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Abstract. We present and discuss a general-purpose implementation
of the process of lexical semantics analysis theorised in the Montagov-
ian Generative Lexicon ΛTYn (hereafter MGL). The prototype software
itself constitutes a proof of concept of the MGL theory. The implementa-
tion process, as well as the data structures and algorithms, also provide
valuable results as to the expressive power required by MGL. While the
implementation of terms and types for the purpose of meaning assembly
assumed by MGL is in itself straightforward, some lexical phenomena
require additional mechanisms in order to process the logical represen-
tation in order to take into account implicit common-sense world knowl-
edge. We therefore also present a minimal architecture for knowledge
representation, and how it can be applied to different phenomena. The
implementation illustrates the validity of the theory, but MGL requires
a stronger corpus of types and terms in order to be thoroughly tested.
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1 Theories and Implementations of Lexical Semantics

Formal lexical semantics theories aim to integrate to the toolbox of compo-
sitional analysis of natural language developed since Montague considerations
of (logical) polysemy. Based on original studies such as [5,10,27], then on the
Generative Lexicon theory thoroughly developed in [29], there have been many
formulations that build upon powerful type-theoretic foundations, with a gener-
ative, dynamic account of the lexicon at their heart. Such recent type-theoretic
accounts of lexical meaning include Type Composition Logic (TCL) presented in
[1], Dynamic Type Semantics (DTS) presented in [3], Type Theory with Records
(TTR) presented in [9], Unified Type Theory (UTT) presented in [16], and the
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framework we helped define, the Montagovian Generative Lexicon (MGL), pre-
sented in [32]. Several partial or complete implementations of those theories
have been provided for demonstration purposes. Those tend to use logical or
functional programming, or theorem provers such as Coq—[8] is an example.

Concerning MGL, however, no real demonstration of the computational
aspect has ever been provided. One of the stated goals of MGL was (paraphras-
ing slightly [32]) “to provide an integrated treatment from syntax to semantics
extending existing analysers based on Montagovian semantics such as [25] with
mechanisms for lexical semantics that are easily implemented in a typed func-
tional programming language like Haskell”. Until the present publication, how-
ever, such implementations have been purely hypothetical, except for domain-
specific analogues such as evoked in [26]. Our goal in this publication is to present
an actual prototype implementation of the lexical semantics of that framework.
For that purpose, we have used functional and object programming in Scala,
but the paradigm and language of programmation are not critical elements. We
also want to analyse what MGL can do using the (quite simple) computational
mechanisms involved, as well as how those should be supplemented in order to
provide useful treatments of semantics and pragmatics.

We detail some of the necessary data structures and algorithms used, what we
learned from this implementation on the underlying logic properties of MGL, and
sketch an architecture for simple knowledge representation that is necessary for
the representation of certain lexical phenomena. The demonstrably functioning
prototype illustrates both the validity of type-theoretic formulations of lexical
meaning (including and not limited to MGL), and the deep interaction of lexical
meaning with at least some sort of knowledge representation already evoked
in [6].

2 A MGL Prototype

2.1 The Montagovian Generative Lexicon

MGL is a type-theoretic account of compositional lexical semantics that uses a
calculus of semantic assembly called ΛTYn, an adaptation of the many-sorted
logic TYn (itself proposed in [28]) for the second-order λ-calculus, given in the
syntax of Girard’s System-F. MGL stays close to the usual Montague analysis
by first performing a syntax-based analysis via proof-search, followed by the
substitution of semantic main λ-terms to syntactic categories. Afterwards, lexical
mechanisms are implemented in the meaning-assembly phase via a rich system
of types based on ontologically different sorts and optional λ-terms that model
lexical adaptation. The mechanisms, sketched in Fig. 1, are detailed in [24].

They can be roughly summarised as follows:

– First, the input utterance is super-tagged and analysed using categorial-
grammar mechanisms. This is the only step of proof-search of the process,
and yields a syntactic term whose components are syntactic categories. The
lexicon is then used in standard Montagovian fashion to substitute semantic
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Fig. 1. MGL process summary

λ-terms to categories, yielding a main semantic term, typed with many sorts
and the type t for propositions.

– Second, as a many-sorted logic is used, some type mismatches might occur.
The direct correspondance between syntax and semantics is not guaranteed
by the syntax as the arguments will be present in the correct number and
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position, but will not necessary be of the sort expected by the predicate.
This allows the mechanisms of lexical semantics to engage and disambiguate
between terms.
To that effect, the lexicon provides optional λ-terms that are used as lexical
transformations. These optional terms are inserted depending on their typing,
and yield a λ-term with no type mismatches.

– Finally, β-reduction yields a normal, η-long λ-term of type t (the type of
propositions), i.e. a logical formula that can be used in any usual semantic the-
ories of meaning, including as model-theoretic and game-theoretic semantics.

As the first step, syntax-based analysis, is already well-studied and imple-
mented (we use Type-Logical Grammars and Grail for this step, as given in [25]),
the object of concern is the second step: given a term reflecting the syntactic
structure of an utterance and a semantic lexicon, to construct a semantic λ-term
in a many-sorted logic, making use of available transformations, and yielding a
suitable formula. This is the object of our prototype implementation.

2.2 Modelling Types and Terms

The data structures and algorithms responsible for implementing the terms and
types of ΛTYn are the core mechanisms of the software. They are given as two
Scala sealed abstract classes, TermW and TypeW, with a flat hierarchy of case
classes implementing the various possible term and type categories; this simple
categorisation allows us to easily construct and detect patterns of objects.

Terms and types are constructed as binary trees (abstractions and applica-
tions of more than one argument to a given term/type can be easily curried):

– For terms:
• Leaves are AtomicTerms (constants), TermVarIds (variables) with an iden-

tifier and type, or specific constructs for MGL, Transformations and
Slots.

• Inner nodes are TermBindings (λ-abstracted terms), or TermApplications
of a predicate term to an argument term.

– For types:
• Leaves are constant Sorts, pre-defined objects such as PropositionType

for t, or second-order variable identifiers TypeVarIds.
• Inner nodes are TypeFunctions between two types A and B (modelling

A → B), or TypeApplications (modelling A {B}).

A simplified UML class diagram presents this straightforward architecture in
Fig. 2.

Several algorithms are provided as specialised methods and class constructors
in order to work with types and terms. They are mostly simple recursive tree-
walking algorithms, making the most of memoisation when possible (e.g., lists
of available resources are incrementally built as terms and types are constructed
in order to minimise computations). Algorithms include the type-checking of
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Fig. 2. Class diagram of the core package for terms and types.

applications, comparison between types, automated α-conversion of variables
in order to prevent issues of scope, replacement of term and type variables,
β-reduction, and the automated specialisation of types for polymorphic terms
(i.e., a predicate with a type containing one or several type variables will be
specialised to the correct types if applied to an argument with a compatible but
specified type). In this prototype implementation, some degree of imperative
programming is used in order to make some and optimisations easier.

It would be easy to convert the entire program to purely functional (or logical)
programming. Most methods are linear in complexity (with exceptions in the
adaptative mechanisms below); all algorithms are at most polynomial in time.

2.3 Explicit Adaptation

The core principle of MGL is to provide transformations as optional terms, on
top of the main λ-term associated to each lexeme. A canonical example is the
book is heavy and interesting. The usual, formal MGL analysis supposes three
basic sorts:

– R for readable materials,
– ϕ for physical objects,
– I for informational contents;

the book can be modelled as the bookR, heavy as heavyϕ→t, interesting as
interestingI→t. The example utterance is a case of co-predication, as two predi-
cates are simultaneously asserted on two different facets (with different, incom-
patible sorts) of a same object, and MGL will resolve this by having the lexicon
provide two optional terms associated with book in order to access these two
facets: fR→ϕ

phys and fR→I
info .
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In order to apply the co-predication, a specific operator, the polymorphic
conjunction and, is required:

&Π = ΛαΛβλPα→tλQβ→tΛξλxξλfξ→αλgξ→β .(andt→t→t (P (f x))(Q (g x)))

This yields, after suitable substitutions, application, and reduction, the term
(and (heavy (fphys book)) (interesting (finfo book))), which is normal and of
type t.

In our implementation, there are several important differences with the for-
mal account outlined above. As we distinguish between type constants and vari-
ables, there is no actual need to explicitly abstract (and Λ-bind) types. This is
because the only second-order operation ever used in ΛTYn is specialisation (i.e.,
the replacement – or instantiation – of type variables). Moreover, second-order
(type) variables are all introduced by λ-bound first-order (term) variables.

We also distinguish between term variables that are necessary for the defi-
nition of an abstracted term (such as P , Q and x, the two predicates and the
argument of the conjunction above) and adaptation slots, the positions where
optional λ-terms (such as f and g above) can be inserted. This is because the
optional terms can be provided by various different mechanisms, and might not
be provided at all if the term is well-formed. There is no lexical adaptation taking
place in utterances such as heavy and black rock ; in that case, MGL provides an
useful, if slightly redundant, id optional polymorphic term that can be inserted
in order to get the identity on any type. Adding or removing adaptation slots is
in fact a technical process analogue to type-raising or type-lowering in Montague
semantics.

We provide optional terms (transformations) as Transforms, which are dis-
tinguished from other terms. Each term has a list of available transformations,
constructed recursively from the leaves. The lexicon provides a list of transfor-
mations available to each lexeme, so that each atomic term has a collection of
transformations. We also distinguish Slots for explicit adaptations; the list of
slots is maintained during the construction of the terms. Our polymorphic and
conjunction, also defined by the lexicon, then becomes:

lambda P^(B->t).lambda Q^(G->t).lambda x^A.((And^{(t->(t->t))}
(P^(B->t) (f^{(A->B)} x^A))) (Q^(G->t) (g^{(A->G)} x^A)))

(As above, f and g are adaptation slots, distinguished from other variables
and not bound, while P and Q are λ-bound predicate variables.)

During the attempted resolution of the application of the conjunction to
terms for heavy and interesting, the polymorphic and is specialised to sorts
representing ϕ and I, and cannot be reduced further with the application of the
argument book. A further algorithm is provided in order to model the choice of
transformations, trying to match all available transformations to the adaptation
slots. As all permutations are considered, this is potentially the most costly
computation taking place. The result is a list of possible interpretations (given
as term applications with slots filled by transformations): there might be zero,
one, or finitely many.
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A further check on the list of terms obtained will filter those, if any, with
a suitable typing, that will form the desired result(s). In the tests conduced
with the input of the example, four interpretations where produced (one for
every slot/transformation permutation), with only the correct one of a resolvable
type (t):

((And^{(t->(t->t))}
(heavy^{(P->t)} (morph_R->Phy^{(R->P)} book^{R})))
(interesting^{(I->t)} (morph_R->I^{(R->I)} book^{R})))

2.4 Implicit Adaptation

Polymorphic operators such as and, with explicit adaptation slots, are needed
for co-predications. However, most lexical adaptations can take place implic-
itly, simply by reacting to a type mismatch and applying any suitable trans-
formation to resolve it. This requires to adapt the terms by adding correctly-
typed and well-positioned adaptation slots. In the case of an application such as
(pA→B aC), there are two possibilities to resolve the type mismatch: by adapt-
ing the predicate, yielding ((f (A→B)→(C→B)) p) a), or the argument, resulting in
(p (fC→A a)). In the slightly different case of a partial application (λxA.τ aC),
in which the argument can be adapted as before (yielding (p (fC→A a))), but
the typing of the predicate might not be fully determined at the moment of the
adaptation.

A procedure analyses such applications with type mismatches and no explicit
adaptation slots, and inserts suitable, automatically generated adaptation slots,
then proceeds as with explicit adaptations. For example, a simple term applica-
tion such as (P^{(e->t)} a^{A}) with a transformation f {A->e} available to
the atomic term a yields the straightforward (and only felicitous) interpretation
(lambda x^A.(P^{(e->t)} (f {A->e}^{(A->e)} x^A)) a^{A}), that reduces
to (P^{(e->t)} (f {A->e}^{(A->e)} a^{A}).

Implicit adaptations are necessarily reduced to those simple cases. Trying
to account automatically for co-predications would imply to try any possible
permutation of types and transformations at all nodes of a term, which would
be exponential in complexity; thus, the need for lexical operators with explicit
adaptation slots such as the polymorphic and.

2.5 Lexicalisation

In addition to the core mechanisms, a tecto package provides support for a
tectogrammatical/syntactic structure in the form of an unannotated binary tree
of lexemes; this serves as a factory for the input of already analysed text, and
as a more streamlined form of output for adapted terms.

A lexicon package enables the storage of lexical entries that associate lex-
emes (as strings) to terms, complete with typing, transformations and ambigui-
ties. Lexica can be merged, in order to have combine the treatment of different
phenomena, treated as standalone modules, for complex sentences. Lexica also
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provide automated translations from a syntactic structure (a tecto term) to a
semantic one (a TermW term, initially not adapted, reduced or even type-checked).
Semantic terms can be presented either by a straightforward translation to syn-
tactic terms, or printed to a string in the usual fully-parenthesed prefix notation
with apparent typing (as in the examples of this article).

2.6 Phenomena Coverage

Many lexical phenomena discussed in [18,29] can be modelled using the sim-
ple mechanisms of ΛTYn in their prototypal implementation given above; some
others require additional mechanisms. The following is a short overview of how
some classical phenomena are handled in MGL and our prototype.

Lexical adaptations, including alternations, meaning transfers, grinding,
qualia-exploitation and “Dot-type”-exploitation are all supported by the
adaptation mechanisms, as given previously.
Simple predications only require to have suitable transformations available,
and to use the implicit adaptation mechanisms.
Co-predications require explicit adaptation using polymorphic operators
(such as the higher-order conjunction “and” above). Theoretical grounds have
been laid in [18,32].

Constraints of application are required in order to perform co-predications
correctly. As explained in [24], the simultaneous reference to different facets
of a same entity can be infelicitous in some circumstances, such as the use of
destructive transformations (grinding, packing) or metaphorical use of some
words. Thus, the following co-predications are infelicitous to some degree:
– *The salmon was lighting-fast and delicious,
– ? Birmingham won the championship and was split in the Brexit vote.

In order to block such co-predications, we have proposed to place constraints
on transformations in order to block their usage depending on the other trans-
formations that have been used on the same term.

The first version of this system given in, e.g., [18], distinguishes between
flexible (allowing all other facets) and rigid (blocking all other facets) trans-
formations, as well as relaxable constraints depending on syntactic features.
The latest version, given in [19], proposes a revised calculus named Λ�TYn,
a system with terms of the linear intuitionistic logic as types, that (among
other things) allow any arbitrary type-driven predicate to act as a constraint
on the use of transformations, thus allowing the complex variability of felic-
ity of co-predications with deverbals examined by [13] and detailed for MGL
in [30].

In this prototype implementation, all transformations are equipped with
a member function that can be defined as an arbitrary constraint, the default
being the boolean constant true (that simply models flexible transforma-
tions). A compatibility one-on-one check of all transformations can be per-
formed using every constraint. As the constraint can effectively be any func-
tion, the precision is the same as in [19].
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Ontological inclusion, called type accommodation in [29] and modelling the
lexical relation of hyponymy (as evoked with different solutions in other sub-
typing accounts, such as [4]), can be supported by tweaking the system of
sorts. The theoretical and empirical basis for doing so are discussed in [23], in
which we argue that coercive sub-typing is an accurate and helpful mechanism
for resolving ontological inclusion, but no other lexical phenomena; the latter
are implemented using word-level transformations. In order to support sub-
typing, each sort can be defined with an optional parent sort. A careful
review of the typing comparison mechanism will then be enough in order to
support sub-typing.

This is not implemented yet (it requires a refactoring of the notion of
equality for sorts), but does not require (much) additional processing power.

Performative lexical adaptations, such as quantification, Hilbert operators
for determiners, and the alternate readings of plurals and mass nouns, are
supported as far as the meaning assembly phase is concerned. However, in
order to be useful, this category of lexical phenomena (as well as hypostasis
and several others) require additional mechanisms in order to incorporate the
knowledge gathered from the analysis of the sentence into the logical repre-
sentation. The basic architecture is supported, but mechanisms of resolution
remain preliminary and will be discussed next, especially in Sect. 3.3.

3 Layers of Lexica and Knowledge Representation

3.1 The Additional Layers

Theories of semantics deriving from [29] generally encompass some degree of
common sense world knowledge. For example, it is considered known that a
committee (and other such group nouns) is made of several people, and is thus a
felicitous argument of predicates requiring a plural argument such as to meet. It
is also known that engines are part of cars, and that predicates such as powerful
or fuel-guzzling can apply to cars via their constitutive quale; all such “common-
sense metaphysics” have been part of generative lexical theory from the start,
as detailed by [2]. It has been argued (e.g. in [11]) that such complex knowledge
does not belong in a semantic lexicon; we will ignore such claims, paraphrasing
Im and Lee from [12] in defining semantics to be the meaning conveyed by
an utterance to a competent speaker of the language in itself, excluding, for
instance, the specific situation in which the utterance is made, but including
any previous discourse. In this view the full contents of, for example, a given
fairy tales, should be able to be described within semantics, while texts such as
political essays will probably require additional knowledge about the position of
the author and the specifics of the period of writing. From our point of view,
the lexicon includes that minimal knowledge as part of the semantic terms and
types involved. To design a complete tool for type-theoretic lexical semantics, we
must first complete the careful definition of various lexica that can convey the
necessary, elementary world-knowledge for each word. A lexicon for general use
will associate to all relevant lexemes their semantics (in the form of main and
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optional λ-terms) as can be given in a dictionary of a language. However, there
are two arguments to be made for additional lexica beyond the general language
lexicon.

First are the specific lexica, that detail vocabularies relevant only to a com-
munity, such as professional jargons, local dialects, and other linguistic con-
structs specific to small groups of people; and/or words or word uses restrained
to a specific literary universe, such as fairy tales, space opera, mythology, politic
speeches, etc. Such lexica are activated on an as-needed basis, and are more
specific than the general-use lexicon.

Lexical semantics also requires a lexicon used for the current enunciation.
A competent speaker of any language is able to use generative mechanisms in
order to introduce new lexical concepts, either by the use of a new word, the
meaning of which can be inferred from context and morphology, or by creative
use of an existing word.

In our view, the lexicon of the enunciation starts empty and can be augmented
when the analysis of the discourse encounters words that are not present in the
current active lexica. We think that such mechanisms can enable the learning
of lexical semantic data. In addition to these lexical layers of meaning, we tend
to implement different lexical phenomena using different lexica for simplicity’s
sake, and create a merged lexicon from every relevant one when processing text.

3.2 Individuals, Facts and Contexts

To summarise our argument in Sect. 3.1 above, in addition to mostly static lexical
data, some sort of knowledge representation is needed to process even simple lex-
ical phenomena such as collective and distributive readings for plurals. Namely,
we need to keep track of the individuals mentioned in a given discourse, and
of the facts asserted of those individuals. To be complete, we would also need
to keep track of agents, in order to model dialogues or multiple points of view
in which certain agents assert certain facts. Our implementation prototype sup-
ports individuals, as atomic terms of type A (for named entities: human agents,
towns. . . ), as well as some individuals as atomic terms of type A → t (for
common nouns, that can be resolved to a specific individual of type A by the
means of an Hilbert-based determiner) for any suitable sort A. This dual typing
for individual is adopted by MGL for complete compatibility with the classical
Montagovian analysis, and is well-suited for the treatment of many phenomena,
using operators inspired by Hilbert for the representation of determiners (as
given in [22]) in order to select a specific individual from a common noun. We
think that this approach is justified; however, this is not the chosen modelisation
for other type-theoretic accounts of lexical semantics, and the implementation
provided is easily adapted to other types for common nouns and individuals. See
[24] for a detailed discussion of our choice of types and [17] for a contrasting
opinion.

We also account for facts, as predicates (TermBindings or atomic terms)
of type α → t for any arbitrarily complex type α, that are used in a term
application, and apply to an individual. In the analysis of a term, individuals
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and types are extracted and added to the context of enunciation. The hierarchy
of lexical layers given above can be implemented as a hierarchy of contexts,
some containing initial individuals and facts relevant to each lexicon; in a such
complete system, the context of the real world would, to resolve the paradox
mentioned in [33], include the fact that there is no King of France (and therefore
that The king of France is bald, while grammatical, is not felicitous because there
are no qualifying referents for the entities described, and thus cannot be assigned
a truth value). Such contexts are specific objects (aggregating individuals, facts
and a related lexicon) in our implementation.

3.3 The Parsing-Knowledge Loop

We use a specific lexicon to list some common semantic terms for quantifiers
(universal/existential, needed for some classical interpretations), counting terms
(needed for plurals), logical constants (for truth-valued semantic interpretations
of grammatical constraints) and Hilbert operators (used for the smooth mod-
elling of determiners, as detailed in e.g. [31] and more recently in [22]).

Other lexica can make use of these terms in order to construct, for instance,
Link-based semantics for plurals (originally given in [15]), using lexical transfor-
mations as detailed in [21]. Some functions associated to the logical lexicon then
resolve the glue operators, given a term and a context. This updated process of
analysis is given in Fig. 3.

To explain what the analysis of plural readings in MGL entail, consider the
following example from [21]:

– Jimi and Dusty met is analysed as
|λye.(y = j) ∨ (y = d)| > 1 ∧ meet(λye.(y = j) ∨ (y = d)).

One elementary issue is that the predicate met applies to group individuals
(such as a committee) and constructions made of more than one individuals
(such as Jimi and Dusty) but not to singular individuals (such as a student).
Thus, the lexical entry for the predicate is λP e→t.|P | > 1 ∧ meet(P ) – a logical
conjunction with a cardinality operator.

Those two simple elements can be defined in System-F (the calculus in which
ΛTYn, the logic of MGL, is implemented). The issue is that, in order for our
system to infer correctly that Jimi and Dusty are two different individuals, and
thus that the above term resolves to meet (λye.(y = j) ∨ (y = d)), we must
use processing power beyond the simple construction and reduction of terms: a
minimal system of knowledge representation and logical inference.

Within our architecture encompassing individuals and facts, and with a func-
tional lexicon for logical connectives (including the logical and operator of that
example), as well as quantification and counting (including the cardinality oper-
ator), this example can be treated.

However, this requires a given term to be parsed at least twice. The first
time, the syntactic structure is converted into a semantic term and lexical trans-
formations are applied.
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The second time, facts that emerge from the transformations, such as alter-
nate distributive/collective readings for plural predicates, are added to the lex-
icon, and the logical lexicon can be used in order to process the operators that
have been introduced. Our prototype implementation does not incorporate such
feedback yet, as the first step can result in several different interpretations; this
remains a work in progress. As a result, straightforward composition for plu-
rals are tentatively supported (such as in the previous example), but ambiguous
covering readings for plurals are not yet available.

3.4 World Sense Acquisition

An enunciation-context lexicon that is filled with individuals and facts inferred
from the primary semantic analysis can serve, in a limited way, to account for
words that are absent from the lexicon. Such words, syntactically placed in the
position occupied by individuals or facts, will be added as primary entities to the
lexicon, and their precise typing inferred from the predicates they are applied to.
The typing can then be refined as the new lexeme is used again. An elementary
mechanism should be enough to have a correct (if completely underspecified)
representation from Lewis Carroll’s Jabberwocky.

Of course, most competent human speakers also use morphosyntactic infer-
ence to attach at least some degree of connotative meaning to the words being
proposed (e.g., Star Wars’s plasteel can be inferred as a fictive material some-
how combining the characteristics of plastics and steel by any English speaker).
This is completely beyond the power of our early software, and simple syntax-
and-typing inferences.

A first easy step is to have the process of meaning assembly outline which
lexemes are not in the lexicon, and use human input for correcting the precise
types and terms associated. Promising automated strategies for learning more
about new lexemes, or lexemes used in a creative way, are also explored in richly
typed settings by [7].

3.5 Quantificational Puzzles

The process of counting, quantifying and selecting entities using Hilbert opera-
tors can also shed some light on the quantificational puzzles mentioned in [1] and
several other related works. The issue with having universal quantification used
together with co-predication on multi-faceted entities can be seen in examples
such as:

– There are five copies of War and Peace and a copy of an anthology of Tolstöı’s
complete works on the shelf.
What is the answer to questions such as How many books. . . ?
What exactly is the type of book in such questions?

– I read, then burnt, every book in the attic.
The entities being predicated form two different sets.
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In order to resolve such quantificational puzzles satisfactorily, the methods
for counting and quantifying must be adapted to each predicate, and only apply
to individuals of the appropriate type. For our purpose, this implies a close
monitoring of the entities introduced by lexical transformations and their context
of appearance.

As the quantifiers are adapted to the transformed and original entities, main-
taining expected truth values for straightforward sentences poses a challenge.
This is also a work in progress.

4 Results

4.1 A Fragment of Second-Order

With this prototype software, we have proven that MGL can actually be com-
putationally implemented. This was not really in doubt, but the way that the
combination of types and terms are implemented illustrates that the time and
space complexity of most of the process is limited: the algorithms used are mostly
linear tree walks, with a few quadratic worst-case operations.

The most complex step is the choice of optional terms for adaptation slots,
of complexity |t| × |s| ×n at worst (the product of the number of optional terms
available, adaptation slots, and length of the term); the hypothesis behind MGL
is that the number of available optional terms at any point remains “manage-
able”. Thus, the step not actually implemented in this prototype (but for which
many implementations exist), syntactic analysis, is the costliest of the steps
detailed in Fig. 1, and the complete process of parsing is polynomial in time, as
explained in [24].

MGL accounts such as [32] point out that the whole expressive power of
second-order λ-calculus is not used, and that every possible operation could be
implemented using first-order terms if all possible adaptations were listed at each
step (which is syntactically much longer to write). Indeed, our implementation
only supports the single second-order operation of type specialisation (by distin-
guishing type variables from other types and using pattern matching to recognise
and rewrite types), which is required for having polymorphic terms. There are no
features of ΛTYn that require additional power: sub-typing can be implemented
by an optional parent field in Sorts, arbitrary complex on co-predications are
supported by including a check on transformations that can be any arbitrary
function, quantification, counting and Hilbert operators can be included.

Formally, it has been pointed out by Ph. de Groote (pc.) that the smallest
type calculus encompassing the features provided by ΛTYn is a simply-typed
calculus supporting type collections and sub-typing, such as the typing sys-
tem used by OCaML (http://ocaml.org/). Moreover, the many efforts made by
proponents of other related type-theoretic accounts of generative lexical seman-
tics to provide implementations of their own theories reinforce our belief in the
computational feasibility of such analyses. The chain of treatment sketched in
Fig. 1 and detailed in [24], and the computational steps provided in the present
paper, are very similar to, for instance, the process detailed in [14] for Dependent

http://ocaml.org/
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Type Semantics. The many differences between the theories and representations
notwithstanding, the operational steps used to analyse similar phenomena are
nearly identical (despite the research process on both accounts being parallel and
candid, and the presentation of the results having occurred on the same day).
Such spontaneous convergence between theories is, in our view, an indication of
the pertinence of both accounts.

4.2 Minimal Processing Architecture

Our prototype implementation includes the skeleton of an architecture that rep-
resents the individuals, facts and agents appearing during the semantic analysis.

This goes beyond the straightforward process of producing a logical represen-
tation for an utterance, as some of the terms of that logical representation might
be analysed differently depending on the context; we argue that this process
should still be part of a semantic analysis. The individuals, facts and agents
are stored in objects called contexts, organised in a hierarchy that includes the
most specific context (modelling the analysis of the current discourse), universe-
specific contexts (describing whether the discourse is part of a fictional, historical
or activity-specific setting), dialect- and language-specific contexts, each associ-
ated to an appropriate lexicon.

A complete analysis would minimally involve the construction of the logical
representation of an utterance, the update of the enunciation context with indi-
viduals and facts introduced by that utterance, and a re-interpretation of the
logical representation in the active contexts. This minimal processing architec-
ture can be completed with no difficulties; our implementation includes relevant
data structures and algorithms, but requires significant work on examples of
performative lexica in order to be thoroughly tested.

4.3 Perspectives

This prototype implementation has already served its primary purpose: to illus-
trate that MGL can be computationally implemented, and that the examples
usually given with the theory actually work. As it stands, however, this imple-
mentation is more of a proof of concept than useful software.

To be actively used by the community, more work would be required to
give it an helpful interface, both for the user and for existing analysers; we also
would like to convert from and to representations of the other most active type-
theoretic accounts of lexical semantics. The knowledge-representation architec-
ture remains a work in progress, and requires solid efforts in order to correspond
to our ambitions. The completion of this software is not, however, an end in
itself.

In fact, what MGL (and other related accounts of lexical semantics) really
requires in order to be useful is a large-cover library of types and terms. The
analyses, whether formal or computational, are justified by toy linguistic exam-
ples or on domain-restricted phenomena; without a significant step in the defi-
nition of a system of sorts and types, and subsequently of a large, semantically
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rich lexicon, type-theoretic proposals have very little value compared to, e.g.,
“deep” neural techniques trained using massive corpora. The prototype software
presented in this publication is a nice illustration of the possibilities provided
by MGL, but our main hope is that it can help to build software that can learn
types and lexemes.

The first step will not be on the software side but, as suggested in [24], the
establishment of a linguistically motivated kernel system of sorts.
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