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Abstract. The paper is concerned with decision making under com-
plex uncertainty. We consider the Hodges and Lehmann-criterion
relying on uncertain classical probabilities and Walley’s maximality
relying on imprecise probabilities. We present linear programming based
approaches for computing optimal acts as well as for determining least
favorable prior distributions in finite decision settings. Further, we apply
results from duality theory of linear programming in order to provide
theoretical insights into certain characteristics of these optimal solutions.
Particularly, we characterize conditions under which randomization pays
out when defining optimality in terms of the Gamma-Maximin criterion
and investigate how these conditions relate to least favorable priors.
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1 Introduction

Many problems arising in modern sciences, e.g. estimation and hypothesis testing
in statistics or modeling an agent’s preferences in economics, can be embedded
in the formal framework of decision theory under uncertainty. However, as the
specification of a precise (i.e. classical) probability measure on the space of uncer-
tain states often turns out to be too restrictive from an applicational point of
view, decision theory using imprecise probabilities (for a survey see, e.g., [12])
has become a more and more attractive modeling tool recently. For determining
optimal decisions with respect to the complex decision criteria particularly (but
not exclusively) arising in the context of the theory of imprecise probabilities,
linear programming theory (see, e.g., [15]) often turns out to be well-suited: By
embedding decision problems into this general optimization framework, one can
draw on the whole theoretical toolbox of this well-investigated mathematical
discipline. Particularly, this allows for a computational treatment of complex
decision making problems in standard software (e.g. MATLAB or for statisti-
cians R) and, therefore, helps in order to make the abstract theory applicable for
practitioners. Accordingly, there exists plenty of literature on linear optimization
driven algorithms for facing complex decision problems. Examples include [6,13].
A survey is given in [5].
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However, quite similar to characterizations of imprecise probabilities and
natural extensions in [17, Chap. 4] and [14], the opportunities of using linear
programming in decision theory are by far not exhausted by producing powerful
algorithms (see [18, p. 402]). Instead, applying basic results on duality from lin-
ear programming theory (such as, e.g., the complementary slackness property,
see, e.g., [15, Sect. 5.5]) can often provide theoretical insights on both the con-
nection between different decision criteria and the specific properties shared by
all optimal solutions with respect to a certain criterion.

The paper is structured as follows: In Sect. 2, we recall the classical model of
finite decision theory as well as the extended version of the model allowing for
randomized acts. In Sect. 3, we give a linear program for determining optimal
randomized acts with respect to a decision criterion of Hodges and Lehmann
which tries to cope with uncertain prior probabilistic information and investigate
the corresponding dual programming problem. In Sect. 4, we consider the case
of decision making under imprecise probabilistic information. Particularly, we
present an algorithm for checking maximality of pure acts in one single linear
program in Sect. 4.1 and use duality theory for deriving connections between
least favorable prior distributions and the Gamma-Maximin criterion in Sect. 4.2.
Finally, Sect. 5 is preserved for concluding remarks.

2 The Basic Model

Throughout the paper, we consider the standard model of finite decision theory:
An agent (or decision maker) has to decide which act ai to pick from a finite set
A = {a1, . . . , an}. However, the utility of the chosen act depends on which state
of nature from a finite set Θ = {θ1, . . . , θm} corresponds to the true description
of reality. Specifically, we assume that the utility of every pair (a, θ) ∈ A×Θ can
be evaluated by a known real-valued cardinal utility function u : A × Θ → R.
For simplicity, we will often use the notation uij := u(ai, θj), where i = 1, . . . , n
and j = 1, . . . ,m. The structure of the basic model and a running example
repeatedly considered throughout the paper are visualized in Table 1. For every
act a ∈ A, the utility function u is naturally associated with a random variable
ua : (Θ, 2Θ) → R defined by ua(θ) := u(a, θ) for all θ ∈ Θ. Similarly, for
every θ ∈ Θ, we can define a random variable uθ : (A, 2A) → R by setting
uθ(a) := u(a, θ) for all a ∈ A.

Depending on the context, we also allow for randomized acts, i.e. classical
probability measures λ on (A, 2A). Choosing λ is then interpreted as leaving
your final decision to a random experiment which yields act ai with probability
λ({ai}). We denote the set of randomized acts on (A, 2A) by G(A).

The utility function u on A×Θ is then extended to a utility function G(u) on
G(A) × Θ by assigning each pair (λ, θ) the expectation of the random variable
uθ under the measure λ, i.e. G(u)(λ, θ) := Eλ

[
uθ

]
, which corresponds to the

expectation of utility that choosing the randomized act λ will lead to, given θ
is the true description of reality. Every pure act a ∈ A then can uniquely be
identified with the Dirac-measure δa ∈ G(A), and we have u(a, θ) = G(u)(δa, θ)



Decision Theory Meets Linear 331

Table 1. Basic model (left) and running example with acts A = {a1, a2, a3}, states
Θ = {θ1, . . . , θ4} (right) and the credal set M :=

{
π : 0.3 � π({θ2}) + π({θ3}) � 0.7

}

additionally considered in the Sects. 4.1 and 4.2.

u(ai, θj) θ1 · · · θm

a1 u(a1, θ1) · · · u(a1, θm)
...

... · · ·
...

an u(an, θ1) · · · u(an, θm)

u(ai, θj) θ1 θ2 θ3 θ4

a1 20 15 10 5
a2 30 10 10 20
a3 20 40 0 20

for all (a, θ) ∈ A × Θ. Again, for every λ ∈ G(A) fixed, the extended utility
function G(u) is associated with a random variable G(u)λ on (Θ, 2Θ) by setting
G(u)λ(θ) := G(u)(λ, θ) for all θ ∈ Θ. Finally, we refer to the triplet (A, Θ, u)
as the (finite) decision problem and to the triplet (G(A), Θ,G(u)) as the corre-
sponding randomized extension.

Within this framework, our goal is to determine an optimal act (depending
on the context, either randomized or pure). However, any appropriate definition
of optimality depends on (what we assume about) the mechanism generating the
states of nature. Here, traditional decision theory mainly covers two extremes:
The mechanism follows a known probability measure π on (Θ, 2Θ) or it can be
compared to a game against an omniscient enemy. In this cases optimality is
almost unanimously defined by either maximizing expected utility with respect to
π (also known as Bayes-criterion) or applying the Maximin-criterion (i.e. choos-
ing an act that has maximal utility under the worst possible state of nature).

In contrast, defining optimality of acts becomes less obvious if the prior π
is only partially known (case of imprecise probabilities) or there is uncertainty
about the complete appropriateness of it (case of uncertainty about precise prob-
abilities). The following sections are concerned with these two situations.

3 Handling Uncertain Precise Probabilistic Information:
The Hodges and Lehmann-Criterion

Apart from the border cases of maximizing expected utility with respect to
a precise prior π in the presence of perfect probabilistic information and the
Maximin-criterion in complete absence of probabilistic information, classical
decision theory tries to cope with decision making under uncertain probabilistic
information, too: Anticipating ideas of robust statistics, Hodges and Lehmann
proposed applying the Bayes-criterion only to such acts, whose worst possible
utility does not fall below a certain amount of the Minimax utility (see [4]).
Their idea is to utilize probabilistic information from previous experience while
simultaneously distrusting the complete appropriateness of this information and
restricting analysis to acts that are not too bad under the worst state. They
also give the following alternative representation of their approach that has a
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different, intuitively more accessible, interpretation1: The decision maker is
allowed to model his degree of trust in the prior by a parameter α ∈ [0, 1]. Specif-
ically, if π is a probability measure on (Θ, 2Θ), a randomized act λ∗ ∈ G(A) is
said to be Hodges and Lehmann-optimal w.r.t. π and α (short: Φπ,α-optimal), if
Φπ,α(λ∗) � Φπ,α(λ) for all λ ∈ G(A), where

Φπ,α(λ) := (1 − α) · min
θ

G(u)(λ, θ) + α · Eπ

[
G(u)λ

]
(1)

Thus, the parameter α in (1) controls how the linear trade-off between expecta-
tion maximization w.r.t. π and applying the Maximin-criterion is actually made.
The following Proposition 1 describes an algorithm for determining a randomized
Hodges and Lehmann-optimal act for arbitrary pairs (π, α).2

Proposition 1. Consider the linear programming problem

(1 − α) · (w1 − w2) + α ·
n∑

i=1

Eπ(uai
) · λi −→ max

(w1,w2,λ1,...,λn)
(2)

with constraints (w1, w2, λ1, . . . , λn) � 0 and

• ∑n
i=1 λi = 1

• w1 − w2 �
∑n

i=1 uij · λi for all j = 1, . . . ,m.

Then the following holds:

(i) Every optimal solution (w∗
1 , w

∗
2 , λ

∗
1, . . . , λ

∗
n) to (2) induces a Φπ,α-optimal

randomized act λ∗ ∈ G(A) by setting λ∗({ai}) := λ∗
i .

(ii) There always exists an Φπ,α-optimal randomized act. �

By computing the dual linear program of the linear program given in
Proposition 1, we receive the following Corollary. It can be interpreted as a
method to construct priors that take the agent’s scepticism about the prior
probability π (expressed by the parameter α) into account.

Corollary 1. Let λ∗ ∈ G(A) denote a Φπ,α-optimal randomized act. Then, there
exists a probability measure μπ,α on (Θ, 2Θ) and a pure act a∗ ∈ A such that

Φπ,α(λ∗) = Eμπ,α
[ua∗ ] (3)

Proof. The dual of the optimization problem (2) is given by:

z1 − z2 −→ min
(z1,z2,σ1,...,σm)

(4)

with constraints (z1, z2, σ1, . . . , σm) � 0 and
1 A further mathematical characterization from the viewpoint of Gamma-Maximinity

for certain imprecise probabilities is given in Footnote 3.
2 The proofs of Propositions 1, 2 and 3 are straightforward and therefore left out.



Decision Theory Meets Linear 333

• ∑m
j=1 σj = 1 − α

• z1 − z2 ≥ ∑m
j=1 uij · σj + α · Eπ(uai

) for all i = 1, . . . , n.

Let (z∗
1 , z∗

2 , σ∗
1 , . . . , σ

∗
m) denote an optimal solution to (4). Then the constraints

guarantee that assigning μπ,α({θj}) := α · π({θj}) + σ∗
j for all j = 1, . . . ,m

induces a probability measure on (Θ, 2Θ) and that for all expectation maximal
acts a∗ ∈ A with respect to μπ,α it holds that z∗

1 − z∗
2 = Eμπ,α

[ua∗ ]. Further, by
duality, we know that z∗

1 − z∗
2 coincides with the optimal value of program (2)

and, therefore, with Φπ,α(λ∗) where λ∗ ∈ G(A) denotes an Hodges and Lehmann-
optimal randomized act. Thus, Φπ,α(λ∗) = Eμπ,α

[ua∗ ], as desired. �

Running Example (Table 1): Let π denote the prior on (Θ, 2Θ) induced by
(0.2, 0.7, 0.05, 0.05) and let our trust in π be expressed by α = 0.35. Resolving
the linear programming problem from Proposition 1 gives the optimal solution
(8, 0, 0.8, 0, 0.2). Thus, a Φπ,0.35-optimal randomized act λ∗ ∈ G(A) is induced
by (0.8, 0, 0.2). Next, we can use Corollary 1 to compute μπ,0.35. An optimal
solution of problem (4) is given by the vector (11.78, 0, 0, 0, 0.6385, 0.0115), and
thus the measure μτ,0.35 is induced by the vector (0.070, 0.245, 0.656, 0.029).

4 Handling Imprecise Probabilistic Information:
The Gamma-Maximin View

We now turn to decision criteria taking into account the uncertainty in the prior
information in a more direct way: For modeling prior knowledge, instead of one
classical probability, we consider polyhedral sets of probability measures that
are a common tool in different theories of imprecise probabilities, like e.g. linear
partial information ([7]), credal sets ([8]), lower previsions ([16]) or interval
probability ([17]) as well as in robust statistics, like e.g. ε-contamination models
(see [3, p. 12]). Particularly, we assume probabilistic information is expressed by
a polyhedrical set M of probability measures on (Θ, 2Θ) of the form

M :=
{
π| bs � Eπ(fs) � bs ∀s = 1, ..., r

}
(5)

where, for all s = 1, ..., r, we have (bs, bs) ∈ R
2 such that bs � bs and fs :

Θ → R. Specifically, the available information is assumed to be describable by
lower and upper bounds for the expected values of a finite number of random
variables on the space of states. Clearly, if uncertainty is described by a set of
probability measures, defining meaningful criteria for decision making strongly
depend on the agent’s attitude towards ambiguity, i.e. towards the non-stochastic
uncertainty between the measures contained in M. Accordingly, many competing
criteria exist (see [12] for a survey or [2,8,16] for original sources). In the following
sections, we present linear programming based results for a selection of such
criteria, namely Walley’s maximality and the Gamma-Maximin criterion. For
the latter, we also investigate some connections to least favorable priors.



334 C. Jansen et al.

4.1 Checking Maximality of Pure Acts

The idea behind maximality of an act a∗ ∈ A is quite simple: One repeatedly
compares an act a∗ pairwise to all other acts and checks whether there exists an
element of the set M with respect to which ua∗ dominates the corresponding
other act in expectation. Formally, an act a∗ ∈ A is said to be M-maximal, if

∀ a ∈ A ∃ πa ∈ M : Eπa
(ua∗) � Eπa

(ua) (6)

Naturally, the above definition extends to randomized acts. However, when also
considering randomized acts, the criterion of M-Maximality coincides (see [16,
p. 163]) with another well-investigated criterion known from IP decision theory
contributed to Levi : E-admissibility. For a detailed discussion of connections
between the two criteria see [11]. An algorithm for determining the set of all
randomized E-admissible acts has been introduced in [13]. However, for finite
A, being M-Maximal is a strictly weaker condition and, therefore, needs to be
checked separately from E-admissibility. Other approaches for doing so have
already been proposed in [6]. Proposition 2 describes an algorithm for checking
M-Maximality of a pure act az ∈ A by solving one single linear program.

Proposition 2. Let (A, Θ, u) denote a finite decision problem and let M be of
the form (5). Further, let az ∈ A be any act. Consider the linear program

n∑

i=1

( m∑

j=1

γij

)
−→ max

(γ11,...,γnm)
(7)

with constraints (γ11, . . . , γnm) � 0 and

• ∑m
j=1 γij � 1 for all i = 1, . . . , n

• bs �
∑m

j=1 fs(θj) · γij � bs for all s = 1, ..., r, i = 1, . . . , n

• ∑m
j=1(uij − uzj) · γij � 0 for all i = 1, . . . , n.

Then az ∈ A is M-Maximal iff the optimal outcome of (7) equals n. �

If (γ∗
11, . . . , γ

∗
nm) is an optimal solution to problem (7) yielding an value of n,

we can construct πai
∈ M for which act az dominates act ai in expectation by

setting πai
({θj}) := γij . The problem possesses n(3 + r) constraints and nm

decision variables. Determining the set of all maximal acts requires to solve n
such linear programs. Compared to this, the algorithm based on pairwise com-
parisons of acts proposed in [6] here translates to solving n2 −n linear programs
with m decision variables, however, with only r + 2 constraints.

Running Example (Table 1): Resolving the linear programming problem
from Proposition 2 for every act a1, a2 and a3 separately gives optimal value 3
for each of them. Thus, all available acts are M-Maximal.
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4.2 Gamma-Maximin and Least Favorable Priors

In this section, we first present a linear program for identifying a least favorable
prior distribution from the credal set M under consideration. Afterwards, we
investigate the dual of this linear program and, in this way, provide a connection
between pure acts a ∈ A that maximize expected utility with respect to a least
favorable prior and randomized acts λ ∈ G(A) that are optimal with respect to
the Gamma-Maximin criterion.

Before we proceed, some additional notation is needed: For a credal element
π ∈ M, let B(π) denote the maximal expectation with respect to π that an act
from A can yield (that is B(π) = Eπ(ua∗), where a∗ ∈ A maximizes expected
utility with respect to π). The set of all acts a ∈ A that maximize expected
utility with respect to π is denoted by Aπ. Further, we call a credal element
π− ∈ M a least favorable prior (lfp) from M iff B(π−) � B(π) holds for all
π ∈ M. Specifically, π− is a lfp, if it yields the minimal best possible expected
utility under all concurring elements on the credal set. Proposition 3 describes
a linear program for determining a lfp from M.

Proposition 3. Let (A, Θ, u) denote a decision problem and let M be of the
form (5). Consider the linear program

w1 − w2 −→ min
(w1,w2,π1,...,πm)

(8)

with constraints (w1, w2, π1, . . . , πm) � 0 and

• ∑m
j=1 πj = 1

• bs �
∑m

j=1 fs(θj) · πj � bs for all s = 1, ..., r

• w1 − w2 �
∑m

j=1 uij · πj for all i = 1, . . . n.

Then the following holds:

(i) Every optimal solution (w∗
1 , . . . , π

∗
m) to (8) induces a least favorable prior

π− ∈ M by setting π−({θj}) := π∗
j .

(ii) There always exists a least favorable prior. �

A lfp can be understood as a kind of “pignistic” probability, representing the
decision problem under complex uncertainty in a way that is specific to the prob-
lem and the criterion under consideration, but in return gives the exact criterion
value. This contrasts lfps from pignistic probabilities in Smets’ spirit, who argued
that a decision problem under complex uncertainty could be approached by dis-
tinguishing between a credal level, where the uncertain beliefs are to be expressed
with all their ambiguity and scarceness by an imprecise probability (belief func-
tion in Smets’ context), and a decision level, where eventually the imprecise
probability is condensed into a traditional probability on which expected util-
ity theory could be applied (see, e.g., [9,10], as well as, e.g., [1] for geometric
techniques to represent belief functions by a single precise probability).
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We now show some connections between least favorable priors and random-
ized Gamma-Maximin acts w.r.t. M (M-Maximin). Recalling its definition, a
randomized act λ∗ ∈ G(A) is said to be M-Maximin optimal iff for all λ ∈ G(A):

EM
[
G(u)λ∗

]
� EM

[
G(u)λ

]
(9)

where EM(X) := minπ∈M Eπ(X) for random variables X : (Θ, 2Θ) → R.3 It
turns out that the linear program from Proposition 3 is dual to the one for
determining a randomized M-Maximin act described in [13, Sect. 3.2]. Together
with complementary slackness (see, e.g., [15, Sect. 5.5]) from linear optimization
theory, this allows to derive connections between lfps and the Gamma-Maximin.

Proposition 4. Let (A, Θ, u) denote a finite decision problem and let M be of
the form (5). Then the following holds:

(i) If π− is a lfp from M, then for all optimal randomized M-Maximin acts
λ∗ ∈ G(A) we have λ∗({a}) = 0 for all a ∈ A\Aπ− .

(ii) Let π− denote a lfp from M and let λ∗ ∈ G(A) denote a randomized M-
Maximin act. Then for all a ∈ Aπ− we have

Eπ−
[
ua

]
= EM

[
G(u)λ∗

]

Proof. The dual programming problem of problem (8) is given by:

z1 − z2 +
r∑

s=1

(bsxs − bsys) −→ max
(z1,z2,x1,...,xr,y1,...,yr,λ1,...,λn)

(10)

with constraints (z1, z2, x1, . . . , xr, y1, . . . , yr, λ1, . . . , λn) � 0 and

• ∑n
i=1 λi = 1

• z1 − z2 +
∑r

s=1 fs(θj)(xs − ys) ≤ ∑n
i=1 uij · λi for all j = 1, . . . , m.

The resulting linear program (10) is exactly the one for determining a random-
ized act λ∗ ∈ G(A) which is optimal with respect to the M-Maximin criterion
as proposed and proven in [13, Sect. 3.2]. We now can use standard results on
duality and complementary slackness (see, e.g., [15, Chap. 5]) to proof the propo-
sition:

3 For the special case of an ε-contamination model (a.k.a. linear-vacuous model) of
the form M(π0,ε) := {(1 − ε)π0 + επ : π ∈ P(Θ)}, where P(Θ) denotes the set
of all probability measures on (Θ, 2Θ), ε > 0 is a fixed contamination parame-
ter and π0 ∈ P(Θ) is the central distribution, Gamma-Maximin is mathematically
closely related to the Hodges and Lehmann-criterion: For fixed X : (Θ, 2Θ) → R

we have EM(π0,ε)
(X) = minπ∈P(Θ)((1 − ε)Eπ0(X) + εEπ(X)) = (1 − ε)Eπ0(X) +

ε minπ∈P(Θ) Eπ(X) = (1 − ε)Eπ0(X) + ε minθ∈Θ X(θ). Thus, maximizing the lower
expectation w.r.t. the ε-contamination model is equivalent to maximizing the Hodges
and Lehmann-criterion with trust parameter (1 − ε) and prior π0.
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Part (i): Let π− ∈ M denote a lfp and let az ∈ A\Aπ− . Then

(max{B(π−), 0},−min{B(π−), 0}, π−({θ1}), . . . , π−({θm})) (11)

defines an optimal solution to (8) for which it holds that B(π−) > Eπ−(uaz
).

Thus, there exists an optimal solution to (8), for which the constraint w1 −w2 ≥∑m
j=1 uzj · πj holds strictly and, therefore, the corresponding slack variable is

strictly greater 0. Hence, by complementary slackness, the corresponding vari-
able in the dual problem (10), that is λz, equals 0 for every optimal solution
of problem (10). Finally, note that {λ∗

z : λ∗
z appears in optimal solution} =

{λ∗({az}) : λ∗ ∈ G(A) M-Maximin optimal}, since, as (implicitly) shown in
[13, Sect. 3.2], every M-Maximin optimal λ∗ ∈ G(A) induces an optimal solu-
tion to (10), namely

(z∗
1 , z∗

2 , x1, . . . , x
∗
r , y

∗
1 , . . . , y

∗
r , λ∗({a1}), . . . , λ∗({an})) (12)

where (z∗
1 , z

∗
2 , x1, . . . , x

∗
r , y

∗
1 , . . . , y

∗
r ) denotes an optimal solution to a reduced

version of problem (10) with (λ1, . . . , λn) := (λ∗({a1}), . . . , λ∗({an})) fixed.
Part (ii): Let π− ∈ M denote an lfp and λ∗ ∈ G(A) denote an M-Maximin

act. Use (11) and (12) to construct optimal solutions to (8) and (10). As the opti-
mal value of (8) equals B(π−) and the optimal value of (10) equals EM

[
G(u)λ∗

]
,

the result follows by the duality theorem. �

As an immediate consequence of Proposition 4 (i), we can specify a condition
under which randomization cannot improve utility, if optimality is defined in
terms of the Gamma-Maximin criterion. Specifically, we have the following corol-
lary.

Corollary 2. If there exists a lfp π− from M such that Aπ− = {az} for some
z ∈ {1, . . . , n}, then δaz

∈ G(A) is the unique randomized M-Maximin act.
Specifically, considering randomized acts is unnecessary in such situations. �

Running Example (Table 1): Algorithm 8 leads to the optimal solution vector
(13, 0, 0, 0, 0.7, 0.3). Thus, a lfp π− from M is induced by (0, 0.7, 0.3, 0). Simple
computation gives Aπ− = {a2}. Hence, according to Corollary 2, a2 is the unique
M-Maximin act (even compared to randomized acts) with utility 13.

5 Summary and Concluding Remarks

We presented linear programming based approaches for determining optimal
randomized acts and investigated what can be learned by dualizing these. Future
research includes the following issues: If M is non-degenerated, i.e. π({θ}) > 0
for all (π, θ) ∈ M × Θ, the same holds for every lfp π−. Since every π− induces
an optimal solution to (8), complementary slackness implies that all constraints
of problem (10) are binding for every optimal solution. This gives a system
of linear equations that have to be satisfied by every randomized M-Maximin
act. A natural question is: Under which conditions is this system sufficient to
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identify an optimal act without solving an optimization problem at all? A further
interesting point is that algorithm (7) for checking maximality of an act az takes
into account all other acts ai in one linear program simultaneously. This could
be used to modify the algorithm for finding maximal acts that are not too far
from being E-admissible in the sense that the involved probabilities πai

that
establish maximality of az differ not too much w.r.t. the L1-norm which can be
guaranteed by imposing further linear constraints.

Acknowledgement. The authors would like to thank the three anonymous referees
for their helpful comments and their support.
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