techniques that rely on ridge frequency and orientation properties

The study presented in [9] falls into the first category. The authors performed image
segmentation by extracting 8× 8 nonoverlapping patches from a latent fingerprint
image and classifying them into fingerprint and non-fingerprint patches using fractal
dimension features computed for each image patch. They assembled the fingerprint
patches to build the fingerprint portion (segmented region of interest) of the original
image.

In the second category of approaches, Arshad et al. [4] used K-means clustering
to divide the latent fingerprint image into nonoverlapping blocks and computed the
standarddeviationof eachblock.They considered ablock as foreground if its standard
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deviation is greater than a predefined threshold otherwise, it was a background block.
They used morphological operations to segment the latent fingerprint.

The approaches that fall into the third category rely on the analysis of the ridge
frequency and orientation properties of the ridge valley patterns to determine the
area within a latent fingerprint image that contains the fingerprint [4, 7, 13, 27, 29].
Choi et al. [7] used orientation tensor approach to extract the symmetric patterns of a
fingerprint and removed the structural noise in background. They used a local Fourier
analysis method to estimate the local frequency in the latent fingerprint image and
located fingerprint regions by considering valid frequency ranges. They obtained can-
didate fingerprint (foreground) regions for each feature (orientation and frequency)
and then localized the latent fingerprint regions using the intersection of those candi-
date regions. Karimi et al. [13] estimated local frequency of the ridge/valley pattern
based on ridge projection with varying orientations. They used the variance of fre-
quency and amplitude of ridge signal as features for the segmentation algorithm.They
reported segmentation results for only two latent fingerprint images and provided no
performance evaluation. Short et al. [27] proposed the ridge template correlation
method for latent fingerprint segmentation. They generated an ideal ridge template
and computed cross-correlation value to define the local fingerprint quality. They
manually selected six different threshold values to assign a quality value to each
fingerprint block. They neither provided the size and number for the ideal ridge tem-
plate nor reported evaluation criteria for the segmentation results. Zhang et al. [29]
proposed an adaptive total variation (TV) model for latent fingerprint segmentation.
They adaptively determined the weight assigned to the fidelity term in the model
based on the background noise level. They used it to remove the background noise
in latent fingerprint images.

Our approach uses a deep architecture that performs learning and classification in
a two-phase approach. The first phase (unsupervised pre-training) involves learning
an identity mapping of the input image patches. In the second phase (fine-tuning), the
model performs gradient updates to minimize the cost function on the dataset. The
trainedmodel is used to classify the image patches and the results of the classification
are used for latent fingerprint image segmentation.

4.2.1.1 Contributions

This chapter makes the following contributions:

• Modification of how the standard RBM learning algorithm is carried out to incor-
porate aweighting scheme that enables theRBM in the first layer tomodel the input
data with near zero reconstruction error. This enabled the higher level weights to
model the higher level data efficiently.

• A cost function based on weighted harmonic mean of missed detection rate and
false detection rate is introduced to make the network learn the minority class
better, and improve per class accuracy. By heavily penalizing the misclassication
of minority (fingerprint) class, the learned model is tuned to achieve close to zero
missed detection rate for the minority class.
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• The proposed generative feature learning model and associated classifier yield
state-of-the-art performance on latent fingerprint image segmentation that is con-
sistent across many latent fingerprint image databases.

4.3 Technical Approach

Our approach involves partitioning a latent fingerprint image into 8× 8 nonoverlap-
ping blocks, and learning a set of stochastic features that model a distribution over
image patches using a generative multilayer feature extractor. We use the features
to train a single-layer perceptron classifier that classifies the patches into fingerprint
and non-fingerprint classes. We use the fingerprint patches to reconstruct the latent
fingerprint image and discard the non-fingerprint patches which contain the struc-
tured noise in the original latent fingerprint. The block diagram of our proposed
approach is shown in Fig. 4.2, and the architecture of the feature learning, extraction,
and classification model is shown in Fig. 4.3.

4.3.1 Restricted Boltzmann Machine

A restricted Boltzmannmachine is a stochastic neural network that consists of visible
layer, hidden layer, and a bias unit [11]. A sample RBM with binary visible and
hidden units is shown in Fig. 4.4. The energy function E f of RBM is linear in its free
parameters and is defined as [11]:

E f (x̂, h) = −
∑

i

bi x̂i −
∑

j

c j h j −
∑

i

∑

j

x̂iwi, j h j , (4.1)

where x̂ and h represent the visible and hidden units, respectively, W represents the
weights connecting x̂ and h, while b and c are biases of the visible and hidden units,
respectively. The probability distributions over visible or hidden vectors are defined
in terms of the energy function [11]:

P(x̂, h) = 1

ω
e−E f (x̂,h), (4.2)

where ω is a partition function that ensures the probability distribution of over all
possible configurations of the hidden or visible vectors sum to 1. Themarginal proba-
bility of a visible vector P(x̂) is the sum over all possible hidden layer configurations
[11] and is defined as:

P(x̂) = 1

ω

∑

h

e−E f (x̂,h) (4.3)
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Fig. 4.2 Proposed approach

RBM has no intra-layer connections and given the visible unit activations, the
hidden unit activations are mutually independent. Also the visible unit activations
are mutually independent given the hidden unit activations [6]. The conditional prob-
ability of a configuration of the visible units is given by

P(x̂ |h) =
n∏

i=1

P(x̂i |h), (4.4)

where n is the number of visible units. The conditional probability of a configuration
of hidden units given visible units is



4 Latent Fingerprint Image Segmentation … 89

Fig. 4.3 Feature learning, extraction, and classification using a multilayer neural network. The
pre-training phase uses the input layer (visible units), and three hidden layers of RBM (L1, L2, L3).
The fine-tuning phase uses an RBM layer (L4) and a single-layer perceptron (L5). The output layer
has two output neurons (fingerprint and non-fingerprint). All the units are binary. hi, j is the jth node
in Li , wi, j is the weight connecting the ith node in layer Li to the jth node in layer Li−1. We set
n = 81 (64 from 8× 8 and 17 from diffusion), k = 800, d = 1000, e = 1200, g = 1200, t = 1200,
where n, k, d, e, g, t are the number of nodes in the input layer, L1, L2, L3, L4, L5, respectively

Fig. 4.4 Graphical depiction of RBM with binary visible and hidden units. xi , i = 1, . . . , 4, are
the visible units while hk , k = 1, . . . , 3, are the hidden units. bxi , i = 1, . . . , 4, are the biases for
the visible units and chk , k = 1, . . . , 3, are the biases for the hidden units
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P(h|x̂) =
m∏

j=1

P(h j |x̂), (4.5)

where m is the number of hidden units. The individual activation probabilities are
given by

P(h j = 1|x̂) = σ

(
b j +

n∑

i=1

wi, j x̂i

)
(4.6)

and

P(x̂i = 1|h) = σ

⎛

⎝ci +
m∑

j=1

wi, j h j

⎞

⎠ , (4.7)

where ci is the ith hidden unit bias, b j is the jth visible unit bias, wi, j is the weight
connecting the ith visible unit and jth hidden unit, and σ is the logistic sigmoid.

4.3.2 Learning with RBM

Learningwith RBM involves several steps of sampling hidden variables given visible
variables, sampling visible variables given hidden variables, and minimizing recon-
struction error by adjusting the weights between the hidden unit and visible layers.
The goal of learning with RBM is to identify the relationship between the hidden
and visible variables using a process akin to identity mapping. We performed the
sampling step usingGibbs sampling technique enhancedwith contrastive divergence.

4.3.2.1 Gibbs Sampling

A sampling algorithm based onMonte CarloMarkovChain (MCMC) technique used
in estimating desired expectations in learning models. It allows for the computation
of statistics of a posterior distribution of given simulated samples from that distribu-
tion [28]. AGibbs sampling of the joint ofR random variables R = (R1, R2, . . . , Rn)

involves a sequence of R sampling sub-steps of the form Ri ∼ p(Ri |R−i ) where Ri

contains the n-1 other random variables in R excluding Ri . For RBMs, R = Q1 ∪ Q1

where Q1 = {x̂i } and Q2 = {hi }. Given that the sets Q1 and Q2 are conditionally
independent, the visible units can be sampled simultaneously given fixed values of
the hidden units using block Gibbs sampling. Similarly, the hidden units can be sam-
pled simultaneously given the visible units. The following is a step in the Markov
chain:
h(k+1) ∼ σ(WTv(k) + c)
x̂ (k+1) ∼ σ(Wh(k+1) + b),



4 Latent Fingerprint Image Segmentation … 91

where h(k) refers to the set of all hidden units at the kth step of the Markov chain and
σ denotes logistic sigmoid defined as

o(x) = 1

1 + e−Wvz(x)−b
(4.8)

with z(x) = 1

1 + e−Whx−c
, (4.9)

where Wh and c are the weight matrix and bias for the hidden layers excluding the
first layer, and z(x) is the activation of the hidden layer in the network.Wv is a weight
matrix connecting the visible layer to the first hidden layer, and b is a bias for the
visible layer.

4.3.2.2 Contrastive Divergence (CD-k)

This algorithm is used inside gradient descent procedure to speed upGibbs sampling.
It helps in optimizing the weight W during RBM training. CD-k speeds up Gibbs
sampling by taking sample after only k-steps of Gibbs sampling, without waiting for
the convergence of the Markov chain. In our experiments we set k=1.

4.3.2.3 Stochastic Gradient Descent

With large datasets, computing the cost and gradient for the entire training set is
usually very slow and may be intractable [24]. This problem is solved by Stochastic
Gradient Descent (SGD) by following the negative gradient of the objective function
after seeing a few training examples. SGD is used in neural networks to mitigate the
high cost of running backpropagation over the entire training set [24].

Given an objective function J (φ), the standard gradient descent algorithm updates
the parameters φ as follows:

φ = φ − α∇φE[J (φ], (4.10)

where the expectation E[J (φ] is obtained through an expensive process of evaluating
the cost and gradient over the entire training set. With SGD, the gradient of the
parameters are computed using a few training examples with no expectation to worry
about. The parameters are update as,

φ = φ − α∇φ J (φ; x (i), y(i)) (4.11)

where the pair (x (i), y(i)) are from the training set. Each parameter update is computed
using a few training examples. This reduces the variance in the parameter update with
the potential of leading to more stable convergence. Prior to each training epoch, we



92 J. Ezeobiejesi and B. Bhanu

randomly shuffled the training data to avoid biasing the gradient. Presenting the
training data to the network in a nonrandom order could bias the gradient and lead
to poor convergence.

One of the issues with learning with stochastic gradient descent is the tendency
of the gradients to decrease as they are backpropagated through multiple layer of
nonlinearity. We worked around this problem by using different learning rates for
each layer in the proposed network.

4.3.2.4 Cost Function

Our goal is to classify all fingerprint patches (minority class) correctly to meet our
segmentation objective of extracting the region of interest (fingerprint part) from
the latent fingerprint image. We introduced a cost function based on the weighted
harmonic mean of missed detection rate and false detection rate. We adopted a
weight assignment scheme that was skewed in favor of the minority class to make the
neural network learn the minority class better. Given a set of weights w1,w2, . . . ,wn

associated with a dataset x1, x2, . . . , xn , the weighted harmonic mean H is defined
as

H =
∑n

i=1 wi∑n
i=1

wi
xi

=
(∑n

i=1 wi x
−1
i∑n

i=1 wi

)−1

. (4.12)

By penalizing the misclassification of minority class more, the model learned to
detect minority class with a high degree of accuracy. The cost function is defined as:

C = 2
1

τMDR + 1
τ FDR

, (4.13)

where τMDR and τ FDR are the weighted missed detection rate and weighted
false detection rate, respectively. They are computed as: τMDR = τ1 ∗ MDR and
τ FDR = τ2 ∗ FDR, where τ1 = Ps+Ns

Ps
and τ2 = Ps+Ns

Ns
are the weights assigned to

positive class samples Ps and negative class samples Ns , respectively.
Table4.1 shows a comparison of the error cost during the fine-tuning phase of our

model with cross entropy cost function, and the proposed cost function.

4.3.3 Choice of Hyperparameters

We selected the value of the hyperparameters used in the proposed network based
on the performance of the network on the validation set. The parameters and their
values are shown in Table4.2.
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Table 4.1 Comparison of model performance using regular cost function (cross entropy) and
proposed cost function. The mean, maximum, and minimum error costs are better (smaller is better)
with the proposed cost function. With the proposed cost function, the model is tuned to achieve a
low missed detection rate

Cost function Min. error cost Max. error cost Mean error cost

Cross entropy 3.53E-03 1.041E+00 6.29E-02

Proposed 6.00E-04 1.10E-02 2.03E-03

Table 4.2 Parameters and values

Parameter L0 L1 L2 L3 L4 L5 L6

Number of neurons 81 800 1000 1200 1200 1200 2

Batch size – 100 100 100 100 100 –

Epochs – 50 50 50 50 – –

Learning rate – 1e-3 5e-4 5e-4 5e-4 – –

Momentum – 0.70 0.70 0.70 0.70 –

Number of iterations – – – – – 50 –

4.3.3.1 Unsupervised Pre-training

We adopt unsupervised layer-wise pre-training because of its power in capturing
the dominant and statistically reliable features present in the dataset. The output of
each layer is a representation of the input data embodying those features. According
to [8], greedy layer-wise unsupervised pre-training overcomes the challenges of
deep learning by introducing a useful prior to the supervised fine-tuning training
procedure. After pre-training a layer, its input sample is reconstructed and the mean
square reconstruction error is computed. The reconstruction step entails guessing
the probability distribution of the original input sample in a process referred to as
generative learning. Unsupervised pre-training promotes input transformations that
capture the main variations in the dataset distribution [8]. Since there is a possibility
that only a small subset of these variations may be relevant for predicting the class
label of a sample, using a small number of nodes in the hidden layers will make
it less likely for the transformations necessary for predicting the class label to be
included in the set of transformations learned by unsupervised pre-training. This
idea is reflected in our choice of the number of nodes in the pre-training layers. We
ran several experiments to determine the optimal nodes in each of the three pre-
training layers. As shown in Table4.2, the number of nodes in the pre-training layers
L1, L2, and L3 are 800, 1000, and 1200, respectively.
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4.3.3.2 Supervised Fine-Tuning

Supervised fine-tuning is the process of backpropagating the gradient of a classi-
fier’s cost through the feature extraction layers. Supervised fine-tuning boosts the
performance of neural networks with unsupervised pre-training [19]. In our model,
supervised fine-tuning is done with a layer of RBM and a single-layer perceptron
depicted as L4 and L5, respectively in Fig. 4.3. During the fine-tuning phase, we
initialized L4, with the pre-trained weights of the top-most pre-training layer L3.

4.4 Experiments and Results

We implemented our algorithms in MATLAB R2014a running on Intel Core i7 CPU
with 8GB RAM and 750GB hard drive. Our implementation relied on NNBox, a
MATLAB toolbox for neural networks. The implementation uses backpropagation,
contrastive divergence, Gibbs sampling, and hidden units sparsity based optimization
techniques.

4.4.1 Latent Fingerprint Databases

We tested our model on the following databases:
• NIST SD27: This database was acquired from the National Institute of Standards
and Technology. It contains images of 258 latent crime scene fingerprints and their
matching rolled tenprints. The images in the database are classified as good, bad,
or ugly based on the quality of the image. The latent prints and rolled prints are
at 500 ppi.
• WVU Database: This database is jointly owned by West Virginia University and
the FBI. It has 449 latent fingerprint images and matching 449 rolled fingerprints.
All images in this database are at 1000 ppi.
• IIITD Database:The IIITDwas obtained from the ImageAnalysis andBiometrics
lab at the Indraprastha Institute of Information Technology, Delhi, India [25]. There
are 150 latent fingerprints and 1,046 exemplar fingerprints. Some of the fingerprint
images are at 500 ppi while others are at 1000 ppi.

4.4.2 Performance Evaluation and Metrics

We used the following metrics to evaluate the performance of our network.

• Missed Detection Rate (MDR): This is the percentage of fingerprint patches
classified as non-fingerprint patches and is defined as.
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MDR = FN

T P + FN
(4.14)

where FN is the number of false negatives and TP is the number of true positives.
• False Detection Rate (FDR): This is the percentage of non-fingerprint patches
classified as fingerprint patches.It is defined as

FDR = FP

T N + FP
(4.15)

where FP is the number of false positives and TN is the number of true negatives.
• Segmentation Accuracy (SA): It gives a good indication of the segmentation
reliability of the model.

SA = T P + T N

T P + FN + T N + FP
(4.16)

4.4.3 Stability of the Architecture

To investigate the stability of the proposed architecture, we performed five runs
of training the network using 50,000 training samples. All the model parameters
(number of epochs, number of iterations etc.) shown inTable4.2 remained unchanged
across the runs. The mean square reconstruction error (msre), mean error cost, and
standard deviation for the five runs are shown in Table4.3. Plots of the reconstruction
errors against number of training epochs as well as that of error cost against number
or iterations during each run are shown in Fig. 4.5. These results show that our
model is stable.

Table 4.3 Network Stability: The msre, error cost, MDR, FDR, and training accuracy for the five
different runs are close. The mean and standard deviation indicate stability across the five runs

Run # MSRE Error cost MDR FDR Training accuracy

1 0.0179 5.469e-04 2.010e-04 0.00 4.00e-05

2 0.0183 5.406e-04 3.020e-04 0.00 6.00e-05

3 0.0178 5.560e-04 1.010e-04 0.00 2.00e-05

4 0.0179 5.438e-04 2.020e-04 0.00 5.00e-05

5 0.0178 6.045e-04 1.010e-04 0.00 2.00e-05

Mean 0.0179 5.584e-04 1.814e-04 0.00 3.800e-05

Standard deviation 0.0002 2.643e-05 8.409e-05 0.00 1.789e-05
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Fig. 4.5 Network Stability: a shows that the mean square reconstruction error (msre) followed
the same trajectory during the five different runs, converging close to 0.02% msre. Similarly,
b shows that the error cost during the fine-tuning phase followed the same trajectory for the five
runs, converging to about 5.5E-04 error cost. The results are indicative of the stability of the network

4.4.4 Segmentation Using the Trained Network

To segment a latent fingerprint image using the trained network we proceed as
follows:

• Split the image into 8× 8 nonoverlapping patches and augment each patch data
with its fractal dimension and lacunarity features to create a segmentation dataset.

• Normalize the segmentation dataset to have 0 mean and unit standard deviation.
• Load the trained network and compute activation value for each neuron:
a = ∑

Wx
• Feed the activation value to the activation function to normalize it.
• Apply the following thresholding function to obtain the classification results:

θ(x) =
{
1 : z > T
0 : z ≤ T

(4.17)

where z is the decision value, x is an example from the segmentation dataset, T is
a threshold that gave the best segmentation accuracy on a validation set and was
obtained using fivefold cross validation described in Algorithm 1.

4.4.4.1 Searching for Threshold T

We implemented a hook into the logic of output neurons to access the real-valued
output of the activation function. To obtain the percentage of the activation function
output for a given neuron, we divided its activation function value by the sum of all
activation function values. For each label y ∈ 1, 2, we ordered the validation exam-
ples according to their decision values (percentages) and for each pair of adjacent
decision values, we checked the segmentation accuracy using their average as T. The
algorithm used was inspired by [10], and is shown as Algorithm 1.
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Algorithm 1 Searching for threshold T
1: procedure Threshold(X, Y ) � X is the patch dataset, Y is a set of corresponding labels
2: num_class ← Unique(Y ) � Get unique labels from Y
3: for cs = 1, . . . , num_class do � Iterate over the number of classes
4: (a) f olds ← Spli t (X, 5) � Split the validation set into five folds
5: for f = 1, . . . , f olds do � Iterate over the folds

6: (i) Run Compute(.) on four folds of validation set � Run four folds through the
trained network

7: (ii)T f
c ← Best () � Set T f

c to the decision value that achieved the best MDR
8: (b) Run Compute(.) on X � Run the validation set through the trained network

9: Tc ← 1
5

∑ f olds
k=1 T k

c � Set the threshold to the average of the five thresholds from cross
validation

10: return T � Return the threshold

4.4.5 Dataset Diffusion and Impact on Model Performance

Given a dataset X = {x1, x2, . . . , xk}, we define the diffusion of X as X̂ =
{x1, x2, . . . , xm}, where m > k and each xi , k < i < m is an element from Rn . In
other words, X̂ is obtained by expanding X with new elements from Rn . A similar
idea based on the principle of information diffusion has been used by researchers
in situations, where the neural network failed to converge despite adjustments of
weights and thresholds [12, 22]. We used features based on fractal dimension and
lacunarity to diffuse X. These features help to characterize complex texture in latent
fingerprint images [9].

4.4.5.1 Fractal Dimension

Fractal dimension is an index used to characterize texture patterns by quantifying
their complexity as a ratio of the change in detail to the change in the scale used.
It was defined by Mandelbrot [23] and was first used in texture analysis by Keller
et al. [15]. Fractal dimension offers a quantitative way to describe and characterize
the complexity of image texture composition [18].

We compute the fractal dimension of an image patch P using a variant of differ-
ential box counting (DBC) algorithm [2, 26]. We consider P as a 3-D spatial surface
with (x,y) axis as the spatial coordinates and z axis for the gray level of the pixels.
Using the same strategy as in DBC, we partition the N × N matrix representing P
into nonoverlapping d × d blocks where d ∈ [1, N ]. Each block has a column of
boxes of size d × d × h, where h is the height defined by the relationship h = T d

N ,
where T is the total gray levels in P, and d is an integer. Let Tmin and Tmax be the
minimum and maximum gray levels in grid (i, j), respectively. The number of boxes
covering block (i, j) is given by:



98 J. Ezeobiejesi and B. Bhanu

nd(i, j) = f loor [Tmax − Tmin

r
] + 1, (4.18)

where r = 2, . . . , N − 1, is the scaling factor and for each block r = d. The number
of boxes covering all d × d blocks is:

Nd =
∑

i, j

nd(i, j) (4.19)

We compute the values Nd for all d ∈ [1, N ]. The fractal dimension of each pixel
in P is by given by the slope of a plot of the logarithm of the minimum box number
as a function of the logarithm of the box size. We obtain a fractal dimension image
patch P ′ represented by an M × N matrix whose entry (i, j) is the fractal dimension
FDi j of the pixel at (i, j) in P.

FDP =
MN∑

i=1, j=1

FDi j (4.20)

� Fractal Dimension Features: We implemented a variant of theDBC algorithm
[2, 26], to compute the following statistical features from the fractal dimension
image P ′.

• Average Fractal Dimension:

FDavg = 1

MN

MN∑

i=1, j=1

FDi j (4.21)

• Standard Deviation of Fractal Dimension: The standard deviation of the gray
levels in an image provides a degree of image dispersion and offers a quantitative
description of variation in the intensity of the image plane. Therefore

FDstd = 1

MN

MN∑

i=1, j=1

(FDi j − FDavg)
2, (4.22)

• Fractal Dimension Spatial Frequency: This refers to the frequency of change
per unit distance across fractal dimension (FD) processed image. We compute it
using the formula for (spatial domain) spatial frequency [20]. Given an N × N FD
processed image patch P ′, let G(x,y) be the FD value of the pixel at location (x,y) in
P ′. The row frequency R f and column frequency C f are given by

R f =
√√√√ 1

MN

M−1∑

x=0

N−1∑

y=1

[G(x, y) − G(x, y − 1)]2 (4.23)
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C f =
√√√√ 1

MN

M−1∑

y=0

N−1∑

x=1

[G(x, y) − G(x − 1, y)]2 (4.24)

The FD spatial frequency FDs f of P ′ is defined as

FDs f =
√
R2

f + C2
f (4.25)

From signal processing perspective, Eqs. (4.23) and (4.24) favor high frequencies
and yield values indicative of patches with fingerprint.

4.4.5.2 Lacunarity

Lacunarity is a second-order statistic that provides a measure of how patterns fill
space. Patterns that have more or larger gaps have higher lacunarity. It also quantifies
rotational invariance and heterogeneity. A spatial pattern that has a high lacunarity
has a high variability of gaps in the pattern, and indicates a more heterogeneous
texture [5]. Lacunarity (FDlac) is defined in terms of the ratio of variance over mean
value [2].

FDlac =
1

MN (
∑M−1

i=1

∑N−1
j=1 P(i, j)2)

{ 1
MN

∑M−1
i=1

∑N−1
j=1 P(i, j)}2 − 1, (4.26)

where M and N are the sizes of the fractal dimension image patch P.

4.4.5.3 Diffusing the Dataset

We followed standard engineering practice to select the architecture of our model.
To improve the performance of the model, we tried various data augmentation tech-
niques such as label preserving transformation and increasing/decreasing the number
minority/majority samples to balance the dataset. We also tried other learning tech-
niques such as one class learning. None of those techniques yielded the desired
segmentation results.

Due to discriminative capabilities of fractal dimension and lacunarity features,
we used them to diffuse the patch dataset. From experiments, we observed that by
diffusing the dataset with these features before normalizing the data yielded a trained
model that has better generalization on unseen examples. A comparison of the results
obtained with and without dataset diffusion is shown in Fig. 4.6. As can be seen from
Table4.4, when the training dataset was augmented with FD features, there was a
huge drop in both error cost during fine-tuning and the classification error during
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Fig. 4.6 Impact of Data Diffusion on Model Performance. a shows that during the pre-training
phase, the network achieves lower mean square reconstruction error (msre) when the dataset is
diffused with fractal dimension features. Also, as can be seen from b, diffusing the dataset leads to
faster convergence and lower error cost during the fine-tuning phase

Table 4.4 Data diffusion and network performance

MSRE Error cost Classification error (Training) (%)

Without diffusion 0.0179 7.97e-01 18.51

With diffusion 0.0178 6.0456e-04 0.006

training. It is interesting to note that the reconstruction error almost remained the
same in both cases.

4.4.6 Classification and Segmentation Results

4.4.6.1 Training, Validation, and Testing

We studied the performance of our model when trained on one latent fingerprint
database and tested on another using 3 sets of 20,000 patches, 40% drawn from
good, 30% from bad, and 30% from ugly images from NIST, WVU, and IIITD
databases. In each of the three experiments, 10,000 patches from a set were used
for training, 4,000 for validation, and 6,000 for testing. The results are shown in
Table4.5.

The final training, validation and testing of the model was done with 233,200
patches from the NIST SD27 database with 40% from good, 30% from bad, and
30% from ugly NIST image categories. 132,000 examples were used for training,
48,000 for validation, and 53,200 for testing. Table4.6 shows the confusion matrix
for NIST SD 27 and Table4.7 shows the TP, TN, FP, and FN, MDR, FDR and
classification accuracy on the training, validation, and testing datasets. There was no



4 Latent Fingerprint Image Segmentation … 101

Table 4.5 Model performance when trained and tested on different latent fingerprint databases.
The numbers in bracket delimited with colon are the training, validation, and testing datasets,
respectively. The three datasets are independent. The training and validation datasets shown in
column 1 of the last row were obtained exclusively from NIST SD27 database. The testing sets
are independent of the training set and were obtained from the target testing database in column
5. MDRV and FDRV are the validation MDR and FDR, respectively. Similarly, MDRT and
FDRT are the testing MDR and FDR, respectively. As shown in the last row, there was a marked
improvement in the model performance when more training data was used. When we tried more
than 132,000 patches for training, there was no appreciable performance gain despite more training
time required to achieve convergence
Train on Validate on MDRV

(%)
FDRV

(%)
Test on MDRT

(%)
FDRT

(%)

NIST SD27 (10,000 : 4,000 : 6,000) NIST SD27 2.95 1.92 NIST SD27 3.04 1.98

WVU 3.75 2.25

IIITD 3.63 2.19

WVU (10,000 : 4,000 : 6,000) WVU 3.12 2.54 NIST SD27 3.61 3.01

WVU 3.22 2.87

IIITD 3.90 3.05

IIITD (10,000 : 4,000 : 6,000) IIITD 3.32 2.66 NIST SD27 3.49 3.19

WVU 3.86 3.16

IIITD 3.28 2.80

NIST SD27 (132,000 : 48,000 : 53,200) NIST SD27 1.25 0 NIST SD27 1.25 0

WVU 1.64 0.60

IIITD 1.35 0.54

Table 4.6 NIST SD27—Confusion matrix for training, validation, and testing

Predicted patch class (Training)

Fingerprint Non-Fingerprint

Actual patch class Fingerprint 23,667 9

Non-Fingerprint 0 108,324

Predicted patch class (Validation)

Fingerprint Non-Fingerprint

Actual patch class Fingerprint 12,946 154

Non-Fingerprint 0 34,900

Predicted patch class (Testing)

Fingerprint Non-Fingerprint

Actual patch class Fingerprint 15,291 193

Non-Fingerprint 0 37,716
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Table 4.7 NIST SD27—Training, Validation and Testing Accuracy: Training: 132,000
8× 8 patches; Validation: 48,000 8× 8 patches; Testing: 53,200 8× 8 patches. MDR =

FN
T P+FN ; FDR = FP

T N+FP

TP TN FP FN MDR
(%)

FDR (%) Classification
accuracy (%)

Training 23,667 108,324 0 9 0.04 0 99.96

Validation 12,946 34,900 0 154 1.17 0 98.83

Testing 15,291 37,716 0 193 1.25 0 98.75

noticeable performance gain when the model was trained with more than 132,000
patches.

4.4.6.2 Segmentation Results

Figures4.7, 4.8, and 4.9 show the segmentation results of our proposed method on
sample good, bad, and ugly quality images from theNISTSD27 database. The figures
show the original latent fingerprint images and the segmented fingerprints and non-
fingerprints constructed using patches classified as fingerprints and non-fingerprints.

Fig. 4.7 NIST Good Category Latent fingerprint image and segmentation result without post clas-
sification processing. a and d Original images b and e Fingerprints c and f Non-fingerprints
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Fig. 4.8 NIST Bad Category [1] Latent Fingerprint Image and segmentation result without post
classification processing. g and j Original images; h and k Fingerprints i and l Non-fingerprints

The segmentation results for WVU and IIITD are not shown due to restrictions in
the database release agreement (Fig. 4.10).

4.4.7 Comparison with Current Algorithms

Table4.8 shows the superior performance of our segmentation approach on the good,
bad, anduglyquality latent fingerprints fromNISTSD27compared to the results from
existing algorithms on the same database. It also shows the performance comparison
of our model onWVU and IIITDwith other algorithms that reported results on those
latent fingerprint databases.



104 J. Ezeobiejesi and B. Bhanu

Fig. 4.9 NIST Ugly Category Latent Fingerprint Image and segmentation result without post
classification processing. m and p Original images n and q Fingerprints o and r Non-fingerprints

Fig. 4.10 Segmentation
reliability in different
databases for good quality
images. This shows the
results of training our model
on NIST SD27 and testing
on NIST SD27, WVU, and
IIITD latent databases. The
choice of latent fingerprint
database used during training
has small impact on the
performance of our network.
This assertion is also
supported by the results in
Table4.5
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Table 4.8 Comparison with other algorithms on various datasets

Author Approach Database MDR % FDR % Average

Choi et al. [7] Ridge orientation
and frequency
computation

NIST SD27 14.78 47.99 31.38

WVU LDB 40.88 5.63 23.26

Zhang et al. [29] Adaptive total
variation model

NIST SD27 14.10 26.13 20.12

Arshad et al. [4] K-means
clustering

NIST SD27 4.77 26.06 15.42

Jude and Bhanu [9] Fractal dimension
& Weighted ELM

NIST SD27
(Good, Bad, Ugly)

9.22 18.7 13.96

WVU LDB (Good,
Bad, Ugly)

15.54 9.65 12.60

IIITD LDB (Good) 6.38 10.07 8.23

This chapter Deep learning NIST SD27
(Good, Bad, Ugly)

1.25 0.04 0.65

WVU LDB (Good,
Bad, Ugly)

1.64 0.60 1.12

IIITD (Good) 1.35 0.54 0.95

4.5 Conclusions and Future Work

We proposed a deep architecture based on restricted Boltzmann machine for latent
fingerprint segmentation using image patches and demonstrated its performance on
the segmentation of latent fingerprint images. The model learns a set of stochastic
features that model a distribution over image patches. Using the features extracted
from the image patches, the model classifies the patches into fingerprint and non-
fingerprint classes.We use the fingerprint patches to reconstruct the latent fingerprint
image and discard the non-fingerprint patches which contain the structured noise in
the original latent fingerprint. We demonstrated the performance of our model in the
segmentation of good, bad, and ugly latent fingerprints from the NIST SD27, as well
as WVU and IIITD latent fingerprint databases. We showed that the overall perfor-
mance of our deep model is superior to that obtained with the state-of-the-art latent
fingerprint image segmentation algorithms. Our future work involves developing
algorithms for feature extraction and matching for the segmented latent fingerprints.
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Chapter 5
Finger Vein Identification Using
Convolutional Neural Network
and Supervised Discrete Hashing

Cihui Xie and Ajay Kumar

Abstract Automated personal identification using vascular biometrics, such as from
the finger vein images, is highly desirable as it helps to protect the personal privacy
and anonymity in during the identification process. The Convolutional Neural Net-
work (CNN) has shown remarkable capability for learning biometric features that can
offer robust and accurate matching. We introduce a new approach for the finger vein
authentication using the CNN and supervised discrete hashing. We also systemati-
cally investigate comparative performance using several popular CNN architectures
in other domains, i.e., Light CNN, VGG-16, Siamese and the CNN with Bayesian
inference-based matching. The experimental results are presented using a publicly
available two-session finger vein images database. Most accurate performance is
achieved by incorporating supervised discrete hashing from a CNN trained using the
triplet-based loss function. The proposed approach not only achieves outperforming
results over other considered CNN architecture available in the literature but also
offers significantly reduced template size as compared with those over the other
finger vein images matching methods available in the literature to date.

5.1 Introduction

Automated personal identification using unique physiological characteristics of
humans, like face, fingerprint, or iris, is widely employed for e-security in a range of
applications. In the past decade, there has been significant increase in the detection
of surgically altered fingerprints, fake iris stamps, or the usage of sophisticated face
masks, to thwart integrity of deployed biometrics systems. Vascular biometrics iden-
tification, like using finger vein patterns which are located at about three millimetres
below the skin surface, can help to preserve the integrity of biometrics system as it
is extremely difficult to surgically alter vascular biometrics. Another advantage of
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using finger vein biometrics is related to high degree of personal privacy as finger
vein patterns are hidden underneath the skin surface and extremely difficult to acquire
then covertly.

The possibility of personal identification using vascular patterns imaged using
the light transmitted through hands was indicated in 1992 [6], but was not known
to be demonstrated until 2000 [7]. Such earliest work demonstrated feasibility of
finger vein identification using normalized-cross correlation. Miura et al. [12] later
introduced repeated line tracking approach to improve the performance of finger vein
identification, and they further enhanced the performance with maximum curvature
[13]. Kumar and Zhou [8] introduced first publicly accessible finger vein database
in public domain and comparatively evaluated a range of handcrafted features for
the finger vein identification problem. The method introduced in [8] using Gabor
filter-based enhancement and morphological operations is still regarded the best
performingmethods formatching finger vein images.A range of handcrafted features
[2, 3, 8–13, 21], primarily obtained from the careful evaluation of the registered
images, have been introduced in the literature to investigate finger-vein identification
performance.Multiple features acquired from the two cameras [10] or usingmultiple
feature extractors [22] can be combined to significantly improve performance for
the vascular matching. One of the limitations of finger vein identification methods
introduced in the literature is related to their large template size. Smaller template size
is desirable to reduce storage and/or enhance the matching speed for the mobile and
online applications. There have also been successful attempts to reduce the finger
vein template size, like in [3, 9] or recently in [2] using sparse representation of
enhanced finger vein images using the Gabor filters.

The finger vein matching methods available in the literature to date have judi-
ciously introduced handcrafted features and demonstrated promising performance.
However, the remarkable capabilities of the deep learning algorithms in automatically
learning the most relevant vascular features are yet to be investigated or established.
The objective of this work is to fairly investigate the effectiveness of self-learned fea-
tures using popular convolutional neural network (CNN) architectures and develop
more efficient and effective alternative for the automated finger vein identification.
The experimental results and comparisons detailed in this chapter used light CNN
[20], modified VGG-16 [16], CNN with Bayesian inference, and Siamese network
with triplet loss function. Our reproducible [5] experimental results using publicly
available database indicate that supervised discrete hashing in conjunctionwith CNN
not only achieves outperforming results, but also significantly reduce the finger vein
template size which offers increased matching speed. Table5.1 in the following sum-
marizes promising methods for the finger vein matching that have been introduced in
the literature. This table also presents the template size in respective reference, which
has been estimated from the details provided in respective reference, performance
in terms of EER, and the database used for the performance evaluation. Reference
[4] provides good summary of publicly available finger vein image databases intro-
duced in the literature. The usage of two-session databases, particularly for the less
constrained or contactless imaging setups as in [8], generates high intra-class varia-
tions and is highly desirable to generate fair evaluation of the matching algorithms
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Table 5.1 Comparative summary of handcrafted finger vein features in the literature with this
work

Ref. Feature Database Two
session

Template
size
(bytes)

EER No. of
subjects

No. of
genuine
scores

No. of
impostor
scores

[8] Handcrafted
(Even Gabor)

Public Yes 106384 4.61% 105 1260 263,340

[8] Handcrafted
(Morphological)

Public Yes 6710 4.99% 105 1260 263,340

[12] Handcrafted
(Repeated line
tracking)

Proprietary No 43200* 0.145% 678 678* 458,328*

[13] Handcrafted
(Maximum
curvature)

Proprietary No 43200* 0.0009% 678 678* 458,328*

[3] Handcrafted
(Local binary
pattern)

Public No ≤260* 3.53% 156 624 194,064

[2] Handcrafted
(Sparse
representation
using l1-norm)

Proprietary No 630* Unknown 17 Unknown Unknown

[9] Handcrafted
(Extended local
binary pattern)

Public Yes 131328* 7.22% 105 1260 263,340

[21] Handcrafted
(Unknown
algorithm)

Proprietary Yes 20480* 0.77% Unknown 10,000 499,500

[11] Handcrafted
(Histogram of
salient edge
orientation map)

Public No ≤3496* 0.9% 100 3000 1,797,000

Ours CNN with
triplet similarity
loss

Public Yes 1024 13.16% 105 1260 263,340

Ours Supervised
discrete hashing
with CNN

Public Yes 250 9.77% 105 1260 263,340

*Computed by us from the details available in the respective reference

under more realistic usage/environments. Similarly, the usage of publicly available
database can ensure reproducibility of results. Therefore, our all experiments in this
chapter incorporate two-session and publicly available database from [8]. The last
two rows in this table summarize best performing results from our investigation
detailed in this work [19].

The rest of this chapter is organized as follows. Section5.2 briefly describes on
the preprocessing of the finger vein images and includes relevant steps for the image
normalization, segmentation and enhancement. The CNN architectures, LCNN,
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VGG, LCNN with triplet similarity loss function, and LCNN with joint Bayesian
formulation investigated in this are introduced in Sect. 5.3 while Sect. 5.4 details
the supervised discrete hashing algorithm investigated to enhance performance and
reduce the template size. The experimental results are presented in Sect. 5.4 and
includes discussion on our findings, comparison with earlier methods. Finally, the
key conclusions from this work are summarized in Sect. 5.5.

5.2 Image Normalization for Finger Vein Images

5.2.1 Preprocessing

Acquisition of finger vein images can introduce translational and rotational changes
in different images acquired from the same finger or subject. Therefore, automated
extraction of fixed region of interest (ROI) that can minimize such intra-class varia-
tions is highly desirable. The method of ROI localization considered in this work is
same as detailed in [8] as it works well in most cases. Figure5.1 illustrates samples
of the acquired images using the near infrared camera.

Once the region of interest is localized, we can recover the binary masks corre-
sponding to the ROI which can be used for alignment of finger vein samples, so that
the adverse influence from the rotational changes in fingers can be minimized. The
method for estimating the rotation is same as described in [8]. This estimated angle
is used to align ROI, before the segmentation, in a preferred direction.

5.2.2 Image Enhancement

The finger vein details from the normalized images are subjected to the contrast
enhancement to enhance clarity in vascular patterns which can be more reliable for

Fig. 5.1 Finger vein image samples before preprocessing (first row) and thebinary images generated
during the preprocessing (second row) stage
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the training. Since vascular patterns are generally continuous, if a pixel belongs to the
vascular pattern, there is a high possibility that its surrounding pixels are also part of
the same vascular pattern and have similar gray level. Such observation is the same
for nonvascular parts. Therefore, enhancement by computing the average gray level
surrounding a pixel can help to enlarge the difference between the vascular parts and
nonvascular parts, and makes the finger vein details more obvious as a result. After
such enhancement, the vascular patterns become clearer with details as shown from
sample images in Fig. 5.2.

The vascular patterns in the normalized image samples can be further enhanced
by spatial filtering from orientation selective band pass filters, similar to as used in
the enhancement of fingerprint images. We also attempted to ascertain usefulness
of such enhanced finger vein images using the Gabor filters. These filters from the
twelve different orientations are selected to generate enhanced finger vein images
as shown in Fig. 5.4. Such enhanced images [8] using Gabor filters are effective in
accentuating the vascular features and therefore its possible usage in automatically
vascular features (Fig. 5.3) from CNN was also investigated in the experiments.

The finger vein image-processing operations essentially generates two kinds of
enhanced images, ROI-A and ROI-B shown in Fig. 5.4, that were considered for the
performance evaluation using the CNNs.

Fig. 5.2 Enhanced ROI vein images after rotation

Fig. 5.3 Samples from even Gabor filtered finger vein images

Fig. 5.4 Key steps in the generation of enhanced finger vein images for the CNNs
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5.3 Convolutional Neural Network Architectures

A variety of models for the deep learning have been developed to learn useful feature
representation but largely for the face biometric image patterns. A variety of such
models using CNN have been introduced in the literature and were investigated
to ascertain performance for the finger vein image matching. A brief introduction
to various CNN architectures considered in this work is provided in the following
sections.

5.3.1 Light CNN

The light CNN (LCNN) framework introduces a Max-Feature-Map (MFM) oper-
ation [20] between convolutional layers which establish a competitive relationship
for superior generalization capability and reduce parameter space (compact fea-
ture representation). Suchmaxout activation (Fig. 5.5) function significantly reduces
complexity and makes CNN lighter, where conv stands for convolutional layer.

For a convolutional layer without MFM, suppose that input size is N1 × W1 × H1

and output size is N2 × W2 × H2 then the required complexity using big ‘O’ notation
can be represented as follows:

O (N1N2�) where � = W1 × H1 × W2 × H2 (5.1)

Fig. 5.5 Illustration for computing the Max-Feature Map in LCNN
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Fig. 5.6 The architecture for LCNN investigated in our experiments

For a convolutional layer with MFM, we could slice input into two equal-size parts,

each with N1
2 × W1 × H1. Then for each corresponding element in two sliced parts

we generate an output using maxout activation, which has a size of N1
2 × W1 × H1.

With this smaller or lighter data as the input, complexity of convolutional layer
reduces to

O

(
N1N2�

2

)
where � = W1 × H1 × W2 × H2 (5.2)

Comparing (5.1) and (5.2) we can infer that the usage of MFM can help to signifi-
cantly reduce the complexity or make CNN lighter.

The loss function we used in this structure is softmax loss function. The basic
idea is to combine softmax function with a negative log-likelihood, and the last layer
information is used to estimate the identity of the class.

The architecture ofLCNNemployed inour experiments is shown inFig. 5.6 (MFM
part is excluded tomaintain the clarity). This network contains 9 convolutional layers
(conv), 4 pooling layers (pooling) and 2 fully connected layers (fc) and some assistant
layers which are summarized in Table5.2.

5.3.2 LCNN with Triplet Similarity Loss Function

Deep Siamese networks have been successfully incorporated to learn a similarity
metric between a pair of images. We incorporated similar triplet similarity loss func-
tion as detailed in [14] for LCNN to learn the similarity metric.

We randomly select an image xr from training set as random sample in Fig. 5.7.
Then, we choose image x p which is from the same class referred to as positive sample
and image xn which is from a different class referred to as negative sample. After
LCNN, we get the features f (xr ), f (xn), and f (x p). Our objective is to decrease the
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Table 5.2 Details of layer
information of LCNN

Index Type Filter
size

Num Stride Pad

1 conv1 5 96 1 2

2 MFM1 – 48 – –

3 pooling1 2 – 2 0

4 conv2a 1 96 1 0

5 MFM2a – 48 – –

6 conv2 3 192 1 1

7 MFM2 – 96 – –

8 pooling2 2 – 2 0

9 conv3a 1 192 1 1

10 MFM3a – 96 – –

11 conv3 3 384 1 1

12 MFM3 – 192 – –

13 pooling3 2 – 2 0

14 conv4a 1 384 1 1

15 MFM4a – 192 – –

16 conv4 3 256 1 1

17 MFM4 – 128 – –

18 conv5a 1 256 1 1

19 MFM5a – 128 – –

20 conv5 3 256 1 1

21 MFM5 – 128 – –

22 pooling4 2 – 2 0

23 fc1 – 512 – –

24 MFMfc – 256 – –

25 fc2 – 500 – –

Fig. 5.7 The architecture for LCNN with triplet similarity loss function

similarity distance between random and positive features, and increase it between
random and negative features, which indicates why it is named as triplet similarity
loss. At the same time, we also need to ensure that there is a sufficientmargin between
them.
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Suppose we have a random set Xr = {xri }Ni=1 and its corresponding positive set
X p = {x p

i }Ni=1 and negative set Xn = {xni }Ni=1. Considering these notations, we can
write our loss function as follows:

∑N

i=1
[‖ f

(
xri

) − f
(
x p
i

) ‖2 − ‖ f
(
xri

) − f
(
xni

) ‖2 + margin]+ (5.3)

where [·]+ presents that we maintain positive values and change others to zero. The
architecture of LCNN with such triplet similarity loss function is shown in Fig. 5.7
and detailed in Table5.3. When the set of input consists of n random samples, n
positives and n negatives, we generate 3n × 500 features. These pairs were split into
three parts, each with the size of n× 500, and used as the input for computing triplet
similarity loss for updating the neuron weights during the network training.

5.3.3 Modified VGG-16

The Visual Geometry Group architecture with 16 layers (VGG-16) [16] was modi-
fied for the CNN to directly recover the match scores, instead of the feature vectors,
in our experiment. Our modification was motivated to fit the rectangular finger vein
ROI images without introducing the distortion. We used pair of images rather than
single image as input in conventional VGG-16 since we want to compare the sim-
ilarity between two finger vein images. The input image size is also different from
conventional VGG-16, which is 224× 224, while it’s 128× 488 pixels for our finger
vein ROI images. The training phase utilized the cross-entropy loss function which
can be written as follows:

− 1

n

∑n

i=1

[
yi log

(̂
yl

) + (1 − yi ) log
(
1 − ŷl

)]
(5.4)

where ŷl = g(wT xi )g(·) is the logistic function, xi is the extracted feature and w
is the weight that needs optimized during the training. The architecture of Modified
VGG-16 (MVGG) is shown in Fig. 5.8 and Table5.4.

5.3.4 LCNN with Joint Bayesian Formulation

The principal component analysis (PCA) is a classical method to extract the most
important features and is popular for the dimensionality reduction of the features. In
another set of experiments, we incorporated PCA for the dimensionality reduction
of features extracted from LCNN and then employed joint Bayesian [1] approach as
distance metrics for matching finger vein images.

For any feature f extracted from LCNN, we regard it as combination of two parts
μ and ε where μ is the average feature of the class to which f belongs and ε is
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Table 5.3 Details of layer information of LCNN with triplet similarity loss

Index Type Input
index

Output
index

Filter size Output
size

Stride Pad

1 DataR – 4 – N*W*H – –

2 DataP – 4 – N*W*H – –

3 DataN – 4 – N*W*H – –

4 Data 1,2,3 5 – 3N*W*H – –

5 conv1 4 6 5 3N*96 1 2

6 MFM1 5 7 – 3N*48 – –

7 pooling1 6 8 2 – 2 0

8 conv2a 7 9 1 3N*96 1 0

9 MFM2a 8 10 – 3N*48 – –

10 conv2 9 11 3 3N*192 1 1

11 MFM2 10 12 – 3N*96 – –

12 pooling2 11 13 2 – 2 0

13 conv3a 12 14 1 3N*192 1 1

14 MFM3a 13 15 – 3N*96 – –

15 conv3 14 16 3 3N*384 1 1

16 MFM3 15 17 – 3N*192 – –

17 pooling3 16 18 2 – 2 0

18 conv4a 17 19 1 3N*384 1 1

19 MFM4a 18 20 – 3N*192 – –

20 conv4 19 21 3 3N*256 1 1

21 MFM4 20 22 – 3N*128 – –

22 conv5a 21 23 1 3N*256 1 1

23 MFM5a 22 24 – 3N*128 – –

24 conv5 23 25 3 3N*256 1 1

25 MFM5 24 26 – 3N*128 – –

26 pooling4 25 27 2 – 2 0

27 fc1 26 28 – 3N*512 – –

28 MFMfc 27 29 – 3N*256 – –

29 fc2 28 30,31,32 – 3N*500 – –

30 SliceR 29 33 – N*500 – –

31 SliceP 29 33 – N*500 – –

32 SliceN 29 33 – N*500 – –

33 Loss 30,31,32 – – – – –
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Fig. 5.8 The architecture for Modified VGG-16 for finger vein image matching

Table 5.4 Details of layer
information of Modified
VGG-16

Index Type Filter
size

Num Stride Pad

1 conv1a 3 64 1 1

2 ReLU1a – – – –

3 conv1b 3 64 1 1

4 ReLU1b – – – –

5 conv1c 3 64 1 1

6 ReLU1c – – – –

7 pooling1 2 – 2 0

8 conv2a 3 128 1 1

9 ReLU2a – – – –

10 conv2b 3 128 1 1

11 ReLU2b – – – –

12 conv2c 3 128 1 1

13 ReLU2c – – – –

14 pooling2 2 – 2 0

15 conv3a 3 256 1 1

16 ReLU3a – – – –

17 conv3b 3 256 1 1

18 ReLU3b – – – –

19 conv3c 3 256 1 1

20 ReLU3c – – – –

21 pooling3 2 – 2 0

22 fc1 – 512 – –

23 Dropout – – – –

24 fc2 – 1 – –
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the intra-class variation, and we suppose that μ and ε are two independent variables
with Gaussian distribution N (0, σμ) and N (0, σε).

Let I be the hypothesis that f 1 and f 2 are from the same class, and E mean that

they are from different class. Thus we could write the goal as to enlarge P( f 1 f 2|I )
P( f 1 f 2|E)

where P(·) is the distribution. For simplicity, we use log formulation r( f 1, f 2) =
log P( f 1 f 2|I )

P( f 1 f 2|E)
and the computations are as detailed in [1].

Our objective has been to enlarge r( f 1, f 2) and therefore we compute maximum
of results rather than the minimum while using the L2-norm. The CNN training part
is the same as LCNN. After extraction of features, we retain 80 dimensions instead of
original 500 to accelerate computations and use these features to compute matrices
for the joint Bayesian formulation based classification.

5.4 Supervised Discrete Hashing

One of the key challenges for the successful usage of biometrics technologies are
related to efficient search speed (fast retrieval) and template storage/size. Hashing is
one of the most effective approaches to address such challenges and can efficiently
encode the biometrics templates using binary numbers (2000 in our experiments)
that closely reflect similarity with the input data/templates. With such strategy we
can only store the corresponding short/compact binary codes, instead of original
feature templates, and significantly improve the search or the matching speed by
highly efficient pairwise comparisons using the Hamming distance.

This framework for an effective supervised hashing scheme is introduced in
[15] and the objective in the learning phase is to generate binary codes for the
linear classification. We firstly define the problem and assume that we have n
samples/features X = [x1x2 . . . xn] and our goal is to recover corresponding binary
codes B = [b1b2 . . . bn] where bi ∈ {−1, 1} , i = 1, 2, . . . , n. Since we have labels,
in order to make good use of these information, we define a multi-class classification
function:

ŷ = WTbwhereW = [w1w2 . . .wC ] , (5.5)

where C is the total number of classes, and ŷ ∈ R
C×1 is the label vector, where

the maximum one indicates its class of input x. Now we can formulate the hashing
problem as follows:

min
B,W , F

∑n

i=1
L( yi ,W

Tbi ) + λ‖W‖2, s.t.bi = sgn(F (xi )) (5.6)

where L(·) represents the loss function used by us which is the L2-norm in our
experiments, λ is the regularization parameter, and at the same time, bi is generated
by the hash function sgn(F (xi )) where sgn(·) is the sign function. With the help of
Lagrange Multiplier, we can then rewrite (5.6) as:
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min
B,W , F

∑n

i=1
L( yi ,W

Tbi ) + λ‖W‖2 + μ
∑n

i=1
‖bi − F (xi ) ‖2 (5.7)

where μ is the Lagrange multiplier. We further select a nonlinear form of function
for F (x):

F(x = UTφ(x) (5.8)

where U is the parameter matrix and φ(x) is a k-dimensional kernel that

φ (x) =
⎡
⎣ exp(‖ x−a1‖2

σ
)

. . .

exp(‖ x−ak‖2
σ

)

⎤
⎦ (5.9)

a j , j = 1, 2, . . . , k are randomly selected anchor vectors from input. In order to
compute U in the function, we can rewrite (5.6) as follows:

min
U

∑n

i=1
‖bi − F (xi ) ‖2 = min

U
‖UT�(X) − B‖2 (5.10)

where �(X) = {φ(xi )}ni=1 and our purpose is to set the gradient to zero, which is

∇U
(‖UT�(X) − B‖2) = 2

(
UT�(X) − B

)
�(X)T = 0 (5.11)

It is simpler to achieve the final computation for U as follows:

U = (� (X) � (X)T)−1�(X)BT (5.12)

In order to solve for W, we make use of the same method, first simplify (5.6) to

min
W

∑n

i=1
L( yi ,W

Tbi ) + λ‖W‖2 = min
W

‖Y − WTB‖2 + λ‖W‖2, (5.13)

and then calculate its gradient based on W

∇W(‖Y − WTB‖2 + λ‖W‖2) = 2B
(
BTW − YT

) + 2λW, (5.14)

which can be set as zero and we get

W = (
BBT + λI

)−1
BYT, (5.15)

Finally, we can solve for B and we exclude those variables which have no relation
to B and then rewrite (5.6) as follows.
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min
B

‖Y − WTB‖2 + μ‖B − F (X) ‖2 = min
B

‖Y‖2 − 2tr
(
YTWTB

)

+ ‖WTB‖2 + μ(‖B‖2 + 2tr
(
BTF (X)

) + ‖F (X) ‖2) (5.16)

or we can further simplify the above formulation as follows:

min
B

‖WTB‖2 − 2tr
(
BT(F (X) + WY)

)
(5.17)

‖B‖2 is excluded here because bi ∈ {−1, 1} , i = 1, 2, . . . , n, indicating that ‖B‖2
is some constant.

We can now solve this problem bit-by-bit. Let pT represent the lth row of B, and
B′ is the matrix without pT. Similarly let vT be the lth row ofW and let qT be the lth
row of Q where Q = F (X) + WY then we can ignore W′ and Q′ While moving a
row to the end for all matrices would not cause problems but help to better understand
the problem. In order to enhance clarity of the problem, we can move all the lth row

to the end and rewrite B =
[
B′
pT

]
, and the same for W and Q We can then rewrite

first term in (5.17) as follows.

‖WTB‖2 =
∥∥∥∥[

W′T v
] [

B′
pT

]∥∥∥∥
2

= ‖W′TB′‖2 + ‖vpT‖2 + 2tr
(
B′TW′vpT

)

= ‖W′TB′‖2 + tr
(
vpTpvT

) + 2
(
W′v

)T
B′p (5.18)

While ‖W′TB′‖2 + tr
(
vpTpvT

)
is equal to some constant, and because our goal is

to solve for p we can regard other parts as constant. Here ‖vpT‖2 is ignored because
‖vpT‖2 = ‖pvT‖2 = tr

(
vpTpvT

) = n tr
(
vvT

)
where pTp = n. The other part can be

simplified as follows:

tr
(
BTQ

) = tr
(
B′TQ′ + pqT

) = tr
(
B′TQ′) + tr(pqT

) = tr(B′TQ′) + qT p (5.19)

Combining these terms, we can rewrite (5.17) as follows.

min
B

vTW′TB′p − qTp = min
B

(vTW′TB′ − qT)p (5.20)

This is an optimization problem, and p ∈ {−1, 1}n , therefore we just need to incor-
porate the opposite sign for its first argument.
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p = −sgn
(
vTW′TB′ − qT) = sgn(qT − vTW′TB′) (5.21)

We can now explicitly outline computed parts in the following.

W = (
BBT + λI

)−1
BYT, (5.15)

U = (� (X)� (X)T)−1�(X)BT (5.12)

p = sgn(qT − vTW′TB′) (5.21)

Shen et al. [15] have provided another computation based on the hinge loss. How-
ever for the simplicity, we incorporated L2-norm in our experiments and therefore
this part is excluded here. We now have the required equations here and can summa-
rize this algorithm as follows.

Algorithm: Supervised Discrete Hashing

Input: Training data {X,Y}
Output: Binary codes B

1. Randomly select k anchors a j , j = 1, 2, . . . , k from X and calculate � (X)

2. Randomly initiate B
3. Loop until converge or reach maximum iterations

– CalculateW and U which are described in (5.15) and (5.12)
– Learn B bit by bit, with the help of (5.21)

5.5 Experiments and Results

This section provides details on the experiments performed using various CNN archi-
tectures discussed in previous sections.

5.5.1 Database and Evaluation Protocol

In order to ensure reproducibility of experimental results, we utilized publicly avail-
able two-sessionfinger vein images database from [17]. This database of 6264 images
has been acquired from 156 different subjects and includes finger vein images from
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two fingers for each subject. However, second session images are only from 105
different subjects. This database has high intra-class variations in the images and
includes significant variations in the quality of images which makes it most suitable
for benchmarking the finger vein matching algorithms for the real applications. In
our experiments, we only used first session images to train different network archi-
tectures discussed in previous section, and initially excluded 51 subjects without
second session images. The experimental results are presented using independent
second session test data. Therefore, each of the receiver operating characteristics
uses 1260 (210 × 6) genuine scores and 263340 (210 × 209 × 6) impostor scores.

We experimented on ROI images, enhanced ROI images, and even Gabor- filtered
images separately. The ROI images have 256 × 513 pixels, enhanced ROI images
have 218 × 488 pixels, and even Gabor filtered images have 218 × 488 pixels. The
experimental results using ROC and CMC from the respective CNN architecture are
presented in the following.

5.5.2 Results Using LCNN

We first performed the experiments using the LCNN trained using the ROI images,
enhanced ROI images, and the enhanced images using even Gabor filters (Figs. 5.2,
5.3, and 5.4). The experimental results using respective second session dataset are
shown in Fig. 5.9. The respective ROC andCMC illustrate that enhancedROI images
can achieve superior matching performance than those from using ROI images. The
enhanced ROI images using even Gabor filters significantly helps to suppress the
noisy pixels and accentuate the vascular regions and is the plausible reason for
superior accuracy.

Fig. 5.9 Comparative ROC (left) and CMC (right) performance using LCNN
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Fig. 5.10 ComparativeROC(left) andCMC(right) performanceusingLCNNwith triplet similarity
loss

5.5.3 Results Using LCNN with Triplet Similarity Loss
Function

The experimental results using LCNN trained with Siamese triplet similarity loss
function are presented in Fig. 5.10. These results consistently illustrate superior per-
formance using the architecture than the LCNN. The performance from the ROC of
enhanced ROI with Gabor filters is significantly superior and this observation is in
line with the trend observed from results using LCNN in Fig. 5.9 (the dash lines in
Fig. 5.10 are previous results using LCNN for ease in the comparison). However, this
approach has little influence on CMC.

The LCNN without triplet similarity loss tries to match a sample with its label,
while LCNN with similarity loss focuses on the similarities of the images which
could contribute to the better ROC performance. However, at the same time, label
information is not sufficiently exploited with the triplet similarity loss and therefore
the CMC performance has not changed significantly.

5.5.4 Results Using CNN and Joint Bayesian Formulation

Another scheme that has shown superior performance for ocular classification in
[23] uses joint Bayesian [1] instead of L2-norm as the metrics for the similarity. The
LCNN with the joint Bayesian classification scheme was also attempted to ascertain
the performance. The ROC using this approach is illustrated in Fig. 5.11 where dash
lines are previous results using LCNN and indicates performance improvement over
LCNN.
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Fig. 5.11 Comparative ROC (left) and CMC (right) performance using LCNNwith Joint Bayesian

5.5.5 Comparisons and Results Using Supervised Discrete
Hashing

The supervised discrete hashing (SDH) scheme detailed in Sect. 5.4 was also investi-
gated for the performance improvement. Only first session data was employed for the
training part and the used for generating binarized bits that were used for matching
using Hamming distance. The results using the ROC and CMC in Fig. 5.12 illustrates
consistent performance improvement with the usage of SDH and the trends in the
usage of enhanced ROI images are also consistent with our earlier observations.

The LCNN trained with triplet similarity loss function was also employed and
usedwith the SDH to evaluate the performance.We attempted to ascertain the perfor-
mance with different number of bits. Higher number of bits for SDH can be generally
expected to offer superior results, but requires more training time. It should be noted
that this method is actually a second-step training, and tries to map features from

Fig. 5.12 Comparative ROC (left) and CMC (right) performance using LCNN with SDH
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Fig. 5.13 Comparative ROC (left) and CMC (right) performance using SDHwith triplet similarity
loss function

the Euclidian space to the binary space. The training phase and hamming distance
metrics can contribute to its superior performance. The combination of CNNwith the
hashing to reduce for the faster and real-time identification has also been attempted
earlier [18] but for the face recognition problem. Authors in [18] introduced incorpo-
rated Boosted Hashing Forest (BHF) for the hashing and therefore we also attempted
to incorporate BHF scheme to comparatively evaluate the performance.However, our
results illustrated superiority of SDH over BHF and the template size using BHFwas
also fixed to 2000 bits. Although our results did not achieve significant improvement
in the performance using BHF, its usage helps in remarkably reducing the template
size. In order to ascertain comparative performance for matching finger vein images
using the handcrafted features, we also performed additional experiments. The ROC
from the same test images and matching protocols but using repeated line track-
ing [1] (also used as baseline in [21]) and curvatures [13] method is illustrated in
Fig. 5.13. We can observe that the experimental results using SDH and LCNN offer
superior performance and significantly reduced template size. Our results over the
method using [8] are can be considered as competing and not yet superior but offers
significantly reduced template size (∼26 times smaller) over the best of the methods
in [8] which is still the state-of-the-art method to date.

5.5.6 Results Using Modified VGG-16

The experimental results using modified VGG-16, as detailed in Sect. 5.3.3 are pre-
sented in Fig. 5.14. It should be noted that this CNN architecture generates single
match score and therefore we cannot use SDH scheme to the infer features. We
can infer from the ROCs in Fig. 5.14, that modified VGG-16 architecture generates
superior performance for matching finger vein images as compared to the network
trained using LCNN. This architecture directly generates the matching scores and
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Fig. 5.14 Comparative
performance using SDH with
MVGG

therefore canminimize the problems from the inappropriate choice of distancemetric
(or weighting of features), which may be a convincible reason for its superior per-
formance/results. It should however be noted that different training of the network
can lead to variations in the results.

5.5.7 Results Using Single Fingers and Unregistered Fingers

Since we used both finger vein images from two fingers to form larger dataset (as
in [8]) for above experiments, it is judicious to ascertain the performance when
only one, i.e., index or middle, finger vein images are used in the training and test
phase. The results using respective finger vein images from 105 different subjects are
comparatively shown in Fig. 5.15 using the ROC. The performance using the images
from both fingers (using 210 class formed by combination of index andmiddle finger
for 105 different subjects) is superior to single finger, and index finger shows better
performance than middle finger. Similar trends are also observed in [8] and can be
attributed to the nature of dataset.

In earlier experiments, the first session data had images acquired from the same
subjects whowere providing their images during the second session andwere used as
test set for the performance. In order to ascertain robustness of self-learned features
using the best scheme so far, we also evaluated the performance from the 51 subjects
in this dataset which did not have any two-session finger vein images Therefore,
images from none of these subject’s images were employed during the training for
CNN in any of the earlier experiments. The six images from these 51 subjects were
used to ascertain performance using challenging protocol, i.e., all-to-all, so that we
generated a total of 1530 genuine scores and 185436 impostor scores to ascertain
such performance. The ROC corresponding to this independent test subjects finger
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Fig. 5.15 Comparative ROC (left) and CMC (right) performance using SDHwith triplet similarity
loss experimented on single finger

Fig. 5.16 The performance
using independent test
subjects in [17] for matching
finger vein images

vein data is shown in Fig. 5.16 and the results indicate promising performance from
the self-learned features using a model trained (in Sect. 5.3.2 and SDH) for matching
finger vein images from unknown subjects.

5.6 Discussion

This chapter has investigated finger vein matching performance using various con-
volutional neural network architectures. Unlike earlier work on finger vein image
matching which largely employed handcrafted features, our emphasis has been to
investigate automatically learned features using the capabilities of deep learning. We
systematically investigated the performance improvement using just the ROI images
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and the systematically enhanced images that mainly emphasizes on subsurface vas-
cular network. Our results consistently indicate superior performance from the CNN
that are trained with images which have such enhanced vascular features.

According to our experimental results in Sect. 5.5.6, modified VGG-16 (MVGG)
achieves superior performance than LCNN. However, MVGG requires significantly
higher time for the training (also for the test phase). This can be largely attributed
to the fact that it directly generates the match scores and therefore the loss function
outputs propagate iteratively through the whole network to ascertain the similarity
between a pair of finger vein images. At the same time, we cannot incorporate SDH
(hashing scheme) with the MVGG, due to nonavailability of intermediate features,
while the usage of SDH has shown to offer remarkable improvement in the perfor-
mance.

It should be noted that the triplet similarity loss function helps to significantly
improve the experimental performance using the LCNN. However, this approach
cannot adequately make use of the label information, because it attempts to decrease
the feature similarity between the pairwise images from the same subject, but cannot
accurately locate the labels, i.e., identity of the subjects they are associated with.
Supervised discrete hashing approach significantly improves performance and the
retrieval speed, and decrease the storage which requires only 250 bytes (2000 bits)
for the one template (feature vector). However, it should also be noted that this
method needs a separate training phase and training time rapidly increases when the
bit length or number of features are increased.

The work detailed in this chapter also had several constraints and therefore should
be considered only preliminary. The database employed, although one of the largest
two-session finger vein databases available in public domain, is still of smaller size
for the deep learning based algorithms. There are several references in the literature
that have shown promising performance but yet to demonstrate superior matching
performance over the method in [8] using fair comparison or the same matching
protocols. Therefore, we are justified in using the performance from [8], for this
publicly available dataset, as the reference.

5.7 Conclusions and Further Work

This chapter has systematically investigated finger vein identification using the vari-
ous CNN architectures. Unlike earlier work on finger veinmatching which employed
handcrafted features, our emphasis has been to investigate performance from the
automatically learned features using the capabilities of deep learning. We systemat-
ically investigated the performance improvement using the ROI finger vein images,
and the enhances images and consistently observed that the usage of ROI images
with enhanced vascular features and attenuation of background (noise) can signif-
icantly improve the performance. The factors that most influence the accuracy of
matching finger vein images is the depth of the network, the pretraining and the data
augmentation in terms of random crops and rotations.
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The LCNN architecture detailed in Sect. 5.3.2 that uses triplet similarity loss func-
tion achieves superior performance than those from the original softmax loss. Our
experimental results using SDH illustrates that this hashing method significantly
improves the matching performance and offers better alternative than BHF for the
finger vein identification problem. Apart from two-session identification on same
subjects, we also experimented on the datasets from subjects whose data was never
available for training theCNNand this remarkable performance indicates high gener-
alization capability for the finger vein identification problem. Our proposal for finger
vein identification detailed in this chapter achieves smallest template size than using
any other methods available in the literature to date. This work however had sev-
eral constraints and therefore should be considered only preliminary. The database
employed, although the largest two session finger vein images database available
in public domain, is still of smaller size for the deep learning algorithms. Despite
promising improvements in the accuracy from the publicly available (limited) train-
ing data, more work needs to be done to achieve significantly superior results than
using the best performing method in [8]. Further work should use larger training
dataset but should provide performance using the independent test data or using the
publicly available dataset [17] to achieve more accurate alternative for the automated
finger vein identification.

References

1. D. Chen, X. Cao, L. Wang, F. Wen, J. Sun, Bayesian face revisited: a joint formulation, in
Proceedings of ECCV 2012 (2012)

2. L. Chen, J. Wang, S. Yang, H. He, A finger vein image-based personal identification system
with self-adaptive illuminance control. IEEE Trans. Instrum. Meas. 66(2), 294–304 (2017)

3. L. Dong, G. Yang, Y. Yin, F. Liu, X. Xi, Finger vein verification based on a personalized best
patches map, in Proceedings of 2nd IJCB 2014, Tampa, Sep.–Oct. 2014

4. F. Hillerstorm, A. Kumar, R. Veldhuis, Generating and analyzing synthetic finger-vein images,
in Proceedings of BIOSIG 2014, Darmstadt, Germany, September 2014

5. https://polyuit-my.sharepoint.com/personal/csajaykr_polyu_edu_hk/_layouts/
15/guestaccess.aspx?docid=11d706337994749759a2cc64cb70b604a&authkey=
AcDq15geZ7942-7owNQfmYQ

6. M. Kono, H. Ueki, S. Umemura, A newmethod for the identification of individuals by using of
vein pattern matching of a finger, in Proceedings of 5th Symposium on Pattern Measurement,
pp. 9–12 (in Japanese), Yamaguchi, Japan, 2000

7. M. Kono, H. Ueki, S. Umemura, Near-infrared finger vein patterns for personal identification.
Appl. Opt. 41(35), 7429–7436 (2002)

8. A. Kumar, Y. Zhou, Human identification using finger images. IEEE Trans. Image Process. 21,
2228–2244 (2012)

9. C. Liu, Y.H. Kim, An efficient finger-vein extraction algorithm based on random forest regres-
sion with efficient local binary patterns, in 2016 IEEE ICIP (2016)

10. Y. Lu, S. Yoon, D.S. Park, Finger vein identification system using two cameras. Electron. Lett.
50(22), 1591–1593 (2014)

11. Y. Lu, S. Yoon, S.J. Xie, J. Yang, Z. Wang, D.S. Park, Efficient descriptor of histogram of
salient edge orientation map for finger vein recognition. Optic. Soc. Am. 53(20), 4585–4593
(2014)

https://polyuit-my.sharepoint.com/personal/csajaykr_polyu_edu_hk/_layouts/15/guestaccess.aspx?docid=11d706337994749759a2cc64cb70b604a&authkey=AcDq15geZ7942-7owNQfmYQ
https://polyuit-my.sharepoint.com/personal/csajaykr_polyu_edu_hk/_layouts/15/guestaccess.aspx?docid=11d706337994749759a2cc64cb70b604a&authkey=AcDq15geZ7942-7owNQfmYQ
https://polyuit-my.sharepoint.com/personal/csajaykr_polyu_edu_hk/_layouts/15/guestaccess.aspx?docid=11d706337994749759a2cc64cb70b604a&authkey=AcDq15geZ7942-7owNQfmYQ


132 C. Xie and A. Kumar

12. N. Miura, A. Nagasaka, T. Miyatake, Feature extraction of finger-vein patterns based on
repeated line tracking and its application to personal identification, inMachine Vision & Appli-
cations, pp. 194–203, Jul, 2004

13. N. Miura, A. Nagasaka, T. Miyatake, Extraction of finger-vein patterns using maximum cur-
vature points in image profiles, in Proceedings of IAPR Conference on Machine Vision and
Applications, pp. 347–350, Tsukuba Science City, May 2005

14. F. Schroff, D. Kalenichenko, J. Philbin, Facenet: a unified embedding for face recognition and
clustering (2015), arXiv:1503.03832

15. F. Shen, C. Shen, W. Liu, H.T. Shen, Supervised Discrete Hashing, in Proceedings of CVPR,
2015, pp. 37-45, Boston, June 2015

16. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recogni-
tion (2014), arXiv:1409.1556

17. The Hong Kong Polytechnic University Finger Image Database (Version 1.0) (2012), http://
www.comp.polyu.edu.hk/~csajaykr/fvdatavase.htm

18. Y. Vizilter, V. Gorbatsevich, A. Vorotnikov, N. Kostromov, Real-time face identification via
CNNandboosted hashing forest, inProceedings ofCVPR2016BiometricsWorkshop,CVPR’W
2016, Las Vegas, June 2016

19. C. Xie and A. Kumar, ’Finger vein identification using convolutional neural networks’, The
Hong Kong Polytechnic University, Tech. Report No. COMP K-25, Jan 2017

20. X.Wu, R.He, Z. Sun, T. Tan, A light CNN for deep face representationwith noisy labels (2016),
arXiv:1151.02683v2

21. Y. Ye, L. Ni, H. Zheng, S. Liu, Y. Zhu, D. Zhang, W. Xiang, FVRC2016: the 2nd finger vein
recognition competition, in 2016 ICB (2016)

22. Y. Zhou, A. Kumar, Contactless palmvein identification using multiple representations, in
Proceedings of BTAS 2010, Washington DC, USA, September 2010

23. Z. Zhao, A. Kumar, Accurate periocular recognition under less constrained environment using
semantics-assisted convolutional neural network. IEEE Trans. Info. Forensics Secur. 12(5),
1017–1030 (2017)

http://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1409.1556
http://www.comp.polyu.edu.hk/~csajaykr/fvdatavase.htm
http://www.comp.polyu.edu.hk/~csajaykr/fvdatavase.htm
http://arxiv.org/abs/1151.02683v2


Chapter 6
Iris Segmentation Using Fully Convolutional
Encoder–Decoder Networks

Ehsaneddin Jalilian and Andreas Uhl

Abstract As a considerable breakthrough in artificial intelligence, deep learning
has gained great success in resolving key computer vision challenges. Accurate seg-
mentation of the iris region in the eye image plays a vital role in efficient performance
of iris recognition systems, as one of the most reliable systems used for biometric
identification. In this chapter, as the first contribution, we consider the application of
Fully Convolutional Encoder–Decoder Networks (FCEDNs) for iris segmentation.
To this extent, we utilize three types of FCEDN architectures for segmentation of
the iris in the images, obtained from five different datasets, acquired under different
scenarios. Subsequently, we conduct performance analysis, evaluation, and compar-
ison of these three networks for iris segmentation. Furthermore, and as the second
contribution, in order to subsidize the true evaluation of the proposed networks, we
apply a selection of conventional (non-CNN) iris segmentation algorithms on the
same datasets, and similarly evaluate their performances. The results then get com-
pared against those obtained from the FCEDNs. Based on the results, the proposed
networks achieve superior performance over all other algorithms, on all datasets.

6.1 Introduction

Deep learning techniques and convolutional neural networks (CNNs), in specific, are
driving advances in artificial intelligence, as powerful visual recognition, classifica-
tion and segmentation tools. Iris recognition is one of the most reliable and accurate
biometric technologies used for human identification and authentication. The iris
encloses many unique features, which make it a good candidate for distinguishing
one person from another. Primary, the trabecular meshwork of the iris tissue is not
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genetically influenced during its development, has in excess of “266 degrees of free-
dom,” [6] and it is protected behind the eyelid, cornea and aqueous humour. Like
any other biometrics system, the performance of iris recognition systems is highly
depended on the accurate segmentation of the target region (iris) from the rest of
image [31, 51]. And, to a great extent, the success or failure of the entire iris recog-
nition system is considered to be directly dependent on the precision of this stage
[5, 17].

6.1.1 Conventional (Non-CNN) Iris Segmentation Methods

Over the past decades, a lot of conventional (non-CCN) methods are proposed for
iris segmentation. A quick review of related literatures unveils a significant number
of these methods, which in turn enjoy versatile capabilities in iris segmentation
[1, 7, 26, 36, 44, 47, 50]. In general, segmentationmethods can be roughly classified
into two main categories: contour-based methods and texture-based methods. The
most well known contour-based methods are based on integro-differential operators
[8], and Hough transforms [49]. The principles of integro-differential algorithms are
based on search to find the largest difference of intensity over a parameter space,
which normally corresponds to pupil and iris boundaries. Hough transformmethods,
however, try to find optimal circle parameters by exploring binary edge maps.

Performance of these methods is highly dependent on the images’ clear contour
and the boundary contrast. Often, in normal conditions, limbic or pupillary bound-
aries in the images are of low-contrast, or may be of non-circular shape. In addition,
the occlusions and specular reflections may introduce further contrast defects to the
images. While plenty of improvement such as occlusion detection [18, 21], circle
model improvement [29, 45], deformation correction [10], noise reduction [23],
boundary fitting [47], and many further methods are introduced to compensate for
such defects, yet due to their global approach in segmentation, the performance of
these methods can be undermined by these defects, or even in some cases, they may
result in total failure of system.

On the other hand, texture-based methods exploit the individual pixel’s visual
aspects information, such as intensity, color, etc. to classify the iris pixels from the
rest of image. The most promising methods in this category use some commonly
known pixel-wise image classifiers such as: support vector machines (SVMs) [39],
Neural networks [4], and Gabor filters [34] to classify iris pixels from the rest of
image. In spite of the efforts to improve the performance of these group of algorithms
[26, 43], yet these methods similarly suffer from the same group of defects such as
diffusion, reflection and occlusion.
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6.1.2 Convolutional Neural Networks (CNNs)
for Segmentation

Convolutional neural networks (CNNs) have dramatically improved the state of the
art in many image interpretation and analysis tasks, such as image segmentation and
classification, since their early introduction [24, 25]. The principle of convolutional
neural networks is based onhierarchical explanatory factors,where higher level,more
abstract, concepts are learned from the lower level ones,with the help of convolutional
operators. Assuming Ai j as the data vector at location (i, j) in a particular layer, and
Bi j for the following layer, the output Bi j is computed as:

Bi j = fαβ({Aβi +δi ,β j +δ j } 0 ≤i , j ≤ α)

where α is the convolutional kernel size, β is the stride or sub-sampling factor, and
fαβ specifies the layer type. As already mentioned, the core building blocks of CNNs
are the convolutional layers (Conv). The convolutional layers’ parameters consist of
a set of learnable filters. Each filter convolves the input volume and computes the dot
product between the entries of the filter and the input at any position, and produces
an activation map that gives the responses of that filter at every spatial position.
The output of this layer then can be further processed by additional layers such
as: nonlinear down-sampling layer (Pool), non-saturating activation function layer
(ReLU), and further layers depending on the networks’ architectures. All together
these layers form the networks’ encoder compartment. In addition to the encoding
compartment, each network includes a decoding mechanism, in which the main task
of labelling is performed, and the network’s output is delivered as the classification
scores.

The initial versions of convolutional neural networks were developed for classifi-
cation tasks, where the networks’ output was a single class label [22, 41]. In this type
of networks, usually a fully connected layer (FC), as an inner-product function, was
used to generate the classification scores. However, in many image processing tasks,
as in iris segmentation, pixel-wise labelling of the region of interest was required.
Prior approaches for pixel-wise segmentation used convents [14, 15]. In more recent
CNNs’ architectures, including the Fully Convolutional Neural Networks (FCNNs),
usually a learnable upsampling layer (Upsample) is used to retrieve the feature maps,
and then a softmax layer (Softmax), which normally computes themultinomial logis-
tic loss of the softmax of its inputs, is employed to generate the classification scores.
There exist various methods for enabling such upsampling mechanism [30, 46].

InConvolutional Encoder–DecoderNetworks (CEDNs) the encodingmechanism,
already explained, is repeated in the reverse mode to upsample the low-resolution
output maps of the encoder network to full input resolution features of the input
volume. Likewise, various methods are proposed for the upsampling mechanism in
this type of networks. While some used switch codes to remap the features [32], oth-
ers, like Ronneberger et al. [40], simply used cropped feature concatenation to gen-
erate the upsampled maps. In addition to using a primitive approach for upsampling,
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the network proposed by Ronneberger et al. is not fully convolutional, as the input
and the output volumes do not match. The proposed mechanism to retrieve the full
input volume (Overlap-tile) affects the training process anyway, and introduces fur-
ther pre and postprocessing work load. The idea of using max-pooling indices from
the corresponding encoder feature maps to generate the upsampled feature maps in
the decoder network, “without learning,” and then convolving with trainable filter
banks, is recently proposed in a work by Badrinarayanan et al. [2]. The key leverage
of applying such technique is improving the boundary delineation and preserving
the edges with more precision.

6.2 CNNs in Iris Recognition

Nevertheless, when it comes to the application of deep learning techniques for iris
segmentation, to the best of our knowledge, there exists only one proposal work on
application of convolutional neural networks for iris segmentation. In [27] authors
proposed two CNN-based iris segmentation models, namely: Hierarchical convolu-
tional neural network (HCNN), andmulti-scale fully convolutional network (MFCN).
The former network is a simpleCNNnetwork composed of three blocks of alternative
Conv and Pool layers, whose outputs are fed directly into a FC layer. The latter net-
work includes six blocks of interconnected alternative Conv and Pool layers, whose
outputs are simply fused through a single multiplication layer and then fed into a
Softmax layer. The proposed networks are used for segmenting noisy-distanced iris
images acquired from the Ubiris.v2,1 and the Casia-distance-v4 databases.2 Authors
used a subset (500 and 400 images respectively) of these two databases. For the
evaluation, authors referenced average error rates from other works, without carry-
ing out direct experimental analysis on the same databases. Therefore, their results
have to be considered with care, when it comes to the fair evaluation of segmentation
accuracy. The ground-truth masks for the second database are manually labelled by
the authors.

In [13], authors introduced two convolutional neural networks for iris recognition.
But, these are proposed for “iris representation,” not for segmentation. The networks
are named “DeepIrisNet-A,” which is based on the standard convolutional layers,
and “DeepIrisNet-B,” which uses a stack of so called “inception layers”. Based on
the results, the networks can model the micro-structures of iris well, and primarily
outperform strong baseline based on descriptor and generalize well to new datasets.

In [35], authors used deep sparse filtering technique for iris feature extraction
in a smart-phone based visible iris recognition system. In this work two layers of
sparse filters are trained with 256 filters, with 16 × 16 kernels, to generate the feature

1Soft Computing and Image Analysis Lab, Univ. of Beira Interior, UBIRIS.v2 Dataset, see http://
iris.di.ubi.pt/ubiris1.html.
2The Center of Biometrics and Security Research, CASIA Iris Image Database, see http://
biometrics.idealtest.org.

http://iris.di.ubi.pt/ubiris1.html
http://iris.di.ubi.pt/ubiris1.html
http://biometrics.idealtest.org
http://biometrics.idealtest.org
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maps. The final feature vector is formed by concatenating the histograms of these
feature maps. They tested their system on many smart-phones and, depending on the
smart-phone type, achieved different levels of accuracies. In [28] authors proposed a
CNN, called “DeepIris,” for heterogeneous iris verification, which learns relational
features to measure the similarity between pairs of iris images. The network’s archi-
tecture includes a pairwise filter layer, and a stock of alternative Pool, Conv, and
Normalization (NR) layers, to generate a similarity map between two input images.
The similarity measure is calculated as a scores with help of a FC layer at the end.
Their results show that the proposed method achieves promising performance for
both cross-resolution and cross-sensor iris verification.

6.3 A Fully Convolutional Encoder–Decoder Network

The architecture of the FCEDN networks used by us is similar to the work by Badri-
narayanan et al. [2]. However, here we redesigned the Softmax layer to classify the
outputs only into two classes (iris, and non-iris). Basically, this architecture proposes
a fully convolutional encoder–decoder network, representing a core segmentation
engine for pixel-wise semantic segmentation [2].

The core segmentation engine includes a 44-layered encoder network, and the
corresponding decoder network. The encoder network’s architecture is organized
in five stocks. Each stock is comprised of a set of blocks, whose architectures are
formed by a Conv layer, which convolves the input image with a kernel to produce
the inputs’ featuremaps, followed by a batch normalized layer (BN), to normalize the
layer input and avoid the “internal covariate shift” [19], and an element-wise rectified-
linear nonlinearity layer (ReLU), as an activation function. The blocks then end up
in a Pool layer (with a 2 × 2 window and stride 2), which applies nonlinear down-
sampling to the input and achieves translation invariance over small spatial shifts.
While applying several Pool layers can help to obtain robust translation invariance,
yet applying each layer leads to the loss of spatial resolution, specially in the boundary
regions. This issue is resolved by storing max pooling indices, which are latter used
for upsampling in the decoding network, in these networks.

The corresponding decoder network, likewise, has a 44-layered structure, which
encompasses five stocks. Similarly, each stock is comprised of a set of blocks, whose
architectures are formed from an Upsample layer, and trainable banks of decoder fil-
ters, including Conv, BN and ReLU layers, to generate the dense feature maps. As
already specified, theUpsample layer usesmax-pooling indices from the correspond-
ing encoder feature maps to generate the upsampled feature maps, without learning
and then the filter banks convolve themaps. Finally, the results are fed into a trainable
Softmax layer (SoftmaxWithLoss). The Softmax layer classifies each pixel indepen-
dently, so that the output of this layer is a N channel image of probabilities, where N
is the number of classes. The output segmentation corresponds to the class with high-
est probability at each pixel. Applying this technique directly results in improvement
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of the boundary delineations and preservation of the edges. At the same time, this
technique reduces the number of parameters, enabling end-to-end training.

6.3.1 Basic Variant

As we specified in the previous section, the overall structure of the network is orga-
nized as set of blocks, which in fact represent the network’s learning units. Such a
distinct unified structure expedites the modification of the Original network’s archi-
tecture to best fit the required segmentation tasks. To this extent, andwith the primary
goal of facilitating the network analysis, an abstract variation of the Original network
called “Basic” was introduced [2]. Using such an abstract architecture enables us to
evaluate the effect of using less learning, and as the result, less convolutional and
down-sampling units in the segmentation process. At the same time, such an archi-
tecture can offer faster and less computational expensive segmentation capabilities
also. The overall network architecture, similarly, is composed of an encoder and the
corresponding decoder networks. The encoder comprises four stocks, whose struc-
tures are similar to the Original network’s blocks, incorporating Conv, BN, ReLU,
and Pool layers. The decoder network’s blocks, as well, include Upsample, Conv,
and BN layers. The decoder network finally ends up to a SoftmaxWithloss layer.

6.3.2 Bayesian Variant

As another extension to the Original network, and as an attempt to propose a proba-
bilistic pixel-wise segmentationmodel based on the deep learning technique, another
variation of the Original network called “Baysian” was developed [20]. This network
enables the probabilistic pixel-wise segmentation using Monte-Carlo sampling and
the drop-out technique [12, 42]. The aim here is to find the posterior distribution
over the convolutional weights w, given the observed training data x and the labels z.

p(w|x, z)

In practice, such a posterior distribution can only be approximated, for example,
with variational inference techniques, such as minimization of the Kullback–Leibler
(kl) divergence between the desired approximated distribution and the full posterior
distribution [9].

kl(q(w) || p(w|x, z))

Gal et al. [11] have already shown that minimizing the cross entropy loss objective
function pretends to minimizing the Kullback–Leibler divergence term. Accord-
ingly, they have proved that training neural networks with the stochastic gradient
descent will promote the model to learn the distribution of weights, while avoiding
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Fig. 6.1 Architectural difference of the third block in theBayesian-Basic (up), and theBasic (down)
networks (Images are generated using Caffe framework)

over-fitting. Using the same technique, the overall architecture for the “Bayesian-
Basic” network would be the same as the Basic network, except for this network
includes extra drop-out layers, which are added to the two last blocks of the encoder,
and the first two blocks of the decoder networks, as demonstrated in Fig. 6.1. Using
this architecture, the posterior distribution over the weights would be sampled at the
test time to generate the distribution of softmax class probabilities. The mean of this
samples are taken for the segmentation prediction, and the variance is used to output
the model uncertainty for each class. Monte-Carlo sampling is used for this purpose
as it enables the qualitative understanding of the model uncertainty.

6.4 Experimental Framework

The main objective of this research is the application of FCEDNs for iris segmen-
tation, and subsequently, providing evaluation and analysis of these networks’ per-
formance for different scenarios. For these purpose, after design and implemen-
tation of networks, each network was run on five different iris datasets, contain-
ing images acquired under different scenarios. The detailed specifications of these
datasets are discussed in Sect. 4.1. The segmentation capability of each network then
was evaluated and analysed with the help of three different segmentation scores,
whose details are specified in Sect. 4.2. Next, in order to facilitate true assessment
of the performance of networks for iris segmentation, a collection of conventional

http://dx.doi.org/10.1007/978-3-319-61657-5_4
http://dx.doi.org/10.1007/978-3-319-61657-5_4


140 E. Jalilian and A. Uhl

iris segmentation algorithms, whose details are specified in Sect. 6.6, got run on the
same datasets’ testing subsets, and their corresponding performance analysis and
evaluation was presented, and compared against those of the FCEDNs.

6.4.1 Datasets

In thisworkwehave selectedfivewell-known iris datasets. The datasetswere selected
to include versatile iris image acquisition scenarios. TheNotredamedataset (subset of
ND-Iris-0405 database3) includes 835 iris images of 30 different subjects. The image
acquisition was done in near-infrared spectrum, in an indoor environment, with the
LG2200 iris biometric system. For our experimentswe used 670 images (24 subjects)
for the training, and 165 images (six subjects) for the testing of the networks. The
Casia-iris-interval-v4 dataset4 contains a total of 2640 iris images belonging to 249
subjects. Images are acquired under near-infrared illumination, with a close-up iris
camera. For our experiments 1307 instances of the right eye images were used, out
of which 1045 images (192 subjects) were used for the training, and 262 image (57
subjects) were used for the testing of the networks.

The IITD database5 consists 1120 iris images corresponding to 224 subjects. All
these images are acquired in the indoor environment, with the Jiris, Jpc1000 digital
CMOS camera in near-infrared spectrum. For our experiments 900 images (180
subjects) were used for the training, and 220 images (44 subjects) were used for
the testing of the networks. The Ubiris dataset (subset of the Ubiris.v2 database)
contains 2250 iris images, from 100 different subjects. The images were acquired
with a Nikon E5700 camera and split into two parts. The first part includes iris
images taken under controlled condition, simulating the enrolment stage. The second
part includes iris images which are captured under real-world setup, with natural
luminosity correspondingheterogeneity in reflections, contrast and focus. Thedataset
also contains off-angle iris images captured from various distances with occlusions.
For our experiments we used 2055 images of this dataset for the training and 225
images for the testing of the networks.

And finally, the Casia-iris-ageing-v5 dataset6 contains 120 images per eye and
user from video sequences captured in 2009, and 20 images per eye and user from
video sequences captured in 2013. For our experiments we used total of 1880 images
of both eyes of 94 users from both sessions. Out of that, 1500 images of 75 users were
used for the training, and 380 images, corresponding to 19 users, were used for the

3Computer Vision Research Lab, Univ. of Notre Dame, Iris Dataset 0405, see https://sites.google.
com/a/nd.edu/public-cvrl/data-sets.
4The Center of Biometrics and Security Research, CASIA Iris Image Database, see http://
biometrics.idealtest.org.
5Indian Institute of Technology Delhi, IIT Delhi Iris Database, see http://www4.comp.polyu.edu.
hk/~csajaykr/database.php.
6See http://www.biometrics.idealtest.org.

https://sites.google.com/a/nd.edu/public-cvrl/data-sets
https://sites.google.com/a/nd.edu/public-cvrl/data-sets
http://biometrics.idealtest.org
http://biometrics.idealtest.org
http://www4.comp.polyu.edu.hk/~csajaykr/database.php
http://www4.comp.polyu.edu.hk/~csajaykr/database.php
http://www.biometrics.idealtest.org
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testing of the networks. Special attention should be paid to the fact that the selection
of the datasets was subject to availability of the ground-truth masks required for
the training process. For this work the ground-truth masks were acquired from the
Irisseg-ep database provided by WaveLab of the University of Salzburg [16]. The
selection of the training and testing subsets followed the Pareto principle, where of
total instances, approximately 80% of the data was used for training and 20% for
testing, while subjects are not overlapped, and no instances are included in other’s
set. Also in order to maintain fair spatial input to the networks, images in all datasets
was resized to 480 × 360.

6.4.2 Metrics and Measurements

In order to facilitate holistic statistical analysis and proper assessment of the capabil-
ities of the FCEDNs and the other conventional algorithms on iris segmentation, we
have considered a set of evaluation metrics, which cover key segmentation measures
such as: true positives (tp), false negatives ( f n), and false positive ( f p). To this
extent, primarily the NICE.I protocol, which is widely accepted for evaluation of
iris segmentation accuracy, got adapted. The segmentation error score nice1 calcu-
lates the proportion of corresponding disagreeing pixels (by the logical exclusive-or
operator) over all the image as follows:

nice1 = 1

c × r

∑

c′

∑

r ′
O(c′, r ′) ⊗ C(c′, r ′) (6.1)

where c and r are the columns and rows of the segmentation masks, and O(c′, r ′)
and C(c′, r ′) are, respectively, pixels of the output and the ground-truth mask. The
second segmentation error score intends to compensate the disproportion between
the priori probabilities of iris and non-iris pixels in the images. The type-I and type-II
error score nice2 averages between the ( f p) and ( f n) rates as follow

nice2 = 1

2
( f p + f n) (6.2)

The values of nice1 and nice2 are bounded in the [0, 1] interval, and in this context,
1 and 0 are respectively the worst and the optimal values. Additionally, in order to
provide comprehensive synopsis of the networks’ performances, threemore standard
measures of segmentation accuracy were considered, namely: precision, recall, and
f1measure, which are well-knownmeasures in the field of information retrieval [38].
Precision gives the percentage of retrieved iris pixels which are correctly segmented
as follows:

p = tp

tp + f p
(6.3)
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Alternatively, recall provides the same measure using false negatives as follows:

r = tp

tp + f n
(6.4)

Last but not least, the f1measure is the harmonicmean of p and r , and is calculated
as follows:

f 1 = 2r p

r + p
(6.5)

The values for these three measures are bounded in the [1, 0] interval, and in this
context, 0 and 1 are the worst and the optimal values respectively.

6.4.3 Network Implementation

In the first step, we implemented the FCEDNs on the “Caffe” deep learning frame-
work. Caffe is one of the most favourited deep learning frameworks, which at its
core, is written in c++. Models and optimizations are defined by configuration with-
out hard-coding, which in turn accelerate the training and testing process. Switching
between CPU and GPU can be done just by setting a single flag, and the interface
is extensible to python (Pycaffe) and matlab (Matcaffe). Network architecture is
defined in separate “prototxt” files, and training and testing parameters are defined
in another similar file called “solver”. The prototxt files get loaded during the training
and testing using caffe commands.

Architectural implementation and the technical specification for the Original,
Basic, and Bayesian-Basic networks are presented in Tables6.1, 6.2, and 6.3 respec-
tively. The convolutional kernel size for the Original network was set to 3 × 3, and
in order to provide a wide context for smooth labelling, this value was set to 7 × 7
for both of the Basic networks.

We trained our networks by Stochastic Gradient Descent (SGD) back propagation
algorithm

Ut+1 = μUt − α∇L(W ) (6.6)

Wt+1 = Wt + Ut+1 (6.7)

Formally, at each iteration t + 1 the SGD algorithm computes the update value
Ut+1 and the updated weights Wt+1, given the previous weight updateUt and current
weights Wt . The algorithm updates the weights W by linear combination of the
negative gradient ∇L(W ) and the previous weight update Ut . The learning rate α

is the weight of the negative gradient, and the momentum μ is the weight of the
previous update.

For our experiments, the momentum value for the SGD algorithm was set to
0.9. In order to investigate the networks’ training process, we have considered two
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Table 6.2 Architecture and specification of the basic encoder (left)–decoder (right) network

Layer Information Layer Layer Layer Information Layer

Convolution Output Batch-
Normalization

ReLU Convolution Output Batch-Normalization

Conv1 64 Conv1-b Relu1 Conv4-D 64 Conv4-D-b

Conv2 64 Conv2-b Relu2 Conv3-D 64 Conv3-D-b

Conv3 64 Conv3-b Relu3 Conv2-D 64 Conv2-D-b

Conv4 64 Conv4-b Relu4 Conv1-D 64 Conv1-D-b

ConvC-D 2

Pooling Stride Kernel size Upsample Scale

pool1 2 2 Upsamp4 2

pool2 2 2 Upsamp3 2

pool3 2 2 Upsamp2 2

pool4 2 2 Upsamp1 2

Table 6.3 Architecture and specification of the Bayesian-Basic encoder (left)–decoder (right)
network

Layer Information Layer Layer Layer Information Layer

Convolution Output Batch-
Normalization

ReLU Convolution Output Batch-
Normalization

Conv1 64 Conv1-b Relu1 Conv4-D 64 Conv4-D-b

Conv2 64 Conv2-b Relu2 Conv3-D 64 Conv3-D-b

Conv3 64 Conv3-b Relu3 Conv2-D 64 Conv2-D-b

Conv4 64 Conv4-b Relu4 Conv1-D 64 Conv1-D-b

ConvC-D 2

Pooling Stride Kernel size Upsample Scale

pool1 2 2 Upsamp4 2

pool2 2 2 Upsamp3 2

pool3 2 2 Upsamp2 2

pool4 2 2 Upsamp1 2

Drop-out Ratio Drop-out Ratio

encdrop3 0.5 D-drop4 0.5

encdrop4 0.5 D-drop3 0.5

learning rates for the different variations of the networks. For the Original network
the learning rate was set to 0.001, and for the Basic networks this value was set to 0.1.
The learning rates are set optimally based on the work by Badrinarayanan et al. [2].
The direct effect of such a small learning rate is slow but more stable convergence
of the network.

Figure6.2 clearly illustrates this effect on these two network architectures during
the training process. Table6.4 summarizes the training parameters, which were set
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Fig. 6.2 Overall loss value in the first 4000 iterations of the training process for the Original (up),
and the Basic (down) architectures on different datasets

Table 6.4 Solver parameters for the networks

Parameter Original Bayesian-Basic Basic

Iterations 10,000 10,000 10,000

Momentum 0.9 0.9 0.9

Learning Rate 0.001 0.1 0.1

in the solver files. The setting criteria for these parameters is investigated in the work
of Leon Bottou in this regard [3].

In our experiments the networkswere trained per single image till the convergence
point, where the overall loss for both segmentation classes decreased to less than 4%.

6.5 The First Segmentation Experiment Results

We have presented the segmentation results of the FCEDNs in Tables6.5 and 6.6,
as average segmentation scores per iris dataset, and per network respectively. As
Table6.5 demonstrates, the best results are obtained on the Notredame and the
Casia5a datasets, and the worst ones on the Ubiris dataset. This is simply due to
the difficulty level of these datasets. On the other hand, as it can be seen in Table6.6,
the Bayesian-Basic network outperforms the other two networks, with lower (mean)
μnice1, μnice2 and higher μf1 scores (0.0316, 0.0571 and 0.8985 respectively),
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Table 6.5 Average FCEDNs’ segmentation scores per dataset

FCEDN Dataset nice1 nice2 f1

Original iitd 0.0591 0.0659 0.8661

notredame 0.0213 0.0424 0.8617

casia4i 0.0561 0.0588 0.8826

ubiris 0.0342 0.1249 0.7691

casia5a 0.0160 0.0420 0.8951

Basic iitd 0.0539 0.0594 0.8892

notredame 0.0107 0.0269 0.9351

casia4i 0.0448 0.0438 0.9072

ubiris 0.0423 0.1517 0.7700

casia5a 0.0086 0.0261 0.9510

Bayesian-Basic iitd 0.0682 0.0701 0.8489

notredame 0.0095 0.0282 0.9426

casia4i 0.0391 0.0407 0.9192

ubiris 0.0306 0.1116 0.8407

casia5a 0.0105 0.0351 0.9413

Table 6.6 Average FCEDNs segmentation scores per network

FCEDN μ nice1 μ nice2 μ f1

Bayesian-Basic 0.0316 0.0571 0.8985

Basic 0.0321 0.0616 0.8905

Original 0.0373 0.0668 0.8549

on overall datasets. This is directly due to the probabilistic technique used in this
network, and the results clearly endorse the enhanced segmentation capability of the
Basic network after applying this technique. The Basic network has comparatively
moderate performance on the iris datasets with mean sores of 0.0321, 0.0616, and
0.8905 forμnice1,μnice2, andμf1 respectively. This is principally due to the simple
structure of this network, which relays on the appearance information from shallow,
fine layers to produce segmentations.

The Original network comes at the end, with mean sores of 0.0373, 0.0668 and
0.8549 for μnice1, μnice2 and μf1 respectively. This is meanly due to the compar-
atively deep structure of this network, which combines semantic information from
deep, coarse layers with appearance information from shallow, fine layers to produce
segmentations.

Figure6.3 demonstrates the networks’ best and worst performances samples for
different datasets. More detailed performance analysis of the networks for iris seg-
mentation per dataset is presented in Fig. 6.4, which provides further statistical infor-
mation such as: min, max, median, quantiles and outliers in the form of Box-plots.
The outliers are classified based on the following mechanism, where q3 and q1 are



6 Iris Segmentation Using Fully Convolutional Encoder–Decoder Networks 147

Fig. 6.3 The best (b) and the worst (d) performance samples of the Bayesian-Basic network on the
notredame (a) and the ubiris (c) datasets’ samples respectively. And the best (f) and the worst (h)
performance samples of the Basic network on the casia5a (e) and the ubiris (g) datasets’ samples
respectively. And the best (g) and the worst (l) performance samples of the Original network on the
casia5a (i) and the ubiris (k) datasets’ samples respectively

the 25th and 75th percentiles of the scores, andw corresponds to approximately±2.7
of the standard deviation (σ ): The scores are classified as outlier if they are greater
than Z1 or smaller than Z2.

Z1 = q3 + w × (q3 − q1) (6.8)

Z2 = q3 − w × (q3 − q1) (6.9)

Furthermore, in order to assess how well the segmentation results generalize to
the entire datasets, we trained and subsequently tested the networks on each dataset,
applying the K-Fold cross-validation technique. For this purpose, we partitioned
each dataset into five complementary subsets, and performed the training with four
subsets, and validated the results on the remained subset. Likewise, five rounds of
cross-validation were performed on each dataset separately without overlapping.

Figure6.5 demonstrates the results for the cross-validation per segmentation score
on theNotredame dataset. Table6.7 demonstrates the average cross-validation results
for all different datasets. As the results show, the average scores are quiet similar to
those of the onefold experiments, and while most scores show around 2% difference,
the maximum differences in the scores doe not exceed over 4%.
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Fig. 6.4 Performance of the FCEDNs per dataset using segmentation errors: nice1 (n1), nice2 (n2)
and f1 (f1)

Fig. 6.5 Fivefold cross-validation results on the notredame dataset, demonstrating segmentation
scores nic1, nice2 (left), and f1 (right) per round

Table 6.7 Average cross-validation results for all datasets

Network Original Basic Bayesian-Basic

Dataset nice1 nice2 f1 nice1 nice2 f1 nice1 nice2 f1

Casia5a 0.0135 0.0392 0.9000 0.0197 0.0385 0.9250 0.0112 0.0332 0.9400

Casia4i 0.0415 0.0492 0.9175 0.0330 0.0382 0.9375 0.0412 0.0362 0.9250

Iitd 0.0365 0.0353 0.9400 0.0277 0.0322 0.9510 0.0292 0.0337 0.9500

Notredame 0.0220 0.0655 0.8775 0.0135 0.0387 0.9225 0.0132 0.0367 0.9300

Ubiris 0.0305 0.0898 0.7200 0.0262 0.0687 0.7900 0.0187 0.0675 0.8625
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Table 6.8 Running time, per segmentation for FCEDNs

FCEDN Original Bayesian-Basic Basic

Running time (s) 18.075 58.661 10.162

Furthermore, we measured the average running time, per segmentation, of dif-
ferent networks for a system with Intel-Xeon E5-1620 3.50GHz cpu, and 32GiB
memory. The results are presented in Table6.8 respectively. Basically caffe is not
optimized for the inlet processors. While based on the developers, using suitable
GPUs and cuDNN, Caffe is considered as the fastest convent implementations
available.7

6.6 The Second Segmentation Experiment Results

Next, in order to streamline the proper assessment of the capabilities of FCEDNs
for iris segmentation, and to enable the comparative analysis of these networks’
performance, a set of conventional iris segmentationmethods (Convs)was considered
to be run on the same datasets’ testing subsets.

Osiris is an open-source iris recognition software, that includes an iris segmenta-
tion algorithm, which uses the Viterbi algorithm on the gradient map of anisotropic
smoothed image for iris segmentation [33]. Caht (contrast-adjusted hough trans-
form) [36], Wahet (weighted adaptive Hough and ellipsopolar transform) [47], and
Ifpp (iterative Fourier-series push pull) [48] are further open-source iris segmenta-
tion algorithms used in this experiment, which are acquired from the Iris-Toolkit
package provided by Wavelab at the University of Salzburg [37]. The performance
of these algorithms was evaluated using the same segmentation scores used in the
first experiment. The performance results of the conventional algorithms are repre-
sented in Tables6.9 and 6.10, as average classification score per iris datasets and per
algorithm respectively.

Generally, Osiris tends to underestimate the iris boundaries, as it tries to mask
the obstructions out, leading to high precision but lower recall. However, Wahet and
Caht lean to overestimate the iris boundaries, resulting in higher recall than precision.
The reason for this is that these two algorithms do not utilize eyelid filters. Similarly,
in the Ifpp algorithm, less pronounced boundaries are largely affected by noise or
eyelids. Therefore, the less expressive boundaries are reconstructed from the more
stable ones.

As it can be seem in Table6.9 the algorithms perform better on less difficult
datasets such as the Notredame and the Casia5a, while the worst results are obtained
on the Ubiris dataset. In both cases the algorithms’ performance results conformwith
the FCEDNs’ results, which endorses the equity of the experimental scheme. As it

7Caffe Deep learning framework, see http://caffe.berkeleyvision.org/.

http://caffe.berkeleyvision.org/
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Table 6.9 Average convs’ segmentation scores per dataset

Algorithm Dataset nice1 nice2 f1

Wahet iitd 0.1377 0.1762 0.7337

notredame 0.0248 0.0875 0.8619

casia4i 0.0608 0.0842 0.8949

ubiris 0.2743 0.4498 0.1977

casia5a 0.0248 0.0836 0.8648

Caht iitd 0.1138 0.1560 0.7767

notredame 0.0361 0.1408 0.7941

casia4i 0.1161 0.1470 0.7651

ubiris 0.1226 0.4809 0.1048

casia5a 0.0369 0.1514 0.7753

Ifpp iitd 0.1142 0.1508 0.7965

notredame 0.0294 0.1113 0.8359

casia4i 0.1532 0.2372 0.6278

ubiris 0.2379 0.3970 0.2899

casia5a 0.0288 0.1123 0.8504

Osiris iitd 0.0555 0.0757 0.8817

notredame 0.0131 0.0231 0.9194

casia4i 0.0565 0.0673 0.8862

ubiris 0.1827 0.4095 0.2328

casia5a 0.0181 0.0331 0.8917

Table 6.10 Average convs’ segmentation scores per algorithm

Algorithm μ nice1 μ nice2 μ f1

Osiris 0.0652 0.1217 0.7624

Caht 0.0851 0.2152 0.6432

Wahet 0.1045 0.1763 0.7106

Ifpp 0.1127 0.2017 0.6801

can be seen inTable6.10 theOsiris algorithmoutperforms the other threes,with lower
(mean) μnice1, μnice2 and higher μf1 scores (0.0652, 0.1217 and 0.7624 respec-
tively). Figure6.6 provides further statistical information such as: min, max, median,
quantiles, and outliers, about the segmentation performances of these algorithms per
dataset in the formofBox-plots. Furthermore,wemeasured the average running time,
per segmentation, of the conventional algorithms for the system specified previously.
The results are presented in Table6.11 respectively.
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Fig. 6.6 Performance of the conventional algorithms per dataset using segmentation errors: nice1
(n1), nice2 (n2) and f1 (f1)

Table 6.11 Running time, per segmentation for convs

Algorithm Osiris Wahet Caht Ifpp

Running time (s) 0.583 0.602 6.730 0.470

6.7 Analysis and Discussion

Simple statistical comparison of the segmentation results of the FCEDNs with the
conventional algorithms’ results demonstrates the superiority of the FCEDNs for iris
segmentation over the other conventional algorithms. As it can be seen in Tables6.6
and 6.10, even the worst FCEDNs’ performance result, which is shown by the Origi-
nal network, scoring: 0.0373, 0.0668 and 0.8549 for nice1, nice2 and f1 respectively,
is better then the best conventional algorithms’ result, which is obtained by the Osiris
algorithm scoring: 0.0652, 0.1217 and 0.7624 for nice1, nice2, and f1 respectively.
Yet if we consider the best FCEDNs’ result, which is obtained by the Bayesian-
Basic network (0.0316, 0.0571, and 0.8985 for nice1, nice2 and f1 respectively), the
prominence of the proposed FCEDNs over the conventional algorithms would be
consolidated by power of two or three.

The greatest supremacy of the proposed FCEDNs is revealed when analysing the
segmentation results per dataset in Tables6.5 and 6.9. As it can be seen in the tables,
the worst segmentation scores for almost all conventional algorithms and FCEDs are
obtained on the Ubiris dataset, which deliberately contains samples of off-angle iris
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Table 6.12 Average segmentation scores of all methods on the Ubiris dataset

Method nice1 nice2 f1

Bayesian-Basic 0.0306 0.1116 0.8407

Original 0.0342 0.1249 0.7691

Basic 0.0423 0.1517 0.7700

Osiris 0.1827 0.4095 0.2328

Caht 0.1226 0.4809 0.1048

Wahet 0.2743 0.4498 0.1977

Ifpp 0.2379 0.3970 0.2899

Fig. 6.7 A sample iris imagewith glasses (a) from the ubiris dataset versus the output segmentation
masks of: Bayesian-Basic (b), Basic (c), Original (d), Caht (e), Wahet (f), Ifpp (g), and Osiris (h)

images recorded from various distances with different types of occlusions, including
glasses. While most conventional algorithms such as Wahet, Caht and Ifpp even
fail to satisfy the minimum segmentation scores, all FCEDNs demonstrate robust
segmentation capabilities on such a difficult and divergent iris dataset.

This can be easily interpreted from Table6.12, which summarizes the segmen-
tation results of the conventional algorithms along with the FCEDNs on the Ubiris
dataset. A simple visual comparison of theBox-plots for theUbiris dataset in Figs. 6.4
and 6.6 demonstrates this fact clearly also. Figure6.7 displays a sample iris image
with glasses from the Ubiris dataset, along with the corresponding output masks of
all segmentation methods (FCEDNs and Convs).

6.8 Conclusion

Accurate segmentation of the iris region from the rest of image plays a vital role in
efficient performance of iris recognition systems, and success of the total system is
considered to be directly related to the precision of this stage. In this work we have
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presented the application of deep learning techniques and FCEDNs for iris segmen-
tation. To this extent, we applied three types of networks for iris segmentation. The
performance of the networks was tested and evaluated on five different datasets. The
evaluation was carried out using three popular segmentation error scores. Further-
more, in order to streamline proper assessment of the performance of the networks,
we presented statistical analysis and the performance evaluation of four well-known
conventional iris segmentation algorithms on the same datasets, and compared the
results against those obtained from the networks. Results demonstrate the superior-
ity of the networks for iris segmentation over all other algorithms. Yet the greatest
supremacy of the proposed networks unveils when dealing with difficult iris images
such as off-angle images recorded from various distances with different types of
occlusions including glasses. In future work we plan to perform more application
specific analysis on these types of networks, and at the same time carry out further
research to optimize their design and architecture, and improve their performance
for different segmentation tasks.
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Chapter 7
Two-Stream CNNs for Gesture-Based
Verification and Identification: Learning
User Style

Jonathan Wu, Jiawei Chen, Prakash Ishwar and Janusz Konrad

Abstract A gesture is a short body motion that contains both static (nonrenewable)
anatomical information and dynamic (renewable) behavioral information.Unlike tra-
ditional biometrics such as face, fingerprint, and iris, which cannot be easily changed,
gestures can be modified if compromised. We consider two types of gestures: full-
body gestures, such as a wave of the arms, and hand gestures, such as a subtle curl of
the fingers and palm, as captured by a depth sensor (Kinect v1 and v2 in our case).
Most prior work in this area evaluates gestures in the context of a “password,” where
each user has a single, chosen gesture motion. Contrary to this, we aim to learn a
user’s gesture “style” from a set of training gestures. This allows for user conve-
nience since an exact user motion is not required for user recognition. To achieve the
goal of learning gesture style, we use two-stream convolutional neural networks, a
deep learning framework that leverages both the spatial (depth) and temporal (optical
flow) information of a video sequence. First, we evaluate the generalization perfor-
mance during testing of our approach against gestures of users that have not been
seen during training. Then, we study the importance of dynamics by suppressing
the use of dynamic information in training and testing. Finally, we assess the capac-
ity of the aforementioned techniques to learn representations of gestures that are
invariant across users (gesture recognition) or to learn representations of users that
are invariant across gestures (user style in verification and identification) by visu-
alizing the two-dimensional t-Distributed Stochastic Neighbor Embedding (t-SNE)
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of neural network features. We find that our approach outperforms state-of-the-art
methods in identification and verification on two biometrics-oriented gesture datasets
for full-body and in-air hand gestures.

7.1 Introduction

Biometrics are a convenient alternative to traditional forms of access control, such
as passwords and pass-cards, since they rely solely on user-specific traits. Unlike
alphanumeric passwords, biometrics cannot be given or told to another person, and
unlike pass-cards, are always “on-hand.” Perhaps the most well-known biometrics
with these properties are: fingerprint, face, speech, iris, and gait.

A gesture is a short, few seconds long, body motion that contains static anatom-
ical information and dynamic behavioral information. We consider both full-body
gestures, such as a wave of the arms, and hand gestures, such as a subtle curl of
the fingers and palm. For identification and verification, a user can choose a specific
gesture as a “password.”

In this work, rather than focusing on identifying a user performing a specific
“password,” we aim to identify a user across a set of gestures, in effect learning a
user’s gesture style. We focus on body- and hand-based gestures from depth maps
acquired by Kinect sensors (v1 and v2) [13] (Fig. 7.1).

This chapter makes the following key contributions:

• development of a two-stream convolutional neural network for user identification
and verification based on body and hand gestures,

• evaluation of the generalization performance of the network for gestures or users
that are not seen in the training set,

• assessment of the value of dynamics for user identification and verification,
• a t-SNE-based assessment of the capacity of the studiedmethods to learn represen-
tations of gestures that are invariant across users (gesture recognition) or to learn
representations of users that are invariant across gestures (user style in verification
and identification).

We validate our approach on two biometrics-oriented datasets (BodyLogin and
HandLogin), and one gesture-centric dataset (MSRAction3D).

7.2 Literature Review

Extensive literature exists for depth-based gesture recognition using body [9, 21,
35, 43] and hand [15, 26, 32] gestures. However, there are few works for user
identification and verification based on gestures. Both body- and hand-based gesture
biometrics have been investigated independently using primarily depth silhouette
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BodyLogin: Full-body gestures (captured with Kinect v1)

HandLogin: In-air hand gestures (captured with Kinect v2)

MSRAction3D: Full-body gestures (captured with Kinect v1)

Fig. 7.1 Examples of normalized depth images and corresponding colored optical flow [20] for
body and hand gestures captured using various depth sensors.Hue indicates optical flow orientation,
and saturation indicates magnitude

shape [39, 42] and skeletal features (pose estimates from depth maps) [1, 16, 17,
38, 41]. In [42], a temporal hierarchy of depth-based silhouette covariances from
hand gestures was used to authenticate users, whereas in [1] a dynamic time warping
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(DTW) algorithm applied to fingertip and palm coordinates (hand pose estimates),
that were estimated from depth images, was used. Perhaps the work that is closest to
the goal of this chapter is [16], where action-specificmetric learning from normalized
joint positions of the body was used to predict identity from a pool of known actions.
We differ from that work, in that we learn user identity directly from depth images,
without the need to have pose estimates of body joint positions. We use depth maps
and the associated optical flow, which can be useful in cases when skeletal pose
estimation is not reliable or not fully available (such as for hand poses).

In terms of methodology, we leverage the success of deep convolutional neural
networks (CNNs) in various vision tasks. The goal of a CNN is to learn a large set
of kernel weights optimized for a particular loss function matched to a task at hand.
Within this domain, several still-image network architectures have been proposed,
such as:AlexNet [14],GoogLeNet [33], andVGGNet [31]. These networks generally
vary in the number of layers and the number and size of kernels. We adapt AlexNet
to our task of verifying or identifying users based on gestures.

7.3 Proposed Approach

In this chapter, we analyze the biometric performance of gestures using AlexNet.
AlexNet [14] is an eight-layer-deep CNN consisting of five convolutional and two
fully connected layers followed by a soft-max layer.We adapt this network to gesture
sequences by using a variant of the two-stream convolutional network architecture
proposed in [30]. Two-stream convolutional networks, as the name implies, train two
separate networks: one for spatial information, and one for temporal information.
Although such networks were originally intended for RGB images, we have adapted
them to handle depth maps (Fig. 7.2).

The first network is a “spatial stream” convolutional network where a stream of
T input depth map frames, extracted from the input video through decimation, are
mapped to a stream of T output feature vectors os by passing each frame, one-by-one,
through the network (Fig. 7.2).

The second network is a “temporal stream” convolutional network that takes a
sequence of T colored optical flow frames (corresponding to the T spatial-stream
input frames) as input. Optical flow is computed from the current and next depth
map image (depth map values are treated as luminance values) [20]. The computed
optical flow vectors are mapped into polar coordinates and then converted to hue,
based on the angle, and saturation, based on the magnitude (Fig. 7.1) [20]. Much
like in the first network, this stream of T input optical flow frames is mapped to a
stream of T output feature vectors ot by passing every colored optical flow frame,
one-by-one, through the temporal-stream network.

A simple convex combination of the outputs of both networks is used to yield a
single output oc which is used for performance evaluation:

oc = wsos + wtot ,
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where ws ≥ 0 is the spatial-stream network weight, wt ≥ 0 is the temporal-stream
networkweight,ws + wt = 1, and os and ot are the respective network outputs.When
ws = 1,wt = 0, only information from the spatial-stream network is used, and when
ws = 0,wt = 1, only information from the temporal-stream network is used.Wewill
report results for various combinations of (ws,wt ) weights.

7.3.1 CNNs for Identification and Verification

Identification: The use of this network for closed-set identification, i.e., given a
gesture, identify a user from a set of known users, is straightforward. During training
(see Sect. 7.3.2), gesture sequences are broken up into single frames to be used
standalone. During testing, we take the mean of the soft-max probability outputs
oc across T frames (Fig. 7.2). Recall that oc is a weighted combination of the soft-
max probabilities for an input across two networks. This yields a single soft-max
probability vector of length N (given N users to identify), and the component with
the largest probability identifies the user. Although not the main focus of this chapter,
gesture recognition uses the same structure where N is the number of gestures rather
than the number of users to identity.
Verification: In verification1 (given a gesture, is a user who (s)he claims to be?),
we propose using the output features from the “full7” layer of a network trained for
identification (Fig. 7.2). This avoids having to train a separate verification network
for each user which is very expensive computationally. In addition, there are simply
not enough training samples for each positive class represented by an authentic user
to fully train a network. In this approach, for T frames that are uniformly sampled
from a gesture sequence, two features of dimension 4096 × T (the length of the last
fully connected layer) are extracted yielding os and ot , whose linear combination
gives oc. Since there is no built-in classification in this approach, we use these fea-
tures as the input to a two-class classification algorithm for verification (we use a
1-nearest-neighbor classifier). The intuition behind this idea is that, given enough
users to identify, the network will naturally learn a user-separating feature space
which can be leveraged for verification.

We discuss the parameters and training of all the elements of our networks in the
next section.

7.3.2 Network Implementation Details

Typically, there are not enough training samples in gesture datasets to train all the
weights of a deep convolutional network from scratch. Therefore, we follow the
common practice to “pre-train” the network [5, 12] using weights from another

1Verification is also called authentication.
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network with sufficient data and then fine-tune those weights for new data. In our
case, we use the dataset from ImageNet [27] to train a network with a soft-max loss
function, that classifies RGB images into 1000 classes, to initialize the weights in our
5 convolutional layers (conv1 to conv5). Although ourmodality is different, aswe use
depth images and colored optical flow (instead of RGB), initializing with ImageNet
weights is still effective. Our fully connected layers are trained from scratch, with
weights initialized to be zero-meanGaussianwith a small standard deviation of 0.001.
In all our networks, we use a batch size of 256 images. For the spatial-streamnetwork,
we start with a learning rate of 0.003, decreasing this rate by one-tenth every 3,000
iterations until a total of 12,000 iterations are completed. For the temporal-stream
network, we start with a learning rate of 0.001, decreasing this rate by one-tenth
every 1,000 iterations until a total of 6,000 iterations are completed. The dropout
value is set to 0.5 in the fully connected layers of both networks.

We implement, in entirety, all our networks using Caffe [11, 37] on a single Titan
Z GPU.

7.4 Gesture Datasets

We evaluate our method on 3 publicly available datasets. Two of these datasets
were designed for user verification and identification (collected with the intention of
maximizing the number of users). The third one was designed for gesture recognition
(collected with the intention of maximizing the number of gesture/action types).

Notably, datasets for gesture recognition are typically gesture-centricmeaning that
they have a high number of gestures per user (many gestures to classify, few users
performing them) whereas studying authentication requires the opposite, namely
a user-centric dataset which has a high number of users per gesture. This issue is
highlighted in Table7.1, where we compare several gesture recognition datasets.
Clearly, many of these datasets contain less than 20 users. In cases where there are
more than 20 users, the data has been collected in such a way that there is either not
enough users performing each gesture (CMU Mocap) or the data contains dataset
bias due to gestures being performed continuously standing in-place (MSRC-12).
By standing in-place, each user’s lower body posture does not significantly change
which can cause dataset bias. In gesture recognition, this is typically not an issue, as
the same user will almost never be seen in both training and testing. However, for
cases of user recognition, this causes a significant issue, as the same user is almost
always seen in both training and testing.

Gesture-Based User Identification Datasets

HandLogin [8, 42] is a dataset containing in-air hand gesture sequences of 21 users,
each performing 4 different gestures that are recorded by a Kinect v2 sensor. All 4
hand gestures are performed with one’s right hand starting from a “rest” position:
the hand extended downwards on top of a ceiling-facing Kinect sensor, with fingers
comfortably spread apart. This placement of the sensor avoids the notorious “gorilla
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Table 7.1 A comparison of mostly body gesture recognition datasets using either depth or Mocap
(motion capture) sensors. We have highlighted, user-centric datasets (ideal for identification and
authentication) in bold. �In CMUMocap, all users do not perform all gestures (some gesture types
have only a single user performing it). ‡In MSRC-12, gestures are performed continuously in a long
sequence, one after another causing inherent biases

Dataset # of users # of gestures Data type

CMU Mocap [3] >100 109� Mocap

HDM05 [22] 5 >70 Mocap

MSRAction3D [18] 10 20 Kinect v1 Depth

HumanEva I/II [29] 4/2 6/1 RGB + Mocap

MSRC-12 [7] 30 12‡ Kinect v1
(Skeletons only)

MSRGesture3D [36] 10 12 Kinect v1 Depth

MSRDailyActivity3D [35] 10 16 Kinect v1 Depth

Berkeley MHAD [23] 12 11 Multimodal
(Depth + Mocap)

BodyLogin [4] 40 5 Kinect v1 Depth

Handlogin [8] 21 4 Kinect v2 Depth

Fig. 7.3 Visualization of
HandLogin camera setup.
Kinect v2 camera points
towards the ceiling

arm” issue, where users would need to maintain their hand in a vertical front-to-
parallel position instead of using a more comfortable horizontal down-to-parallel
position (see Fig. 7.3). The orientation of our sensor was designed to mimic an
authentication terminal, where typically only a single user is visible. The following
gestures are performed (Fig. 7.4): compass (move open hand in multiple directions),
piano (move fingers as if playing piano), push (move open hand towards and away
from the sensor), and flipping fist (twist and curl hand into a fist). Each user performed
10 samples of each gesture.

BodyLogin [2, 39–41] is a full-body multi-view dataset containing gesture
sequences of 40 users performing 5 different gestures that are recorded by Kinect v1
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Compass gesture (flat translation)

Piano gesture (subtle finger movements)

Push gesture (change in distance to sensor)

Flipping Fist gesture (occlusions in fingers)

Fig. 7.4 The 4 gestures used in HandLogin for user identification. For visualization, images have
been cropped, and only show the lower 4-bits of the 16-bit depth image

Fig. 7.5 BodyLogin camera
setup with four Kinects.
Three Kinects (left, center,
and right) were placed in
front of the user, and one was
placed behind the user (back)
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S gesture

Left-right gesture

Double-handed arch gesture

Balancing gesture

User-defined gesture: knee lift (will vary between users)

Fig. 7.6 The 5 gestures used in BodyLogin for user identification

sensors (see Fig. 7.5). Four of these gestures are predefined: S gesture (user draws an
“S” shape with both arms), left-right (user reaches right shoulder with left hand, and
then left shoulder with right hand), double-handed arch (user moves both arms in an
upwards arch), and balancing (user performs a complex balancing gesture involving
arms and legs). The fifth gesture is created by the user (user defined). These gestures
are visualized in Fig. 7.6. Each user performed each gesture about 20 times under
varying degradations, such as carrying a bag, wearing a coat, passage of time, and
also under spoof attacks. In this study, we train and test with samples across all
degradations, and only from the center camera viewpoint. For download details of
the HandLogin and BodyLogin datasets see Sect. 7.6.
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Fig. 7.7 Stacked histograms representing the lengths of the 4 gestures inHandLogin.Color denotes
sample frequency counts from a specific user. Gestures were collected at 30 frames per second

In both of these identification-focused datasets, the duration of a single gesture
sample is only a few seconds. User-specific durations for fixed gesture types are
shown in Figs. 7.7 and 7.8 as stacked histograms, where color denotes sample fre-
quency counts from a specific user. For themost part, these datasets consider gestures
that are intentionally short. This is useful as performing a gesture that is too long
becomes harder to remember and repeat. Further, having to perform a long gesture
can become too prohibitive and too inconvenient over other alternative forms of
access control. It is important to note that gestures that are of longer duration do
not necessarily yield better performance. There can be scenarios where a gesture is
too hard to remember, or too hard to replicate consistently, which can result in poor
biometric performance relative to a shorter and simpler gesture.

Gesture Recognition Dataset

MSRAction3D [18, 35] is a full-body, single-view dataset containing motion
sequences of 10 users, performing 20 different actions in front of a Kinect v1 sen-
sor. Each subject performs each action 2 or 3 times, with a total of 567 depth map
sequences. Actions in this dataset are quite varied, for example: arm waves, hammer
motions, catches, punches, symbol drawings, kicks, tennis swings, golf swings, and
jogging. Although in [18], the actions are split into 3 non-overlapping subsets (each
containing 1/3 of actions) for evaluation, we instead evaluate all the actions at once
in all our experiments, which is a more difficult scenario.
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Fig. 7.8 Stacked histograms representing the lengths of the 5 gestures in BodyLogin.Color denotes
sample frequency counts from a specific user. Gestures were collected at 30 frames per second

Dataset Preprocessing

First, background subtraction (background frames are given) was applied to all depth
frames in all datasets. Then, the background-subtracted frames were scaled to 0–1
range and resized using bicubic interpolation to 224 × 224pixels as shown inFig. 7.1.

7.5 Performance Evaluation

We evaluate performance for two access control scenarios [10]: closed-set identifi-
cation and verification.

In closed-set identification, given a query gesture sequence, an identity is predicted
from a pool of known users. The performance measure we use for identification is
the correct classification error (CCE), which is the rate at which users are incorrectly
identified.

In verification, given a query gesture sequence and claimed identity, the claim is
either verified or rejected. If the query is sufficiently close in distance to a known,
enrolled gesture sequence of the claimed identity, it will be accepted as that user;
otherwise, it will be rejected. An error in verification results from either a false
acceptance or a false rejection. The false acceptance rate (FAR) is the rate at which
unauthorized users are accepted and is a measure of security. The false rejection rate
(FRR) is the rate at which authorized users are denied access and is a measure of
convenience. There exists a trade-off between FAR and FRR which is controlled by
a threshold on acceptance distance (between the query and closest enrolled gesture).
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A popular metric that captures this trade-off with a single scalar is the equal error
rate (EER) which is the FAR (or FRR) for the threshold when FAR and FRR are
equal.

In our verification experiments, we use the �2 distance between the features of
gesture sequences (flattened vectors of length 4096 × T, T = 50). If the distance,
dNN , between a query sample Q and its nearest-neighbor enrolled sample of the
claimed identity is below a threshold, it is accepted; otherwise, it is rejected. In this
chapter, we report the EER for our verification experiments.

In detail, letAi denote the set of gesture samples from a single authorized user i ,
and letUi denote the set of gesture samples that do not come from authorized user i .
Then, for a given threshold value θ , the FAR and FRR are calculated by:

FRR(Ai , θ) =
∑

Q∈Ai
1(dNN (Q,Ai\Q) ≥ θ)

|Ai |
FAR(Ai ,Ui , θ) =

∑
Q∈Ui

1(dNN (Q,Ai ) < θ)

|Ui |
where the indicator function 1(condition) equals 1 if the ‘condition’ is true and
equals 0 otherwise.

EER for the pair (Ai ,Ui ) is found by first computing the FAR-FRR pairs for
different thresholds θ . Then, the EER is determined as the location on the boundary
of the convex hull of the FAR-FRR pairs where FAR equals FRR. In practice, this
EER may not lie directly on an FAR-FRR pair that corresponds to any decision
threshold. In general, the EER point represents the FAR-FRR performance of a
randomized decision rule that chooses, with some probability, between two decision
rules having different thresholds [28]. This computation with a fixed threshold θ

can be repeated and averaged across all authorized users who each have his/her own
unique set (Ai ,Ui ).

7.6 Experimental Results

In all our experiments, we benchmark against reimplemented depth silhouette covari-
ance features as proposed in [42]. This method is not based on convolutional
neural networks. For convenience, we have combined the HandLogin and Body-
Login datasets into a single download available on our website [4].

User Identification

We attempt to identify a user across a whole pool of possible gestures. We test
performance both when a gesture has been seen by the system and also when it has
not. The latter case evaluates how well our learned model generalizes to gestures
that have not been part of the training set. If it performs well, our model would have,
in effect, learned a specific “style” with which a user performs gestures, not just the
specific gestures a user performs.
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Table 7.3 User identification onMSRAction3D. [16] performs user identification based on skeletal
pose estimates derived from depth maps

Dataset User Identification CCE (%)
Weighted Convnets (ws ,wt ) Baselines

←− Spatial Temporal −→ Wu [42] [16]

(1, 0) ( 12 , 1
2 ) (0, 1)

MSR 0.0 0.0 0.53 13.6 7.0

Results for both the BodyLogin and Handlogin datasets are shown in Table7.2.
The first row of this table (“All/All”) refers to a scenario when the network has been
trained with samples from all gestures. In this row, we split the dataset into one half
for training and the other half for testing, where each half contains samples from
all gestures. The remaining rows in the table are for scenarios when the network
has been trained on some gestures while tested on a different unseen gesture. For
example, for “All but Fist/Fist” the network has been trained on “Compass,” “Piano,”
and “Push” but tested on “Fist.” In Table7.3, we report results for user identification
on the MSRAction3D dataset. Here, we train only on one sample of each action,
and test on the remaining 1–2 samples. This is the same as the row (“All/All”) in
Table7.2, where we train with samples from all gestures. In addition to our silhouette
covariance benchmark from [42], we also compare to the reported user identification
results from [16], which uses skeletal joint estimates and a distance metric based on
skeletal coordinates, to determine user identity.

Suppression of Dynamics in User Identification

In order to understand the impact of dynamics in our deep network representation,
we studied the effect of “removing” it. Although a similar studywas done in [40], that
was based on skeletal pose estimates. Our study is based on depth maps.We consider
both the input to the temporal-stream network, as well as the input to the spatial-
stream network as containing full dynamic information. To suppress the impact of
dynamics, we remove the temporal network completely, and use only the first 3 depth
map frames (out of typically hundreds of frames, thus spanning the time duration
of less than a tenth of a second) as input to the spatial-stream network. In Table7.4,
we show the empirical performance of dynamics suppression for our two-stream
approach as well as for the approach in [42] which we have reimplemented for this
experiment.

User Verification

Here, we attempt to verify a user’s query gesture and claimed identity against a pool
of known gestures (all gestures of the claimed identity). As it is impractical to train
a deep network for each user, we instead train an identification network first and
use it as a feature extractor for verification (see Sect. 7.3). In our experiments, we
“leave-out” one-fourth of the user pool for testing, and train an identification net-
work (for feature extraction) on the remaining three-fourths. For BodyLogin, this is
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leave-10-persons-out and forHandLogin this is leave-5-persons-out cross-validation.
In the benchmark verification method, we use covariance features from the test sam-
ples. In Table7.5, we report these results averaged across 4 “leave-out” folds for
verification on Bodylogin and HandLogin datasets.

Gesture Recognition

Here, we attempt to recognize the gesture type performed across a pool of users.
While in user identification we are trying to learn the user identity irrespective of
which gestures the user performs, in gesture recognition we are trying to learn the
gesture irrespective of the users who perform them. Similar to how we “leave-out”
gestures in our user identification experiments, we “leave-out” users in our gesture
recognition experiments. Specifically, we “leave-out” half of the user pool for testing,
and train a gesture recognition network on the remaining half. For MSRAction3D,
we employ the cross-validation approach of leaving 5 persons out as done in [24],
and in BodyLogin2 and Handlogin, we perform leave-20-persons-out, and leave-
10-persons-out (half of each dataset population), respectively. We report results for
gesture recognition in Table7.6.

Table 7.4 Results for the suppression of dynamics in user identification: only first 3 frames of
each depth map sequence are used for training and testing, and the temporal stream is disabled
(ws = 1,wt = 0)

Dataset Scenario User Identification CCE (%)
Data used Spatial Wu [42]

HandLogin All frames 0.24 6.43

No dynamics 1.90 9.29

BodyLogin All frames 0.05 1.15

No dynamics 1.00 32.60

Table 7.5 User verification results for HandLogin and BodyLogin

Dataset Scenario User Verification EER (%)
Weighted Convnets (ws ,wt ) Baseline

Users ←− Spatial Temporal −→ Wu [42]

(1, 0) ( 23 , 1
3 ) ( 12 , 1

2 ) ( 13 , 2
3 ) (0, 1)

HandLogin Leave-5-persons-out 2.52 2.20 2.71 4.09 6.50 11.45

BodyLogin Leave-10-persons-out 2.76 2.45 1.99 3.07 8.29 3.46

2Of the 5 gesture classes in BodyLogin, 4 gesture classes are shared across users, and 1 is not, being
user defined. This means that in leave-persons-out gesture recognition, the fifth gesture class will
not have samples of its gesture type in training. As a result, the fifth gesture class is expected to act
as a “reject”/“not gestures 1-4” category for gesture recognition.
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Table 7.6 Gesture recognition results. For each dataset, we perform leave-(N/2)-persons-out
cross-validation, where N is equal to the total number of users in the dataset

Dataset Gesture Recognition CCE (%)
Weighted Convnets (ws ,wt ) Baseline

←− Spatial Temporal −→ Wu [42]

(1, 0) ( 12 , 1
2 ) (0, 1)

HandLogin 15.00 6.82 10.91 0.91

BodyLogin 21.10 15.09 20.35 15.44

MSRAction3D 44.36 36.00 40.36 25.45

7.7 Discussion

The above results demonstrate a significant decrease in error when using deep net-
works compared to benchmark methods in user identification (all 3 datasets) and
verification (HandLogin and BodyLogin).3 This decrease is most striking in identifi-
cation, when we test gestures that have not been used in training the network. In stark
contrast to the CNN features proposed in our work, the covariance features proposed
in [42] do not generalize well across gestures, i.e., when gestures that are not part of
the training set appear in the test set. This can be seen most clearly by examining the
CCE values for the “Compass” gesture in Table7.2. The CCE for covariance features
is as high as 82.38% while it is only 2.38% for our CNN features.

This cross-gesture generalization capacity of CNNs is also observed in the t-SNE
embeddings [34] of the “full7” layer outputs for Handlogin (Fig. 7.9), BodyLogin
(Fig. 7.10), and MSRAction3D (Fig. 7.11) datasets. Part (a) of each figure shows the
feature embedding for our baseline, which favors clustering by gesture type. Parts (b),
(c), and (d) show the feature embeddings for our convolutional networks. In part (b),
the pre-trained embedding from ImageNet tends to favor clustering points by gesture
type. After fine-tuning for identification in part (c), we see clustering by user identity.
This reveals that it is very beneficial to fine-tune our networks from the pre-trained
weights in order to cluster by user. Fine-tuning for gesture recognition, shown in
part (d), causes even more compact clustering by gesture type than in part (b). Note
that in the t-SNE plots of the “full7” layer outputs after fine-tuning for identification
(part (c)) users tend to cluster together whereas gesture types are mixed within each
cluster. However, in the corresponding t-SNE plots of the covariance features (part
(a)), gesture types tend to cluster together with users beingmixed within each cluster.

There are cases where our network does not generalize well across gestures, e.g.,
the “Push” gesture (Table7.2). We posit that this lower performance occurs because
the trained gestures are significantly different in form and dynamics from the other
gestures. The “Push” gesture contains variations in scale whereas the other gestures
do not. The “Fist” gesture contains motion that completely occludes the shape of the

3Due to the general lack of per-user samples in MSRAction3D (as it is a gesture-centric dataset),
we do not report results for verification, and leave-gesture-out experiments for identification.
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(a) HandLogin silhouette covariance features [42]

(b) HandLogin pre-trained “full7” features (no fine tuning)

(c) HandLogin user identification fine-tuned “full7” features

(d) HandLogin gesture recognition fine-tuned “full7” features

Fig. 7.9 2-D t-SNE embeddings of features for the HandLogin dataset. Left-column plots are color-
coded by user, whereas those in the right column are color-coded by gesture type. A single marker
represents a single gesture sequence. These figures show the t-SNE embeddings of the last fully
connected layer’s output from our convolutional networks (before and after fine-tuning), and those
from our baseline, silhouette covariance features



7 Two-Stream CNNs for Gesture-Based Verification … 177

(a) BodyLogin silhouette covariance features [42]

(b) BodyLogin pre-trained “full7” features (no fine tuning)

(c) BodyLogin user identification fine-tuned “full7” features

(d) BodyLogin gesture recognition fine-tuned “full7” features

Fig. 7.10 2-D t-SNE embeddings of features for theBodyLogin dataset. For additional information,
please see Fig. 7.9. The cyan marker denotes user-defined gestures where any motion is allowed; it
is not expected to cluster tightly
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(a) MSRAction3D silhouette covariance features [42]

(b) MSRAction3D pre-trained “full7” features (no fine tuning)

(c) MSRAction3D user identification fine-tuned “full7” features

(d) MSRAction3D gesture recognition fine-tuned “full7” features

Fig. 7.11 2-D t-SNE embeddings of features for the MSRAction3D dataset. For additional infor-
mation, please see Fig. 7.9
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hand, which is not present in the other gestures. The “Balancing” gesture includes
leg movements, not so for other gestures. For the most part, this type of result is to be
expected. It will always be difficult to generalize to a completely unknown gesture
that has little-to-no shared components with training gestures.

For identification on MSRAction3D, we get 0% classification error. Although
seemingly surprising, this result might be attributed to the dataset collection proce-
dure. In MSRAction3D, gesture samples from a user are extracted by partitioning
one long continuous video into multiple sample parts. While not an issue for ges-
ture recognition (as the same user will never be in both training and test sets due to
“leave-persons-out” testing), this can result in biases for user recognition. This bias
stems from almost identical, partially shared body postures across samples, which
the deep network learns very well. The aforementioned issue is avoided in Body-
Login and HandLogin, as there is a “reset” procedure between samples – samples
are not recorded in one long continuous sequence (users leave and re-enter the room
between samples).

For verification, the differences are far less dramatic, but CNN features still yield
a decent decrease in EER (Table7.5). In both scenarios, the smaller the value, the
better the performance (we want small EER and CCE).

Across all our results, the temporal stream is complementary to the spatial stream
for user identification, verification, and even gesture recognition. That is, having a
temporal-stream weight wt �= 0, will not degrade performance. The only exception
to this is when information is not seen in the training phase such as in leave-gesture-
out results for user identification in Table7.2. The reduced performance due to the
inclusion of the temporal stream is not entirely surprising, as there are body/hand
motions in testing that have not been seen in training (unseen optical flow vectors).
As a result, this ends up generalizing poorly, whereas the static poses from the spatial
network still fare quite well. Across all experimental results, a simplistic weighted
average of ( 12 ,

1
2 ) is perhaps the best option.

Our experiments involving dynamics suppression in user identification (Table7.4)
confirm that motion plays a crucial role; it can reduce the mis-identification rate from
1 error in 100 attempts to 1 error in 2,000 attempts (for BodyLogin). This conclusion
is consistent across our proposed method and the benchmark we evaluate.

In gesture recognition, our deep learning approach slightly outperforms the non-
CNN approach on BodyLogin, but is outperformed on the other datasets. We specu-
late that this is due to the size of the dataset. Notably, BodyLogin is our largest dataset
with the most samples (≈4,000 gesture sequences, ≈150 frames each), and can beat
our baseline. This is larger than both HandLogin (≈840 gesture sequences, ≈150
frames each) and MSRAction3D (≈600 gesture sequences, ≈35 frames each) com-
bined, both of which underperform in gesture recognition. As the CNN approach
outperforms the baseline in all other experiments, this perhaps suggests that with
fewer samples it is easier to discriminate between users, than it is to discriminate
between gestures. Overall, we believe that on larger datasets such as BodyLogin,
deep learning will likely outperform the baseline.
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7.8 Conclusions

This is the first work to investigate the use of two-stream convolutional networks
for learning user-specific gesture “styles”. Most prior works assume a single gesture
password per user and perform poorly when gesture types that are not encountered
in the training set appear during testing. The proposed CNN-based features are able
to effectively generalize across multiple types of gestures performed by the same
user by implicitly learning a representation that depends only on the intrinsic “style”
of each user as opposed to the specific gesture as we demonstrated across multiple
datasets.

A key practical outcome of this approach is that for verification and identification
there is no need to retrain a CNN as long as users do not use dramatically different
gestures. With some degradation in performance, a similar new gesture can still be
used for convenience.

A direction for future work could explore recent advances in two-stream convo-
lutional networks that involve fusing the spatial and temporal streams [6, 19, 25].
One way this can be done, is by fusing the outputs of both the spatial and temporal-
streams’ convolutional layers with a simple operation such as sum, multiply, or max.
This method has shown promising improvements in the action recognition litera-
ture, and may lead to improvements in user identification/verification, where we are
using gestures as a biometric. A key benefit of such an approach, would be that
explicit weighting of the temporal and spatial-stream networks would no longer be
needed; rather the contributions of each network would be learned automatically in
a complete end-to-end architecture.

Additional information and resources for this work are available at our
website [4].
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Chapter 8
DeepGender2: A Generative Approach
Toward Occlusion and Low-Resolution
Robust Facial Gender Classification
via Progressively Trained Attention Shift
Convolutional Neural Networks
(PTAS-CNN) and Deep Convolutional
Generative Adversarial Networks (DCGAN)

Felix Juefei-Xu, Eshan Verma and Marios Savvides

Abstract In this work, we have undertaken the task of occlusion and low-resolution
robust facial gender classification. Inspired by the trainable attention model via deep
architecture, and the fact that the periocular region is proven to be the most salient
region for gender classification purposes, we are able to design a progressive con-
volutional neural network training paradigm to enforce the attention shift during the
learning process. The hope is to enable the network to attend to particular high-
profile regions (e.g., the periocular region) without the need to change the network
architecture itself. The network benefits from this attention shift and becomes more
robust toward occlusions and low-resolution degradations. With the progressively
trained attention shift convolutional neural networks (PTAS-CNN) models, we have
achieved better gender classification results on the large-scale PCSO mugshot data-
base with 400K images under occlusion and low-resolution settings, compared to
the one undergone traditional training. In addition, our progressively trained network
is sufficiently generalized so that it can be robust to occlusions of arbitrary types and
at arbitrary locations, as well as low resolution. One way to further improve the
robustness of the proposed gender classification algorithm is to invoke a genera-
tive approach for occluded image recovery, such as using the deep convolutional
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generative adversarial networks (DCGAN). The facial occlusions degradation stud-
ied in this work is a missing data challenge. For the occlusion problems, the missing
data locations are known whether they are randomly scattered, or in a contiguous
fashion. We have shown, on the PCSO mugshot database, that a deep generative
model can very effectively recover the aforementioned degradation, and the recov-
ered images show significant performance improvement on gender classification
tasks.

8.1 Introduction

Facial gender classification has always been one of the most studied soft-biometric
topics. Over the past decade, gender classification on constrained faces has almost
been perfected. However, challenges still remain on less-constrained faces such as
faces with occlusions, of low resolution, and off-angle poses. Traditional methods
such as the support vector machines (SVMs) and its kernel extension can work pretty
well on this classic two-class problem as listed in Table8.8. In this work, we approach
this problem from a very different angle. We are inspired by the booming deep
convolutional neural network (CNN) and the attentionmodel to achieveocclusion and
low-resolution robust facial gender classification via progressively training the CNN
with attention shift. From an orthogonal direction, when images are under severe
degradations such as contiguous occlusions, we utilize a deep generative approach
to recover the missing pixels such that the facial gender classification performance
is further improved on occluded facial images. On one hand, we aim at building
a robust gender classifier that is tolerant to image degradations such as occlusions
and low resolution, and on the other hand, we aim at mitigating and eliminating the
degradations through a generative approach. Together, we stride toward pushing the
boundary of unconstrained facial gender classification.

8.1.1 Motivation

Xu et al. [70] proposed an attention-basedmodel that automatically learns to describe
the content of images which has been inspired by recent work in machine translation
[3] and object detection [2, 57]. In their work, two attention-based image caption
generators were introduced under a common framework: (1) a ‘soft’ deterministic
attention mechanismwhich can be trained by standard back-propagation method and
(2) a ‘hard’ stochastic attention mechanism which can be trained by maximizing an
approximate variational lower bound. The encoder of themodels uses a convolutional
neural network as a feature extractor, and the decoder is composed of a recurrent
neural network (RNN) with long short-term memory (LSTM) architecture where
the attention mechanism is learned. The authors can then visualize that the network
can automatically fix its gaze on the salient objects (regions) in the image while
generating the image caption word by word.
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Input Image Image Signature - LAB Image Signature - RGB

Input Image Image Signature - LAB Image Signature - RGB

Fig. 8.1 (Top) Periocular region on human faces exhibits the highest saliency. (Bottom) Foreground
object in focus exhibits the highest saliency. Background is blurred with less high-frequency details
preserved

For facial gender classification, we know from previous work [16, 56] that the
periocular region provides the most important cues for determining the gender infor-
mation. The periocular region is also the most salient region on human faces, such as
shown in the top part of Fig. 8.1, using a general purpose saliency detection algorithm
[14]. Similar results can also be obtained using other saliency detection algorithms
such as [15, 17]. We can observe from the saliency heat map that the periocular
region does fire the most strongly compared to the remainder of the face.

Now we come to think about the following question:

Q: How can we let the CNN shift its attention toward the periocular region,
where gender classification has been proven to be the most effective?
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The answer comes from our day-to-day experience with photography. If you are
using a DSLR camera with a big aperture lens, and fixing the focal point onto an
object in the foreground, all background beyond the object in focus will become out
of focus and blurred. This is illustrated in the bottom part of Fig. 8.1 and as can be
seen, the sharp foreground object (cherry blossom in hand) attracts the most attention
in the saliency heat map.

Thus, we can control the attention region by specifying where the image is blurred
or remains sharp. In the context of gender classification, we know that we can benefit
from fixing the attention onto the periocular region. Therefore, we are ‘forcing’ what
part of the image the network weighs the most, by progressively training the CNN
using images with increasing blur levels, zooming into the periocular region, as
shown in Table8.1. Since we still want to use a full-face model, we hope that by
employing the mentioned strategy, the learned deep model can be at least on par with
other full-face deep models, while harnessing gender cues in the periocular region.

Q: Why not just use the periocular region crop?

Table 8.1 Blurred images with increasing levels of blur

13.33% 27.62% 41.90%

56.19% 68.57% 73.33%
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Although experimentally, periocular is the best facial region for gender classifi-
cation, we still want to resort to other facial parts (beard/mustache) for providing
valuable gender cues. This is especially true when the periocular region is less ideal.
For example, some occlusion like sunglasses could be blocking the eye region, and
we want our network to still be able to generalize well and perform robustly, even
when the periocular region is corrupted.

To strike a good balance between full face-only and periocular-only models, we
carry out a progressive training paradigm for CNN that starts with the full face,
and progressively zooms into the periocular region by leaving other facial regions
blurred. In addition, we hope that the progressively trained network is sufficiently
generalized so that it can be robust to occlusions of arbitrary types and at arbitrary
locations.

Q: Why blurring instead of blackening out?

We justwant to steer the focus, rather than completely eliminating the background,
like the DSLR photo example shown in the bottom part of Fig. 8.1. Blackening would
create abrupt edges that confuse the filters during the training. When blurred, low-
frequency information is still well preserved. One can still recognize the content of
the image, e.g., dog, human face, objects, etc. from a blurred image.

Blurring outside the periocular region, and leaving the high-frequency details at
the periocular region will both help providing global and structural context of the
image, as well as keeping the minute details intact at the region of interest, which
will help the gender classification, and fine-grained categorization in general.

Q: Why not let CNN directly learn the blurring step?

We know that CNN filters operate on the entire image, and blurring only part
of the image is a pixel location dependent operation and thus is difficult to emulate
in the CNN framework. Therefore, we carry out the proposed progressive training
paradigm to enforce where the network attention should be.

8.2 Related Work

In this section, we provide relevant background on facial gender classification and
attention models.

The periocular region is shown to be the best facial region for recognition purposes
[20–22, 24, 27, 31–36, 38, 39, 39, 40, 59, 62, 63], especially for gender classification
tasks [16, 56]. A few recent work also applies CNN for gender classification [4, 50].
More related work on gender classification is consolidated in Table8.8.
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Attention models such as the one used for image captioning [70] have gained
much popularity only very recently. Rather than compressing an entire image into a
static representation, attention allows for salient features to dynamically come to the
forefront as needed. This is especially important when there is a lot of clutter in an
image. It also helps gaining insight and interpreting the results by visualizing where
the model attends to for certain tasks. This mechanism can be viewed as a learnable
saliency detector that can be tailored to various tasks, as opposed to the traditional
ones such as [8, 14, 15, 17].

It is worth mentioning the key difference between the soft attention and the hard
attention. The soft attention is very easy to implement. It produces distribution over
input locations, reweights features, and feeds them as input. It can attend to arbitrary
input locations using spatial transformer networks [19]. On the other hand, the hard
attention can only attend to a single input location, and the optimization cannot utilize
gradient descent. The common practice is to use reinforcement learning.

Other applications involving attention models may include machine translation
which applies attention over input [54]; speech recognition which applies attention
over input sounds [6, 9]; video captioning with attention over input frames [72];
image, question to answer with attention over image itself [69, 75]; and many more
[67, 68].

8.3 Proposed Method

Our proposed method involves two major components: a progressively trained atten-
tion shift convolutional neural networks (PTAS-CNN) framework for training the
unconstrained gender classifier, as well as a deep convolutional generative adversar-
ial networks (DCGAN) for missing pixel recovery on the facial images so that the
gender recognition performance can be further improved on images with occlusions.

8.3.1 Progressively Trained Attention Shift Convolutional
Neural Networks (PTAS-CNN)

In this section we detail our proposed method on progressively training the CNN
with attention shift. The entire training procedure involves (k + 1) epoch groups
from epoch group 0 to k, where each epoch group corresponds to one particular blur
level.

8.3.1.1 Enforcing Attention in the Training Images

In our experiment, we heuristically choose 7 blur levels, including the one with no
blur at all. The example images with increasing blur levels are illustrated in Table8.1.
We use a Gaussian blur kernel with σ = 7 to blur the corresponding image regions.
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Doing this is conceptually enforcing the network attention in the training images
without the need of changing the network architecture.

8.3.1.2 Progressive CNN Training with Attention

We employ the AlexNet [46] architecture for our progressive CNN training. The
AlexNet has 60 million parameters and 650,000 neuron, consisting of 5 convolu-
tion layers and 3 fully connected layers with a final 1000-way softmax. To reduce
overfitting in the fully connected layers, AlexNet employs “dropout” and data aug-
mentation, both of which are preserved in our training. The main difference is that
we only need a 2-way softmax due to the nature of gender classification problems.

As illustrated in Fig. 8.2, the progressive CNN training begins with the first epoch
group (EpochGroup 0, imageswith no blur), and the first CNNmodelM0 is obtained
and frozen after convergence. Then, we input the next epoch group for tuning the
M0 and in the end produce the second model M1, with attention enforced through
training images. The procedure is carried out sequentially until the final modelMk is
obtained. EachM j ( j = 0, . . . , k) is trained with 1000 epochs and with a batchsize
of 128.At the end of the training for step j , themodel corresponding to best validation
accuracy is taken ahead to the next iteration ( j + 1).

8.3.1.3 Implicit Low-Rank Regularization in CNN

Blurring the training images in our paradigm may have more implications. Here
we want to show the similarities between low-pass Fourier analysis and low-rank
approximation in SVD. Through the analysis, we hope to make connections to the
low-rank regularization procedure in the CNN. We have learned from a recent work
[65] that enforcing a low-rank regularization and removing the redundancy in the
convolution kernels is important and can help improve both the classification accu-
racy and the computation speed. Fourier analysis involves expansion of the original
data xi j (taken from the data matrix X ∈ Rm×n) in an orthogonal basis, which is the
inverse Fourier transform:

xi j = 1

m

m−1∑

k=0

cke
i2π jk/m . (8.1)

The connection with SVD can be explicitly illustrated by normalizing the vector
{ei2π jk/m} and by naming it v′

k :

xi j =
m−1∑

k=0

bikv
′
jk =

m−1∑

k=0

u′
iks

′
kv

′
jk, (8.2)
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Fig. 8.2 Progressive CNN training with attention
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which generates the matrix equation X = U′Σ ′V′�. However, unlike the SVD, even
though the {v′

k} are an orthonormal basis, the {u′
k} are not in general orthogonal.

Nevertheless this demonstrates how the SVD is similar to a Fourier transform. Next,
we will show that the low-pass filtering in Fourier analysis is closely related to the
low-rank approximation in SVD.

Suppose we have N image data samples of dimension d in the original two-
dimensional form {x1, x2, . . . , xN }. Let matrix X̂ contain all the data samples under-
gone 2D Fourier transform F(·), in the vectorized form:

X̂ =

⎡

⎢⎢⎣vec(F(x1)) vec(F(x2)) . . . vec(F(xN ))

⎤

⎥⎥⎦

d×N

.

Matrix X̂ can be decomposed using SVD: X̂ = ÛΣ̂V̂�.Without loss of generality,
let us assume that N = d for brevity. Let g and ĝ be the Gaussian filter in spatial
domain and frequency domain, respectively, namely ĝ = F(g). Let Ĝ be a diagonal
matrix with ĝ on its diagonal. The convolution operation becomes dot product in
frequency domain, so the blurring operation becomes

X̂blur = Ĝ · X̂ = Ĝ · ÛΣ̂V̂�, (8.3)

where Σ̂ = diag(σ1,σ2, . . . ,σd) contains the singular values of X̂blur, already sorted
in descending order: σ1 ≥ σ2 ≥ . . . ≥ σd . Suppose we can find a permutation matrix
P such that when applied on the diagonal matrix Ĝ, the diagonal elements are sorted
in descending order according to the magnitude: Ĝ′ = PĜ = diag(ĝ′

1, ĝ
′
2, . . . , ĝ

′
d).

Now, let us apply the same permutation operation on X̂blur, we can thus have the
following relationship:

P · X̂blur = P · Ĝ · ÛΣ̂V̂� (8.4)

X̂′
blur = Ĝ′ · ÛΣ̂V̂� = Û · (Ĝ′Σ̂) · V̂� (8.5)

= Û · diag(ĝ′
1σ1, ĝ

′
2σ2, . . . , ĝ

′
dσd) · V̂�. (8.6)

Due to the fact that Gaussian distribution is not a heavy-tailed distribution, the
already smaller singular values will be brought down to 0 by the Gaussian weights.
Therefore, X̂blur actually becomes low-rank after Gaussian low-pass filtering. To
this end, we can say that low-pass filtering in Fourier analysis is equivalent to the
low-rank approximation in SVD up to a permutation.

This phenomenon is loosely observed through the visualization of the trained
filters, as shown in Fig. 8.15, which will be further analyzed and studied in future
work.
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8.3.2 Occlusion Removal via Deep Convolutional Generative
Adversarial Networks (DCGAN)

In this section, we first review the basics of DCGAN and then show how DCGAN
can be utilized for occlusion removal, or missing pixel recovery on face images.

8.3.2.1 Deep Convolutional Generative Adversarial Networks

The generative adversarial network (GAN) [12] is capable of generating high-quality
images. The framework trains two networks, a generator Gθ(z) : z → x, and a dis-
criminator Dω(x) : x → [0, 1]. G maps a random vector z, sampled from a prior
distribution pz(z), to the image space. D maps an input image to a likelihood. The
purpose of G is to generate realistic images, while D plays an adversarial role to
discriminate between the image generated from G, and the image sampled from data
distribution pdata. The networks are trained by optimizing the following minimax
loss function:

min
G

max
D

V (G,D) = Ex∼pdata(x)

[
log(D(x))

]
+ Ez∼pz(z)

[
log(1 − D(G(z))

]
,

where x is the sample from the pdata distribution; z is randomly generated and lies in
some latent space. There are many ways to structure G(z). The deep convolutional
generative adversarial network (DCGAN) [60] uses fractionally strided convolutions
to upsample images instead of fully connected neurons as shown in Fig. 8.3.

The generator G is updated to fool the discriminator D into wrongly classifying
the generated sample, G(z), while the discriminator D tries not to be fooled. In this
work, both G and D are deep convolutional neural networks and are trained with an
alternating gradient descent algorithm. After convergence,D is able to reject images
that are too fake, and G can produce high-quality images faithful to the training
distribution (true distribution pdata).

8.3.2.2 Occlusion Removal via DCGAN

To take on the missing data challenge, we need to utilize both the G andD networks
from DCGAN, pre-trained with uncorrupted data. After training, G is able to embed
the images from pdata onto some nonlinear manifold of z. An image that is not from
pdata (e.g., corrupted face image with missing pixels) should not lie on the learned
manifold. Therefore, we seek to recover the “closest” image on the manifold to the
corrupted image as the proper reconstruction.

Let us denote the corrupted image asy. To quantify the “closest”mapping fromy to
the reconstruction, we define a function consisting of contextual loss and perceptual
loss, following the work of Yeh et al. [73].

In order to incorporate the information from the uncorrupted portion of the given
image, the contextual loss is used to measure the fidelity between the reconstructed
image portion and the uncorrupted image portion, which is defined as
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Fig. 8.3 Pipeline of a standardDCGANwith the generatorGmapping a randomvector z to an image
and the discriminator D mapping the image (from true distribution or generated) to a probability
value

Lcontextual(z) = ‖M 	 G(z) − M 	 y‖1, (8.7)

where M denotes the binary mask of the uncorrupted region and 	 denotes the
element-wiseHadamard product operation. The corrupted portion, i.e., (1 − M) 	 y,
is not used in the loss. The choice of �1-norm is empirical. From the experiments
carried out in [73], images recovered with �1-norm loss tend to be sharper and with
higher quality compared to ones reconstructed with �2-norm.

The perceptual loss encourages the reconstructed image to be similar to the
samples drawn from the training set (true distribution pdata). This is achieved by
updating z to fool D, or equivalently to have a high value of D(G(z)). As a result,
D will predict G(z) to be from the data with a high probability. The same loss for
fooling D as in DCGAN is used:

Lperceptual(z) = log(1 − D(G(z))). (8.8)

The corrupted image with missing pixels can now be mapped to the closest z
in the latent representation space with the defined perceptual and contextual losses.
We follow the training procedure in [60] and use Adam [45] for optimization. z is
updated using back-propagation with the total loss:

ẑ = argmin
z

(Lcontextual(z) + λLperceptual(z)) (8.9)

where λ is a weighting parameter. After finding the optimal solution ẑ, the halluci-
nated full-face image can be obtained by

xhallucinated = M 	 y + (1 − M) 	 G(ẑ). (8.10)
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Examples of face recovery from contiguous occlusions are shown in Fig. 8.11
usingDCGAN.Applying this deep generative approach for occluded image recovery
is expected to improve the performance of unconstrained gender classification.

8.4 Experiments: Part A

In this section we detail the training and testing protocols employed and various
occlusions and low resolutions modeled in the testing set. Accompanying figures and
tables for each subsection encompass the results and observations and are elaborated
in each section.1

8.4.1 Database and Preprocessing

Training set: We source images from 5 different datasets, each containing samples
of both classes. The datasets are J-Mugshot, O-Mugshot, M-Mugshot, P-Mugshot,
and Pinellas. All the datasets, except Pinellas, are evenly separated into males and
females of different ethnicities. The images are centered, by which, we mean that
we have landmarked certain points on the face, which are then anchored to fixed
points in the resulting training image. For example, the eyes are anchored at the
same coordinates in every image. All of our input images have the same dimension
168 × 210. The details of the training datasets are listed in Table8.2. The images are
partitioned into training and validation and the progressive blur is applied to each
image as explained in the previous section. Hence, for a given model iteration, the
training set consists of ∼90k images.

Testing set: The testing set was built primarily from the following two datasets:
(1) The AR Face database [55] is one of the most widely used face databases with
occlusions. It contains 3,288 color images from 135 subjects (76 male subjects +
59 female subjects). Typical occlusions include sunglasses and scarves. The data-
base also captures expression variations and lighting changes. (2) Pinellas County
Sherrif’s Office (PCSO) mugshot database is a large-scale database of over 1.4 mil-
lion images.We took a subset of around 400K images from this dataset. These images
are not seen during training.

The testing images are centered and cropped in the same way as the training
images, though other preprocessing like the progressive blur are not applied. Instead,
to model real world occlusions we have conducted the following experiments to be
discussed in Sect. 8.4.2.

1A note on legend: (1) SymbolsM correspond to each model trained, withMF corresponding to
the model trained on full face (equivalent toM0),MP to one with just periocular images andMk ,
k ⊆ (1, . . . , 6) to the incremental models trained. (2) The tabular results show model performance
on the original images in column 1 and corrupted images in other columns.
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Table 8.2 Datasets used for progressive CNN training

Database Males Females

J-Mugshot 1900 1371

M-Mugshot 1772 805

Pinellas subset 13215 3394

P-Mugshot 46346 12402

O-Mugshot 4164 3634

67397 21606

Total 89003

8.4.2 Experiment I: Occlusion Robustness

In Experiment I, we carry out occlusion robust gender classification on both the AR
Face database and thePCSOmugshot database.Wemanually add artificial occlusions
to test the efficacy of ourmethod on the PCSOdatabase and test on the various images
sets in the AR Face dataset.

Fig. 8.4 Overall
classification accuracy on the
PCSO (400K). Images are
not corrupted
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Fig. 8.5 Various degradations applied on the testing images for Experiment I and II. Row 1 ran-
dom missing pixel occlusions; Row 2 random additive Gaussian noise occlusions; Row 3 random
contiguous occlusions. Percentage of degradation for Row 1–3 10, 25, 35, 50, 65 and 75%. Row 4
various zooming factors (2x, 4x, 8x, 16x) for low-resolution degradations

8.4.2.1 Experiments on the PCSO Mugshot Database

To begin with, the performance of various models on the clean PCSO data is shown
in Fig. 8.4. As expected, if the testing images are clean, it should be preferable to use
MF , rather than MP . We can see that the progressively trained models M1 − M6

are on par withMF .
We corrupt the testing images (400K) with three types of facial occlusions. These

are visualized in Fig. 8.5 with each row corresponding to some modeled occlusions.

(1) Random Missing Pixels Occlusions
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Table 8.3 Overall classification accuracy on the PCSO (400K). Images are corruptedwith random
missing pixels of various percentages

Corruption 0% 10% 25% 35% 50% 65% 75%

MF 97.66 97.06 93.61 89.15 82.39 79.46 77.40

M1 97.63 96.93 92.68 87.99 81.57 78.97 77.20

M2 97.46 96.83 93.19 89.17 83.03 80.06 77.68

M3 97.40 96.98 94.06 90.65 84.79 81.59 78.56

M4 97.95 97.63 95.63 93.10 87.96 84.41 80.22

M5 97.52 97.26 95.80 94.07 90.40 87.39 83.04

M6 97.60 97.29 95.50 93.27 88.80 85.57 81.42

MP 95.75 95.45 93.84 92.02 88.87 86.59 83.18

Varying factors of the image pixels (10, 25, 35, 50, 65 and 75%) were dropped
to model lost information and grainy images.2 This is corresponding to the first row
in Fig. 8.5. From Table8.3 and Fig. 8.6, M5 performs the best with M6 showing
a dip in accuracy suggesting a tighter periocular region is not well suited for such
applications, i.e., a limit on the periocular region needs to be maintained in the blur
set. There is a flip in performance of the models MP and MF going from the
original to 25% with the periocular model generalizing better for higher corruptions.
As the percentage of missing pixels increases, the performance gap between MP

and MF increases. As hypothesized, the trend of improving performance between
progressively trained models is maintained across factors indicating a better learned
model toward noise.

(2) Random Additive Gaussian Noise Occlusions

Gaussian white noise (σ = 6) was added to image pixels in varying factors (10,
25, 35, 50, 65 and 75%). This is corresponding to the second row in Fig. 8.5 and is
done to model high noise data and bad compression. From Table8.4 and Fig. 8.7,
M4 − M6 perform best for medium noise. For high noise, M5 is the most robust.
Just like before, as the noise increases, the trend undertaken by the performance of
MP & MF and M5 & M6 is maintained and so is the performance trend of the
progressively trained models.

(3) Random Contiguous Occlusions

2This can also model the dead pixel/shot noise of a sensor and these results can be used to accelerate
inline gender detection by using partially demosaiced images.
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Fig. 8.6 Overall classification accuracy on the PCSO (400K). Images are corrupted with random
missing pixels of various percentages

Table 8.4 Overall classification accuracy on the PCSO (400K). Images are corruptedwith additive
Gaussian random noise of various percentages

Corruption 0% 10% 25% 35% 50% 65% 75%

MF 97.66 97.00 94.03 91.19 86.47 83.43 79.94

M1 97.63 96.93 94.00 91.26 87.00 84.27 81.15

M2 97.46 96.87 94.43 92.19 88.75 86.44 83.33

M3 97.40 97.00 95.18 93.27 89.93 87.55 84.16

M4 97.95 97.67 96.45 95.11 92.43 90.28 87.06

M5 97.52 97.29 96.25 95.21 93.21 91.65 89.12

M6 97.60 97.32 96.04 94.77 92.46 90.80 88.08

MP 95.75 95.59 94.85 94.00 92.43 91.15 88.74

Tomodel big occlusions like sunglasses or other contiguous elements, continuous
patches of pixels (10, 25, 35, 50, 65 and 75%) were dropped from the image as
seen in the third row of Fig. 8.5. The most realistic occlusion corresponds to the
first few patches, and other patches are extreme cases. For the former cases, M1 −
M3 are able to predict the classes with the highest accuracy. From Table8.5 and
Fig. 8.8, for such large occlusions and missing data, more contextual information is
needed for correct classification sinceM1 − M3 perform better than other models.
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Fig. 8.7 Overall classification accuracy on the PCSO (400K). Images are corrupted with additive
Gaussian random noise of various percentages

Table 8.5 Overall classification accuracy on the PCSO (400K). Images are corruptedwith random
contiguous occlusions of various percentages

Corruption 0% 10% 25% 35% 50% 65% 75%

MF 97.66 96.69 93.93 88.63 76.54 73.75 64.82

M1 97.63 96.95 94.64 90.20 77.47 75.20 53.04

M2 97.46 96.76 94.56 90.04 75.99 70.83 56.25

M3 97.40 96.63 94.65 90.08 77.13 71.77 68.52

M4 97.95 96.82 92.70 86.64 75.25 70.37 61.63

M5 97.52 96.56 92.03 83.95 70.36 69.94 66.52

M6 97.60 96.61 93.08 86.34 71.91 71.40 69.50

MP 95.75 95.00 93.01 88.34 76.82 67.81 49.73

However, since they perform better thanMF , our scheme of focused saliency helps
generalizing over occlusions.

8.4.2.2 Experiments on the AR Face Database

We partitioned the original set to smaller subsets to better understand our methodol-
ogy’s performance under different conditions. Set 1 consists of neutral expression,
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Fig. 8.8 Overall classification accuracy on the PCSO (400K). Images are corrupted with random
contiguous occlusions of various percentages

full-face subjects. Set 2 has full face but varied expressions. Set 3 includes periocu-
lar occlusions such as sunglasses and Set 4 includes these and other occlusions like
clothing, etc. Set 5 is the entire dataset including illumination variations.

Referring to Table8.6 and Fig. 8.9, for Set 1, the full-face model performs the
best and this is expected as this model was trained on images very similar to this.
Set 2 suggests that the models need more contextual information when expressions
are introduced. Thus, M4 which has focus on periocular but has face information
too performs best. For Set 3, we can see two things: one, MP performs better than
MF indicative of its robustness to periocular occlusions. Two, M5 is the best as
it combines periocular focus with contextual information gained from incremental
training.

Set 4 performance brings out why periocular region is preferred for occluded
faces. We ascertained that some texture and loss of face contour is throwing off the
models M1 − M6. The performance of the models on Set 5 reiterates previously
stated observations of the combined importance of contextual information about
face contours and the importance of periocular region. This is the reason for the best
accuracy reported by M3.
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Table 8.6 Gender classification accuracy on the AR Face database

Sets Set 1 Set 2 Set 3 Set 4 Set 5 (Full Set)

MF 98.44 93.23 89.06 83.04 81.65

M1 97.66 92.71 86.72 81.70 82.82

M2 97.66 92.71 90.62 82.14 85.10

M3 97.66 93.23 91.41 80.80 85.62

M4 98.44 95.31 92.97 77.23 84.61

M5 96.88 93.49 94.53 80.36 84.67

M6 96.09 92.71 92.97 79.02 83.90

MP 96.09 90.62 91.41 86.61 83.44
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Fig. 8.9 Gender classification accuracy on the AR Face database

8.4.3 Experiment II: Low-Resolution Robustness

Our scheme of training on Gaussian blurred images should generalize well to low-
resolution images. To test this hypothesis, we tested our models on images from the
PCSO mugshot dataset by first down-sampling them by a factor and then blowing
them back up (zooming factor for example: 2x, 4x, 8x, 16x).3 This inculcates the
loss of edge information and other higher order information and is captured in the

3Effective pixel for 16x zooming factor is around 10× 13, which is a quite challenging low-
resolution setting.
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Table 8.7 Overall classification accuracy on the PCSO (400K). Images are down-sampled to a
lower resolution with various zooming factors

Zooming factor 1x 2x 4x 8x 16x

MF 97.66 97.55 96.99 94.19 87.45

M1 97.63 97.48 96.91 94.76 87.41

M2 97.46 97.31 96.73 94.77 88.82

M3 97.40 97.20 96.37 93.50 87.57

M4 97.95 97.89 97.56 95.67 90.17

M5 97.52 97.40 96.79 95.26 89.66

M6 97.60 97.51 97.05 95.42 90.79

MP 95.75 95.65 95.27 94.12 91.59
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Fig. 8.10 Overall classification accuracy on the PCSO (400K). Images are down-sampled to a
lower resolution with various zooming factors
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last row of Fig. 8.5. As seen in Table8.7 and Fig. 8.10 for cases, 2x, 4x, 8x, the trend
between M1 − M6 and their performance with respect to MF is maintained. As
mentioned before,M4 performs well due to the balance between focus on periocular
region and saving the contextual information of a face.

8.4.4 Discussion

We have proposed a methodology for building a gender recognition system which
is robust to occlusions. It involves training a deep model incrementally over several
batches of input data preprocessed with progressive blur. The intuition and intent
is twofold, one to have the network focus on periocular regions of the face for
gender recognition. And two, to preserve contextual information of facial contours
to generalize better over occlusions.

Through various experiments we have observed that our hypothesis is indeed true
and that for a given occlusion set, it is possible to have high accuracy from a model
that encompasses both of above-stated properties. Irrespective of the fact that we did
not train on any occluded data, or optimize for a particular set of occlusions, our
models are able to generalize well over synthetic data and real-life facial occlusion
images.

We have summarized the overall experiments and consolidated the results in
Table8.8. For PCSO large-scale experiments, we believe that 35% occlusion is the
right amount of degradations, on which accuracies should be reported. Therefore,
we average the accuracy from our best model on three types of occlusions (missing
pixel, additive Gaussian noise, and contiguous occlusions) which gives 93.12% in
Table8.8. For low-resolution experiments, we believe 8x zooming factor is the right
amount of degradations, so we report the accuracy 95.67% in Table8.8. Many other
related work on gender classification are also listed for a quick comparison. This
table is based on [16].

8.5 Experiments: Part B

In order to boost the classification accuracy and support the models trained in the
previous section,we trained aGANtohallucinate occlusions andmissing information
in the input image. The next two sections detail our curation of the input data and the
selection of the testing sets for our evaluation. The gender model (Mk) definitions
remain the same as in the previous section. And we use Gz and Dx to denote the
Generator and Discriminator models from GAN.
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8.5.1 Network Architecture

The network architectures and approach that we use are similar to the work of [60].
The input size of the image is 64 × 64. While training we used Adam [45] optimiza-
tion method because it does not require hand-tuning of the learning rate, momentum,
and other hyper-parameters.

For learning z we use the same hyper-parameters as learned in the previousmodel.
In our experiments, running 2000 epochs helped converge to a low loss.

8.5.2 Database and Preprocessing

In order to train Gz and Dx our approach initially was to use the same input images
as used to train Mk . However, this resulted in the network not converging to a low
loss. In other words, we were not able to learn a generative distribution that the
generator could sample from. Our analysis and intuition suggested that in order for
the adversarial loss to work, the task had to be a challenge for both Gz and Dx . Our
fully frontal pose images were ill-posed for this model.

Hence to train the GAN, we used the Labeled Faces in the Wild (LFW) database
[47] and aligned the faces using dLib as provided by the OpenFace [1]. We trained
on the entire dataset comprising around 13,000 images with 128 images held out
for the purpose of qualitatively showing the image recovery results as in Fig. 8.11.
In this case, by visual analysis as well by analytical analysis the Gz was better able
to learn a distribution of z, pg , that was a strong representation of the data, pdata.
That is symbolically, pg = pdata. The results and detailed evaluation of the model are
done later in Sect. 8.5.3. In this part of the experiment, we use a subset of the PCSO
database containing 10,000 images (5,000 male and 5,000 female) for testing the
gender classification accuracy. The reason we did not test on the entire 400K PCSO
is simply because the occlusion removal step involves an iterative solver which is
time consuming.

8.5.3 Experiment III: Further Occlusion Robustness via
Deep Generative Approach

As shown in Fig. 8.11, we chose to model occlusions based on percentage of pixels
missing from the center of the image. The shown images are from the held-out portion
of the LFW dataset. We show recovered images in Fig. 8.11 as a visual confirmation
that the DCGAN is able to recover unseen images with high fidelity, even under
pretty heavy occlusions as much as 75% in the face center. The recovery results on
the PCSO datasets to be tested for gender classification are comparable to that of the
LFW, but we are not allowed to display mugshot images in any published work.
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10% 
Masked

Original

75% 
Masked

65% 
Masked

50% 
Masked

35% 
Masked

25% 
Masked

Fig. 8.11 Qualitative results of occlusion removal using DCGAN on images from LFW dataset

For training the Gz and Dx , we used the LFW data that captures a high variance
of poses, illumination, and faces. We found this was critical in helping especially the
Gz converge to a stable weights. The model was able to generalize well to various
faces and poses. As can be seen in Fig. 8.11, the model is able to generate missing
information effectively.
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Fig. 8.12 Quality measure
of occlusion removal on the
PCSO subset
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Table 8.9 Image quality measures (in dB) on the masked and occlusion removed images

Occlusion (%)

PSNR PSNR SNR SNR

10 25.3607 32.5194 18.8488 26.0101

25 16.8941 26.8720 10.3822 20.3627

35 14.112 24.7825 7.6001 18.2732

50 11.0937 22.1043 4.5819 15.5950

65 9.2849 20.3719 2.773 13.8627

75 8.4169 18.8392 1.905 12.3299

Not relying on visual inspection, we plotted the PSNR and SNR of the recov-
ered (occlusion removed) faces from the 10K PCSO subset in Fig. 8.12. This is our
quality measure of occlusion removal using GAN. As can be seen in Table8.9, the
PSNR/SNR is better for completed images and as expected is higher for images with
lesser occlusions.

The primary motivation behind training a GAN was to improve the classification
of Mk models. This is covered in Table8.10. The first column of the table is our
baseline case. This was constructed using upsampled images from the resolution as
needed by Gz and Dx to the resolution expected byMk . All other accuracies should
be evaluated with respect to this case. (Figure8.13)
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Figure8.14 corresponds to the other columns of Table8.10. The accuracies on
completed images using Gz are significantly better than the accuracies on masked
images. This suggests that the hallucinations are able to preserve the gender sensi-
tivity of the original images.

The above statement can also be verified through visual inspection of Fig. 8.11.
Even for high-percentage occlusions, 50 − 75%, the contours and features of the
original face are pretty accurately reproduced by Gz .

8.5.4 Discussion

In the current generative model for image occlusion removal, we assume that the
occlusion mask is known to the algorithm, which is the M in Eq.8.7. Although it is
beyond the scope of this work to study how an algorithm can automatically determine
the occlusion region, it will be an interesting research direction. For example, [61]
is able to automatically tell which part is the face or the non-face region.

One big advantage of the DCGAN or GAN in general is that it is entirely unsu-
pervised. The loss function is based off essentially measuring the similarity of two
distributions (the true image distribution and the generated image distribution), rather
than image-wise comparisons, which may require labeled ground-truth images be
provided. The unsupervised nature of the GAN has made the training process much
easier by not needing careful curating of the labeled data.

Fig. 8.13 Overall
classification accuracy for
Experiment III on the PCSO
subset. Images are not
corrupted

1 2 3 4 5 6
93

93.5

94

94.5

95

95.5

96

96.5

97

97.5

98

Model

A
cc

ur
ac

y

Clean Data

 

 

Model F
Model 1−6
Model P



212 F. Juefei-Xu et al.

1 2 3 4 5 6
82

84

86

88

90

92

94

96

98

Model

A
cc

ur
ac

y
Contiguous Missing Pixels 10%

1 2 3 4 5 6
50

55

60

65

70

75

80

85

90

95

100

Model
A

cc
ur

ac
y

Contiguous Missing Pixels 25%

1 2 3 4 5 6
50

55

60

65

70

75

80

85

90

95

Model

A
cc

ur
ac

y

Contiguous Missing Pixels 35%

1 2 3 4 5 6
50

55

60

65

70

75

80

85

90

Model

A
cc

ur
ac

y

Contiguous Missing Pixels 50%

1 2 3 4 5 6
50

55

60

65

70

75

80

Model

A
cc

ur
ac

y
Contiguous Missing Pixels 65%

1 2 3 4 5 6
50

55

60

65

70

75

80

85

Model
A

cc
ur

ac
y

Contiguous Missing Pixels 75%

 

 

Model F (Masked)
Model 1−6 (Masked)
Model P (Masked)
Model F (Completed)
Model 1−6 (Completed)
Model P (Completed)

Fig. 8.14 Overall classification accuracy on the PCSO subset. Images are corrupted with centered
contiguous occlusions of various percentages

The effectiveness of the DCGAN is also salient. It not only can recover the
high-percentage missing data with high fidelity, which translates to significant
improvement on the gender classification tasks, but also can be used for future data
augmentation in a total unsupervised manner. We can essentially generate as much
gender-specific data as needed, which will be an asset for training an even larger
model.

During our experimentation, we find that training the DCGAN using more con-
strained faces (less pose variations, less lighting variations, less expression variations,
etc.) such as the PCSOmugshot images actually degrades the recovery performance.
The reason could be as follows. When the training data is less diversified, let us
use one extreme case, which is a training dataset comprising thousands of images
from only one subject. In this case, the ‘true distribution’ becomes a very densely
clustered mass, which means whatever images the generator G tries to come up with,
the discriminatorD will (almost) always say that the generated ones are not from the
true distribution, because the generated image distribution can hardly hit that densely
clustered mass. This way, we are essentially giving a too easy task for the discrimina-
tor to solve, which prevents the discriminator to become a strong one, which leads to
poorly performing generator as well in this adversarial setting. In a nutshell, during
the DCGAN training, we definitely need more variations in the training corpus.



8 DeepGender2: A Generative Approach Toward Occlusion … 213

8.6 Conclusions and Future Work

In thiswork,wehaveundertaken the taskof occlusion and low-resolution robust facial
gender classification. Inspired by the trainable attention model via deep architecture,
and the fact that the periocular region is proven to be themost salient region for gender
classification purposes, we are able to design a progressive convolutional neural
network training paradigm to enforce the attention shift during the learning process.
The hope is to enable the network to attend to particular high-profile regions (e.g.,
the periocular region) without the need to change the network architecture itself. The
network benefits from this attention shift and becomesmore robust toward occlusions
and low-resolution degradations. With the progressively trained CNN models, we
have achieved better gender classification results on the large-scale PCSO mugshot
databasewith 400K images under occlusion and low-resolution settings, compared to
the one undergone traditional training. In addition, our progressively trained network
is sufficiently generalized so that it can be robust to occlusions of arbitrary types and
at arbitrary locations, as well as low resolution.

To further improve the gender classification performance on occluded facial
images, we invoke a deep generative approach via deep convolutional generative
adversarial networks (DCGAN) to fill in the missing pixels for the occluded facial
regions. The recovered images not only show high fidelity as compared to the original
un-occluded images but also significantly improve the gender classification perfor-
mance.

In summary, on one hand, we aim at building a robust gender classifier that is
tolerant to image degradations such as occlusions and low resolution, and on the other
hand, we aim at mitigating and eliminating the degradations through a generative
approach. Together, we are able to push the boundary of unconstrained facial gender
classification.

Future work: We have carried out a set of large-scale testing experiments on the
PCSO mugshot database with 400K images, shown in the experimental section. We
have noticed that, under the same testing environment, the amount of time it takes to
test on the entire 400K images various dramatically for different progressively trained
models (M0 − M6). As shown in Fig. 8.15, we can observe a trend of testing time
decrease when testing using M0 all the way to M6, where the curves correspond
to the additive Gaussian noise occlusion robust experiments. This same trend is
observed across the board for all the large-scale experiments on PCSO. The time
difference is stunning. For example, if we look at the green curve, M0 takes over
5000 seconds while M6 only around 500. One of the future directions is to study
the cause of this phenomenon. One possible direction is to study the sparsity or the
smoothness of the learned filters.

Shown in our visualization (Fig. 8.15) of the 64 first-layer filters in AlexNet for
modelsM0,M3, andM6, respectively, we can observe that the progressively trained
filters seem to be smoother and thismay be due to the implicit low-rank regularization
phenomenon discussed in Sect. 8.3.1.3. Other future work may include studying how
the ensemble ofmodels [43, 44] can further improve theperformance andhowvarious
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Fig. 8.15 (Top) Testing time for the additive Gaussian noise occlusion experiments on various
models. (Bottom)Visualization of the 64first-layer filters formodelsM0,M3, andM6, respectively

multimodal soft-biometrics traits [5, 23, 25, 26, 28–30, 37, 41, 42, 64, 66, 74] can
be fused for improved gender classification, especially under more unconstrained
scenarios.
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Chapter 9
Gender Classification from NIR Iris Images
Using Deep Learning

Juan Tapia and Carlos Aravena

Abstract Gender classification from NIR iris image is a new topic with only a
few papers published. All previous work on gender-from-iris tried to find the best
feature extraction techniques to represent the information of the iris texture for gender
classification using normalized, encoded or periocular images. However this is a
new topic in deep-learning application with soft biometric. In this chapter, we show
that learning gender-iris representations through the use of deep neural networks
may increase the performance obtained on these tasks. To this end, we propose
the application of deep-learning methods to separate the gender-from-iris images
even when the amount of learning data is limited, using an unsupervised stage with
Restricted BoltzmannMachine (RBM) and a supervised stage using a Convolutional
Neural Network (CNN).

9.1 Introduction

Oneactive area in ‘soft biometrics’ research involves classifying the gender of the per-
son from a biometric sample. Most work done on gender classification has involved
the analysis of faces or periocular images. Various types of classifiers have been
used in gender classification after feature extraction and selection. The classifiers
that have yielded highest classification accuracy in gender-from-face are Adaboost,
RBF networks, and Support vectormachines (SVM) [1, 20, 22, 24, 25, 31]. Recently
Levi et al. [19] proposed an automatic face age and gender classification using a sim-
ple convolutional net architecture that can be used when the quantity of learning data
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is limited. Also Juefei-Xu et al. [15] classified gender using faces images with occlu-
sion and low resolution using a progressive trained convolutional neural network
with attention.

Gender classification using iris information is a rather new topic, with only a few
papers published [2, 17, 26, 28]. Most gender classification methods reported in the
literature use all iris texture features for classification. As a result, gender-irrelevant
information might be fed into the classifier which may result in poor generalization,
especially when the training set is small. It has been shown both theoretically and
empirically that reducing the number of irrelevant or redundant features increases
the learning efficiency of the classifier [21].

In terms of comparing iris codes for identity recognition, iris codes of different
individuals, and even of the left and right eyes of the same individual, have been
shown to be independent. At the same time, several authors have reported that, using
an analysis of iris texture different from that used for identity recognition, it is possible
to classify the gender of the person with an accuracy much higher than chance.

There are several reasons why gender-from-iris is an interesting and potentially
useful problem [27]. One possible use arises in searching an enrolled database for
a match. If the gender of the sample can be determined, then it can be used to
order the search and reduce the average search time. Another possible use arises
in social settings where it may be useful to screen entry to some area based on
gender, but without recording identity. Gender classification is also important for
demographic information collection, marketing research, and real-time electronic
marketing. Another possible use is in high-security scenarios, where there may be
value in knowing the gender of the people who attempt entry but are not recognized
as any of the enrolled persons. And, at a basic science level, it is of value to more
fully understand what information about a person can be extracted from analysis of
their iris texture.

Thomas et al. [28]were thefirst to explore gender-from-iris, using images acquired
with an LG 2200 sensor. They segmented the iris region and employed machine
learning techniques to develop models that predict gender based on the iris texture
features. They segmented the iris region, created a normalized iris image, and then
applied a log-Gabor filter to the normalized image. They ran a rigorous quality check
to discard images with poor quality such as motion blur or out of focus. In addition
to the log-Gabor texture features, they used seven geometric features of the pupil
and iris, and were able to reach an accuracy close to 80%.

Lagree et al. [17] experimented with iris images acquired using an LG 4000
sensor. They computed texture features separately for eight five-pixel horizontal
bands, running from the pupil-iris boundary out to the iris sclera boundary, and
ten 24-pixel vertical bands from a 40 × 240 image. The normalized image is not
processed by the log-Gabor filters that are used by IrisBEE software [23] to create
the ‘iris code’ for biometrics purpose and do not use any geometrics features to
develop models that predict gender and ethnicity based on the iris texture feature.
These are the differences from features computed by Thomas in [28]. This approach
reached an accuracy close to 62% for gender and close to 80% for ethnicity.
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Bansal et al. [2] experimented with iris images acquired with a Cross Match
SCAN-2 dual-iris camera. An statistical feature extraction technique based on cor-
relation between adjacent pixels was combined with a 2D wavelet tree based on
feature extraction techniques to extract significant features from the iris image. This
approach reached an accuracy of 83.06% for gender classification. Nevertheless, the
database used in this experiment was very small (300 images) compared to other
studies published in the literature.

Tapia et al. [26] experimented with iris images acquired using an LG 4000 sensor
to classify gender of a person based on analysis of features of the iris texture. They
used different implementations of Local Binary Patterns from the iris image using
the masked information. Uniform LBP with concatenated histograms significantly
improves accuracy of gender prediction relative to using the whole iris image. Using
a non subject-disjoint test set, they were able to achieve over 91% correct gender
prediction using the texture of the left iris.

Costa-Abreu et al. [8] explored the gender prediction task with respect to three
approaches using only geometric features, only texture features and both geometric
and texture features extracted from iris images. This work used a BioSecure Mul-
timodal DataBase (BMDB) and these images were taken using a LG Iris Access
EOU-3000. They were able to achieve over 89.74% correct gender prediction using
the texture of the iris. Nevertheless the dataset is not available and the author chose
the images, spectacles were not allowed to be worn by subjects, although contact
lenses were allowed. Our database is a more real representation.

Bobeldik et al. [4] explored the gender prediction accuracy associated with four
different regions from NIR iris images: the extended ocular region, the iris-excluded
ocular region, the iris-only region, and the normalized iris-only region. They used a
Binarized Statistical Image Feature (BSIF) texture operator [16] to extract features
from the regions previously defined. The ocular region reached the best performance
with 85.7% while normalized images exhibited the worst performance, with almost
a 20% difference in performance over the ocular region (65%). Thereby we can
understand that the normalization process may be filtering out useful information.

Recently, Tapia et al. [27] predicted gender directly from the same binary iris
code that could be used for recognition. They found that information for gender
prediction is distributed across the iris, rather than localized in particular concentric
bands. They also found that using selected features representing a subset of the iris
region achieves better accuracy than using features representing the whole iris region
achieving 89% correct gender prediction using the fusion of the best features of iris
code from the left and the right eyes.

A summary of these methods’ experimental setup is presented in Table9.1.

9.2 Deep-Learning Models

In this chapter, we first propose an unsupervised approach to use a big quantity of
unlabeled iris images to pretrain a Deep Belief Network [13] and then use it to make
a fast fine tuning of a Deep Multilayer Network (MLP) for gender classification.
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Table 9.1 Gender classification summaryof previously publishedpapers.N represents:Normalized
Image, E represents: Encoded Image, P represent Periocular Image

Paper Sensor Size
of images

Number
of images

Number
of subject

TI E

Thomas et al. [28] LG 2200 20 × 240 16,469 N/A N –

Lagree et al. [17] LG 4000 40 × 240 600 300 N –

Bansal et al. [2] Cross Match
SCAN-2

10 × 500 300 200 N –

Tapia et al. [26] LG 4000 20 × 240 1,500 1,500 N –

Costa-Abreu et al. [8] LG EOU-3000 20 × 240 1,600 200 N –

Bobeldyk et al. [4] NIR sensor 20 × 240 3,314 1,083 N/P –

Tapia et al. [27] LG 4000 20 × 240 3,000 1,500 – E

A second approach is proposed using a Lenet-5 [18] Convolutional Neural Network
(CNN) model to improve the gender classification from normalized Near-Infrared
Red (NIR) iris images. We then compared and discuss the results obtained by both
methods.

9.2.1 Semi-supervised Method

In the iris biometric scenario we usually have a lot of information without labels (age,
gender, ethnicity), because iris databases were created focusing on iris identification
with encoding or periocular images and not in soft biometric problems such as
classifying gender-from-iris. Thus, we commonly have databases with iris images
taken for the same subject across several sessions and many of them do not have the
gender information available. Because of this, it can be a hard task to create a large
person-disjoint dataset to proper train and evaluate soft biometrics iris algorithms.
DBN unsupervised algorithm may help to classify unlabeled iris images.

9.2.1.1 Deep Belief Network

Deep Belief Network (DBN) consists of multiple layers of stochastic latent variables
trained using an unsupervised learning algorithm followed by a supervised learn-
ing phase using feed-forward back-propagation Multilayer Neural Networks (MLP)
[13]. In the unsupervised pretraining stage, each layer is trained using a Restricted
Boltzmann Machine (RBM). Unsupervised pretraining is an important step in solv-
ing a classification problem with terabytes of data and high variability without labels
that is the main concern in this proposal. A DBN is a graphical model where neurons
of the hidden layer are conditionally independent of one another for a particular
configuration of the visible layer and viceversa. A DBN can be trained layer-wise
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by iteratively maximizing the conditional probability of the input vectors or visible
vectors given the hidden vectors and a particular set of layer weights. This layer-wise
training can help in improving the variational lower bound on the probability of the
input training data, which in turn leads to an improvement of the overall generative
model. DBNs are graphical models which learn to extract a deep hierarchical rep-
resentation of the training data. They model the joint distribution between observed
vector x and the l hidden layers hk as follows:

P(x, hk, . . . , hl) =
(

l−2∏
k=0

P(hk |hk+1)

)
P(hl−1 − 1, hl) (9.1)

where x = h0, P(hk−1|, hk) is a conditional distribution for the visible units condi-
tioned on the hidden units of the RBMat level k, and P(hl−1, hl) is the visible-hidden
joint distribution in the top-level RBM. This is illustrated in Fig. 9.1.

In according with Hinton et al. [13] The principle of greedy layer-wise unsuper-
vised training can be applied to DBNs with RBMs as the building blocks for each
layer [3]. The process is as follows:

1. Train the first layer as an RBM that models the raw input x = h(0) as its visible
layer.

2. Use that first layer to obtain a representationof the input thatwill be used as data for
the second layer. Two common solutions exist. This representation can be chosen
as being the mean activations p(h(1) = 1|h(0)) or samples of p(h(1)|h(0)).

3. Train the second layer as an RBM, taking the transformed data (samples or mean
activations) as training examples (for the visible layer of that RBM).

4. Iterate (2 and 3) for the desired number of layers, each time propagating upward
either samples or mean values.

5. Fine tune all the parameters of this deep architecture with respect to a proxy
for the DBN log-likelihood, or with respect to a supervised training criterion
(after adding extra learning machinery to convert the learned representation into
supervised predictions).

The RBM can be denoted by the energy function E

Fig. 9.1 Block diagram of
RBM. X represent input
layer, h1–h3 hidden layer
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E(v, h) = −
∑
i

ai vi −
∑
j

b j h j −
∑
i

∑
i

h jwi, j vi (9.2)

where, the RBM consists of a matrix of layer weightsW = (wi, j ) between the hidden
units h j and the visible units v j . The ai and b j are the bias weights for the visible
units and the hidden units respectively. The RBM takes the structure of a bipartite
graph and hence it only has inter-layer connections between the hidden or visible
layer neurons but no intra-layer connections within the hidden or visible layers. So,
the activations of the visible unit neurons are mutually independent for a given set
of hidden unit activations and viceversa. Hence, by setting either h or v constant, we
can compute the conditional distribution of the other as follows [13]:

P(h j = 1 | v) = σ

(
b j +

m∑
i=1

wi, j vi

)
(9.3)

P(vi = 1 | h) = σ

⎛
⎝ai +

n∑
j=1

wi, j hi

⎞
⎠ (9.4)

where σ denotes the log sigmoid function. The training algorithm maximizes the
expected log probability assigned to the training dataset V. So if the training dataset
V consists of the visible vectors v, then the objective function is as follows:

argmaxE

[∑
v∈V

logP(v)

]
(9.5)

A RBM is trained using a Contrastive Divergence algorithm [7]. Once trained,
the DBN can be used to initialize the weights of the MLP for the supervised learning
phase.

In thiswork,we also focus onfine tuningvia supervisedgradient descent (Fig. 9.2).
Specifically, we use a logistic regression classifier to classify the input x based on
the output of the last hidden layer h(l) of the DBN. Fine tuning is then performed via
supervised gradient descent of the negative log-likelihood cost function. Since the
supervised gradient is only non-null for the weights and hidden layer biases of each
layer (i.e., null for the visible biases of each RBM), this procedure is equivalent to
initializing the parameters of a deep MLP with the weights and hidden layer biases
obtainedwith the unsupervised training strategy.One can also observe that theDBN is
very similar with the one for Stack denoise Autoencoding [30], because both involve
the principle of unsupervised layer-wise pre-training followed by supervised fine
tuning as a Deep MLP. In this chapter we use the RBM class instead of the denoise
autocoding class. Now the main problem is to choose the best hyperparameters for
Deep MLP.
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Fig. 9.2 Block diagram with the main stages from semi-supervised iris gender classification. Pre-
trained (Unsupervised Stage) was made with DBN and fine tuning with Deep MLP (Supervised
Stage)

Once all layers are pretrained, the network goes through a second stage of training
called fine tuning. Here we consider supervised fine tuning where we want to mini-
mize prediction error on a supervised task. For this, we first add a logistic regression
layer on top of the network (more precisely on the output code of the output layer).
Then train the entire network aswewould train aDeepMLP. This stage is supervised,
since now we use the target class during training.

9.2.2 Supervised Method

A second approach is proposed using a Lenet-5 [20] Convolutional Neural Network
(CNN) model to improve gender classification from Normalized Near Infrared Red
(NIR) iris images.

9.2.2.1 CNN

Convolutional Neural Networks (CNN) are biologically inspired variants of MLPs
[12]. From Hubel and Wiesel’s early work on the cat’s visual cortex [14], we know
the visual cortex contains a complex arrangement of cells. These cells are sensitive
to small subregions of the visual field, called a receptive field. The subregions are
tiled to cover the entire visual field. These cells act as local filters over the input space
and are well-suited to exploit the strong spatially local correlation present in natural
images. Additionally, two basic cell types have been identified: Simple cells respond
maximally to specific edge-like patterns within their receptive field. Complex cells
have larger receptive fields and are locally invariant to the exact position of the
pattern.
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Fig. 9.3 Representation of
sparse connectivity

9.2.2.2 Sparse Connectivity

CNNs exploit spatially local correlation by enforcing a local connectivity pattern
between neurons of adjacent layers. In other words, the inputs of hidden units in
layerm are from a subset of units in layerm − 1, units that have spatially contiguous
receptive fields. We can illustrate this graphically as follows: Imagine that layer
m − 1 is the input retina. In Fig. 9.3, units in layer m have receptive fields of width
3 in the input retina and are thus only connected to three adjacent neurons in the
retina layer. Units in layer m + 1 have a similar connectivity with the layer below.
We say that their receptive field with respect to the layer below is also 3, but their
receptive field with respect to the input is larger (5). Each unit is unresponsive to
variations outside of its receptive field with respect to the retina. The architecture
thus ensures that the learnt ‘filters’ produce the strongest response to a spatially local
input pattern.

However, as show in Fig. 9.3 stacking many such layers leads to (nonlinear) ‘fil-
ters’ that become increasingly ‘global’ (i.e., responsive to a larger region of pixel
space). For example, the unit in hidden layer m + 1 can encode a nonlinear feature
of width 5 (in terms of pixel space). One of the first applications of convolutional
neural networks (CNN) is perhaps the LeNet-5 network described by [18] for optical
character recognition. Compared to modern deep CNN, their network was relatively
modest due to the limited computational resources of the time and the algorithmic
challenges of training bigger networks. Though much potential laid in deeper CNN
architectures (networks with more neuron layers), only recently have they became
prevalent, following the dramatic increase in both the computational power, due to
availability ofGraphical Processing,Units (GPU); the amount of training data readily
available on the Internet; and the development of more effective methods for train-
ing such complex models. One recent and notable examples is the use of deep CNN
for image classification on the challenging Imagenet benchmark [11]. Deep CNN
have additionally been successfully applied to applications including human pose
estimation, facial keypoint detection, speech recognition, and action classification.
To our knowledge, this is the first report of their application to the task of gender
classification from iris images.
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Fig. 9.4 Representation of
shared weight on CNN

9.2.2.3 Shared Weight

In addition, in CNNs, each filter hi is replicated across the entire visual field. These
replicated units share the same parametrization (weight vector and bias) and form a
feature map. In Fig. 9.4, we show three hidden units belonging to the same feature
map. Weights of the same color are shared and constrained to be identical. Gradient
descent can still be used to learn such shared parameters, with only a small change
to the original algorithm. The gradient of a shared weight is simply the sum of the
gradients of the parameters being shared. Replicating units in this way allows for
features to be detected regardless of their position in the visual field. Additionally,
weight sharing increases learning efficiency by greatly reducing the number of free
parameters being learnt. The constraints on the model enable CNNs to achieve better
generalization on vision problems.

9.2.2.4 Pooling

Another important concept of CNNs are the pooling techniques. Today one of the
most used pooling algorithms is Max Pooling, but others can also be used such as:
Average, Sum, and Mean Pooling. The pool layers are used mainly to down-sample
the volumes spatially and to reduce the maps of features of previous layers. This
chapter uses a Max pooling approach.

Max pooling partitions the input image into a set of non-overlapping rectangles
(subregions) and, for each subregion, outputs the maximum value. Max pooling is
useful in for two main reasons: (a) by eliminating non-maximal values, it reduces
computation for upper layers; and (b) it provides a form of translation invariance.
Imagine cascading a max pooling layer with a convolutional layer. There are eight
directions in which one can translate the input image by a single pixel. If max
pooling is done over a 2 × 2 region, three out of these eight possible configurations
will produce exactly the same output at the convolutional layer. When max pooling
is applied over a 3 × 3 window, this jumps to 5/8. Since it provides additional
robustness to position, max pooling is a ‘smart’ way of reducing the dimensionality
of intermediate representations within a convolutional neural network.
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Fig. 9.5 Representation with the main stages from Lenet-5 CNN for iris gender classification. The
input are normalized NIR iris image with mask in yellow

9.2.2.5 Network Architecture

In this work we trained two Lenet-5 networks, named CNN-1 and CNN-2. Our pro-
posed network architecture is used throughout our experiments for gender classifica-
tion. The network comprises only three convolutional layers and two fully connected
layers with a small number of neurons. Our choice of a smaller network design is
motivated both from our desire to reduce the risk of overfitting as well as the nature of
the problem we are attempting to solve (gender classification has only two classes).
Only one channel (grayscale images with the occlusion mask) is processed directly
by the network. Normalized iris images of sizes 20 × 240 are fed into the network.

Sparse, convolutional layers and max pooling are at the heart of the LeNet family
of models. Figure9.5 shows a graphical depiction of a LeNet model. The three
subsequent convolutional layers are then defined as follows for CNN-1:

1. 20 filters of size 1 × 5 × 5 pixels are applied to the input in the first convolutional
layer, followed by a rectified linear operator (ReLU), a max pooling layer taking
the maximal value of 2 × 2 regions with two-pixel strides and a local response
normalization layer.

2. 50 filters of size 1 × 10 × 10 pixels are applied to the input in the second con-
volutional layer, followed by a rectified linear operator (ReLU), a max pooling
layer taking the maximal value of 2 × 2 regions with two-pixel strides and a local
response normalization layer.

3. 100 filters of size 1 × 20 × 20 pixels are applied to the input in the third con-
volutional layer, followed by a rectified linear operator (ReLU), a max pooling
layer taking the maximal value of 2 × 2 regions with two-pixel strides and a local
response normalization layer.

The following fully connected layers are then defined by:
4. A first fully connected layer that receives the output of the third convolutional

layer and contains 4,800 neurons, followed by a ReLU and a dropout layer (0.2).
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5. A second fully connected layer that receives the 3,840 dimensional output of the
first fully connected layer and again contains 500 neurons, followed by a ReLU
and a dropout layer (0.2).

6. Finally, the output of the last fully connected layer is fed to a softmax layer that
assigns a probability for each class. The prediction itself is made by taking the
class with the maximal probability for the given test image.

The first CNN was modified in order to use more appropriate filter sizes, con-
sidering that our images are wider than taller. The three subsequent convolutional
layers are then defined as follows for CNN-2:

1. 128 filters of size 1 × 5 × 21 pixels are applied to the input in the first convolu-
tional layer, followed by a rectified linear operator (ReLU), a max pooling layer
taking the maximal value of 2 × 2 regions with two-pixel strides and a local
response normalization layer.

2. 256 filters of size 1 × 5 × 21 pixels are applied to the input in the second con-
volutional layer, followed by a rectified linear operator (ReLU), a max pooling
layer taking the maximal value of 2 × 2 regions with two-pixel strides and a local
response normalization layer.

3. 512 filters of size 1 × 2 × 45 pixels are applied to the input in the third con-
volutional layer, followed by a rectified linear operator (ReLU), a max pooling
layer taking the maximal value of 2 × 2 regions with two-pixel strides and a local
response normalization layer.
The following fully connected layers are then defined by

4. A first fully connected layer that receives the output of the third convolutional
layer and contains 4,800 neurons, followed by a ReLU and a dropout layer (0.5).

5. A second fully connected layer that receives the 2,400 dimensional output of the
first fully connected layer and again contains 4,800 neurons, followed by a ReLU
and a dropout layer (0.5).

6. Finally, the output of the last fully connected layer is fed to a softmax layer that
assigns a probability for each class. The prediction itself is made by taking the
class with the maximal probability for the given test image

9.3 Iris Normalized Images

In this work, we used normalized iris images because the main idea is to extract the
information from the same process used for iris identification so gender classification
could be used as a secondary stage of information.

The iris feature extraction process involves the following steps: First, a camera
acquires an image of the eye. All commercial iris recognition systems use near-
infrared illumination, to be able to image iris texture of both ‘dark’ and ‘light’ eyes
[26]. Next, the iris region is located within the image. The annular region of the iris
is transformed from raw image coordinates to normalized polar coordinates. This
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Fig. 9.6 Transformation of Cartesian coordinates (x, y) to Polar coordinates in order to generate
the normalized image

results in what is sometimes called an ‘unwrapped’ or ‘rectangular’ iris image. See
Fig. 9.6. A texture filter is applied at a grid of locations on this unwrapped iris image,
and the filter responses are quantized to yield a binary iris code [5]. Iris recognition
systems operating on these principles are widely used in a variety of applications
around the world [6, 10, 29].

The radial resolution (r) and angular resolution (θ) used during the normalization
or unwrapping step determine the size of the normalized iris image, and can signif-
icantly influence the iris recognition rate. This unwrapping is referred to as using
Daugman’s rubber sheet model [9]. In this work, we use a normalized image of
20(r) × 240(θ), created using Daugman’s method and Osiris implementation. Both
implementations also create a segmentation mask of the same size as the normalized
image. The segmentation mask indicates the portions of the normalized iris image
that are not valid due to occlusion by eyelids, eyelashes or specular reflections.

9.4 Dataset

The images used in this paper were taken with an LG 4000 sensor (labeled images)
and IrisGuard AD-100 (unlabeled images). The LG 4000 and AD-100 use near-
infrared illumination and acquire a 480 × 640, 8-bit/pixel image. Example of iris
images appear in Fig. 9.7. We used two subsets, one for the unsupervised stage and
the other for the supervised stage. The image dataset for the supervised stage is
person-disjoint.

Thewhole database consists of two datasets: The first dataset has 10,000 unlabeled
images, 5 K left iris images and 5 K right iris images. We do not know the quantities
of male and female iris images. We used a fusion of 10 K (left and right) for the
pretrained (unsupervised) stage. Currently this dataset is not publicly available.
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Fig. 9.7 Example of iris images captured using an LG 4000 sensor

The second dataset has one left eye image and one right eye image for each of 750
males and 750 females, for a total of 3,000 images. Of the 1,500 distinct persons in
the dataset, visual inspection of the images indicates that about one-fourth are wear-
ing clear contact lenses. In order to improve the results we used the fusion of the left
and right normalized iris images, totalling 3,000 normalized images with their corre-
sponding segmentation mask computed using Osiris implementation.1 This dataset
is available to other researchers at GFI gender-from-iris dataset.2

A training portion of this 3,000-person dataset was created by randomly selecting
60% of the males and 60% of the females. The remaining 40% was used as the test
set. Once parameter selection is finalized, the same validation set used in [27] was
used for the final evaluation. This validation dataset contains 1,944 images: three left
eye images and three right eye images for each of 175 males and 149 females. It is
known that some subjects are wearing clear contact lenses, and evidence of this is
visible in some images. Also, a few subjects are wearing cosmetic contact lenses in

1Biosecure project. http://biosecure.it-sudparis.eu/AB/.
2https://sites.google.com/a/nd.edu/public-cvrl/data-sets.

http://biosecure.it-sudparis.eu/AB/
https://sites.google.com/a/nd.edu/public-cvrl/data-sets
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some images. In order to replicate real life conditions we did not remove any images
containing any type of defect (blurred or noised).

It is important to note that iris images of different persons, or even the left and right
iris images for a given person, may not present exactly the same imaging conditions.
The illumination by the LEDs may come from either side of the sensor, specular
highlights may be present in different places in the image, the inclination of the
head may be different, the eyelid occlusion may be different, and so forth. Also the
training, test and validation subsets are all independent and person disjoint in this
work.

9.5 Experiments

Our method is implemented using the Theano3 and Keras4 open-source framework.
Training was performed on a EC2 Amazon GPU machine with GRID K-520 using
g2.2x large instances with 8GB of video memory. For DBN we needed to train two
different stages, the pretrained stage with RBM and fine tuning with Deep MLP. The
first took 207min to train and the second 150min.

Training each convolutional network (CNN-1 and CNN-2) required about four
hours with 238 s per epoch to CNN-1 and 10 h for CNN-2. Predicting gender on
a single normalized image using our network requires about 100 ms. for CNN-1
and 178 ms. for CNN-2. Training running times can conceivably be substantially
improved by running the training on image batches.

9.6 Hyperparameters Selection

In this work, we used grid search to find the best hyperparameters of the DBN +
Deep MLP and Lenet-5 CNN. We look at tuning the batch size and number of
epochs used when fitting the networks. The batch size in iterative gradient descent
is the number of patterns shown to the network before the weights are updated. It is
also an optimization in the training of the network, defining how many patterns to
read at a time and keep in memory.

The number of epochs is the number of times that the entire training dataset is
shown to the network during training. Some networks are sensitive to the batch size,
such as Multilayer Perceptron Networks, and Convolutional Neural Networks.

In this work, we look at tuning the batch size and number of epochs used when
fitting the network. We evaluated a suite of different mini batch sizes from n=8 to
n=500 in steps of 2n for CNN-1–2 and m=10 to m=100 in steps of 10.

3http://deeplearning.net/software/theano/NEWS.html.
4https://keras.io/backend/.

http://deeplearning.net/software/theano/NEWS.html
https://keras.io/backend/
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Keras and Theano offers a suite of different state-of-the-art optimization
algorithms such as:‘SGD’, ‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, and others.
We tuned the optimization algorithm used to train the network, each with default
parameters. The best result was reached with ‘SDG’.

The Learning rate parameter controls how much to update the weight at the end
of each batch and the momentum controls how much to let the previous update
influence the current weight update. We tried an small set of standard learning rates
andmomentum values ranging from 0.1 to 0.9 in steps of 0.1 for CNN-1 and CNN-2.
For DBN a learning rate parameter for the pretraining stage and another learning rate
parameter for the fine tuning stage are needed. Both were set in the range 1e − 1 to
1e − 5.

The activation function controls the non-linearity of individual neurons and when
to fire. Generally, the rectifier activation function is the most popular, but sigmoid
and tanh functions were also very used and these functionsmay still bemore suitable
for different problems. In this work, we evaluated the suite of different activation
functions available. We only used these functions in the hidden layer, as we required
a sigmoid activation function in the output for the binary classification problem to
reach the best results in DeepMLP. For CNNs the best results were reach with ReLU
and Sof tmax activation functions.

We also looked at tuning the dropout rate for regularization parameter in an effort
to limit overfitting and improve the models ability to generalize. To get good results,
dropout is best combined with a weight constraint such as the max norm constraint.
This involves fitting both the dropout percentage and the weight constraint. We tried
dropout percentages between 0.0 and 0.9 and max norm weight constraint values
between 0 and 5. The best results were reached with 0.5.

The number of neurons in a layer also is an important parameter to tune. Gener-
ally the number of neurons in a layer controls the representational capacity of the
network, at least at that point in the topology. The best number of neurons is shown in
Tables9.2, 9.3.

Table 9.2 Gender classification rates usingDBN+DeepMLP. The number of the hidden layers are
indicated in parenthesis. We best results were reached with batch size of 100. ‘preT-LR’ represent
pre-trainning Learning Rate stage with value of 1 ∗ e − 2 and ‘FineT’ represent Fine Tunning
Learning rate with value of 1 ∗ e − 1

Number and size of hidden layers Accuracy (%)

(2) 5–5K 50.67

(2) 5–10K 55.67

(2) 10–5K 59.67

(2) 10–10K 61.00

(3) 5–5–5K 62.67

(3) 10–10–10K 66.79

(5)10–5–10–5–10K 77.79
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Table 9.3 Gender
classification rates using
CNN-1 with Batch size of 64.
LR represent Learning Rate

LR Epochs Accuracy (%)

1*e-1 50 50.08

1*e-2 50 49.92

1*e-3 50 62.77

1*e-4 50 62.94

1*e-5 50 64.94

1*e-1 100 51.10

1*e-2 100 50.42

1*e-3 100 63.94

1*e-4 100 69.11

1*e-5 100 69.27

1*e-1 200 53.08

1*e-2 200 56.08

1*e-3 200 63.27

1*e-4 200 67.77

1*e-5 200 70.62

1*e-1 500 53.08

1*e-2 500 57.00

1*e-3 500 65.27

1*e-4 500 69.22

1*e-5 500 77.91

1*e-1 750 63.43

1*e-2 750 65.25

1*e-3 750 68.28

1*e-4 750 67.37

1*e-5 750 77.00

1*e-1 1000 54.14

1*e-2 1000 66.87

1*e-3 1000 71.11

1*e-4 1000 64.55

1*e-5 1000 68.98

9.7 Results

9.7.1 Semi-supervised Method

The RBM pretraining stage is very sensitive to batch size and learning rate, therefore
we used values from 1 to 200 batch size and learning rate from 1e-1 to 1e-5 for
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Table 9.4 Gender
classification rates using
CNN-2 with Batch size of 64.
LR represent Learning Rate

LR Epochs Accuracy (%)

1*e-1 50 61.03

1*e-2 50 61.33

1*e-3 50 63.33

1*e-4 50 65.33

1*e-5 50 64.26

1*e-1 100 62.33

1*e-1 100 63.03

1*e-3 100 65.33

1*e-4 100 66.33

1*e-5 100 68.00

1*e-1 200 65.33

1*e-2 200 66.00

1*e-3 200 66.33

1*e-4 200 70.00

1*e-5 200 73.00

1*e-1 500 65.33

1*e-2 500 66.08

1*e-3 500 79.00

1*e-4 500 81.00

1*e-5 500 83.00

1*e-1 750 67.33

1*e-2 750 67.00

1*e-3 750 79.66

1*e-4 750 80.33

1*e-5 750 81.00

pre-trainwith 10K images and fine tuning stagewith near to 4,900 images. In average
the pretrained stage takes 307min and fine tuning only 150min. Table9.2 shows a
summary of the results.

9.7.2 Supervised Method

In order to compare the results with the semi-supervised method we trained two
‘small’ Lenet-5 CNN.We consider these networks ‘small’, because we do not have a
huge quantity of iris images available like in databases such asDeepface, Imagenet, or
VGG(16–19). This is one of ourmain concerns for applying deep-learning techniques
to any iris-based soft biometric problem.A future challenge to researchers in this area
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Table 9.5 Accuracy of our proposal models (*) and the state-of-the-art methods

Paper Accuracy (%) Obs.

Thomas et al. [28] 80.00 Discard poor quality

Lagree et al. [17] 62.00

Bansal et al. [2] 83.06 Only 300 images

Tapia et al. [26] 91.00 Non person disjoint

Costa-Abreu et al. [8] 89.74

Bobeldyk et al. [4] 65 Normalized images

Tapia et al. [27] 89.00 Binary images

CNN-1(*) 77,91 Supervised

CNN-2(*) 83.00 Supervised

DBM+Deep MLP (*) 77.79 Semi-supervised

Table 9.6 Summary of the best gender classification rates. Second column shows results without
data augmentation. Third column shows resultswith data augmentation (DA) in relation toTables9.3
and 9.4

DNN Accuracy (%) Accuracy – DA (%)

(5)10–5–10–5–10K 77.79 78.79

CNN-1 77.91 79.03

CNN-2 83.00 84.66

is to increase the number of soft biometric images captured with different sensors to
train more complex models.

Tables9.2, 9.3 and 9.4 show the summary of the results using different number of
parameters. Table9.5 shows the results of state-of-the-art algorithms compared with
our two proposals.

In order to create a larger dataset to train a supervised stage, we used data augmen-
tation by flipping vertically and horizontally the original iris images, increasing the
number of images three times for each iris. We applied this technique only to the best
results of Tables9.3 and 9.4. As future work we propose to study other techniques
to analyze the influence of data augmentation on the results. The summary of the
results using data augmentation, are presented on Table9.6.

9.8 Conclusion

Our best approach was to use convolutional neural networks trained with labeled
iris data, that reached 83.00% without data augmentation and 84.66% with data
augmentation being one of the top performance on relation with other state-
of-the-art methods as shown in Table9.5. We did not outperform our previous
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work in [27] but our deep-learning method presented here, did not use any pre-
processing stages or feature selection methods. Also, this proposal used normalized
images and not the encoded information. According with the results reported by
Bobeldik et al. [4] normalization process may be filtering out useful information.
We think these are good results considering the quantity of images used to train our
methods. Deep-learning techniques usually require much larger databases to reach
its full potential. We think that this work further validates the hypothesis about the
iris having information about a person’s gender.

Also, it is important to highlight the results reached by the semi-supervisedmethod
evenwhen it is not reached the best results of the test. The accuracy is verymotivating
considering that the results were reached with unlabeled iris images.

One of the main contributions of this work is that, to our understanding, this is
the first work that uses deep-learning techniques (both semi-supervised and super-
vised) to try to solve the problem of gender-from-iris. Our proposal reached good
performance by training a common deep-learning architecture designed to avoid
overfitting due to the limitation of available labeled iris images. Our network is com-
parable to some of the recent network architectures, thereby reducing the number of
its parameters and the chance for overfitting.

Also, we increased the number of images in our training set using data augmen-
tation in order to preliminary test its usefulness in improving the gender recognition
process. The resulting techniqueswere tested using unfiltered iris images and perform
comparably to most of the recent state-of-the-art methods.

Another contribution was to propose the usage of the large quantity of unlabeled
iris images available to help in the initialization of the weights of a deep neural
network. A larger number of unlabeled image may help to improve the gender clas-
sification rate. If we have more images captured from different sensors we can create
a general purpose gender classification method and understand if the information
present on the iris is dependent of the sensor used. To our understanding the features
present on the iris that make gender classification feasible, are independent of the
sensor used to capture the image. As a future challenge for all iris researchers, we
propose to make an effort to capture more images with soft biometrics labeled data.

Two important conclusions can be made from our results. First, convolutional
neural networks can be used to provide competitive iris gender classification results,
even considering the much smaller size of contemporary unconstrained image sets
labeled for gender. Second, the simplicity of our model implies that more elaborate
systems using more training data may be capable of substantially improving results
beyond those reported here.
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Chapter 10
Deep Learning for Tattoo Recognition

Xing Di and Vishal M. Patel

Abstract Soft biometrics are physiological and behavioral characteristics that pro-
vide some identifying information about an individual.Color of eye, gender, ethnicity,
skin color, height, weight, hair color, scar, birthmarks, and tattoos are examples of
soft biometrics. Several techniques have been proposed to identify or verify an indi-
vidual based on soft biometrics in the literature. In particular, person identification
and retrieval systems based on tattoos have gained a lot of interest in recent years.
Tattoos, in some extent, indicate ones personal beliefs and characteristics. Hence,
the analysis of tattoos can lead to a better understanding of ones background and
membership to gang and hate groups. They have been used to assist law enforcement
in investigations leading to the identification of criminals. In this chapter, we will
provide an overview of recent advances in tattoo recognition and detection based
on deep learning. In particular, we will present deep convolutional neural network-
based methods for automatic matching of tattoo images based on the AlexNet and
Siamese networks. Furthermore, we will show that rather than using a simple con-
trastive loss function, triplet loss function can significantly improve the performance
of a tattoo matching system. Various experimental results on a recently introduced
Tatt-C dataset will be presented.

10.1 Introduction

Soft biometrics are physiological and behavioral characteristics that provide some
identifying information about an individual [6]. Color of eye, gender, ethnicity, skin
color, height, weight, hair color, scar, birthmarks, and tattoos are examples of soft
biometrics. Several techniques have been proposed to identify or verify an individ-
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Fig. 10.1 Practical use of tattoos in arrest of suspects [11]

ual based on soft biometrics [6, 14, 29, 33] in the literature. In particular, person
identification and retrieval systems based on tattoos have gained a lot of interest in
recent years [12, 15, 23, 26]. Tattoos, in some extent, indicate one’s personal beliefs
and characteristics. Hence, the analysis of tattoos can lead to a better understand-
ing of one’s background and membership to gang and hate groups [23]. They have
been used to assist law enforcement in investigations leading to the identification of
criminals [27]. For instance, Fig. 10.1 shows three different cases where tattoos were
used to identify and apprehend the suspects.

A number of different methods have been proposed in the literature for tattoo
detection, recognition, clustering, and retrieval [1, 2, 8, 11–13, 15, 16, 18, 19, 22–
25, 36]. Previous approaches essentially tackle these problems by first extracting
some sort of generative or discriminative features from the given images and then
training discriminative classifiers for matching. The performance of these methods is
limited by the strength of the features they use. In previous approaches, the features
used are often hand-crafted such as Gabor, LBP, or SIFT [23, 27]. In recent years,
features obtained using deep convolutional neural networks (CNNs) have yielded
impressive results on various computer vision applications such as object detection
[10, 28, 31] and recognition [4, 20]. Recent studies have shown that in the absence
of massive datasets, transfer learning can be effective as it allows one to introduce
deep networks without having to train them from scratch [38]. For instance, one can
use deep CNNs such as AlexNet [20] or Siamese network [3, 5] pretrained with a
large generic dataset such as ImageNet [30] as meaningful feature extractors. In this
chapter, we review a few recent approaches to tattoo detection and recognition based
on deep CNN methods [9, 37].

This chapter is organized as follows. Section10.2 gives an overviewof the recently
introduced NIST Tott-C tattoo dataset. Details of various CNN networks for tattoo
detection and recognition are given in Sect. 10.3. The performance of different meth-
ods on the Tott-C dataset are compared in Sect. 10.4. Finally, Sect. 10.5 concludes
the chapter with a brief summary and discussion.
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10.2 NIST Tott-C Dataset

In order to promote research and development in tattoo-based recognition applica-
tions, a tattoo dataset called Tattoo Recognition Technology - Challenge (Tatt-C) was
recently developed by NIST [26, 27]. This dataset contains a total of 16,716 tattoo
images collected operationally by law enforcement and is partitioned into five use
cases derived from operational scenarios. These use cases are as follows

• Tattoo Identification: matching different instances of the same tattoo image from
the same subject over time,

• Region of Interest: matching a subregion of interest that is contained in a larger
tattoo image,

• Mixed Media: matching visually similar or related tattoos using different types of
images (i.e., sketches, scanned print, computer graphics, and graffiti),

• Tattoo Similarity: matching visually similar or related tattoos from different sub-
jects,

• Tattoo Detection: detecting whether an image contains a tattoo or not.

In this chapter, we mainly focus on the following three use cases—tattoo detec-
tion, tattoo similarity, and mixed media. Figure10.2 shows samples images from the
Tatt-C dataset corresponding to these use cases. Tattoo detection has several impli-
cations in database maintenance and construction when a dataset consists of weakly

Fig. 10.2 Samples images from the Tatt-C database. 1st row images corresponding to the tattoo
detection use case. 2nd row images corresponding to the tattoo similarity use case. 3rd row images
corresponding to the mixed media use case
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labeled data. Partially or ambiguously labeled data often makes the automatic inter-
pretation and extraction of different types of images challenging. As was indicated in
[27], in the ANSI/NIST Type 10 record, facial mugshot images and scar, mark, tattoo
images are stored in the same record type. If some data are mislabeled or unlabeled,
then automatic extraction of the data based on image content becomes a major issue.

Tattoo similarity is another use case that has applications in group or gang affili-
ations. Since members of a group or gang tend to have similar tattoos, one can try to
identify individuals belonging to the same gang by looking for people with similar
tattoos. In this use case, the objective is to match a probe image with one or more
gallery images.

Mixed media is the use case that has application in investigative intelligence
gathering where the tattoo is not necessarily captured by a camera but described as a
sketch. In this test case, data consists of mixed media and tattoo images and given a
mixed media probe image, one has to match one or more tattoos in the dataset [27].

From the use cases described above, we can see that tattoo detection is a two class
classification problem and the other two cases, mixed media and tattoo similarity,
are both one-to-many verification problems. Hence, one can use deep CNNs to solve
these problems. In particular, [7] studied the performance of deep CNN features on
tattoo recognition problems. For the classification problems, such as tattoo detection,
fine-tuned deep featureswere extracted based on theAlexNet network using the tattoo
images from the Tatt-C dataset and a linear SVM was trained for classification. For
the verification problems, deep features were extracted using the Siamese network
and data were matched using the Euclidean distance as well as a measure based on
a triplet loss function. In [37] a network similar to the AlexNet was used for tattoo
detection.

10.3 CNNs for Tattoo Detection and Recognition

In this section, we describe the details of the method proposed in [7] for tattoo
recognition based on the AlexNet [21] and the Siamese [5] networks.

10.3.1 Deep Tattoo Detection

The method proposed for tattoo detection framework in [7] consists of two main
stages. In the first stage, they extracted the deep features based on the AlexNet
framework. Figure10.3 shows the AlexNet architecture. Then, in the second stage,
they trained a linear SVM to determine whether a given image contains tattoo or not.
The deep CNN model was implemented using caffe [17]. As the AlexNet has been
trained on the ImageNet LSVRC-2010 database [30], they fine-tuned the network
on the Tatt-C dataset for tattoo detection [26].



10 Deep Learning for Tattoo Recognition 245

Fig. 10.3 The AlexNet architecture

Table 10.1 The AlexNet architecture used in [7]

Name Type Filter size/stride Output size

Conv1 Convolution 11× 11/4 55× 55× 96

Relu1 ReLU 55× 55× 96

Norm1 LRN 5× 5 55× 55× 96

Pool1 Max pooling 3× 3/2 27× 27× 96

Conv2 Convolution 5× 5(pad2)/1 27× 27× 256

Relu2 ReLU 27× 27× 256

Norm2 LRN 5× 5 27× 27× 256

Pool2 Max pooling 3× 3/2 13× 13× 256

Conv3 Convolution 3× 3(pad1)/1 13× 13× 384

Relu3 ReLU 13× 13× 38)

Conv4 Convolution 3× 3(pad1)/1 13× 13× 384

Relu4 ReLU 13× 13× 384

Conv5 Convolution 3× 3(pad1)/1 13× 13× 256

Relu5 ReLU 13× 13× 256

Pool5 Max pooling 3× 3/2 6× 6× 256

Fc6 Fully connection 4096× 1

Relu6 ReLU 4096× 1

Drop6 Dropout 50% 4096× 1

Fc7 Fully connection 4096× 1

Relu7 ReLU 4096× 1

Fc8_tattoo Fully connection 2× 1

Table10.1 gives the details of the deep CNN architecture used for tattoo detection.
All the images, during the training process are scaled into [0, 1] and subtracted from
the their mean value. These training images are also flipped about the horizontal and
vertical axis before feeding them into the network in order to increase the number of
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training data for learning the network parameters. During the training and validation
phases, they cropped the image into the standard 227× 227 size. The basic learning
rate for the tattoo detection was set equal to 10−4. The decay rate, gamma, was
selected to be 0.1 for every 3500 iterations. The multiplications of the convolutional
layers are 1 for weights and 2 for biases. The weights values for the filter and were
set randomly according to a Gaussian distribution with 0.01 standard deviation and
weight for the bias is set equal to 1. The negative slope was set equal to 0 in the
ReLU layer. The softmax loss layer computes the multinomial logistic loss of the
softmax of its inputs. It is conceptually identical to a softmax layer followed by
a multinomial logistic loss layer, but provides a more numerically stable gradient
[17]. The momentum and total iteration numbers were set equal to 0.9 and 10500,
respectively.

After fine-tuning the AlexNet on the tattoo database, the deep features were
extracted as the output of the fc7 layer, which is a 4096 dimension vector. Then,
a two-class linear SVM was implemented using vlfeat [34] to classify the probe
images based on their deep features. The parameter lambda was set equal to 0.01,
and the maximum number of iterations was set equal to 104.

The tattoo detection dataset has 2349 images, which includes the tattoo and non-
tattoo images. Also, there is a ground_truth.txt file, which gives the labels “tattoo”
or “non-tattoo” for each image. In this use case, they used label 1 to indicate the
tattoo images, and label -1 to indicate the non-tattoo images. Following the standard
protocol defined in [27], four out of five probe images were used for training and
use the remaining images for testing. For instance, when testing on the 1st probe-list
images, they used the images from the second, third, fourth, and fifth probe-lists for
training. This process was repeated for all the probe-list images. Figure10.4 shows
the output from the first three convolutional layers corresponding to three sample

Fig. 10.4 Some feature maps from Conv1, Conv2, and Conv3 layers. The upper feature maps are
more robust the illumination changes
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images in the Tatt-C dataset. One can see that these features do capture meaningful
information about tattoos such as edges, lines, and corner points.

Note that a deep CNNmodel similar to the AlexNet was recently proposed in [37]
for tattoo detection on the NIST Tott-C dataset. The proposed model uses a private
database containing 10,000 images collected from Flickr to train the network.

10.3.2 Deep Tattoo Recognition

For the tattoo verification cases such as tattoo similarity and tattoo mixed media use
cases, the Siamese network was trained directly on the Tatt-C dataset. The Siamese
network used in [7] is shown inFig. 10.5 and details are given inTable10.2.As before,
the data augmentation was used by flipping the mixed media and tattoo similarity
images horizontally and vertically and scaled them into [0, 1].

Fig. 10.5 The Siamese network architecture

Table 10.2 Details of the
Siamese network used in [7]
for tattoo recognition

Name Type Filter size/stride Output size

Conv1 Convolution 5× 5/1 52× 42× 20

Pool1 Pooling 2× 2/2 26× 21× 20

Conv2 Convolution 5× 5/1 22× 17× 50

Pool2 Pooling 2× 2/2 11× 9× 50

ip1 InnerProduct 500× 1

relu1 ReLU

ip2 InnerProduct 10× 1

feat InnerProduct 2× 1
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For the mixed media use case, the contrastive loss function [5] was used which is
defined as

L(W ) =
P∑

i=1

L(W, (Y ,X1,X2)
i),

L(W, (Y ,X1,X2)
i) = (1− Y)LG(EW (X1,X2)

i)

+YLI(EW (X1,X2)
i),

(10.1)

where (Y ,X1,X2)
i) is the i-th sample which is composed of a pair of images (X1,X2)

and a label Y , LG is the partial loss function for a genuine pair, LI the partial loss
function for an impostor pair, and P is the number of training samples. In caffe, they
used the Euclidean distance forEW (X1,X2). Themargin they set in the trainingwas 1.
The total training iteration was set equal to 7× 104. The initial learning rate was set
equal to 10−4 and it decreases by 10% every 2× 104 iterations. The multiplication
learning rate for the neuron was set equal to 1 and 2 for the bias.

There are a total of 453 images (181 probe and 272 gallery) in the mixed media
dataset. The “genuine pairwise” were made, which consisted of the probe images
and their verified gallery images, and the “impostor pairwise”, which consisted of
the probe images and their unverified images. The number of “impostor pairwise”
images were much larger than the “genuine pairwise” images. As a result, they ran-
domly chose the equal number of “impostor pairwise” images and “genuine pairwise”
images as the training subset. The images were cropped to 56× 46. After training
the network, output from the “ip2” layer was used as features. Finally, the images
were verified based on the Euclidean distances.

For the tattoo similarity use case, rather than using the contrastive loss function,
they replace it with the triplet loss function [32, 35] as it seemed to produce better
results. The triplet loss function is defined as

L =
N∑

i=1

max(0, ||f (xai ) − f (xpi )||22

−||f (xai ) − f (xni )||22 + α),

(10.2)

where xai is the reference image, xpi is the “genuine pairwise” image (positive pair-
wise), and xni is the “impostor pairwise” (negative pairwise). The threshold α is
referred to as “margin”. In tattoo similarity case, we replace the contrastive loss
function with the triplet loss function. We set the margin equal to 0.005 and the total
iteration number to 4× 104. All the parameterswere the same as the original Siamese
Network Configuration shown in Table10.2 except that the dimension of “ip2” is 256
instead of 10. The initial learning rate was set equal to 0.0002 and decreases to 10%
every 1× 104 iterations. As before, the multiplication learning rates for the neuron
is set equal to 1 and 2 for the bias. Tattoo similarity dataset has 2212 images, which
consists of 851 probe images and 1361 gallery images. All the images for mixed
media and tattoo similarity are gray-scaled before training. Output from the “ip2”
layer is used as features.
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10.4 Experimental Results

In this section, we present results of the deep CNN-based methods proposed in [7]
for tattoo recognition on the Tatt-C dataset. The performance of the CNN-based
methods were compared with those reported in [27]. The performance of different
methods are compared using accuracy and Cumulative Match Characteristic (CMC)
curves. Tattoo accuracy is defined as the number of correctly classified tattoo images
TT , divided by the total number of tattoo images Ntattoo as

Tattoo accuracy = TT

Ntattoo
. (10.3)

Non-tattoo accuracy is defined as the number of correctly classified non-tattoo images
NT , divided by the total number of non-tattoo images Nnon−tattoo as

Non-Tattoo accuracy = NT

Nnon-tattoo
. (10.4)

The overall accuracy is defined as the sumof correctly classified tattoo and non-tattoo
images divided by the total number of images

Overall accuracy = TT + NT

Ntattoo + Nnon-tattoo
. (10.5)

The CMC is defined as the fraction of searches that return the relevant images as
a function of the candidate list length. The longer the candidate list, the greater
the probability that relevant images are on the list. For searches that have multiple
relevant matches in the gallery, the cumulative accuracy or hit rate at any particular
rank is calculated with the best-ranked match and represents a best-case scenario.

10.4.1 Tattoo Detection

The first row of Fig. 10.2 shows some sample images from the Tatt-C dataset corre-
sponding to the detection use case. There are in total 2349 images in this subset—
1349 tattoo images and1000non-tattoo images. The non-tattoo images are essentially
face images extracted from theMultiple Encounter Database 2 (MEDS- II) [27]. The
performance of different methods on the tattoo detection experiment is shown in
Table10.3. As can be seen from this table, the CNN-based method proposed in [7]
outperforms the previous best non CNN-basedmethods reported in [27] and achieves
the overall accuracy of 99.83%. It is interesting to note that even though both [7] and
[37] use similar AlexNet type of network for tattoo detection, the performance of [7]
is slightly better than that of [37]. This may be due to the fact that [37] used 10,000
images from Flickr and the variations that are present in that dataset are somewhat
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Table 10.3 Performance
comparison of different
methods on the detection use
case

Algorithm Non-tattoo
accuracy

Tattoo
accuracy

Overall
accuracy

CEA_1 0.988 0.932 0.956

Compass 0.386 0.798 0.622

MITRE_1 0.750 0.734 0.741

MITRE_2 0.948 0.924 0.934

MorphoTrak 0.950 0.972 0.963

Deep Tattoo [7] 0.9980 0.9985 0.9983

CNN [37] 0.989 0.987 0.988

different than the ones present in the Tott-C dataset. In contrast, apart from Tott-C
and imagenet(pre-trained network), no external dataset was used in [7] to train the
network.

In Fig. 10.6, we display the images on which our deep CNN algorithm fails to
correctly detect a tattoo image. In particular, only 4 out of 2349 images were misclas-
sified by the CNN-based algorithm. Two tattoo images were classified as non-tattoo
images and two non-tattoo images were classified as tattoo images. In the first row

Fig. 10.6 Wrongly classified images. Only 4 out of 2349 images are wrongly classified by the deep
CNN-based method [7]
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of this figure, a tattoo image is recognized as a face image and in the second row,
two face images are recognized as tattoo images. As can be seen from this figure, the
reason why the CNN-based method in [7] fails is that the wrongly classified tattoo
image is a “face-like” image and the algorithm classifies it as a face image. Also,
this happens to the face images, which is wrongly identified as tattoo image by the
algorithm classifier.

10.4.2 Mixed Media

Results of different methods corresponding to the mixed media use case are shown
in Table10.4 and in Fig. 10.7. As can be seen from this table, the CNN-based method
significantly outperforms the previous methods and achieves 100% accuracy at rank
28. The descriptor used by MITRE is the shape contexts-based and Compass uses

Table 10.4 Performance comparison of different methods on the mixed media use case. Number
of probes: 181, Average gallery size: 55. The Submission column indicates where those accuracies
come from as they were in tott-c [27]

Algorithm Submission Rank 1
accuracy

Rank 10
accuracy

Rank 20
accuracy

Rank 30
accuracy

Compass Phase2 0.055 0.271 0.525 0.713

MITRE Phase2 0.077 0.365 0.613 0.746

Deep Tattoo - - - - - 0.122 0.569 0.873 1

Fig. 10.7 The CMC curves
corresponding to different
methods on the mixed media
use case [7]
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Fig. 10.8 Sample result from the mixed media use case [7]. First row correct matching. Second
row failed matches

some low-level features like color, brightness, contrast, etc. In contrast, the method
proposed in [7] uses deep features directly learned on the tattoo images. As a result, it
is able to capture the salient information that is present in the tattoo images better than
the other methods. This experiment clearly shows the significance of deep features
compared to hand-crafted features for tattoo recognition.

To gain further insight into this method, in Fig. 10.8 we show some
correctly matched and wrongly matched samples. First row displays images that
are correctly classified and the second row displays images on which our method
fails to correctly classify the mixed media images. Again the reason why the CNN-
based method correctly classifies mixed media images as tattoo images is because
they look very similar to the tattoo images. This can be clearly seen by comparing
images shown in the second row of Fig. 10.8.

10.4.3 Tattoo Similarity

Table10.5 and Fig. 10.9 show the results of different methods on the tattoo similarity
use case. As can be seen from these results, the CNN-based method outperforms
the previous methods especially when the triplet loss function incorporated within
the framework. For instance, at rank-10, our method with triplet loss function gives
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Table 10.5 Performance comparison of different methods on the tattoo similarity media use case
[7]. Number of probes: 851, Average gallery size: 272. The Submission column indicates where
those accuracies come from as they were in tott-c [27]

Algorithm Submission Rank 1
accuracy

Rank 10
accuracy

Rank 20
accuracy

Rank 30
accuracy

Compass Phase2 0.005 0.074 0.147 0.199

MITRE Phase2 0.035 0.149 0.239 0.309

Deep Tattoo Triplet 0.055 0.164 0.249 0.316

Deep Tattoo Non-triplet 0.017 0.111 0.155 0.210

Fig. 10.9 The CMC curves
corresponding to different
methods on the tattoo
similarity use case

an accuracy of 16.40% compared to 14.9, 7.4, and 11.1% for MITRE, Compass,
and non-triplet based method. Again, this experiment clearly shows that one can
significantly improve the performance of a tattoo recognition algorithm by using
deep features.

In Fig. 10.10, we display a few correctly matched and incorrectly matched images
for the tattoo similarity use case. First row of this figure shows the correctly matched
images and the second row shows the incorrectly matched images. As can be seen
from this figure, these images are extremely difficult to match as they contain various
illumination, pose, and resolution variations.One of the reasonswhy the deep feature-
based method does not work well in this particular use case is mainly due to the
absence of a significant number of tattoo images with different variations to train the
deep models.
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Fig. 10.10 Sample result from the mixed media use case. First row 629 correct matching. Second
row failed matches

10.5 Conclusion and Future Directions

In this chapter, we presented deep feature-based methods for tattoo detection and
recognition using the recently intrudedAlexNet and Siamese networks. Furthermore,
we showed that rather than using a simple contrastive loss function, triplet loss
function can significantly improve the performance of a tattoo matching system
based on deep features. Extensive experiments on the Tatt-C dataset demonstrated
the effectiveness of different CNN-based approaches, like some other better network
architectures rather than Siamese network.

Since deep learning is becoming increasingly important recently, one of the future
directions for tattoo-based person recognitionwill be the classicalmethods combined
with deep learning-based methods. The special statistical and geometrical proper-
ties of deep features will lead to new modeling techniques for tattoo recognition.
Also, thanks to the fast developments in deep learning-based detection and landmark
extraction techniques, tattoo detection, and alignment canbemademore precise using
these methods. As a result, they can provide geometrical model-based methods with
improved performance. Another possible direction would be to build multitask CNN
methods for doing joint detection, recognition, and retrieval. Deep multi-task lean-
ing methods have gained a lot of interest in recent years and have been applied for
various applications.
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Chapter 11
Learning Representations for Cryptographic
Hash Based Face Template Protection

Rohit Kumar Pandey, Yingbo Zhou, Bhargava Urala Kota
and Venu Govindaraju

Abstract In this chapter, we discuss the impact of recent advancements in deep
learning in the field of biometric template protection. The representation learning
ability of neural networks has enabled them to achieve state-of-the-art results in sev-
eral fields, including face recognition. Consequently, biometric authentication using
facial images has also benefited from this, with deep convolutional neural networks
pushing the matching performance numbers to all time highs. This chapter studies
the ability of neural networks to learn representations which could benefit template
security in addition to matching accuracy. Cryptographic hashing is generally con-
sidered most secure form of protection for the biometric data, but comes at the high
cost of requiring an exact match between the enrollment and verification templates.
This requirement generally leads to a severe loss in matching performance (FAR
and FRR) of the system. We focus on two relatively recent face template protection
algorithms that study the suitability of representations learned by neural networks
for cryptographic hash based template protection. Local region hashing tackles hash-
based template security by attempting exactmatches between features extracted from
local regions of the face as opposed to the entire face. A comparison of the suitabil-
ity of different feature extractors for the task is presented and it is found that a
representation learned by an autoencoder is the most promising. Deep secure encod-
ing tackles the problem in an alternative way by learning a robust mapping of face
classes to secure codes which are then hashed and stored as the secure template.
This approach overcomes several pitfalls of local region hashing and other face tem-
plate algorithms. It also achieves state-of-the-art matching performance with a high
standard of template security.
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11.1 Introduction

Privacy is a growing concern in today’sworld given the large digital footprintwe leave
behind on a day-to-day basis. Thismay be in the formofweb browsing history, photos
we share via social media, or passwords we register on applications and websites.
Given the sensitive nature of most of this data, there are concerns of it falling into
the wrong hands. Modern cryptography provides good solutions for the protection
of sensitive information such as passwords and other textual data, but there are still
forms of sensitive data that remain challenging to secure. This chapter focuses on
the protection of one critical such data type; face biometric templates.

Biometric authentication is increasinglyfinding itsway into our daily lives through
face and fingerprint recognition systems in mobile phones as well as computers.
Authentication based on “who we are” as opposed to “something we remember”
or “something we possess” offers convenience and often, stronger system security.
Typically, a biometric authentication system extracts and stores a template from
the user’s biometric data during the enrollment phase. During verification, the user’s
biometric is presented and a template is extracted andmatched to the stored template.
Depending on the matching score, access is granted or denied. One crucial, and often
overlooked, aspect to such authentication is the protection of the stored template.
If an attacker comes in possession of the stored template, not only can he gain
access to the system, but also possibly recover the original biometric data of the user
from it. Given that physical biometric features like face, fingerprint, or iris are not
replaceable, compromising them would prevent the user from using them for any
biometric authentication in the future.

11.2 Password Protection

Before getting into biometric template protection, let us briefly consider the most
common form of authentication today; the string password. During enrollment, a
template is extracted from the presented text and stored in the database. For text
password authentication, the template is a one way non-invertible transform in the
form of a hash digest generally computed using a cryptographic hash function like
SHA. During verification, the password is presented again, its hash digest is calcu-
lated and compared to the stored hash digest. If the two passwords matched exactly,
their hash digests would match as well, and access would be granted. If an attacker
comes in possession of the template, the properties of hash functions like SHAmake
sure that no information is revealed about the original password. In fact, the attacker
would have to brute force through each possible text password in order to find the
one that corresponds to the template. Furthermore, it is straightforward to ask the
user to change their password if the database breach is detected. Such hash-based
template protection may seem ideal but comes at the high cost of requiring an exact
match between the enrollment and verification texts.
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11.3 Cryptographic Hash Functions

Hash functions are functions that map data of arbitrary size, generally referred to
as the message, to a fixed length bit string called a hash digest. Cryptographic hash
functions are a special case of hash functions with certain properties that make them
suitable for cryptography. An ideal cryptographic hash function has the following
properties:

1. It should be quick to compute the hash digest for any type of data.
2. It should be infeasible to obtain the original data given its hash digest.
3. It should be infeasible to find two messages with the same hash digest.
4. A small change in the message must lead to a large change in its hash digest

in a manner such that the hash digest corresponding to the altered message is
uncorrelated with the original digest.

Thus, the key aspect of cryptographic hash functions that differentiate them from
other encryption methods is that the original data cannot be recovered from the
encrypted form. Combined with the other properties mentioned above, the only
possible attack on a hashed digest is a brute force attack, i.e., the attacker must
go through all possible values of the message, hash each one, and compare the hash
to the stored digest. In practice this task is made even harder by salting and multiple
iterations of hashing. Adding a user-specific salt to the message prior to applying
the hash function significantly increases the search space for the attacker. Whereas,
applying several iterations of the hash function to the message increases the forward
computation time of the digest and thus, significantly increases the time complexity
for a brute force attack.

11.4 Biometric Template Protection

The goal of biometric template protection is to protect the biometric data in a manner
similar to how text passwords are protected. Since the original biometric data is
not changeable like a text password, its security is arguable more crucial. An ideal
biometric template protection algorithm should possess the following properties.

1. Security—It should be infeasible to extract the original biometric data given the
protected template.

2. Cancelability—It should be feasible to generate a new protected template from
the original biometric if the old template has been compromised.

3. Performance—The template protection algorithmshould not lead to loss inmatch-
ing performance (FAR and FRR) of the biometric system.

From the perspective of security, cryptographic hash functions would be the ideal
choice for biometric templates as well, but certain properties of biometric data make
hash-based security very challenging. Hash-based security would require an exact
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Fig. 11.1 Biometric template protection algorithms

match between the templates extracted from different readings of biometric data.
Since biometric data shows significant inherent variations between readings, it is
very challenging to extract a templates that would match exactly. Even a single bit
variation between the templates would lead to very different hash digest values.
Additionally, since biometric data cannot be changed in the event of the hash digest
being compromised, cancelability also needs to be addressed in some way.

Despite the difficulties involved in achieving hash-based template security for
biometric data, several approaches have been proposed. As shown in Fig. 11.1, bio-
metric template protection algorithms can be broadly classified into two types [12],
biometric cryptosystems and feature transforms.

Biometric cryptosystem approaches rely on the use of some publicly available
data (referred to as helper data) derived from the original biometric. The helper data
should, of course, not reveal significant information about the original biometric
data. Depending on the way the helper data is derived, biometric cryptosystems are
of two types; key binding and key generation schemes. Key binding schemes derive
the helper data by binding an external key with the biometric data. For example,
fuzzy commitment binds a key in the form of an error correcting output code C ,
with the biometric data X , and generates helper data X − C and Hash(C). When
a new sample X ′ needs to be verified, it is combined with the helper data yielding
C ′ = X ′ − (X − C). If X ′ is close to X , C ′ would be close to C and thus, the error
correcting decoder will be able to correct C ′ to C . This enables us to match the hash
of the corrected code to the stored Hash(C). On the other hand, key generation
schemes try to extract stable keys from the biometric data itself. Examples include
fuzzy extractors and secure sketches proposed in [6]. The idea behind fuzzy extractors
is to extract a uniform random string from the biometric data in a noise tolerant way.
Thus even if the biometric data is altered slightly, the uniform random string can be
reproduced exactly and used as a key. A secure sketch S, is some publicly visible data
that is extracted from the biometric X , but does not reveal significant information
about X . Given X ′ (some value close to X ) and S it is possible to recover the value
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of X . Thus a secure sketch enables the exact recovery of the enrolled biometric but
does not address uniformity like fuzzy extractors.

Feature transformbased approaches simply try to transform the biometric data into
an encoded space where matching is possible. They are of two types; non-invertible
transforms and biometric salting. Non-invertible transforms apply a non-invertible
function to the biometric data to generate a template from which it is infeasible
to extract the original biometric. During verification the same function is applied
to the new sample and matching is performed in the transformed space. Biometric
salting based approaches transform the biometric data in an invertible manner using
a secret key. Since it is possible to obtain the original data if the key is compromised,
the security of salting-based approaches is entirely dependent on the security of the
secret key.

Let us briefly go over some of these algorithms that have been applied to
faces. Schemes that used cryptosystem based approaches include Fuzzy commit-
ment schemes by Ao and Li [1], Lu et al. [16] and Van Der Veen et al. [30], and
fuzzy vault by Wu and Qiu [32]. In general, the fuzzy commitment schemes suf-
fered from limited error correcting capacity or short keys. In Fuzzy vault schemes
the data is stored in the open between chaff points, and this also causes an overhead
in storage space. Some quantization schemes were used by Sutcu et al. [23, 24] to
generate somewhat stable keys. There were also several works that combine the face
data with user specific keys. These include combination with a password by Chen
and Chandran [4], user specific token binding by Ngo et al. [17, 28, 29], biometric
salting by Savvides et al. [20], and user specific random projection schemes by Teoh
and Yuang [27] and Kim and Toh [13]. Although the use of user-specific tokens
boosts matching performance while enabling high template security, there are ques-
tions raised regarding the protection of the tokens themselves and the contribution of
the biometric data towards the performance. Hybrid approaches that combine trans-
form based cancelability with cryptosystem-based security like [8] have also been
proposed but give out user specific information to generate the template, creating
openings for masquerade attacks.

11.5 Deep Learning for Face Template Protection

In the last few years deep convolutional neural network (CNN) based algorithms like
Facenet [21] and Deepface [25] have shown exceptional performance and hold the
current state-of-the-art results for face recognition. The key reason behind the success
of deep neural networks is their ability to learn representations suited to the task, as
opposed to using hand-crafted features. The large availability of labeled data for faces
coupled with recent advances in deep CNN architectures and training algorithms has
made it possible to learn representations that far exceed the performance of traditional
features for face recognition. Consequently biometric authentication using faces has
also benefited from this and matching numbers have reached all time highs.
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This representation learning ability of neural networks can also be used to learn
features suited to template security in addition to discriminative ability. As discussed
earlier, cryptographic hash based template security is theoretically ideal but achieving
it without some form of information leakage or severe loss in matching performance
is challenging. The next two sections discuss two recent approaches to face template
security that utilize recent advances in deep learning to address the challenges related
to achieving cryptographic hash based security.

11.6 Local Region Hashing

To the best of our knowledge, local region hashing [19] is one of the first approaches
that studies the suitability of learned representations for the purpose of cryptographic
hash based face template security. The algorithm seeks to achieve exact matching
between features extracted from local regions of the face instead of the entire face.
Since these regions are smaller, features extracted from them would arguably show
lesser variations as compared to features extracted from the entire face. Let us discuss
the algorithm and accompanying experiments in further detail.

11.6.1 Algorithm

This approach for template generation consists of the following. First, the face image
is divided into a set of selected local regions. Next, features are extracted from each
of them and the feature vectors are quantized to eliminate minor variations. Finally,
the quantized feature vectors are hashed and stored. Thus, the protected face template
consists of a set of hashed features.Anoverviewof the algorithm is shown inFig. 11.2.

Fig. 11.2 Overview of the local region hashing
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11.6.1.1 Facial Region Selection

The purpose of extracting features from fixed local regions of the face is twofold.
First, this increases the chances of obtaining exact matches between features. Even
though there are inherent variations in holistic features extracted from face samples
belonging to different sessions, there exist local regions of the face that remain
relatively unchanged, and thus yield features that show much smaller variations.
Second, choosing fixed regions, along with tweaks to the design of the framework,
ensures that features from a particular region are matched only to features from
the same region. This imposes a spatial constraint on the features and reduces the
chances of false positive resulting from features from one region being matched to
those from others. Thus, the total region of interest is given by a union of V smaller
local regions, r , as,

Rinterest =
V−1⋃

i=0

ri (11.1)

Desirable characteristics of the selected local regions are: (i) They should yield
features that are discriminative. (ii) They should yield features that have higher
chances of exact matches. At the pixel level this can be controlled by varying the
size and location of the regions. Rinterest should be such that it spans either the entire
face or at least the areas of higher statistical significance for discriminative power. The
size of each ri on the other hand affects the ability to yield features that match exactly.
If the size is too large, the features extracted from them may show high variations
and if the size is too small, the features extracted may not be discriminative enough.
Thus, this can be seen as the first level of control of a two stage process which is
geared towards yielding features suited to our task.

For the purpose of experimentation Rinterest is chosen as the entire face, and
equally sized nonoverlapping blocks as the local regions. Hence for a face image of
size (d × d), division into b nonoverlapping blocks would yield local regions of size
(d/b × d/b).

11.6.1.2 Feature Extraction

The second level of control on the representation of the template comes in the form of
high-level feature extractors applied to the low-level pixel regions. The higher level
features that are used should possess the following characteristics: (i) They should
be stable to minor variations and thus be appropriate for exact matching. (ii) They
should be discriminative enough to distinguish users and thus have low FAR/FRR.
(iii) They should be of sufficient length in order for their hashed versions to be
resistant towards brute force attacks, and possess sufficient entropy to be resistant
to smarter attacks. For now, the simpler requirements of stability and length are
discussed, leaving themore involved entropy-related aspects for the security analysis
section. The first feature extraction strategy uses standard feature extractors which



266 R.K. Pandey et al.

have been shown to be useful for face recognition. The second explores the use of a
denoising autoencoder to learn a feature representation.

Standard feature extractors

The suitability of two standard feature extractors, namely, histogram of gradients
(HoG) [5] and local binary pattern (LBP) histograms [18] is explored. The choice is
driven by the motivation that these are the two most basic gradient and texture-based
feature extractors and studying their performance for the task at hand would give
us valuable insight into the kind of representations suitable for security as well as
accuracy. The controllable parameters for HoG features are the number of cells per
block, the number of pixels per cell, and the number of orientations. The number
of pixels per cell and number of orientations would affect the feature length. Let o
denote the number of orientations and c = m/p denote the number of cells if (p × p)
pixels per cell for a region of size (m × m) are chosen. The final feature length is
given by l f eat = o × c. For LBP histograms, the variable parameters are the radius
and the number of neighbors. The radius affects the resolution of the LBP codes
calculated while the number of neighbors determines the feature length. Thus, for
LBP histograms calculated with n neighbors per pixel, the feature length is given by
l f eat = 2n .

The length of the feature vector not only affects the discriminative ability of the
features but also the resilience of their hashed versions to brute force attacks. The
effect of feature length of discriminative ability and template security are discussed
in further detail in the experiments section.

Learned representation

The standard feature extractors are compared to a representation learned from the
data itself. Not only does this generate features that are suited to the choice of local
regions, but it also enables greater control on the desirable properties of the features.
A stacked denoising autoencoder (SdA) [31] is used to learn this representation.
The autoencoder is a neural network that maps the input back to itself through
some hidden states. The loss between the reconstructed input and the original one
is minimized to learn a representation of the size of the number of hidden states. In
order to learn a robust representation and prevent the autoencoder from learning the
identity function, a denoising autoencoder (dA) tries to reconstruct the input from
a corrupted version of it. Thus, the input layer of the neural network is the data, x
whose representation we wish to learn. The hidden layer consists of h nodes to which
the input layer is fully connected via a set of weights,W along with some bias, b. The
output of the hidden layer is a latent representation given by y = s(Wx + b), where
s is a nonlinearity such as a sigmoid function. The latent representation is mapped
back to the reconstruction z given by z = s(W ′y + b′). The parameters of this model
W,W′, b, and b′ are optimized to minimize the reconstruction error between z and x .
In our case this is given by the squared error, L(xz) =‖ x − z ‖2. Multiple dA’s can
be stacked to form a SdA where the output of each layer is treated as the input to the
next and mapped back to the respective layers and finally the reconstructed input.
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Gaussian noise is applied to perturb the input during training. Training is done
layer wise, in an unsupervised manner, minimizing the reconstruction error for each
layer independently. The SdA is trained using the pixel level data from all the blocks
seen during enrollment and the trained network is then used as a feature extractor.
The feature would correspond to the hidden representation y of the final layer and
its length is given by l f eat = h. In this way, the length of the feature vector can be
controlled by varying the number of hidden nodes in the network.

11.6.1.3 Quantization and Combination

After extraction and normalization of each d dimensional feature vector f , such that
f ∈ [0, 1]d , they are quantized by binning each dimension into one of q bins, b of
size 1/q yielding,

fq ∈ {
b0, b1, . . . , bq−1

}d
(11.2)

This is done to eliminate minor variations between vectors and increase chances
of an exact match. The discriminative power and entropy of the features are also
reduced during this step and the effects of this are analyzed in the experiments and
security analysis sections. In addition to binning, a region identifier is appended to
the feature vector to tag it with the region it was extracted from. Thus, if feature
vector fq ∈ {

b1, b2, . . . , bq
}d

was extracted from local region ri , the region number
i would be appended to f , yielding,

fqr ∈ {
b0, b1, . . . , bq−1

}d ‖ i (11.3)

This ensures that features would only match to others from the same region and
imposes a spatial constraint on local matching.

Another way in which length can be increased for feature vectors is by using
combinations of vectors from different regions. This would prove useful in scenarios
where low length features are discriminative enough to yield goodmatching accuracy
but not of sufficient length to be resilient to brute force attacks on their hashed
versions. Given a set of features F = {

fqr0, fqr1, . . . , fqrV−1
}
, of dimensionality d,

and an assumption that, on average, at least k features from different regions match,
indexing of all possible combinations of size k is possible. Now, each new feature
f ′
qr would be given by ‖k−1

j=0 fqr j with a new dimensionality of k × d. The feature set

for a sample would then be F ′ =
{
f ′
qr0, f

′
qr1, . . . , f

′
qr(V−1

k )

}
. Thus, there is no loss

of exact matching, gain in feature length and intuitively, a reduction in the chances
of false positives.
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11.6.1.4 Template Protection and Indexing

Given a set of features, F , per sample, the next objective is to hashing and store them
in the form of a biometric template. A standard cryptographic hash function h(x)
(SHA-256 in this case) is used for hashing each feature in F . This yields a new set
T , corresponding to the protected template for one sample, and given by,

T = {
h( fqr0), h( fqr1), . . . , h( fqrV−1)

}
(11.4)

Thus, the final protected template is a set of hashed local features extracted from the
face. If multiple images are enrolled, the template would be a set consisting of hash
digests of all the non-repeated quantized feature vectors seen during enrollment.

During authentication, similar local features are extracted from the face image,
quantized, and hashed yielding a set of V local features, Ttest . In verification mode,
the template corresponding to the user, Tenrolled is retrieved and the matching score
is given by the set intersection between the two templates as,

score = Ttest ∩ Tenrolled (11.5)

The index can also be set up for identification where a given sample does not claim to
be from any class. In this case, the templates for all users would be gone through and
the sample would be identified as the user with the template which showedmaximum
matches.

11.6.2 Experiments

The framework is tested on the Multi-PIE [10] database using ROC curves and the
EER as evaluation metrics. Frontal poses with neutral expressions of the 167 face
classes that are common between session 1 and session 2 are used for evaluation.
Ten randomly selected images of each user from session 1 are used for enrollment,
and all the images from session 2 are used for verification. Thus, the test bed con-
tains variations in lighting and inherent variations in samples taken from different
sessions. These variations are arguably sufficient for deployment of the algorithm
in scenarios of user compliance. Due to the strict requirements of exact matching,
proper alignment of the images is crucial and handled by aligning eye centers for
each image. Other specifics including the parameters and implementation libraries
used for the experiments are described below.

Each face image is aligned to have their eyes positioned at roughly the same
location and cropped to remove most of the background yielding a final face image
of size 200 × 200. The face image is then divided into V = 100 local regions in the
form of nonoverlapping blocks of size 20 × 20 with Rinterest from Eq.11.1 being the
entire image.Next, features f are extracted fromeach block followed by binning each
dimension into q = 4 bins and appending the region identifier i ∈ {1, 2, . . . , 100}
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yielding fqr from Eq.11.3. For HoG features the number of cells are fixed to 4 and
the number of orientations, o, are varied. For LBP features the number of neighbors,
n, are varied. For the SdA, two layers are used, fixing the number of hidden states in
the first layer to 576 and varying the number of hidden layers in the second hidden
layer to the desired dimensionality of the learned representation. ZeromeanGaussian
noise with 0.5 variance is used as noise, and training is done for 20 epochs for each
layer, with a learning rate of 0.3. Note that blocks extracted from the enrollment set
are used to train the autoencoder for simplicity but since we merely want to learn
a feature representation for faces, the training could have been done on an entirely
different database aswell. Scikit-image is used for calculatingHoGandLBP features.
The autoencoder is implemented using Theano [2, 3]. Experimentation is done with
feature lengths ranging from 8–32 for HoG, 16–256 for LBP and 16–256 for the
autoencoder. Next each fqr is hashed using SHA-256 as the hashing function h,
yielding the set T from Eq.11.4. During enrollment a set of non-repeating features
is built for each user. For verification, the set intersection between the set generated
from the test sample, Ttesti and the set enrolled for the claimed user, Tuseri is computed.
This yields the score from Eq.11.5 as Ttesti ∩ Tuseri . The score ranges from 0–100
in this case. Genuine scores are computed by comparing test samples against their
true classes while impostor scores are computed against each of the other enrolled
classes.

Figure11.3 shows theROCcurves forHoG,LBP, and autoencoder features respec-
tively (note that some of the curves are not smooth due to the discrete nature of the
score and overlaps at varying thresholds). It can be seen that HoG features perform
very poorly showing a reasonable EER of 15.3% only at a very low bits of security
of 8, making it unsuitable for security. LBP features perform better with an EER of
21.3% at six neighbors or 128 bits of security. The feature representation learned by
the SdA shows the best results at an acceptable 128 bits of security with an EER of
16.6%. Interestingly, the EER is not far behind even at 256 bits. It is worth noting
that the matching score in all the cases was never more than 60–70% of the total
number of regions, confirming that such a hashing-based security scheme would be
infeasible if holistic features from the entire face were used.

11.6.3 Security Analysis

The security of the algorithm is studied in a stolen template scenario, where in, if
an attacker gains access to the secure templates, it should be infeasible to extract
the original biometric data from them. It is assumed that the hash function, SHA-
256, is collision resistant and follows the random oracle model in which the hashed
digests reveal no dependencies between them. In such a scenario, the only way to
attack the system is by guessing values in the feature domain, hashing them and
comparing them to the stored hashes in the database. A naive attacker would assume
uniformity in the feature space and search through every possible value. Hence, in
this case the bits of security offered by the system is proportional to the size of the
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Fig. 11.3 ROC curves for
HoG (top), LBP (mid)
autoencoder (bottom)
features
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Table 11.1 Feature security Feature extractor ql f eat M I (Dben, Dbat )

HoG 264 0.1610

LBP 264 0.1068

2128 0.0962

2256 0.1029

SdA 264 0.0739

2128 0.0870

2256 0.1020

search space, given by T × ql f eat , where T is the selected score threshold. In reality,
the feature space is far from uniform and approximating its true distribution in the
lack of sufficient data is a daunting task. Instead, it is somewhat easier to quantify
the amount by which a smart attacker can reduce the search space from ql f eat . It is
assumed that the attacker has knowledge of the algorithm, the feature extractor used,
and access to face data, Dbat that is not enrolled in the system. The amount by which
an attacker can reduce his search space using information leakage, is quantified in
the form of mutual information (MI), between the features extracted from Dbat and
the enrolled database, Dben . It is hypothesized that due to the highly multimodal
nature of the data from different regions and face classes, a smart attack will have
to be made region wise and thus, the information leakage is reported in terms of the
average MI between regions from the two databases.

MI (Dben, Dbat ) = (
∑V

i=1 MI (Fen
qri , F

at
qri )

V
(11.6)

where Fqri is the set of quantized features extracted from region i .
For the purpose of this experiment Dben is a set of 20 randomly chosen face classes

while Dbat is a distinct set of rest of the 147 classes not in Dben . TheMI is calculated
using the non-parametric entropy estimation toolkit (NPEET) which implements the
MI estimator proposed by Kraskov et al. [14]. Since the non-parametric estimation
is specific to the data distribution, the MI values are best seen as a comparative
measure between the feature extractors, and not on a universal scale. The MI values
for different feature extractors at varying feature lengths is shown in Table11.1, and
further details about the values themselves can be found in [14].

11.7 Deep Secure Encoding

Let us now discuss an alternative approach that addresses the shortcomings of local
region hashing in terms of template security as well as matching accuracy. The
algorithm uses a deep convolutional neural network (CNN) to learn a robust mapping
of face classes to codes referred to as maximum entropy binary (MEB) codes. The
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Fig. 11.4 Overview of deep secure encoding

mapping is robust enough to tackle the problem of exact matching, yielding the
same code for new samples of a user as the code assigned during training. This
exact matching makes it possible to store the cryptographic hash of the code as the
template for the user. Once hashed, the template has no correlation with the code
assigned to the user. Furthermore, the codes assigned to users are bit-wise randomly
generated and thus, possess maximum entropy, and have no correlation with the
original biometric modality (the user’s face). These properties make attacks on the
template very difficult, leaving brute force attacks in the code domain and complex
dictionary attacks in the input domain as the only feasible options. Cancelability can
also be easily achieved by changing the codes assigned to users and relearning the
mapping.

11.7.1 Algorithm

We now describe the individual components of our architecture in more detail. An
overview of the algorithm is shown in Fig. 11.4.

11.7.1.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) [15] are biologically inspired models, which
contain three basic components: convolution, pooling, and fully connected layers.
In the convolution layer one tries to learn a filter bank given input feature maps. The
input of a convolution layer is a 3D tensor with d number of 2D feature maps of
size n1 × n2. Let xi jk denote the component at row j and column k in the i th feature
map, and x (l)i denote the complete i th feature map at layer l. If one wants to learn
h f set of filters of size f1 × f2, the output x (l+1) for the next layer will still be a 3D
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tensor with h f number of 2D feature maps of size (n1 − f1 + 1) × (n2 − f2 + 1).
More formally, the convolution layer computes the following:

x (l+1)
j = s

(
∑

i

F (l)
i j ∗ x (l)i + b(l)j

)
(11.7)

where F (l)
i j denotes the filter that connects feature map xi to output map x (l)j at layer l,

b(l)j is the bias for the j th output feature map, s(·) is some element-wise nonlinearity
function and ∗ denotes the discrete 2D convolution.

The pooling (or subsample) layer takes a 3D feature map and tries to down-
sample/summarize the content to lesser spatial resolution. Pooling is commonly done
for every featuremap independently andwith nonoverlappingwindows. The intuition
behind such an operation is to have some built in invariance against small translations.
Additionally this reduces the spatial resolution and thus saves computation for the
upper layers. For average (mean) pooling, the output will be the average value inside
the pooling window, and for max pooling the output will be the maximum value
inside the pooling window.

The fully connected layer connects all the input units from a lower layer l to all the
output units in the next layer l + 1. In more detail, the next layer output is calculated
by

x (l+1) = s(W (l)x (l) + b(l)) (11.8)

where x (l) is the vectorized input from layer l,W (l) and b(l) are the parameters of the
fully connected layers at layer l.

A CNN is commonly composed of several stacks of convolution and pooling
layers followed by a few fully connected layers. The last layer is normally associated
with some loss to provide training signals, and the training for CNN can be done
by doing gradient descent on the parameters with respect to the loss. For example,
in classification the last layer is normally a softmax layer and cross-entropy loss is
calculated against the 1 of K representation of the class labels. In more detail, let
x (L) = Wx (L−1) + b be the pre-activation of the last layer, t denotes the final output
and tk the kth component of t, and y denote the target 1 of K vector and yk the kth
dimension of that vector, then

tk = exp{x (L)k }
∑

j exp{x (L)j } (11.9)

L(t, y) =
∑

j

y j log t j (11.10)

where L is the loss function.
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11.7.1.2 Maximum Entropy Binary Codes

The first step of training is to assign unique codes to each user to be enrolled.Note that
these codes are internally used for training during enrollment, and are not supplied
to the user or retained in an unprotected form after training. From a template security
point of view, these codes should ideally possess two properties. First, they should
posses high entropy. Since a hash of these codes is the final protected template, the
higher the entropy of the codes, the larger the search space for a brute force attack
would be. In order to make brute force attacks in the code domain infeasible, we use
binary codes with a minimum dimensionality K = 256 and experiment with values
up to K = 1024. The second desirable property of the codes is that they should
not be correlated with the original biometric modality. Any correlation between the
biometric samples and the secure codes can be exploited by an attacker to reduce
the search space during a brute force attack. One example to illustrate this can be
to think of binary features extracted from faces. Even though the dimensionality
of the feature vector may be high, given the feature extraction algorithm and type
of data, the number of possible values the vector can take is severely reduced. In
order to prevent such reduction of entropy, the codes used are bit-wise randomly
generated and have no correlation with the original biometric samples. This makes
the space to be hashed uniformly distributed. More precisely, let ci ∼ B(1, 0.5) be
the binary variable for each bit of the code, where B(1, 0.5) is the maximum entropy
Bernoulli distribution, and the resultant MEB code with K independent bits is thus
C = [c1, c2, . . . , cK ]. The code for user u is denoted by Cu .

11.7.1.3 Learning the Mapping

In order to learn a robust mapping of a user’s face samples to the codes, some mod-
ifications are made to the standard CNN training procedure. As shown in Fig. 11.5,
the 1 of K encoding of the class labels is replaced by the MEB codes Cu assigned to
each user. Since several bits of the network output are going to be one instead of a
single bit, sigmoid activation is used instead of softmax. In more detail

tk = 1

1 + exp{−x (L)j } (11.11)

L(t,C) =
∑

j

{c j log t j + (1 − c j ) log(1 − t j )} (11.12)

where tk is the kth output from the last layer and L is the binary cross-entropy loss.

Data Augmentation

Deep learning algorithms generally require a large number of training samples
whereas, training samples are generally limited in the case of biometric data. In
order to magnify the number of training samples per user, the following data



11 Learning Representations for Cryptographic Hash Based … 275

Fig. 11.5 Learning the mapping

augmentation is performed. For each training sample of size m × m all possible
crops of size n × n are extracted. Each crop is also flipped along its vertical axis
yielding a total of 2 × (m − n + 1) × (m − n + 1) crops. The crops are then resized
back to m × m and used for training the CNN.

Regularization

The large learning capacity of deep neural networks comes with the inherent risk of
overfitting. The number of parameters in the network are often enough to memorize
the entire training set, and the performance of such a network does not generalize
to new data. In addition to general concerns, mapping to MEB codes is equivalent
to learning a highly complex function, where each dimension of the function output
can be regarded as an arbitrary binary partition of the classes. This further increases
the risk of overfitting and powerful regularization techniques need be employed to
achieve good matching performance.

Dropout [11] is applied to all fully connected layers with 0.5 probability of dis-
carding a hidden activation. Dropout is a very effective regularizer and can also be
regarded as training an ensemble of an exponential number of neural networks that
share the same parameters, therefore reducing the variance of the resulting model.

11.7.1.4 Protected Template

Even though MEB codes assigned to each user have no correlation with the original
samples, another step of taking a hash of the code is required to generate the protected
template. Given the parameters of the network, it is not possible to entirely recover
the original samples from the code (due to the max pooling operation in the forward
pass of the network) but, some information is leaked. Using a hash digest of the code
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as the final protected template prevents any information leakage. The hash function
used can be any function that follows the random oracle model. For experimentation
SHA-512 is utilized, yielding the final protected template Tu = SHA512(Cu).

During verification, a new sample of the enrolled user is fed through the net-
work to get the network output yout = t. This output is then binarized via a simple
thresholding operation yielding the code for the sample sout = [s1, s2, . . . , sK ], where
si = 1(ti > 0.5) and 1(·) is the indicator function. At this point, the SHA-512 hash
of the code, Hout = SHA512(sout) could be taken and compared with the stored
hash Tu for the user. Due to the exact matching nature of the framework, this would
yield a matching score of true/false nature. This is not ideal for a biometric-based
authentication system since it is desirable to obtain a tunable score in order to adjust
the false accept (FAR) and false reject rates (FRR). In order to obtain an adjustable
score, several crops and their flipped counterparts are taken for the new sample (in
the manner described in Sect. 11.7.1.3) and Hout is calculated for each one, yielding
a set of hashes H. The final matching score is defined as the number of Houts in H

that match the stored template, scaled by the cardinality of H. Thus, the score for
matching against user u is given by,

score =
∑

Hi∈H 1(Hi = Tu)

|H| (11.13)

Now the score can be set to achieve the desired value of FAR/FRR. Note that, the
framework provides the flexibility to work in both verification and identification
modes. For identification H can be matched against templates of all the users stored
in the database.

11.7.2 Experiments

We now discuss the databases, evaluation protocols, and specifics of the parameters
used for experimental evaluation.

11.7.2.1 Databases

This study tackles the problem of using faces as passwords and thus, utilizes face
databases that have been collected in controlled environments for experimentation.
The evaluation protocols include variations in lighting, session, and pose that would
be typical to applications like face unlock since a reasonable degree of user compli-
ance is expected.

The CMU PIE [22] database consists of 41,368 images of 68 people under 13
different poses, 43 different illumination conditions, and with four different expres-
sions. Five poses (c27, c05, c29, c09 and c07) and all illumination variations are
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used for experimentation. 10 images are randomly chosen for training and the rest
are used for testing.

The extended Yale Face Database B [9] contains 2432 images of 38 subjects with
frontal pose and under different illumination variations. The cropped version of the
database is used for experimentation. Again, 10 randomly selected images are used
for training and the rest for testing.

The CMU Multi-PIE [10] face database contains more than 750,000 images of
337 people recorded in four different sessions, 15 view points and 19 illumination
conditions. This database is used to highlight the algorithm’s robustness to changes in
session and lighting conditions. Two sessions (3 and 4) which have the most number
of common users (198) between them are chosen. Ten randomly chosen frontal faces
from session 3 are used for enrollment and all frontal faces from session 4 are used
for testing.

11.7.2.2 Evaluation Metrics

Genuine accept rate (GAR) at 0 false accept rate (FAR) is used as the evaluation
metric. The equal error rate (EER) is also reported as an alternative operating point
for the system. Since the train-test splits used are randomly generated, the mean and
standard deviation of the results for 10 different random splits are reported.

11.7.2.3 Experimental Parameters

The same training procedure is used for all databases. The CNN architecture used
is as follows: two convolutional layers of 32 filters of size 7 × 7 and 64 filters of
size 7 × 7, each followed by max pooling layers of size 2 × 2. The convolutional
and pooling layers are followed by two fully connected layers of size 2000 each,
and finally the output. Rectifier activation function s(x) = max(x, 0) is used for all
layers, and dropout is applied with 0.5 probability of discarding activations to both
fully connected layers.

MEB codes of dimensionality K = 256, 1024 are assigned to each user. All train-
ing images are resized to m × m = 64 × 64 and roughly aligned using eye center
locations. For augmentation n × n = 57 × 57 crops are used yielding 64 crops per
image. Each crop is also illumination normalized using the algorithm in [26]. The
network is trained by minimizing the cross-entropy loss against user codes for 20
epochs using mini-batch stochastic gradient descent with a batch size of 200. Five
of the training samples are initially used for validation to determine the mentioned
training parameters. Once the network is trained, the SHA-512 hashes of the codes
are stored as the protected templates and the original codes are purged. During veri-
fication, crops are extracted from the new sample, preprocessed, and fed through the
trained network. Finally, the SHA-512 hash of each crop is calculated and matched
to the stored template, yielding the matching score in Eq. 11.3.
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Table 11.2 Verification results obtained from various datasets

Database K GAR@0FAR (%) EER (%)

PIE 256 93.22 ± 2.61 1.39 ± 0.20

1024 90.13 ± 4.30 1.14 ± 0.14

Yale 256 96.74 ± 1.35 0.93 ± 0.18

1024 96.49 ± 2.30 0.71 ± 0.17

Multi-PIE 256 95.93 ± 0.55 1.92 ± 0.27

1024 97.12 ± 0.45 0.90 ± 0.13

11.7.2.4 Results

The results of our experiments are shown in Table11.2. The mean and standard
deviation of GAR at zero FAR, and EER are reported for the 10 different train-
test splits at code dimensions, K = 256, 1024. GARs up to ∼90% on PIE, ∼96%
on Yale, and ∼97% on Multi-PIE with up to K = 1024 are achieved at the strict
operating point of zero FAR. During experimentation it was observed that the results
were stable with respect to K , making the parameter selectable purely on the basis
of desired template security. In order to get an idea of the system performance with
respect to the operating point, theGARand FARof the system are shownwith respect
to the matching score for K = 256 in Fig. 11.6. It is noteworthy that the system has
very low FAR values even at low matching scores due to the strict exact matching
requirements.

A comparison of the results to other face template protection algorithms on the
PIE database is shown in Table11.3. GAR at an FAR of 1% is compared as this is the
reported operating point in [7]. For security level, the code dimensionality parameter
(K ) is compared to the equivalent parameter in the shown approaches. In the absence
of algorithm parameters, this is a good measure of the security level against brute
force attacks.

11.7.3 Security Analysis

Once again, the security of the system is analyzed in a stolen template scenario. It
is assumed that the attacker has possession of the templates, and knowledge of the
template generation algorithm. Given the templates, the attacker’s goal is to extract
information about the original biometric of the users. Since the hash function used
to generate the templates is a one way transformation function, no information about
the MEB codes can be extracted from the protected templates. Thus, the only way in
which the attacker can get the codes is by brute forcing through all possible values
the codes can take, hash each one, and compare them to the templates. The search
space for such brute force attacks is now analyzed.
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Fig. 11.6 GAR and FAR
with respect to matching
score at K = 256 for PIE
(top), Yale (mid) and
Multi-PIE (bottom)
databases
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Table 11.3 Performance comparison with other algorithms on PIE dataset

Method K GAR@1FAR (%) EER (%)

Hybrid approach [8] 210 90.61 6.81

BDA [7] 76 96.38 −
MEB encoding 1024 97.59 1.14

In the absence of the CNN parameters, the search space for brute force attacks
would be 2K where K is the number of dimensions of theMEB code. This is because
the MEB codes are bit-wise randomly generated and uncorrelated to the original
biometric data. Since a minimum of k = 256 is used, the search space would be of
the order of 2256 or larger, making brute force attacks computationally infeasible.

An attack given the CNN parameters is now analyzed. With the CNN parameters,
it would make sense to generate attacks in the input domain of the network and try to
exploit the FAR of the system. Brute forcing through all possible values in the input
domainwould yield a search spacemuch larger than 2K . Thus, in a practical scenario,
attackers would most likely perform a dictionary attack using a large set of faces that
is available to them. Even though it is not straightforward to analyze the reduction of
the attacker’s search space due to the knowledge of the system parameters, the FAR
of the system under the aforementioned attack scenario is arguably a good indicator
of the template security. The genuine and imposter score distributions when all other
users other than the genuine are treated as imposter are shown in Fig. 11.7. It can be
seen that the imposter scores are mostly zero, indicating that there are very few false
accepts in this scenario. The genuine and imposter distributions under a dictionary
attack using an attacker database consisting of all frontal images of the Multi-PIE
database and genuine database consisting of the smaller Yale database is shown in
Fig. 11.8. Again, it can be seen that there are minimal false accepts indicating that
the model does not easily accept external faces even when they are preprocessed in
the same manner as the enrolled ones. Separately, a large number of random noise
samples are also used as an attack to verify that the CNN does not trivially learn
how to map large portions of the input space to the learned codes. In this case, there
are no false accepts showing that the model is indeed not trivially learning to map
all inputs to assigned codes. Hence, even though it is not straightforward to quantify
the reduction in the search space of codes due to knowledge of the CNN parameters,
it has been empirically shown that false accepts are difficult due to the strict exact
matching requirements of the system.

It is worth noting that even if a MEB code is obtained by the attacker, recon-
structing the original biometric in an exact manner is not possible due to the pooling
and dropout operations in the CNN. Furthermore, knowledge of one code reveals no
information about the others since they are uncorrelated. Thus, if a security breach is
detected, it is safe to use a new set ofMEB codes to generate another set of templates.
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Fig. 11.7 Genuine and
imposter distributions from
PIE (top), Yale (mid) and
Multi-PIE (bottom)
databases
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Fig. 11.8 Genuine and
imposter distributions under
a dictionary attack in the
input space

11.8 Future Directions

We have discussed two very different approaches to enabling the use of crypto-
graphic hash functions for face template protection. Local region hashing highlights
the challenges associated with cryptographic hash based template security for face
biometrics, and confirms the intuition regarding the need for learning representa-
tions suitable for security in addition to matching. Even though the algorithm offers
a higher standard of template security, it suffers in terms of matching accuracy and
uniformity of the hashed space. On the other hand, deep secure encoding takes a
different approach by designing the ideal representation for template security first,
and then learning a mapping to it. In the process, the algorithm eliminates all the
downfalls of local region hashing as well and most previous approaches to face tem-
plate protection. Even thoughdeep secure encoding achieves state-of-the-art template
security as well as matching accuracy, it does not come without its own pitfalls.

One of the disadvantages of deep secure encoding comes to light when we think
about enrolling new subjects. Since the mapping to the MEB codes for all enrolled
users is learned jointly, the network would need to be retrained in order to enroll
new subjects. Deep neural network retraining can be a time consuming task making
the process of new enrollment inefficient. That said, neural networks are generally
trained by fine tuning a representation that has already been pretrained on relevant
data, dramatically reducing the training time. In the context of deep secure encoding, a
base network that has been trained on faces in general might be used for initialization.
Thus, fine tuning on the classes to be enrolled would be considerably less time
consuming. There is, however, a bigger issue with the need for retraining. Since the
system does not retain the original face data, it would have to request samples from
all the previous users in order to retrain the network. This may not always be feasible.
One can think of some workarounds like maintaining different networks for different
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sets of users and adding a new network when a new set of users needs to be enrolled,
but they could still be complicated to practically deploy.

A possible solution to the above-mentioned issues could be to use a deep neural
network to learn a universal locally sensitive hashing function for faces. Instead of
learning a mapping to fixed codes like deep secure encoding, a binary code can
be learned using a loss function that minimizes the distance between codes for the
same user and maximizes the distance between codes for different users. One impor-
tant detail to keep in mind during the implementation of such an approach is that
the smoothness of the binary representation space can be exploited to perform hill
climbing attacks on the learned codes. Needless to say, this approach would also
require a much larger data pool for training. Whether this would work in a practice
or not, is yet to be seen. Other improvements to deep secure encoding include pre-
training before enrollment and possible combination with local region hashing to
learn mappings for smaller facial regions.

In conclusion, deep learning based algorithms show significant potential for learn-
ing representations that are suited to biometric template protection. Although not
perfect, algorithms like deep secure encoding achieve impressive results and pave
the way to towards high standards of template security with minimal loss in match-
ing accuracy. Furthermore, the generic nature of the presented algorithms enable
their use for any task where neural networks are applicable; potentially motivating
privacy-centric research in other domains.
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Chapter 12
Deep Triplet Embedding Representations
for Liveness Detection

Federico Pala and Bir Bhanu

Abstract Liveness detection is a fundamental element for all biometric systems that
have to be safe against spoofing attacks at sensor level. In particular, for an attacker it
is relatively easy to build a fake replica of a legitimate finger and apply it directly to
the sensor, thereby fooling the systembydeclaring its corresponding identity. In order
to ensure that the declared identity is genuine and it corresponds to the individual
present at the time of capture, the task is usually formulated as a binary classification
problem, where a classifier is trained to detect whether the fingerprint at hand is real
or an artificial replica. In this chapter, unlike the binary classification model, a metric
learning approach based on triplet convolutional networks is proposed. A representa-
tion of the fingerprint images is generated, where the distance between feature points
reflects how much the real fingerprints are dissimilar from the ones generated artifi-
cially. A variant of the triplet objective function is employed, that considers patches
taken from two real fingerprint and a replica (or two replicas and a real fingerprint),
and gives a high penalty if the distance between the matching couple is greater than
the mismatched one. Given a test fingerprint image, its liveness is established by
matching its patches against a set of reference genuine and fake patches taken from
the training set. The use of small networks along with a patch-based representation
allows the system to perform the acquisitions in real time and provide state-of-the-art
performances. Experiments are presented on several benchmark datasets for liveness
detection including different sensors and fake fingerprint materials. The approach is
validated on the cross-sensor and cross-material scenarios, to understand how well
it generalizes to new acquisition devices, and how robust it is to new presentation
attacks.
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12.1 Introduction

Biometrics authentication systems have become part of the daily routine for millions
of people around the world. A large number of people use their fingerprints every
day in order to pass the security checkpoints at airports, to access their personal
mobile devices [1] and to access restricted areas. The popularity of this biometric
with respect of others such as face and iris recognition lies on its reliability, that has
been proven during the last decades, its implementation at an affordable cost, and
especially on the simplicity of touching a surface to get immediately authenticated.

Unfortunately, all these advantages comewith various security and privacy issues.
Different attacks can be performed to the authentication system in order to grant
access to some exclusive area or to steal confidential data. For instance, the software
and the network configuration can have security holes or bugs, and the matching
algorithms can be fooled if the attacker knows the software implementation details
[2]. Moreover, whereas a physical key or badge can be replaced, fingerprints are
permanent and the pattern on their surface can be easily captured and reproduced.
It can be taken from a high-resolution photograph or from a print left on a surface
such as a mug or even a piece of paper. A high-quality reproduction of the pattern on
some gummy material can be simply applied to the scanner [3] so that the attacker
can fool the authentication system by declaring its corresponding identity. Since
the sensor device is inevitably at a direct contact of the user being captured, it is
considered one of the weakest point in the entire biometrics system. Because of
this, there is a growing interest in automatically analyzing the acquired fingerprint
images in order to catch potential malignant users [4]. This kind of attacks are known
as presentation attacks [5], and liveness detection techniques are designed to spot
them by formulating a binary classification problem with the aim of establishing
whether a given biometrics comes from the subject present at the time of capture [6].

The liveness of a fingerprint can be established by designing a software system
that analyzes the same images used by the recognition algorithm, or by equipping
the scanner with additional hardware. These last prevention measures are called
hardware-based systems [7] and are generally more accurate since they take advan-
tage of additional cues. Anyway, the software of a fingerprint scanner can be updated
with no additional cost, and if a software technique is robust to a variety of attacks
and does not annoy the users with too many false positives, it can be an alternative
with regard to acquiring new sensing devices.

Recently, different studies [8–10] have shown the effectiveness of deep learning
algorithms for the task of fingerprint liveness detection. Deep learning has seriously
improved the state of the art in many fields such as speech recognition, natural
language processing, and object recognition [11–13]. The ability to generate hier-
archical representations and discover complex structures in raw images allows for
better representations with respect to traditional methods based on handcrafted fea-
tures. Software-based systems for fingerprint liveness detection can take advantage
of the very broad literature where similar tasks have already been addressed. Among
the recent works, we noticed that it has not yet directly modeled a notion of similarity
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among real and fake fingerprints that can capture the underlying factors that explain
their inter- and intra-class variations. We make a step in this direction by proposing
a deep metric learning approach based on Triplet networks [14]. Specifically, these
networks map the fingerprint images into a representation space, where the learned
distance captures the similarity of the examples coming from the same class and push
away the real samples from the fake ones. Unlike other metric learning approaches,
such as the ones involving Siamese networks [15], the triplet objective function puts
in direct comparison the relation among the classes, giving a notion of context that
does not require a threshold selection in order make the prediction [14].

We propose a framework that learns a representation from fingerprint patches,
starting from a set of real and fake samples given as a training set. Since at test time
only a fingerprint image is given, we make our decision on the basis of a match-
ing score, computed against a set of real and fake patches given as a reference.
The similarity metric is learned using an improved version [16, 17] of the original
triplet objective formulation [14] that adds a pairwise term that more firmly forces
the closeness of two examples of the same class. We performed extensive experi-
ments using ten datasets taken from the fingerprint liveness detection competitions
LivDet1 organized by the Department of Electrical and Electronic Engineering of the
University of Cagliari, in cooperation with the Department of Electrical and Com-
puter Engineering of the Clarkson University, held in the years 2009 [7], 2011 [18]
and 2013 [19]. We compare our approach with respect to the state of the art, getting
competitive performance for all the examined datasets. We also perform the cross-
dataset and cross-material experiments, in order to evaluate if the obtained fingerprint
representation can be reused in different settings or to spot materials that have not
been seen during training.

The chapter is structured as follows. In Sect. 12.2 we present some of the current
approaches for designing fingerprint liveness detection systems, and the current state
of the art. In Sect. 12.3 we explain the details of the proposed framework and in
Sect. 12.4 we provide the experimental results. The final Sect. 12.5 is dedicated to
the conclusions.

12.2 Background and Previous Work

In this section, we describe various fingerprint liveness detection techniques, partic-
ularly with a focus on the ones related to our method, which can be considered as
a static software-based technique [6]. Subsequently, we provide details on some of
the most recently proposed software-based approaches in order to contextualize our
method and highlight our contributions.

1http://livdet.org/.

http://livdet.org/
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12.2.1 Background

A first categorization of liveness detection systems can be made by distinguishing
between hardware and software systems. As already mentioned, hardware-based
systems, also called sensor-based [6], use additional information in order to spot the
characteristics of living human fingerprints. Useful clues can be found for instance
by detecting the pattern of veins underlying the fingerprints surface [20], measuring
the pulse [21], by performing odor analysis [22] and by employing near-infrared
sensors [23].

Software, also called feature-based systems, are algorithms that can be intro-
duced into a sensor software in order to add the liveness detection functionality. Our
approach falls in this category and can also be considered static, to distinguish it from
methods that use multiple images taken during the acquisition process. For instance,
dynamic methods can exploit the distortion of the fingertip skin since with respect
to gummy materials, it differs in terms of flexibility. In the approach proposed by
[24], the user is asked to rotate the finger while touching the sensor. The distortion
of the different regions at a direct contact of the sensor are characterized in terms of
optical flow and the liveness prediction is based on matching the encoded distortion
code sequences over time.

In order to design a software-based system based onmachine learning algorithms,
a database of real and fake examples of fingerprints is needed. The more spoofing
techniques are used, the more the algorithm will be able to generalize to new kind of
attacks. In a second categorization of liveness detection systems, we consider how
the fingertip pattern is taken from the victim. In the cooperative method, the victim
voluntarily puts his/her finger on some workable material that is used to create a
mold. From this mold, it is possible to generate high-quality reproductions by fill-
ing it with materials such as gelatin, silicone, and wooden glue. Figure12.1 shows
some photographs of artificial fingers. Noncooperative methods instead, capture the
scenarios where the pattern has been taken from a latent fingerprint. After taking a
high-resolution picture, it is reproduced by generating a three-dimensional surface,

Fig. 12.1 Examples of artificial finger replicas made using different silicon rubber materials:
a GLS, b Ecoflex, c Liquid Ecoflex and d a Modasil mold
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Fig. 12.2 Examples of fake acquisitions from the LivDet 2011 competition (cooperative). From
Biometrika a Latex, b Silicone, fromDigital c Latex, dGelatine, from Sagem e Silicone, f Play-doh

Fig. 12.3 Examples of fake acquisitions from the LivDet 2013 competition. Noncooperative: from
Biometrika a Gelatine, b Wooden Glue, from Italdata c Ecoflex, d Modasil. Cooperative: from
Swipe e Latex, f Wooden Glue

for instance, by printing it into a circuit board. At this point, a mold can be generated
and filled with the above-mentioned materials. The quality of images is inferior as
compared to the cooperative methods, and usually, software-based systems have bet-
ter performance on rejecting these reproductions. Figures12.2 and 12.3 show several
acquisitions, where the fingertip pattern has been captured using the cooperative and
noncooperative methods.

12.2.2 Previous Work

In this subsection, we discuss some of the previous work on static software-based
fingerprint liveness detection systems. We start by presenting some hand crafted
feature-based approaches and conclude with the more recently proposed deep learn-
ing techniques.

One of the first approaches to fingerprint liveness detection has been proposed by
[25]. It is based on the perspiration pattern of the skin that manifests itself into static
and dynamic patterns on the dielectric mosaic structure of the skin. The classification
is based on a set of measures extracted from the data and classified using a neural
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network. In [26], the same phenomenon is captured by a wavelet transform applied
to the ridge signal extracted along the ridge mask. After extracting a set of measures
from multiple scales, the decision rule is based on classification trees.

Other approaches build some descriptors from different kind of features that are
conceived specifically for fingerprint images. In [27] Local binary pattern (LBP)
histograms are proposed along with wavelet energy features. The classification is
performed by a hybrid classifier composed of a neural network, a support vector
machine (SVM) and a k-nearest neighbor classifier. Similar to LBP, the Binary Sta-
tistical Image Features (BSIF) [28], encode local textural characteristics into a feature
vector and SVM is used for classification. In [29] a Local Contrast Phase Descriptor
(LCPD) is extracted by performing image analysis in both the spatial and frequency
domains. The same authors propose the use of the Shift-Invariant Descriptor (SID)
[30], originally introduced by [31], which provides rotation and scale invariance
properties. SID, along with LCPD provides competitive and robust performances on
several datasets.

Recently, deep learning algorithms have been applied to fingerprint liveness detec-
tionwith the aim of automatically finding a hierarchical representation of fingerprints
directly from the training data. In [9] the use of convolutional networks has been pro-
posed. In particular, the best results [9] are obtained by fine-tuning the AlexNet and
VGG architectures proposed by [11, 32], previously trained on the Imagenet dataset
of natural images [33]. From their experimental results, it seems that the factors that
most influence the classification accuracy are the depth of the network, the pretrain-
ing and the data augmentation they performed in terms of random crops. Since we
use a patch-based representation we employ a smaller, but reasonably deep architec-
ture. The use of patches does not require resizing all the images to a fixed dimension,
and at the same time, the number of examples is increased so that pretraining can be
avoided.

In [8], deep representations are learned from fingerprint, face, and iris images.
They are used as traditional features and fed into SVM classifiers to get a liveness
score. The authors focus on the choice of the convolutional neural network parameters
and architecture.

In [34] deep Siamese networks have been considered along with classical pre-
trained convolutional networks. This can be considered the most similar work to
this chapter since they also learn a similarity metric between a pair of fingerprints.
However, their use of metric learning is different since they assume a scenario where
the enrollment fingerprint is available for each test image. That is, the decision is
made by comparing fingerprints of the same individual. Our approach instead ismore
versatile and can be applied even if the enrollment fingerprint image is not available.

Different from the above studies, [10, 35] do not give the entire image to the deep
learning algorithm but extract patches from the fingerprint acquisition after removing
the background. [35] uses classical ConvNets with a binary cross-entropy loss, along
with a majority voting scheme to make the final prediction. [10] proposes deep belief
networks and use contrastive divergence [36] for pretraining and fine-tunes on the
real and fake fingerprint images. The decision is based on a simple threshold applied
to the output of the network. Our work is substantially different because it proposes
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a framework where triplet architectures are used along with a triplet and pairwise
objective function.

Summarizing, the contribution of this chapter are (i) a novel deep metric learning
based framework, targeted to fingerprint liveness detection, able to work in real time
with state-of-the-art performance, (ii) a patch-based and fine-grained representation
of the fingerprint images that makes it possible to train a reasonably deep archi-
tecture from scratch, even with few hundreds of examples, and that shows superior
performance even in settings different from the ones used for training.

12.3 A Deep Triplet Embedding for Fingerprint Liveness
Detection

In this section, we describe the proposed method for fingerprint liveness detection
based on triplet loss embedding. We start by describing the overall framework; sub-
sequently, we introduce the network architecture and the training algorithm. Finally,
we describe the matching procedure that leads to the final decision on the liveness
of a given fingerprint image.

12.3.1 Framework

As depicted in Fig. 12.4, the proposed framework requires a collection of real and
fake fingerprint images taken from a sensor and used as a training set. From each
image, we randomly extract one fixed sized patch and arrange them in a certain
number of triplets {xi , x+

j , x−
k }, where xi (anchor) and x+

j are two examples of the
same class, and x−

k comes from the other class. We alternatively set the anchor to be
a real or a fake fingerprint patch.

The architecture is composed of three convolutional networkswith sharedweights
so that three patches can be processed at the same time and mapped into a common
feature space.We denote by r(·) the representation of a given patch obtained from the
output of one of the three networks. The deep features extracted from the live and fake
fingerprints are compared in order to extract an intra-class distance d(r(x), r(x+))

and an inter-class distance d(r(x), r(x−)). The objective is to learn d so that the two
examples of the same class are closer than two examples taken from different classes,
and the distance between two examples of the same class is as short as possible. After
training the networks with a certain number of triplets, we extract a new patch from
each training sample and generate a new set of triplets. This procedure is repeated
until convergence, see more details in Sect. 12.4.2.

After the training procedure is completed, the learnedmetric is used as amatching
distance in order to establish the liveness of a new fingerprint image. Given a query
fingerprint, we can extract p (possibly overlapping) patches and give them as input to
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Fig. 12.4 The overall architecture of the proposed fingerprint liveness detection system. From the
training set a of real and fake fingerprint acquisitions, we train a triplet network b using alternatively
two patches of one class and one patch of the other one. The output of each input patch is used to
compute the inter- and intra-class distances c in order to compute the objective function d that is used
to train the parameters of the networks. After training, a set of real and a set of fake reference patches
e are extracted from the training set (one for each fingerprint) and the corresponding representation
is computed forwarding them through the trained networks. At test time, a set of patches is extracted
from the fingerprint image f in order to map it to the same representation space as the reference
gallery and are matched g in order to get a prediction on its liveness

the networks in order to get a representation Q = {r(Q1), r(Q2), . . . , r(Qp)}. Since
we are not directly mapping each patch to a binary liveness label, but generating a
more fine-grained representation, the prediction can bemade by a decision rule based
on the learned metric d computed with respect to a set RL and RF of real and fake
reference fingerprints:

RL = {r(xL1), r(xL2), . . . , r(xLn )} (12.1a)

RF = {r(xF1), r(xF2), . . . , r(xFn )} (12.1b)

where the patches xLi and xFi can be taken from the training set or from a specially
made design set.
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Table 12.1 Architecture of the proposed embedding network

Layer name Layer description Output

input 32× 32 gray level image

conv1 5× 5 conv. filters, stride 1, 1 → 64 feat. maps 64× 28× 28

batchnorm1 Batch normalization 64× 28× 28

relu1 Rectifier linear unit 64× 28× 28

conv2 3× 3 conv. filters, stride 2, padding 1, 64 → 64 feat.
maps

64× 14× 14

conv3 3× 3 conv. filters, stride 1, 64 → 128 feat. maps 64× 12× 12

batchnorm2 Batch normalization 64× 12× 12

relu2 Rectifier linear unit 64× 12× 12

conv4 3× 3 conv. filters, stride 2, padding 1, 128 → 128
feat. maps

128× 6× 6

conv5 3× 3 conv. filters, stride 1, 128 → 256 feat. maps 256× 4× 4

batchnorm3 Batch normalization 256× 4× 4

relu3 Rectifier linear unit 256× 4× 4

conv6 3× 3 conv. filters, stride 2, padding 1, 256 → 256
feat. maps

256× 2× 2

fc1 Fully connected layer 4× 256 → 256 256

dropout Dropout p = 0.4 256

relu5 Rectifier linear unit 256

fc2 Fully connected layer 256 → 256 256

output Softmax 256

12.3.2 Network Architecture

We employ a network architecture inspired by [37] where max pooling units, widely
used for downsampling purposes, are replaced by simple convolution layers with
increased stride. Table12.1 contains the list of the operations performed by each
layer of the embedding networks.

The architecture is composed of a first convolutional layer that takes the 32× 32
grayscale fingerprint patches and outputs 64 feature maps by using filters of size
5× 5. Then, batch normalization [38] is applied in order to get a faster training
convergence and rectified linear units (ReLU) are used as nonlinearities. Another
convolutional layer with a stride equal to 2, padding of 1 and filters of size 3× 3
performs a downsampling operation by a factor of two in both directions.

The same structure is replicated two times, reducing the filter size to 3× 3 and
increasing the number of feature maps from 64 to 128 and from 128 to 256. At this
point, the feature maps have the size of 128× 2× 2 and are further processed by two
fully connected layerswith 256outputs followedby a softmax layer. This nonlinearity
helps in getting a better convergence of the training algorithm and ensures that the
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Fig. 12.5 The training procedure uses examples as triplets formed by a two real fingerprints (in
green) and one impostor (in yellow) and b two impostors and one genuine. The training procedure
using the triplet loss will result in an attraction for the fingerprints of the same class (either real or
fake) so that their distance will be as close as possible. At the same time, real and fake fingerprints
will be pushed away from each other (c)

distance among to outputs does not exceed one. Dropout [39] with probability 0.4 is
applied to the first fully connected layer for regularization purposes.

The complete network is composed of three instances of this architecture: from
three batches of fingerprint images we get the L2 distances between the matching
and mismatching images. At test, we take the output of one of the three networks
to obtain the representation for a given patch. If there are memory limitations, an
alternative consists of using just one network, collapse the three batches into a single
one, and computing the distances among the examples corresponding to the training
triplets.

12.3.3 Training

As schematized in Fig. 12.5, the triplet architecture alongwith the triplet loss function
aims to learn a metric that makes two patches of the same class closer with respect
to two coming from different classes. The objective is to capture the cues that make
two fingerprints both real or fake. The real ones come from different people and
fingers, and their comparison is performed in order to find some characteristics that
make them genuine. At the same time, fake fingerprints come from different people
and can be built using several materials. The objective is to detect anomalies that
characterize fingerprints coming from a fake replica, without regard to the material
they are made of.

Given a set of triplets {xi , x+
j , x−

k }, where xi is the anchor and x+
j and x−

k are two
examples of the same and the other class, respectively, the objective of the original
triplet loss [14] is to give a penalty if the following condition is violated:
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d(r(xi ), r(x+
j )) − d(r(xi ), r(x−

k )) + 1 ≤ 0 (12.2)

At the same time, we would like to have the examples of the same class as close as
possible so that, whenmatching a new fingerprint against the reference patches of the
same class, the distance d(r(xi ), r(x+

j )) is as low as possible. If we denote by y(xi )
the class of a generic patch xi , we can obtain the desired behavior by formulating
the following loss function:

L =
∑

i, j,k

{
c(xi , x

+
j , x−

k ) + βc(xi , x
+
j )

}
+ λ‖θ‖2 (12.3)

where θ is a one-dimensional vector containing all the trainable parameters of the
network, y(xi ) = y(x j ), y(x

−
k ) �= y(xi ) and

c(xi , x
+
j , x−

k ) = max
{
0, d(r(xi ), r(x+

j )) − d(r(xi ), r(x−
k )) + 1

}
(12.4a)

c(xi , x
+
j ) = d(r(xi ), r(x+

j )) (12.4b)

During training, we compute the subgradients and use backpropagation through the
network in order to get the desired representation. Contextualizing towhat depicted in
Fig. 12.5, c(xi , x

+
j , x−

k ) is the inter-class and c(xi , x
+
j ) the intra-class distance term.

λ‖θ‖2 is an additional weight decay term added to the loss function for regularization
purposes.

After a certain number of iterations k, we periodically generate a new set of triplets
by extracting a different patch from each training fingerprint. It is essential to not
update the triplets after too many iterations because it can result in overfitting. At
the same time, generating new triplets too often or mining hard examples can cause
convergence issues.

12.3.4 Matching

In principle, any distance among bag of features can be used in order to match the
query fingerprint Q = {r(Q1), r(Q2), . . . , r(Qp)} against the reference sets RL and
RF . Since the training objective drastically pushes the distances to be very close to
zero or to one, a decision on the liveness can be made by setting a simple threshold
τ = 0.5. An alternative could consists of measuring the Hausdorff distance between
bags, but it would be too much sensitive to outliers since it involves the computation
of the minimum distance between a test patch and each patch of each reference set.
Even if using the k-th Hausdorff distance [40], that considers the k-th value instead
of the minimum, we obtained better performance by following a simple majority
voting strategy. It is also faster since it does not involve sorting out the distances.

Given a fingerprint Q, for each patch Q j we count how many distances for each
reference set are below the given threshold
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D(RL , Q j ) = |{i ∈ {1, . . . , n} : d(RLi , Q j ) < τ }| (12.5a)

D(RF , Q j ) = |{i ∈ {1, . . . , n} : d(RFi , Q j ) < τ }| (12.5b)

then we make the decision evaluating how many patches belong to the real or the
fake class:

y(Q) =
{
real if

∑p
j=1 D(RL , Q j ) ≥ ∑p

j=1 D(RF , Q j )

fake otherwise
(12.6)

The above method can also be applied in scenarios where multiple fingerprints are
acquired from the same individual, as usually happens on passport checks at airports.
For instance, the patches coming from different fingers can be accumulated in order
to apply the same majority rule of Eq.12.6 or the decision can be made on the most
suspicious fingerprint.

12.4 Experiments

We evaluated the proposed approach with ten of the most popular benchmark for
fingerprint liveness detection, coming from the LivDet competitions held in 2009 [7],
2011 [18] and 2013 [19].We compare ourmethodwith the state of the art, specifically
the VGG pretrained network of [9], the Local Contrast Phase Descriptor LCPD [29],
the dense Scale Invariant Descriptor SID [30] and the Binarized Statistical Image
Features [28]. For the main experiments, we strictly follow the competition rules
using the training/test splits provided by the organizers while for the cross-dataset
and cross-material scenarios, we follow the setup of [9].

The network architecture along with the overall framework have been imple-
mented using the Torch7 computing framework [41] on an NVIDIA® DIGITSTM

DevBox with four TITAN X GPUs with seven TFlops of single precision, 336.5
GB/s of memory bandwidth, and 12 GB of memory per board. MATLAB® has been
used for image segmentation.

12.4.1 Datasets

The LivDet 2009 datasets [7] were released with the first international fingerprint
liveness detection competition, with the aim of becoming a reference and allowing
researchers to compare the performance of their algorithms or systems. The fin-
gerprints were acquired using the cooperative approach (see Sect. 12.2.1) and the
replicas are created using the materials: gelatin, silicone, and play-doh. The orga-
nizers released three datasets, acquired using three different sensors: Biometrika
(FX2000), Identix (DFR2100), and Crossmatch (Verifier 300 LC).
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Table 12.2 Details of the LivDet 2009 and 2013 competitions. The last row indicates the spoof
materials: S = Silicone, G = Gelatine, P = Play-Doh, E = Ecoflex, L = Latex, M = Modasil, B =
Body Double, W = Wooden glue

Competition LivDet2009 LivDet2013

Dataset Biometrika CrossMatch Identix Biometrika Italdata Swipe

Size 312× 372 480× 640 720× 720 312× 372 480× 640 1500× 208

DPI 569 500 686 569 500 96

Subjects 50 254 160 50 50 100

Live
samples

2000 2000 1500 2000 2000 2500

Spoof
samples

2000 2000 1500 2000 2000 2000

Materials S GPS GPS EGLMW EGLMW BLPW

The LivDet 2011 competition [18] released four datasets, acquired using the
scanners Biometrika (FX2000), Digital Persona (4000B), ItalData (ETT10) and
Sagem (MSO300). The materials used for fake fingerprints are gelatin, latex, Ecoflex
(platinum-catalyzed silicone), silicone and wooden glue. The spoof fingerprints have
been obtained as in LivDet 2009 with the cooperative method.

The LivDet 2013 competition [19] consists of four datasets acquired using the
scanners Biometrika (FX2000), ItalData (ETT10), Crossmatch (L SCANGUARDI-
AN) and Swipe. Differently fromLivDet 2011, two datasets, Biometrika and Italdata,
havebeen acquiredusing the non-cooperativemethod.That is, latent fingerprints have
been acquired from a surface, and then printed on a circuit board (PCB) in order to
generate a three-dimensional structure of the fingerprint that can be used to build a
mold. To replicate the fingerprints they used Body Double, latex, PlayDoh and wood
glue for the Crossmatch and Swipe datasets and gelatin, latex, Ecoflex, Modasil and
wood glue for Biometrika and Italdata.

The size of the images, the scanner resolution, the number of acquired subject
and of live and fake samples are detailed in Tables12.2 and 12.3. The partition of
training and test examples is provided by the organizers of the competition.

12.4.2 Experimental Setup

For all the experiments we evaluate performance in terms of average classification
error. This is the measure used to evaluate the entries in the LivDet competitions and
is the average of the Spoof False Positive Rate (SFPR) and the Spoof False Negative
Rate (SFNR). For all the experiments on the LivDet test sets we follow the standard
protocol and since a validation set is not provided, we reserved a fixed amount of
120 fingerprints. For the cross-dataset experiments, we used for validation purposes
the Biometrika 2009 and Crossmatch 2013 datasets.
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Table 12.3 Details of the LivDet 2011 competition. The last row indicates the spoof materials:
Sg = Silgum, the others are the same as in Table12.2

Competition LivDet2011

Dataset Biometrika Digital persona Italdata Sagem

Size 312× 372 355× 391 640× 480 352× 384

DPI 500 500 500 500

Subjects 200 82 92 200

Live samples 2000 2000 2000 2000

Spoof samples 2000 2000 2000 2000

Materials EGLSgW GLPSW EGLSgW GLPSW

The triplets set for training is generated by taking one patch from each fingerprint
and arranging them alternatively in two examples of one class and one of the other
class. The set is updated every k = 100,000 triplets that are fed to the networks in
batches of 100. In the remainder of the chapter, we refer to each update as the start
of a new iteration. We use stochastic gradient descent to minimize the triplet loss
function, setting a learning rate of 0.5 and a momentum of 0.9. The learning rate η0
is annealed by following the form:

η = η0

1 + 10−4 · b (12.7)

where b is the progressive number of batches that are being processed. That is, after
ten iterations the learning rate is reduced by half. The weight decay term of Eq.12.3
is set to λ = 10−4 and β = 0.002 as in [17].

After each iteration, we check the validation error. Instead of using the same
accuracy measured at test (the average classification error), we construct 100,000
triplets using the validation set patches, but taking as anchor the reference patches
taken from the training set and used to match the test samples. The error consists of
the number of violating triplets and reflects how much the reference patches failed
to classify patches never seen before. Instead of fixing the number of iterations, we
employ early stopping based on the concept of patience [42]. Each time the validation
error decrease, we save a snapshot of the network parameters, and if in 20 consecutive
iterations the validation error is not decreasing anymore, we stop the training and
evaluate the accuracy on the test set using the last saved snapshot.

12.4.3 Preprocessing

Since the images coming from the scanners contain a wide background area sur-
rounding the fingerprint, we segmented the images in order to avoid extracting back-
ground patches. The performance is highly affected by the quality of the background
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subtraction, therefore, we employed an algorithm [43], that divides the fingerprint
image into 16× 16 blocks, and classifies a block as foreground only if its standard
deviation is more than a given threshold. The rationale is that a higher standard
deviation corresponds to the ridge regions of a fingerprint. In order to exclude back-
ground noise that can interfere with the segmentation, we compute the connected
components of the foreground mask and take the fingerprint region as the one with
the largest area. In order to get a smooth segmentation, we generate the convex hull
image from the binary mask using morphological operations.

We also tried to employ data augmentation techniques in terms of random rota-
tions, flipping and general affine transformation. Anyway, they significantly slowed
down the training procedure and we did not get any performance improvement on
either the main and cross-dataset experiments.

12.4.4 Experimental Results

In this section, we present the performance of the proposed fingerprint liveness detec-
tion system in different scenarios. In Table12.4 we list the performance in terms
of average classification error on the LivDet competition test sets. With respect to
the currently best-performing methods [9, 29, 30] we obtained competitive perfor-
mance for all the datasets, especially on Italdata 2011, and Swipe 2013. This means
that the approach works properly also on the images coming from swipe scanners,
where the fingerprints are acquired by swiping the finger across the sensor surface
(see Fig. 12.3e, f). Overall, our approach has an average error of 1.75% in comparison

Table 12.4 Average classification error for the LivDet Test Datasets. In column 2 our TripletNet
based approach, in column 2 the VGG deep network pretrained on the Imagenet dataset and fine-
tuned by [9], in column 3 the Local Contrast Phase Descriptor [29] based approach, in column 4
the dense Scale Invariant Descriptor [30] based approach and in column 5 the Binarized Statistical
Image Features [28] based approach

Dataset TripletNet VGG [9] LCPD [29] SID [30] BSIF [28]

Biometrika 2009 0.71 4.1 1 3.8 9

CrossMatch 2009 1.57 0.6 3.4 3.3 5.8

Identix 2009 0.044 0.2 1.3 0.7 0.7

Biometrika 2011 5.15 5.2 4.9 5.8 6.8

Digital 2011 1.85 3.2 4.7 2.0 4.1

Italdata 2011 5.1 8 12.3 11.2 13.9

Sagem 2011 1.23 1.7 3.2 4.2 5.6

Biometrika 2013 0.65 1.8 1.2 2.5 1.1

Italdata 2013 0.5 0.4 1.3 2.7 3

Swipe 2013 0.66 3.7 4.7 9.3 5.2

Average 1.75% 2.89% 3.8% 4.5% 5.5%
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to the 2.89% of [9] which results in a performance improvement of 65%. We point
out that we did not use the dataset CrossMatch 2013 for evaluation purposes because
the organizers of the competition found anomalies in the data and discouraged its use
for comparative evaluations [4]. In Fig. 12.6 we depict a 2D representation of the test
set of Biometrika 2013, specifically one patch for every fingerprint image, computed
from an application of t-SNE [44] to the generated embedding. This dimensional-
ity reduction technique is particularly insightful since it maps the high-dimensional
representation in a space where the vicinity of points is preserved. We can see that
the real and fake fingerprints are well separated and only a few samples are in the
wrong place, for the major part Wooden Glue andModasil. Ecoflex and gelatin repli-
cas seem more easy to reject. Examining the patch images, we can see that going
top to bottom, the quality of the fingerprint pattern degrades. This may be due to
the perspiration of the fingertips that makes the ridges not as uniform as the fake
replicas.

12.4.4.1 Cross-Dataset Evaluation

As in [9], we present some cross-dataset evaluation and directly compare our perfor-
mance with respect to their deep learning and Local Binary Pattern approach. The
results are shown in Table12.5 and reflect a significant drop in performance with
respect to the previous experiments. With respect to [9] the average classification
error is slightly better, anyway it is too high to possibly consider doing liveness
detection in the wild. Similar results have been obtained by [34]. We point out that
different sensors, settings and climatic conditions can extremely alter the fingerprint
images, and if the training set is not representative of the particular conditions, any
machine learning approach, not just deep learning algorithms, would not be effective
at generalization.

12.4.4.2 Cross-Material Evaluation

We also evaluated the robustness of our system to new spoofing materials. We fol-
lowed the protocol of [9] by training the networks using a subset of materials and
testing on the remaining ones. The results are shown in Table12.6. With respect to
the cross-dataset experiments, the method appears to bemore robust to newmaterials
rather than a change of the sensor. Also in this scenario, if we exclude the Biometrika
2011 dataset, our approach has a significative improvement with respect to [9].

12.4.4.3 Computational Efficiency

One of the main benefits of our approach is the computational time since the archi-
tecture we employed is smaller in comparison to other deep learning approaches
such as [9, 34]. Moreover, the patch representation allows for scaling the matching
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Fig. 12.6 T-SNE visualization of the embedding generated from the live and fake fingerprints
composing the test set of Biometrika 2013 (one patch for each acquisition). The high dimensional
representation ismapped into a two-dimensional scatter plotwhere the vicinity of points is preserved
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Table 12.5 Average classification error for the cross-dataset scenarios. The first column is the
dataset used for training and the second the one used for the test. The third column is our TripletNet
approach, the fourth and the fifth are the deep learning and the Local Binary Patterns (LBP) based
approaches proposed by [9]

Training set Test set TripletNet VGG LBP

Biometrika 2011 Biometrika 2013 14 15.5 16.5

Biometrika 2013 Biometrika 2011 34.05 46.8 47.9

Italdata 2011 Italdata 2013 8.3 14.6 10.6

Italdata 2013 Italdata 2011 44.65 46.0 50.0

Biometrika 2011 Italdata 2011 29.35 37.2 47.1

Italdata 2011 Biometrika 2011 27.65 31.0 49.4

Biometrika 2013 Italdata 2013 1.55 8.8 43.7

Italdata 2013 Biometrika 2013 3.8 2.3 48.4

Table 12.6 Average Classification Error for the cross-material scenario. In column 2 are the mate-
rials used for training and in column 3 the ones used for the test. The abbreviations are the same as
in Tables12.2 and 12.3

Dataset Train
materials

Test
materials

TripletNet VGG LBP

Biometrika 2011 EGL SgW 13.1 10.1 17.7

Biometrika 2013 MW EGL 2.1 4.9 8.5

Italdata 2011 EGL SgW 7 22.1 30.9

Italdata 2013 MW EGL 1.25 6.3 10.7

procedure on different computational units, so that it can be used also in heavily
populated environments. In our experiments, we extract 100 patches from each test
fingerprint and the time to get their corresponding representation is about 0.6ms using
a single GPU and 0.3 s using a Core i7-5930K 6 Core 3.5GHz desktop processor
(single thread). Considering the most common dataset configuration of 880 real and
880 fake reference patches, the matching procedure takes 5.2ms on a single GPU
and 14ms on the CPU. Finally, the training time varies depending on the particu-
lar dataset, and on the average, the procedure converges in 135 iterations. A single
iteration takes 84 and 20s are needed to check the validation error.

12.5 Conclusions

In this chapter, we introduced a novel framework for fingerprint liveness detection
which embeds the recent advancements in deep metric learning. We validated the
effectiveness of our approach in a scenario where the fingerprints are acquired using
the same sensing devices that are used for training. We also presented quantified
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results on the generalization capability of the proposed approach for new acquisition
devices, and unseen spoofing materials. The approach is able to work in real time
and surpasses the state-of-the-art on several benchmark datasets.

In conclusion, we point out that the employment of software-based liveness detec-
tion systems should never give a sense of false security to their users. As in other
areas such as cyber-security, the attackers become more resourceful every day and
new ways to fool a biometric system will be discovered. Therefore, such systems
should be constantly updated and monitored, especially in critical applications such
as airport controls. It would be desirable to have large datasets that contain fingerprint
images of people with different age, sex, ethnicity, and skin conditions and that are
acquired under different time periods, environments and using a variety of sensors
with a multitude of spoofing materials.
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