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Abstract. Conditional knowledge bases consisting of sets of condition-
als are used in inductive nonmonotonic reasoning and can represent the
defeasible background knowledge of a reasoning agent. For the compari-
son of the knowledge of different agents, as well as of different approaches
to nonmonotonic reasoning, it is beneficial if these knowledge bases are
as compact and straightforward as possible. To enable the replacement
of a knowledge base R by a simpler, but equivalent knowledge base R′,
we propose to use the notions of elementwise equivalence or model equiv-
alence for conditional knowledge bases. For elementwise equivalence, we
present a terminating and confluent transformation system on condi-
tional knowledge bases yielding a unique normal form for every R. We
show that an extended version of this transformation system takes model
equivalence into account. For both transformation system, we prove that
the obtained normal forms are minimal with respect to subset inclusion
and the corresponding notion of equivalence.

1 Introduction

Defeasible Conditionals “If A then usually B” and conditional knowledge bases
consisting of finite sets of such conditionals play a major role in nonmonotonic
reasoning, as they are used to formalize the background knowledge of intelligent
agents. A short, compact and straightforward normal form of these knowledge
bases is desirable, not only to allow us to compare the knowledge of different
agents, but also to store this knowledge in a form that is easily understandable
and to compare different approaches of nonmonotonic reasoning. Additionally,
the number of conditionals in a knowledge base is an important factor in the com-
putational complexity of approaches that generate an epistemic state inductively
on top of conditional knowledge bases. Thus, knowledge bases which contain no
unnecessary conditionals may lead to significantly reduced computational efforts
required when dealing with knowledge bases in these approaches.

This article extends the work presented in the short paper [2] in several
directions and is organized as follows: After briefly recalling the required back-
ground in Sect. 2, we propose to use the notion of elementwise equivalence or
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model equivalence for conditional knowledge bases (Sect. 3) to enable the replace-
ment of a knowledge base R by a simpler, but equivalent knowledge base R′. In
Sect. 4 we present a set of naturally arising transformation rules on conditional
knowledge bases, develop a terminating and confluent transformation system for
elementwise equivalence, yielding a unique normal form for every conditional
knowledge base, and prove that two knowledge bases are elementwise equiva-
lent iff they have the same conditional normal form. In Sect. 5, we show that
an extended version of this transformation system takes model equivalence into
account. We prove that both transformation systems yield normal forms that
are minimal with respect to the corresponding notion of equivalence and subset
inclusion. Section 6 concludes the paper and points out future work.

2 Background: Conditionals and OCFs

Let Σ = {V1, ..., Vm} be a propositional alphabet. A literal is the positive (vi)
or negated (vi) form of a propositional variable Vi. From these we obtain the
propositional language L as the set of formulas of Σ closed under negation
¬, conjunction ∧, and disjunction ∨, as usual; for formulas A, B ∈ L, A ⇒ B
denotes the material implication and stands for ¬A∨B. For shorter formulas, we
abbreviate conjunction by juxtaposition (i.e., AB stands for A∧B), and negation
by overlining (i.e., A is equivalent to ¬A). Let Ω denote the set of possible worlds
over L; Ω will be taken here simply as the set of all propositional interpretations
over L and can be identified with the set of all complete conjunctions over Σ.
For ω ∈ Ω, ω |= A means that the propositional formula A ∈ L holds in the
possible world ω.

A conditional (B|A) with A,B ∈ L encodes the defeasible rule “if A then
usually B” and is a trivalent logical entity with the evaluation [4,6]:

[[(B|A)]]ω =

⎧
⎨

⎩

true iff ω |= AB (verification)
false iff ω |= AB (falsification)
undefined iff ω |= A (not applicable)

A knowledge base R = {(B1|A1), ..., (Bn|An)} is a finite set of such conditionals.
An Ordinal Conditional Function (OCF, ranking function) [9] is a function

κ : Ω → N0 ∪ {∞} that assigns to each world ω ∈ Ω an implausibility rank
κ(ω), that is, the higher κ(ω), the more surprising ω is. OCFs have to satisfy
the normalization condition that there has to be a world that is maximally
plausible, i.e., the preimage of 0 cannot be empty, formally κ−1(0) 	= ∅. The
rank of a formula A is defined by κ(A) = min{κ(ω) | ω |= A}.

An OCF κ accepts a conditional (B|A) (denoted by κ |= (B|A)) iff the
verification of the conditional is less surprising than its falsification, i.e., iff
κ(AB) < κ(AB). This can also be understood as a nonmonotonic inference
relation between the premise A and the conclusion B: We say that A κ-entails
B (written A |∼ κ

B) if and only if κ accepts the conditional (B|A), formally

κ |= (B|A) iff κ(AB) < κ(AB) iff A |∼κ
B. (1)
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The acceptance relation in (1) is extended as usual to a set R of conditionals
by defining κ |= R iff κ |= (B|A) for all (B|A) ∈ R. This is synonymous to saying
that R is admissible with respect to R [5]. A knowledge base R is consistent iff
there exists an OCF κ such that κ |= R.

Example 1 (Rcar ). Let Σ = {C,E, F} be an alphabet where C indicates whether
something is a car (c), or not (c), E indicates whether something is an e-car (e),
or not (e), and F indicates whether something needs fossil fuel (f), or not (f).
Let Rcar = {r1, r2, r3, r4, r5, r6, r7} be a knowledge base using Σ with:

r1 : (f |c) “Usually cars need fossil fuel.”
r2 : (f |e) “Usually e-cars do not need fossil fuel.”
r3 : (c|e) “E-cars usually are cars.”
r4 : (e|ef ) “E-cars that do not need fossil fuel usually are e-cars.”
r5 : (ef |e) “E-cars usually are e-cars that do not need fossil fuel.”
r6 : (e|�) “Usually things are no e-cars.”
r8 : (cf ∨ cf |ce ∨ ce) “Things that are cars and e-cars or cars but not e-cars

are cars that need fossil fuel or are no cars but need fossil fuel.”

This knowledge base is consistent: For instance, a ranking model κ for Rcar is

ω c e f c e f c e f c e f c e f c e f c e f c e f
κ(ω) 2 1 0 1 4 2 0 0

with, e.g., κ |= (f |e) because κ(ef) = 1 < 2 = κ(ef) and κ |= (e|�) because
κ(e) = 0 < 1 = κ(e).

3 Model Based Equivalences

With the acceptance relation between ranking functions and knowledge bases,
we now can define the set of ranking models of a knowledge base.

Definition 1 (ranking models). Let R = {(B1|A1), . . . , (Bn|An)} be a finite
conditional knowledge base. The set of ranking models of R is the set of OCFs
that are admissible with respect to R, formally Mod (R) = {κ|κ |= R}.

The notion of inconsistency gives us a possibility to determine whether every
ranking model of a knowledge base accepts a given conditional:

Proposition 1 ([5]). Let R = {(B1|A1), . . . , (Bn|An)} be a finite conditional
knowledge base. A conditional (B|A) with AB 	≡ ⊥ is accepted by every ranking
model κ ∈ Mod (R) if and only if R ∪ {(B|A)} is inconsistent.

Definition 2 (model equivalence). Let R, R′ be knowledge bases. R and R′

are model equivalent, denoted R ≡mod R′, iff Mod(R) = Mod(R′).

By definition, the model set of an inconsistent knowledge base is empty,
so all inconsistent knowledge bases are equivalent. We introduce the special
knowledge base � that is inconsistent by definition; thus � ≡mod R for every
R with Mod (R) = ∅; for instance, {(⊥|�)} ≡mod �. The idea of elementwise
equivalence is that each piece of knowledge (i.e. conditional) in one knowledge
base directly corresponds to a piece of knowledge in the other knowledge base.
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Definition 3 (elementwise equivalence). Let R, R′ be knowledge bases.

– R is an elementwise equivalent sub-knowledge base of R′, denoted by R �ee

R′, iff for every conditional (B′|A′) ∈ R′ that is not self-fulfilling (i.e.
A′ 	|= B′) there is a conditional (B|A) ∈ R such that Mod({(B|A)}) =
Mod({(B′|A′)}).

– R and R′ are strictly elementwise equivalent iff R �ee R′ and R′ �ee R.
– R and R′ are elementwise equivalent, denoted by R ≡ee R′, iff either both

R and R′ are inconsistent, or both R and R′ are consistent and strictly
elementwise equivalent.

Thus, two inconsistent knowledge bases are also elementwise equivalent
according to Definition 3, e.g. {(B|A), (B|A)} ≡ee {{(B′|A′), (⊥|�)}, enabling us
to avoid cumbersome case distinctions when dealing with sets of consistent and
inconsistent knowledge bases. We illustrate model equivalence and elementwise
equivalence with the following excerpts of Example 1:

Example 2. Let R′
car = {r1, r2, r3, r7} and R′′

car = {r1, r2, r3} be knowledge
bases with conditionals from Example 1. Since f ≡ ef ∨ cf and c ≡ ce ∨ ce,
for every OCF κ we have κ(cf) = κ ((ce ∨ ce) ∧ (ef ∨ cf)) and likewise κ(cf) =
κ ((ce ∨ ce) ∧ ¬ (ef ∨ cf)) and hence κ |= r3 if and only if κ |= r7. There-
fore, for every κ |= R′′

car we also have κ |= R′
car , and vice versa, which gives

us R′
car ≡mod R′′

car . For the same reason we have Mod ({r3}) = Mod ({r7})
(and, trivially, Mod ({ri}) = Mod ({ri}) for all i ∈ {1, 2, 3, 7}), which gives us
R′

car �ee R′′
car and R′′

car �ee R′
car and hence R′

car ≡ee R′′
car . So R′

car and R′′
car

are both model equivalent and also elementwise equivalent.

4 Normal Forms for Elementwise Equivalence

Similar to formulas in propositional logic, it is often advantageous to consider
only conditional knowledge bases that are in a standardized normal form. In
the following, we will develop rules for transforming a knowledge base toward
a normal form. For this, we will use a function Π that assigns to a knowledge
base R an ordered partition Π(R) = (R0, . . . ,Rm) such that all conditionals in
Ri, 1 � i � m, are tolerated by the set

⋃m
j=i Rj [8]; if no such partition exists,

we extend Π by defining Π(R) = �. Thus, R is consistent iff Π(R) 	= � [8].
For propositional formulas over a propositional alphabet Σ, there are vari-

ous ways of defining a normal form such that precisely semantically equivalent
formulas are mapped to the same normal form, using e.g. disjunctions of worlds
or selected shortest formulas. In order to abstract from a particular choice, for
the rest of this paper we assume a function ν that maps a propositional formula
A to a unique normal form ν(A) such that A ≡ A′ iff ν(A) = ν(A′).

Using Π and ν, the transformation system T is given in Fig. 1:

(SF) removes a conditional (B|A) if A |= B since such a conditional is self-
fulfilling because it can not be falsified by any world.
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Fig. 1. Transformation rules T for conditional knowledge bases

(DP) removes a conditional (B′|A′) which is a duplicate of a conditional (B|A)
under propositional equivalences of A and A′ and of B and B′.

(CE) removes a conditional that is conditionally equivalent to another one.
(PN ) propositionally normalizes antecedent and consequent of a conditional.
(CN ) transforms a conditional (B|A) to its conditional normal form by sharp-

ening its consequent to the conjunction with its antecedent.
(CC ) transforms a knowledge base containing both a conditional (B|A) and its

counter conditional (B|A) into the inconsistent knowledge base �.
(SC ) transforms a knowledge base containing a conditional that can not be

verified by any world into the inconsistent knowledge base �.
(IC ) transforms an inconsistent knowledge base into �.

We illustrate T transforming the knowledge base in the running example to
a reduced, more compact form.

Example 3 (T (Rcar )). Consider the knowledge base Rcar from Example 1.

(SF) In Rcar , r4 is self-fulfilling since ef |= e, hence the application of (SF )
yields R(SF)

car = Rcar \ {r4}.
(DP) The conditionals r1 and r7 are duplicates since c ≡ ce ∨ ce and f ≡

(cf ∨ cf ). So applying (DP) to Rcar gives us R(DP)
car = Rcar \ {r7}.

(CE) We have ef ≡ eef and ef ≡ e ∧ (e ∨ f ), therefore r2 and r5 are condi-
tionally equivalent; applying (CE ) to Rcar yields R(CE)

car = Rcar \ {r5}.
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(PN ) The conditional r1 is equivalent to r7 but shorter, so let us assume the
shorter formula as propositional normal form. With ν being a function that
converts a propositional formula to this normal form, applying (PN ) to Rcar

gives us the same results as (DP), that is, R(PN )
car = Rcar \ {r7}.

(SC ) The knowledge base Rcar contains no self-contradictory conditional;
hence, (SC ) can not be applied to Rcar .

Applying T exhaustively and in arbitrary sequence to Rcar gives us the knowl-
edge base RT

car = T (Rcar ) = {r1, r2, r3, r6}.

Note that T is not a minimal set of transformation rules. For instance, (DP)
is redundant since the effect of removing a conditional (B′|A′) as a duplicate of
(B|A) could also be achieved by applying (PN ) to both conditionals, thereby
mapping them both to the same normalized conditional in the resulting knowl-
edge base. Similarly, (CC ) and (SC ) are redundant since these cases are also
covered by the more general transformation rule (IC ). However, our objective
here is not to present a minimal set of rules, but a set of more or less naturally
arising transformation rules.

Proposition 2. T is terminating.

Proof. The rules (SF ), (DP), (CE ), and (IC ) all remove at least one conditional,
(PN ) and (CN ) can be applied at most once to any conditional, and also (CC ),
(SC ), and (IC ) all remove at least one conditional. Hence, T is terminating. ��

Proposition 3 (T correct). Let T (R) be the knowledge base obtained from
R by exhaustively applying T to R. Then R ≡mod T (R).

Proof. We prove the proposition by showing that each single rule is correct.

– (SF ) is correct since (B|A) with A |= B is verified by every OCF.
– (DP) is correct since A ≡ A′, B ≡ B′ implies that κ |= (B|A) iff κ |= (B′|A′)

for every OCF κ.
– (CE ) is correct since AB ≡ A′B′, AB ≡ AB′ implies that κ |= (B|A) iff

κ |= (B′|A′) for every OCF κ.
– (PN ) is correct since for every OCF κ, we have κ |= (B|A) iff κ |=

(ν(B)|ν(A)).
– (CN is correct since for every OCF κ, we have κ |= (B|A) iff κ |= (AB|A).
– (CC ) is correct since there is no OCF κ accepting both a conditional (B|A)

and its counter conditional (B|A).
– (SC ) is correct since there is no OCF κ with κ |= (B|A) if AB ≡ ⊥.
– (IC ) is correct since Π is a consistency test for any knowledge base R. ��

While Proposition 3 states that T is correct with respect to model equivalence
of knowledge bases, the following proposition shows that this is also the case with
respect to the stricter notion of elementwise equivalence.

Proposition 4 (T correct w.r.t. elementwise equivalence). Let T (R) be
the knowledge base obtained from R by exhaustively applying T to R. Then
R ≡ee T (R).
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Proof. According to the proof of Proposition 3, R is inconsistent iff T (R) = �;
thus, if R is inconsistent then R ≡ee T (R). So let R be consistent. Then T (R)
has been obtained from R by a finite number of applications of (SF ), (DP),
(CE ), (PN ), and (CN ). For these applications we observe:

– (SF ) preserves elementwise equivalence since for self-fulfilling conditionals no
counterpart in the other knowledge base is required.

– (DP) and (CE ) preserve elementwise equivalence since in both cases, we obvi-
ously have Mod({(B|A)}) = Mod({(B′|A′)}) and thus {(B|A), (B′|A′)} ≡ee

{(B|A)}.
– (DP) and (CN ) preserve elementwise equivalence since Mod({(B|A)}) =

Mod({(ν(B)|ν(A))}) and since Mod({(B|A)}) = Mod({(AB|A)}). ��
T is an extended version of the transformation system NF presented in [2]. While
NF is not confluent [1,2,7], the next proposition proves that T is confluent.

Proposition 5. T is confluent.

Proof. Since T is terminating, local confluence of T implies confluence of T ;
local confluence of T in turn can be shown by ensuring that for every critical
pair obtained form superpositioning two left hand sides of rules in T reduces to
the same knowledge base [1,7]:

Any critical pair obtained from (CC ), (SC ), or (IC ) and a rule in T reduces
to � since all rules preserve the consistency status af a knowledge base.

Any critical pair obtained from (SF ) with T \{(CC ), (SC ), (IC )} reduces to
the same knowledge base since a self-fulfilling conditional replaced by a trans-
formation rule in {(DP), (CE ), (PN ), (CN )} is still self-fulfilling. Furthermore,
any critical pair involving (PN ) can obviously be reduced to the same knowledge
base; this observation also holds for (CN ).

Thus, we are left with critical pairs obtained from (DP) and (CE ). Consider

R0 = R ∪ {(B|A), (B′|A′), (B′′|A′′)}.

If (DP) can be applied to R0 at {(B|A), (B′|A′)} we get R1 = R ∪
{(B|A), (B′′|A′′)}, and if (CE ) can be applied to R0 at {(B′|A′), (B′′|A′′)} we
get R2 = R ∪ {(B|A), (B′|A′)}. The used applicability of (DP) to R0 ensures
A ≡ A′, B ≡ B′; hence (DP) can be applied to R2, yielding R3 = R ∪ {(B|A)}.
The used applicability of (CE ) to R0 ensures A′B′ ≡ A′′B′′, A′B′ ≡ A′′B′′;
thus, we also have AB ≡ A′′B′′, AB ≡ A′′B′′ so that (CE ) can be applied to
R1, yielding R ∪ {(B|A)} = R3. Hence, T reduces both R1 and R2 to R3. Sim-
ilarly, the other critical pairs obtained from (DP) and (CE ) can be shown to be
reducible to the same knowledge base. ��

T is not only confluent, but it also yields a knowledge base that is minimal
when taking elementwise equivalence into account.

Proposition 6 (T minimizing w.r.t. elementwise equivalence). For all
knowledge bases R we have T (R) = � iff R is inconsistent, and if R is consistent,
then for all knowledge bases R′ it holds that:

R′
� T (R) implies R′ 	≡ee R (2)
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Proof. For inconsistent R, the proof follows from Proposition 4, so let R
be consistent and R′

� T (R). Proposition 4 implies R ≡ee T (R); hence,
it suffices to show R′ 	≡ee T (R). If we assume the contrary, R′ ≡ee

T (R), then R′
� T (R) implies that there must be two different condi-

tionals (B1|A1), (B2|A2) ∈ T (R) and a conditional (B|A) ∈ R′ such that
Mod({(B1|A1)}) = Mod({(B|A)}) and Mod({(B1|A1)}) = Mod({(B|A)})
and hence Mod({(B1|A1)}) = Mod({(B2|A2)}). This requires A1 ≡ A2,
A1B1 ≡ A2B2, and A1B1 ≡ A2B2, implying that (CE ) could be applied to
(B1|A1), (B2|A2), a contradiction to our assumptions. Thus, R′ 	≡ee R. ��

Propositions 2–6 ensure that applying T to a knowledge base R always yields
the unique normal form T (R) that is elementwise equivalent to R and minimal
with respect to set inclusion.

Definition 4 (conditional normal form). A knowledge base R is in condi-
tional normal form iff R = T (R).

Thus, for every knowledge base R, its conditional normal form is uniquely
determined. Moreover, T provides a convenient test for the elementwise equiva-
lence of knowledge bases.

Proposition 7 (elementwise equivalence). Two knowledge bases R,R′ are
elementwise equivalent iff the have the same conditional normal form, i.e.:

R ≡ee R′ iff T (R) = T (R′) (3)

5 Normal Forms for Model Equivalence

While T is correct with respect to both model equivalence and elementwise
equivalence, it is minimizing for elementwise equivalence (Proposition 4), but it
is not minimizing when taking model equivalence into account.

Example 4 (T not minimizing for model equivalence). We illustrate that T is
not minimizing with respect to model equivalence using the running example
with the knowledge bases Rcar and RT

car . We already illustrated that RT
car can

be obtained from Rcar by exhaustive application of the rules of T in Example 3,
i.e. T (Rcar ) = RT

car . But RT
car is not minimal with respect to set inclusion

when taking model equivalence into account: Consider the knowledge base R′
car

= {r1, r2, r3} � RT
car = {r1, r2, r3, r6}. We have R′

car ∪ {(e|�)} ≡mod � and
thus Proposition 1 gives us κ |= (e|�) for all κ |= R′

car . Therefore, since
r6 = (e|�), every ranking model of R′

car is also a ranking model of RT
car , thus

R′
car ≡mod RT

car .

This example motivates the following extension of T :

Definition 5 (T2). T2 is the transformation system T extended by the rule:

(RC ) redundant conditional :
R ∪ {(B|A)}

R Π(R ∪ {(B|A)}) = �
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Since (RC ) removes a conditional (B|A) from a knowledge base R∪{(B|A)}
if every model of R accepts (B|A), we immediately have R ∪ {(B|A)} ≡mod R.
Together with the properties for T shown above, we get:

Proposition 8 (T2 terminating and correct w.r.t. model equivalence).
T2 is terminating, and for all knowledge bases R, we have R ≡mod T2(R).

In contrast to T , T2 is not confluent as the choice of where the transformation
rule (RC ) is applied may influence the result as illustrated by the following
example.

Example 5 (T2 not confluent). Consider the knowledge base R = {r1, r2, r3, r4}
with r1 = (f |c), r2 = (c|e), r3 = (f |e), and r4 = (f |ce). Let r3 = (f |e) and
r4 = (f |ce). Then Π({r1, r2, r3} ∪ {r4}) = �, and hence applying (RC ) to R at
r4 yields R1 = {r1, r2, r3}. Furthermore, Π({r1, r2, r4} ∪ {r3}) = �, and hence
applying (RC ) to R at r3 yields R2 = {r1, r2, r4}. Applying T2 yields

R′
1 = T2(R1) = {(ν(cf)|ν(c)), (ν(ce)|ν(e)), (ν(ef )|ν(e))} (4)

R′
2 = T2(R2) = {(ν(cf)|ν(c)), (ν(ce)|ν(e)), (ν(cef )|ν(ce))} (5)

and since R′
1 	= R′

2, these two knowledge bases are two different normal forms
for R under T2.

On the other hand, T2 is minimizing when taking model equivalence into
account.

Proposition 9 (T2 minimizing w.r.t. model equivalence). For all knowl-
edge bases R we have T2(R) = � iff R is inconsistent, and if R is consistent,
then for all knowledge bases R′ it holds that:

R′
� T2(R) implies R′ 	≡mod R (6)

Proof. As in Proposition 6, we are left to prove the case for a consistent R. So let
R be consistent and R′

� T2(R). Proposition 8 implies R ≡mod T2(R); hence, it
suffices to show R′ 	≡mod T2(R). If we assume the contrary, R′ ≡mod T2(R), then
R′

� T2(R) implies that there must be conditionals (B1|A1), . . . , (Bn|An) ∈
T2(R), n � 1, such that R′ ∪ {(B1|A1), . . . , (Bn|An)} = T2(R) with
Mod({R′ ∪ {(B1|A1), . . . , (Bn|An)}) = Mod({T2(R)}). This implies that (RC )
could be applied to T2(R) at (B1|A1), contradicting our assumptions. Thus,
R′ 	≡mod R. ��

6 Conclusions and Future Work

In this paper we proposed notions of elementwise and model equivalence for con-
ditional knowledge bases, enabling the replacement of a knowledge base R by
an equivalent knowledge base R′. Based on these notions, we presented the ter-
minating and confluent transformation system T that for every knowledge base
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yields a minimal and unique conditional normal form with respect to element-
wise equivalence, providing a straightforward test for elementwise equivalence of
knowledge bases. We extended this system to the transformation system T2 that
takes model equivalence into account. Both systems yield set-inclusion minimal
knowledge bases with respect to the corresponding notion of equivalence. Note
that we used OCFs as an exemplary model for knowledge bases. Both T and T2

should also apply to probabilistic or possibilistic [3] settings, it remains to show
that the resulting knowledge bases respect the given semantics.

In our ongoing work, we are studying the practical consequences that result
from using normalized knowledge bases instead of their non-normalized versions.
Both transformation systems T and T2 are model preserving, so the normal forms
obtained by these system can be used for all inference relations that take all or
a single model into account. We are currently investigating to which extent this
also applies to inference relations that are defined upon a set of preferred models.
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