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Abstract. In the current era Internet is the most used medium for
sharing and retrieving the information for building applications which
are commonly developed for enhancing the user experience in terms of
comfort, communication. For this, the need of real-time sensor data gains
importance. The data collected from the physical objects should be eas-
ily available for different applications. Semantic representation of the
sensor data directly addresses the problem of storing it in logical, easily
accessible and extensible manner. Our paper works towards converting
the already collected sensor data of the #SmartME project into seman-
tic format and also proposes real-time storage of semantically enriched
sensor data. To build applications using these sensor data the authors
consider mainly three kinds of sensors, i.e., Temperature, Humidity, Pres-
sure. Predicting the observed value of any sensor data is the main aim of
this work. The analysis leverages other sensors & environmental parame-
ters such as Date, Time, Longitude, Latitude, Altitude etc. Correlation
among these parameters and the accuracy of the predicted results showed
the suitability of our proposed idea.

Keywords: SmartME - IoT - Sensor network - Stack4Things - Semantic
web - Data mining - Correlations

1 Introduction

A Smart City concept incorporates advanced Information and Communication
Technologies for providing the services for the betterment of the citizens. These
key services depend not only on the needs of the citizens but also on the
region/area where the city is located. As per the recent prediction of Cisco
Systems and World Health Organization in 2015, it was noticed that more than
60% of the world’s population will live in cities by 2050 [6]. This shifts certainly
raise challenges for the basic needs of a person such as water, electricity, fuel sup-
ply, building cost-effective infrastructures, proper drainage, waste, air-pollution,
parking, traffic, transportation, street lighting management system, healthcare,
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education system, safety and security services. For building such type of applica-
tions, the domain of the Internet of Things (IoT), Semantic Web, Social Web and
Machine Learning have been exploited in recent years. The main components of
IoT are sensors, smart phones & other embedded portable, devices and their
internet connectivity. Connectivity helps in leveraging the raw data for building
smart applications. Semantic and Social Web provide supporting knowledge for
making the applications even smarter. Furthermore, Semantic Web technologies
have the ability to annotate sensor’s raw data & observation by specific domain
ontology. This annotations enhance the interpretability of the sensor data. It also
allows to build an application without the overhead of heterogeneous sources of
data. Semantic annotation of sensor data provides an opportunity to do deep
queries. For example, IBM proposed a model [9,10] to diagnose the faulty sen-
sors deployed in a building by expressing the rules through Semantic Web. The
correlation logic among different sensors has been explored for diagnosing the
faulty sensor. However, Machine Learning acts as a complement for smart appli-
cations by analysing the previously collected data and acts making predictions
based on it. For example, by doing predictive analysis, Chicago is controlling the
rodent population. The application is able to determine which trash dumps are
most likely to be full and attract more rats in the near future.

In this paper the authors summarize the recent applications developed in
semantic sensor areas. The paper first outlines the conversion of raw data into
Semantic Web for the running #SmartME project. Secondly, the authors pro-
poses an idea on how correlation between sensors can be taken into consideration
for predicting unspecified /destroyed sensors deployed in a specific location.

2 Related Work

Sensors are becoming popular these days to collect huge amount of specific infor-
mation about real world surroundings. However, these sensors cannot work alone
for providing the services smart cities need. To provide the systematic descrip-
tion of sensor networks various attempts were made in the past such as, Sensor
Web Enablement (SWE) developed by the Open Geospatial Consortium (OGC)
that are widely being adopted by industry, government organizations and acad-
emia. SWE provides XML representation for sensor description, thus limited to
only syntactical representations [12], rather than semantics. Moreover, seman-
tics of data provide the interpretability of sensor data & observations in terms of
machine-readability. This interpretability helps to provide high-level information
to the application’s user and devises the application more user-friendly as well
as easy to use.

Semantic Sensor Web [11] and Semantic Sensor Network (SSN) Ontology [7]
have been proposed to define sensor data model for describing the sensor and
their services. They also provide uniform descriptions and high-level interfaces
for sensors and actuators. The semantic description of sensors mitigates the com-
plexities involved in the heterogeneity of data collection and in the underlying
technologies being used for sensors and actuator devices. It has the capability to
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provides low-level information about sensor data, as well as high-level reasoning
for human understandability. For example, information about the sensor type,
observation, respective board (where the sensor is connected), location name
and accuracy of measurement are defined as low-level information about sen-
sors. On the other hand, analysing the relation between sensors and recommend
the user with personalized weather prediction is called as high-level informa-
tion. Furthermore, the collection of sensor observations for building applications
requires Cloud real-time storage to analyse the sensors data in various com-
binations for smart applications. Predicting thermal comfort of employees was
proposed by Kojima in 2008 [4]. To achieve it, 21 sensor were deployed inside a
room. The paper utilizes thermal comfort data from employees in parallel with
other physically located sensors. On the other hand, [8] proposed the service
infrastructure for semantic sensor data storage and querying. The paper consid-
ered the parking spots and empty room examples and described the information
related in semantic formats. Also, the authors investigated about the automatic
registration of a new sensors by automatically annotating the sensors with appro-
priate descrition. Different ontologies were merged such as Dolce Ultralite, the
W3C Semantic Sensor Network (SSN-XG), Event model ontology to support
cross-domain descriptions. Ploennings et al. in 2014 [10] proposed a diagno-
sis model for smart building application. This diagnosis model uses semantic
information or cause-effect-relationships between sensors. Mainly the approach
used two type of sensors i.e. Temperature and Occupancy sensors. The defect of
temperature sensors were deduced by the occupancy and cooling sensors. The
authors extended the SSN ontology by modifying it specifically for the building
infrastructure. The approach was used as a common model for all the buildings
create automatically the similar physical model for them. Consoli et al. [2] gath-
ered Catania municipality data from different sources/formats and made them
available online as semantic knowledge base. The authors introduced different
techniques to convert JSON, XML, SQL Server database and Excel files into
RDF format. The goal of this approach is to boost the semantic data based
smart city applications for more relevant information retrieval and processing,
without the overhead of complexities involved in it.

Recently, authors in [1,5] proposed a project named #SmartME which aims
to create a Cloud based infrastructure to model IoT and to control the smart
objects remotely. This Smart City infrastructure provides a unique view for
all the smart objects located in the different parts of the smart cities. In
this infrastructure, the ToT nodes comprise different types of sensors (Tem-
perature, Humidity, Brightness, Noise, Pressure) that are attached to Arduino
YUN boards. These boards are able to send the information to the CKAN
repository through the Stack4Things cloud infrastructure. The Stack4Things
framework was developed by Mobile and Distributed System (MDLSLab) at
the University of Messina, Italy. Lightning-rod on the client side and Iotronic
at the server side are the main building blocks of the Stack4things technol-
ogy. Stack4dThings Lightning-rod runs on the micro-processor unit of the smart
boards (e.g., Arduino YUN). It interacts with the OS tools and services of the
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board as well as sensing and actuating resources through I/O pins. On the other
hand, Stack4Things Iotronic provides an OpenStack service to the end user for
managing the board resources remotely. The users can manage the boards via
REST APIs or using the Stack4Things command line client. The logic deployed
by Stack4Things pushing the data from Arduino YUN boards to store them in
CKAN repository, is written under the guise of Node.js plug-ins at the client side,
i.e. in Lightning-rod. The sensors data are currently in standalone (raw) format
and also have less interpretability for the application developer. To enhance the
experience of sensor data acquisition and to link them logically a semantic layer
should be there. Furthermore, siloed information from unrelated sensors would
not help to build a smart applications. Thus, there is a need to develop a pre-
diction layer for analysing the appropriate correlated sensor to build a smart
application. So, this work focuses on how to provide semantic interoperability
to the Stack4Things infrastructure and to investigate the correlation between
sensors, for building simple but effective smart applications.

3 Semantic Integration

In this paper, we described the work done to incorporate the semantic layer
within Stack4Things and also to provide sensor correlations. In our case, to
store the information into Virtuoso RDF storage a Node.js plugin file has been
modified so that it can send the RDF data at the same time when it is being
sent to the CKAN repository for storage. Thus, it enables us to store real-time
data in the RDF format.

Furthermore, to store previous data into the storage, the RDF4J 2.2 Java
framework has been exploited. Using this framework the CKAN data has been
converted directly into Turtle format and later on inserted into the same storage.
We stored the converted file on a monthly basis. For example, “2016-04.tt1” file
contains all the sensor information of April 2016. All active board’s information
has been collected from the CKAN repository. To access these data using the
same vocabularies we modified the SSN ontology by re-using three basic ontolo-
gies i.e., DateTime.owl, SSN.owl, wgs84pos.rdf, in the Protege tool. We used
URI design specifications for choosing the appropriate URIs for “SmartMe.owl”
ontology. After storing this information we are able to extract specific infor-
mation using SPARQL queries. For example, for a particular board, we can
retrieve label of the board, geolocation (latitude, longitude, altitude), Manufac-
turer name, Model of the board, Time and Date of the deployment. Furthermore,
for a particular property of a sensor, the SPARQL query can retrieve boardID,
observed value, day of the week, date of observation(YYYY-MM-DD), time of
observation (hh:mm:ss), unit of the observation type, geo-location, maximum-
minimum observation values for a certain time period, and also, group the sensor
data by date, week and month. For example, Fig. 2 retrieved the values of tem-
perature sensor (connected to a specific board) gathered over a certain time
period grouped by month. The results of this query has been shown in Fig. 3.
Moreover, Figs. 4 and 5 provide the list of the specific boards (i.e. manufacturer
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= “Arduino” & model = “Yun”) hosting a specific kind (i.e. manufacturer =
“Honeywell” & model = “HIH-4030131 Series”) of sensors. As shown in Fig. 1,
the ontology has been developed in the Protege tool by integrating DateTime,
Geographical ontologies with SSN ontology. The URIs have been selected with
the consideration of pattern based ontology design techniques. All the five sen-
sors of #SmartME project are defined as sub-class of the sensor class. The
observation property of each sensors is created as a subclass of the Environ-
mental Property of sensor. Sensor observation is related to the time and Date
description, for which the vocabulary of DateTime ontology has been exploited.
Our SmartME ontology is closely related to the idea described in by Atemezing
et al. This modified ontology with the converted data (i.e., inside from CKAN)
gets stored in virtuoso RDF storage for querying.

We collected data from 20 Arduino YUN boards, which have been active since
May 2016. The data have been converted from Comma Separated Values (CSV)
to RDF and stored into the Virtuoso RDF storage. For CSV data generation,
Python code is used to automatically fetches data' from the CKAN repository
and store it into CSV files. These files are then used to generate TTL (Turtle,
a RDF serialization) files using RDF4J library. The fields of the CSV file are as
follows:

— BoardID — Hour

— SensorID — Minute

— Observation Type ~ Second

— Observation Value _ Zone

— Day of Week .

_ Date — Latitude
— Month — Longitude
— Year — Altitude

All the .ttl files and SmartMe ontology have been stored in Virtuoso RDF
storage. To insert the real-time data captured by the sensors, we used HTTP
POST code? inside Node.js plugin file. This Node.js plugin is being used by
the Lightning-rod component of the Stack4Things. We stored all the real-time
as well previously collected data in “https://smartMe.linkeddata.org” graph of
Virtuoso RDF Storage. Note that, this graph also contains “smartMe.owl” as
well as other required ontologies.

The overall view of the project has been shown in Fig. 6. The figure depicts
real-time sensor data being stored in both CKAN and Virtuoso RDF Storage.
We converted the already stored CKAN data into RDF format using RDF4J 2.2.
It helps us to analyse previously stored data as well. In future we are planning to
link data with GeoNames Ontology for further data enhancement. Also, provide
an interface with virtuoso global server for user interaction and analysis.

! http://smartme-data.unime.it/organization /smartme.
2 https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
VirtGraphProtocol CURLExamples.


https://www.linkeddata.org
http://smartme-data.unime.it/organization/smartme
https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtGraphProtocolCURLExamples
https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtGraphProtocolCURLExamples
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PREFIX smartMe: <http://smartMe.linkeddata.org/ontology/>
PREFIX geo: <http://www.w3.0rg/2003/01/geo/wgs84_post>
PREFIX board: <http://smartMe.linkeddata.org/resource/Board/>
PREFIX point: <http://smartMe.linkeddata.org/resource/Point/>
PREFIX prop: <http://smartMe.linkeddata.org/resource/>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schemat>

PREFIX time: <http://www.w3.0rg/2006/time#>

PREFIX ssn: <http://purl.aclc.org/NET/ssnx/ssnit>

2Tempualue
{?board a <http://smartMe linkeddata.org/ontology/Board>;
rdfs:label PBoardName;
geo:location Ppoint.
?point geo:alt ?altitude,
?point geo:lat ?latitude.
?point geo:long ?longitude
?Pobserved ssn:observedBy ?board;
ssn:observedProperty ?Property;
prop:observedininterval ?Time;
prop:Temp ?Tempvalue.
?Time time:hasBeginning ?begins.
?begins time:inXSDDateTime 2dateTime;
time:inDateTime ?DataTimelnfo.
?DataTimelnfo time:dayOfWeek ?day;
time:month ?month;
time:timeZone ?zone.

?dateTime>"2016-01-26T23:29:58"Axsd:dateTime)
} GROUP BY ?month limit 50

select distinct PBoardName ?latitude ?longitude ?altitude ?dateTime ?day

FILTER ( ?dateTime <"2017-01-26T23:29:58" "Mxsd:dateTime | |

Fig. 2. Query to fetch Temperature Sensor data over

a specific interval

Fig. 3. Result of query shown in Fig. 2

PREFIX smartMe: <http://smartMe.linkeddata.org/ontology/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schematt>
PREFIX prop: <http://smartMe.linkeddata.org/ontology/>
PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>

select PBoard  {?SensorID prop:model "HIH-4030131 Series"Axsd:string;

prop:manuafacturer "Honeywell"A7xsd:string;
ssn:onPlatform ?BoardID.

?BoardID prop:manuafacturer "Arduina";
prop:model "Yun";

rdfs:label ?Board.}

BoardName [ 1atitude [longitude[altitude| dateTime | day | Tempvalue
"Board sme-01-08619"@en "15.51349528" |"38.16164638" | " 142" 2016-04-22T17:29:52 |"Tuesday" ||16.83293676314554
“Board sme-81-6019"@en "15.51349528"|["38.16164638" 142" 2016-11-23T17:33: 17 "Wednesday"|[17. 440052699127705|
“Board dip-scienze-co.psi.ped.cul”@en|"15.55599" |["38.19941" |[*@" 2016-11-30T17:47:40 "Wednesday"|[12. 491368164919631]
"Board dip-scienze-co.psi.ped.cul"@en |'15.55599" "38.19941" e 2016-12-01T10:14:59 |"Thursday" ||14.542305815905252
"Board dip-scienze-co.psi.ped.cul”@en|"15.55599" |["38.19941" |"@" ‘2016-12-01T10:25:93‘"Thursday" |14.5423»58159»5252
"Board dip-scienze-co.psi.ped.cul"@en||"15.55599" "38.19941" "e" 2016-12-02T18:39:58 |"Friday" 15.635647177789792
"Board dip-scienze-co.psi.ped.cul”@en|"15.55599" |["38.19941" |["@" 2016-12-02T12:00: 21 "Friday"  |[16.919307735293557
"Board dip-scienze-co.psi.ped.cul"@en||"15.55599" "38.19941" "e" 2016-12-02T12:20:29 |"Friday" 17.789686784575963
"Board dip-scienze-co.psi.ped.cul”@en|"15.55599" |["38.19941" |["@" 2016-12-01T14:46: 42 "Thursday" |[17.702088493670885]
"Board dip-scienze-co.psi.ped.cul"@en||"15.55599" "38.19941" "e" ‘2016—12—02“)0:50:29 ‘“Frmay“ |14.542305315905252
"Board dip-scienze-co.psi.ped.cul"@en |'15.55599" "38.19941" e 2016-12-03T03:05:48||"Saturday" ||14.876948323266106
“Board dip-scienze-co.psi.ped.cul”@en|"15.55599" |["38.19941" |[*@" 2016-12-03703:56: 06 "Saturday” |[14.209161274117264]

Fig. 4. Query to list of specific boards hosting specific kind of sensors
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Board
'Board sme-01-0022"@en

'Board rettorato"@en

'Board sme-01-0013"@en

'Board sme-01-0015 - FabLab Messina"@en

'Board facolta-ingegneria"@en

'Board sme-01-0010"@en

'Board sme-01-0021"@en

'Board sme-01-0024"@en

'Board sme-01-0012"@en

Fig. 5. Result of query shown in Fig. 4
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Fig. 6. SmartMe workflow description

4 Sensors Correlation Analysis

In this section we describe the correlation analysis among the sensors deployed
in the various areas of Messina under the #SmartME project. Our main aim for
this analysis is to check, whether the correlation between sensors can assist for
predicting the value of unavailable sensor. More specifically, this phenomena can
help for building a cost effective Smart city, where huge number of sensors need
to be deployed.

The sensors that are important for our analysis are Temperature, Humidity,
Pressure. To check the correlation of Temperature sensor with the environmen-
tal features captured parallel, we define “Temperature Value” as the predicted
attribute (i.e., class label). The attributes for mining are as follows:
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— Temperature Value — Hour

— Humidity Value — Minute

— Pressure Value — Second

— Day of Week — Zone

— Date — Latitude
— Month — Longitude
— Year — Altitude

Random Forest and Linear Regression have been used for checking the accu-
racy of the model. We have chosen these two algorithms because of their ability
to work with numeric class attribute. The algorithms model the data captured
by the sensors for predicting the Temperature sensor values. The accuracy/error
results with # of Instances has been shown in Table 1. The prediction has been
made on the monthly captured different files. It shows the precision of prediction
for different subsets of dataset. The correlation column shows the closeness of
actual and predicted Temperature sensor’s value. Fourth and fifth columns rep-
resent Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for
predicting Temperature Value. Thus, we can say that Random Forest algorithm
is independent of number of Instances and worked better then Linear Regression
algorithm. The results illustrate that it is feasible to predict a sensor, given the
other feature variables i.e. different sensors, specific location (latitude, longitude,
altitude, zone), date (Date, Month, Year) and time (Hour, Minute, Second).

We also perform feature selection method to know the important features
in the observed data with the “Temperature Value” as a class label. The
Correlation-based Feature Selection (CFS) algorithm [3] of feature selection with
Greedy Ranker has been used with various subset of datasets. We found for 70%
of subsets the algorithm ranked the attributes in following order: Humidity, Lat-
itude, Longitude, Hour, Zone, Altitude, Date, Pressure, Second, Month, Minute,
Second, Day of Week. For example, Fig. 7 shows the relationship of Temperature
with Humidity & Pressure sensors for a subset of dataset. It shows Humidity
is negatively correlated to Temperature while Pressure is constant with varying
Temperature. This analysis shows the correlation between different sensors can
be exploited for predicting an unavailable(undeployed, failed, broken) sensor.
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Fig. 7. SmartMe temperature and pressure, humidity correlation
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Table 1. Analysis on different instances where, # of attributes=13, Class
label = Temperature value

Algorithm Instances | Correlation | MAE | RMSE
Linear regression | 4717 0.8963 1.2638 | 1.6148
Random forest 0.9943 0.2613 | 0.3956
Linear regression | 4987 0.8835 1.3347 | 1.7247
Random forest 0.9986 0.185 | 0.307

Linear regression | 7801 0.8354 2.5056 | 3.1417
Random forest 0.9948 0.4156 | 0.606

Linear regression | 10000 0.8013 1.2437 | 1.5647
Random forest 0.9786 0.176 |0.214

Linear regression | 15233 0.9269 0.9901 | 1.2892
Random forest 0.9969 0.1849 | 0.2727

This scenario can help in the situation where buying large number of specific
sensors would be too costly. Thus, the substitution of a certain subset by other
low costly but related sensors would be beneficial in terms of cost effectiveness.
It would also help to diagnose the problematic sensor that behaves incorrectly
in presence of other sensors.

5 Conclusion and Future Work

We proposed a novel approach for converting real-time as well as stored sensor
data into RDF format. The #SmartME project infrastructure has been exploited
to enable real-time sensor data conversion and storage. The semantic conversion
annotates the raw sensor data, provides a unified model for sensors and obser-
vations description, and also assists application developer in terms of deep data
acquisition as well as quick application building. Also, we observed that corre-
lation between sensors can be leveraged for prediction of data from unavailable
sensor. For sensor data prediction we used a data mining tool and analysed the
correlation between two sensors and also some environmental parameters. We
found that we can rely on the sensor as well as environmental parameters to pre-
dict values of specific sensors. In this paper we report some preliminary results
of the outgoing work.
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