
Algorithms for Multi-criteria Optimization
in Possibilistic Decision Trees

Nahla Ben Amor1, Fatma Essghaier1,2(B), and Hélène Fargier2

1 LARODEC, Le Bardo, Tunisia
nahla.benamor@gmx.fr, essghaier.fatma@gmail.com

2 IRIT, Toulouse, France
fargier@irit.fr

Abstract. This paper raises the question of solving multi-criteria
sequential decision problems under uncertainty. It proposes to extend
to possibilistic decision trees the decision rules presented in [1] for non
sequential problems. It present a series of algorithms for this new frame-
work: Dynamic Programming can be used and provide an optimal strat-
egy for rules that satisfy the property of monotonicity. There is no guar-
antee of optimality for those that do not—hence the definition of ded-
icated algorithms. This paper concludes by an empirical comparison of
the algorithms.

Keywords: Possibility theory · Sequential decision problems · Multi-
criteria decision making · Decision trees

1 Introduction

When information about uncertainty cannot be quantified in a probabilistic
way, possibilistic decision theory is a natural field to consider [2–7]. Qualitative
decision theory is relevant, among other fields, for applications to planning under
uncertainty, where a suitable strategy (i.e. a set of conditional or unconditional
decisions) is to be found, starting from a qualitative description of the initial
world, of the available decisions, of their (perhaps uncertain) effects and of the
goal to reach (see [8–10]). But up to this point, the evaluation of the strategies
was considered in a simple, mono-criterion context, while it is often the case that
several criteria are involved in the decision [11].

A theoretical framework has been proposed for multi-criteria/multi-agent
(non sequential) decision making under possibilistic uncertainty [1,12]. In the
present paper, we extend it to decision trees and we propose a detailed algorith-
mic study. After a refreshing on the background (Sect. 2), Sect. 3 presents our
algorithms, and is completed, in Sect. 4, by an experimental evaluation.

2 Background

2.1 Multi-criteria Decision Making (MCDM) Under Uncertainty

Following Dubois and Prade’s possibilistic approach of decision making under
qualitative uncertainty, a non-sequential (i.e. one stage) decision can be seen
c© Springer International Publishing AG 2017
A. Antonucci et al. (Eds.): ECSQARU 2017, LNAI 10369, pp. 295–305, 2017.
DOI: 10.1007/978-3-319-61581-3 27



296 N. Ben Amor et al.

as a possibility distribution1 over a finite set of outcomes, called a (simple)
possibilistic lottery [2]. Such a lottery is denoted L = 〈λ1/x1, . . . , λn/xn〉 where
λi = πL(xi) is the possibility that decision L leads to outcome xi; this possibility
degree can also be denoted by L[xi]. In this framework, a decision problem is
thus fully specified by a set of possibilistic lotteries on X and a utility function
u : X �→ [0, 1]. Under the assumption that the utility scale and the possibility
scale are commensurate and purely ordinal, [2] proposes to evaluate each lottery
by a qualitative, optimistic or pessimistic, global utility:

Optimistic utility: U+(L) = max
xi∈X

min(λi, u(xi)) (1)

Pessimistic utility: U−(L) = min
xi∈X

max(1 − λi, u(xi)) (2)

U+(L) is a mild version of the maximax criterion: L is good as soon as it is totally
plausible that it gives a good consequence. On the contrary, the pessimistic index,
U−(L) estimates the utility of an act by its worst possible consequence: its value
is high whenever L gives good consequences in every “rather plausible” state.

This setting assumes a ranking of X by a single preference criterion, hence the
use of a single utility function. When several criteria, say a set Cr = {1, . . . , p}
of p criteria, have to be taken into account, u must be replaced by a vector
u = 〈u1, . . . , up〉 of utility functions uj . If the criteria are not equally important,
each j is equipped with a weight wj ∈ [0, 1] reflecting its importance.

In the absence of uncertainty, each decision leads to a unique consequence and
the problem is a simple problem of qualitative MCDM aggregation; classically,
such aggregation shall be either conjunctive (i.e. based on a weighted min) or
disjunctive (i.e. based on a weighted max) - see [13] for more details about
weighted min and weighted max aggregations.

In presence of uncertainty, the aggregation can be done ex-ante or ex-post :

– The ex-ante approach consists in computing the (optimistic or pessimistic)
utility relative to each criterion j, and then performs the MCDM aggregation.

– The ex-post approach consists in first determining the aggregated utility (con-
junctive or disjunctive) of each possible xi; then the problem can be viewed
as a mono-criterion problem of decision making under uncertainty.

Since the decision maker’s attitude with respect to uncertainty can be either
optimistic or pessimistic and the way of aggregating the criteria either conjunc-
tive or disjunctive, [1,12] propose four ex-ante and four ex-post approaches:

U−min
ante (L) = min

j∈Cr
max((1 − wj), min

xi∈X
max(uj(xi), (1 − L[xi]))) (3)

U−max
ante (L) = max

j∈Cr
min(wj , min

xi∈X
max(uj(xi), (1 − L[xi]))) (4)

U+min
ante (L) = min

j∈Cr
max((1 − wj), max

xi∈X
min(uj(xi), L[xi])) (5)

1 A possibility distribution π is a mapping from the universe of discourse to a bounded
linearly ordered scale, typically by the unit interval [0, 1].



Algorithms for Multi-criteria Optimization in Possibilistic Decision Trees 297

U+max
ante (L) = max

j∈Cr
min(wj , max

xi∈X
min(uj(xi), L[xi])) (6)

U−min
post (L) = min

xi∈X
max((1 − L[xi]), min

j∈Cr
max(uj(xi), (1 − wj))) (7)

U−max
post (L) = min

xi∈X
max((1 − L[xi]), max

j∈Cr
min(uj(xi), wj)) (8)

U+min
post (L) = max

xi∈X
min(L[xi], min

j∈Cr
max(uj(xi), (1 − wj))) (9)

U+max
post (L) = max

xi∈X
min(L[xi], max

j∈Cr
min(uj(xi), wj)) (10)

In the notations above, the first (resp. second) sign denotes the attitude of
the decision maker w.r.t. uncertainty (resp. the criteria). The U−min

ante utility for
instance considers that the decision maker is pessimistic and computes the pes-
simistic utility of each criterion. Then the criteria are aggregated on a cautions
basis: the higher is the satisfaction of the least satisfied of the important crite-
ria, the better is the lottery. Using the same notations, U−max

post considers that
a xi is good as soon as one of the important criteria is satisfied: a max-based
aggregation of the utilities is done, yielding a unique utility function u() on the
basis of which the pessimistic utility is computed. It should be noticed that the
full pessimistic and full optimistic ex-ante utilities are equivalent to their ex-post
counterparts [12], i.e. U−min

ante = U−min
post and U+max

ante = U+max
post . But U−max

ante (resp.
U+min

ante ) may differ from U−max
post (resp. from U+min

post ).

Example 1. Consider two equally important criteria 1 and 2 (w1 = w2 = 1),
and a lottery L = 〈1/xa, 1/xb〉 leading to two equi possible consequences xa and
xb such that xa is good for 1 and bad for 2, and xb is bad for 1 and good for
2: u1(xa) = u2(xb) = 1 and u2(xa) = u1(xb) = 0. It is easy to check that
U+min

ante (L) = 0 �= U+min
post (L) = 1.

2.2 Possibilistic Decision Trees [14]

Decision trees provide an explicit modeling of sequential problems by represent-
ing, simply, all possible scenarios. A decision tree is a labeled tree DT = (N , E)
where N = D ∪C ∪LN contains three kinds of nodes (see Fig. 1): D is the set of
decision nodes (represented by squares); C is the set of chance nodes (represented
by circles) and LN is the set of leaves.Succ(N) denotes the set of children nodes
of node N . For any Xi ∈ D, Succ(Xi) ⊆ C i.e. a chance node (an action) must
be chosen at each decision node. For any Ci ∈ C, Succ(Ci) ⊆ LN ∪D: the set of
outcomes of an action is either a leaf node or a decision node (and then a new
action should be executed).

In the possibilistic context, leaves are labeled by utility degrees in the [0,1]
scale and the uncertainty pertaining to the possible outcomes of each Ci ∈ C,
is represented by a conditional possibility distribution πi on Succ(Ci), such that
∀N ∈ Succ(Ci), πi(N) = Π(N |path(Ci)) where path(Ci) denotes all the value
assignments of chance and decision nodes on the path from the root to Ci [14].



298 N. Ben Amor et al.

Solving a decision tree amounts at building a complete strategy that selects an
action (a chance node) for each decision node: a strategy is a mapping δ : D �→
C ∪{⊥}. δ(Di) = ⊥ means that no action has been selected for Di (δ is partial).
Leaf nodes being labeled with utility degrees, the rightmost chance nodes can
be seen as simple possibilistic lotteries. Then, each strategy δ can be viewed as
a connected sub-tree of the decision tree and is identified with a possibilistic
compound lottery Lδ, i.e. with a possibility distribution over a set of (simple
or compound) lotteries. A compound lottery 〈λ1/L1, ..., λk/Lk〉 (and thus any
strategy) can then be reduced into an equivalent simple lottery as follows2 [2]:

Reduction(〈λ1/L1, ..., λk/Lk〉) = 〈max
j=1,k

(min(λj
1, λj))/u1, ..., max

j=1,k
(min(λj

n, λj))/un〉.

The pessimistic and optimistic utility of a strategy δ can then be computed on
the basis of the reduction of Lδ: the utility of δ is the one of Reduction(Lδ).

3 Multi-criteria Optimization in Possibilistic Trees

Multi-criteria Possibilistic Decision Trees can now be defined: they are classical
possibilistic decision trees, the leaves of which are evaluated according to several
criteria - each leaf N is now labeled by a vector u(N) = 〈u1(N), . . . , up(N)〉
rather than by a single utility score (see Fig. 1). A strategy still leads to com-
pound lottery, and can be reduced, thus leading in turn to a simple (but multi-
criteria) lottery. We propose to base the comparison of strategies on the com-
parison, according to the rules O previously presented, of their reductions:

δ1 �O δ2 iff UO(δ1) ≥ UO(δ2), where ∀δ, UO(δ) = UO(Reduction(Lδ)) (11)

Example 2. Consider the tree of Fig. 1, involving two criteria that are supposed
to be equally important and the strategy δ(D0) = C1, δ(D1) = C3, δ(D2) = C5.
It holds that Lδ = 〈1/LC3 , 0.9/LC5〉 with LC3 = 〈0.5/xa, 1/xb〉, LC5 = 〈0.2/xa,
1/xb〉. Because Reduction(Lδ) = 〈max(0.5, 0.2)/xa,max(1, 0.9)/xb〉 = 〈0.5/xa,
1/xb〉, we get U+min

ante (δ) = min(max min(0.5, 0.3),min(1, 0.6),max(min(0.5, 0.8)
min(1, 0.4))) = 0.5.

The definition proposed by Eq. (11) is quite obvious but raises an algorithmic
challenge: the set of strategies to compare is exponential w.r.t. the size of the tree
which makes the explicit evaluation of the strategies not realistic. The sequel of
the paper aims at providing algorithmic solutions to this difficulty.

3.1 Dynamic Programming as a tool for ex-post Utilities

Dynamic Programming [15] is an efficient procedure of strategy optimization. It
proceeds by backward induction, handling the problem from the end (and in our
case, from the leafs): the last decision nodes are considered first, and recursively

2 Obviously, the reduction of a simple lottery is the simple lottery itself.



Algorithms for Multi-criteria Optimization in Possibilistic Decision Trees 299

Fig. 1. A multi-criteria possibilistic decision tree

until the root is reached. This algorithm is sound and complete as soon as the
decision rule leads to complete and transitive preferences and satisfies the prin-
ciple of weak monotonicity,3 that ensures that each sub strategy of an optimal
strategy is optimal in its sub-tree. Hopefully, each of the ex-post criteria satisfy
transitivity, completeness and weak monotonicity, because collapsing to either a
classical U− or a U+ utility, which satisfy these properties [8,14]. The adaptation
of Dynamic Programming to the ex-post rules is detailed in Algorithm 1.

In short, this algorithm aggregates the utility values of each leaf, and then
builds an optimal strategy from the last decision nodes to the root of the tree,
using the principle defined by [9,10] for classical (monocriterion) possibilistic
decision trees.

3.2 Dynamic Programming for ex-ante Utilities?

The ex-ante variant of Dynamic Programming we propose is a little more tricky
(see Algorithm 2). It keeps at each node a vector of p pessimistic (resp. opti-
mistic) utilities, one for each criterion. The computation of the ex-ante util-
ity can then be performed each time a decision is to be made. Recall that
U−min

ante = U−min
post and U+max

ante = U+max
post . Hence, for these two rules the opti-

mization could also be performed by the ex-post algorithm. The two other rules,
U−max

ante and U+min
ante , unfortunately do not satisfy the monotonicity principle (see

[1]). Hence, Algorithm 2 may provide a good strategy, but without any guarantee
of optimality - it can be considered as an approximation algorithm in these two
cases. Another approximation algorithm is the ex-post Algorithm described in
the previous Section - even if it is not always the case, it often happens that
U−max

post = U−max
ante (resp. U+min

post = U+min
ante ); if it is the case the solution provided

by the ex-post Algorithm is optimal.
3 Formally, �O is said to be weakly monotonic iff whatever L, L′ and L′′, whatever

(α,β) such that max(α, β) = 1: L �O L′ ⇒ 〈α/L, β/L′′〉 �O 〈α/L′, β/L′′〉.



300 N. Ben Amor et al.

Algorithm 1. DynProgPost: Ex-post Dynamic Programming
Data: A Decision tree T , a node N in of T
Result: The value of the optimal strategy δ - δ is stored as a global variable
begin

if N ∈ LN then // Leaf : MCDM aggregation

for i ∈ {1, . . . , p} do uN ← (uN ⊕ (ui ⊗ ωi));
// ⊗ = min, ωi = wi, ⊕ = max for disjunctive aggregation

// ⊗ = max, ωi = 1 − wi, ⊕ = min for conjunctive aggregation ;

if N ∈ C then // Chance Node: compute the qualitative utility

foreach Y ∈ Succ(N) do uN ← (uN ⊕ (λY ) ⊗ DynProgPost(Y ));
// ⊗ = min, λY = π(Y ), ⊕ = max for optimistic utility

// ⊗ = max, λY = 1 − π(Y ), ⊕ = min for pessimistic utility

if N ∈ D then // Decision node: determine the best decision

u∗ ← 0 ;
foreach Y ∈ Succ(N) do

uY ← DynProgPost(Y ) ;
if uY ≥ u∗ then δ(N) ← Y and u∗ ← uY ;

return u∗;

Algorithm 2. DynProgAnte: Ex-ante Dynamic Programming
Data: A Decision tree T , a node N in of T
Result: The value of the optimal strategy δ - δ is stored as a global variable
begin

if N ∈ LN then // Leaf

for i ∈ {1, . . . , p} do uN [i] ← ui;

if N ∈ C then // Chance Node: compute the utility vectors

// Optimistic utility ⊗ = min, λY = π(Y ), ⊕ = max, ε ← 0

// Pessimistic utility ⊗ = max, λY = 1 − π(Y ), ⊕ = min, ε ← 1

for i ∈ {1, . . . , p} do uN [i] ← ε ;
foreach Y ∈ Succ(N) do

uY ← DynProgAnte(Y ) ;
for i ∈ {1, . . . , p} do uN [i] ← (uN [i] ⊕ (λY ⊗ uY [i])) ;

if N ∈ D then // Decision node

// Disjunctive MCDM: let ⊗ = min, ωi = wi, ⊕ = max, ε ← 0

// Conjunctive MCDM: let ⊗ = max, ωi = 1 − wi, ⊕ = min, ε ← 1

u∗ ← 0
foreach Y ∈ Succ(N) do

vY ← ε ; uY ← DynProgAnte(Y ) ;
for i ∈ {1, . . . , p} do vY ← vY ⊕ (uY [i] ⊗ ωi);
if vY > u∗ then δ(N) ← Y and uN ← uY ;

return uN ;



Algorithms for Multi-criteria Optimization in Possibilistic Decision Trees 301

3.3 Optimization of U−max
ante by Multi Dynamic Programming

The lack of monotonicity of U−max
ante is not dramatic, even when optimality must

be guaranteed. With U−max
ante indeed, we look for a strategy that has a good

pessimistic utility U−
j for at least one criterion j. This means that if it is possible

to get for each j a strategy that optimizes U−
j (and this can be done by Dynamic

Programming, since the classical pessimistic utility is monotonic), the one with
the highest value for U−max

ante is globally optimal. Formally:

Proposition 1. U−max
ante (L) = max

j=1,p
min(wj , U

−
j (L)) where U−

j (L) is the pes-

simistic utility of L according to the sole criterion j.

Corollary 1. Let Δ∗ = {L∗
1, . . . , L

∗
p} s.t. ∀L, U−

j (L∗
j ) ≥ U−

j (L) and L∗ ∈ Δ∗.
If max

j=1,p
min(wj , U

−
j (L∗)) ≥ max

j=1,p
min(wj , U

−
j (L∗

i ))∀L∗
i ∈ Δ∗ then U−max

ante (L∗) ≥

U−max
ante (L),∀L.

Hence, the optimization problem can be solved by a series of p calls to a
classical (monocriterion) pessimistic optimization. This is the principle of the
Multi Dynamic Programming approach detailed by Algorithm3.

Algorithm 3. MultiDynProg: right optimization of U−max
ante

Data: A tree T
Result: An Optimal strategy δ∗ and its value u∗

begin
u∗ = 0; // Initialization

for i ∈ {1, . . . , p} do
δi = PesDynProg(T, i) // Call to classical possibilistic

Dynamic Prog. [14] - returns an optimal strategy for U−
i ;

ui = max
j=1...p

min(wj , U
−
j (δi));

if ui > u∗ then δ∗ ← δi; u∗ ← ui;

return u∗;

3.4 Right Optimization of U+min
ante : A Branch and Bound algorithm

Let us finally study the U+min
ante utility. As previously said, it does not satisfy

monotonicity and Dynamic Programming can provide a good strategy, but with-
out any guarantee of optimality. To guarantee optimality, one can proceed by an
implicit enumeration via a Branch and Bound algorithm, as done by [8] for Pos-
sibilistic Choquet integrals and by [16] for Rank Dependent Utility (both in the
mono criterion case). The Branch and Bound procedure (see Algorithm 4) takes
as argument a partial strategy δ and an upper bound of the U+min

ante value of
its best extension. It returns U∗, the U+min

ante value of the best strategy found



302 N. Ben Amor et al.

so far, δ∗. We can initialize δ∗ with any strategy, e.g. the one provided by
Algorithms 2 or 1. At each step of the Branch and Bound algorithm, the current
partial strategy, δ, is developed by the choice of an action for some unassigned
decision node. When several decision nodes are candidate, the one with the min-
imal rank (i.e. the former one according to the temporal order) is developed.
The recursive procedure backtracks when either the current strategy is com-
plete (then δ∗ and U∗ are updated) or proves to be worse than the current
δ∗ in any case. Function UpperBound(D0, δ) provides an upper bound of the
best completion of δ - in practice, it builds, for each criterion j, a strategy δj

that maximizes U+
j (using [9,10]’s algorithm, which is linear). It then selects,

among these strategies, the one with the highest U+min
ante . It is important to note

that UpperBound(D0, δ) = U+min
ante (δ) when δ is complete. Whenever the value

returned by UpperBound(D0, δ) is lower or equal to U∗, the value of the best
current strategy, the algorithm backtracks, yielding the choice of another action
for the last considered decision node.

Algorithm 4. B&B algorithm for the optimization of U+,min
ante

Data: A decision tree T , a (partial) strategy δ, an upper Bound U of U+,min
ante (δ)

Result: U∗: the U+,min
ante value of δ∗ the best strategy found so far

begin
if δ(D0) = ⊥ then Dpend ← {D0};
else Dpend ← {Di ∈ D s.t. ∃Dj , δ(Dj) 
= ⊥ and Di ∈ Succ(δ(Dj))} ;
if Dpend = ∅ then // δ is a complete strategy

δ∗ ← δ; U∗ ← U ;
else

Dnext ← arg minDi∈Dpend i ;

foreach Ci ∈ Succ(Dnext) do
δ(Dnext) ← Ci;
U ← UpperBound(D0, δ);
if U > U∗ then U∗ ← B&B(U, δ) ;

return U∗;

4 Experiments

Beyond the evaluation of the feasibility of the algorithms proposed, our exper-
iments aim at evaluating to what extent the optimization of the problematic
utilities, U−max

ante and U+min
ante , can be approximated by Dynamic Programming.

The implementation has been done in Java, on a processor Intel Core i7 2670
QMCPU, 2.2 GHz, 6 GB of RAM. The experiments were performed on complete
binary decision trees. We have considered four sets of problems, the number
of decisions to be made in sequence (denoted seq) varying from 2 to 6, with
an alternation of decision and chance nodes: at each decision level l (i.e. odd



Algorithms for Multi-criteria Optimization in Possibilistic Decision Trees 303

level), the tree contains 2l−1 decision nodes followed by 2l chance nodes.4 In the
present experiment, the number of criteria is set equal to 3. The utility values as
well as the weights degrees are uniformly fired in the set {0, 0.1, 0.2, . . . , 0.9, 1}.
Conditional possibilities are chosen randomly in [0, 1] and normalized. Each of
the four samples of problems contains 1000 randomly generated trees.

Feasibility Analysis and Temporal Performances: Table 1 presents the execution
time of each algorithm. Obviously, for each one, the CPU time increases with the
size of the tree. But it remains affordable even for very big trees (1365 decisions).
We can check that U−max

ante (resp. U+min
ante ) the approximation performed by ex-

post Dynamic Programming is faster than the one performed by ex-ante Dynamic
Programming, both being faster than the exact algorithm (Multi Dynamic Pro-
gramming and Branch and Bound, respectively).

Table 1. Average CPU time, in milliseconds, of for each algorithms and for each rule,
according the size of the tree (in number of decision nodes)

# decision nodes 5 21 85 341 1365

U− min
post U− min

ante Post Dyn. Prog 0.068 0.073 0.076 0.126 0.215

U+max
post U+max

ante Post Dyn. Prog 0.071 0.075 0.082 0.128 0.207

U− max
post Post Dyn. Prog 0.068 0.083 0.090 0.140 0.235

U+min
post Post Dyn. Prog 0.067 0.075 0.082 0.132 0.211

U− max
ante Multi Dyn. Prog 0.172 0.203 0.247 0.295 1.068

U− max
ante Ante Dyn. Prog 0.079 0.096 0.120 0.147 0.254

U+min
ante Branch & Bound 0.576 1.012 1.252 1.900 5.054

U+min
ante Ante Dyn. Prog 0.074 0.084 0.093 0.147 0.231

Quality of the Approximation: As previously mentioned the ex-post and the ex-
ante Dynamic Programming algorithms are approximation algorithms for U−max

ante

and U+min
ante . The following experiments estimate the quality of these approxi-

mations. At this extent, we compute for each sample the success rate of the
approximation algorithm considered, i.e. the number of trees for which the value
provided by the approximation algorithm is actually optimal; then for the trees
for which it fails to reach optimality, we report the average closeness value to
UApprox

UExact
where UApprox is the utility of the strategy provided by the approxima-

tion algorithm and UExact is the optimal utility - the one of the solution by the
exact algorithm (Branch and Bound for U+min

ante and Multi Dynamic Program-
ming for U−max

ante ). The results are given in Table 2.
Clearly, Ex-Post Dynamic Programming provides a good approximation for

U+min
ante - its success rate decreases with the number of nodes but stay higher

4 Hence, for a sequence length seq = 2 (resp. 3, 4, 5, 6), the number of decision nodes
in each tree of the sample is equal to 5 (resp. 21, 85, 341, 1365).



304 N. Ben Amor et al.

Table 2. Quality of approximation of U− max
ante and U+min

ante by Dynamic Programming

# decision nodes 5 21 85 341 1365

% of success

U− max
ante Ante Dyn. Prog 17.3% 19% 22.1% 26.4% 31%

U− max
ante Post. Dyn. Prog 15.4% 23.6% 30.7% 35.6% 40.4%

U+min
ante Ante Dyn. Prog 87% 76.8% 68% 62.6% 59.6%

U+min
ante Post Dyn. Prog 91.7% 90.8% 88.2% 86.7% 76%

Closeness value

U− max
ante Ante Dyn. Prog 0.522 0.56 0.614 0.962 0.981

U− max
ante Post Dyn. Prog 0.473 0.529 0.556 0.58 0.62

U+min
ante Ante Dyn. Prog 0.97 0.95 0.94 0.93 0.91

U+min
ante Post Dyn. Prog 0.989 0.975 0.946 0.928 0.90

than 70%, and above all it has a very high closeness value (above 0.9); notice
that it is always better than its ex-ante counterpart, in terms of success rate, of
closeness and of CPU time. This is good news since it is polynomial while Branch
and Bound, the exact algorithm, is exponential in the number of nodes. As to
U−max

ante , none of the approximation algorithms is good. However, this is not so
bad news since Multi Dynamic Programming, the exact algorithm is polynomial
and has very affordable CPU time.

5 Conclusion

This paper proposes to extend to possibilistic decision trees the decision rules
presented in [1] for non sequential problems. We show that, for the ex-post deci-
sion rules, as well as for U+max

ante and U−min
ante , the optimization can be achieved

by Dynamic Programming. For U+min
ante the optimization can be carried either by

an exact but costly algorithm (Branch & Bound) or by an approximation one,
(ex-post Dynamic Programming). For U−max

ante we propose an exact algorithm
(Multi Dynamic Programming) that performs better than Dynamic Program-
ming. As future work, we would like to study the handling of several criteria
in more sophisticated qualitative decision models such as possibilistic influence
diagrams [14] or possibilistic Markov decision models [10].

References

1. Ben Amor, N., Essghaier, F., Fargier, H.: Solving multi-criteria decision problems
under possibilistic uncertainty using optimistic and pessimistic utilities. In: Lau-
rent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS,
vol. 444, pp. 269–279. Springer, Cham (2014). doi:10.1007/978-3-319-08852-5 28

2. Dubois, D., Prade, H.: Possibility theory as a basis for qualitative decision theory.
In: Proceedings of IJCAI 1995, pp. 1924–1930 (1995)

http://dx.doi.org/10.1007/978-3-319-08852-5_28


Algorithms for Multi-criteria Optimization in Possibilistic Decision Trees 305

3. Dubois, D., Godo, L., Prade, H., Zapico, A.: Making decision in a qualitative
setting: from decision under uncertainty to case-based decision. In: Proceedings of
KR, pp. 594–607 (1998)

4. Giang, P.H., Shenoy, P.P.: A qualitative linear utility theory for Spohn’s theory of
epistemic beliefs. In: Proceedings of UAI, pp. 220–229 (2000)

5. Dubois, D., Prade, H., Sabbadin, R.: Decision theoretic foundations of qualitative
possibility theory. EJOR 128, 459–478 (2001)

6. Dubois, D., Fargier, H., Prade, H., Perny, P.: Qualitative decision theory: from
savage’s axioms to nonmonotonic reasoning. JACM 49, 455–495 (2002)

7. Dubois, D., Fargier, H., Perny, P.: Qualitative decision theory with preference
relations and comparative uncertainty: an axiomatic approach. Artif. Intell. 148,
219–260 (2003)

8. Ben Amor, N., Fargier, H.: Possibilistic sequential decision making. Int. J. Approx-
imate Reasoning 55, 1269–1300 (2014)

9. Sabbadin, R., Fargier, H., Lang, J.: Towards qualitative approaches to multi-stage
decision making. Int. J. Approximate Reasoning 19, 441–471 (1998)

10. Sabbadin, R.: Empirical comparison of probabilistic and possibilistic Markov deci-
sion processes algorithms. In: Proceedings of ECAI, pp. 586–590 (2000)

11. Harsanyi, J.: Cardinal welfare, individualistic ethics, and interpersonal comparisons
of utility. J. Polit. Econ. 63, 309–321 (1955)

12. Ben Amor, N., Essghaier, F., Fargier, H.: Egalitarian collective decision making
under qualitative possibilistic uncertainty: principles and characterization. In: Pro-
ceedings of AAAI, pp. 3482–3488 (2015)

13. Dubois, D., Prade, H.: Weighted minimum and maximum operations in fuzzy set
theory. J. Inform. Sci. 39, 205–210 (1986)

14. Garcias, L., Sabbadin, R.: Possibilistic influence diagrams. In: Proceedings of
ECAI, pp. 372–376 (2006)

15. Bellman, R.: Dynamic Programming. Princeton University Press, New Jersey
(1957)

16. Jeantet, G., Spanjaard, O.: Rank-dependent probability weighting in sequential
decision problems under uncertainty. In: Proceedings of ICAPS, pp. 148–155 (2008)


	Algorithms for Multi-criteria Optimization in Possibilistic Decision Trees
	1 Introduction
	2 Background
	2.1 Multi-criteria Decision Making (MCDM) Under Uncertainty
	2.2 Possibilistic Decision Trees 

	3 Multi-criteria Optimization in Possibilistic Trees
	3.1 Dynamic Programming as a tool for ex-post Utilities
	3.2 Dynamic Programming for ex-ante Utilities?
	3.3 Optimization of Uante-max by Multi Dynamic Programming
	3.4 Right Optimization of Uante+min: A Branch and Bound algorithm

	4 Experiments
	5 Conclusion
	References


