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Abstract. The accurate prediction of rates of road deterioration is important in
Pavement Management Systems (PMS), to ensure efficient and forward looking
management and for setting present and future budget requirements. Libyan
roads face increasing damage from the lack of regular maintenance. This rein-
forces the need to develop a system to predict road deterioration in order to
determine optimal pavement intervention strategies (OIS). In a PMS, pavement
deterioration can be modeled deterministically or probabilistically. This paper
proposes a Bayesian linear regression method to develop a performance model
in the absence of historical data; instead, the model uses expert knowledge as a
prior distribution. As such, Libyan Road experts who have worked for a long
time with the Libyan Road and Transportation Agency have been interviewed to
develop input data to feed the Bayesian Model. A posterior distribution was
computed using a likelihood function depending on road condition inspections
in accordance with a pre-established protocol. The results were the pavement
deterioration prediction models based on expert knowledge and a few on-site
inspections.

Keywords: Pavement management systems � Pavement performance �
International roughness index (IRI) � Bayesian linear regression

1 Introduction

A road pavement deteriorates under the combined action of traffic loading and envi-
ronment, thus reducing the quality of the ride (Madanat et al. 1997). Models should be
able to quantify the contribution of variables such as strength of pavement materials,
traffic, and environmental conditions that are relevant to pavement deterioration
(Ortiz-Garcia et al. 2006). PMS are commonly used to select maintenance strategies
that result in lower project life cycle costs (Premkumar and Vavrik Haas 1994).

Modeling the performance of pavements is an important activity in pavement
management, and many highway agencies have developed a variety of pavement
performance models for use in their pavement management activities (Lethanh et al.
2014). This paper presents a methodology to develop new models for the various
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pavement families in the Libyan road network in order to predict the condition of a
given area of pavement. The predicted future condition of the pavements is used in
estimating its remaining service life to failure, which will consequently be used to help
find the best ways to intervene in the maintenance and rehabilitation activities for a
given area of the network (Li et al. 1997).

There are mainly two basic kinds of performance models: deterministic and
probabilistic (Kobayashi et al. 2012). The deterministic models predict a single number
for the life of a pavement or its level of distress or any other measure of its condition. In
contrast, the probabilistic models predict a distribution of such events. There are many
deterministic models some of them are Mechanistic, Empirical-Mechanistic, Polyno-
mial Constrained Least Squares, and S-Shaped Curve models (Hong et al. 2013). In
general, probabilistic models include Bayesian and Markov process models. Bayesian
modeling assigns a prior probability distribution to pavement condition based on
experience; it then mixes it with the experimentation and data collection to predict the
future condition (Hong and Prozzi 2006). Furthermore, Markov models can be used
when pavement data is a sequence of conditions in which the probability of each
condition depends only on the state attained in the previous condition (Prozzi and
Madanat 2003; Li 2005).

1.1 Bayesian Model

The principle of Bayesian statistics lies in combining prior probabilities and likelihood
with experimental outcomes to determine a post-experimental or posterior probability
as shown in Fig. 1 (Pandis 2015a). The posterior distribution expresses what is known
about a set of parameters based on both the sample data and prior knowledge (Han
et al. 2014). In frequents statistics, it is often necessary to rely on large sample
approximations by assuming asymptomatic normality. In contrast, Bayesian inferences
can be computed exactly, even in highly complex situations (Jongsawat and Prem-
chaiswadi 2010). This paper gives an account of basic uses of Bayes theorem and of the
role and construction of prior densities. This follows by inference, dealing with ana-
logues of confidence intervals, tests, approaches to model criticism, and model
uncertainty (Gongdon 2003). Using the probability density function, Bayes model can
be expressed as follows:

Fig. 1. Bayes General Concept
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P hjXð Þ ¼ P Xjhð ÞP hð Þ
P Xð Þ ¼ P Xjhð ÞP hð ÞR

P Xjhð ÞP hð Þdh ð1Þ

A fundamental feature of the Bayesian approach to statistics is the use of prior
information in addition to the sample data. A proper Bayesian analysis will always
incorporate prior information, which will help to strengthen inferences about the true
value of the parameter and ensure that any relevant information about it is not wasted
(Nagaraja 2006).

1.1.1 Prior Knowledge P hð Þ
A fundamental feature of the Bayesian approach to statistics is the use of prior
information in addition to the sample data. A proper Bayesian analysis will always
incorporate prior information, which will help to strengthen inferences about the true
value of the parameter and ensure that any relevant information about it is not wasted
(Lunn et al. 2000).

1.1.2 Maximum Likelihood Estimation (MLE) P Xjhð Þ
The maximum likelihood estimation (MLE) approach is one of the most important
statistical methodologies for parameter estimation (Clark 2015). It is based on the
fundamental assumption that the underlying probability distribution of the observations
belongs to a family of distributions indexed by unknown parameters (Schwartz et al.
2013). The MLE estimator of the unknown parameters maximizes the likelihood
function that corresponds to the probability distribution in the family that gives the
observations the highest chance of occurrence. The MLE method starts from the joint
probability distribution of the measured values x1; x2; . . .; xn. For independent mea-
surements, this is given by the product of the individual densities pðxjhÞ, as in Eq. 2.

P Xjhð Þ ¼ p x1jhð Þp x2jhð Þ. . .:p xnjhð Þ ¼
Yi¼1

n
pðxijhÞ ð2Þ

1.1.3 Posterior Distribution PðhjXÞ
Posterior expresses what is known about a set of parameters based on both the sample
data and prior information. Bayes theorem works as a mechanism for generating a
posterior of any parameter and thereby mixes the prior knowledge with the likelihood.
The first iteration production of the prior knowledge and the MLE will then be divided
by P Xð Þ, a normalizing factor, to normalize the distribution. When the posterior dis-
tribution P hjXð Þ is in the same family as the prior probability distribution P hð Þ, the prior
and posterior are then called conjugate distributions. Non-conjugate prior distributions
can make interpretations of posterior inferences more difficult (Han et al. 2014).

1.2 The International Roughness Index (IRI)

The International Roughness Index (IRI) is an international standard for measuring
road roughness longitudinally. The index measures pavement roughness in the wheel
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paths in terms of the number of rough meters per kilometer. The most common method
uses a laser that is mounted on a specialized van. The laser is trained on the road
surface, like a laser pointer. As the van drives along a road, the beam jumps unex-
pectedly at rough patches, just as a laser pointer; these jumps are measured and used for
analysis (Mašović and Hajdin 2013). The lower the IRI number at a given speed, the
smoother the ride felt by the road user. Moreover, this roughness statistic is suitable for
any road surface type and covers all levels of roughness (Kobayashi et al. 2012). IRI
can be treated as a random variable and therefore it can be described as a probability
distribution (Shahin 2005). The main advantages of the IRI are that it is stable over
time and transferable throughout the world. IRI can also be used as a measure of
pavement conditions and the data can be easily shared between researchers. It can also
be directly related to vehicle operating costs (Shahin 2005).

2 Methodology

The technique that will be used to estimate the road network deterioration is a variant of
Bayesian Expert-Based probability matrices of deterioration. This technique can then
be applied to road classes in Libya. This method depends on combining observed data
with expert experience, using Bayesian linear regression techniques. The Bayesian
prediction approach is the process of analyzing statistical models by using prior
knowledge and observations as shown in Eq. 1 (Amador-Jimenez and Mrawira 2012).
Bayesian linear regression adds more accuracy to the estimation of the parameters
according to the International Roughness Index (IRI); this is because it covers the
whole range of inferential solutions, rather than a point estimate and a confidence
interval, as in classical regression (Davison 2008). The research methodology consists
of three major steps. These are: interviewing experts in order to set up the prior
distribution; inspecting road networks to estimate MLE; computing the posterior and
predictive distributions for the IRI as can be seen in Fig. 2.

2.1 Pavement Families Classification

Libya’s most prominent natural features are the Mediterranean coast, the Sahara Desert
and several highlands. As a result, the soil conditions were divided into three categories
(low, medium, high). Moreover, the road network is exposed to two climate zones
which are the hot-summer Mediterranean climate and the hot desert climate conse-
quently; the network was categorized into north and south zones. Therefore, in this
research, 3 loading levels, 3 soil conditions and 2 climate zones interact with each other

Fig. 2. Research methodology steps
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and result in 18 pavement families. These pavement families are then used to develop
Bayesian linear regression prediction models for each family, as shown in Table 1.

Since loading and soil conditions are the most important factors that damage most
pavement sections, they are often used as independent variables in developing equa-
tions that predict conditions. In many cases, they are combined with age as an inde-
pendent variable. In most circumstances, agencies want to know in how many years a
pavement will need intervention (Lethanh et al. 2014). Therefore, in some models,
loads and types of soil are used as factors that affect the rate of deterioration of a road
surface; in these cases they are both considered as independent variables. Road sections
are selected using a random stratified sampling technique to avoid any biased
estimations.

Soil strength is measured by a penetration test in accordance with the California
Bearing Ratio test (CBR) which evaluates the subgrade strength of roads. Traffic loads
are categorized as follows:

• Low: <50 vehicles/day
• Medium: 50–500 vehicles/day
• High: 500–2000 vehicles/day

Table 1. Road network will be divided into Zones (North and south) interacting with traffic
loads and soil conditions during a sequence of years.

North Zone South Zone

Load Level Load Level
Low Medium High Low Medium High

Soil Strength Low Dataset1 Dataset2 Dataset3 Dataset10 Dataset11 Dataset12
Medium Dataset4 Dataset5 Dataset6 Dataset13 Dataset14 Dataset15
High Dataset7 Dataset8 Dataset9 Dataset16 Dataset17 Dataset18

Fig. 3. The differences between linear regression and Bayesian linear regression

Road Performance Prediction Model for the Libyan Road Network Depending 157



In general, these models are network-level deterioration models and not
project-level deterioration models because the characteristics and the properties of the
materials are not presently available in Libya.

2.2 Interviewing Experts (Prior) and Pavement Condition Inspections

The Bayesian statistical approach combines prior knowledge (experience) with field
data. In highway engineering, new models are continually needed to better predict
pavement performance or to run various PMS; however, it takes much time and
expense to gather data about pavement performance. In such situations, the Bayesian
approach is useful in short circuiting the data collection cycle. After gathering some
data, which may not be sufficient to support meaningful classical regression, one can
collect some expert judgment and combine the two sources of information into a
relatively robust regression model. The expert judgment serves to bridge the gaps in
field data.

It is obvious that a lot of valuable information can be obtained from people who
have observed pavement performance throughout their careers. This professional and
field staffs know what variables are contributing to pavement performance. They
understand the functional relations of the variables. Their impressions on these rela-
tionships can be encoded and when combined with field data, these impressions can
have profound impacts on the resulting posterior models. That is why; initial data has
been collected by interviewing Libyan experts who have worked for many years on the
development of the Libyan road network. Six engineers were interviewed using a
standardized, open-ended interview technique; it is very structured and include a set
protocol of questions and probes (Pandis 2015b).

Fig. 4. ANOVA Experts’ opinions comparison
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An analysis of variance was done before combining the experts’ knowledge; this
ensures that all experts’ priors are consistent. From Fig. 4 and Table 3, there is no
significant evidence to show that there is a difference in group means. As a result, the
experts’ opinions were considerably compatible; this means that all of the experts’
knowledge about the roughness progression was close to each other. After that, an
inspection of representative road sections from each the 18 families was conducted in
Libya. The road deterioration was measured by the IRI on a subjective basis. Table 1
provides a summary of the characteristic of 18 families and codification of 18 asso-
ciated databases. A sample of experts’ interviews represents pavement families 1 and
10 is shown in Table 2.

Table 2. Two pavement families from north and south zones

Pavement family 1 Pavement family 10
Prior Pavement condition Prior Pavement condition

1 1.05 1.15 1.22 1.32
2 1.29 1.35 1.46 1.52
3 1.75 1.65 1.92 1.82
4 2.10 1.90 2.27 2.07
5 2.45 2.15 2.62 3.32
6 2.80 2.40 2.97 2.57
7 3.15 2.65 3.32 2.82
8 3.50 2.90 3.67 3.07
9 3.85 3.15 4.02 3.32
10 4.20 3.40 4.37 3.57
11 4.90 3.90 5.07 4.07
12 5.25 4.15 5.42 4.32
13 5.60 4.40 5.77 4.57
14 5.95 4.65 6.12 4.82
15 6.3 4.90 6.47 5.26
16 6.65 5.15 6.86 5.65
17 7.00 5.40 7.17 5.78
18 7.35 5.65 7.52 6.12
19 7.70 5.9 7.87 6.47
20 8.05 6.45 8.22 6.82
21 8.40 7.33 8.57 7.27

Table 3. ANOVA results to investigate the differences between the means of experts’ opinions

Source of variation SS df MS F P-Value F crit

Between groups 5.43 5 1.09 0.54 0.74 2.37
Within groups 120.27 60 2.00
Total 125.70 65
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2.3 IRI Estimations

Roads deteriorate and their IRI drop gradually over time. This relationship can be
represented using linear regression but, practically, road sections having the same zone,
age, load, and soil strength conditions could still have a different rate of deterioration.
Therefore, Bayesian linear regression is the appropriate technique wherein basic
Bayesian philosophy is applied. This is because the Bayesian regression is a proba-
bilistic approach that accounts for variability (refer to Fig. 3). As such, in Bayesian
inference, MLE is considered to be point estimation. However, in Bayesian linear
regression, productive probability around each inference of the IRI is probabilistically
investigated (Amador-Jimenez and Mrawira 2012).

The research data required for IRI estimations has been divided into two main
categories. The first category was extracted from the interviews with the experts. The
second category is the MLE data; this data has been collected using the IRI as part of
the road section inspections process, and has been done to measure the road deterio-
ration. The MLE data is extracted and summarized as pairs of ti; IRIj

� �
where IRI

represents the road section condition and t indicates the time.

Data ¼ t1; IRI1ð Þ; . . .. . .; tn; IRInð Þð Þ; 0� ti � 20; 0� IRIj � 14 ð3Þ

Therefore, the IRIj is a model to be conditionally independent given the w vector
which will be the prior distribution.

IRIj � N wTti; a
�1� �

; a[ 0 ð4Þ

w � N 0; b�1I
� �

; b[ 0;w ¼ w1; . . .. . .;wdð Þ ð5Þ

Where a ¼ 1
r2 is the precision factor, b is the covariance matrix; a and b are known,

and w is a parameter vector with a Gaussian multivariate density.

2.3.1 The Posterior Distribution
The next step is to compute the posterior distribution on w given data. The ti will be
written as u tið Þ ¼ u1 t1ð Þ; . . .:;un t1ð Þð Þ in order to be able to model the nonlinearities of
ti. To compute the posterior, we need to calculate the MLE and then the predictive
distribution.

2.3.2 Maximum Likelihood Estimation (MLE)
Given data:

D ¼ IRI1; . . .:; IRInð Þ; IRIi 2 0; 14ð Þ ð6Þ

D represents a sample from the IRI statistical population that has been collected
from road section inspections. Then, the MLE is computed using the following
formula:
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PðDjwÞ / exp � a
2

IRI � Awð ÞT IRI � Awð Þ
� �

ð7Þ

Where A is the design matrix and IRI is a value that we are going to predict, in a
column vector form.

A ¼
� tT1 �
..
. ..

. ..
.

� tTn �

0
B@

1
CA; IRI ¼ IRI1; . . .::; IRInð ÞT ð8Þ

2.3.3 Posterior
From the classical Bayesian definition, the posterior is proportional with the prior

P wjDð Þ / P Djwð ÞP wð Þ ð9Þ

After that, we replace the MLE expression in the posterior; this is shown as:

PðwjDÞ / exp � a
2

IRI � Awð ÞT IRI � Awð Þ � b
2
wTw

� �
ð10Þ

With a little calculus we can express w in the form of a Gaussian distribution and
call it a precision matrix:

P wjDð Þ ¼ Nðwjl;A�1ÞWhere l ¼ aK�1ATiri ; K ¼ aATAþ bI ð11Þ

That shows us the Maximum Posterior (MAP) and MLE estimations of w, which
are:

wMAP ¼ ATAþ b
a
I

� ��1

ATiri ð12Þ

wMLE ¼ ATA
� ��1

ATiri ð13Þ

2.3.4 Predictive Distribution
The predictive distribution is the conditional distribution of unobserved observations
(prediction) given the collected data (Hong and Prozzi 2006). Our unobserved obser-
vation is the expert interview data; and the collected data is the data collected from road
condition inspections, which can be expressed, in the following format:

P irijt;Dð Þ ¼ Z
P irijt;wð Þ wjt;Dð Þdw ð14Þ

¼ Z
N irijwTt; a�1
� �

N wjl;A�1
� �

dw ð15Þ
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/
Z

expð� a
2

iri� wTt
� �2

expð� 1
2

w� lð ÞTK w� lð Þdw ð16Þ

This formula is then factored and put in a quadratic form as a function of w in a formula
similar to the following general expression:

R
N wj. . .. . .ð Þg irið Þdw and then, since

g irið Þ is not dependent on w, it comes out of the integral and
R
N wj. . .. . .ð Þdw inte-

grates to 1.
After several algebraic steps, finalization of the predictive distribution is:

P irijt;Dð Þ ¼ N iriju; 1
k

� �
whereu ¼ lT t and

1
k
¼ 1

a
þ tTK�1t ð17Þ

Finally, using mathematical expectation and Eq. (16) in all road section families,
IRI will be estimated depending on:

• iri is the expert interview data,
• t is the time corresponding with road conditions,
• D is the data collected from road inspections.

3 Case Study (First Pavement Family)

To illustrate the effectiveness of this model, two data sources will be organized in a
database file in order to be easily imported when the model is run. The first data source
is the data extracted from interviewing Libyan experts. The interview data was used to
formulate the prior probability distribution and some results of this interview are shown
in Table 2. The second data source is from the selected road section inspection data
(IRI). Table 1 shows two pavement families which have been chosen from each
geographic zone (north & south). In this study, the model is applied only to the first
pavement family, shown in Table 1.

3.1 Bayesian Regression Analysis

This section consists of all required steps to apply the Bayes regression on the collected
data. The model has 1000 iterations using a combined prior to present all expert
knowledge encoded in one model for each pavement family. A combined prior was
selected to develop a single model for each pavement family. If each expert prior were
analyzed separately, six separate posterior models would have to have been developed
for each pavement family.

An analysis of variance was done before combining the experts’ knowledge; this
ensures that all experts’ priors are consistent. From Fig. 4 and Table 3, there is no
significant evidence to show that there is a difference in group means. As a result, the
experts’ opinions were considerably compatible; this means that all of the experts’
knowledge about the roughness progression was close to each other.
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WinBUGS was chosen as a programming platform; this is a free software available
from the Biostatistics Unit of the Medical Research Council in the UK (Medical
Research Council 2016). The WinBUGS program consists of three parts, all of which
can be placed into a single file or as three separate files. The first part is the main
program that is a string of computer code that lets WinBUGS know what the prior and
likelihood of the model is. The second part is the data set that can be entered using
matrixes in the same program or can be called from a file. The last part is the initial
values that are used to start the algorithm. To estimate the parameters in Bayesian
analysis, the prior distribution is multiplied by the likelihood; samples are then taken
from the posterior distributions via an iterative Markov Chain Monte Carlo (MCMC)
algorithm (Davison 2008).

3.2 Model Results (First Pavement Family)

The model combines data taken from the road condition inspections in accordance with
a pre-established protocol and prior knowledge of the six experts who participated in
the interviews. Once the model, the data, and the initial values have been specified, the
program will be ready to be compiled and to run the MCMC algorithm. WinBUGS
offers a Sample Monitor Tool panel which consists of a number of task icons as shown
in Fig. 5. One of these tools is the stats tool; this gives a zoomed-out view of the entire
posterior summary for the Bayes linear regression parameters, as illustrates in Table 4.

As a result of the Bayesian analysis, IRI predictive posterior models for the first
pavement family were developed. The models have one independent variable and the
predictive posterior equation is, as shown in Eq. (18), where a, b are the estimated
parameters and t represents time in years.

IRI ¼ aþ bti ð18Þ

Figure 6 shows the MCMC behaviour, where the chain appears to be moving
around readily. This behaviour is called the dynamic trace because it will be contin-
uously refreshed in real time if the model is updated. The probability distribution

Fig. 5. Sample Monitor Tool
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densities of the parameters are displayed and summarized, as shown in Fig. 7. The
basic analysis of the MCMC output is obtained by checking the convergence of the
chain (history) and the autocorrelation (auto cor), as show in Figs. 10 and 8 respec-
tively. Figure 9 illustrates the moving averages of the mean and the 95% credibility
interval; all parameters appear stable over the course of the run. The parameters pos-
terior estimation and the 95% parameters credibility intervals are summarized in
Table 5. Table 6 shows a comparison between the actual IRI values and the IRI
estimations which have been predicted by the model.

Table 4. Posterior summary for the Bayes linear regression parameters

Node mean sd MC error 2.5% median 97.5% start sample

alpha 0.7039 0.1896 0.01671 0.4934 0.6965 0.885 1 1000
beta 0.2850 0.01372 0.001211 0.2720 0.2857 0.3014 1 1000
tau 29.71 9.722 0.3757 12.81 28.91 51.02 1 1000

alpha

iteration

950900850

    0.0

    0.5

    1.0

    1.5

beta

iteration

950900850

   0.25
  0.275
    0.3

  0.325
   0.35

tau

iteration

950900850

    0.0
   20.0
   40.0
   60.0
   80.0

Fig. 6. Dynamic trace for the parameter outputs

alpha sample: 1000

    0.0     0.5     1.0

    0.0

    2.0

    4.0

    6.0

beta sample: 1000

   0.25   0.275     0.3   0.325

    0.0
   20.0
   40.0
   60.0
   80.0

tau sample: 1000

    0.0    20.0    40.0    60.0

    0.0

   0.02

   0.04

   0.06

Fig. 7. Posterior densities for the model parameters

alpha

lag

0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta

lag

0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

tau

lag

0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

Fig. 8. Parameters autocorrelation functions

alpha

iteration

41 250 500 750

    0.0
   0.25
    0.5
   0.75
    1.0

beta

iteration

41 250 500 750

   0.26
   0.27
   0.28
   0.29
    0.3

tau

iteration

41 250 500 750

    0.0

   20.0

   40.0

   60.0

Fig. 9. Parameters running quantiles
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4 Conclusions

This paper has demonstrated how Bayesian linear regression modeling provides a more
reliable framework for anticipation when historical data is not available. The linear
regression model is undertaken within the boundaries of the Bayes inference approach,
in order to investigate the parameters estimation errors probabilistically.

The paper consists of three major steps: interviews with experts to establish the
prior distribution of the model; measuring the current road roughness using the IRI on a
selected road sample; producing the posterior distribution followed by the predictive

alpha

iteration

1 250 500 750 1000

    0.0

    0.5

    1.0

    1.5

beta

iteration

1 250 500 750 1000

   0.25

  0.275

    0.3

  0.325

   0.35

tau

iteration

1 250 500 750 1000

    0.0

   20.0

   40.0

   60.0

   80.0

Fig. 10. Parameters trace history output

Table 5. Model result summary

Parameter 95% Credibility interval Posterior mean MLE

a (0.4934, 0.885) 0.7039 0.6965
b (0.2720, 0.3014) 0.2850 0.2857

Table 6. A comparison between actual IRI values and the model outputs

Road section IRI Predicted IRI

1 1.15 0.99
2 1.35 1.28
3 1.65 1.57
4 1.90 1.86
5 2.15 2.15
6 2.40 2.44
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distribution. The result is a Bayesian linear regression with two parameters a; bð Þ where
the model is expressed as IRI ¼ aþ bti. Moreover, credibility intervals were accom-
panied with the parameter estimations; this increased the reliability of the domain
estimation for the posterior probability distribution, as shown in Table 5.

This technique is highly recommended when developing a model to estimate
pavement performance in the absence of historical data. Moreover, this method is not
exclusive to the Libyan road network, but is applicable in any road network when the
circumstances are similar especially in developing countries. The main disadvantage of
this method is that, because it was developed for cases where there was no historical
data, it does not have a mechanism to incorporate it. This required the researchers to
adopt the approach that used interviews with experts instead; this was difficult and
required a lot of consideration as to the type of questions necessary to extract the
needed data for this research. Additionally, because of the lack of archived data, the
authors have divided the road network into 18 families based on geographical location,
traffic load and soil strength; this means that 18 models were developed, which was
sometime unwieldy and oftentimes a lot of extra work.
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