
Efficient Policies for Stationary Possibilistic
Markov Decision Processes

Nahla Ben Amor1(B), Zeineb EL khalfi1,2(B), Hélène Fargier2(B),
and Régis Sabaddin3(B)

1 LARODEC, Le Bardo, Tunisie
nahla.benamor@gmx.fr, zeineb.khalfi@gmail.com

2 IRIT, Toulouse, France
fargier@irit.fr

3 INRA-MIAT, Toulouse, France
regis.sabbadin@inra.fr

Abstract. Possibilistic Markov Decision Processes offer a compact and
tractable way to represent and solve problems of sequential decision
under qualitative uncertainty. Even though appealing for its ability to
handle qualitative problems, this model suffers from the drowning effect
that is inherent to possibilistic decision theory. The present paper pro-
poses to escape the drowning effect by extending to stationary possibilis-
tic MDPs the lexicographic preference relations defined in [6] for non-
sequential decision problems and provides a value iteration algorithm to
compute policies that are optimal for these new criteria.

Keywords: Markov Decision Process · Possibility theory · Lexico-
graphic comparisons · Possibilistic qualitative utilities

1 Introduction

The classical paradigm for sequential decision making under uncertainty is the
one of expected utility-based Markov Decision Processes (MDP) [2,11], which
assumes that the uncertain effects of actions can be represented by probability
distributions and that utilities are additive. But the EU model is not tailored
to problems where uncertainty and preferences are ordinal in essence. Alter-
natives to the EU-based model have been proposed to handle ordinal pref-
erences/uncertainty. Remaining within the probabilistic, quantitative, frame-
work while considering ordinal preferences has lead to quantile-based approaches
[8,9,15,17,18]) Purely ordinal approaches to sequential decision under uncer-
tainty have also been considered. In particular, possibilistic MDPs [1,4,12,13]
form a purely qualitative decision model with an ordinal evaluation of plau-
sibility and preference. In this model, uncertainty about the consequences of
actions is represented by possibility distributions and utilities are also ordinal.
The decision criteria are either the optimistic qualitative utility or its pessimistic
counterpart [5]. However, it is now well known that possibilistic decision criteria
suffer from the drowning effect [6]. Plausible enough bad or good consequences
c© Springer International Publishing AG 2017
A. Antonucci et al. (Eds.): ECSQARU 2017, LNAI 10369, pp. 306–317, 2017.
DOI: 10.1007/978-3-319-61581-3 28

Efficient Policies for Stationary Possibilistic Markov Decision Processes 307

may completely blur the comparison between policies, that would otherwise be
clearly differentiable. [6] have proposed lexicographic refinements of possibilistic
criteria for the one-step decision case, in order to remediate the drowning effect.
In this paper, we propose an extension of the lexicographic preference relations
to stationary possibilistic MDPs.

The next Section recalls the background about possibilistic MDPs, including
the drowning effect problem. Section 3 studies the lexicographic comparison of
policies in finite horizon problems and presents a value iteration algorithm for
the computation of lexi-optimal policies. Section 4 extends these results to the
infinite-horizon case. Lastly, Section 5 reports experimental results. Proofs are
omitted, but can be found in1.

2 Possibilistic Markov decision process

2.1 Definition

A possibilistic Markov Decision Process (P-MDP) [12] is defined by:

– A finite set S of states.
– A finite set A of actions, As denotes the set of actions available in state s;
– A possibilistic transition function: each action a ∈ As applied in state s ∈ S

is assigned a possibility distribution π(.|s, a);
– A utility function μ: μ(s) is the intermediate satisfaction degree obtained in

state s.

The uncertainty about the effect of an action a taken in state s is a possi-
bility distribution π(.|s, a) : S → L, where L is a qualitative ordered scale used
to evaluate both possibilities and utilities (typically, and without loss of gener-
ality, L = [0, 1]): for any s′, π(s′|s, a) measures to what extent s′ is a plausible
consequence of a when executed in s and μ(s′) is the utility of being in state
s′. In the present paper, we consider stationary problems, i.e. problems in which
states, the actions and the transition functions do not depend on the stage of
the problem. Such a possibilistic MDP defines a graph, where states are repre-
sented by circles and are labelled by utility degrees and actions are represented
by squares. An edge linking an action to a state denotes a possible transition
and is labeled by the possibility of that state given the action is executed.

Example 1. Let us suppose that a “Rich and Unknown” person runs a
startup company. Initially, s/he must choose between Saving money (Sav)
or Advertising (Adv) and may then get Rich (R) or Poor (P) and Famous
(F) or Unknown (U). In the other states, Sav is the only possible action.
Figure 1 shows the stationary P-MDP that captures this problem, formally
described as follows: S = {RU,RF, PU}, ARU = {Adv, Sav}, ARF = {Sav},
APU = {Sav}, π(PU |RU,Sav) = 0.2, π(RU |RU,Sav) = 1;π(RF |RU,Adv) =
1;π(RF |RF, Sav) = 1, π(RU |RF, Sav) = 1, μ(RU) = 0.5, μ(RF) = 0.7,
μ(PU) = 0.3.

308 N. Ben Amor et al.

Fig. 1. A possibilistic stationary MDP

Solving a stationary MDP consists in finding a (stationary) policy, i.e. a
function δ : S → As which is optimal with respect to a decision criterion. In the
possibilistic case, as in the probabilistic case, the value of a policy depends on
the utility and on the likelihood of its trajectories. Formally, let Δ be the set of
all policies encoded by a P-MDP. When the horizon is finite, each δ ∈ Δ defines
a list of scenarios called trajectories. Each trajectory is a sequence of states and
actions τ = (s0, a0, s1, . . . , sE−1, aE−1, sE).

To simplify notations, we will associate the vector vτ = (μ0,π1,μ1,
π2, . . . , πE−1, μE) to each trajectory τ , where πi+1 =def π(si+1|si, ai) and
μi =def μ(si).

The possibility and the utility of τ given that δ is applied from s0 are
defined by:

π(τ |s0, δ) = min
i=1..E

π(si|si−1, δ(si−1)) and μ(τ) = min
i=0..E

μ(si) (1)

Two criteria, an optimistic and a pessimistic one, can then be used [5,13]:

uopt(δ, s0) = max
τ

min{π(τ |s0, δ), μ(τ)} (2)

upes(δ, s0) = max
τ

min{1 − π(τ |s0, δ), μ(τ)} (3)

These criteria can be optimized by choosing, for each state, an action that max-
imizes the following counterparts of the Bellman equations [12]:

uopt(s) = max
a∈As

min{μ(s),max
s′∈S

min(π(s′|s, a), uopt(s′))} (4)

upes(s) = max
a∈As

min{μ(s), min
s′∈S

max(1 − π(s′|s, a), upes(s′))} (5)

This formulation is more general than the first one in the sense that it applies
to both the finite and the infinite case. It has allowed the definition of a (possi-
bilistic) value iteration algorithm which converges to an optimal policy in poly-
time O(|S|2 · |A|2 · |L|) [12]. This algorithm proceeds by iterated modifications
of a possibilistic value function Q̃(s, a) which evaluates the “utility” (pessimistic
or optimistic) of performing a in s.

1 https://www.irit.fr/publis/ADRIA/PapersFargier/XKRU17MDP.pdf.

https://www.irit.fr/publis/ADRIA/PapersFargier/XKRU17MDP.pdf

Efficient Policies for Stationary Possibilistic Markov Decision Processes 309

2.2 The Drowning Effect

Unfortunately, possibilistic utilities suffer from an important drawback called
the drowning effect: plausible enough bad or good consequences may completely
blur the comparison between acts that would otherwise be clearly differentiated;
as a consequence, an optimal policy δ is not necessarily Pareto efficient - it may
exist a policy δ′ such that upes(δ′

s) = upes(δs) while ∀s, upes(δ′
s) � upes(δs) and

(ii) ∃s, upes(δ′
s) � upes(δs) where δs (resp. δ′

s) is the restriction of δ (resp. δ′) to
the subtree rooted in s.

Example 2. The P-MDP of Example 1; it admits two policies δ and δ′: δ(RU) =
Sav; δ(PU) = Stay; δ(RF) = Sav; δ′(RU) = Adv; δ′(PU) = Stay; δ′(RF) =
Sav. For horizon E = 2:

– δ has 3 trajectories: τ1 = (RU,PU, PU) with vτ1 = (0.5 0.2 0.3 1 0.3); τ2 =
(RU,RU,PU) with vτ2 = (0.5 1 0.5 0.2 0.3); τ3 = (RU,RU,RU) with vτ3 =
(0.5 1 0.5 1 0.5).

– δ′ has 2 trajectories: τ4 = (RU,RF,RF) with vτ4 = (0.5 1 0.7 1 0.7); τ5 =
(RU,RF,RU) with vτ5 = (0.5 1 0.7 1 0.5).

Thus Uopt(δ) = Uopt(δ′) = 0.5. However δ′ seems better than δ since it pro-
vides utility 0.5 for sure while δ provides a bad utility (0.3) in some non impos-
sible trajectories (τ1 and τ2). τ3 which is good and totally possible “drowns” τ1
and τ2: δ is considered as good as δ′.

2.3 Lexi-Refinements of Ordinal Aggregations

In ordinal (i.e. min-based and max-based) aggregation a solution to the drowning
effect has been proposed, that is based on leximin and leximax comparisons [10].
It has then been extended to non-sequential decision making under uncertainty
[6] and, in the sequential case, to decision trees [3]. Let us first recall the basic
definition of these two preference relations. For any two vectors t and t′ of length
m built on L:

t �lmin t′ iff ∀i, tσ(i) = t′σ(i) or ∃i∗,∀i < i∗, tσ(i) = t′σ(i) and tσ(i∗) > t′σ(i∗) (6)

t �lmax t′ iff ∀i, tμ(i) = t′μ(i) or ∃i∗,∀i < i∗, tμ(i) = t′μ(i) and tμ(i∗) > t′μ(i∗) (7)

where, for any vector v (here, v = t or v = t′), vμ(i) (resp. vσ(i)) is the ith best
(resp. worst) element of v.

[6] have extended these procedures to the comparison of matrices built on
L. Given a complete preorder � on vectors, it is possible to order the lines of
the matrices (say, A and B) according to � and to apply an lmax or an lmin
procedure:

A �lmin(�) B ⇔ ∀j, a(�,j)
∼= b(�,j) or ∃i s.t. ∀j > i, a(�,j)

∼= b(�,j) and a(�,i) � b(�,i) (8)

A �lmax(�) B ⇔ ∀j, a(�,j)
∼= b(�,j) or ∃i s.t.∀j < i, a(�,j)

∼= b(�,j)and a(�,i) � b(�,i) (9)

where, for any c ∈ (LM)N , c(�,i) is the ith largest sub-vector of c according to �.

310 N. Ben Amor et al.

3 Lexicographic-Value Iteration for Finite Horizon
P-MDPs

In (finite-horizon) possibilistic decision trees, the idea of [3] is to identify a strat-
egy with the matrix of its trajectories, and to compare such matrices with a
�lmax(lmin) (resp. �lmin(lmax)) procedure for the optimistic (resp. pessimistic)
case. We propose, in the following, a value iteration algorithm for the computa-
tion of such lexi-optimal policies in the finite (this Section) and infinite (Sect. 4)
horizon cases.

3.1 Lexicographic Comparisons of Policies

Let E be the horizon of the P-MDP. A trajectory being a sequence of states
and actions, a strategy can be viewed as a matrix where each line corresponds
to a distinct trajectory. In the optimistic case each line corresponds to a vector
vτ = (μ0, π1, μ1, π2, . . . , πE−1, μE) and in the pessimistic case to wτ = (μ0, 1 −
π1, μ1, 1 − π2, . . . , 1 − πE−1, μE).

This allow us to define the comparison of trajectories and strategies by2:

τ �lmin τ ′ iff (μ0, π1, . . . , πE , μE) �lmin (μ′
0, π

′
2, . . . , π

′
E , μ′

E) (10)
τ �lmax τ ′ iff (μ0, 1 − π1, . . . , 1 − πE , μE) �lmax (μ′

0, 1 − π′
1, . . . 1 − π′

E , μ′
E)
(11)

δ �lmax(lmin) δ′ iff ∀i, τμ(i) ∼lmin τ ′
μ(i)

or ∃i∗, ∀i < i∗, τμ(i) ∼lmin τ ′
μ(i) and τμ(i∗) �lmin τ ′

μ(i∗) (12)

δ �lmin(lmax) δ′ iff ∀i, τσ(i) ∼lmax τ ′
σ(i)

or ∃i∗, ∀i < i∗, τσ(i) ∼lmax τ ′
σ(i) and τσ(i∗) �lmax τ ′

σ(i∗) (13)

where τμ(i) (resp. τ ′
μ(i)) is the ith best trajectory of δ (resp δ′) according to �lmin

and τσ(i) (resp. τ ′
σ(i)) is the ith worst trajectory of δ (resp δ′) according to �lmax.

It is easy to show that we get efficient refinements of uopt and upes.

Proposition 1. If uopt(δ) > uopt(δ′) (resp. upes(δ) > upes(δ′)) then
δ �lmax(lmin) δ′ (resp. δ �lmin(lmax) δ′).

Proposition 2. Relations �lmin(lmax) and �lmax(lmin) are complete, transitive
and satisfy the principle of strict monotonicity3.
2 If a trajectory is shorter than E, neutral elements (0 for the optimistic case and 1

for the pessimistic one) are added at the end. If the policies have different numbers
of trajectories, neutral trajectories (vectors) are added to the shortest one.

3 A criterion O satisfies the principle of strict monotonicity iff: ∀δ, δ′, δ′′, δ �O δ′ ⇐⇒
δ+δ′′ �O δ′+δ′′. δ+δ′′ contains two disjoint sets of trajectories: the ones of δ and the
ones of δ′′ (and similarly for δ′ +δ′′). Then, adding or removing identical trajectories
to two sets of trajectories does not change their comparison by �lmax(lmin) (resp.
�lmin(lmax)) - while it may transform a strict preference into an indifference if uopt

(resp. upes) were used.

Efficient Policies for Stationary Possibilistic Markov Decision Processes 311

Remark. We define the complementary MDP, (S,A, π, μ̄) of a given P-MDP
(S,A, π, μ) where μ̄(s) = 1 − μ(s),∀s ∈ S. The complementary MDP simply
gives complementary utilities. From the definitions of �lmax and �lmin, we can
check that:

Proposition 3. τ �lmax τ ′ ⇔ τ̄ ′ �lmin τ̄ and δ �lmin(lmax) δ′ ⇔
δ̄′ �lmax(lmin) δ̄.

where τ̄ and δ̄ are obtained by replacing μ with μ̄ in the trajectory/P-MDP.
Therefore, all results which we will prove in the following for �lmax(lmin) also

hold for �lmin(lmax), if we take care to apply them to complementary strategies.
Since considering �lmax(lmin) involves less cumbersome expressions (no 1 − ·),
we will give the results for this criterion. Moreover, abusing notations slightly,
we identify trajectories τ (resp. strategies) with their vτ vectors (resp. matrices
of vτ vectors).

3.2 Basic Operations on Matrices of Trajectories

Before going further, we define some basic operations on matrices (typically, on
U(s) representing trajectories issued from s). For any matrix U = (uij) with n
lines and m columns, [U]l,c denotes the restriction of U to its first l lines and
first c columns.

Composition, U × (N1, . . . , Na): Let U be a a × b matrix and N1, . . . , Na be
a series of a matrices of dimension ni × c (they all share the same number of
columns). The composition of U with (N1, . . . , Na) denoted U ×(N1, . . . , Na) is a
matrix of dimension (Σ

1≤i≤a
ni)×(b+c). For any i ≤ a, j ≤ nj , the (Σi′<ini′)+j)th

line of U × (N1, . . . , Na) is the concatenation of the ith line of U and the jth line
of Ni. The composition of U ×(N1, . . . , Na) is done in O(n ·m) operations, where
n = Σ

1≤i≤a
ni and m = b+c. The matrix U(s) is typically the concatenation of the

matrix U = ((π(s′|s, a), μ(s′)), s′ ∈ succ(s, a)) with the matrices Ns′ = U(s′).

Ordering Matrices U lmaxlmin: Let U be a n × m matrix, U lmaxlmin is the
matrix obtained by ordering the elements of the lines of U in increasing order
and the lines of U according to lmax (in decreasing order). The complexity of the
operation depends on the sorting algorithm: if we use QuickSort then ordering
the elements within a line is performed in O(m · log(m)), and the inter-ranking
of the lines is done in O(n · log(n) ·m) operations. Hence, the overall complexity
in O(n · m · log(n · m)).

Comparison of Ordered Matrices: Given two ordered matrices U lmaxlmin

and V lmaxlmin, we say that U lmaxlmin > V lmaxlmin iff ∃i, j such that ∀i′ <
i,∀j′, U lmaxlmin

i′,j′ = V lmaxlmin
i′,j′ and ∀j′ < j, U lmaxlmin

i,j′ = V lmaxlmin
i,j′ and

U lmaxlmin
i,j > V lmaxlmin

i,j . U lmaxlmin ∼ V lmaxlmin iff they are identical (com-
parison complexity: O(n · m)).

312 N. Ben Amor et al.

3.3 Lexicographic-Value Iteration

In this section, we propose a value iteration algorithm (Algorithm1 for the
lmax(lmin) variant; the lmin(lmax) variant is similar) that computes a lexi-
cographic optimal policy in a finite number of iterations. This algorithm is an
iterative procedure that updates the utility of each state, represented by a finite
matrix of trajectories, using the utilities of the neighboring states, until a halting
condition is reached. At stage t, the procedure updates the utility of every states
s ∈ S as follows:

– For each a ∈ As, a matrix Q(s, a) is built which evaluates the “utility” of
performing a in s at stage t: this is done by combining TUs,a (comparison of
the transition matrix Ts,a = π(·|s, a) and the utilities μ(s′) of the states s′ that
may follows s when a is executed) with the matrices U t−1(s′) of trajectories
provided by these s′. The matrix Q(s, a) is then ordered (the operation is
made less complex by the fact that the matrices U t−1(s′) have been ordered
at t − 1).

– The lmax(lmin) comparison is performed on the fly to memorize the best
Q(s, a)

– The value of s at t, U t(s), is the one given by the action δt(s) = a which pro-
vides the best Q(s, a). U t and δt are memorized (and U t−1 can be forgotten).

Algorithm 1. Lmax(lmin)-value iteration
Data: A possibilistic MDP and an horizon E
δ∗, the policy built by the algorithm, is a global variable

1 // δ a global variable starts as an empty set

Result: Computes and returns δ∗ for MDP
2 begin
3 t ← 0;
4 foreach s ∈ S do U t(s) ← ((μ(s)));
5 foreach s ∈ S, a ∈ As do TUs,a ← Ts,a × ((μ(s′)), s′ ∈ succ(s, a));
6 repeat
7 t ← t + 1;
8 foreach s ∈ S do
9 Q∗ ← ((0));

10 foreach a ∈ A do
11 Future ← (U t−1(s′), s′ ∈ succ(s, a)); // Gather the matrices

provided by the successors of s;

12 Q(s, a) ← (TUs,a × Future)lmaxlmin;
13 if Q∗ ≤lmaxlmin Q(s, a) then Q∗ ← Q(s, a); δt(s) ← a ;

14 U t(s) ← Q∗(s, δt(s))

15 until t == E;
16 δ∗(s) ← argmaxaQ(s, a)
17 return δ∗;

Efficient Policies for Stationary Possibilistic Markov Decision Processes 313

Proposition 4. lmax(lmin)-Value iteration provides an optimal solution for
�lmaxlmin.

Time and space complexities of this algorithm are nevertheless expensive,
since it eventually memorizes all the trajectories. At each step t its size may be
about bt · (2 · t + 1), where b is the maximal number of possible successors of
an action; the overall complexity of the algorithm is O(|S| · |A| · |E| · bE), which
is problematic. Notice now that, at any stage t and for any state s [U t(s)]1,1

(i.e. the top left value in U t(s)) is precisely equal to uopt(s) at horizon t for
the optimal strategy. We have seen that making the choices on this basis is not
discriminant enough. On the other hand, taking the whole matrix is discriminant,
but exponentially costly. Hence the idea of considering more than one line and
one column, but less than the whole matrix - namely the first l lines and c
columns of U t(s)lmaxlmin; hence the definition of the following preference:

δ ≥lmaxlmin,l,c δ′ iff [δlmaxlmin]l,c ≥ [δ′lmaxlmin]l,c (14)

≥lmaxlmin,1,1 corresponds to �opt and ≥lmaxlmin,+∞,+∞ corresponds to
≥lmaxlmin.

The combinatorial explosion is due to the number of lines (because at finite
horizon, the number of columns is bounded by 2·E+1), hence we shall bound the
number of considered lines. The following proposition shows that this approach
is sound:

Proposition 5. For any l, c δ �opt δ′ ⇒ δ �lmaxlmin,l,c δ′.
For any l, c, l′ such that l′ > l, δ �lmaxlmin,l,c δ′ ⇒ δ �lmaxlmin,l′,c δ′.

Hence �lmaxlmin,l,c refines uopt and the order over the strategies is refined for
a fixed c when l increases. It tends to �lmaxlmin when c = 2.E + 1 and l tends
to bE .

Up to this point, the comparison by ≥lmaxlmin,l,c is made on the basis of the
first l lines and c columns of the full matrices of trajectories. This does obviously
not reduce their size. The important following Proposition allows us to make the
l, c reduction of the ordered matrices at each step (after each composition), and
not only at the very end, thus keeping space and time complexities polynomial.

Proposition 6. Let U be a a×b matrix and N1, . . . , Na be a series of a matrices
of dimension ai × c. It holds that:
[(U × (N1, . . . , Na))lmaxlmin]l,c = [(U × ([N lmaxlmin

1]l,c, . . . , [N
lmaxlmin
a]l,c))

lmaxlmin)]l,c.

In summary, the idea of our Algorithm, that we call bounded lexicographic-
value iteration (BL-VI) is to compute policies that are close to lexi-optimality,
by keeping a sub matrix of each current value matrix - namely the first l lines
and c columns. The algorithm is obtained by replacing line 12 of Algorithm1,
with:

Line 12′ : Q(s, a) ← [(TUs,a × Future)lmaxlmin]l,c;

314 N. Ben Amor et al.

Proposition 7. Bounded lmax(lmin)-Value iteration provides a solution that is
optimal for �lmaxlmin,l,c and its time complexity is O(|E| · |S| · |A| · (l · c) · b ·
log(l · c · b)).

In summary, this algorithm provides in polytime a strategy that is always as
least as good as the one provided by uopt (according to lmax(lmin)) and tends
to lexi optimality when c = 2 · E + 1 and l tends to bE .

4 Lexicogaphic-Value Iteration for Infinite Horizon
P-MDPs

In the infinite-horizon case, the comparison of matrices of trajectories by
Eqs. (12) or (13) may not be enough to rank-order the policies. The length of
the trajectories may be infinite, and their number infinite as well. This problem
is well known in classical probabilistic MDP where a discount factor is used that
attenuates the influence of later utility degrees - thus allowing the convergence of
the algorithm [11]. On the contrary, classical P-MDPs do not need any discount
factor and Value Iteration, based on the evaluation for l = c = 1, converges for
infinite horizon P-MDPs [12].

In a sense, this limitation to l = c = 1 plays the role of a discount factor
- which is too drastic; it is nevertheless possible to make the comparison using
≥lmaxlmin,l,c. Let us denote U t(s) the matrix issued from s at horizon t when δ
is executed. It holds that:

Proposition 8. ∀l, c, ∃t such that, forall t′ > t, (U t)lmaxlmin
l,c (s) = (U t′

)lmaxlmin
l,c (s).

This means that from a given stage t, the value of a strategy is stable if computed
with the bounded lmax(lmin) criterion. This criterion can thus be soundly used
in the infinite-horizon case and bounded value iteration converges. To adapt the
algorithm to the infinite case, we simply need to modify the halting condition
at line 15 by:

Line15′ : until
(
U t

)lmaxlmin

l,c
==

(
U t−1

)lmaxlmin

l,c
.

Proposition 9. Whatever l, c, Lmax(lmin)-Bounded Value iteration converges
for infinite horizon P-MDPs.

Proposition 10. The overall complexity of Bounded lmax(lmin)-Value iteration
algorithm is O(|L| · |S| · |A| · (l · c) · b · log(l · c · b)).

5 Experiments

We now compare the performance of Bounded lexicographic value iteration (BL-
VI) as an approximation of (unbounded) lexicographic value iteration (UL-VI),
in the Lmax(lmin) variant. The two algorithms have been implemented in Java

Efficient Policies for Stationary Possibilistic Markov Decision Processes 315

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(2,2) (20,20) (40,40) (100,100) (200,200)

Su
cc

es
sr

at
e

(l,c)

0,01

0,1

1

10

100

1000

5 10 15 20 25

CP
U

m
e i

n s
ec

Horizon of MDPs

Success rate (b) Average CU me in second (a)

UL-VI
BL-VI (40,40)
BL-VI (20,20)
BL-VI (10,10)
BL-VI (2,2)

E=10
E=15
E=20
E=25

E=10
E=15
E=20
E=25

Fig. 2. Bounded lexicographic value iteration VS Unbounded lexicographic value
iteration

and the experiments have been performed on an Intel Core i5 processor com-
puter (1.70 GHz) with 8 GB DDR3L of RAM. We evaluate the performance of
the algorithms by carrying out simulations on randomly generated P-MDPs with
|S| = 25. The number of actions in each state is equal to 4. The output of each
action is a distribution on two states randomly fired (i.e. the branching fac-
tor is equal to 2). The utility values are uniformly randomly fired in the set
L = {0.1, 0.3, 0.5, 0.7, 1}. Conditional possibilities relative to decisions should
be normalized. To this end, one choice is fixed to possibility degree 1 and the
possibility degree of the other one is uniformly fired in L. For each experience,
100 P-MDPs are generated. The two algorithms are compared w.r.t. 2 measures:
(i) CPU time and (ii) Pairwise success rate: Success, the percentage of opti-
mal solutions provided by Bounded value iteration with fixed (l, c) w.r.t. the
lmax(lmin) criterion in its full generality. The higher Success, the more impor-
tant the effectiveness of cutting matrices with BL-VI; the lower this rate, the
more important the drowning effect.

Figure 2 presents the average execution CPU time for the two algorithms.
Obviously, for both UL-VI and BL-VI, the execution time increases with the
horizon. Also, we observe that the CPU time of BL-VI increases according to
the values of (l, c) but it remains affordable, as the maximal CPU time is lower
than 1s for MDPs with 25 states and 4 actions when (l, c) = (40, 40) and E = 25.
Unsurprisingly, we can check that the BL-VI (regardless of the values of (l, c))
is faster than UL-VI especially when the horizon increases: the manipulation of
l, c-matrices is obviously less expensive than the one of full matrices. The saving
increases with the horizon.

As with the success rate, the results are described in Fig. 2. It appears that
BL-VI provides a very good approximation especially when increasing (l, c). It
provides the same optimal solution as the UL-VI in about 90% of cases, with
an (l, c) = (200, 200). Moreover, even when the success rate of BL-VI decreases
(when E increases), the quality of approximation is still good: never less than
70% of optimal actions returned, with E = 25. These experiments conclude in
favor of bounded value iteration: its approximated solutions are comparable in
terms of quality for high (l, c) and increase when (l, c) increase, while it is much
faster than the unbounded version.

316 N. Ben Amor et al.

6 Conclusion

In this paper, we have extended to possibilistic Markov Decision Processes the
lexicographic refinement of possibilistic utilities initially introduced in [6] for
non-sequential problems. It can be shown that our approach is more discriminant
than the refinement of binary possibilistic utility [16] since the latter does not
satisfy strict monotonicity. Our lexicographic refinements criteria allowed us to
propose a Lmax(lmin)-Value Iteration algorithm for stationary P-MDPs with
two variants: (i) an unbounded version that converges in the finite horizon case,
but is unsuitable for infinite-horizon P-MDPs, since it generates matrices which
size continuously increases with the horizon and (ii) a bounded version which
has polynomial complexity. It bounds the size of the saved matrices and refines
the possibilistic criteria, whatever the choice of the bounds. The convergence of
this algorithm is shown for both the finite and the infinite horizon cases, and its
efficiency has been observed experimentally even for low bounds.

There are two natural perspectives to this work. First, as far as the infi-
nite horizon case is concerned, other types of lexicographic refinements could
be proposed. One of these options could be to avoid the duplication of the set
of transitions that occur several times in a single trajectory and consider only
those which are observed. A second perspective of this work will be to define rein-
forcement learning [14] type algorithms for P-MDPs. Such algorithms would use
samplings of the trajectories instead of full dynamic programming or quantile-
based reinforcement learning approaches [7].

References

1. Bauters, K., Liu, W., Godo, L.: Anytime algorithms for solving possibilistic MDPs
and hybrid MDPs. In: Gyssens, M., Simari, G. (eds.) FoIKS 2016. LNCS, vol. 9616,
pp. 24–41. Springer, Cham (2016)

2. Bellman, R.: A Markovian decision process. J. Math. Mech. 6, 679–684 (1957)
3. Ben Amor, N., El Khalfi, Z., Fargier, H., Sabbadin, R.: Lexicographic refinements

in possibilistic decision trees. In: Proceedings ECAI 2016, pp. 202–208 (2016)
4. Drougard, N., Teichteil-Konigsbuch, F., Farges, J.L., Dubois, D.: Qualitative pos-

sibilistic mixed-observable MDPs. In: Proceedings UAI 2013, pp. 192–201 (2013)
5. Dubois, D., Prade, H.: Possibility theory as a basis for qualitative decision theory.

In: Proceedings IJCAI 1995, pp. 1925–1930 (1995)
6. Fargier, H., Sabbadin, R.: Qualitative decision under uncertainty: back to expected

utility. Artif. Intell. 164, 245–280 (2005)
7. Gilbert, H., Weng, P.: Quantile reinforcement learning. In: Proceedings JMLR

2016, pp. 1–16 (2016)
8. Gilbert, H., Weng, P., Xu, Y.: Optimizing quantiles in preference-based Markov

decision processes. In: Proceedings AAAI 2017, pp. 3569–3575 (2017)
9. Montes, I., Miranda, E., Montes, S.: Decision making with imprecise probabilities

and utilities by means of statistical preference and stochastic dominance. Eur. J.
Oper. Res. 234(1), 209–220 (2014)

10. Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press,
Cambridge (1988)

11. Puterman, M.L.: Markov Decision Processes. Wiley, Hoboken (1994)

Efficient Policies for Stationary Possibilistic Markov Decision Processes 317

12. Sabbadin, R.: Possibilistic Markov decision processes. Eng. Appl. Artif. Intell. 14,
287–300 (2001)

13. Sabbadin, R., Fargier, H.: Towards qualitative approaches to multi-stage decision
making. Int. J. Approximate Reasoning 19, 441–471 (1998)

14. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press,
Cambridge (1998)

15. Szörényi, B., Busa-Fekete, R., Weng, P., Hüllermeier, E.: Qualitative multi-armed
bandits: a quantile-based approach. In: Proceedings ICML 2015, pp. 1660–1668
(2015)

16. Weng, P.: Qualitative decision making under possibilistic uncertainty: toward more
discriminating criteria. In: Proceedings UAI 2005, pp. 615–622 (2005)

17. Weng, P.: Markov decision processes with ordinal rewards: reference point-based
preferences. In: Proceedings ICAPS 2011, pp. 282–289 (2011)

18. Yue, Y., Broder, J., Kleinberg, R., Joachims, T.: The k-armed dueling bandits
problem. J. Comput. Syst. Sci. 78(5), 1538–1556 (2012)

	Efficient Policies for Stationary Possibilistic Markov Decision Processes
	1 Introduction
	2 Possibilistic Markov decision process
	2.1 Definition
	2.2 The Drowning Effect
	2.3 Lexi-Refinements of Ordinal Aggregations

	3 Lexicographic-Value Iteration for Finite Horizon P-MDPs
	3.1 Lexicographic Comparisons of Policies
	3.2 Basic Operations on Matrices of Trajectories
	3.3 Lexicographic-Value Iteration

	4 Lexicogaphic-Value Iteration for Infinite Horizon P-MDPs
	5 Experiments
	6 Conclusion
	References

