
From Structured to Abstract Argumentation:
Assumption-Based Acceptance

via AF Reasoning

Tuomo Lehtonen1, Johannes P. Wallner2(B), and Matti Järvisalo1

1 HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
2 Institute of Information Systems, TU Wien, Vienna, Austria

wallner@dbai.tuwien.ac.at

Abstract. We study the applicability of abstract argumentation (AF)
reasoners in efficiently answering acceptability queries over assumption-
based argumentation (ABA) frameworks, one of the prevalent forms of
structured argumentation. We provide a refined algorithm for translating
ABA frameworks to AFs allowing the use of AF reasoning to answer
ABA acceptability queries, covering credulous and skeptical acceptance
problems over ABAs in a seamless way under several argumentation
semantics. We empirically show that the approach is complementary with
a state-of-the-art ABA reasoning system.

1 Introduction

Argumentation is today a vibrant area of modern AI research, providing for-
malisms for representing and reasoning about conflicting arguments, aiming at
conflict resolution through detecting sets of non-conflicting arguments which
together counter—or defend themselves against—all counterarguments.

Several argumentation formalisms have been proposed, with different desir-
able properties. Perhaps the simplest formalism for argumentation are abstract
argumentation frameworks (AFs) [11]. AFs allow for representing conflicts—or
attacks—between arguments as directed graphs, where nodes represent abstract
arguments, and edges represent attacks. Several reasoning system implementa-
tions for AF reasoning exists today [5,6,17,18,24,25], especially for central AF
reasoning problems such as credulous and skeptical acceptance of arguments
under various AF semantics.

Another central formalism is structured argumentation [1–3,22,26] in which,
in contrast to abstract argumentation, the internal structure of arguments
is made explicit through derivations from more basic structures. One well-
known approach to structured argumentation is assumption-based argumenta-
tion (ABA) [3,13,29]. In ABA arguments are represented compactly as graph-
based derivations [7] from a given rule-based deductive system over sentences,

Work funded by Academy of Finland, grants 251170 COIN, 276412, and 284591;
Research Funds of the University of Helsinki; and the Austrian Science Fund (FWF):
I2854 and P30168.

c© Springer International Publishing AG 2017
A. Antonucci et al. (Eds.): ECSQARU 2017, LNAI 10369, pp. 57–68, 2017.
DOI: 10.1007/978-3-319-61581-3 6



58 T. Lehtonen et al.

starting from assumptions. A central approach to reasoning about acceptabil-
ity of arguments over ABAs are so-called dispute derivations [7,12,14,20,21,28],
implemented in various ABA reasoning systems [7–9,14,19–21,28]. The aba-
graph system [7] supporting credulous reasoning over ABAs under the admissible
and grounded semantics represents the current state of the art.

While systems for reasoning over AFs and ABAs have been developed, the
applicability of state-of-the-art abstract argumentation reasoners for reasoning
about assumption-based argumentation frameworks has received little atten-
tion. To bridge this gap, we study the applicability of state-of-the-art abstract
argumentation reasoners in efficiently answering acceptability queries over ABA
frameworks. While theoretical work on mapping ABAs to AFs exists [4,14],
here we concretely implement an approach to reasoning about acceptance of
sentences in assumption-based argumentation via translating ABA frameworks
into abstract argumentation frameworks, and thereafter using AF reasoning to
decide acceptance of sentences. While it would be desirable to exactly compute
a small, yet sufficient, set of AF arguments for a given ABA, we show that
restricting argument construction to only those arguments satisfying a minimal-
ity condition in their supports, which we call relevant arguments, is computa-
tionally very demanding: we prove that counting the number of such relevant
arguments is #P-complete. To overcome this obstacle, we propose an algorithm
for overapproximating the set of relevant arguments for a given ABA framework.
We implement the reasoning part by answer set programming (ASP) encodings
specifically suited for the types of AFs the translation gives rise to. We show
that a prototype implementation of the approach is complementary in terms of
performance with the state-of-the-art abagraph system for credulous acceptance
in ABA. Our approach is generic in that it covers both credulous and skep-
tical acceptance problems under several central argumentation semantics over
ABAs in a seamless way. Proofs of the main theorems are available in the paper
supplement online at https://cs.helsinki.fi/group/coreo/ecsqaru17.

2 Preliminaries

Assumption-Based Argumentation. We recall definitions related to
assumption-based argumentation (ABA) [3,29], following [10]. We assume a
deductive system (L,R) with L a formal language, i.e., a countable set of sen-
tences, and R a set of inference rules over L with a rule r ∈ R having the form
a0 ← a1, . . . , an with ai ∈ L. We denote the head of rule r by head(r) = {a0}
and the (possibly empty) body of r by body(r) = {a1, . . . , an}. A sentence a ∈ L
is derivable from a set X ⊆ L via rules R, denoted by X �R a, if there is a
sequence of rules (r1, . . . , rn) s.t. head(rn) = a and for each rule ri it holds that
ri ∈ R and each sentence in the body of ri is derived from rules earlier in the
sequence or in X, i.e., body(ri) ⊆ X ∪ ⋃

j<i head(rj). The deductive closure for
X w.r.t. rules R is given by ThR(X) = {a | X �R a}.

An ABA framework is a tuple (L,R,A, ) with (L,R) a deductive system,
a set of assumptions A ⊆ L, and a function (contrary function) mapping

https://cs.helsinki.fi/group/coreo/ecsqaru17


From Structured to Abstract Argumentation: Assumption-Based Acceptance 59

assumptions A to sentences L. We focus on flat ABA frameworks where assump-
tions cannot be derived. Let D = (L,R,A, ) be an ABA framework. A set of
assumptions Δ ⊆ A attacks an assumption b ∈ A in the ABA framework D if
the contrary of b is derivable from Δ in D, i.e., b ∈ ThR(Δ). Further, Δ attacks
a set of assumptions Δ′ ⊆ A in the ABA framework D if an assumption in Δ′

is attacked by Δ, i.e., ThR(Δ) ∩ {a|a ∈ Δ′} �= ∅.

Definition 1. Let D = (L,R,A, ) be an ABA framework. Further, let Δ ⊆ A
be a set of assumptions that does not attack itself in D. Set Δ is

– admissible in D if each set of assumptions Δ′ that attacks Δ is attacked by
Δ;

– preferred in D if Δ is admissible and there is no admissible set of assumptions
Δ′ in D with Δ ⊂ Δ′; and

– stable in D if each a ∈ A\Δ is attacked by Δ.

We use the term σ-assumption-set to refer to an assumption set under a specific
semantics σ ∈ {adm, stb, prf }.1 Let D = (L,R,A, ) be an ABA framework and
σ a semantics. A sentence s ∈ L is credulously accepted in D under semantics
σ if there is a σ-assumption-set Δ s.t. s ∈ ThR(Δ); and skeptically accepted in
D under semantics σ if it holds that s ∈ ThR(Δ) for all σ-assumption-sets Δ.

ABA AF
semantics cred skept cred skept
admissible NP-c P-c NP-c trivial
stable NP-c coNP-c NP-c coNP-c

preferred NP-c Πp
2 -c NP-c Πp

2 -c

Fig. 1. Complexity of reasoning.

Complexity of reasoning of (flat) ABA
frameworks [10] is shown in Fig. 1.

Example 1. An ABA framework is shown in
Fig. 2 (left) with L = {a, b, c, d, e, f, g, h, i},
as well as the admissible, stable, and pre-
ferred assumption sets. Sentences g and
h are credulously accepted under σ ∈
{adm, prf , stb}, since they can be derived from {a} and {c}. Further, i is skep-
tically accepted under σ, since i is derivable from ∅.

Abstract Argumentation Frameworks. An abstract argumentation frame-
work (AF) [11] is a pair F = (A,R), where A is a finite non-empty set of
arguments and R ⊆ A × A is the attack relation. The pair (a, b) ∈ R indicates
that a attacks b. A set S ⊆ A attacks an argument b (in F ) if there is an a ∈ S

rules R contr. ass. sets σ

d ← a g ← e a = h ∅ adm
e ← a, b d ← g b = e {a} adm, prf , stb
f ← c h ← f c = d {c} adm
e ← d i ← {b, c} adm, prf , stb

({a, d, e, g}, {a})

({c, f, h}, {c})

({b}, {b})

({i}, ∅)

Fig. 2. Example ABA with A = {a, b, c} (left) and the corresponding AF (right).

1 We call, for reasons of uniformity and brevity, admissible sets a semantics; this is
not meant to prescribe a particular logical stance to the frameworks.



60 T. Lehtonen et al.

s.t. (a, b) ∈ R. An argument a ∈ A is defended (in F ) by a set S ⊆ A if, for each
b ∈ A such that (b, a) ∈ R, it holds that S attacks b.

AF semantics are defined through functions σ which assign to each AF F =
(A,R) a set σ(F ) ⊆ 2A of extensions. We consider for σ the functions adm, stb,
and prf .

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ) if
there are no a, b ∈ S such that (a, b) ∈ R. We denote the collection of conflict-free
sets of F by cf (F ). For a conflict-free set S ∈ cf (F ) it holds that

– S ∈ adm(F ) iff each a ∈ S is defended by S;
– S ∈ prf (F ) iff S ∈ adm(F ) and �S′ ∈ adm(F ) with S ⊂ S′; and
– S ∈ stb(F ) iff each a ∈ A\S is attacked by S.

We use “σ-extension” to denote an extension under a semantics σ. Let F =
(A,R) be an AF. An argument a ∈ A is credulously accepted in F under σ if
there is an E ∈ σ(F ) s.t. a ∈ E. An argument a is skeptically accepted in F
under σ if a is contained in every E ∈ σ(F ). For complexity of AF reasoning [15]
see Fig. 1.

3 From ABA to AF

The focus of this work is on studying the applicability of abstract argumentation
reasoning tools for reasoning about acceptance of sentences in assumption-based
argumentation frameworks. Given an ABA and a credulous/skeptical query as a
sentence in the ABA, our approach to answer the query consists of the following
two steps.

1. Translate the ABA framework into an AF in a way that the ABA query can
be answered by applying AF reasoning principles on the resulting AF.

2. Adjust an AF reasoning system to answer the ABA query on the AF from
step 1.

In this section we adapt translations of ABA frameworks [4,14] to AFs to suit
our goal of computational feasibility. The idea of the approach is to view subsets
of the assumptions, and sentences derived from these sets, as abstract arguments.
The assumptions of such an argument are called support of the argument. A key
point for this translation, to ensure correctness, is to construct arguments so
that all assumption sets are sufficiently covered, not missing crucial parts of
the ABA framework. Sentences contained in an argument in a σ-extension of
the resulting AF will be derivable in a σ-assumption-set of the original ABA
framework and vice versa, thereby aligning the corresponding reasoning tasks of
ABA frameworks and AFs.

In order to make step 2 computationally feasible, care needs to be taken in
order to ensure that the AF resulting from step 1 does not become restrictively
large (in terms of the number of arguments) in order to enable reasoning on
the AF. To this end, we consider constructing only those arguments, which we



From Structured to Abstract Argumentation: Assumption-Based Acceptance 61

call relevant arguments, whose support is minimal, in the sense that there is
a sentence derivable from the support, but the sentence is not derivable from
any proper subset of the support. However, we will show that the complexity
of computing (exactly) the set of relevant arguments is restrictive for practical
purposes. Motivated by both the computational hardness result and the need
for restriction of the number of arguments, we then, in the subsequent sections,
propose an algorithm for over-approximating the set of relevant arguments of a
given ABA, and detail an approach to step 2 via answer set programming.

Key to the translation of ABA frameworks to AFs are the arguments for the
AF, which are viewed as pairs of a set of assumptions and sentences derived
from the set of assumptions. With the aim of focusing on relevant arguments,
we generalize and adapt the concept of support-minimality [7, Definition 4.11].
In [7] support-minimality is defined for arguments with a single claim (derivation
for a single sentence).

Definition 3. Let D = (L,R,A, ) be an ABA framework. We define the set
of sets of assumptions minsupp(D) by Δ ∈ minsupp(D) iff

⋃
Δ′⊂Δ ThR(Δ′) ⊂

ThR(Δ).

In words, a set of assumptions Δ is a minimal support if there is a sentence
derivable from Δ via R but not from any proper subset Δ′ ⊂ Δ. Relevant
arguments are defined as pairs of a set of sentences and a minimal support.

Definition 4. Let D = (L,R,A, ) be an ABA framework, L ⊆ L, and Δ ⊆ A.
A pair (L,Δ) is a relevant argument (for D) if the following two conditions hold:
(i) Δ ∈ minsupp(D); and (ii) L = ThR(Δ)\(

⋃
Δ′⊂Δ ThR(Δ′)).

In words, a pair (L,Δ) is a relevant argument for a given ABA if Δ is in
minsupp(D) (first item), and L contains those sentences that are derivable from
Δ but not any proper subset of Δ (second item).

Example 2. Consider the ABA framework from Example 1. The sets in
minsupp(D) are {a}, {b}, {c}, and ∅. The admissible assumption set {b, c}
is not in minsupp(D) since all sentences derivable from {b, c} are derivable
from {b} or {c}. For each set in minsupp(D) there is a relevant argument,
e.g., ({a, d, e, g}, {a}) is a relevant argument for the ABA framework and all
sentences in {a, d, e, g} can be derived from a, and all sentences derivable from
{a} but not ∅ are contained in the first component.

Definition 5. Let D = (L,R,A, ) be an ABA framework. An AF F = (A,R)
corresponds to the ABA D if the following two conditions hold. (i) A is the set of
relevant arguments for D; and (ii) R = {((L,Δ), (L′,Δ′))|L∩{x |x ∈ Δ′} �= ∅}.

Briefly put, a corresponding AF for a given ABA framework contains the
relevant argument for each set of assumptions in minsupp(D), i.e., |A| =
|minsupp(D)|, and attacks based on the supports and the derived sentences.
In Fig. 2, the corresponding AF (right) for the ABA framework (left) is shown.
In the following formal result, that follows the spirit of [14, Theorem 2.2] and



62 T. Lehtonen et al.

[4, Theorem 6], we show that we have a correspondence between the ABA
framework and the corresponding AF in terms of the semantics, which allows
for utilization of AF reasoners on the AF to answer ABA queries. We define
sentences(E) =

⋃
(L,Δ)∈E L.

Theorem 1. Let D = (L,R,A, ) be an ABA framework, Δ ⊆ A, and σ ∈
{adm, stb, prf }. For an AF F = (A,R) that corresponds to D, and E ⊆ A, it
holds that

– if Δ is a σ-assumption-set of D, then E = {(L,Δ′) ∈ A |Δ′ ⊆ Δ} is a
σ-extension of F , and ThR(Δ) = sentences(E);

– if E is a σ-extension of F , then Δ =
⋃

(L,Δ′)∈E Δ′ is a σ-assumption-set of
D, and ThR(Δ) ⊇ sentences(E) for σ = adm, and ThR(Δ) = sentences(E)
for σ ∈ {stb, prf }.
Based on this formal correspondence, we can answer credulous (skeptical)

acceptability queries in an ABA framework as specified in the next corollary.

Corollary 1. Let D = (L,R,A, ) be an ABA framework, l ∈ L, σ =
{adm, stb, prf }, σ′ = {stb, prf }, and AF F = (A,R) the corresponding AF for
D. It holds that

– l is credulously accepted under σ in D iff there is a credulously accepted argu-
ment (L,Δ) under σ in F with l ∈ L;

– l is skeptically accepted under σ′ in D iff for each σ′-extension E of F it holds
that l ∈ sentences(E).

Skeptical acceptance under admissible semantics for ABA frameworks is
polynomial-time decidable (Table 1), while our focus here is on the NP-hard
acceptance problems. Omitting a relevant argument in a corresponding AF can
directly lead to incorrect results w.r.t. acceptance queries of the original ABA
framework. For instance, considering the corresponding AF shown in Example 2,
removal of any of the relevant arguments of this AF would lead to missing sen-
tences in the AF which are credulously accepted under, e.g., admissible semantics
in the original ABA framework.

4 Computing Relevant Arguments

The authors of [7] conjecture that computing minimal supports may be com-
putationally costly. We provide a formal result backing up this conjecture: we
show that counting the number of minimal supports for a given ABA frame-
work is intractable, in fact #P-complete under subtractive reductions [16] often
used for showing hardness for counting complexity classes. (The prototypical
#P-complete problem is that of counting satisfying assignments of a Boolean
formula.)

Theorem 2. For a given ABA framework, counting the number of minimal
supports is #P-complete under subtractive reductions.



From Structured to Abstract Argumentation: Assumption-Based Acceptance 63

To overcome this obstacle, we give an algorithm that overapproximates the
set of relevant arguments. The algorithm traverses the rules backwards towards
the assumptions. The underlying data structure operated on is a directed graph
with vertices being both heads and bodies of rules in the ABA. There is a directed
edge from a body to a head if there is a corresponding rule, and from a head
to a body if the former is contained in the latter. We filter out non-derivable
sentences. If the rules are acyclic, we can straightforwardly backward chain from
the sinks to create all needed arguments. For the general (i.e. possibly cyclic)
case, the presented algorithm also takes all heads of rules that are in non-trivial
strongly connected components (SCCs), i.e., non-singleton SCCs, denoted by
SCC(D), as starting points. We store (partial) arguments with a set of sets of
sentences, Arg(X) = {S1, . . . , Sn} for a head or body X, indicating that X is
derivable from any S1, . . . , Sn.

Algorithm 1. Argument Construc-
tion
Require: ABA D = (L,R,A, )
1: Compute SCC(D) //non-trivial

SCCs
2: S = sinks(G) ∪ (

⋃
SCC(D) ∩ L)

3: while S �= ∅
4: remove s from S
5: process-head(s, ∅)
6: mark s visited

The main Algorithm 1 computes non-
trivial SCCs, stores starting points in S,
and recurses in the while loop (call by ref-
erence) with a picked sentence and the
current derivation path P (for detect-
ing cyclic derivations; initialized with ∅).
After processing, the sentence is marked,
indicating that all derivations have been
exhausted. Algorithm2, process-head,
marks the head s if not in a non-trivial
SCC and adds s to the derivation path P . In case s is an assumption (or �
for sentences derived from ∅), we add a new argument {s} for s. Otherwise call
process-body(B,P ) for each non-visited body B from which s can be derived,
excluding P . Afterwards, we extend arguments for the bodies and add these
arguments to Arg(s).

Algorithm 3 takes care of bodies. We mark B if it is not a non-trivial SCC
or when each element in the body is either marked or not in non-trivial SCC.
To avoid cyclic derivations we check if an element in the body is contained in
path P . If not, after adding body B to P , we call process-head for each non-
visited element. We collect all possible ways of deriving body B by taking all
minimal combinations of arguments from which to directly derive each s ∈ B
(subderivations). Arguments with the same support are then merged (there
is at most one argument per set of assumptions) by calling merge-by-sup.

Each constructed argument contains only sentences derivable from its set of
assumptions. For each Δ ∈ minsupp(D) an argument with Δ as its assumptions
is constructed. Our algorithm approximates the set of relevant arguments in two
senses. First, arguments with minimal support might contain more derived sen-
tences, i.e., sentences also derivable from subsets of their support. Secondly, we
might compute arguments with assumption sets not in minsupp(D). Correctness
of the overall approach is not affected by either approximation as long as the
attacks are as specified in Definition 5.



64 T. Lehtonen et al.

Algorithm 2. process-head(s, P )
1: if s /∈ ⋃SCC(D) then mark s visited
2: P = P ∪ {s}
3: if s ∈ A ∪ {�} then
4: Arg(s) = Arg(s) ∪ {{s}}
5: else
6: for each B ∈ {body(r)|head(r) = s}
7: if B not visited then
8: process-body(B,P )

9: Arg(B) = {A ∪ {s}|A ∈ Arg(B)}
10: Arg(s) = Arg(s) ∪ Arg(B)

11: P = P\{s}

Algorithm 3. process-body(B,P )
1: if B /∈ ⋃SCC(D) then mark B vis-

ited
2: if each s′ ∈ B is marked or not in SCC

then mark B visited
3: if B ∩ P �= ∅ then return
4: P = P ∪ {B}
5: for each s′ ∈ B
6: if s′ not visited then
7: process-head(s′, P )

8: Arg(B) = subderivations(B)
9: merge-by-supp(Arg(B))

10: P = P\{B}

Special Cases. ABA acceptance can, in cases, be decided during the AF trans-
lation. Assume an ABA D = (L,R,A, ) and a sentence l ∈ L. For admissi-
ble and preferred semantics it holds that if l ∈ ThR(∅), then l is both credu-
lously and skeptically accepted; and if l /∈ ThR(A) or each (L,Δ) with l ∈ L is
self-attacking, then l is neither credulously nor skeptically accepted. For stable
semantics, it holds that if l ∈ ThR(∅), then l is skeptically accepted, and credu-
lously accepted iff D has a stable assumption set. If l �∈ ThR(A) or each (L,Δ)
with l ∈ L is self-attacking, then l is not credulously accepted, and skeptically
accepted iff D has no stable assumption set. In our approach, existence of stable
assumption sets can be checked with an AF reasoner.

5 Reasoning About ABA Acceptance on AFs

For reasoning over the AFs (step 2) obtained from our ABA-to-AF translation
(step 1) we encode the ABA acceptance problem over the AF obtained via
step 1 using answer set programming (ASP). Interchangeably, one could apply
essentially any of the e.g. SAT-based AF reasoning systems via similar minor
modifications. We focus here on encodings for admissible and stable semantics;
other central argumentation semantics can be encoded with relatively minor
changes. Our encodings are similar to ones used in the ASP-based AF reasoning
system ASPARTIX [18], except for one seemingly minor but essential difference:
we represent the AF attack relation via its complement, using the predicate
natt/2 (not attack) which is true for a pair (a, b) of nodes iff a does not attack
b. This complement representation is vital as the edge relations of the AFs
obtained via step 1 are typically very dense. This is in stark contrast to typical
AF reasoning benchmark instances with relatively sparse attack relations [27].



From Structured to Abstract Argumentation: Assumption-Based Acceptance 65

Our encoding of the admissible semantics is

in(X) :- not out(X), arg(X). :- in(X), in(Y ), not natt(X,Y ).

out(X) :- not in(X), arg(X). defeated(X) :- in(Y ), not natt(Y,X), arg(X).

out(X) :- arg(X), not natt(X,X). :- in(X), arg(Y ), not natt(Y,X), not defeated(Y ).

Further minor changes to the original ASPARTIX encoding are that we
include the rule on the lower left, and collapsed two rules to what is now
here the last rule. For stable semantics, we simply replace the last rule by
:- out(X), not defeated(X).

Implementing credulous ABA queries under NP-complete semantics such
as admissible, preferred, and stable on the AF side is achieved by checking if there
is an extension which includes an argument that contains the queried sentence
during argument construction. This is implemented with the ASP constraint :-
not in(a1), ..., not in(an). for arguments ai that contain queried sentence l, i.e.,
ai = (L,Δ) with l ∈ L.

Implementing skeptical ABA queries for coNP-complete semantics such as
stable is achieved by checking if there is a counterexample to the query, i.e.,
whether there is an extension of the AF that does not include any arguments
containing the queried sentence. This is implemented by constraint :- in(ai). for
each argument ai that contains the queried sentence, pruning the search space
by partial instantiation. An alternative approach to skeptical acceptance would
be to enumerate all AF extensions, and check whether each of them includes
some argument that contains the queried sentence.

6 Experiments

For a first evaluation of the two-step approach to answering ABA queries via
AF reasoning, we implemented a prototype translation (step 1) in Java 8. We
compare our approach to the recently published state-of-the-art graph-based
ABA reasoning system abagraph (http://www.doc.ic.ac.uk/∼rac101/proarg/
abagraph.html) implemented in Prolog, using SICStus Prolog 4.3.3. We used
the “default” search strategy of abagraph. The experiments were run on 2.83-
GHz Intel Xeon E5440 quad-core machines with 32-GB RAM under Linux using
a 600-second timeout and a 16-GB memory limit per instance. As the running
times of our approach, we report the combined time of the translation and the
ASP solver Clingo 4.5.4 [23].

As benchmarks we use the 680 ABA frameworks provided by the authors
of abagraph [7]. A benchmark instance consists of an ABA graph and a query
on whether a given sentence in the ABA framework is credulously accepted
under a specific semantics (recall that abagraph supports only credulous queries
under admissible and grounded semantics). For each ABA framework, we used
10 queries per ABA. After filtering out 90 duplicate queries and trivial instances
wrt the special cases outlined for admissible semantics in the previous section,

http://www.doc.ic.ac.uk/~rac101/proarg/abagraph.html
http://www.doc.ic.ac.uk/~rac101/proarg/abagraph.html


66 T. Lehtonen et al.

we obtained 1466 final benchmark instances. The benchmarks are explicitly cat-
egorized wrt whether the rules of a framework give rise to cyclic dependencies,
i.e., whether a framework is cyclic (804) or acyclic (662).

A comparison of abagraph and our approach is shown in Fig. 3 (left). Here we
consider the credulous task of enumerating all admissible assumption sets con-
taining the given query. The same task was used to evaluate abagraph in [7] and
shown to outperform earlier state of the art. For enumeration in our approach,
we used the built-in enumeration mode of Clingo. Figure 3 (left) shows that our
approach and that of the dedicated abagraph approach are complementary in
that there are instances on which each of the approaches is clearly better than the
other. Figure 3 (right) corroborates this observation. The relative performance
is essentially on-par on cyclic instances, while our approach is somewhat better
on acyclic instances. To illustrate the generality of our approach, we also exper-
imented on skeptical acceptance of sentences under stable semantics (a task not
supported by abagraph). Our approach solved 6228 of the 6710 instances. The
per-instance runtime was < 10 s on over 6000 instances. A majority of runtime
was used in the AF translation on every instance, AF translation taking over
80% of the total runtime on approximately 95% of the solved instances. The
ASP solving part was very efficient, finishing within 65 s on each instance.

 1

 10

 100

 1  10  100

A
F 

tra
ns

la
to

r +
 A

S
P

 s
ol

ve
r r

un
tim

e 
(s

)

abagraph runtime (s)

acyclic
cyclic

x

Timeouts Uniquely solved
abagraph us abagraph us

acyclic 93 56 20 57
cyclic 394 402 86 78

Fig. 3. Left: running time comparison of abagraph and our approach on credulous
reasoning under admissible semantics. Right: numbers of timeouts and uniquely solved
instances.

7 Conclusions

We studied an approach to reasoning about acceptance in assumption-based
argumentation via translating ABA frameworks into argumentation frameworks.
We considered relevant ABA arguments as a sought after small yet sufficient set
for reasoning about acceptance of ABA sentences on AFs. However, we showed
that counting the number of relevant arguments is #P-complete, and hence pro-
posed an algorithm for overapproximating the set of relevant arguments in order



From Structured to Abstract Argumentation: Assumption-Based Acceptance 67

to translate ABAs to AFs, and ASP encodings specifically suited for the types
of AFs obtained through the translation. Our prototype implementation yields
complementary performance wrt the state-of-the-art dedicated ABA reasoning
system abagraph. As a further benefit, our approach also allows for deciding
skeptical acceptance in ABA, not supported by abagraph.

References

1. Besnard, P., Garćıa, A.J., Hunter, A., Modgil, S., Prakken, H., Simari, G.R., Toni,
F.: Introduction to structured argumentation. Argum. Comput. 5(1), 1–4 (2014)

2. Besnard, P., Hunter, A.: Elements of Argumentation. The MIT Press, Cambridge
(2008)

3. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101
(1997)

4. Caminada, M., Sá, S., Alcântara, J., Dvořák, W.: On the difference between
assumption-based argumentation and abstract argumentation. In: Proceedings of
BNAIC, pp. 25–32 (2013)

5. Cerutti, F., Dunne, P.E., Giacomin, M., Vallati, M.: Computing preferred exten-
sions in abstract argumentation: a SAT-based approach. In: Black, E., Modgil, S.,
Oren, N. (eds.) TAFA 2013. LNCS, vol. 8306, pp. 176–193. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54373-9 12

6. Cerutti, F., Giacomin, M., Vallati, M.: ArgSemSAT: solving argumentation prob-
lems using SAT. In: Proceedings of COMMA. FAIA, vol. 266, pp. 455–456. IOS
Press (2014)

7. Craven, R., Toni, F.: Argument graphs and assumption-based argumentation.
Artif. Intell. 233, 1–59 (2016)

8. Craven, R., Toni, F., Cadar, C., Hadad, A., Williams, M.: Efficient argumentation
for medical decision-making. In: Proceedings of KR, pp. 598–602 (2012)

9. Craven, R., Toni, F., Williams, M.: Graph-based dispute derivations in assumption-
based argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2013.
LNCS (LNAI), vol. 8306, pp. 46–62. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54373-9 4

10. Dimopoulos, Y., Nebel, B., Toni, F.: On the computational complexity of
assumption-based argumentation for default reasoning. Artif. Intell. 141(1/2), 57–
78 (2002)

11. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

12. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-
based, admissible argumentation. Artif. Intell. 170(2), 114–159 (2006)

13. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Rah-
wan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 25–44
(2009)

14. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation.
Artif. Intell. 171(10–15), 642–674 (2007)

15. Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Rahwan,
I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 85–104 (2009)

http://dx.doi.org/10.1007/978-3-642-54373-9_12
http://dx.doi.org/10.1007/978-3-642-54373-9_4
http://dx.doi.org/10.1007/978-3-642-54373-9_4


68 T. Lehtonen et al.

16. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete
problems for counting complexity classes. Theor. Comput. Sci. 340(3), 496–513
(2005)

17. Dvořák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive deci-
sion procedures for abstract argumentation. Artif. Intell. 206, 53–78 (2014)

18. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Argum. Comput. 1(2), 147–177 (2010)

19. Gaertner, D., Toni, F.: CaSAPI: a system for credulous and sceptical argumenta-
tion. In: Proceedings of NMR, pp. 80–95 (2007)

20. Gaertner, D., Toni, F.: Computing arguments and attacks in assumption-based
argumentation. IEEE Intell. Syst. 22(6), 24–33 (2007)

21. Gaertner, D., Toni, F.: Hybrid argumentation and its properties. In: Proceedings
of COMMA. FAIA, vol. 172, pp. 183–195. IOS Press (2008)

22. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: an argumentative app-
roach. TPLP 4(1–2), 95–138 (2004)

23. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: the potsdam answer set solving collection. AI Comm. 24(2), 107–
124 (2011)

24. Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for decision problems in argument
systems under preferred semantics. Artif. Intell. 207, 23–51 (2014)

25. Nofal, S., Atkinson, K., Dunne, P.E.: Looking-ahead in backtracking algorithms
for abstract argumentation. Int. J. Approx. Reasoning 78, 265–282 (2016)

26. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argum. Comput. 1(2), 93–124 (2010)

27. Thimm, M., Villata, S., Cerutti, F., Oren, N., Strass, H., Vallati, M.: Summary
report of the first international competition on computational models of argumen-
tation. AI Mag. 37(1), 102 (2016)

28. Toni, F.: A generalised framework for dispute derivations in assumption-based
argumentation. Artif. Intell. 195, 1–43 (2013)

29. Toni, F.: A tutorial on assumption-based argumentation. Argum. Comput. 5(1),
89–117 (2014)


	From Structured to Abstract Argumentation: Assumption-Based Acceptance via AF Reasoning
	1 Introduction
	2 Preliminaries
	3 From ABA to AF
	4 Computing Relevant Arguments
	5 Reasoning About ABA Acceptance on AFs
	6 Experiments
	7 Conclusions
	References


