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Abstract. While making decisions we meet different types of uncer-
tainty. Recently the concept of generalized credal set has been proposed
for modeling conflict, imprecision and contradiction in information. This
concept allows us to generalize the theory of imprecise probabilities giv-
ing us possibilities to process information presented by contradictory
(incoherent) lower previsions. In this paper we propose a new way of
introducing generalized credal sets: we show that any contradictory lower
prevision can be represented as a convex sum of non-contradictory and
fully contradictory lower previsions. In this way we can introduce gener-
alized credal sets and apply them to decision problems. Decision making
is based on decision rules in the theory of imprecise probabilities and
the contradiction-imprecision transformation that looks like incoherence
correction.
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1 Introduction

Recently the extension of imprecise probabilities based on generalized credal sets
has been proposed [3,4]. By the classical theory of imprecise probabilities [1,2,
6,8] we can model two types of uncertainty: conflict associated with probability
measures and imprecision (non-specificity) linked with the choice of a probability
measure among possible alternatives. Generalized credal sets allow us also to
model contradiction when the avoiding sure loss condition is not fulfilled. Each
upper generalized credal set consists of special plausibility functions, conceived
as lower probabilities, whose bodies of evidence consist of singletons and certain
event. The part consisting of singletons models conflict in information and the
part described by a certain event models contradiction.

In our previous research [3,4] we have shown how we can work with contra-
dictory lower and upper previsions based on generalized credal sets, we introduce
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the construction like natural extension in the classical theory of imprecise prob-
abilities, we describe conditions when generalized credal sets generate models
based on usual imprecise probabilities.

In the paper we show how generalized credal sets can be used for correcting
incoherent information and how they can be applied to decision problems.

2 Monotone Measures: Basic Definitions and Notations

Let X = {x1, ..., xn} be a finite set of elementary events, and let 2X be the
algebra of all subsets of X. A set function μ : 2X → [0, 1] is called a monotone
measure if μ(∅) = 0, μ(X) = 1 and μ(A) � μ(B) for any A,B ∈ 2X such that
A ⊆ B. A monotone measure μ is

– a probability measure if μ(A ∪ B) = μ(A) + μ(B) for any A,B ∈ 2X such that
A ∩ B = ∅;

– a belief function if there is a set function m : 2X → [0, 1] called the basic belief
assignment (bba) with m(∅) = 0 and

∑
B∈2X m(B) = 1 such that μ(A) =∑

B⊆A m(B).

In the sequel Mmon denotes the set of all monotone measures on 2X ; Mpr

denotes the set of all probability measures on 2X ; and Mbel denotes the set of
all belief functions on 2X .

We define on Mmon the following operations and relations:

– μ = aμ1 + (1 − a)μ2 for μ1, μ2 ∈ Mmon and a ∈ [0, 1] if μ(A) = aμ1(A) + (1 −
a)μ2(A) for all A ∈ 2X ;

– μ1 � μ2 for μ1, μ2 ∈ Mmon if μ1(A) � μ2(A) for all A ∈ 2X ;
– μd is the dual of μ if μd(A) = 1 − μ(Ac) for all A ∈ 2X , where Ac is the

complement of A.

Let Bel ∈ Mbel with bba m, then

– Beld is called a plausibility function;
– a set B ∈ 2X is called a focal element if m(B) > 0;
– the set of all focal elements is called the body of evidence;
– a belief function is called categorical if its body of evidence contains one focal

element B ∈ 2X . This set function is denoted by η〈B〉 and can be computed

as η〈B〉(A) =
{

1, B ⊆ A,
0, B �⊆ A.

;

– Any Bel ∈ Mbel with bba m can represented as a convex sum of categorical
belief functions Bel =

∑

B∈2X
m(B)η〈B〉.

Assume that M is an arbitrary subset of Mmon, then Md = {μd|μ ∈ M}. In
such a way Md

bel denotes the set of all plausibility functions on 2X .
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3 Credal Sets, Lower and Upper Previsions

In the following any P ∈ Mpr can be represented as a point
(P ({x1}), ..., P ({xn})) in R

n. By definition [1,6], a credal set P is a non-empty
subset of Mpr, which is convex and closed. Convexity of P means that P1, P2 ∈ P
and a ∈ [0, 1] implies that aP1 + (1 − a)P2 ∈ P, and P is closed as a subset of
R

n. A model based on credal sets is one of the most general models of imprecise
probabilities. We can describe credal sets using lower and upper previsions. Let
K be a set of all real-valued functions f : X → R on X. Then any f ∈ K can
be viewed as a random variable for a fixed P ∈ Mpr and we can compute its
expectation defined by EP (f) =

∑

x∈X

f(x)P ({x}). Let K ′ be an arbitrary subset

of K, then any functional E : K ′ → R is called a lower prevision if each value
E(f), f ∈ K ′, is viewed as a lower bound of expectation of the random variable
f . This lower prevision is called non-contradictory (or it avoids sure loss) iff it
defines the credal set

P(E) = {P ∈ Mpr|∀f ∈ K ′ : EP (f) � E(f)} (1)

Otherwise, when the set P(E) is empty, the lower prevision is called contradictory
(or incoherent). Analogously, upper previsions are defined. Any functional Ē :
K ′ → R is called an upper prevision if its values are viewed as upper bounds
of expectations. It is non-contradictory (or it avoids sure loss) iff it defines the
credal set

P(Ē) =
{
P ∈ Mpr|∀f ∈ K ′ : EP (f) � Ē(f)

}
,

and it incurs sure loss otherwise. Models of uncertainty based on upper and
lower previsions are equivalent. It follows from the fact that every lower prevision
E : K ′ → R and the corresponding upper prevision

Ē(f) = −E(−f), −f ∈ K ′,

define the same credal set. The central role in reasoning based on imprecise prob-
abilities plays the natural extension. Let E : K ′ → R be an non-contradictory
lower prevision and P(E) be the credal set defined by formula (1), then the
natural extension of E is a functional

E′(f) = inf
P∈P(E)

EP (f), f ∈ K ′.

A lower prevision E is called coherent if E(f) = E′(f) for all f ∈ K ′. Analo-
gously the natural extension of non-contradictory upper previsions is defined and
coherent upper previsions are introduced. Monotone measures can be considered
as special models of lower and upper previsions. In this case K ′ = {1A}A∈2X ,
where 1A is the characteristic function of the set A, i.e. μ(A) = E(1A), A ∈ 2X ,
can be viewed as a set function. A monotone measure μ is called a lower prob-
ability if its values give us lower bounds of probabilities. It is non-contradictory
if it defines the credal set P(μ) = {P ∈ Mpr|μ � P}. We can define analogously
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the natural extension of non-contradictory lower previsions and the family of
coherent lower probabilities. In the same way we define upper probabilities that
give us upper bounds of probabilities, the natural extension of non-contradictory
upper probabilities and coherent upper probabilities.

Remark 1. Obviously, min
x∈X

f(x) � EP (f) � max
x∈X

f(x) for any P ∈ Mpr and

f ∈ K. Thus, without decreasing generality we can assume that values E(f) of
any lower prevision E : K ′ → R should be not larger than max

x∈X
f(x), i.e. E(f) �

max
x∈X

f(x) for any f ∈ K ′. Analogously, we will assume that Ē(f) � min
x∈X

f(x) for

any upper prevision Ē : K ′ → R and f ∈ K ′, This assumption will be used later
without mentioning about it.

4 Generalized Credal Sets for Describing Contradictory
Lower Previsions

Assume that we have estimates p̂(xi), i = 1, ..., n, of probabilities, but unfor-
tunately

∑n
i=1 p̂(xi) �= 1. What should we do? One can say that the avail-

able information is defective and it is not possible to use it. But if the value
ε = |∑n

i=1 p̂(xi) − 1| is small, then this conclusion seems to be not useful.
Otherwise we should correct p̂(xi). Assume that

∑n
i=1 p̂(xi) < 1, then the

correction can be done by adding to each p̂(xi) a value αi � 0 such that∑n
i=1 (p̂(xi) + αi) = 1. Thus, uncertainty can be modeled by the set of proba-

bility distributions
{

(p(x1), ..., p(xn)) |p(xi) � p̂(xi), i = 1, ..., n,
∑n

i=1
p(xi) = 1

}
.

Observe that in this case values p̂(xi) looks like lower bounds of probabili-
ties, but this does not follow from the problem statement. To avoid ambiguity
we should decide whether p̂(xi) give us lower or upper bounds of probabilities.
Lower probabilities have been intensively investigated in the theory of impre-
cise probabilities and they describe two types of uncertainty: conflict associated
with probability measures and non-specificity linked with the choice of a prob-
ability measure among possible alternatives. If values p̂(xi) are viewed as upper
probabilities then we say that the available information incurs sure loss or it is
contradictory.

Let us analyze the above model in detail. If p̂(xi) = 0, i = 1, ..., n, and p̂(xi)
are viewed as lower bounds of probabilities, then the set

{
(p(x1), ..., p(xn)) |p(xi) � 0, i = 1, ..., n,

∑n

i=1
p(xi) = 1

}

contains all possible probability distributions or probability measures on 2X .
Thus, in such a case, values p̂(xi) = 0, i = 1, ..., n, describe the situation of
complete ignorance. We will describe this situation by a vacuous belief function
η〈X〉 viewed as lower probability. Analogously, if p̂(xi) = 0, i = 1, ..., n, are viewed
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as upper bounds of probabilities, then we can describe contradiction by the set
of all probability measures Mpr, or by η〈X〉 viewed as an upper probability. This
situation can be understood as the case of full contradiction.

Although we can describe contradiction and non-specificity by the set of
probability measures there is a principal difference between these two types of
uncertainty. Non-specificity means that we don’t know exactly what kind of
probability model should be chosen among possible alternatives, but contradic-
tion means that we have some deficiency in estimating probabilities. The last
problem appears when we try to use simultaneously different probabilistic mod-
els for analyzing statistical data or to aggregate pieces of evidence from separate
sources of information.

Let us remind the notion of contradiction from usual logic. Let we have a
set of axioms A1,...,Am, and if we use the set-theoretical model, then any Ai

can be represented as a subset of a finite set X. Then this system of axioms is
contradictory iff A1 ∩ ... ∩ Am = ∅. In logic we can infer from the contradictory
system of axiom that any conclusion is true. This situation can be described by
the contradictory lower probability

ηd
X(A) =

{
1, A �= ∅,
0, A = ∅.

Thus, the case of full contradiction can be described by any lower probability
μ ∈ Mmon such that μ(A1) = ... = μ(Am) = 1 and A1 ∩ ... ∩ Am = ∅. In general
the case of full contradiction can be described by the following definition.

Definition 1. The information described by a lower prevision E : K ′ → R

is fully contradictory iff E can not be represented as a convex sum E(f) =
aE(1)(f) + (1 − a)E(2)(f) of a non-contradictory lower prevision E(1) : K ′ → R,
and a (contradictory) lower prevision E(2) : K ′ → R for some a ∈ (0, 1].

Lemma 1. A lower prevision E : K ′ → R is fully contradictory iff for any

a ∈ (0, 1] the lower prevision E′(f) = 1
a

(

E(f) − (1 − a)max
x∈X

f(x)
)

, f ∈ K ′, is

contradictory.

Lemma 2. If the set of contradictory previsions on K ′ is not empty, then the
lower prevision Ê(f) = max

x∈X
f(x), f ∈ K ′, is fully contradictory.

Remark 2. It is possible to choose K ′ such that every lower prevision is non-
contradictory. In this case Ê is also a non-contradictory lower prevision. Because
the aim of the paper is to deal with contradictory information, in the next
we will assume that K ′ is chosen providing the lower prevision Ê to be fully
contradictory.

Let E : K ′ → R be a lower prevision. Then by Lemma 1 and Lemma 2 (see
also Remark 2) it can be always represented as a convex sum

E(f) = aE(1)(f) + (1 − a)E(2)(f), (2)
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where E(1) is a non-contradictory lower prevision and a lower prevision E(2) is
fully contradictory. If a ∈ (0, 1], then by Lemma1 E(2) can be chosen to be equal
to Ê. If the lower prevision E is fully contradictory, then E(2) = E, a = 0, and
we can take a non-contradictory lower prevision E(1) arbitrarily. We see that the
largest value of a characterizes the amount of contradiction in E. Thus, we can
introduce the following definition.

Definition 2. Let E : K ′ → R be a lower prevision and let A be the set of all
possible values a ∈ [0, 1], for which the representation (2) exists for some non-
contradictory lower prevision E(1) and a fully contradictory lower prevision E(2).
Then the amount of contradiction is defined by Con(E) = 1 − sup{a|a ∈ A}.

Obviously, by Definition 2 Con(E) = 0 iff E is a non-contradictory lower previ-
sion, and Con(E) = 1 iff E is fully contradictory. Let us introduce new concepts,
which will help us to simplify the computation of Con(E). Consider monotone
measures on 2X of the type

P = a0η
d
〈X〉 +

n∑

i=1

aiη〈{xi}〉, (3)

where
n∑

i=0

ai = 1, ai � 0, i = 0, ..., n, and P is viewed as a lower probability.

Such a P can be represented also as P = a0η
d
〈X〉 + (1 − a0)P ′, where ηd

〈X〉 is a
fully contradictory lower probability and P ′ is a probability measure defined by

P ′ = 1
1−a0

n∑

i=1

aiη〈{xi}〉 for a0 �= 1. We can extend P to the lower prevision on

the set of all functions in K by

EP (f) = a0 max
x∈X

f(x) +
n∑

i=1

aif(xi).

Again EP can be represented as a convex sum of fully contradictory lower pre-
vision Ê and linear prevision EP ′ , i.e. EP (f) = a0Ê(f) + (1 − a0)EP ′(f) for all
f ∈ K. We will denote by Mcpr the set of all monotone measures defined by (3).

Lemma 3. Let P = a0η
d
〈X〉 +

n∑

i=1

aiη〈{xi}〉 be in Mcpr. Then Con(P ) = a0.

We will identify each P ∈ Mcpr from (3) with a point (a1, ..., an) in R
n. Let

P1, P2 ∈ Mcpr and Pi = (a(i)
1 , ..., a

(i)
n ), i = 1, 2, then P1 � P2 iff a

(1)
k � a

(2)
k ,

k = 1, ..., n. Clearly, such P1 and P2 can describe the same information, but P2

is a lower probability with higher contradiction.

Definition 3. A subset P of Mcpr is called an upper generalized credal set (UG-
credal set) if

(1) P1 ∈ P, P2 ∈ Mcpr, and P1 � P2 implies P2 ∈ P;
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(2) P1, P2 ∈ P implies aP1 + (1 − a)P2 ∈ P for every a ∈ [0, 1];
(3) P is a closed set if we consider it as a subset of Rn.

We will describe any lower prevision E : K ′ → R by a UG-credal set P defined by

P = {P ∈ Mcpr|∀f ∈ K ′ : E(f) � EP (f)} . (4)

Remark 3. Obviously, the set defined by (4) is not empty, because it always
contains the measure ηd

〈X〉.

Proposition 1. Let E : K ′ → R be a lower prevision, and let P be its corre-
sponding UG-credal set defined by (4). Then

Con(E) = inf {Con(P )|P ∈ P} . (5)

5 Decision Making Based on Contradictory
Lower Previsions

Assume that E : K ′ → R is a lower prevision and Con(E) = b. If b = 1 then
E is fully contradictory and E does not contain useful information. Therefore,
this case is identical to the case of complete ignorance. Let b < 1, then for any
a ∈ (0, 1 − b] the lower prevision E can be represented as E(f) = aE(1)(f) +
(1 − a)E(2)(f), f ∈ K ′, where E(1) is a non-contradictory and E(2) is a fully
contradictory lower prevision. Obviously, decision making should be based on
information in E(1). Notice also that decreasing parameter a we get information
in E(1) more imprecise. Therefore, it makes a sense taking a = 1 − b. It is also
possible to choose E(2) = Ê. After this choice the above representation can be
rewritten as E(f) = (1 − b)E(1)(f) + bÊ(f), f ∈ K ′.

Assume that a non-contradictory lower prevision E(1) defines the credal set
P′ =

{
P ∈ Mpr|∀f ∈ K ′ : E(1)(f) � EP (f)

}
. Then taking in account that Ê

describes the case of full contradiction, we can describe E by a credal set P′′

represented as a convex sum of two credal sets in which the first is P′ and the
second describes the case of complete ignorance, i.e.

P′′ = {(1 − b)P1 + bP2|P1 ∈ P′, P2 ∈ Mpr} . (6)

The following proposition shows how the above set P′′ can be found based
on UG-credal sets.

Proposition 2. Let E : K ′ → R be a lower prevision, Con(E) = b, and let P
be its corresponding UG-credal set. Then

P′′ = {P ′ ∈ Mpr|∃P ∈ P : Con(P ) = b, P ′ � P} . (7)
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The above transformation E : K ′ → R of a contradictory lower prevision to the
non-contradictory information presented by the credal set P′′ can be considered
as incoherence correction in which full contradiction is transformed to complete
ignorance. After this transformation we can use known models of decision making
considered in imprecise probabilities. In our paper we will consider the decision
rule justified in many works (e.g. [1,8].).

We will identify each decision with a function in K. Assume that available
information is described by a credal set P′′ ⊆ Mpr. Then decision f2 ∈ K is
at least preferable as decision f1 ∈ K (f1 � f2) if EP ′(f1) � EP ′(f2) for every
P ′ ∈ P′′. This rule can be rewritten as f1 � f2 if EP′′(f2 − f1) � 0, where
EP′′(f) = inf

P∈P′′
EP (f), f ∈ K.

Lemma 4. Let we use notations as in formula (6). Then the expression for
EP′′(f) can be transformed to

EP′′(f) = (1 − b)EP′(f) + b min
x∈X

f(x),

where EP′(f) = inf
P∈P′

EP (f).

Let us consider the computational scheme by which this decision rule can be
realized. A function f ∈ K is called normalized from above if max

x∈X
f(x) = 0.

The following lemma shows how we can normalize functions for a given lower
prevision.

Lemma 5. Let E : K ′ → R be a lower prevision. Consider the set K ′′ ={

f̄ = f − max
x∈X

f(x)|f ∈ K ′
}

of normalized from above functions. Then a lower

prevision E′ : K ′′ → R defines the same UG-credal set as E if E′(f̄) = E(f) −
max
x∈X

f(x) for all f ∈ K ′.

Clearly the above lemma allows us to assume that functions in K ′, on which
a lower prevision E is defined, are normalized from above.

Proposition 3. Let K ′ be a finite subset of normalized functions from above in
K and let E : K ′ → R be a lower prevision. Then Con(E) = max{0, b}, where
b is the solution of the following linear programming problem:

b = 1 −
n∑

i=1

ai → min,

⎧
⎨

⎩

n∑

i=1

aifk(xi) � E (fk) , fk ∈ K ′,

ai � 0, i = 1, ..., n,
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Proposition 4. Let K ′ be a finite subset of normalized functions from above
in K and let E : K ′ → R be a lower prevision with Con(E) = b. Then c =
(1 − b)EP′(f) for any f ∈ K is the solution of the following linear programming
problem:

c =
n∑

i=1

aif(xi) → min,

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i=1

aifk(xi) � E (fk) , fk ∈ K ′,
n∑

i=1

ai = 1 − b, ai � 0, i = 1, ..., n.

Example 1. Let we have two pieces of evidence. The first says that the prob-
ability that it will be sunny tomorrow is higher or equal than 0.3. The second
says that the probability of rain is higher or equal than 0.8. We can describe
this information by the states of the world: x1 := sunny, x2 := rain, and
denote X = {x1, x2}. Then we have E

(
1{x1}

)
= 0.3, E

(
1{x2}

)
= 0.8. For using

our computational scheme functions 1{x1} and 1{x2} should be normalized from
above. Doing it we get functions f1 = 1{x1} − 1X and f2 = 1{x2} − 1X with
E (f1) = −0.7 and E (f2) = −0.2. Then the amount of contradiction can be
computed by solving the following linear programming problem:

b = 1 − a1 − a2 → min
⎧
⎨

⎩

−a2 � −0.7,
−a1 � −0.2,
a1, a2 � 0.

Thus, b = 0.1. Assume that we need to compute c = (1 − b)EP′(f) for some
f ∈ K. Then c can be computed by solving the following linear programming
problem:

c = a1f(x1) + a2f(x2) → min,
⎧
⎨

⎩

−a2 � −0.7,
−a1 � −0.2,

a1 + a2 = 0.9, a1, a2 � 0.

Thus, c = 0.2f(x1) + 0.7f(x2). In this case by Lemma 4 EP′′(f) = 0.2f(x1) +
0.7f(x2) + 0.1 min

x∈X
f(x). Assume, for example, that we have two decisions: g1 :=

go to the park; g2 := go to the theater; defined by g1(x1) = 3, g1(x2) = −1,
g2(x1) = 1, g2(x2) = 1. Then

EP′′(g2 − g1) = 0.2 · (−2) + 0.7 · 2 + 0.1 · (−2) = 0.8 > 0,

i.e. decision g2 is more preferable than decision g1.
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6 The Comparison with Previous Works

Incoherence correction has been considered in the papers by A. Capotorti and
others (see [5] and references therein), and in the work [7] by E. Quaeghebeur.
The main idea described in [5] is to use distances between incoherent lower pre-
vision and the set of all possible coherent previsions, i.e. the best approximation
is to use the closest coherent lower prevision to the available assessments. Among
possible distances (divergences) are L1- and L2-distances, the logarithmic Breg-
man divergence, the discrepancy measure. In [7] the correction is produced by
the lower envelope of maximal coherent lower previsions, which are lower than
a given incoherent lower prevision.

Let us compare the incoherence correction based on generalized credal sets
and the mentioned above approaches. Assume that μ ∈ Mmon is an upper enve-
lope of the set of probability measures P, i.e.

μ(A) = sup
P∈P

P (A), A ∈ 2X ,

but it is viewed as a lower probability. Obviously, μ is a contradictory lower
probability if P contains at least two different probability measures. If we apply
methods from [5], then we choose some optimal approximation P ∈ P of μ. Thus,
using this correction we cannot take in account that information is contradictory
- every two decisions are comparable. If we use the approach considered in [7],
then obviously after correction we get the coherent lower probability

μd(A) = inf
P∈P

P (A), A ∈ 2X .

Although sometimes corrections based on our approach and this one give us the
same result (this is fulfilled for Example 1), but in some cases they can give us
sufficiently different results, when, for example, we choose P such that μ is a
fully contradictory lower probability and P �= Mpr. In this case, by our approach
μ does not give us useful information, but the Quaeghebeur’s approach supposes
that μ contains some useful information that seems to be not correct.
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