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Abstract. Bayesian networks typically require thousands of probability
para-meters for their specification, many of which are bound to be inac-
curate. Know-ledge of the direction of change in an output probability
of a network occasioned by changes in one or more of its parameters, i.e.
the qualitative effect of parameter changes, has been shown to be useful
both for parameter tuning and in pre-processing for inference in credal
networks. In this paper we identify classes of parameter for which the
qualitative effect on a given output of interest can be identified based
upon graphical considerations.

1 Introduction

A Bayesian network defines a unique joint probability distribution over a set of
discrete random variables [8]. It combines an acyclic directed graph, representing
the independencies among the variables, with a quantification of local discrete
distributions. The individual probabilities of these local distributions are called
the parameters of the network. A Bayesian network can be used to infer any
probability from the represented distribution.

The effect of possible parameter inaccuracies on the output probabilities of a
network can be studied with a sensitivity analysis. An output can be described as
a fraction of two functions that are linear in any network parameter; the coeffi-
cients of the functions are determined by the non-varied parameters [6]. Depend-
ing on the coeflicients, such so-called sensitivity functions are either monotone
increasing or monotone decreasing functions in each parameter. Interestingly, as
we showed in previous research, for some outputs and parameters, the sensitiv-
ity function is even always increasing (or decreasing) regardless of the specific
values of the other network parameters [1]. That is, regardless of the specific
quantification of a network, the coefficients of the sensitivity function for a cer-
tain parameter can be such that the gradient is always positive (or always neg-
ative). In such a case, the qualitative effect of a parameter change on an output
probability can be predicted from properties of the network structure, without
considering the values of the other network parameters.

Knowledge of the qualitative effect of parameter changes can be exploited
for different purposes. Examples of applications can be found in pre-processing
for inference in credal networks [1] and in multi-parameter tuning of Bayesian
networks [2].
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In this paper we present a complete categorisation of a network’s parameters
with respect to their qualitative effect on some output, where we assume that
the network is pruned before hand to a sub-network that is computationally
relevant to the output. The paper extends the work in [1] in which only a partial
categorisation of the network parameters was given. Compared to our previous
results, the present results also enable a meaningful categorisation for a wider
range of parameters.

2 Preliminaries

2.1 Bayesian Networks and Notation

A Bayesian network # = (G,Pr) represents a joint probability distribution
Pr over a set of random variables W as a factorisation of conditional distrib-
utions [5]. The independences underlying this factorisation are read from the
directed acyclic graph G by means of the well-known d-separation criterion. In
this paper we use upper case W to denote a single random variable, writing
lowercase w € W to indicate a value of W. For binary-valued W, we use w and
w to denote its two possible value assignments. Boldfaced capitals are used to
indicate sets of variables or sets of value assignments, the distinction will be
clear from the context; boldface lower cases are used to indicate a joint value
assignment to a set of variables.

Two value assignments are said to be compatible, denoted by ~, if they agree
on the values of the shared variables; otherwise they are said to be incompatible,
denoted by ~. We use W,y = WNpa(V) to indicate the subset of W that is
among the parents of V', and W51y = W\W ) to indicate its complement in
'W: descendants of V' are captured by de(V'). To conclude, (T, U|V)y, T,U,V C
W, denotes that all variables in T are d-separated from all variables in U given
the variables in V| where we assume that (T, (| V)4 = True.

A Bayesian network specifies for each variable W € W exactly one local
distribution Pr(W | ) over the values of W per value assignment 7 to its parents
pa(W) in G, such that

Pr(w) = H Pr(w|7r)‘w7ww
Wew

where the notation |prop is used to indicate the properties the arguments in
the preceding formula adhere to. The individual probabilities in the local dis-
tributions are termed the network’s parameters. A Bayesian network allows for
computing any probability over its variables W. A typical query is Pr(h|f),
involving two disjoint subsets of W, often referred to as hypothesis variables
(H) and evidence variables (F); W can also include variables not involved in
the output query of interest.

An example Bayesian network is shown in Fig. 1. For output Pr(ghk|def) we
identify hypothesis variables H = {G, H, K'} (double circles), evidence variables
F = {D,E,F} (shaded), and remaining variables {R,S}. In addition to the
graph, conditional probability tables (CPTs) need to be specified for each node.
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Fig. 1. An example Bayesian Fig. 2. The example network from Fig.1 after
network (with just two of its query dependent preprocessing given the output
CPTs). probability Pr(ghk|def).

2.2 Query Dependent Pre-processing

Prior to computing the result of a query, the Bayesian network can be pre-
processed by removing parts of its specification that are easily identified as being
irrelevant to the computations. Sets of nodes that can be removed based upon
graphical considerations only are nodes d-separated from H given F, irrelevant
evidence nodes (effects blocked by other evidence), and barren nodes, that is,
nodes in W\ (HUF') which are leafs or have only barren descendants; the remain-
ing nodes coincide with the so-called parameter sensitivity set [3,7]. In addition,
evidence absorption can be applied, where the outgoing arcs of variables with evi-
dence are removed and the CPTs of the former children are reduced by removing
the parameters that are incompatible with the observed value(s) of their former
parent(s) [4]. After evidence absorption, all variables with evidence correspond
to leafs in the graph and the CPT parameters of their former children will all
be compatible with the evidence.

From here on we consider Bayesian networks that are reduced to what we
call its query-dependent backbone %, using the above-mentioned pre-processing
options'. %, tailored to the original query Pr(h|f), is assumed to be a Bayesian
network over variables V.C W from which the now equivalent query Pr(h|e) is
computed for evidence variables E C F; the remaining variables V\(HUE) will
be denoted by R.

The backbone given output Pr(ghk|def) in our example network from Fig. 1
is depicted in Fig.2. After evidence absorption, the arc from F' to K and the
last two rows of K’s CPT are removed. The node S is removed since it is barren,
and D is removed, since it is d-seperated from the variables in H given F. In
the backbone network we have the hypothesis variables H = {G, H, K}, the
evidence variables E = {E, F'} and the remaining variable R = {R}.

! Note that the parameters of the local distributions that are in % but not in %, do
not affect the output of interest in any way.
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2.3 Relating Queries to Parameters

It is well-known that an output of a Bayesian network relates to a network
parameter x as a fraction of two functions linear in that parameter:

Pr(h|e)(z) = rhO)@) _ Tz 47

Pr(e)(z)  Ki-o + Ao

where the constants 71, 79, k1 and ko are composed of network parameters inde-
pendent of = [3]. The above function can be generalised to multiple parameters [6]
and is typically exploited in the context of sensitivity analysis, to determine how
a change in one or more parameters affects Pr(h|e). We note that upon varying
a parameter x of a distribution, the other parameters of the same distribution
have to be co-varied to let the distribution sum to 1. If the distribution is associ-
ated with a binary variable, the co-varying parameter equals 1 —z. If a variable is
multi-valued, however, different co-variation schemes are possible [9]. Sensitivity
functions are monotonic functions in each parameter, and are either increasing or
decreasing functions in such a parameter. Here we consider increasing (decreas-
ing) in a non-strict sense, that is, increasing (decreasing) includes non-decreasing
(non-increasing).

3 Categorisation of Parameters in a Backbone
Network 4,

We will discuss the parameters of the variables in R, H and E of a backbone
network and categorise these parameters according to their qualitative effect on
Pr(h|e) as summarised in Table 1. In the proofs of our propositions we repeatedly
use the definition of conditional probability and the factorisation defined by %,:

Pr(hle) = P}ff?:))

in which for the numerator Pr(he) we find

Pr(he) = Z Pr(rhe) = Z H Pr(v*|7™)

reR reRV*eV

v*m*~rhe (1)

and for the denominator Pr(e) we find that

Pr(e) = Z Pr(rh*e) = Z H Pr(v*|7")

reR,h*cH reRh*cH VeV

v*m*~rh*e (2)

Parameters which are not present in Egs. (1) and (2) cannot affect the output
directly and are categorised as ‘x’. The effect of all other parameters is investi-
gated by studying properties of their sensitivity functions Pr(h|e)(z). Parame-
ters that are guaranteed to give a monotone increasing sensitivity function are
classified as ‘+’; parameters that are guaranteed to give monotone decreasing
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Table 1. Categorisation of parameters z = Pr(v|m) of a Bayesian network %, with
respect to the output probability Pr(h|e).

V € Rjcat ‘7’

VeHENd(V)=0v~h,w~h |cat ‘4’

v o h or w o hjcat ‘x’

E Nde(V) # 0|non-binary V' |cat ‘7’

binary V 7 v hicat ‘7’

7 ~ h|=(Hpavy, Rpavy [EUH,,vy UV)a|cat 2
(Hpa(v)s Rpav) [EUHqv) UV)g |v ~ hlcat ‘4’

v o hicat ‘=’
VeEvwe cat ‘x’
v~ e 7 h cat ‘—’
w~h —~(Hpz(v), Rpa(v) | EUHp(vy)a|cat ‘7’

(Hpa(v), Rpa(v) [EUHpa(v))a |cat ‘+’

sensitivity functions as ‘—’. Parameters for which the sign of the derivative of

the sensitivity function depends on the actual quantification of the network will
be categorised as ‘?’. Note that sensitivity functions for parameters of category
‘«x’ are not necessarily constant: variation of such a parameter may result in
co-variation of a parameter from the same local distribution which s present
in Egs. (1) or (2). As such, parameters of category ‘«*’ may be indirectly affect-
ing output Pr(h|e), yet for the computation of Pr(h|e) it suffices to know the
values of parameters in the categories ‘4+’, ‘=" and ‘?’. In the relation between
parameter changes and output changes these latter parameters are pivotal.

For the backbone network of our example in Fig.2, the categories of its
parameters are indicated in the CPTs.

4 Categorisation of the Parameters of Variables in R
and H

4.1 Parameters of Variables in R

For a variable R € R the qualitative effect of a change in one of its parameters
x cannot be predicted without additional information: the sensitivity function
Pr(h|e)(z) can be either monotone increasing or decreasing. Therefore, these
parameters are categorised as ‘7.

Proof of the above claim, and of all further propositions concerning para-
meters in the category ‘7’, is omitted due to space restrictions. All these proofs
are based on demonstrating that additional knowledge—for example the specific
network quantification—is required to determine whether the one-way sensitivity
function is increasing or decreasing.

4.2 Parameters of Variables in H Without Descendants in E

The propositions in this section concern parameters = Pr(v|) of nodes V €
H without descendants in E. The parameters of such a node which are fully
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compatible with h have a monotone increasing sensitivity function Pr(h|e)(x)
and therefore are classified as ‘4+’. The parameters not fully compatible with h
are not used in the computation of Pr(h|e) and therefore are classified ‘x’.

Proposition 1. Consider a query-dependent backbone Bayesian network %,
with probability of interest Pr(h|e). Let x = Pr(v|x) be a parameter of a vari-
able V € H such that de(V)NE = 0. If both v ~ h and & ~ h, then Pr(h|e)(z)
is a monotone increasing function.

Proof. Let r; denote the configuration of Ry, () compatible with . In addi-
tion, let h = vh hz, where h, and hs are assignments, compatible with h, to
H,,(v) and Hyg(vy, respectively. First consider the general form of Pr(he) given
by Eq. (1). We observe that under the given conditions we can write:

Pr(vh
Pr(he)(z) = z-Pr(hz|vh er,) - W + Z Pr(vh,hrert)|

rt#r.
rteRpq(v)

where Pr(vhrer,)/Pr(v|m) represents a sum of products of parameters no
longer including Pr(v|=). This expression thus is of the form z -7y 7o + 73,
for non-negative constants 7y, 7o, 73.

For Pr(e), as given in Eq. (2), we observe that since V' has no descendants
in E, this node in fact is barren with respect to Pr(e). As a result, none of
V’s parameters are relevant to the computation and Pr(e)(x) therefore equals a
constant k1 > 0.

The sensitivity function for parameter x thus is of the form Pr(h|e)(z) =
(z-711 -T2 + 73)/K1 with 71,79,73 > 0 and k1 > 0. The first derivative of this
function equals (71-73)/k1, which is always non-negative. O

Proposition 2. Let %, and Pr(h|e) be as before. Let Pr(v|w) be a parameter
of a variable V€ H such that de(V) NE = 0. If v = h or w ~ h, then Pr(v|w)
is not used in the computation of Pr(h|e).

Proof. We again consider Pr(he) as given by Eq. (1) and observe that a parameter
Pr(v|m) with v « hor w ~ h is not included in this expression. Moreover, as
argued in the proof of Proposition 1, no parameter of V' is used in computing Pr(e)
from Eq. (2). Pr(v| ) is therefore not used in the computation of Pr(h|e). O

4.3 Parameters of Variables in H with Descendants in E

For a parameter of a non-binary variable V' € H with at least one descendant
in E, we cannot predict without additional knowledge whether the sensitivity
function Pr(h|e)(z) is monotone increasing or monotone decreasing. These para-
meters therefore are classified as ‘?’. The same observation applies to a parameter
of a binary variable V' € H with descendants in E for which 7 ~ h or for which
Hpa(v) and Ry,q(vy are not d-separated given H,,,(yy, V itself and the evidence.
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If V€ H is binary, # ~ h and Hpgv) and R,y are d-separated given
H,, vy, V itself and the evidence, then we do have sufficient knowledge to deter-
mine the qualitative effect of varying parameter @ = Pr(v|#w) of V. If v ~ h then
Pr(h|e)(z) is monotone increasing, and the parameter is classified as ‘+’. If
v o h then Pr(h|e)(x) is monotone decreasing, and the parameter is classi-
fied as ‘—’ These observations are captured by Proposition 3. This proposition
extends Proposition 2 in [1] by replacing the condition that R,y = 0 by the
less strict d-separation condition mentioned above.

Proposition 3. Let #, and Pr(h|e) be as before. Let Pr(v|m) with w ~ h be a
parameter of a binary variable V € H and let (Hpg(vy, Rpa(v) [EUHpo UV ) 4.
If v ~ h then Pr(h|e)(z) is a monotone increasing function; if v » h then
Pr(h|e)(z) is a monotone decreasing function.

Proof. First consider the case where v ~ h. Under the given conditions we
have from the proof of Proposition 1 that Pr(he) takes on the form Pr(he)(z) =
-7 -To + T3, for constants 7y, o, 73 > 0.

For Pr(e) and binary V we note that Eq. (2) can be written as

Pr(vh,r,e) Pr(vh,r,e)
Pre)(z) =0 ———+(1—2) ————— Pr(vh,r"e)
Pr(v|m) Pr(v| ) +e%: |r+¢rw
r pa(V)
+ Z Pl”(@h7rr+e)|r+;,ér7r + Z Plr(h+e)|h+;éh7r
I‘+€Rpa(v) h+€Hpa,(V)

which takes on the following form: Pr(e)(z) = 72 + (1 — x)-ko + K1 + K3 + Ka,
with constants k; > 0,i=1,....4.

The sign of the derivative of the sensitivity function is determined by the
numerator T1-To: (k1 + Ko + ks + Kk4) — T3(T2 — ka) of Pr(h|e)’(z). We observe that
given (Hpg vy, Rpa(vy [EUHp, (1) UV) g we find that 7141 = 73 which guarantees
the derivative to be non-negative. This implies that, for v ~ h, Pr(h|e)(z) is a
monotone increasing function.

Now consider the case where v ~ h. Since V is binary, this implies that
7 ~ h. The proof for this case follows by replacing, in the above formulas, every
occurrence of v by ¥ and, hence, every z with 1 — z. As a result we find that in
this case Pr(h|e)(x) is a monotone decreasing function. O

5 Categorisation of the Parameters of the Variables in E

5.1 Parameters Pr(v|w) of a Variable V € E with v < e

Recall that after evidence absorption all parameters with 7 ~ e are removed
from the network. For a parameter Pr(v|m) of a variable in V' € E, however, we
may still find that v ~ e; these parameters are in category ‘x’.
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Proposition 4. Let &, and Pr(hl|e) be as before. Let Pr(v|=w) be a parameter
of a variable V € E. If v = e, then Pr(v|m) is not used in the computation of
Pr(h|e).

Proof. This proposition is equivalent to Proposition 3 in [1], but stated for %,
rather than for 4. O

5.2 Parameters Pr(v|w) of a Variable V € E with v ~ e and w ~ h

We now consider the parameters Pr(v|mw) of V € E, with v ~ e and ™ ~ h.
The one-way sensitivity functions of such parameters are monotone decreasing.
These parameters therefore are categorised as ‘—’.

Proposition 5. Let %, and Pr(h|e) be as before. Let x = Pr(v|w) be a para-
meter of V € E such that v ~ e. If w ~ h, then Pr(h|e)(z) is a monotone
decreasing function.

Proof. This proposition is equivalent to Proposition1 in [1], but stated for %,
rather than for 4. O

5.3 Parameters Pr(v|w) of a Variable V € E with v ~eand m# ~h

We now consider parameters Pr(v|m) of V € E with v ~ e and @ ~ h. The
one-way sensitivity functions of such parameters are monotone increasing under
the condition that Hgg(v) is d-separated from R,y given H,q1) and the
evidence. Under this condition, these parameters therefore can be categorised
as ‘+’. This proposition extends Proposition1 in [1] by replacing the condition
that Rq1v) = 0 by the less strict d-separation condition mentioned above.

Proposition 6. Let %, and Pr(h|e) be as before. Let x = Pr(v|w) with v ~ e
and w ~ h be a parameter of V € E and let (Hpg(vy, Rpa(v) |Hpa(vyUE)q. Then
Pr(h|e)(z) is a monotone increasing function.

Proof. For Pr(he) we observe that Eq. (1) can be written as the expression
in the proof of Proposition1, but with v included in e rather than in h. We
therefore have that Pr(he)(z) = x-7 -2 + 73 for constants 71, 72,73 > 0.

For Pr(e), given by Eq. (2), we observe that we can write

Pr(h,r,e)
Pre)@) = o5t * > Prhcert)| o+ X Pr(hTe)
S S hteHp,(v)

which is of the form x-m5 4+ K1 + ko, for constants k1, ko > 0.

We now find that the numerator of the first derivative of the sensitivity func-
tion equals 7172 (k1 +K2) —T273. We observe that given (Hpg(vy, Rpav) | Hpa(v)U
E),; we find that 7 -x; = 73 which guarantees the derivative to be non-negative.
This implies that Pr(h|e)(z) is a monotone increasing function. O



Structure-Based Categorisation of Bayesian Network Parameters 91

In case the above mentioned d-separation property does not hold, we need
additional information to predict whether the sensitivity function Pr(h|e)(x) of
a parameter x of a variable V' € E with v ~ e and 7 ~ h is monotone increasing
or monotone decreasing, without additional knowledge. If the property does not
hold, therefore, these parameters are in category ‘7.

6 Discussion

In this paper we presented fundamental results concerning the qualitative effect
of parameter changes on the output probabilities of a Bayesian network. Based
on the graph structure and the query at hand, we categorised all network para-
meters into one of four categories: parameters not included in the computa-
tion of the output, parameters with guaranteed monotone increasing sensitivity
functions, parameters with guaranteed monotone decreasing sensitivity func-
tions, and parameters of which the qualitative effect cannot be predicted with-
out additional information. Previously we demonstrated that knowledge of the
qualitative effects can be exploited in inference in credal networks [1] and in
multiple-parameter tuning of Bayesian networks [2]. In our previous research
only a partial categorisation of the parameters was given. Our present paper
allocates a wider range of parameters into one of the meaningful categories ‘+’,
‘—” and ‘«’. For future research we would like to further study properties of the
additional information required to predict the qualitative effect of the parameters
in category ‘7’
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